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I. FEATURES OF COSMOLOGICAL SOLUTIONS
OF THE GRAVITATIONAL EQUATIONS

1. Introduction

XHAT general relativity theory provides in principle
a new insight into the properties of the world as a
whole was first indicated by Einstein in 1919. Subse-
quent progress in relativistic cosmology is connected
principally with the solution of Einstein's gravitational
equations, first obtained by A. A. Fridman in 1922.

As is well known, this solution is based on the as-
sumption that the distribution of matter in space is
completely homogeneous and isotropic ("isotropic
cosmological model"). Two cases are possible here,
corresponding to a space of constant positive curvature
(so-called "closed model") or a space of constant
negative curvature ("open model"). The main prop-
erty of these solutions is that they are not stationary.
The resultant notion of an expanding universe has
found, as is well known, brilliant confirmation in the
red shift effect, discovered by E. Hubble, and by now
it can be supposed that the isotropic model gives, in
general outline, a representative description of the
modern state of the universe.

At the same time it is clear that the assumption
that a real world is homogeneous can be justified at

best only approximately. Even if the distribution of
matter density can be regarded as homogeneous when
averaged over distances that are large compared with
metagalactic distances, this homogeneity vanishes at
any rate on going over to smaller scales. On the other
hand, this assumption is very far reaching from the
mathematical point of view, for it imparts to the solu-
tion a high degree of symmetry, which can result in
specific properties that disappear on going over to the
more general case.

This raises the question: how general is the second
property of the isotropic model, namely its possession
of a space-time metric with a singularity with respect
to time? The presence of such a singular point denotes
boundedness of the time. In the open isotropic model
there is, as is well known, one singular point and the
time is bounded in it only on one side, while the closed
model has two singular points and the time is bounded
in both directions.

Naturally, a question important to all of cosmology
is the degree to which this important property is gen-
eral: is the presence of a singularity a general prop-
erty of cosmological solutions, a property not con-
nected with any of the specific assumptions (about the
character of the distribution of matter and of the grav-
itational field) on which some particular solution of
the gravitational equations is based?
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By now it is known that there are, in addition to the
isotropic solution, quite a few other exact (that is,
valid in all of space and during all of time) solutions
of the equations of gravitation. The determination of
such solutions can, of course, be of appreciable inter-
est from the point of view of clarifying various prop-
erties of such an exceedingly complicated system of
nonlinear differential equations as are Einstein's grav-
itational equations. However, the accumulation of exact
solutions cannot by itself answer the question raised
above. Each of these particular solutions is connected
with some rather specific assumptions with respect to
their form, and the fact that a solution has or has not
a singular point cannot lead to any conclusions with
respect to the behavior of the solution in the most gen-
eral case.* Furthermore, these special assumptions
are unavoidably very far reaching, and are usually
governed only by the requirement that the solution of
the equations be made as exact as possible; they are
therefore usually purely mathematical in character
(limitation on the number of independent variables,
separation of the variables, diagonality of the metric
tensor, etc.) and have no direct physical meaning.

A more accurate formulation of the problem of
interest to us is to ascertain whether there is a sin-
gularity in the general solution of the gravitational
equations, that is, the solution which admits of a
perfectly arbitrary specification of the conditions
(the distribution of matter and of the gravitational
fields) at any instant of time chosen to be the initial
time.

A criterion for the generality of the solution is the
number of arbitrary functions of the spatial coordinates
it contains. It must be borne in mind here, however,
that among the arbitrary functions contained in any
solution of the equations of gravitation there are, gen-
erally speaking, such whose arbitrariness is connected
simply with the arbitrariness of the choice of the ref-
erence frame for the equation.! We, on the other hand,
should obviously be interested only in the number of
"physically arbitrary" functions, which cannot be r e -
duced by any choice of reference frame. The number
of such functions can be established for the general
case readily from physical considerations. The arbi-
trary initial conditions should specify the initial spa-
tial distribution of the density of matter, the three
components of its velocity, and also the four quantities
which determine the free gravitational field (that is,
the field not connected with matter) . One can arrive
at the last number by considering, for example, weak
gravitational waves: by virtue of their transversality,
their field is determined by two independent quantities

(components of metric tensor); these quantities sat-
isfy a second-order equation (wave equation), and
therefore the initial conditions for them should be
specified by four functions. Thus, the general solu-
tion of the equations of gravitation should contain eight
different physically arbitrary functions of the spatial
coordinates.*

The determination of the general solution in exact
form is of course an insoluble problem. There is no
need for such a solution, however, to answer the ques-
tion of interest to us. It is sufficient to investigate the
form of the solution near the singularity.

We thus arrive at the following formulation of the
problem: assuming the singularity to exist, it is r e -
quired to find near it the form of the broadest class
of solutions of the equation of gravitation, so as to
judge, from the number of the arbitrary functions it
contains, whether this solution is general.

This program has been the subject of the authors'
papers [ 2~*3. and is described in detail in Sees. 2—5.
In order not to clutter up the exposition, many calcu-
lations and some secondary problems are relegated
to appendices.

The entire investigation is based on Einstein's
equations in their classical form, in which they follow
logically from the general principles of relativity,
without the "cosmological t e r m , " for the introduction
of which there exist no theoretical or astronomical
grounds whatever at the present time.

2. General Solution with Fictitious Singularity

Of primary significance in the investigation of ques-
tions connected with general relativity is a successful
choice of the reference frame, appropriate to the prob-
lem under consideration.

We shall show below that the most general proper-
ties of the cosmological solutions with respect to their
singularities do not depend on the presence or absence
of matter. In this connection it is not necessary to em-
ploy in the investigation of these properties the so-
called "co-moving" reference frame, that is, the sys-
tem moving at each point together with the matter con-
tained in it, as is frequently the custom in cosmology.

A natural choice of the reference frame is in this
case the coordinate system obeying the conditions t

*Incidentally, the overwhelming majority of the known exact
solutions have singularities.

tThe greatest possible number of arbitrary functions in the
solution of the gravitational equations in an arbitrary reference
frame is 20 (see H, Sec. 95).

*A formal mathematical proof of this statement is given in
appendix A.

tWe use the notation of the book [*J throughout. In particu-
lar, Latin'subscripts run through the values 0, 1, 2, and 3 while
Greek subscripts run through the three spatial values 1, 2, and
3. The square of the interval element is written as -ds2

- gikdx»dxk, so that the matrix of the quantities g^ has a
signature - + + + .

In addition, we use everywhere a system of units in which
the velocity of light and the Einstein gravitational constant are
equal to unity.
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go* = O, gto=-l. (2.D

As is well known (see, for example, [ 1 ] , Sec. 98a), the
vanishing of the components go a of the metric tensor
is the condition permitting synchronization of clocks in
different points of space. If, in addition, g00 = - 1,
then the time coordinate x°= t represents the proper
time at each point of space. A reference system sat-
isfying these conditions will be called synchronous.
The interval element in such a system is given by the
expression

3 „« ι '
dt a~' 4

- ds2 = - d<2 + dl2, dl2 = gafi dx<* dx». (2.2)

T h e t h r e e - d i m e n s i o n a l t e n s o r g ^ r e p r e s e n t s h e r e

t h e s p a t i a l m e t r i c .

T h e e q u a t i o n s of t h e g r a v i t a t i o n a l f ie ld i n t h e s y n -

c h r o n o u s r e f e r e n c e s y s t e m h a v e t h e f o l l o w i n g f o r m

( s e e [ 1 ] , S e c . 9 9 ) :

Κ Ι*ϊ + &$ τ ° τ (23
Λβ«=-5"(*1!,α-*£;β) = 71Οα. (2.4)

/& = Pi + r±= ^(V~g x£) = Tl - Α- δ«7\ (2.5)

Here καβ denotes the three-dimensional tensor

*«β = ^ , (2.6)

a n d a l l f u r t h e r o p e r a t i o n s of r a i s i n g a n d l o w e r i n g t h e

i n d i c e s a n d c o v a r i a n t d i f f e r e n t i a t i o n a r e c a r r i e d o u t

in three-dimensional space with metric §αβ; we note
that

where g — determinant of the tensor gĵ  (which dif-
fers from the determinant | ga£ | by a factor g00 = - 1).
The tensor Ραβ in Eq. (2.5) is the three-dimensional
Ricci tensor, expressed in terms of the three-dimen-
sional metric tensor g ^ in the same way as R ^ is
expressed in terms of gi^; it contains only spatial
(and not time) derivatives of g ^ .

L. D. Landau has indicated long ago that the deter-
minant g of the metric tensor should vanish in the
synchronous reference frame within a finite time, r e -
gardless of what assumptions are made concerning the
distribution, motion, or equation of state of the matter
or the character of the gravitational field (this cir-
cumstance was recently noted also by Komar^ 5 ] * ).

It is easy to arrive at this conclusion with the aid
of Eq. (2.3), noting that the right side of this expres-
sion is negative for any distribution of matter (or is
equal to zero in the case of empty spacet) . Therefore

*An analogous result was obtained also by RaychaudhuriM
for the case of "dus t l ike" matter (equation of state ρ = 0),
moving without rotation — limitations which actually are not at
all obligatory.

1 Indeed, for the energy-momentum tensor of matter

Tik = (Ρ Η- ε) utuh + pgih

we have

By v i r t u e of t h e a l g e b r a i c i n e q u a l i t y *

w e g e t f r o m t h i s

o r

d
~dt

(2.8)

A s s u m e , f o r e x a m p l e , t h a t a t s o m e i n s t a n t of t i m e

/eg > 0. T h e n l A g d e c r e a s e s a n d h a s e v e r y w h e r e a

f i n i t e ( n o n v a n i s h i n g ) d e r i v a t i v e w h e n t d e c r e a s e s ,

s o t h a t i t m u s t v a n i s h ( o n t h e p o s i t i v e s i d e ) a f t e r

s o m e f i n i t e t i m e . In o t h e r w o r d s , /eg g o e s t o + °° and

b y v i r t u e of (2.7) t h i s m e a n s t h a t t h e d e t e r m i n a n t g

v a n i s h e s ( a n d , i n a c c o r d a n c e w i t h i n e q u a l i t y (2.8), n o t

f a s t e r t h a n a s t 6 ) . On t h e o t h e r h a n d , if w e h a v e a t t h e

i n i t i a l i n s t a n t /eg < 0, t h e s a m e i s o b t a i n e d f o r i n -

c r e a s i n g t i m e .

T h i s r e s u l t , h o w e v e r , d o e s n o t p r o v e a t a l l t h e i n -

e v i t a b i l i t y of t h e e x i s t e n c e of a t r u e p h y s i c a l s i n g u -

l a r i t y i n t h e m e t r i c . A p h y s i c a l s i n g u l a r i t y i s o n l y

o n e t h a t i s s p e c i f i c f o r s p a c e - t i m e a s s u c h , a n d i s

n o t c o n n e c t e d w i t h t h e c h a r a c t e r of t h e c h o s e n r e f e r -

e n c e f r a m e . S u c h a s i n g u l a r i t y i s c h a r a c t e r i z e d b y

t h e b l o w i n g u p of t h e s c a l a r q u a n t i t i e s — d e n s i t y of

m a t t e r a n d i n v a r i a n t s of t h e c u r v a t u r e t e n s o r t .

Yet t h e s i n g u l a r i t y w h i c h w e h a v e p r o v e d t o b e

i n e v i t a b l e i n t h e s y n c h r o n o u s r e f e r e n c e f r a m e m a y

t u r n o u t t o b e f i c t i t i o u s a n d v a n i s h o n g o i n g o v e r t o

a d i f f e r e n t r e f e r e n c e f r a m e . T h e p o s s i b i l i t y of s u c h

a s i t u a t i o n i s e v i d e n t e v e n f r o m t h e fac t t h a t t h e f o r e -

g o i n g p r o o f r e m a i n s v a l i d i n t h e c a s e w h e n t h e n o n -

G a l i l e a n n a t u r e of t h e m e t r i c i s d u e m e r e l y t o t h e

u s e of c u r v i l i n e a r c o o r d i n a t e s i n f lat s p a c e - t i m e ,

w h e n i t i s o b v i o u s b e f o r e h a n d t h a t t h e s i n g u l a r i t y of

t h e m e t r i c i s f i c t i t i o u s .

S i m p l e g e o m e t r i c a l c o n s i d e r a t i o n s s h o w t h a t t h i s

s i n g u l a r i t y w h i c h i s i n e v i t a b l e i n t h e s y n c h r o n o u s

s y s t e m i s a c t u a l l y f i c t i t i o u s i n t h e g e n e r a l c a s e . T o

t h i s e n d , w e c a l l a t t e n t i o n t o t h e g e o m e t r i c a l p r o p e r -

t i e s of t h e s y n c h r o n o u s r e f e r e n c e f r a m e , i n w h i c h t h e

t i m e l i n e s a r e g e o d e s i e s i n f o u r - s p a c e . I n d e e d , t h e

f o u r - v e c t o r u 1 = d x V d s of t h e t a n g e n t t o t h e w o r l d

l i n e x 1 , x 2 , x 3 = c o n s t , h a s c o m p o n e n t s \ia = 0, u° = 1

T l ~ \ T= - i -

so that this quantity is obviously negative (p —pressure, e —
energy density of the matter).

*Its correctness can be verified by diagonalizing the tensor
x£(at any specified instant of time).

t T h e invariants of the curvature tensor RiHm are obtained
as i s well known, by reducing it to the Petrov canonical form.
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and satisfies automatically the geodesic equations

since the Christoffel symbols Γ $ and Γ§0 vanish iden-
tically under conditions (2.1).

It is also easy to see that these lines are normal to
the hypersurfaces t = const. Indeed, the four-vector
of the normal ni = - 8t/9x* to such a hypersurface has
covariant components na = 0 and n0 = - 1 . The cor-
responding contravariant components, under conditions
(2.1) are n a = 0 and n° = 1, that is, they coincide with
the components of the four-vector ui tangent to the
time lines.

Conversely, these properties can be used for a geo-
metrical construction of a synchronous reference
frame in any space-time. To this end we start with
some chosen space-like hypersurface, that is, a hyper-
surface the normal to which has a time-like direction
at each point (the normal lies inside the light cone with
vertex at the same point); all the interval elements on
such a hypersurface are spacelike*. If we now choose
these lines as coordinate lines for the time, and de-
fine the time coordinate t as the length of the geodesic
line reckoned from the initial hypersurface, then we
obtain a synchronous reference frame.

It is clear that such a construction, and by the same
token the choice of the synchronous reference frame,
is always possible in principle. Moreover, this choice
is still not unique: a metric of the type (2.2) admits of
any transformation of the three spatial coordinates
which does not concern the time, and also a transfor-
mation corresponding to arbitrariness in the choice of
the initial hypersurface in the indicated geometric con-
structiont.

However, the geodesic lines of an arbitrary family,
generally speaking, cross one another on certain enve-
lope hypersurfaces, which are four-dimensional analogs
of the caustic surfaces of geometrical optics. On the
other hand, crossing of the coordinate lines produces,
of course, a singularity in the metric in the given co-
ordinate system. Thus, the appearance of a singular-
ity has a geometrical reason which is connected in an
obvious fashion with the specific properties of the syn-
chronous system and consequently has no physical
character.

The arbitrary metric of four-space admits also,
generally speaking, the existence of non-intersecting
families of time-like geodesic lines. The unavoidabil-

ity, on the other hand, of the vanishing of the deter-
minant of g in the synchronous system denotes that
the curvature properties of real space-time, which
are admitted by the equations of gravitation (a prop-
erty expressed by the inequality R§ < 0), exclude
the possibility of existence of such families, so that
the time lines must unavoidably cross one another in
any synchronous frame.*

From the analytic point of view this means that the
equations of gravitation have in the synchronous ref-
erence frame a general solution with a fictitious time
singularity; in an arbitrary synchronous frame, such
a solution should contain 12 arbitrary functions of the
coordinates, namely, the 8 "physically arbitrary"
functions and in addition 4 arbitrary functions con-
nected with the aforementioned ambiguity in the choice
of the synchronous reference frame.

The character of the fictitious singularity of the
metric is clear beforehand from geometrical consid-
erations. First, the caustic hypersurface should have
a time like character, since it contains, in any case,
timelike intervals—elements of the length of geodesic
lines at the points of their tangency with the caustic.

Further, one of the principal values of the metric
tensor vanishes on the caustic, in accordance with the
vanishing of the distance between two neighboring geo-
desies that cross each other at the point of their tan-
gency to the caustic (the corresponding principal direc-
tion lines, obviously, along the normal to the caustic).
This distance vanishes in proportion to the first power
of the distance to the point of intersection. Therefore
the principal value of the metric tensor, and with it the
entire determinant g, vanishes like the square of this
distance.

It can be shown that under suitable choice of the
spatial coordinates, the first terms of the expansion
in the spatial metric can be represented near the sin-
gularity in the form

df = ga& dxa dxt = aab dxa dxi

+ (t - φ) 2 α 3 3 dx% + 2 (t - φ) αα3 dx'1 dx3 (2.9)

(the indices a and b run through values 1 and 2; the
quantities a ^ , a^, a33, and φ are functions of all
three coordinatest).

*On the other hand, if the directions of the normal to the
hypersurface lie outside the light cones, then the interval
elements in the surface can be both time-light and space-light.
We shall arbitrarily speak of such hypersurfaces as having a
timelike character, although the terminology is not quite appro-
priate in this case.

tThe admissibility of the latter transformation is particu-
larly clear analytically in the infinitesimal case (see end of
Appendix I).

*We disregard, of course, the trivial exception - beams of
parallel straight lines in flat four-space.

t A complete analytic construction of the entire solution
with fictitious singularities for empty space is given in [*].

