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1. INTRODUCTION

XHE term quasioptics covers a group of problems
which pertain to devices used for the production of
electromagnetic wave fields, and in which, on the one
hand, methods of geometrical optics are used (focus-
ing, refraction in prisms and lenses) and on the other
hand the decisive role is played by diffraction phenom-
ena.

In ordinary optical instruments, diffraction is of
secondary significance, since the main geometrical
parameter of the instrument, the beam width, is much
larger than the wavelength. In cases where diffraction
is significant, geometrical methods can usually not be
employed. On the other hand, at centimeter or longer
wavelengths, the situation is reversed: the beam cross
section and the wavelength are of the same order of
magnitude, and geometrical-optics phenomena are of
relatively little importance. Only the simplest prop-
erties of ordinary cavity resonators and waveguides
can be described by using the asymptotic form of the
wave equation (geometrical optics) alone.

In the centimeter region there is one essential ex-
ception, namely when large antennas are used, but in
the present review, which is devoted to new applica-
tions of optical methods to waveguides, we shall in ef-
fect disregard such antennas (see, incidentally, Sec. 4,
Item 5), which have been in use for a long time and are
described in the literature in detail (see, for example,
W).

The practical utilization of millimeter and submil -
limeter radio waves has raised at least three new tech-
nical problems, which are quasioptical in the sense in-
dicated above. This article is essentially devoted to an
examination of these problems. They can be used to
illustrate the results of the overlapping of the formal-
isms of geometrical optics and wave theory, which is
most interesting from the methodological point of view.
The first of these problems deals with mirrors and
analogous devices (prisms, lenses) in very broad
waveguides of round cross section, in which only the
Hol mode propagates, the second problem deals with the
theory of open resonators, which are widely used in
lasers, while the third deals with lens lines or their
analogs, mirror lines, over which radio waves are
transmitted with low loss (per unit length) by multiple
relaying of a relatively narrow beam.

From the mathematical point of view quasioptics
leads to some special problems in the asymptotic the-

ory of diffraction. In the first of the three problems
we must combine methods of optics and waveguide
theory. A feature of the second and third problems is
that the ratio of the transverse beam dimension to the
wavelength, that is, the large parameter of the prob-
lem, turns out to be not very large, and there exists
still another, geometrical parameter which is of the
same order of magnitude. This large geometrical
parameter is the ratio of the distance between the ele-
ments of the apparatus, that is, the beam length, to its
width. A typical situation in these two problems is to
determine the field in the Fresnel zone in the case of
diffraction by a large body. Mathematically the second
and third problems are almost identical. We shall not
consider here many devices ^2'3^ such as a prism power
splitting device or any interferometer, in which the op-
tical methods have been transferred to the millimeter
wave region without a modification in principle.

Some problems in quasioptics have been dealt with
long ago in the theory of ultrasound, where similar re-
lations obtain between the geometrical dimensions of
the apparatus and the wavelength. However, radiophys-
ics has apparently introduced many new ideas into this
field.

2. OPTICAL ELEMENTS IN BROAD WAVEGUIDES

1. Symmetrical magnetic waves in a waveguide of
round cross section have at high frequencies very low
ohmic losses, which decrease monotonically with in-
creasing frequency. This simple result of waveguide
theory has been the basis of development of channels
for the transmission of signals in a very broad fre-
quency band, in a round waveguide operating in the Hol

mode. The present status of work on this problem
(see, for example, ^,6]) gives grounds for assuming
that this is technically feasible; the possibility that
this method can be used to transmit not only signals
but also energy is likewise not excluded ^ . Such a
channel will have low ohmic losses at large values of
the parameter ka, where k is the wave number of the
propagating wave and a is the radius of the waveguide.
Reasonable values of ka, determined by different con-
siderations, lie apparently in the region ka ss 30—50
and above.

One of the main difficulties in this problem is the
stabilization of the Hol mode in different irregular sec-
tions. Any irregularity will cause, generally speaking,
part of the Hol mode energy to go over into other
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FIG. 1. Plane mirror in the bend of a waveguide.

modes; this energy is lost and moreover causes sig-
nal distortion. Therefore the conversion of energy
into undesirable modes should be made as small as
possible.

