SOVIET PHYSICS USPEKHI

VOLUME 6, NUMBER 4

JANUARY-FEBRUARY 1964

PROBLEMS OF RELATIVISTIC COSMOLOGY

E. M. LIFSHITZ and I

. M. KHALATNIKOV

Usp. Fiz. Nauk 80, 391-438 (July, 1963)

CONTENTS
I. Features of cosmological solutions of the gravitational equations . . . .. .............. 495
1. Introduction . . . . ...... e e e e e e et e et et e e e 495
2. General solution with fictitious singularity. . . . .. .. ... .. .. i i 496
3. Anisotropic solution with singularity. . . ... ... ... . i i i i e 500
4, Quasi-isotropic SOIUtion. . . . . . .. i it it i e e e e e e e e e e 504
5. General conclusions concerning singularities of cosmological solutions . ........... 505
II. Gravitational stability of the isotropicworld. . .. ... ... ... ... . 506
6. Initial model and equations of small perturbations. . . ........................ 506
7. EXpansion in plane Waves . . . . . . v v it i it e e e e e e e e e e e e e e e e e 509
8. Perturbations with variation of density of matter .. ... ..... ... .. ............ 509
9. Rotational perturbations. . . ... ... . . . i i e e e e e e 514
10. Gravitational WaveS . . . v v v i i it i i et i e et e s e e e e e e e 514
Appendices . .. .. e e et e e et e e e e e e e 514
A. Expansion of the solution of the gravitational equations near a regular point. ......... 514
B. Solutions that depend onone variable. . . . . v v v ot i it it it e e e e e e 515
C. Three-dimensional Riccitensor Pog. . . o oo v v v v i v ittt ii it i i et 516
D. Next terms of the expansion of the anisotropic solution. . . ... .................. 517
E. Stability of anisotropic solution. . . ... . . . .o it it it i it e e e e e e 518
F. Origin of other types of singularities. .. .. .. ... .. it 519
G. Examples of singularities in exact solutions . . . . ... .. ... i it i i e 520
I. Equations of small perturbations of the gravitational field. . .. ... ............... 521
Cited Literature . . . . o o i it i ittt et s et e et et e e e e e e e e e e 522

I. FEATURES OF COSMOLOGICAL SOLUTIONS
OF THE GRAVITATIONAL EQUATIONS

1. Introduction

THAT general relativity theory provides in principle
a new insight into the properties of the world as a
whole was first indicated by Einstein in 1919, Subse-
quent progress in relativistic cosmology is connected
principally with the solution of Einstein’s gravitational
equations, first obtained by A. A. Fridman in 1922,

As is well known, this solution is based on the as-
sumption that the distribution of matter in space is
completely homogeneous and isotropic (‘‘isotropic
cosmological model’’). Two cases are possible here,
corresponding to a space of constant positive curvature
(so-called ‘‘closed model’’) or a space of constant
negative curvature (‘‘open model’’). The main prop-
erty of these solutions is that they are not stationary.
The resultant notion of an expanding universe has
found, as is well known, brilliant confirmation in the
red shift effect, discovered by E. Hubble, and by now
it can be supposed that the isotropic model gives, in
general outline, a representative description of the
modern state of the universe.

At the same time it is clear that the assumption
that a real world is homogeneous can be justified at
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best only approximately. Even if the distribution of
matter density can be regarded as homogeneous when
averaged over distances that are large compared with
metagalactic distances, this homogeneity vanishes at
any rate on going over to smaller scales. On the other
hand, this assumption is very far reaching from the
mathematical point of view, for it imparts to the solu-
tion a high degree of symmetry, which can result in
specific properties that disappear on going over to the
more general case.

This raises the question: how general is the second
property of the isotropic model, namely its possession
of a space-time metric with a singularity with respect
to time? The presence of such a singular point denotes
boundedness of the time. In the open isotropic model
there is, as is well known, one singular point and the
time is bounded in it only on one side, while the closed
model has two singular points and the time is bounded
in both directions.

Naturally, a question important to all of cosmology
is the degree to which this important property is gen-
eral: is the presence of a singularity a general prop-
erty of cosmological solutions, a property not con-
nected with any of the specific assumptions (about the
character of the distribution of matter and of the grav-
itational field) on which some particular solution of
the gravitational equations is based?
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By now it is known that there are, in addition to the
isotropic solution, quite a few other exact (that is,
valid in all of space and during all of time ) solutions
of the equations of gravitation. The determination of
such solutions can, of course, be of appreciable inter-
est from the point of view of clarifying various prop-
erties of such an exceedingly complicated system of
nonlinear differential equations as are Einstein’s grav-
itational equations. However, the accumulation of exact
solutions cannot by itself answer the question raised
above. Each of these particular solutions is connected
with some rather specific assumptions with respect to
their form, and the fact that a solution has or has not
a singular point cannot lead to any conclusions with
respect to the behavior of the solution in the most gen-
eral case.* Furthermore, these special assumptions
are unavoidably very far reaching, and are usually
governed only by the requirement that the solution of
the equations be made as exact as possible; they are
therefore usually purely mathematical in character
(limitation on the number of independent variables,
separation of the variables, diagonality of the metric
tensor, etc.) and have no direct physical meaning.

A more accurate formulation of the problem of
interest to us is to ascertain whether there is a sin-
gularity in the general solution of the gravitational
equations, that is, the solution which admits of a
perfectly arbitrary specification of the conditions
(the distribution of matter and of the gravitational
fields) at any instant of time chosen to be the initial
time,

A criterion for the generality of the solution is the
number of arbitrary functions of the spatial coordinates
it contains. It must be borne in mind here, however,
that among the arbitrary functions contained in any
solution of the equations of gravitation there are, gen-
erally speaking, such whose arbitrariness is connected
simpIy with the arbitrariness of the choice of the ref-
erence frame for the equation.t We, on the other hand,
should obviously be interested only in the number of
“‘physically arbitrary’’ functions, which cannot be re-
duced by any choice of reference frame. The number
of such functions can be established for the general
case readily from physical considerations. The arbi-
trary initial conditions should specify the initial spa-
tial distribution of the density of matter, the three
components of its velocity, and also the four quantities
which determine the free gravitational field (that is,
the field not connected with matter). One can arrive
at the last number by considering, for example, weak
gravitational waves: by virtue of their transversality,
their field is determined by two independent quantities

*Incidentally, the overwhelming majority of the known exact
solutions have singularities.

t The greatest possible number of arbitrary functions in the
solution of the gravitational equations in an arbitrary reference
frame is 20 (see [‘], Sec. 95).
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(components of metric tensor ); these quantities sat-
isfy a second-order equation (wave equation), and
therefore the initial conditions for them should be
specified by four functions. Thus, the general solu-
tion of the equations of gravitation should contain eight
different physically arbitrary functions of the spatial
coordinates. *

The determination of the general solution in exact
form is of course an insoluble problem. There is no
need for such a solution, however, to answer the ques-
tion of interest to us. It is sufficient to investigate the
form of the solution near the singularity.

We thus arrive at the following formulation of the
problem: assuming the singularity to exist, it is re-
quired to find near it the form of the broadest class
of solutions of the equation of gravitation, so as to
judge, from the number of the arbitrary functions it
contains, whether this solution is general.

This program has been the subject of the authors’
papers[?2-4], and is described in detail in Secs. 2—5.
In order not to clutter up the exposition, many calcu-
lations and some secondary problems are relegated
to appendices.

The entire investigation is based on Einstein’s
equations in their classical form, in which they follow
logically from the general principles of relativity,
without the ‘‘cosmological term,’’ for the introduction
of which there exist no theoretical or astronomical
grounds whatever at the present time.

2. General Solution with Fictitious Singularity

Of primary significance in the investigation of ques-
tions connected with general relativity is a successful
choice of the reference frame, appropriate to the prob-
lem under consideration.

We shall show below that the most general proper-
ties of the cosmological solutions with respect to their
singularities do not depend on the presence or absence
of matter. In this connection it is not necessary to em-
ploy in the investigation of these properties the so-
called ‘‘co-moving’’ reference frame, that is, the sys-
tem moving at each point together with the matter con-
tained in it, as is frequently the custom in cosmology.

A natural choice of the reference frame is in this
case the coordinate system obeying the conditions ¥

*A formal mathematical proof of this statement is given in
appendix A.

tWe use the notation of the book [!] throughout. In particu-
lar, Latin subscripts run through the values 0, 1, 2, and 3 while
Greek subscripts run through the three spatial values 1, 2, and
3. The square of the interval element is written as —ds?
= girdxidxk, so that the matrix of the quantities g;; has a
signature —+++.

In addition, we use everywhere a system of units in which
the velocity of light and the Einstein gravitational constant are
equal to unity.
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g0=0, go=—1. (2.1)

As is well known (see, for example, [1], Sec. 98a), the
vanishing of the components g;, of the metric tensor
is the condition permitting synchronization of clocks in
different points of space. If, in addition, gy = —1,
then the time coordinate x'=t represents the proper
time at each point of space. A reference system sat-
isfying these conditions will be called synchronous.
The interval element in such a system is given by the
expression

—ds?= —df +dI*, dI*=gypda®dab. (2.2)

The three-dimensional tensor 8ap represents here
the spatial metric.

The equations of the gravitational field in the syn-
chronous reference system have the following form
(see (11 Sec. 99):

1 2 1 o
Ry= o n o =Ty~ 5T, (2.3)
1
Ry= 5 (uf, ,—, ) =T, (2.4)
8 __ pB 1 7] L BY B 1 <8
Ra—Pa‘l‘T_—gW(V_g"“)"T“—TG“T' (2.5)
Here kqyp denotes the three-dimensional tensor
98q
Rap = gtﬁ ! (2.6)

and all further operations of raising and lowering the
indices and covariant differentiation are carried out
in three-dimensional space with metric gqg; we note
that

wp=gob %8 _ 210 (—g), (2.7)

at
where g —determinant of the tensor gjx (which dif-

fers from the determinant | gap | by a factor ggy = ~1).

The tensor Pgg in Eq. (2.5) is the three-dimensional
Ricci tensor, expressed in terms of the three-dimen-
sional metric tensor gug in the same way as Rji is
expressed in terms of gjk; it contains only spatial
(and not time ) derivatives of 8ap -

L. D. Landau has indicated long ago that the deter-
minant g of the metric tensor should vanish in the
synchronous reference frame within a finite time, re-
gardless of what assumptions are made concerning the
distribution, motion, or equation of state of the matter
or the character of the gravitational field (this cir-
cumstance was recently noted also by Komar[51*).

It is easy to arrive at this conclusion with the aid
of Eq. (2.3), noting that the right side of this expres-
sion is negative for any distribution of matter (or is
equal to zero in the case of empty spacet). Therefore

*An analogous result was obtained also by Raychaudhuri[°]
for the case of ‘‘dustlike’’ matter (equation of state p = 0),
moving without rotation — limitations which actually are not at
all obligatory.

tIndeed, for the energy-momentum tensor of matter

Tin=(p-l-¢) usup+ pgin
we have
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Rg:—-z* —8‘[%§+T%2K%<O
By virtue of the algebraic inequality*
1
whud > = (#a)?,
we get from this
f 1
s %ot e (xa)2<0,
or
o 1 1
-9? % > f . (2.8)

"o

Assume, for example, that at some instant of time

k% >0. Then 1/k% decreases and has everywhere a
finite (nonvanishing) derivative when t decreases,

so that it must vanish (on the positive side) after
some finite time. In other words, Kg goes to +e and
by virtue of (2.7) this means that the determinant g
vanishes (and, in accordance with inequality (2.8), not
faster than as t®). On the other hand, if we have at the
initial instant «% < 0, the same is obtained for in-
creasing time.

This result, however, does not prove at all the in-
evitability of the existence of a true physical singu-
larity in the metric. A physical singularity is only
one that is specific for space-time as such, and is
not connected with the character of the chosen refer-
ence frame. Such a singularity is characterized by
the blowing up of the scalar quantities—density of
matter and invariants of the curvature tensorf.

Yet the singularity which we have proved to be
inevitable in the synchronous reference frame may
turn out to be fictitious and vanish on going over to
a different reference frame. The possibility of such
a situation is evident even from the fact that the fore-
going proof remains valid in the case when the non-
Galilean nature of the metric is due merely to the
use of curvilinear coordinates in flat space-time,
when it is obvious beforehand that the singularity of
the metric is fictitious.

Simple geometrical considerations show that this
singularity which is inevitable in the synchronous
system is actually fictitious in the general case. To
this end, we call attention to the geometrical proper-
ties of the synchronous reference frame, in which the
time lines are geodesics in four-space. Indeed, the
four-vector ul = dxl/ds of the tangent to the world

line xi, xz, x3 = const, has components u? = 0, u =

1 1
T§mg T= — 5 (e-+-3p)— (p--e) ugu®,

so that this quantity is obviously negative (p —pressure, € —
energy density of the matter).

*Its correctness can be verified by diagonalizing the tensor
ng(at any specified instant of time).

1 The invariants of the curvature tensor Rjjy, are obtained
as is well known, by reducing it to the Petrov canonical form.
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and satisfies automatically the geodesic equations

dut
ds

=Thutul =Ti =0,

since the Christoffel symbols I'§ and I'), vanish iden-
tically under conditions (2.1).

It is also easy to see that these lines are normal to
the hypersurfaces t = const. Indeed, the four-vector
of the normal nj = -8t/ ax! to such a hypersurface has
covariant components n, = 0 and ny = —1. The cor-
responding contravariant components, under conditions
(2.1) are n® = 0 and n° = 1, that is, they coincide with
the components of the four-vector uj tangent to the
time lines.

Conversely, these properties can be used for a geo-
metrical construction of a synchronous reference
frame in any space-time. To this end we start with
some chosen space-like hypersurface, that is, a hyper-
surface the normal to which has a time-like direction
at each point {the normal lies inside the light cone with
vertex at the same point ); all the interval elements on
such a hypersurface are spacelike*. If we now choose
these lines as coordinate lines for the time, and de-
fine the time coordinate t as the length of the geodesic
line reckoned from the initial hypersurface, then we
obtain a synchronous reference frame.

It is clear that such a construction, and by the same
token the choice of the synchronous reference frame,
is always possible in principle. Moreover, this choice
is still not unique: a metric of the type (2.2) admits of
any transformation of the three spatial coordinates
which does not concern the time, and also a transfor-
mation corresponding to arbitrariness in the choice of
the initial hypersurface in the indicated geometric con-
structionf.

However, the geodesic lines of an arbitrary family,
generally speaking, cross one another on certain enve-
lope hypersurfaces, which are four-dimensional analogs
of the caustic surfaces of geometrical optics. On the
other hand, crossing of the coordinate lines produces,
of course, a singularity in the metric in the given co-
ordinate system. Thus, the appearance of a singular-
ity has a geometrical reason which is connected in an
obvious fashion with the specific properties of the syn-
chronous system and consequently has no physical
character.

The arbitrary metric of four-space admits also,
generally speaking, the existence of non-intersecting
families of time-like geodesic lines. The unavoidabil-

*0On the other hand, if the directions of the nomal to the
hypersurface lie outside the light cones, then the interval
elements in the surface can be both time-light and space-light.
We shall arbitrarily speak of such hypersurfaces as having a
timelike character, although the terminology is not quite appro-
priate in this case.

1 The admissibility of the latter transformation is particu-
larly clear analytically in the infinitesimal case (see end of
Appendix I).
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ity, on the other hand, of the vanishing of the deter-
minant of g in the synchronous system denotes that
the curvature properties of real space-time, which
are admitted by the equations of gravitation (a prop-
erty expressed by the inequality R} = 0), exclude
the possibility of existence of such families, so that
the time lines must unavoidably cross one another in
any synchronous frame.*

From the analytic point of view this means that the
equations of gravitation have in the synchronous ref-
erence frame a general solution with a fictitious time
singularity; in an arbitrary synchronous frame, such
a solution should contain 12 arbitrary functions of the
coordinates, namely, the 8 ‘‘physically arbitrary’’
functions and in addition 4 arbitrary functions con-
nected with the aforementioned ambiguity in the choice
of the synchronous reference frame.