The spatial metric (2.9) admits also of an arbitrary trans-
formation x3'= x3'(x', x2, x3), which reduces to a redesigna-
tion of the quantities a^, a j j r and the higher terms of the ex-
pansion of the component gat,. It i s possible to use this trans-
formation to convert the function φ , which gives the form of
the caustic surface, into φ = x3, after which only transforma-
tions of the two coordinates x1 and x2 in terms of each other
remain admissible. With such a choice of coordinates, the
solution should contain merely five arbitrary functions (of
three coordinates): the four functions necessary to specify
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The singularity in the metric (2.9) is not simulta-
neous—different spatial points reach it at different
instants of time t = φ . It is easy to see, however, that
it is always possible to construct also a synchronous
reference frame such that the singularity (fictitious)
is attained simultaneously in all of space. It is clear
that such a singularity cannot be located on the hyper-
surface that is tangent to the time lines at the points
of their intersection, since the existence of timelike
intervals in such a surface would certainly exclude
the simultaneity of the singularities. Therefore the
time lines should cross on a "manifold of points"
which has fewer dimensions than the hypersurface,
that is, which is some two-dimensional surface in
four-space; it can be called the focal surface of the
corresponding family of geodesic lines. By choosing
arbitrarily the focal surface, by constructing from
each of its points all possible normal directions to
the surface (all the directions in the two-dimensional
plane normal to the focal surface), and by drawing the
geodesic lines in these directions, we construct by the
same token a synchronous reference frame having the
required property.

Thus, the general solution of the equations of gravi-
tation can also be represented (by suitable choice of
the synchronous frame) in a form in which the singu-
larity is simultaneous for all of space. In such a form
it contains, of course, the same eight physically arbi-
trary functions (of three spatial coordinates), which
are sufficient for the specification of the arbitrary ini-
tial conditions. Compared with the solution in the form
(2.9), it contains one less arbitrary function: if we con-
struct the synchronous reference system starting with
some initial hypersurface, then a hypersurface which
is far from arbitrary can lead to the focusing of the
geodesic lines constructed along the normals to it.*

As was already indicated, the fictitious nature of
the singularity of the solution under consideration is
obvious already from the method used for its construc-

the initial conditions for the field in vacuum, and one function
connected with the remaining arbitrariness in the choice of
the synchronous reference frame (the choice of the initial
hypersurface, from which the time coordinate is reckoned).
These five arbitrary functions are contained in the six quan-
tities aab, aa3, and ^, which turn out to be interrelated by a
single equation.

*In some sense this solution corresponds to a vanishing
function φ in the solution (2.9). On the singularity (t = 0)
the square of the interval - d s 2 = - d t 2 + dl2 reduces to the
quadratic form - d s 2 = a a t ,dx a dx b of only two differentials. We
emphasize, however, that the expansion of the metric near such
a singularity cannot be obtained at all by merely putting φ = 0
in the formulas pertaining to a solution of type (2.9). We also
point out that such a system does not encompass all of space-
time. This i s clear from the fact that in each hypersurface
t = const all the points lie at equal time distances from the spa-
tial focal surface, that is, these hypersurfaces are completely
contained in the region of the absolute future or the absolute
past with respect to the focal surface.

t i o n . T h e s i n g u l a r i t y c a n b e e l i m i n a t e d b y t r a n s f o r m -

i n g t h e r e f e r e n c e s y s t e m s , b u t o n l y a t t h e e x p e n s e of

f o r e g o i n g t h e i r s y n c h r o n o u s n a t u r e .

F o r t h e s a m e r e a s o n i t i s o b v i o u s t h a t t h e q u a l i t a -

t i v e c h a r a c t e r of t h i s s o l u t i o n d o e s n o t d e p e n d o n t h e

p r e s e n c e o r a b s e n c e of m a t t e r , a n d t h a t t h e d e n s i t y

of t h e l a t t e r h a s n o s i n g u l a r i t y w h a t e v e r a n d r e m a i n s

f i n i t e . T h i s b e c o m e s p a r t i c u l a r l y c l e a r if i t i s n o t e d

t h a t t h e m a t t e r m o v e s ( i n t h e s y n c h r o n o u s r e f e r e n c e

f r a m e ) a l o n g w o r l d l i n e s w h i c h d o n o t c o i n c i d e w i t h

t h e t i m e l i n e s a n d w h i c h a r e n o t e v e n g e o d e s i c .

T h e l a t t e r c i r c u m s t a n c e d e n o t e s t h a t t h e r e f e r e n c e

f r a m e c a n n o t , g e n e r a l l y s p e a k i n g , b e c h o s e n s u c h a s

t o b e s y n c h r o n o u s a n d a t t h e s a m e t i m e c o - m o v i n g ,

w i t h t h e w o r l d l i n e s of t h e m a t t e r c o i n c i d i n g w i t h t h e

t i m e l i n e s . T h e o n l y p o s s i b l e e x c e p t i o n i s " d u s t l i k e "

matter (pressure ρ = 0), which moves along geodesic
lines. Therefore in this case the "co-moving" condi-
tion for the reference frame of the matter does not
contradict the condition for its being "synchronous."
This, however, is still not enough—not all families
of timelike geodesic lines have the property of being
normal to a spacelike hypersurface, something nec-
essary to make the reference system synchronous.
This condition is satisfied if the matter moves "with-
out rotation," that is, if the curl of its velocity van-
ishes everywhere*. In the "synchronous—co-moving"
system, which we can construct in this case, the den-
sity of the matter becomes infinite on the caustic—
simply as a result of the crossing of the particle t r a -
jectories. It is clear, however, that this density sin-
gularity has likewise no physical character and is
eliminated merely by assigning to the matter a pres-
sure which is arbitrarily small but different from
zero.

Thus, the singularity in the general solution of the
gravitational equations, the necessity for the exist-
ence of which follows in the synchronous system from
the inequality R§ < 0, turns out to be unphysical. By
the same token, there are no further grounds for the
existence of a singularity of another type, which would
be true and at the same time specific to the general
solution. These results, however, do not exclude the
possibility of existence of narrower classes of cos-
mological solutions of the gravitational equations, with
true singularities. Their determination is treated in
Sees. 3—4. In addition to the independent interest that

•The necessity of this condition is obvious from the fol-
lowing considerations. In the co-moving reference system the
contravariant components of the four-velocity are u a = 0, u° = 1.
If this reference system is also synchronous, then we also have
the covariant components u a = 0 and u0 = —1, so that its four-
curl is

"i; fc— uh;i = ui. k — »h, i = 0.
But this tensor equation should then be valid in any other refer-
ence frame. Thus, in a synchronous but not co-moving system
we obtain from this the condition curl ν = 0 for the three-
dimensional velocity.
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can be attached to the investigation of possible types
of singularities of the solutions of the gravitation equa-
tions, by constructing these solutions and by ascertain-
ing the degree of their generality we confirm the con-
clusion that the general solution has no true singularity.

3. Anisotropic Solution with Singularity

The solutions of the gravitational equations can have
on the hypersurface t = ψ ( χ α ) , a (true) singularity
which can be both spacelike and nonspacelike*. In the
former case it is always possible to choose a refer-
ence frame, without violating the conditions of its syn-
chronism, in such a way as to convert this hypersurface
into a "hyperplane" t = const; in other words, in this
case there exists a synchronous reference frame in
which the singularity " se t s i n " simultaneously in all
of space. It can be said that such a singularity is t ime-
like. To the contrary, in the second case no choice of
the reference system can make the singularity simul-
taneous in all of space; it can be said that it is space-
like.

From the cosmological point of view, the singulari-
ties of major interest are those with a time character.
In particular, when searching for a general solution
with a true singularity, it would be natural to think that
if any singularity were inevitable, it would be precisely
a timelike one. We shall consider time singularities, t

We assume that by suitable choice of the reference
system the singularity has been reduced in all of space
to a single instant of time, which we choose to be t = 0.
This condition, together with the synchronism condi-
tions, establishes the choice of the time coordinate, so
that the ambiguity of the synchronous reference system
reduces merely to the admissibility of arbitrary t rans-
formations of the three spatial coordinates in terms of
one another.

The equations of the gravitational field in empty
space have a simple particular exact solution

( t h i s s o l u t i o n w a s a p p a r e n t l y f i r s t p o i n t e d o u t b y K a s -

— ds2= - (3.1)

w h e r e p t , p 2 , a n d p 3 a r e a r b i t r a r y t h r e e n u m b e r s , i n -

t e r r e l a t e d b y t h e t w o e q u a t i o n s

= rf + rf + rf = l 0 . 2 )

•Inasmuch as the metric becomes singular when t = φ , the
manifold defined by this equation i s , strictly speaking, not a
hypersurface (it can, in particular, reduce to a manifold with
fewer dimensions). When referring to i ts character, we imply
the character of a hypersurface that is arbitrarily close to, but
not coincident with, the singular metric.

t Along with the solution with time singularity, which will
be considered in this section, there exist solutions with an
analogous space singularity. In addition, space singularities
which do not exist for the timelike case are also admissible
(see Appendix B). It is essential, however, that even such
singularities lead to solutions that are less inclusive than
those required of the general solution.

T h e n u m b e r s c o n n e c t e d b y r e l a t i o n s (3.2) w i l l p l a y

a n i m p o r t a n t r o l e i n w h a t f o l l o w s ; w e t h e r e f o r e i n d i -

c a t e h e r e s o m e of t h e i r p r o p e r t i e s . S i n c e t h e t h r e e

n u m b e r s p j , p 2 , a n d p 3 a r e c o n n e c t e d b y t w o r e l a t i o n s ,

o n l y o n e of t h e m i s i n d e p e n d e n t . T h e t h r e e n u m b e r s

Pi, p 2 , a n d p 3 c a n n e v e r h a v e t h e s a m e v a l u e , a n d t w o

of t h e m c a n b e e q u a l o n l y i n t h e t r i p l e t s 0, 0 , 1 a n d

~V2, 2/3,
 2 / 3 · * In a l l o t h e r c a s e s t h e s e n u m b e r s a r e

d i f f e r e n t , o n l y o n e b e i n g n e g a t i v e w i t h t h e o t h e r t w o

p o s i t i v e ; w e a r r a n g e t h e m i n s e q u e n c e

Pi < Pi < Pi- (3.3)

T h e n u m b e r s p t , p 2, a n d p 3 r u n t h r o u g h v a l u e s i n t h e

i n t e r v a l s

(3.4)

(3.5)

T h e y c a n b e r e p r e s e n t e d i n p a r a m e t r i c f o r m a s

S + S2 '

w i t h t h e p a r a m e t e r s r a n g i n g f r o m 0 t o 1. In t h e f ig-

u r e , a n y t w o of t h e n u m b e r s pi, p 2 , o r p 3 c a n b e d e -

t e r m i n e d f r o m s p e c i f i e d v a l u e s of t h e t h i r d ( t h e t h r e e

v a l u e s l i e o n o n e v e r t i c a l l i n e ) .

08
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02

Ο
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-04

/
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Although the solution (3.1) is itself very particular,
it has a simple and lucid physical character, corre-
sponding to a completely homogeneous (but anisotropic)
space. It is natural to expect such a solution to be a
particular case of some broad class of solutions.

We shall seek a space metric near the singularity,
in first approximation (the principal terms of the ex-
pansion in powers of t ) , in the form

^ηαηβ, (3.6)

where 1, m, and η are three-dimensional vectors
which are functions of the coordinates; the exponents

•When (p1# p 2 ,p 3 ) = (0,0, 1) the metric (3.1) can be trans-
formed to a Galilean one by the transformation t s i n h z = ζ,
t cosh ζ = τ; that i s to say, we are actually dealing here with
flat space-time.
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p t , p2, and p 3, which are related by (3.2), are now
also functions of the coordinates.

The determinant of the tensor (3.6) is

- f = ( l [ m n ] ) ! i ! . (3.7)*

The tensor g a ^, which is the inverse of (3.6), can be
represented in the form

the letters la, m a , and n a with superior indices de-
note here the components of the vectors '

'-(limn]) ' m-(l[mn]) · n-(l[mn]) ' V > > ! "

which are " inverse" to the vectors I, m, and n, so
that

lal
a=l, lam

a = lan
a = 0, ... (3.10)

Differentiating the tensor (3.6) with respect to the
time, we obtain

•vi-njf, (3.ii)

(3.12)

and, raising the indices, we get

where the summation sign denotes henceforth summa-
tion over the cyclic permutations of the vectors 1, m,
and η and the numbers p t , p2, and p 3 .

The representation of ζαβ in the form (3.6) is in
correspondence with the fact that the time variation
of the linear distances follows different laws in the
three different directions (defined by the vectors 1,
m, and n) at each point of space. It must be empha-
sized, however, that the vectors 1, m, and η cannot,
generally speaking, be chosen as a reference frame
for a spatial coordinate system. In order for the di-
rection, say, of the vector 1 (x1, x2, x3) (specified in
terms of its covariant components la) to be able to
serve at each point of space as a direction of one of
the coordinate lines (x1 ) it is necessary that the sum
ladxa be proportional to the total differential ladxa

= ψάφ (ψ, φ —two scalar functions); then the surfaces
φ = const will be the surfaces x1 ' = const. Thus, the
choice of the coordinate lines along the directions 1
is possible only for a vector of the form 1 = ψ νφ,
which reduces to merely 2 (in place of 3) independent
functions.

It is easy to verify that the singularity possessed
by the metric (3.6) is actually a true singularity for
all values of the exponents, with the exception of
(0, 0,1); when t = 0 the invariants of the curvature

*[mn] = m χ n.
tHere and throughout all symbols for vector operations

(vector products, the curl and gradient operators, etc.) must
be regarded in pure formal fashion as operations on compo-
nents (covariant) of the vectors 1, m, and n, as if the coordi-
nates x1, x2, and x3 were Cartesian.

t e n s o r of t h i s m e t r i c b e c o m e i n f i n i t e . F o r t h e v a l u e s

( 0 , 0 , 1 ) t h e s i n g u l a r i t y of t h e m e t r i c b e c o m e s f i c t i -

t i o u s a n d c a n b e e l i m i n a t e d b y t r a n s f o r m i n g t h e r e f -

e r e n c e f r a m e ( s e e t h e p r e c e d i n g f o o t n o t e ) ; w e e l i m i -

n a t e t h e s e v a l u e s f r o m f u r t h e r c o n s i d e r a t i o n .

a) C a s e of e m p t y s p a c e . W e c o n s i d e r f i r s t t h e c a s e

of e m p t y s p a c e . T h e n t h e g r a v i t a t i o n e q u a t i o n s (2.3) —

(2.5) a r e

(3.13)

(3.14)

(3.15)

Upon substitution of (3.12), Eq. (3.13) is satisfied auto-
matically by virtue of the relation Pi + p 2 + p 3 = Pi + p |
+ p 3 . The second term of (3.15) vanishes identically,
since κ@ ~ 1/t and V — g ~ t. This term is "poten-
tially" of order t~2. Therefore in order to satisfy
(3.15) (in its principal terms), it remains to stipulate
that the tensor P^, contain no terms of order t " 2 or
larger terms. Let us clarify the conditions that en-
sure the absence of such terms.

Inasmuch as the time dependence of the metric is
essentially different along the directions 1, m, and n,
it is convenient to "project" all the tensors on these
directions. Denoting the corresponding projections by
the indices I, m, and n, we define them in the follow-
ing fashion:

Pn = PafiPP, Pim = Pa»larrfi, . . . (3.16)

In this notation we have, in particular,
~ _ j2pi „ __ f2p2> σ = 22P3. ( 3 . 1 7 )

T h e " m i x e d " c o m p o n e n t s o f t h e t e n s o r a r e d e f i n e d

a c c o r d i n g l y a s

P\ = p^- = t-2"iPll, P F = ^ = t-^Plm, ... ( 3 . 1 8 )
gll gmm

The general formulas for the tensor components Ραβ
defined in this manner are given in Appendix C. It is
seen from these formulas that the highest-order term
in the diagonal components of the tensor is

P\= _ ( 3 . 1 9 ) *

I n a s m u c h a s pj < 0, w e h a v e 2 ( p 2 + p 3 - p t ) = 2 ( 1 - 2 p t )

> 2, s o t h a t t h i s t e r m i s of h i g h e r o r d e r t h a n t ~ 2 , a n d

i n o r d e r t o s a t i s f y (3.15) i t i s n e c e s s a r y , i n a n y c a s e ,

t h a t t h i s t e r m b e m i s s i n g , t h a t i s , w e m u s t h a v e

1 rot I = 0. (3.20)

A c c o r d i n g t o t h e f o r e g o i n g , t h i s c o n d i t i o n ( w h i c h i s

equivalent to 1 = ψν<ρ) signifies geometrically that the
direction of the vector 1 can be chosen at each point of
space as a direction of one of the coordinate lines.

If condition (3.20) is satisfied, the terms in the ten-
sor components Ραβ turn out to have the orders of
magnitude

*rot = curl.
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Ρ1π

and do not affect the principal terms in (3.15)*.
It remains to satisfy Eq. (3.14). The largest terms

in these equations could have an order t " 1 In t: such
terms appear when the exponents in the derivatives of
gβγ are differentiated with respect to the coordinates
entering into the expression

(3.21)
dxa

Calculating these terms, we get

dxa

dpi
dxa

- A l n ' V η "Pl - 2 V (3.22)

and by virtue of (3.2) these terms cancel identically.
Thus, the principal terms in (3.14) turn out to be

those proportional to 1/t. Since KB « 2/t and does
not depend on the coordinates, in this approximation
we have /cjg;Q, = 0. To calculate (3.21), we write

g;Q,

8 2

*5; β = 7(Τϋ5ΪΒ
V ί d

t(l[mn]) 2 {*»

Pi l

+ ΙαΡι div [mn] — ρ, [[mn] rot 1]α}.