Optical devices are used to reduce such conversion
losses, which arise whenever the waveguide axis
changes direction. They have been proposed and even
realized relatively long ago'-8'9-'. The simplest of these
is a flat mirror installed in the waveguide bend in such
a way that the normal to the mirror bisects the angle
between the waveguide axes (Fig. 1, b = 2a). The use
of such a mirror is based on a very simple idea: since
ka » 1, the Hol field is close to the field of a plane
wave locally, that is, in any region which is small com-
pared with a. A plane wave incident on a flat mirror
is reflected without distortion. Consequently the Hol

wave should also be reflected with practically no dis-
tortion, that is, be deflected and proceed along the sec-
ond waveguide. A similar geometrical-optics consid-
eration enables us to expect a dielectric prism placed
in the waveguide band (Fig. 2) to swing the front of the
incident wave in such a way that the wave will pass al-
most completely into the second waveguide.

These considerations describe correctly the opera-
tion of such devices. The peculiarity of the problem,
however, lies in the fact that the greatest interest in-
deed attaches to determining the corrections due to the
finite nature of the parameter ka, and the associated
diffraction effects. It is these corrections which de-
scribe the conversion losses in such devices.

At the present time we can regard as settled only
the question of the conversion losses in a bend with a
mirror (see Fig. 1). This question was considered ex-
perimentally in £8-9] and particularly in E10^, while the
theory is given in E11"13]; the agreement between the-
ory and experiment is satisfactory.

2. The principles of the simplest theory'-11^ of a
bend with a mirror are best developed using the auxil-
iary problem of a broad slot in the wall of a broad
waveguide (Fig. 3). The presence of the slot gives
rise to parasitic waves and to escape of some of the

ι χ

ii
FIG. 3. Broad slot in the wall of a broad waveguide.

energy from the waveguide. The determination of the
field in.the right-hand waveguide, and, in particular,
the determination of the amplitude of the fundamental
wave (that is, the same wave which is incident from
the left) are carried out in two stages. At first the
field is determined on the slot, followed by determina-
tion from this field of the field in the right-hand wave-
guide.

The field on the surface of the slot is determined
(in the highest order in the small parameter) in ele-
mentary fashion; knowledge of this field enables us to
determine all the essential diffraction characteristics
and, what is particularly important, the corresponding
formulas result in small errors if the inaccuracy in
the expression for the field on the slot is small. This
does not occur when the field in the waveguide section
beyond the slot is calculated directly from the field in
the section ahead of the slot. In order to be able to
determine the waveguide field from the field in the
waveguide section it is necessary to know the field in
the section very accurately, much more accurately than
when the waveguide field is determined from the field
on the continuation of its walls, that is, on the slot.

The field on the slot is best determined from a
comparison with the Sommerfeld problem of diffrac-
tion on a half-plane. To this end it is necessary to
separate the term corresponding to the Brillouin wave
from the waveguide wave which is incident on the slot
from the left. For example, for a plane waveguide of
width b, with a boundary condition of the first kind,
for an incident wave

the field on the slot is equal to

2Tk

(2.1)

(2.2)

The ζ axis is directed here along the waveguide axis,
the χ axis is transverse to the waveguide, and the ζ
coordinate in the amplitude is measured from the point
of intersection of the ζ axis and the edge of the slot.
For a boundary condition of the second kind, if

dn . = 0, (2.3)

we have on the slot

du
dx

FIG. 2. Dielectric prism in the bend of a waveguide. The field on the slot is determined in both cases by



METHODS OF GENERATION AND TRANSMISSION OF MILLIMETER WAVES 387

the incident-wave field not over the entire surface of

the front, that is, not over the entire exit aperture of

the left-hand waveguide, but only on a small region

adjacent to the boundary of the slot. The dimension

of this region is determined by the extent of several

Fresnel zones for the most remote points of the slot.

If the length of the slot is I, then the dimension of this

region is equal to μ^ where

>i f n l V / 2 (9 £,)

is the principal small parameter of the problem. The

condition

μ€ ΐ , (2.6)

which we shall assume to be satisfied, signifies that

the slot is exposed to only a small part of the front of

the incident wave. This enables us to use the solution

of the diffraction problem on a half-plane, and subse-

quently transfer the solution of the auxiliary problem

(see Fig. 3) to the mirror problem (see Fig. 1).