The character of the fictitious singularity of the
metric is clear beforehand from geometrical consid-
erations. First, the caustic hypersurface should have
a timelike character, since it contains, in any case,
timelike intervals—elements of the length of geodesic
lines at the points of their tangency with the caustic.

Further, one of the principal values of the metric
tensor vanishes on the caustic, in accordance with the
vanishing of the distance between two neighboring geo-
desics that cross each other at the point of their tan-
gency to the caustic (the corresponding principal direc-
tion lines, obviously, along the normal to the caustic).
This distance vanishes in proportion to the first power
of the distance to the point of intersection. Therefore
the principal value of the metric tensor, and with it the
entire determinant g, vanishes like the square of this
distance. .

It can be shown that under suitable choice of the
spatial coordinates, the first terms of the expansion
in the spatial metric can be represented near the sin-
gularity in the form

dI* = gop dz® daf = aq, da” dz®

+ (t — @)2as3 dzl+ 2 (t — @) aqq d2” dz® (2.9)

(the indices a and b run through values 1 and 2; the
quantities agp, ag3, a33, and ¢ are functions of all
three coordinatest).

*We disregard, of course, the trivial exception — beams of
parallel straight lines in flat four-space.

T A complete analytic construction of the entire solution
with fictitious singularities for empty space is given in [*],

The spatial metric (2.9) admits also of an arbitrary trans-
formation x*' = x*"(x!, %%, x%), which reduces to a redesigna-
tion of the quantities a,,, a,,, and the higher terms of the ex-
pansion of the component gg,. It is possible to use this trans-
formation to convert the function ¢, which gives the form of
the caustic surface, into ¢ = x°, after which only transforma-
tions of the two coordinates x' and %* in terms of each other
remain admissible. With such a choice of coordinates, the
solution should contain merely five arbitrary functions (of
three coordinates): the four functions necessary to specify
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The singularity in the metric (2.9) is not simulta-
neous—different spatial points reach it at different
instants of time t = ¢. It is easy to see, however, that
it is always possible to construct also a synchronous
reference frame such that the singularity (fictitious)
is attained simultaneously in all of space. It is clear
that such a singularity cannot be located on the hyper-
surface that is tangent to the time lines at the points
of their intersection, since the existence of timelike
intervals in such a surface would certainly exclude
the simultaneity of the singularities. Therefore the
time lines should cross on a ‘‘manifold of points”’
which has fewer dimensions than the hypersurface,
that is, which is some two-dimensional surface in
four-space; it can be called the focal surface of the
corresponding family of geodesic lines. By choosing
arbitrarily the focal surface, by constructing from
each of its points all possible normal directions to
the surface (all the directions in the two-dimensional
plane normal to the focal surface), and by drawing the
geodesic lines in these directions, we construct by the
same token a synchronous reference frame having the
required property.

Thus, the general solution of the equations of gravi-
tation can also be represented (by suitable choice of
the synchronous frame) in a form in which the singu-
larity is simultaneous for all of space. In such a form
it contains, of course, the same eight physically arbi-
trary functions (of three spatial coordinates), which
are sufficient for the specification of the arbitrary ini-
tial conditions. Compared with the solution in the form
(2.9), it contains one less arbitrary function: if we con-
struct the synchronous reference system starting with
some initial hypersurface, then a hypersurface which
is far from arbitrary can lead to the focusing of the
geodesic lines constructed along the normals to it.*

As was already indicated, the fictitious nature of
the singularity of the solution under consideration is
obvious already from the method used for its construc-

the initial conditions for the field in vacuum, and one function
connected with the remaining arbitrariness in the choice of
the synchronous reference frame (the choice of the initial
hypersurface, from which the time coordinate is reckoned).
These five arbitrary functions are contained in the six quan-
tities agp, a3, and a,,, which turn out to be interrelated by a
single equation.

*In some sense this solution corresponds to a vanishing
function ¢ in the solution (2.9). On the singularity (t = 0)
the square of the interval ~ds? = ~dt? + d{? reduces to the
quadratic form -ds? = a4, dx®dxP of only two differentials. We
emphasize, however, that the expansion of the metric near such
a singularity cannot be obtained at all by merely putting ¢ =0
in the formulas pertaining to a solution of type (2.9). We also
point out that such a system does not encompass all of space-
time. This is clear from the fact that in each hypersurface
t = const all the points lie at equal time distances from the spa-
tial focal surface, that is, these hypersurfaces are completely
contained in the region of the absolute future or the absolute
past with respect to the focal surface.
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tion. The singularity can be eliminated by transform-
ing the reference systems, but only at the expense of
foregoing their synchronous nature.

For the same reason it is obvious that the qualita-
tive character of this solution does not depend on the
presence or absence of matter, and that the density
of the latter has no singularity whatever and remains
finite. This becomes particularly clear if it is noted
that the matter moves (in the synchronous reference
frame) along world lines which do not coincide with
the time lines and which are not even geodesic.

The latter circumstance denotes that the reference
frame cannot, generally speaking, be chosen such as
to be synchronous and at the same time co-moving,
with the world lines of the matter coinciding withthe
time lines. The only possible exception is ‘‘dustlike’’
matter (pressure p = 0), which moves along geodesic
lines. Therefore in this case the ‘‘co-moving’’ condi-
tion for the reference frame of the matter does not
contradict the condition for its being ‘‘synchronous.’’
This, however, is still not enough—not all families
of timelike geodesic lines have the property of being
normal to a spacelike hypersurface, something nec-
essary to make the reference system synchronous.
This condition is satisfied if the matter moves ‘‘with-
out rotation,’’ that is, if the curl of its velocity van-
ishes everywhere*. In the ‘*synchronous-—co-moving’’
system, which we can construct in this case, the den-
sity of the matter becomes infinite on the caustic—
simply as a result of the crossing of the particle tra-
jectories. It is clear, however, that this density sin-
gularity has likewise no physical character and is
eliminated merely by assigning to the matter a pres-
sure which is arbitrarily small but different from
zero.

Thus, the singularity in the general solution of the
gravitational equations, the necessity for the exist-
ence of which follows in the synchronous system from
the inequality Rg =< 0, turns out to be unphysical. By
the same token, there are no further grounds for the
existence of a singularity of another type, which would
be true and at the same time specific to the general
solution. These results, however, do not exclude the
possibility of existence of narrower classes of cos-

mological solutions of the gravitational equations, with
true singularities. Their determination is treated in
Secs. 3—4. In addition to the independent interest that

*The necessity of this condition is obvious from the fol-
lowing considerations. In the co-moving reference system the
contravariant components of the four-velocity are u®=0, v°* = 1.
If this reference system is also synchronous, then we also have
the covariant components u, = 0 and u, = -1, so that its four-
curl is

Uy p—Up, § = Uy p— Uk, =0,
But this tensor equation should then be valid in any other refer-
ence frame. Thus, in a synchronous but not co-moving system
we obtain from this the condition curl v = Q for the three-
dimensional velocity.
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can be attached to the investigation of possible types

of singularities of the solutions of the gravitation equa-
tions, by constructing these solutions and by ascertain-
ing the degree of their generality we confirm the con-
clusion that the general solution has no true singularity.

3. Anisotropic Solution with Singularity

The solutions of the gravitational equations can have
on the hypersurface t = ¢ (x®), a (true) singularity
which can be both spacelike and nonspacelike*. In the
former case it is always possible to choose a refer-
ence frame, without violating the conditions of its syn-
chronism, in such a way as to convert this hypersurface
into a ‘“‘hyperplane’’ t = const; in other words, in this
case there exists a synchronous reference frame in
which the singularity ‘‘sets in’’ simultaneously in all
of space. It can be said that such a singularity is time~
like. To the contrary, in the second case no choice of
the reference system can make the singularity simul-
taneous in all of space; it can be said that it is space-
like.

From the cosmological point of view, the singulari-
ties of major interest are those with a time character.
In particular, when searching for a general solution
with a true singularity, it would be natural to think that
if any singularity were inevitable, it would be precisely
a timelike one, We shall consider time singularities. t

We assume that by suitable choice of the reference
system the singularity has been reduced in all of space
to a single instant of time, which we choose to be t = 0.
This condition, together with the synchronism condi-
tions, establishes the choice of the time coordinate, so
that the ambiguity of the synchronous reference system
reduces merely to the admissibility of arbitrary trans-
formations of the three spatial coordinates in terms of
one another.

The equations of the gravitational field in empty
space have a simple particular exact solution

—ds?= — 1t - 12r1 dx® - 12F3 dy? 4 1273 422, (3.1)

where py, py, and p; are arbitrary three numbers, in-
terrelated by the two equations

Pi+Pe+ps=pl+pit+pi=1 3.2)

*Inasmuch as the metric becomes singular when t = ¢, the
manifold defined by this equation is, strictly speaking, not a
hypersurface (it can, in particular, reduce to a manifold with
fewer dimensions). When referring to its character, we imply
the character of a hypersurface that is arbitrarily close to, but
not coincident with, the singular metric,

T Along with the solution with time singularity, which will
be considered in this section, there exist solutions with an
analogous space singularity. In addition, space singularities
which do not exist for the timelike case are also admissible
(see Appendix B). It is essential, however, that even such
singularities lead to solutions that are less inclusive than
those required of the general solution,
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(this solution was apparently first pointed out by Kas-
ner(7J),

The numbers connected by relations (3.2) will play
an important role in what follows; we therefore indi-
cate here some of their properties. Since the three
numbers p;, py, and p; are connected by two relations,
only one of them is independent. The three numbers
P1, P2, and ps can never have the same value, and two
of them can be equal only in the triplets 0,0,1 and
- Yy, %, %.* In all other cases these numbers are
different, only one being negative with the other two
positive; we arrange them in sequence

< p2 < ps. (3.3)

The numbers py, p;, and p; run through values in the
intervals

1

—3<m<0, O<pm<t, T<m<t. (3.4)
They can be represented in parametric form as

. —s _ s(1-ts) . A+s
Ph=qrige P qgsyer P qoye (3.5)

with the parameter s ranging from 0 to 1. In the fig-
ure, any two of the numbers py, p;, or p; can be de-
termined from specified values of the third (the three
values lie on one vertical line).
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Although the solution (3.1) is itself very particular,
it has a simple and lucid physical character, corre-
sponding to a completely homogeneous (but anisotropic)
space. It is natural to expect such a solution to be a
particular case of some broad class of solutions.

We shall seek a space metric near the singularity,
in first approximation (the principal terms of the ex-
pansion in powers of t), in the form

gap = tZP1glg + 12P2mymg + 12P3ngng, (3.6)

where 1, m, and n are three-dimensional vectors
which are functions of the coordinates; the exponents

*When (p,, P,,P;) = (0,0, 1) the metric (3.1) can be trans-
formed to a Galilean one by the transformation tsinhz = ¢,
tcoshz = 7; that is to say, we are actually dealing here with
flat space-time.
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P, Dy, and ps, which are related by (3.2), are now
also functions of the coordinates.
The determinant of the tensor (3.6) is

—g= (I[mn])2s% (3.7)*

The tensor go‘ﬁ, which is the inverse of (3.6), can be
represented in the form

g8 = =201 [B | 1—2P2m%mB |- t—2raponb, 3.8)

the letters I%, m®, and n® with superior indices de-
note here the components of the vectorsT

[ol] =~

[mn] -
~ ({mn))’

(1[mn]) °

__ [m]
P = Ty

T=

(3.9)

which are ‘‘inverse’’ to the vectors [, m, and n, so

that
Lo =1, lgm*=1n*=0, ... (3.10)

Differentiating the tensor (3.6) with respect to the
time, we obtain

Rap= 2 2pt2P1—1lglp (3.11)
and, raising the indices, we get
1
xB=— > 2pilalP, (3.12)

where the summation sign denotes henceforth summa-
tion over the cyclic permutations of the vectors 1, m,
and n and the numbers py, ps, and ps.

The representation of gng in the form (3.6) is in
correspondence with the fact that the time variation
of the linear distances follows different laws in the
three different directions (defined by the vectors 1,
m, and n) at each point of space. It must be empha-
sized, however, that the vectors 1, m, and n cannot,
generally speaking, be chosen as a reference frame
for a spatial coordinate system. In order for the di-
rection, say, of the vector 1(x!, x%, x3) (specified in
terms of its covariant components [, ) to be able to
serve at each point of space as a direction of one of
the coordinate lines (xll) it is necessary that the sum
1 dx® be proportional to the total differential 1,dx%
= 3de (9, ¢ —two scalar functions); then the surfaces
@ = const will be the surfaces x!" = const. Thus, the
choice of the coordinate lines along the directions 1
is possible only for a vector of the form 1 = y Vg,
which reduces to merely 2 (in place of 3) independent
functions.

It is easy to verify that the singularity possessed
by the metric (3.6) is actually a true singularity for
all values of the exponents, with the exception of
(0,0,1); when t = 0 the invariants of the curvature

*mn] = m x n.

THere and throughout all symbols for vector operations
(vector products, the curl and gradient operators, etc.) must
be regarded in pure formal fashion as operations on compo-
nents (covariant) of the vectors |, m, and n, as if the coordi-
nates x!, x°, and x* were Cartesian.
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tensor of this metric become infinite. For the values
(0,0,1) the singularity of the metric becomes ficti-
tious and can be eliminated by transforming the ref-
erence frame (see the preceding footnote ); we elimi-
nate these values from further consideration.

a) Case of empty space. We consider first the case
of empty space. Then the gravitation equations (2.3)—
(2.5) are

1 9 1
Ry=— 57 wat 7 #ixg=0, (8.13)
1
R = (uf. ,—uB ) =0, (3.14)
1 a — — .1
Rg__Pg+2]/ at (V=g »8)=0 (3.15)

Upon substitution of (3.12), Eq. (3.13) is satisfied auto-
matically by virtue of the relation p; + p, + p; = p? + p}
+p3. The second term of (3.15) vanishes identically,
since K% ~ 1/t and v—g ~ t. This term is ‘‘poten-
tially‘ of order t~2. Therefore in order to satisfy
(3.15) (in its principal terms), it remains to stipulate
that the tensor P/gY contain no terms of order t~% or
larger terms. Let us clarify the conditions that en-
sure the absence of such terms.

Inasmuch as the time dependence of the metric is
essentially different along the directions 1, m, and n,
it is convenient to ‘‘project’’ all the tensors on these
directions. Denoting the corresponding projections by
the indices I, m, and n, we define them in the follow-
ing fashion:

Py = Paplals, Py = Pyplomb, ... (3.16)
In this notation we have, in particular,
gll=t2pl7 gmm=t2p21 gnn=t2p3- (3-17)

The ‘““‘mixed’’ components of the tensor are defined

accordingly as

_Pu
8
The general formulas for the tensor components P g

defined in this manner are given in Appendix C. It is

seen from these formulas that the highest-order term

in the diagonal components of the tensor is

P
Zim _y-2mp, .

P! =t-2mpP,, PI'= P (3.18)

_pme _pi_ (1rot 1)2

= 50 ma]F t—2(p2+p3—m1),

Pl = (3.19)*
Inasmuch as p; < 0, we have 2(py + p; —py) = 2(1 —2py)
> 2, so that this term is of higher order than t=2, and
in order to satisfy (3.15) it is necessary, in any case,

that this term be missing, that is, we must have

Irot1=0. (3.20)

According to the foregoing, this condition (which is
equivalent to 1=yV¢) signifies geometrically that the
direction of the vector 1 can be chosen at each point of
space as a direction of one of the coordinate lines.