E x p a n d i n g t h e v e c t o r e x p r e s s i o n s a n d r e a r r a n g i n g t h e

t e r m s i n t h e s u m , w e o b t a i n

+ (Pi — Pi) n r o t m ) = 0· (3.23)

(3.24)

Projecting this equation on the directions 1, m, and n,
we obtain the three relations

(1 [mn]) Pi,i + (Pz — Pi) m rot η + (ρ, - p2) η rot m = 0,

(1 [mn]) p2i m + iPi — p2) η rot 1 + (p2 — p3) 1 rot η = 0,

(1 [mn]) ph n + (Pz — Ps) 1 rot m + (p3 — px) m rot 1 = 0

(the letters I, m, and η following the commas in the
subscripts denote differentiation along the correspond-
ing directions in accordance with definition C.3 ).

The next expansion terms [following (3.6)] of the
metric tensor are expressed in terms of quantities

•When the next terms of the expansion of the vector 1 = \m

+ 1(1) + . . . are taken into account, the product 1 curl 1 ceases
to be equal to zero, but the correction terms that result from
(3.19) are of smaller order than t~2p*, and are therefore small
compared with those written out (see end of Appendix D).

contained in (3.6); the corresponding calculations are
given in Appendix D.

Expression (3.6) contains only ten different func-
tions of the coordinates; three components of each of
the vectors 1, m, and n, and one function in the expo-
nents of t [ any one of the functions p 1 ( p2, or p3,
which are related by Eq. (3.2)]. These ten functions
are connected by the four relations (3.20) and (3.24).
In addition, the reference system used by us admits
of arbitrary transformation of the three spatial coor-
dinates in terms of one another. Therefore the solu-
tion obtained contains merely 10 —4 - 3 = 3 physically
arbitrary functions of the three space coordinates.
This is one less than is needed to specify the arbitrary
initial conditions for the gravitational field in vacuum*.

By some specific choice of the spatial coordinates
we can recast the metric (3.6) in various simpler
forms, for example:

dx2 + m

+ 2m1m2i
2» dx

2 + n\t*vs dz2

dx dz. (3.25)

The five quantities lu mj, m2,.n1, n 3 (and the expo-
nents pj, p2, P3) are connected by three relations,
which can be readily obtained from (3.24); on the other
hand, condition (3.20) has already been used in choos-
ing 1 as the directions for the χ coordinate lines. In
(3.25) the coordinates y and ζ can be also subjected
to transformations of the type y — f (x,y) and
ζ —• g(x ,ζ) ; such transformations do not affect the
principal terms of the expansion of the metric, given
by (3.25).

We note that the foregoing solution is in principle
anisotropic: the exponents pj, p2, and p3, which de-
termine the variation of the linear distances along the
three different directions in space, cannot be the same.
We also call attention to the mathematical peculiarity
of this solution—one of the arbitrary functions enters
in it as the power of the time.

b) Solution in space filled with matter. We now show
that the presence of matter does not change the char-
acter of the obtained "anisotropic" solution, and the
initial conditions for the distribution and motion of the
matter can be specified in completely arbitrary fashion.

In considering a solution of the gravitational equa-
tions near a singular point at which the pressure ρ and
the energy density e of the matter become infinite, it
is necessary, of course, to use for its equation of state
the ultrarelativistic relation

P = - (3.26)

T h e n t h e e n e r g y - m o m e n t u m t e n s o r of t h e m a t t e r b e -

c o m e s

, 71 = 0. (3.27)

*In Appendix Ε we present arguments which explain more
lucidly the reasons why one arbitrary function is " l o s t " in
this solution.
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T h e g r a v i t a t i o n e q u a t i o n s (2.3) —(2.5) a s s u m e t h e f o r m

'· (3.28)

(3.29)

+ δ&). (3.30)

To estimate the orders of magnitude of the material
density and velocity it is convenient to use the hydrody-
namic material equations of motion, which are con-
tained, as is well known, in the gravitational equations

(the equations K = 0 ) :

(3.31)

,,kfdui I ,.ldghl\_ dp „ ,,h dp

(see, for example, M , Sec. 125). Here σ —entropy
density; for the ultrarelativistic equation of state (3.26)
the entropy is σ ~ e 3 / 4.

We now make an assumption, to be confirmed by the
result, that the principal terms in (3.31) —(3.32) are
those containing time derivatives. Then Eq. (3.31) and
the spatial components of (3.32) (the time component
yields nothing new) give

= 0.4« * *
at '• at'

hence

tuos
3/* = const, υαε

1/« = const,

where " c o n s t " stands for the time-independent quan-
tities. In addition, from the identity UJU* = — 1 we have
(taking into account that all the covariant components
UQ, are of the same order)

we again use the components along 1, m, and n, that
is, we represent the three-dimensional vector u in
the form

with u; = ul,. . .
From the relations written out we get

(3.33)

after which we can readily check that the terms left
out of (3.31) —(3.32) are actually small compared with
those retained.

We now estimate the components of the energy-
momentum tensor in the right halves of (3.28) —(3.30).
In (3.28) we have

Inasmuch as p 3 < 1, this quantity is of lower order in
1/t than the principal terms in the left half of the equa-
tion (~t~ 2 ) . The same applies to (3.30): the spatial
components of the tensor Tj5- "projected" along the
directions 1, m, and n, have orders of magnitude

T\ ), ΊΖ

(3.34)

which are all smaller than t " 2 .
On the other hand, in (3.29) we have

that is, the same order of magnitude as of the left half
of the equation. But this circumstance likewise does
not change the character of the solution. Indeed, in
accordance with (3.33), we write

for the first terms of the expansion of these quantities;
here

4
r

( 3 M - ' >

Equating the expression (3.23) for RQ, to the quantity
TQ, = 4eu au°/3, we obtain in place of (3.24)

(1 [mn]) Pi) m rot η + (pt — p2) η rot m

= — g-ε' 'u) (3.35)

T h u s , t h e o n l y c h a n g e i s i n t h e c o n n e c t i o n b e t w e e n t h e

f u n c t i o n s i n v o l v e d i n (3.6), w h i c h n o w c o n t a i n s a l s o t h e

n e w f u n c t i o n s e ( 0 ) a n d u ( 0 > .

A c h a n g e o c c u r s a l s o i n t h e f o r m of t h e h i g h e r t e r m s

of t h e e x p a n s i o n of t h e m e t r i c t e n s o r , w i t h t h e t e r m s

i m m e d i a t e l y f o l l o w i n g (3.6) b e i n g p r e c i s e l y t h e t e r m s

c o n n e c t e d w i t h t h e p r e s e n c e of m a t t e r ( s e e A p p e n d i x

D ) .

T h u s , t h e o b t a i n e d a n i s o t r o p i c s o l u t i o n of t h e g r a v i -

t a t i o n a l e q u a t i o n s i s a v e r y b r o a d c l a s s of s o l u t i o n s

w i t h s i n g u l a r i t y . It c o n t a i n s s e v e n a r b i t r a r y f u n c t i o n s

of t h e c o o r d i n a t e s : i n a d d i t i o n t o t h e t h r e e f u n c t i o n s

p r e s e n t a l r e a d y i n t h e a b s e n c e of m a t t e r , i t c o n t a i n s

a l s o t h e f u n c t i o n e ( 0 ) and t h e t h r e e f u n c t i o n s u£°,'.

T h i s , h o w e v e r , i s o n e l e s s t h a n r e q u i r e d f o r t h e g e n -

e r a l c a s e , s o t h a t t h i s s o l u t i o n i s n o t g e n e r a l . *

T h e c h a r a c t e r of v a r i a t i o n of t h e m e t r i c n e a r t h e

s i n g u l a r i t y ( t —• 0 ) d o e s n o t d e p e n d i n t h i s s o l u t i o n

o n t h e p r e s e n c e o r a b s e n c e of m a t t e r ( a n d by t h e

s a m e t o k e n on i t s e q u a t i o n of s t a t e ) . It i s s u c h t h a t

a t e a c h p o i n t of s p a c e t h e l i n e a r d i s t a n c e s a l o n g t w o

d i r e c t i o n s d e c r e a s e ( a s t ^ 2 a n d t ^ 3 ) a n d i n c r e a s e

a l o n g t h e t h i r d ( a s t " ^ 1 ' ) ; t h e v o l u m e s d e c r e a s e h e r e

*In the particular case when (p t, pz, p3) = (-1/3, 2/3, 2/3)
the matter can be "written i n " in the metric (3.6) in still an-
other manner, such that i ts velocity tends to zero as t -> 0.
Then, however, the matter introduces only two and not four
arbitrary functions, that i s , the initial conditions for it must
have some particular character. For the c lass of solutions ob-
tained in this way see M. This c lass includes, in particular,
the general solution for a centrally-symmetrical collapse of
matter.
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in proportion to t. The laws governing these varia-
tions (that is, the values of pj, p 2, and p 3) vary in
space and are determined by the specification of the
initial conditions.

The density of matter becomes infinite at each point
of space like e ~ t ~ 2 U " P 3 ) . This fact in itself is an ob-
vious indication that the singularity has a physical (not
fictitious) character.

As t —- 0, the velocity of the matter tends in this
solution (in the reference system under consideration)
to the velocity of light. Indeed, the three-dimensional
scalar \iaaa « u n u n tends as t — 0 to infinity like
t~ ( 3 p 3 ~ 1 ) . This means that the matter moves at each
point essentially along the η direction, and the abso-
lute value of its ordinary three-dimensional velocity
ν (ν2 = ν α ν α ) tends to unity like

y 1 — υ r~~r I · \Ο,ΟΌ)

The proper time τ of the moving matter is con-
nected with the time t through dr = dtVl - v 2 . There-
fore

.(3P8+1V2 (3.37)

In the co-moving reference system, the energy den-
sity therefore becomes infinite like

3P8+1 (3.38)

4. Quasi-isotropic Solution

The solution considered in the preceding section is
in principle anlsotropic: inasmuch as the exponents pj,
p2, and p 3 cannot be identical in this solution, the
"contraction" of space occurs in anisotropic fashion.

It is therefore natural that this solution does not
contain the isotropic (Fridman) solution. We shall
show that the latter is indeed a particular case of a
second class of solutions, in which the contraction of
space occurs in "quasi-isotropic" manner—the linear
distance changes in all directions with the same power
of the time. As in the completely isotropic case, this
solution exists only for space filled with matter.*

*In vacuum the gravitational equation can be satisfied by a
quasi-isotropic metric of the form ga/3 = t2aa/3· where aa/g —
functions of the coordinates.

Equation (3.13) i s then satisfied identically ( κ | = 25^/t) ,

while Eq. (3.15) yields P ^ = -2Sf, where the tensor Ραβ i s

calculated with the simple metric aa ;g ; but such a form of

Ρ αβ denotes that the space has a constant negative curvature.

The corresponding space-time metric can be written with the

aid of the four-dimensional spherical coordinates γ , θ, and φ

in the form

— ds*=—dt*+t* [iX2_|-sh2 χ (d6 2 +sin 2 ΘΛρ2)],

but the transformation

r=is inhX, t = icoshX

reduces such a metric to the Galilean one

T h e i s o t r o p i c m o d e l , a s i s w e l l k n o w n , i s f o r m u -

l a t e d i n m o s t n a t u r a l f a s h i o n i n t h e c o - m o v i n g r e f e r -

e n c e s y s t e m . In t h i s s y s t e m t h e r e a p p e a r i n e x p l i c i t

f o r m t h e i s o t r o p y a n d h o m o g e n e i t y of s p a c e , b y v i r t u e

of w h i c h t h e q u a n t i t i e s gaa v a n i s h a u t o m a t i c a l l y ( s o

t h a t t h e r e f e r e n c e s y s t e m i s a t t h e s a m e t i m e s y n c h r o -

n o u s ) , a n d t h e s i n g u l a r i t y t a k e s p l a c e s i m u l t a n e o u s l y

i n a l l of s p a c e . T h e s p e c i f i c l a w g o v e r n i n g t h e d e -

p e n d e n c e of t h e m e t r i c o n t h e t i m e d e p e n d s i n t h i s

s o l u t i o n o n t h e e q u a t i o n of s t a t e of t h e m a t t e r . F o r

the ultrarelativistic equation ρ = e/3, the metric has
as t —• 0 the form g a ^ « att jgt, where aa/j are com-
pletely defined functions of the coordinates, corre-
sponding to a constant curvature of space. As func-
tions of the time, the %αβ are expanded in integer
powers of t .

We shall formulate the quasi-isotropic solution in
the synchronous system, which, however, is no longer
strictly co-moving. The spatial metric will be sought
in the form

gap = taai, + ί2δαΡ + . . ., (4.1)

where now Άαβ — arbitrary functions of the coordi-
nates. The tensor inverse to (4.1) is

gae^rVP-fc 0 *, (4.2)

where the tensor a a 0 is the inverse of &αβ; all the op-
erations of lowering and raising the indices and of co-
variant differentiation are carried out on the other
tensors everywhere in this section with a time-inde-
pendent metric Άαβ (for example, bg, = 2P^bay, etc.) .

Calculating the left halves of (3.28) and (3.29) r e -
spectively accurate to two and to one principal order
in V2, we obtain

b-a — bt, p) = — ~ uau0,

(4.3)

(4.4)

where b = bg. If we compare the right halves of these
equations and take into account the identity

- 1 :

we see readily that e ~ t~2 and aa ~ t 2 ; then, by vir-
tue of the indicated identity, u2, - 1 ~ t 3 . From Eq. (4.3)
we now obtain the first two terms of the expansion of
the energy density

3 6
" 4i2 2i

(4.5)

and from (4.4) we get the first term of the expansion
of the velocity

Κ β = - | ( δ : α - 6 £ ; β ) . (4.6)

The three-dimens ional Christoffel symbols, and

with them also the tensor Ραβ, do not depend on the
time in the first approximation in 1/t; Ραβ coin-
cides here with the expression obtained in calculations
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with a time-independent metric &αβ. Taking this cir-
cumstance into account, we now find that the terms of
order t~2 cancel out automatically in (3.30), while the
terms proportional to t " 1 yield

Hence

f a + J Oa -r

(4.7)

We see that actually the six functions Άαβ remain
completely arbitrary. From the specified Άαβ we de-
termine with the aid of (4.7) the coefficients b ^ of
the next term of the expansion, and with them also the
coefficients of the first terms of expansions (4.5) and
(4.6) of the matter density and velocity. We note that
as t — 0 the distribution of matter becomes more
homogeneous, and its density tends to a value independ-
ent of the coordinates. As regards the velocity distr i-
bution (4.6), it can be transformed by taking into ac-
count the relation

which is a consequence of the relation

which is satisfied, as is well known, by any Ricci ten-
sor. We then have

κ* = £&:•«, (4.8)

that is, in this approximation the velocity is a gradient
of some function and its curl vanishes (a nonvanishing
curl appears, however, in the next terms of the expan-
sion).

The metric (4.1) admits also of the possibility of
arbitrary transformation of the three space coordi-
nates (the choice of time is completely determined
by the condition t = 0 at the singular point); these
transformations can be used, for example, to reduce
the tensor a a o to a diagonal form. Therefore the
solution obtained contains merely 6—3, that is, three
different physically arbitrary functions of the coordi-
nates.

The isotropic model corresponds to the particular
case of completely defined functions ζ.αβ —those cor-
responding to a space of constant curvature (in this
case P ,̂ = const · δ̂ ,).

5. General Conclusions Concerning Singularities of
Cosmological Solutions

The main conclusion of the foregoing results is that
the presence of time singularities is not an obligatory
property of cosmological models of the general theory
of relativity, and that the general case of arbitrary dis-
tribution of matter and of the gravitational field does
not lead to the appearance of singularities.

On the other hand, solutions which have physical
singularities have a degree of generality which is not
sufficient to take into account arbitrary initial condi-
tions specified at any instant of time. The most ex-
tensive among these solutions is the anisotropic solu-
tion, which contains seven arbitrary functions of the
coordinates. Although this is merely one less than the
maximum possible, this is sufficient, of course, for the
initial conditions admitted by this solution to have
"zero measure" compared with the entire manifold of
possible initial conditions.

The insufficient degree of generality of the solution
denotes that it describes an unstable mode; there exist
small perturbations of a type such that their superpo-
sition leads to a violation of the solution and by the
same token to the vanishing of the singularity. With-
out loss of generality, we can always subject an arbi-
trary perturbation to conditions that prevent it from
violating the synchronism of the reference system.
Since the singularity cannot vanish at all in the syn-
chronous reference system, this means that it should
go over into a fictitious singularity as a result of the
perturbation.

The considerations advanced in Sec. 2 regarding the
fictitious character of the inevitable singularity in the
synchronous reference system pertain to an equal de-
gree to empty space and to space filled with matter
with any equation of state. We have seen also in Sec. 3
that the presence of matter does not change the quali-
tative properties of the anisotropic solution with a true
singularity. All this offers evidence that the most gen-
eral time-singularity properties of the cosmological
solutions are already manifest in the case of empty
space, and that matter does not change these proper-
ties qualitatively. This result is natural if we note
that the gravitational properties of the "wave packets"
made up of short-wave gravitational waves can imi-
tate the gravitational properties of matter (with an
equation of state ρ = e/3 ).

An exceptional position is occupied in this respect
by the isotropic model, as well as by the quasi-iso-
tropic solution that generalizes it (Sec. 4)—these solu-
tions exist only for space filled with matter. This ex-
ception, however, has a simple explanation, which
merely confirms the general rule. It is connected
precisely with the high symmetry (homogeneity) of
distribution of matter, which is characteristic of this
solution, and which cannot be imitated by any aggre-
gate of transverse gravitational waves.