In exactly the same way, if a symmetrical magnetic

wave with a Hertz vector

v = 3.83,

is incident in a waveguide of round cross section, we

obtain on the slot, from the expression for the azi-

muthal component of the electric field of the incident

wave (which we also denote by u),

U = -r=* (2.7)

Knowing the field on the slot, we can determine the

amplitude of the main and parasitic waves moving into

the right and left waveguides from the usual formulas

of the theory of excitation of a waveguide by specified

magnetic and electric surface currents. At the same

time, we determine from the same Sommerfeld prob-

lem the magnetic field on the slot, and then the energy

flux into the slot. For an Hol mode, the energy loss

of the fundamental wave is proportional to μ3; the

same takes place in the analogous two-dimensional

scalar problem with boundary condition of the first

kind (2.1). For a boundary condition of the second kind

(2.3) and the analogous problem of the Eol mode in a

round waveguide, the losses are much larger and are

proportional to the first power of the small parameter,

not the third. Half of the energy loss goes through the

slot, and the other half is distributed among the para-

sitic waves that move forward, forming a broad wave-

number spectrum. The losses for the problem (2.3)

are larger than for problems (2.1) and (2.7) because

in the case of a boundary condition of the second kind

more energy is transported in the incident wave near

the walls than in the case of the boundary condition of

the first kind.

The foregoing method comprises a combination of

the optical (determination of the field on the slot) and

waveguide formalisms. It apparently corresponds to

the physical nature of the problem, which is also of

intermediate character: on the one hand there are very

many waveguide waves and the determination of the

amplitude of each undesirable wave is unnecessary and

impossible, while on the other hand the structure of the

transmitted wave should be as close as possible to the

structure of one of the waveguide waves.

3. The auxiliary problem concerning a broad slot

in a wall of a flat waveguide with boundary condition

of the second kind (2.3) was solved in ^12-' by a more

rigorous method, of the so-called successive diffrac-

tions .̂

Assume that at first there is only the left-side

waveguide, and the right-side waveguide is removed.

The field that results from this is known; it was deter-

mined'-14'15^' in papers on the theory of diffraction by

the open end of a waveguide. We then place the right-

side waveguide in this field and remove the left-side

waveguide. In this case, too, we can determine the

field by solving the problem of the diffraction of a

compound wave (as found in the first step) by the open

end. We then place in this field the left-side waveguide,

assuming that there is no right-side waveguide, etc.

This method actually imitates the process of formation

of the field on the front of an incident pulse. It is known

from the theory of diffraction by a slot in a plane

screen, where the initial solution is the field produced

by diffraction on a half plane; in ^12^ this initial solu-

tion was the field in the corresponding waveguide prob-

lems L14J. Several analytic expressions were obtained

in ^12^ for the total field. In particular, several terms

of the expansion of the energy of the transmitted fun-

damental wave in powers of μ were obtained. If the

width of the waveguide is equal to the width of the slot,

the losses of this wave are equal to

(2.8)

where C is made up of sine and cosine functions,

whose arguments contain μ2 in the denominator. The

first term of (2.8) coincides with the result of the ele-

mentary theory L 1 1 J . The agreement between the exact

theory and the approximate one remains satisfactory

up to μ ~ 0.4—0.5, but at larger values of μ the ap-

proximate theory gives incorrect results.

4. The flexibility of the method developed in Item 2

makes it easy to transfer it to the problem of a bend

with a mirror, which, obviously, is equivalent to the

problem of the waveguide cross, which results if the

waveguides of Fig. 1 are reflected in the plane of the

mirror. In this case two waves travel towards the

crossing point. The wave traveling from the left, for

example, experiences approximately the same disturb-

ance as in a waveguide having slots that coincide with

the mouths of the upper and lower waveguides. The en-

ergy which in the problem of Fig. 3 goes out of the slot

and produces a space wave, creates in the cross para-
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sitic waves in the lower waveguide. Several waves are
formed—a narrow wave-number spectrum, which is
shifted relative to the broad spectrum formed by the
direct wave.