If condition (3.20) is satisfied, the terms in the ten-
sor components Ppyg turn out to have the orders of
magnitude

*rot = curl.
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P} ~ P~ Ph ~1=2m3(Int)?, Py ~ t2(r2=P3) In ¢,

Py~ Ppyp ~ (In1)?

and do not affect the principal terms in (3.15)*.

It remains to satisfy Eq. (3.14). The largest terms
in these equations could have an order t~! In t: such
terms appear when the exponents in the derivatives of
gpy are differentiated with respect to the coordinates
entering into the expression

1 ' —1 8 1 "Ogpey
%g B:—V—__—éa—xﬂ-( —-g_xa)-——2~uﬂ\’a—a—-. (3.21)
Calculating these terms, we get
gy o ap
Y — o~ 4 ) pu—m—tBly DY 420 1nt6m—;zﬂzy
Int ap Int 9 ~a
=4 — Z P ax; =2 ~ E Z 8 (3.22)

and by virtue of (3.2) these terms cancel identically.

Thus, the principal terms in (3.14) turn out to be
those proportional to 1/t. Since KB ~ 2/t and does
not depend on the coordinates, in this approximation
we have Kg; a = 0. To calculate (3.21), we write

2 ] 1 pi(mn]g[mn], 4
= T D | 5,5 (Ple (ml) —

2 8
= w2 {la 5,5 (P1(mnp)
8
) .
=~ a2 (la ((m0] V)
+ la,pi div [mn] — D [[mn] rot 1]!1}-

Expanding the vector expressions and rearranging the
terms in the sum, we obtain

1
o __ —
RY = _7;:5;‘3_

+(py—py)nrotm} =0, (3.23)

Projecting this equation on the directions 1, m, and n,
we obtain the three relations

(1{mn}) py, 1+ (pa— py mrot n+ (p, — pz) nrot m =0,
(1[mn]) ps, m+ (pr— p2) nrot 1+ (py— ps) 1xotn =0,
(1[mn]) ps, n + (p2— ps) lrot m + (ps — pr) mrot 1 =0
(the letters I, m, and n following the commas in the
subscripts denote differentiation along the correspond-
ing directions in accordance with definition C.3).

The next expansion terms [ following (3.6)] of the
metric tensor are expressed in terms of quantities

(3.24)

*When the next terms of the expansion of the vector | = 1®
+1® 4 ... are taken into account, the product | curl 1 ceases
to be equal to zero, but the correction terms that result from
(3.19) are of smaller order than t™2P*, and are therefore small
compared with those written out (see end of Appendix D).
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contained in (3.6); the corresponding calculations are
given in Appendix D.

Expression (3.6) contains only ten different func-
tions of the coordinates; three components of each of
the vectors 1, m, and n, and one function in the expo-
nents of t [any one of the functions py, py, Or ps,
which are related by Eq. (3.2)]. These ten functions
are connected by the four relations (3.20) and (3.24).

In addition, the reference system used by us admits

of arbitrary transformation of the three spatial coor-
dinates in terms of one another. Therefore the solu~
tion obtained contains merely 10 —A\i ~3 = 3 physically
arbitrary functions of the three space coordinates.
This is one less than is needed to specify the arbitrary
initial conditions for the gravitational field in vacuum*.

By some specific choice of the spatial coordinates
we can recast the metric (3.6) in various simpler
forms, for example:

1% = %271 dg? - mJi2P2 dy? 4 nlt2rs dz?

+ 2mymyt2?: dx dy + 2n4n,1293 dz dz. (3.25)

The five quantities I, my, m,, ny, ngy (and the expo-
nents py, Py, P3) are connected by three relations,
which can be readily obtained from (3.24); on the other
hand, condition (3.20) has already been used in choos-
ing 1 as the directions for the x coordinate lines. In
(3.25) the coordinates y and z can be also subjected
to transformations of the type y — f(x,y) and

z — g(x,z); such transformations do not affect the
principal terms of the expansion of the metric, given
by (3.25).

We note that the foregoing solution is in principle
anisotropic: the exponents p;, py, and p3, which de-
termine the variation of the linear distances along the
three different directions in space, cannot be the same.
We also call attention to the mathematical peculiarity
of this solution—one of the arbitrary functions enters
in it as the power of the time.

b) Solution in space filled with matter. We now show
that the presence of matter does not change the char-
acter of the obtained ‘‘anisotropic’’ solution, and the
initial conditions for the distribution and motion of the
matter can be specified in completely arbitrary fashion.

In considering a solution of the gravitational equa-
tions near a singular point at which the pressure p and
the energy density € of the matter become infinite, it
is necessary, of course, to use for its equation of state
the ultrarelativistic relation

p=~g— . (3.26)

Then the energy-momentum tensor of the matter be-
comes

T =(p+¢) uats + pgun =5 (hugn+gu), Ti=0. (3.27)
*In Appendix E we present arguments which explain more

lucidly the reasons why one arbitrary function is ‘‘lost’’ in

this solution.
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The gravitation equations (2.3)—(2.5) assume the form
19

R{ = T a ot + %a%s 3 % (duqu 4-1), (3.28)
1 4
Rg:j(”g; a—“a;ﬁ)=§8uau0y (3.29)
RS =P8 et O (Y = gub) = o (uqub -+ 8%).  (3.30)

To estimate the orders of magnitude of the material
density and velocity it is convenient to use the hydrody
namic material equations of motion, which are con-
tained, as is well known, in the gravitational equations
(the equations Tk_ =0):

1/ gw(l/ — gout)=0, (3.31)

(p-te) G — g w G} = — Gt 3
(see, for exa_mple, [8], Sec. 125). Here ¢ — entropy
density; for the ultrarelativistic equation of state (3.26)
the entropy is o ~ €34,
We now make an assumption, to be confirmed by the
result, that the principal terms in (3.31)—(3.32) are
those containing time derivatives. Then Eq. (3.31) and

the spatial components of (3.32) (the time component
yields nothing new) give

(3.32)

hence

tuoe®s = const, u,eY+=const,

where ‘‘const’’ stands for the time-independent quan-
tities. In addition, from the identity ujul = ~1 we have
(taking into account that all the covariant components
uy are of the same order)

U3 A upu™ = unt 2,

we again use the components along 1, m, and n, that
is, we represent the three-dimensional vector u in
the form

u =l u,m-+u,n,

with ul=uT,...
From the relations written out we get

—2(-pp) 27
b

ul t—(3ps~1)’

t(i—Pa)/ZY

g~ 1 Ug ~ (3.33)

after which we can readily check that the terms left
out of (3.31)—(3.32) are actually small compared with
those retained.

We now estimate the components of the energy-
momentum tensor in the right halves of (3.28)—(3.30).
In (3.28) we have

0 e~ i—(1
Ty ~ euy ~t~(1+pa),

Inasmuch as pg < 1, this quantity is of lower order in
1/t than the principal terms in the left half of the equa-
tion (~t~2). The same applies to (3.30): the spatial
components of the tensor Tli( ‘‘projected’’ along the
directions 1, m, and n, have orders of magnitude
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~2(1—-713) m__ t—(1+2P2—Pa)
ki

11
Ty~e~1t , T~ el

—(1+p3)
?

3.34)

Tp ~ eu,u™ ~ ¢

which are all smaller than t~2,
On the other hand, in (3.29) we have

0 1
To ~ eugud ~

that is, the same order of magnitude as of the left half
of the equation. But this circumstance likewise does
not change the character of the solution. Indeed, in
accordance with (3.33), we write

g = g(0) g2 1P, ua=u&0) f-pa)2

for the first terms of the expansion of these quantities;
here

O
Equating the expression (3.23) for RY to the quantity
T = 4euqu’/3, we obtain in place of (3.24)

(1[mn]) py, 14 (ps— p)) mrot n 4 (p,— ps) n rot m

7 R (3.35)
Thus, the only change is in the connection between the
functions involved in (3.6), which now contains also the
new functions €@ and u®,

A change occurs also in the form of the higher terms
of the expansion of the metric tensor, with the terms
immediately following (3.6) being precisely the terms
connected with the presence of matter (see Appendix
D).

Thus, the obtained anisotropic solution of the gravi-
tational equations is a very broad class of solutions
with singularity. It contains seven arbitrary functions
of the coordinates: in addition to the three functions
present already in the absence of matter, it contains
also the function €'® and the three functions ufy’.
This, however, is one less than required for the gen-
eral case, so that this solution is not general.*

The character of variation of the metric near the
singularity (t — 0) does not depend in this solution
on the presence or absence of matter (and by the
same token on its equation of state). It is such that
at each point of space the linear distances along two
directions decrease (as tP? and tP3) and increase
along the third (as t~IP1l); the volumes decrease here

*In the particular case when (p,, p,, p,) = (-1/3, 2/3, 2/3)
the matter can be ‘“written in’’ in the metric (3.6) in still an-
other manner, such that its velocity tends to zero as t -» 0.
Then, however, the matter introduces only two and not four
arbitrary functions, that is, the initial conditions for it must
have some particular character. For the class of solutions ob-
tained in this way see [2]. This class includes, in particular,
the general solution for a centrally-symmetrical collapse of
matter.
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in proportion to t. The laws governing these varia-
tions (that is, the values of py, py, and p;) vary in
space and are determined by the specification of the
initial conditions.

The density of matter becomes infinite at each point
of space like € ~ t™2!!"P8), This fact in itself is an ob-
vious indication that the singularity has a physical (not
fictitious ) character.

As t — 0, the velocity of the matter tends in this
solution (in the reference system under consideration)
to the velocity of light., Indeed, the three-dimensional
scalar u%ugy = upu? tends as t— 0 to infinity like
t~¥P37D_ This means that the matter moves at each
point essentially along the n direction, and the abso-
lute value of its ordinary three-dimensional velocity
v (vi=vyv?®) tends to unity like

YT g g0,

The proper time 7 of the moving matter is con-
nected with the time t through dr=dtv1 —vZ. There-
fore

(3.36)

T~ 3P (3.37)

In the co-moving reference system, the energy den-
sity therefore becomes infinite like

_sd~py
3pg+1

(3.38)

E~T

4. Quasi-isotropic Solution

The solution considered in the preceding section is
in principle anisotropic: inasmuch as the exponents p;,
P, and p; cannot be identical in this solution, the
‘‘contraction’’ of space occurs in anisotropic fashion.

It is therefore natural that this solution does not
contain the isotropic (Fridman) solution. We shall
show that the latter is indeed a particular case of a
second class of solutions, in which the contraction of
space occurs in ‘‘quasi-isotropic’’ manner—the linear
distance changes in all directions with the same power
of the time. As in the completely isotropic case, this
solution exists only for space filled with matter.*

*In vacuum the gravitational equation can be satisfied by a
quasi-isotropic metric of the form ga5=t’aa5, where agg—
functions of the coordinates.

Equation (3.13) is then satisfied identically (x4 = 284 /t),
while Eq. (3.15) yields Pg = -2352, where the tensor Pog is
calculated with the simple metric agg; but such a form of
P,z denotes that the space has a constant negative curvature.
The corresponding space-time metric can be written with the
aid of the four-dimensional spherical coordinates y, §, and ¢
in the form

— ds2= —d2} 12 [dx2 1 sh? ¥ (d0%-+sin? 6 dg?)],

but the transformation
r=tsinhX, T=1%coshX

reduces such a metric to the Galilean one

—ds2= —d124-dr23-}-r2 (d024-sin2 0 dg?).
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The isotropic model, as is well known, is formu-
lated in most natural fashion in the co-moving refer-
ence system. In this system there appear in explicit
form the isotropy and homogeneity of space, by virtue
of which the quantities gy vanish automatically (so
that the reference system is at the same time synchro-
nous ), and the singularity takes place simultaneously
in all of space. The specific law governing the de-
pendence of the metric on the time depends in this
solution on the equation of state of the matter. For
the ultrarelativistic equation p = €/3, the metric has
as t — 0 the form ggp ~ angt, where agpg are com-
pletely defined functions of the coordinates, corre-
sponding to a constant curvature of space. As func-
tions of the time, the gup are expanded in integer
powers of t.

We shall formulate the quasi-isotropic solution in
the synchronous system, which, however, is no longer
strictly co-moving. The spatial metric will be sought
in the form

Sap = taaﬂ + tzbag G+ ..y (4.1)

where now ayg —arbitrary functions of the coordi-
nates. The tensor inverse to (4.1) is

gaﬁ = t‘laaﬂ — baﬂ, (4.2)

where the tensor a®B isthe inverse of agp; all the op-
erations of lowering and raising the indices and of co-
variant differentiation are carried out on the other
tensors everywhere in this section with a time-~-inde~
pendent metric agp (for example, b@ = aﬁ'ybay, etc. ).

Calculating the left halves of (3.28) and (3.29) re-
spectively accurate to two and to one principal order
in %,, we obtain

3
et b= 5 (ki 1), “.3)
1
5 (b;(l — bg‘ ﬂ) = —%uauo, (4'4)

where b = b%. If we compare the right halves of these
equations and take into account the identity

) i 1
~l=uu*~ ~ul+ + Ugupach,

we see readily that € ~ t™2 and ugy ~ t?; then, by vir-
tue of the indicated identity, u} -1 ~ t3. From Eq. (4.3)
we now obtain the first two terms of the expansion of
the energy density

3 b
&= 472'— o5 0 (4:.5)
and from (4.4) we get the first term of the expansion

of the velocity

2
g =3 (00— b:p). (4.6)
The three-dimensional Christoffel symbols, and
with them also the tensor Pyg3, do not depend on the
time in the first approximation in 1/t; PaB coin-
cides here with the expression obtained in calculations
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with a time-independent metric agg. Taking this cir-
cumstance into account, we now find that the terms of
order t™? cancel out automatically in (3.30), while the
terms proportional to t~! yield

3 5
P§+Zbﬁ+1—26gb=0.

Hence

o= — = PEt 2 obp. (4.7)
We see that actually the six functions aqg remain
completely arbitrary. From the specified apg we de-

termine with the aid of (4.7) the coefficients byg of

the next term of the expansion, and with them also the
coefficients of the first terms of expansions (4.5) and
(4.6) of the matter density and velocity. We note that
as t — 0 the distribution of matter becomes more
homogeneous, and its density tends to a value independ-
ent of the coordinates. As regards the velocity distri-
bution (4.6), it can be transformed by taking into ac-
count the relation

7
bg; B= 9 b; ar
which is a consequence of the relation
Pg; B—%P;a=os

which is satisfied, as is well known, by any Riceci ten-
sor. We then have

ty =g b (4.8)
that is, in this approximation the velocity is a gradient
of some function and its curl vanishes (a nonvanishing
curl appears, however, in the next terms of the expan-
sion).

The metric (4.1) admits also of the possibility of
arbitrary transformation of the three space coordi-
nates (the choice of time is completely determined
by the condition t = 0 at the singular point); these
transformations can be used, for example, to reduce
the tensor ayg to a diagonal form. Therefore the
solution obtained contains merely 6 —3, that is, three
different physically arbitrary functions of the coordi-
nates.

The isotropic model corresponds to the particular
case of completely defined functions agp —those cor-
responding to a space of constant curvature (in this
case Pg = const * 6@ ).

5. General Conclusions Concerning Singularities of
Cosmological Solutions

The main conclusion of the foregoing results is that
the presence of time singularities is not an obligatory
property of cosmological models of the general theory
of relativity, and that the general case of arbitrary dis-
tribution of matter and of the gravitational field does
not lead to the appearance of singularities.
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On the other hand, solutions which have physical
singularities have a degree of generality which is not
sufficient to take into account arbitrary initial condi-
tions specified at any instant of time. The most ex-~
tensive among these solutions is the anisotropic solu-
tion, which contains seven arbitrary functions of the
coordinates. Although this is merely one less than the
maximum possible, this is sufficient, of course, for the
initial conditions admitted by this solution to have
‘‘zero measure’’ compared with the entire manifold of
possible initial conditions.