An assumption frequently made in the literature is
that the time singularity is obligatory in the absence of
" s p i n " of the matter filling the space, but can vanish
in models which take the spin into account.* It be-
comes clear from the foregoing that actually the char-

*The reason for this assumption is that the term connected
with the rotation (in the nonsynchronous system) in the 00
component of the gravitational equation has a sign which, so
to speak, slows down the decrease of the determinant.
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acter of motion of the matter has no direct bearing
whatever on the time singularities of cosmological
solutions.

We have spoken everywhere of the approach to the
singularity having the same direction as the decrease
in time. Actually, by virtue of the symmetry of the
gravitational equations under time reversal, we can
speak equally well of approaching the singularity in
the direction of increasing time. Physically, however,
in view of the physical non-equivalence of the future
and the past, there is an essential difference between
these two cases with respect to the formulation of the
problem itself. A singularity in the future can have a
physical meaning only if it is admissible under per-
fectly arbitrary conditions, specified in some preced-
ing instant of time; clearly, there are no grounds for
the matter and the field to attain at some instant, dur-
ing the evolution of the universe, a distribution corre-
sponding to the specific conditions necessary for real-
ization of a particular solution (of the gravitational
equations) with a true singularity. Moreover, if we
even admit the existence, for some reason, of such a
distribution at some instant of time, then it will un-
avoidably be disturbed in the future, if for no other
reason than the unavoidable thermodynamic (and quan-
tum) fluctuations. Therefore the results presented ex-
clude the possibility of the existence of a singularity in
the future and denote that any contraction of the world
(if it should occur at all) must ultimately again give
way to expansion.

As to the existence of singularities in the past, an
investigation based on the gravitational equations alone
cannot yield a definite answer. The requirement that
the singularity occur for an arbitrary distribution of
matter and field is not a priori essential in this case.
In this form it will be equivalent to the patently unac-
ceptable assumption that the real universe is described
by some purely random solution of the gravitational
equation.

Actually there is no doubt that the choice of the so-
lution corresponding to the real world is in fact unique
and is connected with some deep physical requirements,
which cannot be established on the basis of the existing
gravitational theory alone, and which can be explained
only as a result of further synthesis of physical theo-
ries. Only after these requirements are established
will it be possible to state unambiguously whether the
specific solution of the gravitational equation satisfying
these requirements has a singularity.

Doubts may arise as to how correct it is in general
to consider the question of the "singular s ta te" of the
world on the basis of existing gravitational theory,
since we do not know the extent to which its equations
are applicable for an arbitrarily high density of matter.
It must be stated in this respect, first, that although the
physical applicability of these equations under the indi-
cated conditions can be clarified only in the future the-
ory, it is important that gravitational theory itself does

not lose its logical cohesion (that is, that its equations
not lead to any internal contradictions) for any density
of matter. In other words, this theory is not limited as
such to any of the conditions that follow from the theory
itself, and which could make its application logically
invalid and contradictory for arbitrary density; the
limitations can occur in the future synthesis of the
physical theories as a result of factors which are
"extraneous" with respect to the gravitational theory
itself. This circumstance makes it formally legitimate
to consider the question of singularities in gravitational
theory. As regards the physical interpretation of the
results obtained thereby, it is determined by the fact
that although the equations can actually turn out to be
inapplicable for arbitrarily large densities, there are
at any rate no grounds for doubting their applicability
even for densities on the order of nuclear density, that
is, tremendously large compared with modern average
density of matter in the universe. Therefore, for ex-
ample, if the equations of gravitation were to lead to
the result that a singularity occurs upon contraction of
the world, then, although this would not of necessity
mean that the density would become infinite, it would
denote at any rate contraction to densities of the order
of nuclear. From the physical point of view, even such
a state of the world would be sufficiently "singular."
From this point of view the consideration of the singu-
larities of the solutions of the gravitational equations
has likewise a fully physical meaning.

Finally, let us stop to discuss the purely mathe-
matical aspect of the results obtained. In this aspect
it may be of interest to consider the question of the
classification of all possible types of true singularities
of cosmological solutions of the gravitation equations,
independently of the degree of broadness of these solu-
tions. A clarification of this question by systematic
scanning of all possibilities would be very cumber-
some*. However, the extensive searches which we
have made for solutions with singularities give grounds
for assuming that these types are restricted to those
to which we arrive naturally by the method developed
in Sees. 3—4 and in Appendices Β and F. These types
include, in particular, the singularities that are pos-
sessed by all known exact solutions of the gravitational
equations (see Appendix G).

II. GRAVITATIONAL STABILITY OF THE ISOTROPIC
WORLD

6. Initial Model and Equations of Small Perturbations

The Fridman solution occupies a special position in
relativistic cosmology, because its premises are phys-
ically clear and natural. There are all grounds for as-

*We are guided by the proposition expressed by Landau in
a different connection: "In view of our short life we cannot
allow ourselves the luxury of engaging in problems which do
not promise any new results."M
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suming that it gives an adequate descr ipt ion of the con-

t e m p o r a r y s ta te of the world, when viewed on a l a r g e

sca le . At the s a m e t i m e , the exceptional n a t u r e of the

homogeneous dis tr ibut ion of m a t t e r gives a p r i o r i

grounds for expecting that it i s p r e c i s e l y this solution

that can turn out to be that exceptional solution which

should d e s c r i b e the initial s tages of the expansion of

the r e a l world (homogeneity of the density at th i s s tage

would occur in th i s c a s e a l so on a m i c r o s c o p i c s c a l e ) .

In this connection it i s of g r e a t i n t e r e s t to cons ider

the behavior of smal l per turbat ions in the i sotropic

model, that i s , i t s gravitat ional stability; we p r e s e n t

below a genera l investigation of this quest ion*. G r a v i -

tational instabil ity phenomena can play a ro le during

the evolution of the wor ld—the decay of m a t t e r into

galaxies and s t a r s , e t c . ; however, we shal l not concern

o u r s e l v e s with th i s aspect of the problem at a l l t .

F o r convenience, we w r i t e down h e r e c e r t a i n known

formulas perta ining to the i sotropic model ( s e e , for

example, [ 1 ] , Sees. 104—107).

The m e t r i c of the i sotropic world i s defined by the

expres s ion

where a ( t ) i s the " r a d i u s of c u r v a t u r e " of space and

dZ is the e lement of spat ia l d i s tance, m e a s u r e d in units

of a. In the case of a space with constant posit ive c u r -

vature (closed model ) we have

a=.ao(ch.T] —1), t = a0 (sh η — η). (6.5b)*

dl2 = dx2 + sin2 χ (sin2 θ dep2 + d92), (6.2a)

and for a space with constant negative curva ture (open

model) we have

dl2 = dx

2 + sh2 χ (sin2 θ dep2 + d92), (6.2b) t

where χ, ψ, θ —"spher ica l " spatial coordinates. Ex-
pression (6.2a) corresponds mathematically to the ge-
ometry on the surface of a hyper sphere (of unit radius)
in four-dimensional Euclidean space, while (6.2b) cor-
responds to the geometry on the surface of a four-
dimensional "pseudosphere" of imaginary radius.

In place of the time t it is convenient to use an
auxiliary variable 77, defined by the relation

dt = adr\,

Then ds 2 is written in the form

(6.3)

(6.4)

The time coordinate x° will be taken to mean hence-
forth precisely this variable η.

In the case of "dust l ike" matter, the pressure of
which can be neglected (p = 0), the function a(t) is
defined by the parametric equations

a = ao(l — cos η), t = a0 (η — sin η), (6.5a)

*The content of this part is based on work by Lifshitz.t10]
tMany ideas on these questions were advanced recently by

Zel'dovich.M
t sh = sinh.

where a 0 i s a constant [ formulas (6.5a) p e r t a i n to the

closed model and (6.5b) to the open o n e ] . The depend-

ence of the density e on the t i m e is d e t e r m i n e d by the

equation

° (6.6)

At the e a r l i e r s tages ( s m a l l t i m e s t , that i s , s m a l l
η), we have the inverse limiting case of very dense
matter with ultrarelativistic equation of state ρ = e/3.
Then

a = ba sin η % b0T], t = b0 (1 — cos η) % y 60η
2, (6.7a)

a = boshr]^bor), t = b0 (ch η — 1) ^ ~ bor\* (6.7b)

( b 0 — a second c o n s t a n t ) , and the dependence e ( t ) i s

d e t e r m i n e d by the formula

a*
(6.8)

We note that the m e t r i c s of the closed and open
models go over into each other upon making the s u b -
stitution

χ- (6.9)

T h e r e f o r e al l the equations for one model can be o b -

tained from the equations for the other model by m e a n s

of the s a m e substitution.

Since the r e f e r e n c e sys tem in which the model i s

i sotropic is a co-moving sys tem, the components of

the four-velocity of m a t t e r a r e

»« = 0, «o = l . ( 6 . i0)

An a r b i t r a r y s m a l l per turbat ion of the i sot ropic
model i s descr ibed by changes in the m e t r i c t e n s o r
<5gik (which we shal l denote by h ^ — s e e Appendix I ) ,
in the four-velocity of the m a t t e r 6u}, and in the e n -
ergy density 6e. Without loss of general i ty we impose
on the quantit ies h ^ the four additional conditions

= 0, h0o, = 0, (6.11)

that i s , we use as before a synchronous r e f e r e n c e s y s -
t e m . However, it will no longer be co-moving ( a s it
was prior to the perturbation), that is, the δ\ια are
different from zero.

In the linear approximation the small perturbations
satisfy the equations

ό Λ * - | ό | ό Λ = όΎ*, (6.12)

where the oRj a r e determined by the formulas ob-
tained in Appendix I, and the per turbat ion of the energy -
momentum t e n s o r is

+ u" ) U i uh 6^ δρ.

The components of the per turbat ion of the four-velocity
δυ} are related with one another by

*ch = cosh.
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hihu'uk + gik (ul buk + uh6ul) = 0,

which is obtained by varying the identity giku*uk = - 1 .
Having in mind the unperturbed values of the velocity
(6.10), we obtain from this, subject to conditions (6.11),

(6.13)

Therefore the components are

&Ί* = Κ δρ, δΤ% = - a (p + 8) 6ua, δΤ°0=-δε. (6.14)

In view of the smallness of δρ and δ€, we can write
δρ = (dp/de )δ€, and we obtain

01 α — — α~άϊ °" VO.±O;

I n t h e i n v e s t i g a t i o n t h a t f o l l o w s w e c o n f i n e o u r s e l v e s

t o a n a n a l y s i s o f p e r t u r b a t i o n s i n o n l y r e l a t i v e l y s m a l l

r e g i o n s o f s p a c e — r e g i o n s w i t h l i n e a r p a r a m e t e r s ,

w h i c h a r e s m a l l c o m p a r e d w i t h t h e r a d i u s o f c u r v a -

t u r e a . S u c h a n a s s u m p t i o n g r e a t l y s i m p l i f i e s a l l t h e

c a l c u l a t i o n s ; i t i s f o u n d a t t h e s a m e t i m e t h a t a n a c -

c o u n t o f t h e p e r t u r b a t i o n s i n r e g i o n s o f d i m e n s i o n s

c o m p a r a b l e w i t h a d o e s n o t c o n t r i b u t e a n y t h i n g t h a t

i s p r i n c i p a l l y n e w t o t h e c h a r a c t e r o f t h e b e h a v i o r o f

t h e p e r t u r b a t i o n s .

I n e a c h s m a l l r e g i o n o f s p a c e t h e m e t r i c c a n i n f i r s t

a p p r o x i m a t i o n b e a s s u m e d t o b e E u c l i d e a n . A c c o r d -

i n g l y , t h e s p a t i a l m e t r i c ( 6 . 2 ) i s r e p l a c e d b y t h e m e t r i c

dl2 = dx2 + dy2 + dz2, (6.16)

where χ, y, ζ —Cartesian coordinates in the given r e -
gion of space, measured in units of the radius a.

The expressions for oRj1 can be obtained, as was
already indicated, with the aid of formulas (1.10—1.12).
It must be borne in mind here that in these formulas
the differentiation (designated by a dot) is with respect
to t; it is connected with the differentiation with r e -
spect to η (which we designate here by a prime) by
the relation 8/9t —• 9/a 9η. In particular, we have

2a' e 2a' «e

which can be readily verified by noting that the time
dependence of the components %αβ is contained in theβ
factor a 2 . In the c a s e of the Euclidean spat ia l m e t r i c
(6.16), all the covar iant differentiations in (1.10)—(1.12)
reduce to s imple der ivat ives with r e s p e c t to the c o o r -
dinates xa (on the other hand, contravar iant differen-
t iat ions reduce to an additional division by a 2 ) . Finally,
the three-d imens iona l t e n s o r P^, vanishes for the
m e t r i c (6.16). Bearing al l th is in mind, we obtain after
s imple calculation the following e x p r e s s i o n s :

= ± (hi: - *£•. ? - κ I)+έ

i * '+£-.*' .

Both the lower and upper indices following the comma
denote here simple differentiation with respect to the
corresponding coordinates in a space with metric (6.16)
(to make the notation uniform we continue to write the
upper and lower indices, although there is no difference
between them in the case of Euclidean dZ2).

The final equations for the perturbation h ,̂ of the
metric tensor are obtained by substituting in (6.15) the
components δΤ^ expressed in terms of 6B^ in accord-
ance with (6.12). It is convenient to choose for these
equations those obtained from (6.15) with a * β and
with simplification with respect to the indices a and
β; they have the form

(hl\ ? + Α?; Ϊ - A; g - AS; Ϊ) + hi" f 2 a- h% = 0, α Φ β,( 6 . 1 8 )

=0. (6.19)

The perturbations in the density and velocity of mat-
ter can be determined from the known h^, with the aid
of the formulas

δε = - δΤΙ --= -
(6.20)

At low velocities the components u a of the four-veloc-
ity coincide with the components of the three-dimen-
sional velocity. But for our choice of the spatial co-
ordinates x, y, and z, the length elements correspond
not to the differentials d x a themselves, but to the
products a d x a . Therefore the ordinary three-dimen-
sional velocity δ ν α , which occurs upon perturbation,
corresponds not to the δηα themselves, but to the
products a.6\ia.

Substituting (6.17) in (6.20) we obtain for the rela-
tive change in density

(6.21)

(6.22)

Among the solutions of (6.18)—(6.19) are some which
can be eliminated by simple transformation of the ref-
erence system [ compatible with conditions (6.11)], and
therefore represent no real physical change in the met-
ric. The form of such solutions can be established be-
forehand with the aid of formulas (1.13)—(1.14), which
are derived in Appendix I (we recall again that in these
formulas the index 0 pertains to the time coordinate t,
and not to η). Recognizing that the time dependence of
the unperturbed metric tensor gap reduces to a factor
a2, we can easily obtain from the indicated formulas the
following expression for the fictitious perturbations of
the metric:

and for the velocity perturbation
1 —2(Λ·α-/^·β)'.

(6.17)
where f0 and fa are arbitrary (small) functions of the
coordinates.
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7. Expansion in Plane Waves

Inasmuch as we consider small regions of space
where the metric is assumed Euclidean, an arbitrary
perturbation in each such region can be expanded in
plane waves.* Taking x, y, and ζ to be Cartesian
coordinates measured in units of the radius a, we
can write the spatial periodic factor of the plane
waves in the form exp ( in · ! · ) , where η —dimen-
sionless vector representing a wave vector meas-
ured in units of I/a (wave vector k = n/a) . If we
have a perturbation in a region of space with dimen-
sions ~ I, then its expansion will contain essentially
waves with lengths λ = 2πa/n ~ I. Confining our-
selves to perturbations in regions with dimensions
I « a, we assume by the same token that the number
η is sufficiently large (η » 2π).

Gravitational perturbations can be divided into
three types. This classification reduces to a deter-
mination of the possible types of plane waves, in the
form of which it is possible to represent the sym-
metric second-rank tensor ΐιαβ. Thus we obtain
the following classification.

1. The scalar function

(7.1)

can be used to set up the tensors

(these tensors are defined such that QQS = 1 and Pg
= 0). With the aid of the same function Q we can set
up a vector

P« = ~rQ- (7.3)

Such plane waves correspond to perturbations in which
the velocity and the density of matter experience
changes along with the gravitational field, that is, we
deal with perturbations that are accompanied by the
occurrence of condensation or rarefaction of matter.
The perturbation lift, is expressed in this case in terms
of the tensors Q̂ / and V$,, the velocity perturbation
ό ν α is expressed in terms of the vector Pa, while
the density perturbation 6e is expressed in terms of
the scalar Q.

2. The transverse vector wave

na — Π (7.4)

( 7 . 5 )

can be used to set up the tensor

T h e c o r r e s p o n d i n g s c a l a r d o e s n o t e x i s t , s i n c e

= 0 . T h e s e w a v e s c o r r e s p o n d t o p e r t u r b a t i o n s i n w h i c h

t h e v e l o c i t y e x p e r i e n c e s a c h a n g e a l o n g w i t h t h e g r a v i -

* I n t h e g e n e r a l c a s e o f p e r t u r b a t i o n s i n r e g i o n s o f a r b i t r a r y

s i z e , i n c l u d i n g t h o s e c o m m e n s u r a t e w i t h a , t h e p e r t u r b a t i o n s

m u s t b e e x p a n d e d i n f o u r - d i m e n s i o n a l s p h e r i c a l f u n c t i o n s .