This yields the following result!-11^, which already
pertains directly to the bend with the mirror. For a
flat waveguide with wave (2.1), the losses are equal
to 4μ3/3; for a flat waveguide with wave (2.3), they are
equal to 2μ/π, where the quantity I entering in μ (the
width of the slot in the equivalent problem) is equal to
b/sin β. The Hol mode losses in a round waveguide are

8,7
3 ' 2 · ( 2 · 9 )

In all cases this energy is uniformly distributed
among the parasitic waves. One-quarter of the energy
travels backward in the form of several high-number
parasitic waves and an equal fraction goes downward
in the form of similar waves; half of the energy goes
into the lower waveguide in the form of many parasitic
waves (broad number spectrum).

The higher the frequency, that is, the larger ka,
the smaller the conversion losses which have, essen-
tially, a diffraction character. The dependence on the
frequency (k"3^2 or k" 1 / 2) is quite complicated and
unusual in the ordinary (non-waveguide ) asymptotic
problems of diffraction theory. It is not clear at pres-
ent whether this dependence is general in any way and
whether it holds, for example, for a bend with a prism
(see Fig. 2).

The result in (2.9) shows that the construction of
Fig. 1 is satisfactory even at not too high frequencies.
For example, when ka ~ 60 approximately 2% of the
incident energy is lost in a (right angle) bend with a
mirror. The more the bend angle deviates from π/2,
the broader the slot that the wave must overcome and
the higher the conversion losses. For small angles,
lower losses are probably obtained by using a bend
with a prism.

5. The formalism used in ^ and ^12^ makes use
of the asymptotic character of the problem from the
very outset. This yields, of course, a solution which
is valid only when kb » 1 (or, what is practically the
same, μ « 1); in addition, many features of the phe-
nomena remain unclear. The problem of a right-angle
bend in a rectangular waveguide with a mirror, under
a boundary condition of the first kind, was investigated
in L13J from the beginning to the end as a waveguide
problem, using methods developed in the theory of
planar waveguide junctions. The fields in the left-side
and in the lower waveguides were expressed as sums
over all the waves outgoing from the bend, and one
wave (2.3) incident on the bend with unit amplitude. A
system of an infinite number of linear algebraic equa-
tions was set up for the unknown amplitudes of the out-
going waves.

A detailed numerical analysis has shown that to ob-
tain a sufficiently accurate numerical result it is nec-

essary to take into account all the propagating waves
as well as two or three nonpropagating waves. Of
course, the higher the frequency, the more laborious
this method is, and it apparently does not yield simple
analytic estimates for a large value of the parameter
kb. However, unlike the asymptotic methods, the r e -
sults obtained in '-13-' are exact.

In practice the calculations could be carried through
up to kb = 10π. Figure 4 shows the energy loss of the
fundamental wave as a function of kb. The dashed line
corresponds to the asymptotic solution, according to
which the losses are equal to 4π3//2 (kb) ~ 3/ 2/3. The
asymptotic solution already gives satisfactory results
for kb > ( 4 - 5 )π.

Probably the most interesting result is the behavior
of the amplitude of the fundamental wave near the fre-
quencies (kb = M ) at which new parasitic waves arise.
The corresponding resonance phenomena drop out of
consideration completely in the asymptotic solutions;
prior to publication of ^ , the prevalent opinion was
that the waveguide resonances are always weak. Ac-
tually it turned out that when the frequency of the
parasitic waves goes through the critical value, no
essential perturbation of the fundamental wave is pro-
duced (at any rate in the system under consideration).

For more complicated installations (for example,
for a bend with a mirror in a round waveguide or for
a prism, lens, etc.), so rigorous a waveguide approach
is much more cumbersome, although it probably is
still feasible. More promising, however, is the devel-
opment of a special asymptotic formalism, which cor-
responds more to the intermediate quasioptical char-
acter of the problems. These asymptotic methods are
of particular interest in conjunction with investigations
such as L13], which ensure a continuous transition from
the exact (numerical) to the approximate methods.