The insufficient degree of generality of the solution
denotes that it describes an unstable mode; there exist
small perturbations of a type such that their superpo-
sition leads to a violation of the solution and by the
same token to the vanishing of the singularity. With-
out loss of generality, we can always subject an arbi-
trary perturbation to conditions that prevent it from
violating the synchronism of the reference system.
Since the singularity cannot vanish at all in the syn-
chronous reference system, this means that it should
go over into a fictitious singularity as a result of the
perturbation.

The considerations advanced in Sec. 2 regarding the
fictitious character of the inevitable singularity in the
synchronous reference system pertain to an equal de-
gree to empty space and to space filled with matter
with any equation of state. We have seen also in Sec. 3
that the presence of matter does not change the quali~
tative properties of the anisotropic solution with a true
singularity. All this offers evidence that the most gen-
eral time-singularity properties of the cosmological
solutions are already manifest in the case of empty
space, and that matter does not change these proper-
ties qualitatively. This result is natural if we note
that the gravitational properties of the ‘‘wave packets’’
made up of short-wave gravitational waves can imi-
tate the gravitational properties of matter (with an
equation of state p = €/3).

An exceptional position is occupied in this respect
by the isotropic model, as well as by the quasi-iso-
tropic solution that generalizes it (Sec. 4)—these solu-
tions exist only for space filled with matter. This ex-
ception, however, has a simple explanation, which
merely confirms the general rule. It is connected
precisely with the high symmetry (homogeneity) of
distribution of matter, which is characteristic of this
solution, and which cannot be imitated by any aggre-
gate of transverse gravitational waves.

An assumption frequently made in the literature is
that the time singularity is obligatory in the absence of
‘“spin’’ of the matter filling the space, but can vanish
in models which take the spin into account.* It be-
comes clear from the foregoing that actually the char-

*The reason for this assumption is that the term connected
with the rotation (in the nonsynchronous system) in the 00
component of the gravitational equation has a sign which, so
to speak, slows down the decrease of the determinant.
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acter of motion of the matter has no direct bearing
whatever on the time singularities of cosmological
solutions.

We have spoken everywhere of the approach to the
singularity having the same direction as the decrease
in time. Actually, by virtue of the symmetry of the
gravitational equations under time reversal, we can
speak equally well of approaching the singularity in
the direction of increasing time. Physically, however,
in view of the physical non-equivalence of the future
and the past, there is an essential difference between
these two cases with respect to the formulation of the
problem itself. A singularity in the future can have a
physical meaning only if it is admissible under per-
fectly arbitrary conditions, specified in some preced-
ing instant of time; clearly, there are no grounds for
the matter and the field to attain at some instant, dur-
ing the evolution of the universe, a distribution corre-
sponding to the specific conditions necessary for real-
ization of a particular solution (of the gravitational
equations ) with a true singularity. Moreover, if we
even admit the existence, for some reason, of such a
distribution at some instant of time, then it will un-
avoidably be disturbed in the future, if for no other
reason than the unavoidable thermodynamic {and quan-
tum ) fluctuations. Therefore the results presented ex-
clude the possibility of the existence of a singularity in
the future and denote that any contraction of the world
(if it should occur at all) must ultimately again give
way to expansion.

As to the existence of singularities in the past, an
investigation based on the gravitational equations alone
cannot yield a definite answer. The requirement that
the singularity occur for an arbitrary distribution of
matter and field is not a priori essential in this case.
In this form it will be equivalent to the patently unac-
ceptable assumption that the real universe is described
by some purely random solution of the gravitational
equation.

Actually there is no doubt that the choice of the so-
lution corresponding to the real world is in fact unique
and is connected with some deep physical requirements,
which cannot be established on the basis of the existing
gravitational theory alone, and which can be explained
only as a result of further synthesis of physical theo-
ries. Only after these requirements are established
will it be possible to state unambiguously whether the
specific solution of the gravitational equation satisfying
these requirements has a singularity.

Doubts may arise as to how correct it is in general
to consider the question of the ‘‘singular state’’ of the
world on the basis of existing gravitational theory,
since we do not know the extent to which its equations
are applicable for an arbitrarily high density of matter.
It must be stated in this respect, first, that although the
physical applicability of these equations under the indi-
cated conditions can be clarified only in the future the-
ory, it is important that gravitational theory itself does
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not lose its logical cohesion (that is, that its equations
not lead to any internal contradictions) for any density
of matter. In other words, this theory is not limited as
such to any of the conditions that follow from the theory
itself, and which could make its application logically
invalid and contradictory for arbitrary density; the
limitations can occur in the future synthesis of the
physical theories as a result of factors which are
‘‘extraneous’’ with respect to the gravitational theory
itself. This circumstance makes it formally legitimate
to consider the question of singularities in gravitational
theory. As regards the physical interpretation of the
results obtained thereby, it is determined by the fact
that although the equations can actually turn out to be
inapplicable for arbitrarily large densities, there are
at any rate no grounds for doubting their applicability
even for densities on the order of nuclear density, that
is, tremendously large compared with modern average
density of matter in the universe. Therefore, for ex-
ample, if the equations of gravitation were to lead to
the result that a singularity occurs upon contraction of
the world, then, although this would not of necessity
mean that the density would become infinite, it would
denote at any rate contraction to densities of the order
of nuclear. From the physical point of view, even such
a state of the world would be sufficiently ‘‘singular.’’
From this point of view the consideration of the singu-
larities of the solutions of the gravitational equations
has likewise a fully physical meaning.

Finally, let us stop to discuss the purely mathe-
matical aspect of the results obtained. In this aspect
it may be of interest to consider the question of the
classification of all possible types of true singularities
of cosmological solutions of the gravitation equations,
independently of the degree of broadness of these solu-
tions. A clarification of this question by systematic
scanning of all possibilities would be very cumber-
some*. However, the extensive searches which we
have made for solutions with singularities give grounds
for assuming that these types are restricted to those
to which we arrive naturally by the method developed
in Secs. 3—4 and in Appendices B and F. These types
include, in particular, the singularities that are pos-
sessed by all known exact solutions of the gravitational
equations (see Appendix G).

II. GRAVITATIONAL STABILITY OF THE ISOTROPIC
WORLD

6. Initial Model and Equations of Small Perturbations

The Fridman solution occupies a special position in
relativistic cosmology, because its premises are phys-
ically clear and natural. There are all grounds for as-

*We are guided by the proposition expressed by Landau in
a different connection: ‘‘In view of our short life we cannot
allow ourselves the luxury of engaging in problems which do
not promise any new results.””[?]
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suming that it gives an adequate description of the con-
temporary state of the world, when viewed on a large
scale. At the same time, the exceptional nature of the
homogeneous distribution of matter gives a priori
grounds for expecting that it is precisely this solution
that can turn out to be that exceptional solution which
should describe the initial stages of the expansion of
the real world (homogeneity of the density at this stage
would occur in this case also on a microscopic scale).

In this connection it is of great interest to consider
the behavior of small perturbations in the isotropic
model, that is, its gravitational stability; we present
below a general investigation of this question*. Gravi-
tational instability phenomena can play a role during
the evolution of the world—the decay of matter into
galaxies and stars, etc.; however, we shall not concern
ourselves with this aspect of the problem at allf.

For convenience, we write down here certain known
formulas pertaining to the isotropic model (see, for
example, [, Secs. 104—107).

The metric of the isotropic world is defined by the
expression

—ds?= —di?4a?(t) dI?, 6.1)

where a(t) is the ‘‘radius of curvature’’ of space and
dl is the element of spatial distance, measured in units
of a. In the case of a space with constant positive cur-
vature (closed model) we have

dI? = dy? 1 sin?y (sin? 0 dg? -} d6?), (6.2a)

and for a space with constant negative curvature (open
model) we have

dl? =dy? - sh?x (sin? 0 d¢? + d6?), (6.2b) f

where ¥, ¢, 8 —‘‘spherical’’ spatial coordinates. Ex~
pression (6.2a) corresponds mathematically to the ge-
ometry on the surface of a hypersphere (of unit radius)
in four-dimensional Euclidean space, while (6.2b) cor-
responds to the geometry on the surface of a four-
dimensional ‘‘pseudosphere’”’ of imaginary radius.

In place of the time t it is convenient to use an
auxiliary variable 7, defined by the relation

dt =adny, (6.3)
Then ds? is written in the form
—ds?=a?(n) (—dn2+di?). 6.4)

The time coordinate x° will be taken to mean hence-
forth precisely this variable 7.

In the case of ‘‘dustlike’’ maiier, the pressure of
which can be neglected (p = 0), the function a(t) is
defined by the parametric equations

a=gao(l—cosm), t=a,(n—sinmn), (6.5a)

*The content of this part is based on work by Lifshitz.[*]

fMany ideas on these questions were advanced recently by
Zel’dovich.[*?]

Ish =sinh.
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a=ay(chn—1), t=a5(shn—n). (6.5b)*

where a; is a constant [formulas (6.5a) pertain to the
closed model and (6.5b) to the open one]. The depend-
ence of the density € on the time is determined by the
equation

=% (6.6)
At the earlier stages (small times t, that is, small

1), we have the inverse limiting case of very dense

matter with ultrarelativistic equation of state p = /3.

Then

a=bysinn ~ by, t=25by(l —cosn) ~ %bonz, (6.7a)

a=byshn~bp, t=by(chn—1)~ 2 hn®  (6.7b)

(by —a second constant), and the dependence €(t) is
determined by the formula

_ 3}
Ly

(6.8)

We note that the metrics of the closed and open
models go over into each other upon making the sub-
stitution

N—in, y—iy, a—ia. (6.9)

Therefore all the equations for one model can be ob-
tained from the equations for the other model by means
of the same substitution.

Since the reference system in which the model is
isotropic is a co-moving system, the components of
the four-velocity of matter are

wr=0, w=-. (6.10)

An arbitrary small perturbation of the isotropic
model is described by changes in the metric tensor
6gik (which we shall denote by h;;, —see Appendix I),
in the four-velocity of the matter 6u!, and in the en-
ergy density de. Without loss of generality we impose
on the quantities hji the four additional conditions

hoog =10, hoo =0, (6.11)

that is, we use as before a synchronous reference sys-
tem. However, it will no longer be co-moving (as it
was prior to the perturbation), that is, the 6u® are
different from zero.

In the linear approximation the small perturbations

satisfy the equations
SR:— 1 816R = 8T%, (6.12)

where the 6Rli{ are determined by the formulas ob-
tained in Appendix I, and the perturbation of the energy-
momentum tensor is

8T = (p + &) (widu* + uk Su;) -+ (8p+ de)u; uk + 8 8p.
The components of the perturbation of the four-velocity

6ul are related with one another by

*ch = cosh.
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hipttu" + gy (u* duk + utduty =0,

which is obtained by varying the identity gikuiuk =~
Having in mind the unperturbed values of the velocity
(6.10), we obtain from this, subject to conditions (6.11),

out = 0. (6.13)
Therefore the components 6T£‘ are
8T =68 0p, 8T = —a(p +-8) bue, 8T)= —oe. (6.14)

In view of the smallness of dp and d¢, we can write
6p = (dp/de )de, and we obtain

8T8 — — 88 92870, (6.15)

% e

In the investigation that follows we confine ourselves
to an analysis of perturbations in only relatively small
regions of space—regions with linear parameters,
which are small compared with the radius of curva-
ture a. Such an assumption greatly simplifies all the
calculations; it is found at the same time that an ac-
count of the perturbations in regions of dimensions
comparable with a does not contribute anything that
is principally new to the character of the behavior of
the perturbations,

In each small region of space the metric can in first
approximation be assumed to be Euclidean. Accord-
ingly, the spatial metric (6.2) is replaced by the metric

di* = da® + dy? 4 d2?, (6.16)

where x, y, z —Cartesian coordinates in the given re-
gion of space, measured in units of the radius a.

The expressions for 6Rli‘ can be obtained, as was
already indicated, with the aid of formulas (I.10—I1.12).
It must be borne in mind here that in these formulas
the differentiation (designated by a dot) is with respect
to t; it is connected with the differentiation with re-
spect to 1 (which we designate here by a prime) by
the relation 8/6t — 8/a0n. In particular, we have
2a’ B a’ 6[(31 ,

. 2
%ap = fap = 55 Bafr  Ho = 7

which can be readily verified by noting that the time
dependence of the components gog is contained in the
factor a%. In the case of the Euclidean spatial metric
(6.16), all the covariant differentiations in (1.10)—(1.12)
reduce to simple derivatives with respect to the coor-
dinates x% (on the other hand, contravariant differen-
tiations reduce to an additional division by a?). Finally,
the three-dimensional tensor sz vanishes for the
metric (6.16). Bearing all this in mind, we obtain after
simple calculation the following expressions:

1 gy, d
BRL = oy (Bt WY — MY — hiB) 4 o W+ S5 B+ 80

O} = '+ 5
5Ra——*27;2( —hEp),
SR= 4 (Wi — k% + Hh + 25w !

6.17)
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Both the lower and upper indices following the comma
denote here simple differentiation with respect to the
corresponding coordinates in a space with metric (6.16)
(to make the notation uniform we continue to write the
upper and lower indices, although there is no difference
between them in the case of Euclidean dZ2).

The final equations for the perturbation hﬁ of the
metric tensor are obtained by substituting 1n (6 15) the
components (ST expressed in terms of <5R1 in accord-
ance with (6. 12) It is convenient to choose for these
equations those obtained from (6.15) with @ = 8 and
with simplification with respect to the indices « and
B; they have the form

(RES+ Wyt —m G — Rl Y+

F2C W =0, 0B, (5.18)

iz(hvo— Y)<1+3 >+h” h"’ (2 3‘”’) 0. (6.19)

The perturbations in the density and velocity of mat-
ter can be determined from the known hrg, with the aid
of the formulas

e = — 8T = —aR°+i63
1 o
P+~‘36

! (6.20)
+ : SR} .
At low velocities the components u® of the four-veloc-
ity coincide with the components of the three-dimen-
sional velocity. But for our choice of the spatial co-
ordinates X, y, and z, the length elements correspond
not to the differentials dx® themselves, but to the
products adx®. Therefore the ordinary three-dimen-
sional velocity 6v®, which occurs upon perturbation,
corresponds not to the 6u® themselves, but to the
products aéu®.

Substituting (6.17) in (6.20) we obtain for the rela-
tive change in density

de

adu®* = —

1 a R 2a’ ,
e T Jea? (hﬁg p— Mg+ —Z— h ) (6.21)
and for the velocity perturbation
1 A ) I
ey e A il (6.22)

Among the solutions of (6.18)—(6.19) are some which
can be eliminated by simple transformation of the ref-
erence system [compatible with conditions (6.11)}, and
therefore represent no real physical change in the met-
ric. The form of such solutions can be established be-
forehand with the aid of formulas (I.13)—(I.14), which
are derived in Appendix I (we recall again that in these
formulas the index 0 pertains to the time coordinate t,
and not to 7). Recognizing that the time dependence of
the unperturbed metric tensor g,p3 reduces to a factor
a%, we can easily obtain from the indicated formulas the
following expression for the fictitious perturbations of
the metric:

M= fol § S04 108F + (F® + £ ), (6.23)

where f;, and f, are arbitrary (small) functions of the

coordinates.
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7. Expansion in Plane Waves

Inasmuch as we consider small regions of space
where the metric is assumed Euclidean, an arbitrary
perturbation in each such region can be expanded in
plane waves.* Taking X, y, and z to be Cartesian
coordinates measured in units of the radius a, we
can write the spatial periodic factor of the plane
waves in the form exp (in-r), where n —dimen-
sionless vector representing a wave vector meas-
ured in units of 1/a (wave vector k=n/a). If we
have a perturbation in a region of space with dimen-
sions ~ [, then its expansion will contain essentially
waves with lengths A = 2ma/n ~ . Confining our-
selves to perturbations in regions with dimensions
!l «< a, we assume by the same token that the number
n is sufficiently large (n >» 27).