S u c h a n i n v e s t i g a t i o n i s g i v e n i n [ ' " ] ; t h e s e c a l c u l a t i o n s a r e

p r e s e n t e d i n s o m e w h a t g r e a t e r d e t a i l i n L " J .

t a t i o n a l f i e l d , b u t n o t t h e d e n s i t y o f m a t t e r . T h e p e r t u r -

b a t i o n h g , i s e x p r e s s e d i n t h i s c a s e i n t e r m s o f t h e

tensor S||, while the perturbation δ ν α is in terms of
the vector S a .

3. Transverse tensor wave:

= γ£ e

i n ' = 0. (7.6)

It can be used to set up neither a vector nor a scalar
(since G^n^ = 0 and G^n^n^ = 0). These waves cor-
respond to perturbations of the gravitational field,
under which the matter remains stationary and uni-
formly distributed in space. In other words, these are
gravitational waves in an isotropic world.

We shall consider below perturbations of each of
the foregoing three types. To be specific, we shall
write out all the formulas for the open model. We have
already indicated that the changeover to the closed
model is by means of substitution (6.9). In the Euclid-
ean metric (6.16) the substitution χ —• ίχ corresponds
to the substitution x, y, ζ — ix, iy, iz. To conserve the
wave character of the functions introduced above, it is
necessary along with this substitution of the coordinates
to replace η by in. Therefore the changeover to the
closed model is realized in the formulas considered
below by means of the substitution

•ία, ( 7 . 7 )

8 . P e r t u r b a t i o n s w i t h V a r i a t i o n o f D e n s i t y o f M a t t e r

W e b e g i n w i t h p e r t u r b a t i o n s o f t h e f i r s t t y p e a n d

a s s u m e

h = ( 8 . 1 )

From (6.21)—(6.22) we obtain for the relative change
in density

and for the velocity

The equations for the functions λ and μ are obtained
by substituting (8.1) in (6.18)—(6.19):

dp
( 8 . 4 )

T h e s e e q u a t i o n s h a v e , f i r s t , t h e f o l l o w i n g t w o p a r t i c u -

l a r i n t e g r a l s , c o r r e s p o n d i n g t o t h o s e f i c t i t i o u s c h a n g e s

o f t h e m e t r i c ( 6 . 2 3 ) w h i c h c a n b e e l i m i n a t e d b y t r a n s -

f o r m i n g t h e r e f e r e n c e s y s t e m

λ = — μ = const,

, f r/η 3α'

(8.5)

(8.6)

(the first is obtained from (6.23) by choosing f0 = 0
and i a = Pa, and the second by choosing f0 = Q and
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fa = 0 ) . With the aid of t h e s e in tegra l s it i s poss ib le

to reduce the o r d e r of E q s . (8.4). To this end we take

the sum and the difference of t h e s e equations, in which

we make the substitution

(8.7)
J

After s imple t r a n s f o r m a t i o n s we obtain as a r e s u l t the

following s y s t e m of equations for the new unknown

functions ξ (η) and ? ( η ) :

£ - + 4 f - 2 + l 4 f Y I + 4 - 4 f E = o , (8.8)

(8.9)
, , 3α" 6 α ' 2 , 9 α ' 2 dp

η+-α α ^ + Τ ^ ^

The a r b i t r a r i n e s s in the choice of t h e two integrat ion

constants in the determinat ion of λ and μ by formulas

(S.7) c o r r e s p o n d s to the a r b i t r a r i n e s s in the choice of

the re ference sys tem.

Let us s t a r t with the e a r l i e s t s tages of the expan-

sion of the world, when the m a t t e r i s descr ibed by an

equation of s tate ρ = e/3. Inasmuch a s such a c o m -

p r e s s i o n can be considered meaningful only for very

smal l t i m e s t, we can confine ourse lves to an invest i-

gation of the equations with η « 1. We have then for

the r a d i u s of curvature a = b 0 s inh η « b ^ (6.7).

The pr incipal t e r m s in (8.8) yield

(8.10)

and from (8.9) we get

Substituting ζ from (8.10) in the las t equation we o b -

tain the following s imple equation for ξ:

hence

(8.11)

where the constant i s complex.

The subsequent investigation i s bes t c a r r i e d out

separate ly for two l imiting c a s e s , depending on the

mutual re la t ionship between t h e two l a r g e quanti t ies

n and 1/η.

We a s s u m e f i rs t that the number n i s not too la rge

( o r that η i s sufficiently s m a l l ) , so that ηη « 1. E x -

panding (8.11) in powers of ηη and separat ing the r e a l

and imaginary p a r t s , we obtain ξ in the form

w h e r e Clt C 2 — r e a l constants ; ξ i s then calculated

by formula (8.10), while λ and μ a r e given by (8.7).

The a r b i t r a r y integrat ion constants m u s t be chosen

in the calculation of λ and μ such a s to cause the

principal t e r m s of the expansion to vanish where p o s -

sible (in this c a s e the t e r m ~ TJ~2 in μ and the t e r m

~ const in λ - μ v a n i s h ) .

obtain

B y s i m p l e c a l c u l a t i o n w e

μ =

[we have wr i t ten out h e r e those t e r m s of the expan-

sions of λ and μ which a r e needed for the calculation

of δε/e and δνα in accordance with (8.2)—(8.3)]. The

final expres s ions for the pr incipal t e r m s of the expan-

sion in the per turbat ions of the m e t r i c , density, and

velocity a r e :

, β _ 3Cl ρβ

( 8 . 1 2 )

T h e c o n s t a n t s Cj a n d C 2 m u s t s a t i s f y c e r t a i n c o n -

d i t i o n s w h i c h e x p r e s s t h e s m a l l n e s s o f t h e p e r t u r b a t i o n

a t t h e i n s t a n t o f i t s o c c u r r e n c e t 0 . T h e m i x e d c o m p o -

n e n t s o f t h e p e r t u r b a t i o n h ^ , o f t h e m e t r i c t e n s o r m u s t

be compared with the unperturbed values g ^ = ό ^ ;

from t h i s we get the conditions λ « 1 and μ « 1. In

addition, we must have 6e/e « 1 and δνα « 1. When

applied to the per turbat ions (8.12), these conditions

lead to the inequalit ies Cl « η 0 and C 2 « 1, where η 0

(ηο « 1) is the value of η corresponding to the instant

of t ime t 0 .

E x p r e s s i o n s (8.12) contain t e r m s which i n c r e a s e , in

an expanding world, as different powers of the rad ius

of curva ture a « b ^ . However, th is i n c r e a s e does not

cause the per turbat ion to become large, that i s , los s of

stability: if we employ (8.12) as order-of-magnitude

formulas with η ~ 1/n, we find (by v i r tue of the in-

equal i t ies obtained above for C t and C 2 ) that the p e r -

turbat ions r e m a i n smal l even at the upper l imit of a p -

plicability of these formulas .

We note also that the exis tence of a solution λ = μ

= C 2 , in which the per turbat ion of the m e t r i c r e m a i n s

constant in t i m e , c o r r e s p o n d s p r e c i s e l y to the p o s s i -

bility a l ready indicated in Sec. 4, of general iz ing the

F r i d m a n solution. The re lat ive change in the energy

density in this solution is proport ional to η 2 ~ t, in

accordance with (4.5).

Assume now that n i s sufficiently la rge so that

ηη » 1. With the aid of (8.11) we now find from (8.10)

and (8.7) that the pr incipal t e r m s in λ and μ a r e of

the form*

λ = μ = 3 ^ τ
2 ~ inborp S

(the integrat ion constants in (8.7) a r e chosen such that

λ and μ contain no t e r m s without a per iodic f a c t o r ) .

*We have corrected here the error made in formulas (4.10)
of ι " ] , namely the superfluous terms ±2η in λ and μ.
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Calculating also the perturbations of the density and
the velocity, we obtain the following final expressions:

1 „ „ , ' 6e

Iff \ pint]/ Y3

12 ]/3
(8.13)

w h e r e C i s a c o m p l e x c o n s t a n t s a t i s f y i n g t h e c o n d i t i o n

| C | « 1. T h e p r e s e n c e of a p e r i o d i c f a c t o r i n t h e s e

e x p r e s s i o n s i s p e r f e c t l y n a t u r a l . In t h e c a s e of l a r g e

η we deal with a perturbation whose spatial periodicity
is determined by a large wave vector k = n/a. Such
perturbations should propagate like sound waves, with
a velocity u = Vdp/de = 1/V3~; accordingly the tem-
poral part of the phase is determined, as is assumed
in geometrical acoustics, by the large integral J kudt
= ηη/νΙΓ. The amplitude of the relative change in the
density remains, as we have seen, constant while the
amplitudes of the metric perturbations decrease like
a~2 as the world expands.

We consider further the later stages of the expan-
sion of the world, when the matter is already rarefied
enough so that this pressure can be neglected (p = 0);
in place of the energy density e it is more natural to
speak here of the mass density p, which coincides
with it.

Equations (8.8) —(8.9) with ρ = 0 and a = a0 χ
(cosh η — 1) can be totally integrated in terms of ele-
mentary functions; from the first we determine | , and
then from the second we determine £:*

ξ = -

Calculation with the aid of (8.7), (8.2), and (8.3) then
yields the following expressions:

4rc2

(8.14)

2

We have introduced here the functions

φ (η) = —
sh* A

1—S-cth-3- ; ( 8 . 1 5 ) t

A and Β are integration constants, the arbitrariness
of which is connected with the arbitrariness in the
choice of the reference system.

It was noted at the end of Sec. 2 that in the case of
"dustl ike" matter (p = 0) the reference system can

*th = tanh.
tcth = coth.

be chosen such as to be simultaneously synchronous
and co-moving. It is seen from (8.14) that it is actu-
ally possible to cause δ ν α to vanish by suitable choice
of the constant A (A = C 2). Such a choice of the ref-
erence system is the most natural, and the perturba-
tion op pertains in this case to the intrinsic density
of the matter. Putting also Β = 0, we obtain ultimately

(8.16)λ-μ=

In o r d e r to investigate t h e s e e x p r e s s i o n s , let us

consider them in two l imiting c a s e s — s m a l l and large

η. Small η (η « 1) correspond to the stage of the ex-
pansion of the world when the radius of curvature is
still very small compared with its contemporary value,
but all the matter is already sufficiently rarefied that
its pressure can be neglected.* On the other hand, the
values η » 1 correspond to later stages of expansion,
when the metric approaches Galilean.

The terms with the constant C2 in (8.16) yield"!"

η <
_ /g

η >

3η3

_ 6 = - ^ β - η ρ . (8.18)

W h e n 77 « 1 w e h a v e a « a o ? 7 2 / 2 , t « a o ? 7 3 / 6 , a n d f o r

77 » 1 w e h a v e a ~ a o e V 2 a n d t as a o e V 2 . W e t h e r e -

f o r e s e e t h a t t h e s e p e r t u r b a t i o n s a t t e n u a t e a s t h e w o r l d

e x p a n d s , f i r s t l i k e a ~ 3 ^ 2 a n d t h e n l i k e I / a ; i n t e r m s o f

t i m e , b o t h l a w s c o r r e s p o n d t o 1 / t .

O n t h e o t h e r h a n d , i n t e r m s w i t h t h e c o n s t a n t C t w e

distinguish (for η « 1) between the cases ηη « 1 and
nrj » 1. In the first case we obtain

ifi _ Ci I
60

(8.19)

Although the relative change in density increases,
nevertheless it does not become large here even for
η ~ 1/n, by virtue of the condition C t « 1. In the case
nrj » 1, on the other hand, we get

A ' = ¥ ^ - < (8.20)

*The contemporary value of η can be obtained from the
contemporary values of the average density of matter ρ and
the Hubble constant h (for the open model cosh (η/2)
= h V3/8i7 Gp, where G is the gravitational constant). Such a
determination can, however, be made at the present time only
quite tentatively, in view of the large uncertainty in the values
of h and particularly p . Putting h = 0.25 x 10"17 sec" 1 (25
km/sec in 10' light years) and introducing for ρ Oort's esti-
mate ρ = 3 x 10"31 g/cm3 ["I, we obtain η = 5.0. If we put
ρ = 10'3 0 g/cm3, we get τ; = 6.1.

tFor η <K 1 we have
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These perturbations disclose a true instability. When
η ~ 1 the relative change in the density becomes of the
order of Cjn2, whereas the smallness of the initial
perturbation necessitates merely that we have Cjn 2 ^
« 1. Thus, although the increase in the perturbations
is slow (proportional to a, that is, t 2 / 3 ) , the overall
increase may be appreciable and as a result the per-
turbation may become relatively large*.

For η » 1 we have

We see that the increasing relative perturbation of the
density tends to a constant limit. The constant term
in the perturbation of the metric (in which λ = - μ
= const) can be eliminated by transforming the refer-
ence system (which does not involve the density); the
second term in h^ attenuates in proportion to (In a)/a.

Finally, let us consider the case of an equation of
state that is intermediate between ρ = 0 and ρ = e/3.
Namely, we consider an expansion stage in which the
derivative dp/de is small but still cannot be set equal
to zero. The quantity

is the "velocity of sound" in the matter filling the
world (measured in units of the velocity of light); we
assume, consequently, that this quantity is small:
u « 1. The inverse influence of the finite pressure
on the law governing the expansion of the world can
be neglected here, that is, we can use the same func-
tion &(η) as for ρ = 0, and we assume that we still
have η « 1, so that a « a0T)2/2.

The behavior of the perturbations depends essen-
tially in this case on the value of nurj. When nurj « 1
an estimate of the terms in (8.8)—(8.9) shows that all
the terms containing u can be left out, so that we r e -
turn to the already investigated case ρ = 0.

To the contrary, when nurj » 1, the terms contain-
ing u become essential. Equations (8.8) —(8.9) assume
the form

Eliminating J we obtain, with the same accuracy, the
equation

hence

ζ = const Υΰφ, <D = exp (in (8.22)

we put below const = 3a<)C/in. We obtain further with
the aid of the first formula of (8.7)

*Thus, for an expansion in which the average density of
the matter changes from nuclear ( - 10" g/cm3) to the contem-

porary value ( ~ ΙΟ"3") the value of 8(77) increases by

(lO'VlO"5*)*4 = 5 χ 10" times.

η2η3 γΰ

A c c o r d i n g t o t h e s e c o n d f o r m u l a

λ'-μ'~-^ ' 2 _ £ . .

I n s e r t i n g (8.22) a n d i n t e g r a t i n g i n t h e f i r s t t e r m t w i c e

b y p a r t s , a n d t h e n i n t e g r a t i n g t h e e n t i r e e x p r e s s i o n

w i t h r e s p e c t t o d£ ( w h i c h r e d u c e s t o d i v i s i o n b y i n u ) ,

w e o b t a i n

Finally, calculating also δρ/ρ and δ ν α in accordance
with (8.2)—(8.3), we obtain the following final expres-
sions, in which we retain only the principal terms:

β 6C / V 2
nur\ > 1,

u <£ 1,

η € 1 -ΦΡα
(8.23)

The constant C must satisfy the inequality | C |/rjo/uJJ~
« 1.

Expressions (8.23) correspond to sound waves prop-
agating with velocity u, and we are in the region of
applicability of "geometrical acoustics" (the phase
fnudrj is large). The velocity u decreases with ex-

pansion of the world, and thereby slows down the de-
crease in the wave amplitude. Nonetheless, the ampli-
tude of the relative change in density does not increase,
generally speaking. If we estimate the dependence of
u on the time, regarding the matter as being an adia-
batically expanding monatomic ideal gas, then ρ ~ p5^3

and u ~ p1^3; inasmuch as ρ ~ a"3 ~ rj~6, we have
u ~ η " 2 . Then rjVu" = const, so that the amplitude of
δρ/ρ remains constant. In the case of slower decrease
in u, δρ/ρ attenuates in time.

All the foregoing results, which we have formulated
for the open model, can be directly transferred to the
closed model by means of the transformation (7.7)
η — irj, n — in. This transformation does not change
at all any of the conclusions concerning the character
of the time variation of the perturbations during those
stages of the expansion of the world when we still have
η « 1. When rj ~ 1, when the expansion in the closed
model slows down, ultimately turning into contraction,
the formulas of course change (on the other hand, the
case η » 1 does not exist at al l). They are obtained
from (8.15)—(8.16) by the already mentioned transfor-
mation and some rearrangement of the terms (with
redesignation of the constants):

λ + μ = Ct (

ϋα = 0, (8.24)*

1-Λ-— Ctg-J- j - 1 , ψ =
η

cos -~-

*ctg = cot.
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We note that the t ime var ia t ion of the per turbat ions is

r e p r e s e n t e d h e r e in the form of a sum of two functions,

one (with constant Cj) even and the other (with con-

stant C 2 ) odd with r e s p e c t to the instant η - τ, that i s ,

with r e s p e c t to the substitution η — 2π — η. The instant

η = π c o r r e s p o n d s to the maximum of the rad ius a(rj)

in the closed model, so that the indicated proper ty d e -

notes that dur ing the c o m p r e s s i o n stage each of the two

p a r t s of the per turbat ions dupl icates ( a p a r t from the

sign) the var ia t ion during the expansion stage, but in

r e v e r s e o r d e r .

Summariz ing the r e s u l t s obtained, we can s ta te that

the expansion of the world e x e r t s a stabilizing influence

on the development of the per turba t ions . In long-wave

per turbat ions (ιιηη « 1) the change in density of m a t -

t e r i n c r e a s e s with t i m e . During the e a r l i e r s tages of

the world expansion (with an u l t r a r e l a t i v i s t i c equation

of s ta te ρ = e/3, u 2 = %) th is i n c r e a s e cannot cause

the per turbat ion to become l a r g e . This can occur,

however, at l a t e r s tages of the expansion, when the

p r e s s u r e of the m a t t e r becomes negligibly smal l ; but

h e r e , too, the i n c r e a s e in the per turbat ion of the den-

sity i s slow ( ~ t 2 / 3 ) . On the other hand, the short-wave

per turbat ions (ιιηη » 1) r e p r e s e n t hydrodynamic

sound waves in which the amplitude of density p e r t u r -

bation at tenuates with t i m e .

To the contrary , a contract ing world would be e s -

sential ly unstable, and per turbat ions in it m u s t u l t i -

mately become l a r g e . F u r t h e r behavior of the model

can not be t raced, of c o u r s e , with the aid of p e r t u r b a -

tion theory. But the genera l conclusions made in

Chapter I of the p r e s e n t a r t i c l e signify that the i n -

c r e a s e in the per turbat ion should lead in final analys i s

to a cessat ion of the overal l contract ion of the world

and eventual expansion. It i s sensible to at tempt h e r e

an e s t i m a t e of the maximum attainable contract ion,

assuming that it i s determined by the instant when the

per turbat ion δρ/ρ becomes of the o r d e r of unity. Assume

that s o m e per turbat ion δρ/ρ = Δ exis t s in the closed

model at some instant η0 ~ 1 < π (during the expansion

s t a g e ) . Inasmuch a s δρ/ρ i s the sum of an even and

an odd function of η — π, by the instant η = 2π — Τ7Ο

(during the c o m p r e s s i o n s tage) we again have δρ/ρ

~ Δ . With further contract ion of the world, δρ/ρ will

i n c r e a s e like (2π-η)~3 for smal l 2 π - η ; the value of

δρ/ρ ~ 1 will be attained when η = ηί7 where 2π — ηι

~ ηοΔ1/3. Inasmuch as the average density of the m a t -

t e r in the contract ing world i n c r e a s e s like a~3

00 (2-7Γ — 77 )~6, the density r e a c h e s by the instant ηι of

maximum c o m p r e s s i o n a value

Qi (8.25)

all diss ipative p r o c e s s e s were neglected. Although the

r o l e of these p r o c e s s e s is quite negligible for the ex-

pansion of the world itself, we can not exclude a p r i o r i

the possibi l i ty that these smal l effects may lead to

some new instabil i ty. An investigation of th is question

cal l s for an analys i s of nonadiabatic per turbat ions , in

which a change takes p lace also in the entropy of the

m a t t e r , and it i s n e c e s s a r y to take into account heat-

conduction and v iscosi ty p r o c e s s e s (for the genera l

equations n e c e s s a r y for this purpose see [ 8 ] , Sec. 126).

We shall not p r e s e n t the corresponding calculat ions

h e r e , and indicate m e r e l y that the net r e s u l t i s that

the diss ipat ive p r o c e s s e s have no es sent ia l influence

on the stability p r o p e r t i e s of the expanding world.

In conclusion we point out that B o n n o r [ u ] has p r o -

posed a br i l l iant method, with the aid of which s o m e

of the r e s u l t s p r e s e n t e d above can be obtained on the

b a s i s of Newtonian gravi tat ion theory. This method i s

applicable to per turbat ions in reg ions whose l inear

dimensions a r e sufficiently smal l compared with the

w o r l d ' s rad ius of curvature (n » 1 ) ; the idea c o n s i s t s

in the following.

If we i solate a s m a l l spher ica l p a r t in an i sotropic

world (filled with dust- l ike m a t t e r ) , then the s u r r o u n d -

ing m a t t e r will not exer t a gravitat ional influence on

the spher ica l p a r t , the motion of m a t t e r inside of which

can be considered with the aid of the Newtonian theory

of gravitat ion. It i s there fore c l e a r that the law of ex-

pansion of the i sotropic model of the general theory of

re lat iv i ty should coincide with the law of expansion of

the homogeneous gravitat ional s p h e r e in the Newtonian

theory (this c i r c u m s t a n c e was f i rs t noted by Milne and

M c C r e a ) . It follows in turn that the behavior of the

per turbat ions in smal l regions of an i sotropic world

should coincide with t h e i r behavior in an expanding

Newtonian s p h e r e , and they can be considered with the

aid of ord inary c las s ica l hydrodynamic equations with

Newtonian gravi tat ion a s the volume forces* . The

zeroth approximation in the solution of the hydrody-

namic equations is in this c a s e rad ia l motion in a uni-

formly expanding s p h e r e ; the smal l per turbat ion s u p e r -

imposed on it (with a wavelength that i s s m a l l c o m -

pared with the rad ius of the s p h e r e ) can be sought in

the form of a plane wave.

In such a hydrodynamic approach, the c h a r a c t e r i s -

tic quantity determining the behavior of the p e r t u r b a -

tions is natural ly the ra t io of the length of the p e r t u r -

bation λ to the length u/VpG~, a function of the density

of the m a t t e r ρ and the velocity of sound in it u ( as well

as the gravitat ional constant G ) ; these quantit ies a r e

regarded h e r e as functions of the t i m e , varying in a c -

cordance with the genera l expansion of the medium.

w h e r e p 0 i s the density at the instant ηϋ of the initial

per turbat ion.

In the e n t i r e investigation of the p r e s e n t section it

was tacit ly a s sumed that the per turbat ions w e r e adia-

bat ic, that i s , they o c c u r r e d at constant entropy, and

*This method can probably be extended also to the case of
an ultrarelativistic equation of state ρ = e/3, if suitable ac-
count is taken in the hydrodynamic equations of the relativis-
tic gravitational pressure effect.
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It i s e a s y t o s e e t h a t t h i s c r i t e r i o n ( u / \ V p G ) c o i n -

c i d e s w i t h t h e c r i t e r i o n m j u / c w h i c h w a s u s e d i n t h e

f o r e g o i n g c a l c u l a t i o n s * .

9. R o t a t i o n a l P e r t u r b a t i o n s

We p r o c e e d t o a n a n a l y s i s of t h e p e r t u r b a t i o n s of

t h e s e c o n d t y p e c o n s i d e r e d i n S e c . 7 . In t h e s e p e r -

t u r b a t i o n s c h a n g e s o c c u r i n t h e m e t r i c a n d i n t h e v e -

l o c i t y , b u t n o t i n t h e d e n s i t y of t h e m a t t e r ; t h e e n s u i n g

m o t i o n of t h e m a t t e r h a s a r o t a t i o n a l c h a r a c t e r .

We p u t

hi = a(r\)S%. (9.1)

E q u a t i o n (6.19) i s s a t i s f i e d i d e n t i c a l l y , s i n c e h = 0. O n

t h e o t h e r h a n d , E q . (6.18) y i e l d s fo l lowing t h e s u b s t i t u -

t i o n (9.1) t h e f o l l o w i n g s i m p l e e q u a t i o n f o r t h e f u n c t i o n

(9.2)

W e n o t e t h a t i t d o e s n o t c o n t a i n t h e w a v e v e c t o r n .

H e n c e

σ = const \ ^ (9.3)

The constant p a r t of th is solution (the integrat ion con-

stant ) c o r r e s p o n d s to a fictitious change of the m e t r i c ,

consist ing of a t r a n s f o r m a t i o n of the coordinates ( o b -

tained from (6.23) by choosing f0 = 0, fa = S a ) . F o r

the velocity per turbat ion, calculation by m e a n s of (6.22)

yields

-Sa. (9.4)

During the ear ly stage of the expansion (η « 1) ,

with an equation of s ta te ρ = e/3, (9.3) and (9.4) yield

η

F o r " d u s t l i k e " m a t t e r ( p = 0 ) w e o b t a i n

I n t h e t w o l i m i t i n g c a s e s w e h a v e

η < 1: σ = — 8C
3η" '

η > 1 : σ = — 4Ce~i. (9.7)

T h u s , t h e p e r t u r b a t i o n s of t h e m e t r i c a t t e n u a t e w i t h

t i m e i n a l l c a s e s . O n t h e o t h e r h a n d , t h e p e r t u r b a t i o n s

*To this end it i s necessary to use the following estimates
(in the usual units): the expansion law corresponding to dust-
like matter a - %η2, the density of matter ρ - a 0 c 2 /Ga 3 , and
the wavelength λ ~ a/n.

A similar relation between criteria exists also in the case
of an ultrarelativistic equation of state (p = e/3, u = c/v3) .
In this case the expansion law is a - bo]j, and the energy den-
sity varies as e ~ b^cVGa". From this we readily find that

that is, we return again to the characteristic quantity ηη, used

in the analysis above.

of t h e v e l o c i t y r e m a i n c o n s t a n t [ i n (9.5)] o r d e c r e a s e

a s I / a [ i n ( 9 . 6 ) ] * .

10. G r a v i t a t i o n a l W a v e s

F i n a l l y , i n p e r t u r b a t i o n s of t h e t h i r d t y p e , i n w h i c h

Α£ = ν(η)<& (10.1)

only the m e t r i c changes; the m a t t e r r e m a i n s s tat ionary

( δ ν α = 0) and uniformly dis t r ibuted in space (6e = 0 ) .

F o r v(r\) we obtain from (6.18) the following ex-

p r e s s i o n :

v " + 2 ~ v ' (10.2)

Both solutions of th is equation correspond to r e a l

changes of the m e t r i c , which cannot be el iminated by

coordinate t r a n s f o r m a t i o n s ( inasmuch a s in th i s c a s e

t h e r e exis t s ne i ther s c a l a r n o r vector capable of being

substituted for f0 and i a in (6.23)).

With the requi red accuracy, the solution of (10.2) i s

v = Ce~ (10.3)
a '

where C i s a complex constant. The per iodic factor

c o r r e s p o n d s h e r e to gravitat ional waves propagating

with the velocity of light (wave vector k = n/a, so that

the t e m p o r a l p a r t of the phase is J kdt = η η ) . The a m -

plitude of the gravitat ional waves attenuates like I / a .

The energy density of t h e s e waves (~ k2(h^, ) 2 ) d e -

c r e a s e s in proport ion to a" 4 , as it should.

During al l the s tages of the investigations repor ted

h e r e , we w e r e continuously supported by our t e a c h e r

and friend L. D. Landau, d i scuss ions with whom w e r e

of inest imable help to us, and to whom we wish to ex-

p r e s s h e r e our deep grat i tude.

(9.5) APPENDICES

A. EXPANSION OF THE SOLUTION OF THE GRAVI-

TATIONAL EQUATIONS NEAR A REGULAR

IQ ft) POINT

Let us cons ider the expansion of the equations of a

gravitat ional field in vacuum in a synchronous r e f e r -

ence sys tem n e a r a nonsingular point which is r e g u l a r

in t imeT.

Choosing an a r b i t r a r i l y cons idered point a s the t i m e

r e f e r e n c e , we have a m e t r i c t e n s o r in the form

gaf, = «αβ + *&α φ + · ( A . I )

* T h e i n d i c a t e d law of var ia t ion of t h e ve loc i ty per turbat ion
i s d i rect ly c o n n e c t e d ( a s p o i n t e d out by Ya. B. Z e l ' d o v i c h )
with momentum c o n s e r v a t i o n . T h e momentum of t h e smal l por-
t ion of t h e matter , in which t h e r o t a t i o n a l per turbat ion took
p l a c e , h a s an order of magni tude el34-v, where I — l i n e a r di-
m e n s i o n s of t h e s e c t i o n . When t h e world e x p a n d s I i n c r e a s e s
in proport ion t o a, and e d e c r e a s e s a s a"3 ( in t h e c a s e when
ρ = 0) or as a"4 (when ρ = e/3); in the former case we get
ν s- I/a and in the latter ν ~ const.

tThis question is considered also in the book by Petrov.l"]
Sec. 40.
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where &αβ, haR, and caa are functions of the spatial
coordinates. In the same approximation, the inverse
tensor is

where Άαβ is a tensor inverse to &αβ, and the raising
of the indices in the remaining tensors is carried out
with the aid of a a ^ . We further have

where are constants, with

The field equations (3.13) —(3.15) lead to the following
relations

« 2 = c - i ^ e = o , (A.2)

(A.3)

(A.4)

( b = b g , c = e g , . . . ) . T h e c o v a r i a n t d i f f e r e n t i a t i o n

o p e r a t i o n i s c a r r i e d o u t h e r e i n t h r e e - d i m e n s i o n a l

space with metric &αβ; the tensor ναβ is determined
with the same metric.

Using (A.4), the coefficients οαβ are fully deter-
mined from the coefficients Άαβ and ba jg. Then (A.2)
yields the relation

F r o m t h e z e r o - o r d e r t e r m s i n ( A . 3 ) w e h a v e

» = » •
(A.6)

On the other hand, terms proportional to t vanish in
this equation identically if (A.5) and (A.6) (as well as
the identities Ρ^ιφ = %Ρ;α^ a r e u s e d ·

We see that the 12 quantities &αβ and boιβ are re-
lated by (A.5) and the three relations (A.6). This leaves
therefore a total of eight arbitrary functions of the three
spatial coordinates, in accordance with the calculation
made in the text*.

B. SOLUTIONS THAT DEPEND ON ONE VARIABLE

Let us consider the exact solutions of the gravita-
tional equations in vacuum, in which (in the synchro-
nous frame) the metric depends only on one variable.
We assume first that this variable is the time.

For a metric that does not depend on the spatial
coordinates, Eq. (3.14) is satisfied identically, and
from (3.15) we get

*£=-?• *£. (B.I)

*By virtue of the differential nature of relations (A.6), arbi-
bitrary functions of a smaller number of variables can appear
in the solution. We leave aside the question of the geometrical
origin of these functions.

(here g/g = κ% = 2/t and - g = const*t 2 ) .
of (B.I) in (3.13) gives one more relation

(B.2)

Substitution

(B.3)

which relates the constants λ^,.
Omitting the index β, we rewrite (B.I) in the form

of a system of ordinary differential equations for

(B.4)

Various cases can occur here, depending on the roots
of the characteristic equation of the metrics of the co-
efficients λ^ (the equation | λ£*, — λδ^, | = 0).

a) The characteristic equation has three different
real roots (p l f p 2, p 3 ) ; by virtue of (B.2) and (B.3) they
are related by

Pi~\-P2JrPs = PiJrPlJrP3 = {- (B.5)

By means of a suitable linear transformation of the
quantities giβ, %2β, g3jg (or, what is equivalent, of the
coordinates x1, x2, x 3 ), the matrix λ^ reduces in this
case to a diagonal form, and we obtain the solution (3.1)
already indicated in Sec. 3

b) The characteristic equation has one real root
(p 3) and two complex roots (p 1 > 2 = ρ' ± ip") ; the
numbers pj, p 2, and p 3 satisfy as before the relations
(B.5), with either p 3 < — V3 or p 3 > 1. After diagonal -
izing the matrix λ ,̂ we introduce, in order to make
the form of the metric real, new coordinates defined
as χ 1 ' 2 = χ ± iy and find a solution in the form

2 , ' l n - (dx2 — dz*

+ 2i2p'sin — )dxdy (B.7)

(a is a constant). However, the determinant of the
metric tensor g = goolga/?! = t 2 does not satisfy the
necessary condition g < 0, so that the metric (B.7)
cannot correspond to physical space-time.

c) Two of the roots of the characteristic equation
coincide (p2 = p 3 )* ; in this case the pair of number
p l f p 2 can have values 1 and 0 or - V3 and 2/3.

As is known from general theory of linear differ-
ential equations, in this case the matrix λ^ can be
reduced to the form

ftOO

If λ = 0, we return to solution (B.6). On the other
hand, if λ ^ 0, then the solution of (B.4) (without ac-

*Equality of all three roots is excluded by the conditions
(B.2) and (B.3).



516 Ε. Μ. L I F S H I T Z a n d Ι . Μ. K H A L A T N I K O V

c o u n t of t h e s y m m e t r y c o n d i t i o n s g 2 3 = g 3 2 ) l e a d s t o

t h e m e t r i c

<\n — dz*. (B.8)

In t h i s c a s e , t o o , t h e d e t e r m i n a n t g = t 2 d o e s n o t s a t -

i s fy t h e c o n d i t i o n g < 0.

T h u s , (B.6) i s t h e o n l y s o l u t i o n i n w h i c h t h e m e t r i c

d e p e n d s o n l y on t h e t i m e . O n t h e o t h e r h a n d , if t h e

o n e v a r i a b l e o n w h i c h t h e m e t r i c d e p e n d s i s a s p a c e

c o o r d i n a t e ( x ) , t h e n i t b e c o m e s p o s s i b l e t o h a v e s o l u -

t i o n s of a l l t h r e e t y p e s . T h e t r a n s i t i o n t o t h i s c a s e i s

b y m e a n s of a c o r r e s p o n d i n g r e v e r s a l of t h e s i g n s i n

t h e o b t a i n e d s o l u t i o n s :

(B.9)

x2'1' cos f 2p" I n ' — ) (dl2 — dti2)

(B.ll)

All these metrics satisfy the condition g < 0. The
value χ = 0 is a singular point of these solutions, with
the exception of the case (P1.P2.P3) = (0, 0,1) in the
metric (B.9) (which reduces to Galilean in this case)
and the case (pj,p2) = (1 , 0) in the metric (B.ll), in
which the singularity turns out to be fictitious.

Returning again to the solution (B.6), we show that
it can be transformed also to the form

ί + η 2 ' 1 ' (Β. 12)

where the n u m b e r s s t , s 2, s 3 a r e connected by the r e -
lat ions

2 = sl + Sl. S3 = y (1— «i — «2); (B.13)

λ is an arbitrary constant, which can be eliminated
(if it differs from zero) by suitable change of the scale
of the coordinates. The transformation of the metric
(B.12) to the form (B.6) is then made by the substitu-
tion

b u t i n t h i s c a s e i t d e p e n d s n o t o n l y o n t , b u t a l s o o n

o n e of t h e s p a t i a l c o o r d i n a t e s .