Gravitational perturbations can be divided into
three types. This classification reduces to a deter-
mination of the possible types of plane waves, in the
form of which it is possible to represent the sym-
metric second-rank tensor hpg. Thus we obtain
the following classification.

1. The scalar function

0 — einr (7.1)
can be used to set up the tensors
1 B
oh=1oko, Ph=(Fob— "2 )0 (7.2)

(these tensors are defined such that Q% =1 and P%
= 0). With the aid of the same function Q we can set
up a vector

Py=120. (7.3)

Such plane waves correspond to perturbations in which
the velocity and the density of matter experience
changes along with the gravitational field, that is, we
deal with perturbations that are accompanied by the
occurrence of condensation or rarefaction of matter.
The perturbation h@ is expressed in this case in terms
of the tensors Q@, and Pﬁ, the velocity perturbation
6v?® is expressed in terms of the vector PY, while
the density perturbation 6¢ is expressed in terms of
the scalar Q.

2. The transverse vector wave

S = 57, sen*=0 (7.4)

can be used to set up the tensor

Sh = -’11— (nﬁS,x + naSﬁ); (7.5)
The corresponding scalar does not exist, since Syn%®
= 0. These waves correspond to perturbations in which
the velocity experiences a change along with the gravi-

*In the general case of perturbations in regions of arbitrary
size, including those commensurate with a, the perturbations
must be expanded in four-dimensional spherical functions.
Such an investigation is given in [*]; these calculations are
presented in somewhat greater detail in [r2],

tational field, but not the density of matter. The pertur-
bation h(ﬁx is expressed in this case in terms of the
tensor S@, while the perturbation 6v% is in terms of
the vector S%,

3. Transverse tensor wave:

GBS = yBeinr,  yanf =0. (7.6)

It can be used to set up neither a vector nor a scalar
(since Gﬁ,nﬁ =0 and G@no‘nﬁ = 0). These waves cor-
respond to perturbations of the gravitational field,
under which the matter remains stationary and uni-
formly distributed in space. In other words, these are
gravitational waves in an isotropic world.

We shall consider below perturbations of each of
the foregoing three types. To be specific, we shall
write out all the formulas for the open model. We have
already indicated that the changeover to the closed
model is by means of substitution (6.9). In the Euclid-
ean metric (6.16) the substitution y — iy corresponds
to the substitution x,y,z — ix,iy,iz. To conserve the
wave character of the functions introduced above, it is
necessary along with this substitution of the coordinates
to replace n by in. Therefore the changeover to the
closed model is realized in the formulas considered
below by means of the substitution

a-—>ia, m—in, n-—>in. (7.7)

8. Perturbations with Variation of Density of Matter

We begin with perturbations of the first type and
assume

Ho=a(m) Pl +pm) Q% h=pQ. (8.1)

From (6.21)—(6.22) we obtain for the relative change
in density

8 1 a
_38‘:3%2 [n2(?\,+p)+3%p ]Q (8.2)

and for the velocity
aoazgﬁ(i;—ﬂ) W +2") P*, (8.3)

The equations for the functions A and u are obtained
by substituting (8.1) in (6.18)—(6.19):

N+2 5 A= ) =0,

u"+u'a7'<2+3f,—z>+%2(7~+ w(1+392)=0. (8.4)

These equations have, first, the following two particu-

lar integrals, corresponding to those fictitious changes
of the metric (6.23) which can be eliminated by trans-

forming the reference system

A= —p=const, (8.5)

d d 3a’
>»=—n287"z7»o, u=n2g—n——§;fuo (8.6)

a

(the first is obtained from (6.23) by choosing f; = 0
and fy = P, and the second by choosing fy = Q and
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fo = 0). With the aid of these integrals it is possible
to reduce the order of Egs. (8.4). To this end we take
the sum and the difference of these equations, in which
we make the substitution

Ap=(atp) fEan )

! (8.7)

Meop'=0g—p) (et
After simple transformations we obtain as a result the
following system of equations for the new unknown
functions £(7n) and £(7n):

gt [t (—2+ 32 |+ Ee=0, (8)
vt (145
+z( —omry H_SE S0 (8.9)

The arbitrariness in the choice of the two integration
constants in the determination of A and u by formulas
(8.7) corresponds to the arbitrariness in the choice of
the reference system.

Let us start with the earliest stages of the expan-
sion of the world, when the matter is described by an
equation of state p = ¢/3. Inasmuch as such a com-
pression can be considered meaningful only for very
small times t, we can confine ourselves to an investi-
gation of the equations with n « 1. We have then for
the radius of curvature a = by sinh 5 = bgn (6.7).

The principal terms in (8.8) yield

L= — 68+ & (8.10)
and from (8.9) we get
Ut b8 (2004 55 ) =0

Substituting ¢ from (8.10) in the last equation we ob-
tain the following simple equation for &:

e

§1/+_7‘3f_ =O,

hence

t = const-exp (l7n§ n) , (8.11)
where the constant is complex.

The subsequent investigation is best carried out
separately for two limiting cases, depending on the
mutual relationship between the two large quantities
n and 1/7.

We assume first that the number n is not too large
(or that 7 is sufficiently small), so that nn « 1. Ex-~
panding (8.11) in powers of nn and separating the real
and imaginary parts, we obtain £ in the form

= —Cibo<1—ﬁ2—n )—% Czbon<1—— ),

where C;, C; —real constants; ¢ is then calculated
by formula (8.10), while A and u are given by (8.7).
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The arbitrary integration constants must be chosen
in the calculation of A and p such as to cause the
principal terms of the expansion to vanish where pos-
sible (in this case the term ~ 7% in u and the term
~const in A —pu vanish). By simple calculation we

obtain
3c n? 2n2 n?
k=f+c:<1+§'ﬂ2>7 - Cm~+C, (1—“ >
[we have written out here those terms of the expan-
sions of A and u which are needed for the calculation
of de/¢ and 6v?® in accordance with (8.2)—(8.3)]. The
final expressions for the principal terms of the expan-

sion in the perturbations of the metric, density, and
velocity are:

P=73. {hﬁ L1 b+ Co(0h+ PR,

&
* 2 (Cm+CaP) Q, Bt =

— 5 (3C+CGw).
(8.12)

The constants C; and C, must satisfy certain con-
ditions which express the smallness of the perturbation
at the instant of its occurrence t,. The mixed compo-
nents of the perturbation h(@ of the metric tensor must
be compared with the unperturbed values gg = 6%;
from this we get the conditions A << 1 and u < 1. In
addition, we must have 6¢/¢ << 1 and 6v¥ <« 1. When
applied to the perturbations (8.12), these conditions
lead to the inequalities Cy; << 1y and C, < 1, where 1,
(ny < 1) is the value of 1 corresponding to the instant
of time t,.

Expressions (8.12) contain terms which increase, in
an expanding world, as different powers of the radius
of curvature a ~ byn. However, this increase does not
cause the perturbation to become large, that is, loss of
stability: if we employ (8.12) as order-of-magnitude
formulas with n ~ 1/n, we find (by virtue of the in-
equalities obtained above for C; and C,) that the per-
turbations remain small even at the upper limit of ap-
plicability of these formulas.

We note also that the existence of a solution A =pu
= C,y, in which the perturbation of the metric remains
constant in time, corresponds precisely to the possi-
bility already indicated in Sec. 4, of generalizing the
Fridman solution. The relative change in the energy
density in this solution is proportional to 7% ~ t, in
accordance with (4.5).

Assume now that n is sufficiently large so that
nn >» 1. With the aid of (8.11) we now find from (8.10)
and (8.7) that the principal terms in A and u are of
the form*

3
e e
(the integration constants in (8.7) are chosen such that
A and u contain no terms without a periodic factor).

*We have corrected here the error made in formulas (4.10)
of ["‘], namely the superfluous terms +27 in A and u.
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Calculating also the perturbations of the density and
the velocity, we obtain the following final expressions:

P=rg {( h'g‘ﬂ,Tnz(l"ﬁ—20’3)8”"‘“’3

1 de . - C R -

il A /1V3 — V3 po
LR [ =" € ginn Q, év“_u l/36”"1/ p*,

(8.13)

where C is a complex constant satisfying the condition
|C| «< 1. The presence of a periodic factor in these
expressions is perfectly natural. In the case of large
n we deal with a perturbation whose spatial periodicity
is determined by a large wave vector k = n/a. Such
perturbations should propagate like sound waves, with
a velocity u = vdp/de = 1/V3 ; accordingly the tem-
poral part of the phase is determined, as is assumed
in geometrical acoustics, by the large integral fku dt
=nn/V'3. The amplitude of the relative change in the
density remains, as we have seen, constant while the
amplitudes of the metric perturbations decrease like
a~% as the world expands.

We consider further the later stages of the expan-
sion of the world, when the matter is already rarefied
enough so that this pressure can be neglected (p = 0);
in place of the energy density € it is more natural to
speak here of the mass density p, which coincides
with it.

Equations (8.8)—(8.9) with p=0 and a = 3y x
(cosh n~1) can be totally integrated in terms of ele-
mentary functions; from the first we determine £, and
then from the second we determine ¢:*

E= — Ciag th?)-,

2n2C aq
chn—1

4n2Csaq
chn—1~

[=— shn—3n+4th%>—

Calculation with the aid of (8.7), (8.2), and (8.3) then
yields the following expressions:

Atp=—Cile—1)— Ay, )
A— p~2'iC1q> 2n2C2<cth—1—]~——icth3,i>—i—

+A¢+_Acth 2 4B,

\ C (8.14)
2
% B (Co+C) @+ 50,
due =2 (A—Cy) P*.
sh? -5

We have introduced here the functions

ch%
(1_—cth ")H py=—F%: 6151
sh3
¥l

o(M)=—

n
2
shi 5

A and B are integration constants, the arbitrariness
of which is connected with the arbitrariness in the
choice of the reference system.

It was noted at the end of Sec. 2 that in the case of
‘‘dustlike’’ matter (p = 0) the reference system can

*th = tanh.
tcth = coth.
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be chosen such as to be simultaneously synchronous
and co-moving. It is seen from (8.14) that it is actu-
ally possible to cause 6v® to vanish by suitable choice
of the constant A (A = Cy). Such a choice of the ref-
erence system is the most natural, and the perturba-
tion 6p pertains in this case to the intrinsic density

of the matter. Putting also B = 0, we obtain ultimately

Ap=—Ci(e—1)—Cov,

A—p= %cicwczw)
69 - ( 19+ Cop) O,

Q

p=0 (8.16)

dvx =0,

In order to investigate these expressions, let us
consider them in two limiting cases—small and large
7. Small 5 (n < 1) correspond to the stage of the ex-
pansion of the world when the radius of curvature is
still very small compared with its contemporary value,
but all the matter is already sufficiently rarefied that
its pressure can be neglected.* On the other hand, the
values 1 » 1 correspond to later stages of expansion,
when the metric approaches Galilean.

The terms with the constant C, in (8.16) yieldT

P:O, 8n2C. s An2C.

n<1 } hg:-;’ﬁs—z(Pﬁ—Qi), ?9: ;n;(), (8.17)
PZO, 4
N1 } h‘l_ﬁ.cze n (PS8, %1: 0. (8.18)

When 7 << 1 we have a ~ agm?/2, t = agn’/6, and for
n > 1 we have a =~ a,e’l/2 and t ~ aye”/2. We there-
fore see that these perturbations attenuate as the world
expands, first like a™%? and then like 1/a; in terms of
time, both laws correspond to 1/t.

On the other hand, in terms with the constant C; we
distinguish (for n « 1) between the cases nn <« 1 and
nn > 1. In the first case we obtain

p=0,
net } =GP0, 2=T0we.  (8.19)
n

Although the relative change in density increases,
nevertheless it does not become large here even for
1~ 1/n, by virtue of the condition C; «< 1. In the case
nn > 1, on the other hand, we get

p=0,

1 dg C,n
’;<<T]<<1

}hﬁ Gn® (ph—Qb), =S, (8.20)

*The contemporary value of 5 can be obtained from the
contemporary values of the average density of matter p and
the Hubble constant h (for the open model cosh (3/2)
= hV3/87Gp, where G is the gravitational constant). Such a
determination can, however, be made at the present time only
quite tentatively, in view of the large uncertainty in the values
of h and particularly p. Putting h = 0.25 x 107 sec™ (25
km/sec in 10° light years) and introducing for p Oort’s esti-
mate p =3 x 107 g/cm®[®], we obtain 7 =5.0. If we put
p =107 g/cm®, we get 5 = 6.1.

tFor 5 € 1 we have

©2

3

P~

sl

(=]]
<
Q

2



512

These perturbations disclose a true instability. When
n ~ 1 the relative change in the density becomes of the
order of C1n2, whereas the smallness of the initial
perturbation necessitates merely that we have Cyn’n}
« 1. Thus, although the increase in the perturbations
is slow (proportional to a, that is, £/ 8), the overall
increase may be appreciable and as a result the per-
turbation may become relatively large*.

For 1 > 1 we have

p=0,}hﬁ_c 2(1_gpe-n g _0f), .

o =Ll —4ane (Po—Qq), == C1Q.
n>1 (s ) ¢ % 21
We see that the increasing relative perturbation of the
density tends to a constant limit. The constant term
in the perturbation of the metric (in which A = —pu

= const) can be eliminated by transforming the refer-
ence system (which does not involve the density ); the

second term in h¥, attenuates in proportion to (In a)/a.

Finally, let us consider the case of an equation of
state that is intermediate between p = 0 and p = €/3.
Namely, we consider an expansion stage in which the
derivative dp/de is small but still cannot be set equal
to zero. The quantity

is the “‘velocity of sound’’ in the matter filling the
world (measured in units of the velocity of light); we
assume, consequently, that this quantity is small:

u < 1, The inverse influence of the finite pressure
on the law governing the expansion of the world can
be neglected here, that is, we can use the same func-
tion a(n) as for p = 0, and we assume that we still
have n << 1, sothat a = aonz/z.

The behavior of the perturbations depends essen-
tially in this case on the value of nun. When nun < 1
an estimate of the terms in (8.8)—(8.9) shows that all
the terms containing u can be left out, so that we re-
turn to the already investigated case p = 0.

To the contrary, when nuy > 1, the terms contain-
ing u become essential. Equations (8.8)—(8.9) assume
the form

¥—Zggut=0, U+2r-2m%=0.

Eliminating ¢ we obtain, with the same accuracy, the
equation

g — 2y ntutg =0,
hence

t=const) u®, @®=exp (in S u dn> ; (8.22)
we put below const = 3a,C/in. We obtain further with
the aid of the first formula of (8.7)

*Thus, for an expansion in which the average density of
the matter changes from nuclear (~ 10" g/cm®) to the contem-
poraty value ( ~ 107°) the value of a(y) increases by
(10%/107°)% = 5 x 10'* times.
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According to the second formula
n2
N e L B S § T TS .

Inserting (8.22) and integrating in the first term twice
by parts, and then integrating the entire expression
with respect to d¢ (which reduces to division by inu),
we obtain

T

Finally, calculating also 6p/p and 6v® in accordance
with (8.2)—(8.3), we obtain the following final expres-
sions, in which we retain only the principal terms:

12¢ u_’
nznz,ﬁ/z

A—p=

B 6C v 8 8
nun > 1, o = "271' e >(D(P — Qa),
ugl, 8o (8.23)
—_ = —= o _,C_l/_u x
n<l e n ]/uCDQ, du% = 1’| QP

The constant C must satisfy the inequality | C|/ Tlom
< 1.

Expressions (8.23) correspond to sound waves prop-
agating with velocity u, and we are in the region of
applicability of ‘‘geometrical acoustics’’ (the phase

nudn is large). The velocity u decreases with ex-
pansion of the world, and thereby slows down the de-
crease in the wave amplitude. Nonetheless, the ampli-
tude of the relative change in density does not increase,
generally speaking. If we estimate the dependence of
u on the time, regarding the matter as being an adia-
batically expanding monatomic ideal gas, then p ~ p%3
and u ~ p!%; inasmuch as p ~ a=3 ~ 7%, we have
u~ =% Then n\/E = const, so that the amplitude of
0p/p remains constant. In the case of slower decrease
in u, 8p/p attenuates in time.

All the foregoing results, which we have formulated
for the open model, can be directly transferred to the
closed model by means of the transformation (7.7)
7n— in, n— in. This transformation does not change
at all any of the conclusions concerning the character
of the time variation of the perturbations during those
stages of the expansion of the world when we still have
n < 1. When 7 ~ 1, when the expansion in the closed
model slows down, ultimately turning into contraction,
the formulas of course change (on the other hand, the
case 7 » 1 does not exist at all), They are obtained
from (8.15)—(8.16) by the already mentioned transfor-
mation and some rearrangement of the terms (with
redesignation of the constants):

7~+H=Cl(({’+1)+cz‘l’v ]
22
xnu=ﬁwa¢+aw
6Q (Ci‘JP‘i‘CzlP), dv* =0, 1(8.24)*
cos -+
11 tg 1)1, p=—
>1n2 TI < e £ > v= sind Tl
*ctg = cot.
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We note that the time variation of the perturbations is
represented here in the form of a sum of two functions,
one (with constant Cy) even and the other (with con-
stant Cy) odd with respect to the instant n = 7, that is,
with respect to the substitution n — 27 —7. The instant
1 =7 corresponds to the maximum of the radius a(n)
in the closed model, so that the indicated property de-
notes that during the compression stage each of the two
parts of the perturbations duplicates (apart from the
sign) the variation during the expansion stage, but in
reverse order.

Summarizing the results obtained, we can state that
the expansion of the world exerts a stabilizing influence
on the development of the perturbations. In long-wave
perturbations (unn <« 1) the change in density of mat-
ter increases with time. During the earlier stages of
the world expansion (with an ultrarelativistic equation
of state p = ¢/3, u®?="Y;) this increase cannot cause
the perturbation to become large. This can occur,
however, at later stages of the expansion, when the
pressure of the matter becomes negligibly small; but
here, too, the increase in the perturbation of the den-
sity is slow (~t2/3). On the other hand, the short-wave
perturbations (unn >» 1) represent hydrodynamic
sound waves in which the amplitude of density pertur-
bation attenuates with time.

To the contrary, a contracting world would be es-
sentially unstable, and perturbations in it must ulti-
mately become large. Further behavior of the model
cannot be traced, of course, with the aid of perturba-
tion theory. But the general conclusions made in
Chapter I of the present article signify that the in-
crease in the perturbation should lead in final analysis
to a cessation of the overall contraction of the world
and eventual expansion. It is sensible to attempt here
an estimate of the maximum attainable contraction,
assuming that it is determined by the instant when the
perturbation 6p/p becomes of the order of unity. Assume
that some perturbation 6p/p = A exists in the closed
model at some instant n; ~ 1 < v (during the expansion
stage). Inasmuch as 6p/p is the sum of an even and
an odd function of 7 —, by the instant n = 27 -7,
(during the compression stage) we again have 6p/p
~ A. With further contraction of the world, 6p/p will
increase like (2r —7n)~3 for small 27 —7; the value of
6p/p ~ 1 will be attained when n = 5y, where 2m -1y
~ noAm Inasmuch as the average density of the mat-
ter in the contracting world increases like a™3
o (27 =7)7%, the density reaches by the instant 7, of
maximum compression a value

Q1 ~ QA2 (8.25)

where p, is the density at the instant 7y of the initial
perturbation.

In the entire investigation of the present section it
was tacitly assumed that the perturbations were adia-
batic, that is, they occurred at constant entropy, and
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all dissipative processes were neglected. Although the
role of these processes is quite negligible for the ex-
pansion of the world itself, we cannot exclude apriori
the possibility that these small effects may lead to
some new instability. An investigation of this question
calls for an analysis of nonadiabatic perturbations, in
which a change takes place also in the entropy of the
matter, and it is necessary to take into account heat-
conduction and viscosity processes (for the general
equations necessary for this purpose see [8], Sec. 126).
We shall not present the corresponding calculations
here, and indicate merely that the net result is that
the dissipative processes have no essential influence
on the stability properties of the expanding world.

In conclusion we point out that Bonnor[1¢] hag pro-
posed a brilliant method, with the aid of which some
of the results presented above can be obtained on the
basis of Newtonian gravitation theory. This method is
applicable to perturbations in regions whose linear
dimensions are sufficiently small compared with the
world’s radius of curvature (n > 1); the idea consists
in the following.

If we isolate a small spherical part in an isotropic
world (filled with dust-like matter ), then the surround-
ing matter will not exert a gravitational influence on
the spherical part, the motion of matter inside of which
can be considered with the aid of the Newtonian theory
of gravitation, It is therefore clear that the law of ex-
pansion of the isotropic model of the general theory of
relativity should coincide with the law of expansion of
the homogeneous gravitational sphere in the Newtonian
theory (this circumstance was first noted by Milne and
McCrea). It follows in turn that the behavior of the
perturbations in small regions of an isotropic world
should coincide with their behavior in an expanding
Newtonian sphere, and they can be considered with the
aid of ordinary classical hydrodynamic equations with
Newtonian gravitation as the volume forces*. The
zeroth approximation in the solution of the hydrody-
namic equations is in this case radial motion in a uni-
formly expanding sphere; the small perturbation super-
imposed on it (with a wavelength that is small com-
pared with the radius of the sphere) can be sought in
the form of a plane wave.

In such a hydrodynamic approach, the characteris-
tic quantity determining the behavior of the perturba-
tions is naturally the ratio of the length of the pertur-
bation A to the length u/VpG, a function of the density
of the matter p and the velocity of soundin it u (as well
as the gravitational constant G); these quantities are
regarded here as functions of the time, varying in ac-
cordance with the general expansion of the medium.

*This method can probably be extended also to the case of
an ultrarelativistic equation of state p = €/3, if suitable ac-
count is taken in the hydrodynamic equations of the relativis-
tic gravitational pressure effect.
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It is easy to see that this criterion (u/AvpG) coin-
cides with the criterion nnu/c which was used in the
foregoing calculations*.

9. Rotational Perturbations

We proceed to an analysis of the perturbations of
the second type considered in Sec. 7. In these per-
turbations changes occur in the metric and in the ve-
locity, but not in the density of the matter; the ensuing
motion of the matter has a rotational character.

We put

Hh,= o (n) SE. (9.1)

Equation (6.19) is satisfied identically, since h = 0. On
the other hand, Eq. (6.18) yields following the substitu-
tion (9.1) the following simple equation for the function
o(n):

o +2% 0 =0; (9.2)
We note that it does not contain the wave vector n.
Hence

o =const S ‘2—2 . (9.3)

The constant part of this solution (the integration con-
stant) corresponds to a fictitious change of the metric,
consisting of a transformation of the coordinates (ob-
tained from (6.23) by choosing f; = 0, fy, = Sy ). For
the velocity perturbation, calculation by means of (6.22)
yields

ing’

0= —serpa °

9.4)

During the early stage of the expansion (7 < 1),
with an equation of state p = €/3, (9.3) and (9.4) yield

C inC

o=—" 60“:—?5‘“. (9.5)
For ‘‘dustlike’’ matter (p = 0) we obtain
o=C(cth}—g oth® F—3), 8= — it 5% (9.6)
In the two limiting cases we have
Nl o=—%f3; Nyl o=—4Ce.  (9.7)

Thus, the perturbations of the metric attenuate with
time in all cases. On the other hand, the perturbations

*To this end it is necessary to use the following estimates
(in the usual units): the expansion law corresponding to dust-
like matter a ~ a,n’, the density of matter p ~ a,c*/Ga®, and
the wavelength A ~ a/n.

A similar relation between criteria exists also in the case
of an ultrarelativistic equation of state (p = €/3, u= c/\/é_).
In this case the expansion law is a~ by, and the energy den-
sity varies as € ~ bc*/Ga*. From this we readily find that

u
—— e ~n
AV Gejc? M
that is, we return again to the characteristic quantity nz, used
in the analysis above.
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of the velocity remain constant [in (9.5)] or decrease
as 1/a [in (9.6)]*.

10. Gravitational Waves

Finally, in perturbations of the third type, in which
hf, = (n) GE, (10.1)

only the metric changes; the matter remains stationary
(6v@ = 0) and uniformly distributed in space (6€ = 0).

For v(n) we obtain from (6.18) the following ex-
pression:

v+ Z%V'—{—nzv:o. (10.2)

Both solutions of this equation correspond to real
changes of the metric, which cannot be eliminated by
coordinate transformations (inasmuch as in this case
there exists neither scalar nor vector capable of being
substituted for f, and f, in (6.23)).

With the required accuracy, the solution of (10.2) is
inn

e

v=C (10.3)

a

where C is a complex constant. The periodic factor
corresponds here to gravitational waves propagating
with the velocity of light (wave vector k = n/a, so that
the temporal part of the phase is f kdt = nn). The am-
plitude of the gravitational waves attenuates like 1/a.
The energy density of these waves (~ k2(h§,)?) de-
creases in proportion to a™%, as it should.

During all the stages of the investigations reported
here, we were continuously supported by our teacher
and friend L. D. Landau, discussions with whom were
of inestimable help to us, and to whom we wish to ex-
press here our deep gratitude.

APPENDICES

A. EXPANSION OF THE SOLUTION OF THE GRAVI-
TATIONAL EQUATIONS NEAR A REGULAR
POINT

Let us consider the expansion of the equations of a
gravitational field in vacuum in a synchronous refer-
ence system near a nonsingular point which is regular
in timef.

Choosing an arbitrarily considered point as the time
reference, we have a metric tensor in the form

gaﬁ=aaﬂ‘+tbaﬁ+t2caﬁ+---v (A.l)

*The indicated law of variation of the velocity perturbation
is directly connected (as pointed out by Ya. B. Zel’dovich)
with momentum conservation. The momentum of the small por-
tion of the matter, in which the rotational perturbation took
place, has an order of magnitude €l*:l-v, where [ —linear di-
mensions of the section. When the world expands [ increases
in proportion to a, and € decreases as a™ (in the case when
p=0) or as a™ (when p = €/3); in the former case we get
v~ 1/a and in the latter v ~ const.

+This question is considered also in the book by Petrov,[*]
Sec. 40.
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where ayg, byg, and cqpg are functions of the spatial
coordinates. In the same approximation, the inverse
tensor is

gOLﬁ =a™P_1poB +12 (bow b%— caﬁ), .

where a®B is a tensor inverse to agg, and the raising
of the indices in the remaining tensors is carried out
with the aid of a®B. We further have

Hop = baﬁ+ 2tcaﬁ,
uB =68 1t (28 — by 87Y).

The field equations (3.13)—(3.15) lead to the following
relations

1
Ry=c—, bf =0, (A.2)

- 3 1 1
-t [_c; g vy bg): u—cg; B b8 b, 6o (24 bg);ﬁ] =0,
(A.3)

! (A.4)

RE—pPB i- b8 b— 5 b8 b =0

(b =Db§, ¢c=c¥,...). The covariant differentiation
operation is carried out here in three-dimensional
space with metric agg; the tensor Pypg is determined
with the same metric.

Using (A.4), the coefficients Cqp are fully deter-
mined from the coefficients ayg and bgg. Then (A.2)
yields the relation

P+% bL%bgbgzo. (A.5)
From the zero-order terms in (A.3) we have
. g=b. 4 (A.6)

On the other hand, terms proportional to t vanish in
this equation identically if (A.5) and (A.6) (as well as
the identities PJ B = A P.y) are used.

We see that the 12 quantities agg and bgpg are re-
lated by (A.5) and the three relations (A.6). This leaves
therefore a total of eight arbitrary functions of the three
spatial coordinates, in accordance with the calculation
made in the text*,

B. SOLUTIONS THAT DEPEND ON ONE VARIABLE

Let us consider the exact solutions of the gravita-
tional equations in vacuum, in which (in the synchro-
nous frame) the metric depends only on one variable.
We assume first that this variable is the time.

For a metric that does not depend on the spatial
coordinates, Eq. (3.14) is satisfied identically, and
from (3.15) we get

(B.1)

*¥By virtue of the differential nature of relations (A.6), arbi-
bitrary functions of a smaller number of variables can appear
in the solution. We leave aside the question of the geometrical
origin of these functions.
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where Ag are constants, with

Xg =1 (Boz)

(here &/g =k = 2/t and —g = const-t?). Substitution
of (B.1) in (3.13) gives one more relation

A AG=1%, (B.3)

which relates the constants Ag.
Omitting the index B, we rewrite (B.1) in the form
of a system of ordinary differential equations for gqyg:

Sap = % hg, &vp- (B.4)
Various cases can occur here, depending on the roots
of the characteristic equation of the metrics of the co-
efficients A3 (the equation A3 —288 | =0).

a) The characteristic equation has three different
real roots (py, Py, P3); by virtue of (B.2) and (B.3) they
are related by

pi+pe-Fp3=pi+pi-+pi=1. (B.5)

By means of a suitable linear transformation of the
quantities gig, g8, 838 (or, what is equivalent, of the
coordinates x!, x2, x3), the matrix Afgl reduces in this
case to a diagonal form, and we obtain the solution (3.1)
already indicated in Sec. 3

—ds2== - dr2 121 ga2 L 202 gy2 | 1208 g2 (B.6)

b) The characteristic equation has one real root
(p3) and two complex roots (p;y =p’ +ip”); the
numbers py, py, and p; satisfy as before the relations
(B.5), with either ps < —Y% or p; > 1. After diagonal-
izing the matrix xg we introduce, in order to make
the form of the metric real, new coordinates defined
as x? =x + iy and find a solution in the form

, 4 N
—ds?= —dt2-- ¢ 2P cos <2p" ln—({ ) (do2—dy?) -+ 1293 452

+2t%P" sin <2p” In %) dz dy (B.7)
(o is a constant). However, the determinant of the
metric tensor g = goolgaﬁl =t% does not satisfy the
necessary condition g < 0, so that the metric (B.7)
cannot correspond to physical space-time.

c) Two of the roots of the characteristic equation
coincide (p, = p3)*; in this case the pair of number
p1, P; can have values 1 and 0 or —¥%; and %,

As is known from general theory of linear differ-
ential equations, in this case the matrix Ag can be

reduced to the form
pt 00
( 0p, 0 ) .
0 A p,

If A =0, we return to solution (B.6). On the other
hand, if A = 0, then the solution of (B.4) (without ac-

*Equality of all three roots is excluded by the conditions
(B.2) and (B.3).
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count of the symmetry conditions gy; = g3;) leads to
the metric

—dst= —drt ¢ et 4 2P dyds 4 P In——dz2. (B.8)
In this case, too, the determinant g = t? does not sat-
isfy the condition g < 0.