T h u s , t h e f o r m (B.12) t u r n s o u t t o b e b r o a d e r t h a n

(B.6) . I t i n c l u d e s a s a p a r t i c u l a r c a s e t h e m e t r i c (B.17)

w h i c h i s n o t c o n t a i n e d i n (B.6) . M o r e g e n e r a l a s p e c t s

of t h i s c i r c u m s t a n c e a r e c o n s i d e r e d i n A p p e n d i x F .

C. THREE-DIMENSIONAL RICCI TENSOR Ραβ

We present here general expressions for the com-
ponents of the three-dimensional Ricci tensor Paa,
calculated with a metric in the form

gaf5 = «2'a'|5 + 62mctmfl + c2"a«p. (C.I)

where both the vectors 1, m, n and the scalars a, b, c
can be functions of the coordinates.

We write down expressions for the components along
the directions of the vectors 1, m, n in accordance with
the definitions (3.16) —(3.18) in which we must write
a, b, c in place of t P l , t P 2 , t P 3 ) : *

a2 f 1 1 1
-PIJ = VJ- •j"2"(al r o t a l ) 2 — — ( 6 m r o t 6 i n ) 2 — - ^ (en rot en)2— (en rot 6m)2

— (6m rot en) 2 —(6m rot el)2 —(en rot a l) 2

+ (en rot en) (6m rot 6m) + (en rot al) (el rot en)

(el rot 6m) (6m rot al)} + a2 { {

1 /On rot 6m \ 1 / Im rot en \ 1 / 6m rot «1 ~\ "\
J.I ~a V. Δ̂  J.i " V Δ J.nj '

i> i m = — J (el rot al) (6m rot al) + (6m rot 6m) (al rot 6m)

-f-(al rot en) (6m rot en) —— (enrol en) [(al rot 6m)

+(6m rot al)] + — (fcin rot en) (en rot el)

, 1 , • , , , , , ) , «i ί 1 /"6m rot en Λ+ Ί (el rot en) (en rot 6m) j + _ | _ ^ _ _ ) ^

ot en 1 /6mrotfcm"Λ 1 /6m
1 — ' ~

1 fa\rota\\

( C 2 )

H e r e w e p u t

(Β. 14)

with the n u m b e r s pi, p 2 , and p 3 connected with the
n u m b e r s Sj, s 2, s 3 by m e a n s of

Pi P3 (Β. 15)

(the relative magnitudes of the numbers p 1 ( p2, and
are not specified at al l).

If we put in (B.12) λ = 0, we obtain the solution

— ds* = 2dr\ ιίζ + η·" 1 (Β. 16)

This m e t r i c i s t rans formed to the synchronous form
by the t rans format ion

and the letters I, m, and n following the commas in
the indices denote differentiation in the corresponding
directions, in accordance with the definition

1,1 = 1 —£ ι ·•• \\>-d)

W e n o t e a l s o t h a t i n t h e p r o d u c t s w h i c h w e w r i t e f o r

t h e s a k e o f s y m m e t r y i n t h e f o r m a l c u r l a l ) ( w i t h

t w o i d e n t i c a l v e c t o r s ) , t h e s c a l a r s a , . . . c a n , o f

c o u r s e , b e t a k e n o u t s i d e t h e c u r l s i g n : ( a l c u r l a l )

= a 2 ( l c u r l l ) .

T h e r e m a i n i n g c o m p o n e n t s a r e o b t a i n e d f r o m t h o s e

w r i t t e n o u t b y c y c l i c p e r m u t a t i o n o f t h e l e t t e r s 1 , m ,

n a n d a , b , c .

: = c u r l .
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D. NEXT TERMS OF THE EXPANSION OF THE
ANISOTROPIC SOLUTION

The next higher terms in the expansion of the aniso-
tropic solution obtained in Sec. 3, in powers of t, could
be represented in the form of an expansion of the vec-
tors 1, m, n. It is simpler, however, to seek them di-
rectly as small corrections hao in the metric tensor

ga^g'^ + haf, (D.I)

where g^o is given by Eq. (3.6) with constant (time-
independent ) vectors 1, m, n.

The correction terms in the gravitation equations
are calculated with the aid of expressions (1.10)—(1.12)
for the changes oRj. It must be noted here that the
quantities κ< 0% are proportional to 1/t, while κ< 0 )£
= 2/t. In oRg, we can neglect the contribution from

since the largest terms in it are proportional to
that is, they are small compared with the

terms proportional to t~2h&. Omitting, in accordance
with the notation of the Appendix I, the index 0 in the
zeroth-approximation quantities, we obtain for the
first-approximation corrections the following equa-
tions:

(D.2)

(D.3)

In the right halves of these equations are the compo-
nents of the energy-momentum tensor and of the ten-
sor Pg,, calculated in the zeroth approximation metric
(see also the remark at the end of the present section).

Inasmuch as the equations contain derivatives of
h^ only with respect to the time (and not with respect
to the coordinates), we can change over directly in
them to projections along the directions 1, m, n. Rec-
ognizing that only the "diagonal" components differ
from zero

we obtain the following equations:

— A + y (/>.'·< 4-ρ2Αη> + Λ)ΛΌ = ϊ'ο. (D.4)

(D.5)

(D.6)

(the equations not wr i t ten out a r e obtained from those
wr i t ten out by cyclic permutat ion of the l e t t e r s I, m ,
η and p l t p2, p 3 .)

In the c a s e of empty space t h e r e i s no energy m o -
mentum t e n s o r and only P ^ r e m a i n in the r ight halves
of Eqs . (D.5) —(D.6). With the aid of (C.2) we find that
the h i g h e s t - o r d e r t e r m s in this t e n s o r , which r e m a i n
after the t e r m s (3.19) a r e made to vanish by the con-
dition (3.20), a r e

= ^Γ (Ρ3, ι Ρϊ, η + Ρι, η Pi, I — P2,nPi,l)1 2 r ' 3 In 2 i,

We shall not stop to write out the resultant expressions
for the components hg,. We merely point out that they
have the following orders of magnitude:

h\ hi. - hi ~ t2 <»-P (D.7)

(The component h ; m is of higher order of smallness
and in this sense is part of the next approximation.)

In the presence of matter, the principal quantity in
the right halves of the "diagonal" equations (D.5) is
the component of the energy-momentum tensor

which contains the highest power of 1/t. Compared
with this component it is possible to neglect Tj and
TJg, and also all the pj, PJg, and Pg. On the other
hand, in the "nondiagonal" equations (D.6) we can
leave out Pf,... compared with T n , . . . As a result
we obtain

8ε<0> u <

ftp(U) ,/<0> „«!) I
ί 1 ~Ρ3, A& — E m " ι 1 ' ' ' 3 I

( D . 8 )

( T h e c o m p o n e n t fym ~ t 1 + P 3 a g a i n t u r n s o u t t o b e o f

r e l a t i v e l y h i g h e r o r d e r o f s m a l l n e s s ) .

E q u a t i o n ( D . 4 ) i s s a t i s f i e d b y e x p r e s s i o n s ( D . 8 )

i d e n t i c a l l y . T h e e q u a t i o n s R Q , = T Q , , w h i c h w e d i d n o t

w r i t e o u t , w e r e n e c e s s a r y o n l y f o r t h e d e t e r m i n a t i o n

o f t h e n e x t h i g h e r e x p a n s i o n t e r m s o f t h e v e l o c i t y a n d

e n e r g y .

F i n a l l y , w e m u s t m a k e o n e m o r e r e m a r k t o c o m -

p l e t e t h e j u s t i f i c a t i o n o f t h e c a l c u l a t i o n s m a d e . W e

h a v e l e f t o u t f r o m ( D . 3 ) t h e t e r m s d e r i v e d f r o m t h e

tensor Ραβ a s a result of the corrections h ^ to the
metric tensor; it must be verified that these terms are
actually sufficiently small. Namely, this should be
verified for the correction terms that are due to the
" l a r g e " terms in Ραβ, the " z e r o " part of which is
made to vanish by the condition 1 curl 1 = 0 .

These are the terms of (3.19) in the diagonal com-
ponents P?, and the terms

t 2 (

(1 [ran])

(1 [ran])

in the off-diagonal components. Writing 1 = l ( 0 ) + λ,
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we find that the corrections (D.8) in the metric tensor
correspond to the corrections of the following orders
in the vector 1:

Χι ~ ", Xm ~λη~ (D.9)

Therefore

and it is easy to check that the discarded terms are
actually small compared with the terms retained in
(D.5) and (D.6).

E. STABILITY OF ANISOTROPIC SOLUTION

As was already indicated in Sec. 3, the metric

zZ ( E . I )

( w i t h c o n s t a n t n u m b e r s Pi < P2 < P3) i s a n e x a c t s o l u -

t i o n of t h e g r a v i t a t i o n e q u a t i o n s i n v a c u u m . L e t u s

c o n s i d e r t h e b e h a v i o r of t h e a r b i t r a r y s m a l l p e r t u r b a -

t i o n s of t h e g r a v i t a t i o n a l f i e ld i n t h i s h o m o g e n e o u s b u t

a n i s o t r o p i c s p a c e . S u c h a n i n v e s t i g a t i o n m a k e s m o r e

l u c i d t h e o r i g i n of t h e " l o s s " of o n e a r b i t r a r y f u n c t i o n

o n g o i n g o v e r t o t h e g e n e r a l a n i s o t r o p i c s o l u t i o n (3.6) .

T h e e q u a t i o n s of t h e s m a l l p e r t u r b a t i o n s a r e o b -

t a i n e d b y e q u a t i n g t o z e r o t h e e x p r e s s i o n s (1.10)—(1.12)

f o r t h e c h a n g e s O R K I n a s m u c h a s t h e s p a t i a l m e t r i c

( E . I ) i s E u c l i d e a n a t a n y i n s t a n t of t i m e , t h e t h r e e -

d i m e n s i o n a l c o o r d i n a t e d e r i v a t i v e s i n t h e s e e q u a t i o n s

r e d u c e t o o r d i n a r y d e r i v a t i v e s . O n t h e o t h e r h a n d , t h e

unperturbed tensor κ ,̂ is diagonal, with κ\ = 2p t /t.

In view of the homogeneity of space we can expand
an arbitrarily small perturbation in a spatial Fourier
integral and consider the individual expansion compo-
nent. Then all the h^, <̂  exp ( ik · r ) , and we obtain the
following system of ordinary differential equations:

- —kaiPa-Pfi) h%

£ + - r * S + x - * +

hkakf -

(Ε. 2)

(no summation over repeated indices is implied here
and below).

Among the solutions of these equations there are

s u c h c h a n g e s i n t h e m e t r i c h g , , w h i c h c a n b e e l i m i -

n a t e d b y t r a n s f o r m i n g t h e r e f e r e n c e s y s t e m . A c c o r d i n g

t o f o r m u l a s ( 1 . 1 3 ) — ( 1 . 1 4 ) , w e f i n d t h a t t h e g e n e r a l f o r m

o f s u c h " f i c t i t i o u s " p e r t u r b a t i o n s i s

, 2 v a ί 2 ρ β Ρ α ~ P i )

(E.3)

where Ca and Co are constants (we leave out the ex-
ponent exp(ik»r) from now on, for the sake of brev-
ity).

The general solution of (E.2) can be represented in
the form of a series of increasing powers of t. The
first terms of these expansions are as follows:

( E . 4 )

With the constants Α α , Βα, Οαβ (Οαβ * Οβα) con-
nected by the relations

β β

(E.5)

9-Pa) = 0. (E < 6)

We have already left out of (E.4) the terms that can be
excluded by transforming the coordinates and corre-
spond to the coefficient Co in (E.3). All the remaining
omitted expansion terms are those known not to become
large as t — 0, and the coefficients in them are ex-
pressed in terms of the constants contained in (E.4).
The criteria for the smallness of the perturbations are
the conditions

( E . 7 )

W e s h a l l a r r a n g e t h e t h r e e a r b i t r a r y c o n s t a n t s C
a

i n ( E . 3 ) i n a w a y a s t o e x c l u d e w h e r e p o s s i b l e t h e l a r g -

e s t t e r m s i n ( E . 4 ) . N a m e l y , w e p u t

c i 2 = c 3 1 = o. ( E . 8 )

so that h2 3 satisfies the condition (E.7), but h 1 2 and
h1 3 still contain terms not satisfying this condition as
t — 0. In other words, these perturbations experience
a relative increase, that is, the solution (E.I) is un-
stable with respect to them. To eliminate this insta-
bility it is sufficient to put in addition

ι r ζ. r η (~w Q\
« 3 ^ 1 2 — Λ 2 ^ 1 3 = υ > {*-'·*'/

a f t e r w h i c h t h e c o o r d i n a t e t r a n s f o r m a t i o n w h i c h c a u s e s

C j 2 t o v a n i s h w i l l c a u s e C ^ t o v a n i s h , t o o . T h e i n -

c r e a s e o f t h e l o g a r i t h m i c t e r m s i n t h e d i a g o n a l c o m -

p o n e n t h g ; a s t — 0 i s o n l y a n a p p a r e n t i n s t a b i l i t y .

T h e s e t e r m s c o r r e s p o n d a c t u a l l y t o m e r e l y a s m a l l
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change in the exponents in the metric (E.I): the num-
bers p a are replaced by p a + Ba, and the previous
relations between them remain in force by virtue of
the conditions (E.5).

The arbitrary constant in the Fourier component
of the perturbation denotes the presence of an arbi-
trary function (of three space coordinates) in the
perturbation itself. On the other hand, the presence
of arbitrary functions in the perturbations, which do
not lead to instability of the main solution, denotes
the possibility of expanding the latter. Altogether
(E.4) contains three independent arbitrary parameters
(the 12 parameters 0αβ, Αα, and Ba are connected
by the nine conditions (E.5)—(E.9)). They correspond
to the three arbitrary functions in the anisotropic so-
lution (3.6).

We see that in order to ensure stability of the met-
ric (E.I) it becomes necessary to impose on the arbi-
trary perturbation one additional condition (E.9). This
condition corresponds precisely to the additional con-
dition 1 curl 1 = 0 (3.20), which brought about the
" l o s s " of one arbitrary function in the anisotropic
solution.

F. ORIGIN OF OTHER TYPES OF SINGULARITIES

In Sec. 2 we described a geometrical procedure for
the construction of a synchronous reference system.
This construction begins with an arbitrary spacelike
hyper surf ace, chosen as the initial hyper surf ace.

On the other hand, if we choose as the initial hyper-
surface the " n u l l " hypersurface (that is, the hyper-
surface the normals to which are null vectors), then
we can obtain by the same construction a reference
system in which the metric has the following form
(see [ 1 5 ] , Sec. 7)*:

dxa (F.I)

that is, goo = gocc = °> So3 = 1 ( t h e indices a and b
run through the values 1 and 2, while the indices 0,1, 2,
and 3 correspond to the four coordinates η, χ, y, £).

The solution (B.12) indicated in Appendix Β pertains
precisely to such a reference system. The remark
made at the end of that appendix suggests that if the
anisotropic solution obtained in Sec. 3 is transformed
to the synchronous reference frame, some particular
cases may drop out of the solution formulated in the
form of the metric of the type (E.I). Let us show
briefly how this solution is constructed (in vacuum).

We seek the components of the metric tensor near
the singular point η = 0 in the form

(F.2)

with

*In Petrov's bookl*sJ this system is called isotropic semi-
geodesic, to distinguish it from the synchronous system, which
is called merely semigeodesic.

s

2 + s i = S l +s 2 , s3 = ~ ( i _ S l _ S 2 ) . (F.3)

The two-dimensional vectors Za, m a , n a , the scalar q,
and the numbers s ,̂ S2, s3 are all functions of the co-
ordinates x, y, £. The components of the inverse ten-
sor are

^ 6 = η Sl/°zl> + Tl S2m<Imj gao=^~gb3gab, ga3 = 0, ^ ^

h e r e Z a , m a — c o m p o n e n t s of t h e t w o - d i m e n s i o n a l

v e c t o r s c o n n e c t e d w i t h Z a , m a b y t h e r e l a t i o n s lal
a

- m a m a = 1, Z a m a = 0. T h e m e t r i c d e t e r m i n a n t i s

L e t u s a g r e e t h a t s 2 > Sj. T h e r e l a t i v e m a g n i t u d e

of t h e n u m b e r s s 3 a n d s1 o r s 2 i s n o t d e f i n e d . We a s -

s u m e f i r s t t h a t s 3 > s 2 ( i t i s e a s y t o s e e t h a t i n t h i s

c a s e V5 < s t < 0, 0 < s 2 < %, a n d 2/5 < s 3 < V2)· I n e s ~

t i m a t i n g t h e d i f f e r e n t t e r m s i n t h e g r a v i t a t i o n a l e q u a -

t i o n s i n t h i s c a s e , i t i s i m p o r t a n t t h a t t h e e x p r e s s i o n

contains higher powers of 77 than g33 ~ η 2 δ 3 .
Let us show how it is possible to satisfy a metric

of the type (F.2) by the principal terms of the gravita-
tional equations. These terms are

•>Y"gl ] ,0 = 0,

# ! = - — , = IY — №3, ol.o—irK b

nK = °<

2 V -

1

[(?α3, 0-?63«α) Y~g\, 3 ^ •a':b

3, a Y —g], 0 + -ΤΓ g33*b; a = 0 ,

( F . 7 )

( F . 8 )

( F . 9 )

( F . 1 0 )

( F . l l )

( F . 1 2 )

The indices ,0 and ,3 denote here simple differentia-
tions with respect to η and ζ, respectively, while the
indices ;a denote covariant differentiation in two-
dimensional space with metric gajj. Kab and \ a ^ de-
note the two-dimensional tensors

E q u a t i o n s ( F . 7 ) a n d ( F . 8 ) a r e s a t i s f i e d b y t h e m e t r i c

( F . 2 ) i d e n t i c a l l y . O n t h e o t h e r h a n d , o n l y t h e f i r s t

t e r m s o f E q s . ( E . 9 ) a n d ( E . 1 0 ) v a n i s h . Y e t t h e s e c o n d

t e r m s a r e p o t e n t i a l l y p r i n c i p a l o n e s ; t h e y c o n t a i n a

power ( 1 / T } ) 1 + 2 S 2 - 2 S I higher than ( Ι / η ) 2 " 2 ^ , to which

the f i rst t e r m s a r e formally proport ional . There fore

to satisfy t h e s e equations it i s n e c e s s a r y to impose on

the m e t r i c an additional condition, which forbids the
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a p p e a r a n c e of s u c h l a r g e t e r m s . It i s e a s y t o s e e t h a t

s u c h a c o n d i t i o n i s

la, 3 m"=0 ( F . 1 3 )

(which causes the terms ~ η 2 ' 8 1 " 8 ^ to vanish in the
quantities λ^). Finally, substitution of the metric (F.2)
with the condition (F.13) in (F.11)-(F.12) leads to the
appearance of terms of order T ) 2 S 3 - 1 In η and η 2 8 3 " 1 .
The first of them cancel identically, by virtue of the
relations (F.3) between the numbers Si, s2, and s3. On
the other hand, the terms ~ η 2 8 3 " 1 in these equations
yield three relations (equal to the number of equa-
tions), which connect the functions of the coordinates
x, y, and ζ contained in (F.2).