Thus, (B.6) is the only solution in which the metric
depends only on the time. On the other hand, if the
one variable on which the metric depends is a space
coordinate (x), then it becomes possible to have solu-
tions of all three types. The transition to this case is
by means of a corresponding reversal of the signs in
the obtained solutions:

—dst= —22P1ds2 |- a4 2?P2 dy? - 2P8 422, (B.9)
—ds? =da2 -z ’2 p” In" 2 \ 2_dn2
+ cos ( 2p nu/(dﬁ m2)

42227 sin ( 2p" In %) dt dn +22P2 422, (B.10)

— ds?=dz?4 22°P2 dE dn + xP2 In 2 dn2t-22P14z2, (B.11)

All these metrics satisfy the condition g < 0. The
value x = 0 is a singular point of these solutions, with
the exception of the case (py, Py, P3) = (0,0,1) in the
metric (B.9) (which reduces to Galilean in this case)
and the case (py,p;) = (1, 0) in the metric (B.11), in
which the singularity turns out to be fictitious.

Returning again to the solution (B.6), we show that
it can be transformed also to the form

—ds?=2dn d{ -0t det 0P dy2 4 AnP0dg2,  (B.12)

where the numbers s,, s,, s3 are connected by the re-
lations

1
sgtsy =373, s3=o (1—s1—s2);

(B.13)

A is an arbitrary constant, which can be eliminated

(if it differs from zero) by suitable change of the scale
of the coordinates. The transformation of the metric
(B.12) to the form (B.6) is then made by the substitu-
tion

t1-P3

t1+1>3, §=Z#1—P3_

1
n= ITps , (B.14)

with the numbers py, py, and p; connected with the
numbers s, sy, 53 by means of

P 73 (B.15)

P2
sy = y Sg== s S37=Tn
R TR B Tip

(the relative magnitudes of the numbers pjy, p,, and p3
are not specified at all). ‘
If we put in (B.12) A = 0, we obtain the solution

—dst=2dn a0 de? L2 dy?. (B.16)

This metric is transformed to the synchronous form

by the transformation
2t

t
e VT’
—dst= ——dt2+<i—>281 dett (%)282 dy2—1—<’t7>2 dz2, (B.17)

{=—
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but in this case it depends not only on t, but also on
one of the spatial coordinates.

Thus, the form (B.12) turns out to be broader than
(B.6). It includes as a particular case the metric (B.17)
which is not contained in (B.6). More general aspects
of this circumstance are considered in Appendix F.

C. THREE-DIMENSIONAL RICCI TENSOR Paﬁ

We present here general expressions for the com-
ponents of the three-dimensional Ricei tensor Pgg,
calculated with a metric in the form

gap =alglp+b2mampg—-c2ngng,

(C.1)

where both the vectors 1, m, n and the scalars a, b, ¢
can be functions of the coordinates.

We write down expressions for the components along
the directions of the vectors 1, m, n in accordance with
the definitions (3.16)—(3.18) in which we must write
a, b, ¢ in place of tP1, tP2, tP3).*

a2

1 1
P”=A_2 {5 (al rot al)2— o (bm rot bln)ﬁ——;— (en rot en)2— (en rot bm)?

— (bm rot cn)2— (bm rot al)2— (cn rot al)?

-+ (¢n rot cn) (bm rot bm)—4- (en rot al) (al rot ¢n)

_ 1 cnrotbm) +1<lmrotcn> _i(bmrotal)
a A 1 a A 1 c A nf

le=zi2 {(al rot al) (bm rot al)-- (bm rot bm) (al rot bm)

—-(al rot cn) (bm rot cn) —% (¢n rot en) {(al rot bm)

—+(bm rot al)] »}—% (bm rot en) (cn rot al)

1. a6 [1 /bmroten )
m

1
+ 5 (al rot cn) (cn rot bm) JTTE L A

l(alrotcn) »_i(lﬂx"otbm\ 1 /alrotal™
a A N A )n T\ a

Ja.n

(C.2)

Here we put
A= V_—gzabc (1 fmn}),

and the letters I, m, and n following the commas in
the indices denote differentiation in the corresponding
directions, in accordance with the definition
_a 9
f=1 ERORREE (C.3)

We note also that in the products which we write for
the sake of symmetry in the form al curl al) (with
two identical vectors), the scalars a,... can, of
course, be taken outside the curl sign: (al curl al)
=a%(l curl 1).

The remaining components are obtained from those
written out by cyclic permutation of the letters 1, m,
n and a, b, c.

*rot = curl.
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D. NEXT TERMS OF THE EXPANSION OF THE
ANISOTROPIC SOLUTION

The next higher terms in the expansion of the aniso-
tropic solution obtained in Sec. 3, in powers of t, could
be represented in the form of an expansion of the vec-
tors 1, m, n. It is simpler, however, to seek them di-
rectly as small corrections hgg in the metric tensor

(D.1)

— 40

Eaf = baﬂ+haﬂ1

where gg” is given by Eq. (3.6) with constant {(time-
independent ) vectors 1, m, n.

The correction terms in the gravitation equations
are calculated with the aid of expressions (1.10)~—(1.12)
for the changes 6Rli{. It must be noted here that the
quantities k%, are proportional to 1/t, while K‘“’x
=2/t. In 5R/g[ we can neglect the contribution from
6Pg£ since the largest terms in it are proportional to
t"2p3hg, that is, they are small compared with the
terms proportional to t'zhgl. Omitting, in accordance
with the notation of the Appendix I, the index 0 in the
zeroth-approximation quantities, we obtain for the
first-approximation corrections the following equa-
tions:

é— (R +x8 hg)y=T3, (D.2)

1 .- 1 - i . s . .
5 (B4 BE, -5 b —w} R ah i) = —pPE 7B,

g (D.3)

In the right halves of these equations are the compo-
nents of the energy-momentum tensor and of the ten-
sor Pg, calculated in the zeroth approximation metric

(see also the remark at the end of the present section).

Inasmuch as the equations contain derivatives of
hg only with respect to the time (and not with respect
to the coordinates ), we can change over directly in
them to projections along the directions 1, m, n. Rec-
ognizing that only the ‘‘diagonal’’ components differ
from zero

2
1__2P1
M= R

we obtain the following equations:
1

ST 7 o . .
5 ht (ki pyhim - pahin) = T8, (D.4)
SR TR < R LY T R (D.5)
2 t 4

1 .. L Ope—2 .

_‘i_ <h1171+ 1 u])gt =P h;n>: _an_;_T,ln' . (D.G)

(the equations not written out are obtained from those
written out by cyclic permutation of the letters I, m,
n and p;, Py, P3-)

In the case of empty space there is no energy mo-
mentum tensor and only Pg[ remain in the right halves
of Eqs. (D.5)—(D.6). With the aid of (C.2) we find that
the highest-order terms in this tensor, which remain
after the terms (3.19) are made to vanish by the con-
dition (3.20), are
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1 _ 9
Pizfpi,n})&nt 2ps In2£, P;nn=%p2,np3’nt zpalnztv

1 -
Phi=— o (Phnt PhatPha) 2P0 In2e,

1 —op
Pi=— (P31 P2, ntPon Pot— Pron Pp,) £ 18 In2 L,
1

Ph=5 (Pa.n Ptom~+Pa,m Ptyn— Ptym Pron) 02T In2 0.

We shall not stop to write out the resultant expressions
for the components hﬁ,. We merely point out that they
have the following orders of magnitude:

B}~ BT o~ b B ~ B, o~ ¢2 (1P Iy

(D.7)

(The component hym is of higher order of smallness
and in this sense is part of the next approximation. )

In the presence of matter, the principal quantity in
the right halves of the ‘‘diagonal’’ equations (D.5) is
the component of the energy-momentum tensor

Tﬂ:% sunu” ~ t—(1+p3),

which contains the highest power of 1/t. Compared
with this component it is possible to neglect T% and
T, and also all the P, P@, and PL. On the other

m’
hand, in the ‘‘nondiagonal’’ equations (D.6) we can

leave out P},... compared with T,. As a result
we obtain
i _ P m__ _ P2 ht —9h
M= — P h, = — P, hon,
8e® y 2 =3

P L./ S— b
3(1—p3) (2—p3)
8e® uOuP

A S AU |
3(1—p3) (1+p3—2py)

—— e e

{{ [CORT)
Be® ug? u P

3, b= ————
3(1—p3) (1+p3—2ps)

23 -
1

1= J
(D.8)

(The component hyy, ~ t1*P3 again turns out to be of
relatively higher order of smallness).

Equation (D.4) is satisfied by expressions (D.8)
identically. The equations RY = T%, which we did not
write out, were necessary only for the determination
of the next higher expansion terms of the velocity and
energy.

Finally, we must make one more remark to com-
plete the justification of the calculations made. We
have left out from (D.3) the terms derived from the
tensor Pypg as a result of the corrections hypg to the
metric tensor; it must be verified that these terms are
actually sufficiently small. Namely, this should be
verified for the correction terms that are due to the
‘““large’’ terms in Pgg, the ‘‘zero’’ part of which is
made to vanish by the condition 1 curl l = 0,

These are the terms of (3.19) in the diagonal com-
ponents Pg, and the terms

=2 Aroth Pun g, 42 ri-re)
Pim=2 (T fmn]) Int.z )

_ (Irot1) py, m L2 (r1—p2)
Pyp=—-2 M(l [mn]) Int-t

in the off-diagonal components. Writing 1 =10 + 2,
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we find that the corrections (D.8) in the metric tensor
correspond to the corrections of the following orders
in the vector 1:

Ap~17P3 A~ A, ~ 2l tPa—20

(D.9)
Therefore

Irotl ~ ¢! +P3—2m1

(D.10)

and it is easy to check that the discarded terms are
actually small compared with the terms retained in
(D.5) and (D.6).

E. STABILITY OF ANISOTROPIC SOLUTION
As was already indicated in Sec. 3, the metric

dl2—12P1 dz2+t2p‘1 dy?-+12P3 gz2 (E.1)

(with constant numbers p; < p, < p3) is an exact solu-
tion of the gravitation equations in vacuum. Let us
consider the behavior of the arbitrary small perturba-
tions of the gravitational field in this homogeneous but
anisotropic space. Such an investigation makes more
lucid the origin of the ‘“loss’’ of one arbitrary function
on going over to the general anisotropic solution (3.6).

The equations of the small perturbations are ob-
tained by equating to zero the expressions (I.10)—(1.12)
for the changes 6Rli‘. Inasmuch as the spatial metric
(E.1) is Euclidean at any instant of time, the three-
dimensional coordinate derivatives in these equations
reduce to ordinary derivatives. On the other hand, the
unperturbed tensor Kﬁ is diagonal, with K% =2p, /t.

In view of the homogeneity of space we can expand
an arbitrarily small perturbation in a spatial Fourier
integral and consider the individual expansion compo-
nent. Then all the hg o exp (ik-r), and we obtain the
following system of ordinary differential equations:

1 . 1 .
SRS =—- ) (hg»}——i— 2pahg>=0,
a
hk (- .
o =2 {ikat D[ —hlks

B
1 2
— Tka (Pa—pp) hg+ T(Pa_PB) hgkﬁ ]} ’

i (e 1
él’t’gz-—i'{hg—FT h2+f;~ 4t [hk““2k“z hk J

+hE D) t’zl’vk%}: 0,
8 1
oL

8 EL-L— (P — Pa) B

1 (.
ORb = {h
2P [hkakﬂ - Z(hvkﬁk + koK v)]

A3 ) <o, 0y
v (E.2)

(no summation over repeated indices is implied here
and below ).
Among the solutions of these equations there are
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such changes in the metric hB &, which can be elimi-
nated by transforming the reference system. According
to formulas (I.13)—(I.14), we find that the general form
of such ‘‘fictitious’’ perturbations is

ka REI 2Pa>,

h%=2koCo+2Co ( -

hap=1""okgCo - t ﬁkacB+COM2%ﬁ’z—“_‘2§ﬂ; ,

ap,
(E.3)

where C, and C, are constants (we leave out the ex-
ponent exp(ik.r) from now on, for the sake of brev-
ity).

The general solution of (E.2) can be represented in
the form of a series of increasing powers of t. The
first terms of these expansions are as follows:

kG =Ay+BglInt, )
s (aCig— ol ,
hlz=t2”‘|:0u 3ép2(;3+p3)12) t2(111+102)]_1_t2pzc21'
1(P2+p3 (E.4)

ky (ksCys—kyC
a7 [ o+ SRR A0 | -,

hag=t2P2Co5+ 12730,

With the constants Ag, By, Cap (Caﬁ # Cﬁa) con-
nected by the relations

2 B,= z PaBa=0,
o

ke [Ba-t+ X (pa—pp) 4] +2 3 kgCpo (pPp— Pa) =0
B B

(E.5)
(E.6)

We have already left out of (E.4) the terms that can be
excluded by transforming the coordinates and corre-
spond to the coefficient Cy in (E.3). All the remaining
omitted expansion terms are those known not to become
large as t — 0, and the coefficients in them are ex-
pressed in terms of the constants contained in (E.4).
The criteria for the smallness of the perturbations are
the conditions

(E.7)

We shall arrange the three arbitrary constants C,
in (E.3) in a way as to exclude where possible the larg-
est terms in (E.4). Namely, we put

B, hap <V gacksp

Cia=C3y=Cp3=0. (E.8)

so that hy; satisfies the condition (E.7), but hy, and
hy3 still contain terms not satisfying this condition as
t — 0. In other words, these perturbations experience
a relative increase, that is, the solution (E.1) is un-
stable with respect to them. To eliminate this insta-
bility it is sufficient to put in addition

k3C1a—kyCi3=0, (E.9)

after which the coordinate transformation which causes
Cyy to vanish will cause C,3 to vanish, too. The in-
crease of the logarithmic terms in the diagonal com-
ponent h$ as t — 0 is only an apparent instability.
These terms correspond actually to merely a small
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change in the exponents in the metric (E.1): the num-
bers py are replaced by py + By, and the previous
relations between them remain in force by virtue of

the conditions (E.5).

The arbitrary constant in the Fourier component
of the perturbation denotes the presence of an arbi-
trary function (of three space coordinates) in the
perturbation itself. On the other hand, the presence
of arbitrary functions in the perturbations, which do
not lead to instability of the main solution, denotes
the possibility of expanding the latter. Altogether
(E.4) contains three independent arbitrary parameters
(the 12 parameters Cqg, Ag, and By are connected
by the nine conditions (E.5)—(E.9)). They correspond
to the three arbitrary functions in the anisotropic so-
lution (3.6).

We see that in order to ensure stability of the met-
ric (E.1) it becomes necessary to impose on the arbi-
trary perturbation one additional condition (E.9). This
condition corresponds precisely to the additional con-
dition 1 curl 1 = 0 (3.20), which brought about the
‘‘loss’’ of one arbitrary function in the anisotropic
solution.

F. ORIGIN OF OTHER TYPES OF SINGULARITIES

In Sec. 2 we described a geometrical procedure for
the construction of a synchronous reference system.
This construction begins with an arbitrary spacelike
hypersurface, chosen as the initial hypersurface.

On the other hand, if we choose as the initial hyper-
surface the ‘‘null’’ hypersurface (that is, the hyper-
surface the normals to which are null vectors), then
we can obtain by the same construction a reference
system in which the metric has the following form
(see [15] Sec. 7)*:

—ds2=2dn df, -} gp dz® dab 4 2g43 dz® di -+ g33 dL2, (F.1)

that is, gp9 = 8oy = 0> o3 = 1 (the indices a and b
run through the values 1 and 2, while the indices 0, 1, 2,
and 3 correspond to the four coordinates 7, x, y, ).

The solution (B.12) indicated in Appendix B pertains
precisely to such a reference system. The remark
made at the end of that appendix suggests that if the
anisotropic solution obtained in Sec. 3 is transformed
to the synchronous reference frame, some particular
cases may drop out of the solution formulated in the
form of the metric of the type (E.1). Let us show
briefly how this solution is constructed (in vacuum).

We seek the components of the metric tensor near
the singular point 5 = 0 in the form

2S“lmamby

Lab="1"Uglp |1 Caa =10, Eaa=n", (F.2)

with

*In Petrov’s bookl**] this system is called isotropic semi-
geodesic, to distinguish it from the synchronous system, which
is called merely semigeodesic.
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stbsi=s1+s9, s3:—%—(1——81432)4
The two-dimensional vectors Iy, mgy, ny, the scalar q,
and the numbers sy, sy, s; are all functions of the co-
ordinates x, y, {. The components of the inverse ten-
sor are

g‘“’:n_zsllalb+—n_zs?mamb, gU0= — gpagab, giB=0,

(F.4)
£90= —g33+£%ga383, g%B==1, gB=0,

here [2, m2 — components of the two-dimensional
vectors connected with Iy, my by the relations I3
=mgam? =1, [zm? = 0. The metric determinant is

—g==| gap | =02 (Lymy— Lym )2, (F.5)

Let us agree that s, > s,. The relative magnitude
of the numbers s3 and s; or s; is not defined. We as-
sume first that s; > s, (it is easy to see that in this
case Y5 <s;<0, 0<sy<%, and ¥% < s5<%). Ines-
timating the different terms in the gravitational equa-
tions in this case, it is important that the expression

Zaagb38a0 = n*"ngny (NN 4 T P mlmb) (F.6)

contains higher powers of n than gg3 ~ n253_

Let us show how it is possible to satisfy a metric
of the type (F.2) by the principal terms of the gravita-
tional equations. These terms are

Hg: _TngO'TK‘gng:O’ (F.7)
5 1 — L
Rg~2‘/-—fé[l/ —£(8a3, 0— Eb3¥a)], 0=0, (F.8)
ot g L I SN VIR S B .
Hg‘zl/ffg“/ geaa%al, o 2]/:?[%1/ glo=0, (F.9)
1 J— 1
Ry === IV e, ol o= =0, (F.10)
R) == — vl—; [(gaz, 0 —€03%d) ¥V —el, 3“L (€33%0);
2y —¢ 2 Ten
1 — 1
+ﬁ[gsa,a]/*‘g],o—f’Tgss”lb);a:O, (F.11)
-1 T - BN
Rg_ZV?g[(gsa,sV ). o—{g32.0 V —2), 3l 7 g3s%ahd
+‘i g33‘xg’ 3=0. (F.lZ)

f2

The indices ,0 and ,3 denote here simple differentia-
tions with respect to n and ¢, respectively, while the
indices ;a denote covariant differentiation in two-
dimensional space with metric ggp. kgp and A,y de-
note the two-dimensional tensors

Kab=8ab, 0» }‘fab:gab. 32
UD=1%008%¢, A= o0l

Equations (F.7) and (F.8) are satisfied by the metric
(F.2) identically. On the other hand, only the first
terms of Egs. (E.9) and (E.10) vanish. Yet the second
terms are potentially principal ones; they contain a
power (1/n)'*282-281 higher than (1/5)2-253, to which
the first terms are formally proportional. Therefore
to satisfy these equations it is necessary to impose on
the metric an additional condition, which forbids the
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appearance of such large terms. It is easy to see that
such a condition is

(F.13)

lq, am? =0

(which causes the terms ~ 72(¥1782) to vanish in the
quantities )\2). Finally, substitution of the metric (¥.2)
with the condition (F.13) in (F.11)—(F.12) leads to the
appearance of terms of order 75371 In 5 and 7?5371,
The first of them cancel identically, by virtue of the
relations (F.3) between the numbers s;, sy, and s3. On
the other hand, the terms ~ 1?5371 in these equations
yield three relations (equal to the number of equa-
tions ), which connect the functions of the coordinates
X, ¥, and ¢ contained in (F.2).

We therefore have, together with (F.13), four rela-
tions between the eight functions (q, two components
each of the vectors I, mgy, ny, and one of the numbers
81, Sy, Or S3). In addition, the metric (F.1)~—(F.2) ad-
mits of one more transformation (which contains one
arbitrary function of the coordinates x, y, z) leaving
its form invariant; it is implied here that the permis-
sible transformation should retain the situation where-
in the singularity of the metrics is situated at n = 0,
and g3 contains a power higher than in ggp. This
transformation, for example, can be used to turn the
coefficient q in gg3 equal to unity. Thus, the metric
(F.1)—(F.2) contains only three physically independ-
ent functions of the coordinates x, y, ¢.

Investigation of the cases when s; is not the largest
of the three numbers s;, sy, and s; reduces to that
made above. Let s; < s3 < 8. The metric (F.1)—(F.2)
admits in this case also of one arbitrary transforma-
tion. This transformation can no longer make g equal
to unity, but can cause the vector my, [which is the
coefficient of the highest power of 7 in (F.2)] to be-
come ‘‘perpendicular’’ to the vector n?, that is, to
make ngm? = 0. Then expression (F.6) will again be
small compared with ggs, and the principal terms in
the gravitational equations remain the same as in
(F.7)—(F.12).

The obtained solution is in general equivalent to the
anisotropic solution (3.6), into which it can be trans-
formed by changing over to the synchronous reference
system. The exponents p;, py, and p; are then con-
nected with the exponents sy, sy, s3 by (B.15), and the
“‘superfluous’’ condition (F.13) corresponds to the ad-
ditional condition 1 curll= 0 (3.20), which must be
superimposed on the coefficients of the solution (3.6).

However, a search for the solutions in the refer-
ence system of (F.1) leads in natural fashion to solu-
tions with singularities also of a type not contained in
the solution (3.6). This type occurs in a special case
when the coefficient in (F.2) is q = 0, so that the solu-

tion (near the singularity) has the form
— 52 = 2d AL+ (lolpP - mamp22) da® dzbt 2n,22%8 deedy, (F.14)

with s; + s, = s? + s3. In the synchronous reference
system this solution would be characterized by expo-
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nents (sy, 85, 1) for the variable t, not contained in
the set of numbers (py, py, p3); such a representation
of this solution seems to be, however, less natural for
the investigation of its properties than the representa-
tion in the form (F.14) [see (B.16) and (B.17)].

A solution of the type (F.14) contains apparently less
than three physically arbitrary functions of the three
variables X, y, and ¢. An establishment of this num-
ber and a clarification of the limitations that must be
imposed on the quantities contained in (F.14) necessi-
tate, however, a special investigation with account of
the terms of the next higher orders [beyond those
written out in (F.7) and (F.12)] in the gravitational
equations, and possibly the next higher terms [ follow-
ing (F.14)] in the expansion of the components of the
metric tensor.

G. EXAMPLES OF SINGULARITIES IN EXACT
SOLUTIONS

We present several examples from among the known
exact solutions of the gravitational equations in vac-
uum, demonstrating by means of these examples singu-
larities of different types.

1. The metric

12 2 4 46 4

—ds2— 77 dg ~%—~t_3 z—7d12+- £3;7 dy2 13 dze (G.1)

is obtained by obvious transformations from one of the
exact solutions obtained by Harrison (18] ( solution I-A-1
in his notation).

Transformation to the synchronous reference sys-
tem near the singular point t = 0 is conveniently car-
ried out by the following iteration method. By means
of the substitution v -—gy(x%)dt — dt we make the
new -—ggpy equal to unity, but we obtain instead non-
vanighing components ggq in the form gyo = tf,

(x!, x%, x%). They are eliminated by the transforma-
tion x% — x@ + t2PaP* (x1 x2 x3) and by suitable
choice of the functions @@ (t??@ —time factor con-
tained in gy ). At the same time, a small (~t*~?Pa)
addition to gy appears, and is eliminated by the next
transformation, etc; on going over to higher-order
terms, the form of the transformations becomes natu-
rally more complicated. As a result, we can shift the
deviations from synchronism to small quantities of
arbitrarily high order; the components 8ap are ob-
tained in this case as expansions of t.*

We thus find that near the singular point t = 0 the
metric (G.1) is equivalent to a metric whose first ex-
pansion terms are

2 4 1

—ds?a —dttdt 3de2 07 2 (dyt-da), (G.1a)

that is, we have a singularity of the type

*An exact transformation to the synchronous reference sys-
tem (which can be carried out, for example, by the method indi-
cated in [!], Sec. 98a), usually entails very cumbersome calcu-
lations.
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1 2 2

(P1» P2 Pa)= —3 30y )

Changing the time variable in (G.1) by means of a
complex transformation, we obtain the metric

4 42 g4 iz
—ds2= g3 izt Tz Sqe2 8 ayr 7 da2 (G.2)
Near t = 0 it is equivalent to the metric
JEUR T T 122
—dstac —diz+t Tz Tdre- 122! dy?4-t Tz 2V dg2 (G.2a)

That is, we have a singularity of the type (- %, %, %).
2. The metric

4

4 _2 .2 8
—dse=t3dudr+-% %u ®

S g2t ub age (G.3)

(Harrison’s solution III-2) is transformed by means

of the substitution u = ny~23, ¢ = y% (with some

change in the scale of the coordinates) into the form
2 2 6

—dst=2dn difn Oy ddetpn®ayr— 3 L aydg,

y
that is, we have a solution of the type (F.14) with num-
bers (si,8;) = (=%, %).

3. The metric

40
3 (G.3a.)

3 5 Vo 5 5 V3
~ds2:—(z_t)1+ V2,1-5 V2, dt2-{~(z—t)1+ 1’2t3— szl 2 gz

1
Az — )~ VZ-2+1z, V2 dy? 7——;— (z— t)2+ V285172 g0 (G.4)

(Harrison’s solution I-B-3) has singular points at
t=0 and at t =x.

Near the point t — 0 we reduce g, by means of the
substitution t®5V2 Y2 t 10 a form that depends (in
first approximation) only on the spatial coordinates,
after which we proceed as in Example-1. Without writ-
ing out the form of the metric near the singularity, we
point out merely that the latter belongs to the type

2—V2 8—5Y2 3-1/2\

y—512 9 -5y27 9—_5y2 /"

(P1s P2s P3)= <~

Near the singularity t = x the reduction of the met-
ric to the standard form is by means of the following
succession of transformations. We substitute t ~x — 1,
and then eliminate t from gy, by means of a transfor-
mation of the type t® — t. This gives rise to a non-
vanishing gy, which is eliminated by transformation
of the type x — x + ¢ (x,2z,t) with a suitably chosen
function ¢; continuing further as in Example 1, we
obtain as a result a metric with singularity of the
type

V2 14+y2
IEENFRE R

- 242

(P1y P2 1’3)~< 3+1/2 > .

With the aid of a complex transformation we can
obtain from (G.4) the solution

1
8

ds?— —

()2 VES5 V2 g (o= VE~21 VD VE gy
e Ceas e
ey P VIS VE Y S gy (o) VT VEnge, (G.5)

To ascertain the type of singularity possessed by this
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metric at t = 0, we assume to simplify the calculations,
that z > y; then
1

>+ 2 V2 VEigye

10—4V3 / ds2  de?
ds? A 12 e
ds t2z < 7 553

We make first the substitution
1
w == :l_ m,

A

vzt V2,

bob

and then v® = 1, u5~4V% = ¢, and some change in the
coordinate scale. Ultimately we get
2 4
Sz P dye,

—ds?=2dnd{ -1 (G.5a)

that is, a singularity of the type (F.14), with (84, s;)
= (“1/5: 2/5)-
4. The solution

—ds2= —yjy, d2 -} y; dz® - (y sin? 2+ vy, c0s? z) dy? (G.6)

-2y, cos z dy dz-4-y, dz2, y,=ch t/4ch? % » 2=y
(obtained by Taub[!’]) has a singularity at t — o,
Near the singularity this metric can be reduced by
means of the substitution e /2 — t to the form

—ds? z;dﬂ—}‘—;— dz?+ %sin‘z zdy?282 (dz2 -2 cos z dy dz), (G.6a)

that is, a singularity of the type (py, p3, p3) = (0,0,1).
But this type of singularity is fictitious, so that the
metric (G.6) actually has no physical singularity.

I. EQUATIONS OF SMALL PERTURBATIONS OF THE
GRAVITATIONAL FIELD

Let the metric gi?{) represent some solution of the

gravitational equations, on which a small perturbation
ogjk is imposed. Let us calculate the quantities nec-
essary to set up the equations for these perturbations.

We introduce the notation 6gjk = hjk for the pertur-
bation of the covariant components of the metric ten-
sor, and to simplify the formulas we denote the unper-
turbed metric simply by gjk, leaving out the index (0).

The tensor hji will be regarded below as a tensor
in the space of the unperturbed metric gik, so that all
further operations of raising the indices of hjj, and
also all the operations of covariant differentiation, are
carried out with the aid of the metric gji. Then, ac-
curate to small quantities of first order, dgj = —hi¥,
Thus, we should make in the gravitational equations
the substitution

Sin—> gin-tlup, g — gih—hik (1.1
The change in the determinant is g = ggiknjy = gh,
where h = h}, so that

g—>g(t+4-h). (1.2)

The corrections to the Christoifel symbols are ex-
pressed in terms of hik by means of

1

0T =5 (M 1kl =) 1.3
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as can be verified directly. With their aid we can ob-

tain for the perturbation of the curvature tensor

1/ i -

?(hk;m;l+hm; k;lﬁ'hkm’ l;l hk L m_hl R;m =+ hkl m) ’
1.4)

6B;zlm =

from which we get for the corrections to the Ricci
tensor

! 1 1 i1
OR=0Riy =5 (hi; u; 1Py a0 —han 1= 15 ) - (.5)

From the relation

R4 8RY = (Ry~+0Ry) (gt + gk
we obtain for the change in the mixed components Ri{

6Rf=g“6Ril—hh‘R,-l. (1.6)

If the unperturbed metric is specified in the syn-
chronous reference frame and the perturbation does
not violate the synchronism (this can always be at-
tained by means of suitable small transformation of
the coordinates), then

hoo=0, hgo=0. (I.7)

The changes 6R%{ are best calculated in this case
by varying the quantities in (2.3)—(2.5), using at the
same time formulas (I.5)—(L.6) for the determination
in the change of rSPﬁ Obviously, the change in the
three-dimensional Ricci tensor Pﬁ is determined by
formulas of the same type as for the four-dimensional
tensor R)lf, and all the tensor operations are carried
out in three-dimensional space with unperturbed met-

ric gogp:

1.4, .
=g (i T YD)l 08)

For the change in the tensor «,g we have
8tap = hap, ang:hg—xghg+u§hg, (I1.9)

where the dot denotes differentiation with respect to t
(this operation, of course, does not commute with the
operations of raising or lowering the 1ndlces)

The final formulas for the changes 6R1 are of the
form

By= 5 (il i), I.10)

1. 1

1
SRY =y b o — o G+ Y — ) p 4+ (BhY o —oB ) (L11)

1 (o5, 1,8 B, Biv. oBpY
SRE=6PE+ - {h§+ 5 Yoh—xihy 4§ hY 4§ ha

S G — D (1.12)
In solving the small-perturbation equations it is
always necessary to bear in mind that the obtained
solutions contain some that can be eliminated by trans-
forming the reference system and therefore represent

I. M. KHALATNIKOV

no real physical change in the metric. The point is that
the conditions (1.7) still do not determine the choice of
the reference system uniquely. Indeed, under the
transformation x! — x1 + gi (where gi are small quan-
tities ), the tensor gjix receives an increment hji = §isk
+ £h;i or, expanding the covariant derivatives,

_ 9%

9>

: : 4
hoo =2k, —uBEp=— g = L,

haﬂzga;ﬁ+'§ﬁ;a—”aﬁ§0- (I' 13)

Conditions (1.7) give a sum of four equations for the
permissible values of ¢, and £,. The general solu-
tion of these equations is

EO=f0 (21, 22, 2%), gﬂz_a’i S gB dt 10 (21, 22, 29). (1.14)
ozP

It contains, as expected, four arbitrary (small ) func-

tions of the spatial coordinates f° and f% (see footnote

on page 498),
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