We therefore have, together with (F.13), four rela-
tions between the eight functions (q, two components
each of the vectors Za, ma, n a , and one of the numbers
slt s2, or s 3 ) . In addition, the metric (F.I)—(F.2) ad-
mits of one more transformation (which contains one
arbitrary function of the coordinates x, y, ζ ) leaving
its form invariant; it is implied here that the permis-
sible transformation should retain the situation where-
in the singularity of the metrics is situated at η = 0,
and g33 contains a power higher than in g a D . This
transformation, for example, can be used to turn the
coefficient q in g33 equal to unity. Thus, the metric
(F.I)—(F.2) contains only three physically independ-
ent functions of the coordinates x, y, ζ.

Investigation of the cases when s 3 is not the largest
of the three numbers s^ s2, and s 3 reduces to that
made above. Let St < s 3 < s 2. The metric (F.I) —(F.2)
admits in this case also of one arbitrary transforma-
tion. This transformation can no longer make q equal
to unity, but can cause the vector m a [which is the
coefficient of the highest power of η in (F.2)] to be-
come "perpendicular" to the vector n a , that is, to
make n a m a = 0. Then expression (F.6) will again be
small compared with g33, and the principal terms in
the gravitational equations remain the same as in

The obtained solution is in general equivalent to the
anisotropic solution (3.6), into which it can be t rans-
formed by changing over to the synchronous reference
system. The exponents pt, p2, and p3 are then con-
nected with the exponents Sj, s2, s 3 by (B.15), and the
"superfluous" condition (F.13) corresponds to the ad-
ditional condition 1 curl 1 = 0 (3.20), which must be
superimposed on the coefficients of the solution (3.6).

However, a search for the solutions in the refer-
ence system of (F.I) leads in natural fashion to solu-
tions with singularities also of a type not contained in
the solution (3.6). This type occurs in a special case
when the coefficient in (F.2) is q = 0, so that the solu-
tion (near the singularity) has the form

n e n t s ( s t , s 2 , 1 ) f o r t h e v a r i a b l e t , n o t c o n t a i n e d i n

t h e s e t of n u m b e r s ( p t , p 2 , p 3 ) ; s u c h a r e p r e s e n t a t i o n

of t h i s s o l u t i o n s e e m s t o b e , h o w e v e r , l e s s n a t u r a l f o r

t h e i n v e s t i g a t i o n of i t s p r o p e r t i e s t h a n t h e r e p r e s e n t a -

t i o n i n t h e f o r m (F.14) [ s e e (B.16) and ( B . 1 7 ) ] .

A s o l u t i o n of t h e t y p e (F.14) c o n t a i n s a p p a r e n t l y l e s s

t h a n t h r e e p h y s i c a l l y a r b i t r a r y f u n c t i o n s of t h e t h r e e

v a r i a b l e s x , y , a n d f. An e s t a b l i s h m e n t of t h i s n u m -

b e r a n d a c l a r i f i c a t i o n of t h e l i m i t a t i o n s t h a t m u s t b e

i m p o s e d o n t h e q u a n t i t i e s c o n t a i n e d i n (F.14) n e c e s s i -

t a t e , h o w e v e r , a s p e c i a l i n v e s t i g a t i o n w i t h a c c o u n t of

t h e t e r m s of t h e n e x t h i g h e r o r d e r s [ b e y o n d t h o s e

w r i t t e n o u t i n ( F . 7 ) a n d (F.12)] i n t h e g r a v i t a t i o n a l

e q u a t i o n s , a n d p o s s i b l y t h e n e x t h i g h e r t e r m s [ f o l l o w -

i n g (F.14)] i n t h e e x p a n s i o n of t h e c o m p o n e n t s of t h e

m e t r i c t e n s o r .

G. E X A M P L E S O F S I N G U L A R I T I E S IN EXACT

S O L U T I O N S

We p r e s e n t s e v e r a l e x a m p l e s f r o m a m o n g t h e k n o w n

e x a c t s o l u t i o n s of t h e g r a v i t a t i o n a l e q u a t i o n s i n v a c -

u u m , d e m o n s t r a t i n g b y m e a n s of t h e s e e x a m p l e s s i n g u -

l a r i t i e s of d i f f e r e n t t y p e s .

1. T h e m e t r i c

— d s 2 = — ζ ( G . I )

i s o b t a i n e d b y o b v i o u s t r a n s f o r m a t i o n s f r o m o n e o f t h e

e x a c t s o l u t i o n s o b t a i n e d b y H a r r i s o n ' - 1 6 - ' ( s o l u t i o n I - A - l

i n h i s n o t a t i o n ) .

T r a n s f o r m a t i o n t o t h e s y n c h r o n o u s r e f e r e n c e s y s -

t e m n e a r t h e s i n g u l a r p o i n t t = 0 i s c o n v e n i e n t l y c a r -

r i e d o u t b y t h e f o l l o w i n g i t e r a t i o n m e t h o d . B y m e a n s

o f t h e s u b s t i t u t i o n V - g O o ( x a ) d t — d t w e m a k e t h e

n e w - g 0 0 e q u a l t o u n i t y , b u t w e o b t a i n i n s t e a d n o n -

v a n i s h i n g c o m p o n e n t s g a a i n t h e f o r m g 0 Q , = t f a

( x 1 , x 2 , x 3 ) . T h e y a r e e l i m i n a t e d b y t h e t r a n s f o r m a -

t i o n x a — x a + t 2 - V ° t < P a ( X i , X 2 > X 3 ) u a d b y s u i t a b l e

choice of the functions φ α ( t 2 P a — t ime factor con-
tained in g f f a ) . At the same time, a small ( ^ t 2 " 2 ? ^ )
addition to g00 appears, and is eliminated by the next
transformation, etc; on going over to higher-order
terms, the form of the transformations becomes natu-
rally more complicated. As a result, we can shift the
deviations from synchronism to small quantities of
arbitrarily high order; the components g ^ are ob-
tained in this case as expansions of t. *

We thus find that near the singular point t = 0 the
metric (G.I) is equivalent to a metric whose first ex-
pansion terms are

(G.la)

t h a t i s , w e h a v e a s i n g u l a r i t y o f t h e t y p e

— dS2 = 2Λ) Λζ + (lalbr\2si + mamb^) dxa dx" + Inj1* ixa άζ, ( F . 14)

w i t h Si + s 2 = s 2 + s 2 . In t h e s y n c h r o n o u s r e f e r e n c e

s y s t e m t h i s s o l u t i o n w o u l d b e c h a r a c t e r i z e d b y e x p o -

*An exact transformation to the synchronous reference sys-
tem (which can be carried out, for example, by the method indi-
cated in ι 1 ], Sec. 98a), usually entails very cumbersome calcu-
lations.
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5 2 1

m e t r i c at t = 0, we a s s u m e to simplify the calculat ions,

that ζ » y; then

Changing the t ime var iable in (G.I) by m e a n s of a *

complex t rans format ion, we obtain the m e t r i c — d s 2 "= t2z

4 4 2 6 4 !_2
7 tfz2. (G.2) We make f i rs t the substitution

10-4 V2 dz2 df-

4 _ 2

7 Z 3

N e a r t = 0 i t i s e q u i v a l e n t t o t h e m e t r i c

b 2 12 _24
ί 7 2 2 1 (G.2a) and then v s = 17, u 5 4 A ' 2 = £, and some change in the

, , , , . ,., coordinate s c a l e . Ult imately we get
That i s , we have a s ingulari ty of the type ( - % , %, % ) .

2. The m e t r i c , . „, ir , - 1 , , \ J , ,_ _ .
— ds2 = 2dηdζ —η ° dx2 + η ϋ difi, (G.5a)

lt_ 2 2 6
— d s 2 = g 3 d u ^ + | ~ 3 u ~ z d x * + u l dl·? (G.3) t h a t i s , a s i n g u l a r i t y of t h e t y p e ( F . 1 4 ) , w i t h ( s i , s 2 )

= ( _ 1/ 2/ )
( H a r r i s o n ' s s o l u t i o n I I I - 2 ) i s t r a n s f o r m e d b y m e a n s . ' ' ! ' , .,

, , , , n / 1 r . , 4 . T h e s o l u t i o n
of the substitution u = r?y ί υ / ι ) , ξ = y° (with some
c h a n g e i n t h e s c a l e o f t h e c o o r d i n a t e s ) i n t o t h e f o r m

_2 _2 6
5 ~ 3 ^ 9 ι 5u αχύ-\~Υ\ ι

2 — 4-° - i dy dζ,
·> y

(G.3a)

β 2 χ ) d j , 2

ί 1
-ΐ-2γ2 cos«di/dz-UY2 dz2, γ ( = ch ί/4 ch 2 ^ , y 2 —

( G . 6 )

c h i

( o b t a i n e d b y T a u b [ 1 7 ] ) h a s a s i n g u l a r i t y a t t — ° ° .
t h a t i s , w e h a v e a s o l u t i o n o f t h e t y p e ( F . 1 4 ) w i t h n u m - N e a r t h e s i n g u i a r i t y t h i s m e t r i c c a n b e r e d u c e d b y
b e r s ( s t , s 2 ) = ( - /5, / 5 ) . m e a n s o f t h e s u b s t i t u t i o n e " t / 2 — t t o t h e f o r m

3 . T h e m e t r i c

+ (*-*)-Υ2.-2+ΫΪ, Y~2, (G.4)

( H a r r i s o n ' s s o l u t i o n I - B - 3 ) h a s s i n g u l a r p o i n t s a t

t = 0 a n d a t t = x .

N e a r t h e p o i n t t —* 0 w e r e d u c e g 0 b y m e a n s of t h e

s u b s t i t u t i o n t " " 5 ^ 2 " ' 7 2 — t t o a f o r m t h a t d e p e n d s ( i n

f i r s t a p p r o x i m a t i o n ) o n l y o n t h e s p a t i a l c o o r d i n a t e s ,

a f t e r w h i c h w e p r o c e e d a s i n E x a m p l e -1 . W i t h o u t w r i t -

i n g o u t t h e f o r m of t h e m e t r i c n e a r t h e s i n g u l a r i t y , w e

p o i n t o u t m e r e l y t h a t t h e l a t t e r b e l o n g s t o t h e t y p e

(Pi,
2 - / 2 8 — 5 / 2 3 —

a—5 9 — 5 ] / Τ 9 — 5 / 2

Near the s ingular i ty t = χ the reduction of the m e t -

r i c to the s tandard form i s by m e a n s of the following

success ion of t r a n s f o r m a t i o n s . We subst i tute t - x — » t ,

and then el iminate t from g 0 0 by m e a n s of a t r a n s f o r -

mation of the type t s —- t . This gives r i s e to a non-

vanishing gOj, which i s e l iminated by t r a n s f o r m a t i o n

of the type x—* χ + φ(χ,z,t) with a suitably chosen

function φ ; continuing further as in Example 1, we

obtain a s a r e s u l t a m e t r i c with s ingulari ty of the

type

that i s , a s ingulari ty of the type ( ρ ι , ρ 2 , Ρ3) = (0, 0 , 1 ) .

But this type of s ingulari ty i s f ictitious, so that the

m e t r i c (G.6) actually has no physical s ingularity.

I. EQUATIONS OF SMALL PERTURBATIONS OF THE

GRAVITATIONAL FIELD .

Let the m e t r i c gjj^ r e p r e s e n t some solution of the

gravitat ional equations, on which a smal l per turbat ion

ogik i s imposed. Let us calculate the quantit ies n e c -

e s s a r y to set up the equations for these per turba t ions .

We introduce the notation ogjk = hik for the p e r t u r -

bation of t h e covar iant components of the m e t r i c t e n -

sor, and to simplify the formulas we denote the u n p e r -

turbed m e t r i c s imply by gj^, leaving out the index (0).

The t e n s o r h ^ will be r e g a r d e d below a s a t e n s o r

in the space of the unperturbed m e t r i c g^» so that al l

further operat ions of ra i s ing the indices of hj^, and

also all the operat ions of covariant differentiation, a r e

c a r r i e d out with the aid of the m e t r i c gj^. Then, a c -

cura te to smal l quantit ies of f i rst o r d e r , o g ^ = - h 1

Thus, we should make in the gravitat ional equations

the substitution

1

(Pl P3)=( — / 2V'2 ^
3 + / 2 ' 3 + / 2

2 + / 2
3 + / 2

(1.1)

With the aid of a complex t r a n s f o r m a t i o n we can
obtain from (G.4) the solution

The change in the determinant is og = g g i k h i k = gh,
where h = hj, so that

2,8-5 1 2, Λ - V 2 , - 2 - ! - V 2 , Y2
(1.2)

dx*

( G . 5 )

The c o r r e c t i o n s to the Christoffel symbols a r e ex-
p r e s s e d in t e r m s of h ^ by m e a n s of

T o a s c e r t a i n t h e t y p e o f s i n g u l a r i t y p o s s e s s e d b y t h i s (1.3)
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as can be verified d i rect ly . With the i r aid we can ob-

tain for the per turbat ion of the curvature tensor

i,m = 1 (K: m; l + hl; k-.l^

(1.4)

from which we get for the c o r r e c t i o n s to the Ricci

t e n s o r

( L 5 )

F r o m the re lat ion

we obtain for the change in the mixed components

(1.6)

If the unperturbed m e t r i c i s specified in the syn-

chronous re ference f r a m e and the per turbat ion does

not violate the synchronism (this can always be a t -

tained by m e a n s of suitable smal l t rans format ion of

the c o o r d i n a t e s ) , then

"00 —υ» «οα—U- U· ' /

T h e c h a n g e s 6Rf a r e b e s t c a l c u l a t e d i n t h i s c a s e

b y v a r y i n g t h e q u a n t i t i e s i n ( 2 . 3 ) — ( 2 . 5 ) , u s i n g a t t h e

s a m e t i m e f o r m u l a s (1.5) — ( 1 . 6 ) f o r t h e d e t e r m i n a t i o n

in the change of όΡ^,. Obviously, the change in t h e

three-dimens iona l Ricci t e n s o r P ^ is de termined by

formulas of the s a m e type a s for the four-dimensional

t e n s o r Rf-, and al l the t e n s o r operat ions a r e c a r r i e d

out in three-dimens ional space with unperturbed m e t -

r i c g o ^ :

F o r the change in the t e n s o r καβ we have

δκαβ = Λαρ, δκ^ = ftg — κ̂ Αξ + κξΑ ,̂ (1.9)

where the dot denotes differentiation with r e s p e c t to t

( this operat ion, of c o u r s e , does not commute with the

operat ions of ra i s ing or lowering the i n d i c e s ) .

The final formulas for the changes oR^ a r e of the

form

ftg), α. ί ο

+ 4 ( ^ α - ^ ^ β ) ; (LID

d· 12>-^VftP + 1 χ (Ag-χ^-τ-χ* A*)}

In solving the smal l -per turbat ion equations it i s

always n e c e s s a r y to b e a r in mind that the obtained

solutions contain s o m e that can b e e l iminated by t r a n s -

forming the r e f e r e n c e sys tem and t h e r e f o r e r e p r e s e n t

no r e a l physical change in the m e t r i c . The point i s that

the conditions (1.7) st i l l do not d e t e r m i n e the choice of

the re ference sys tem uniquely. Indeed, under the

χ* + ί} (where ξ* a r e smal l quan-transformation x*
tities), the tensor g^ receives an increment
+ £h;i or, expanding the covariant derivatives,

''oo— 2

α; β
(1.13)

C o n d i t i o n s (1.7) g i v e a s u m of f o u r e q u a t i o n s f o r t h e

p e r m i s s i b l e va lues of ξ 0 and ξ α . The genera l solu-

tion of t h e s e equations is

, χ»), 1" = - x\ X\ χ3).

It contains, as expected, four a r b i t r a r y ( s m a l l ) func-

tions of the spatial coordinates f° and i a ( s e e footnote

on page 498) .
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