In conclusion we note that the simplicity of the phys-
ical idea on which different optical devices in wave-
guides are based has led and should continue to lead to
the appearance of many clever technical suggestions
( see, for example, t 1 6 ^ ). One of the causes of the
slow development of the technology in this field is the
lack of a sufficiently general and at the same time
effective and simple mathematical theory of quasiop-
tical phenomena in broad waveguides.

as

as
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FIG. 4. Energy of wave transmitted through the bend of a
plane waveguide with a mirrorL13J.



METHODS OF GENERATION AND TRANSMISSION OF MILLIMETER WAVES 389

FIG. 5. Lens line.

3. BEAM WAVEGUIDE AND OPEN CAVITY

1. The suggestion that millimeter radio waves be

transmitted along a line consisting of a series of suc-

cessively placed dielectric lenses, the dimensions of

which are large compared with the wavelength, was

first formulated a few years ago^17'18^. Such a lens

line (Fig. 5) is based on an elementary idea. The radio

waves from the source strike the lens, pass through it,

propagate to the next lens, etc. Every time the seg-

ment between lenses is traversed, some diffraction

divergence or "spreading out" of the beam takes

place, as a result of which the wave arriving at the

lens has a structure which differs from the structure

of the wave leaving the preceding lenses. The purpose

of the lens is to compensate for this change in the

structure and to restore the field distribution in the

beam or, more accurately, the phase distribution over

the section of the beam, since the distribution of the

field amplitude remains practically unchanged.

In addition, part of the energy emerging from a

given lens travels sideways and does not reach the

next lens at all, and this leads to radiation energy

losses. If we add to these the losses in the lens ma-

terial and the reflection losses, as well as the losses

connected with the fact that real systems are not ideal

geometrically, we find that the line is subject to run-

ning losses (per unit length). For a complete energy

analysis of the line it is also necessary to take into

account the losses on the receiving and transmitting

ends.

Let us consider the quantities that characterize the

action of such a lens. We denote the distance between

lenses by L, the cross section of the lens being char-

acterized by a quantity a. For round lenses a is the

radius of the lens, and for the two-dimensional case

under consideration 2a is the width of the lens. It is

assumed that ka » 1 and L/a » 1. The parameter on

which the radiative losses depend primarily can be ob-

tained from elementary considerations. The beam, the

width of which is of the order a, has in the case of uni-

form distribution an angular diffraction divergence on

the order of 1/ka. At a distance L this leads to the

broadening of its transverse dimensions by L/ka; the

relative broadening is L/ka2. Unless measures are

taken to minimize the energy outgoing from the periph-

eral part of the beam, each segment of length L would

be accompanied by radiative losses of the order of

L/ka2. We shall show that it is possible to reduce these

losses by suitably shaping the beam and making it non-

uniform. To make the radiation losses small, the quan-

tity

(3.1)

must not be small. It is found that c can be only

slightly smaller than 2π.

Thus, in order to make the radiation losses small,

the lenses must be placed as close to one another as

possible, the beam radius must be made large, and the

wavelengths must be as short as possible. Each of

these requirements introduces its own complications.

If the lenses are very frequent, the running dielectric

losses and the reflection losses are large. If the ra-

dius of the beam is large, the conditions for its prop-

agation must be maintained within a very large volume.

As to waves that are shorter than several millimeters,

they are barely coming into extensive use, in view of

problems in the development of transmission lines for

such waves. In the submillimeter band there are also

losses in air^19-', in long lines it is necessary to pro-

vide an artificial medium or vacuum, etc. Several iso-

lated reports were published on the development of

long-distance lens-type transmission lines. In '-20-' the

following parameters are proposed: wavelength 3.3 mm,

a = 15 cm, L = 47 meters. The expected losses are

of the order of 3 dB/km. The entire line must be con-

tained in a concrete pipe. In ^ -1 is described a line

containing 40 lenses per kilometer, with a loss of 1.2

dB/km at 8 mm wavelength. An investigation of short

lines is reported in M.

2. The purpose of the lenses is to correct the cross-

sectional phase distribution of the incoming wave. More

accurately, if the field of the wave (any one of its com-

ponents) arriving at the lens is u(x,y), then the out-

going wave should have a field u(x, y) exp [ίφ(χ,γ)].

The function φ(χ,γ) characterizes the phase correc-

tion, which is ensured by the difference between the

optical lengths of the rays passing through different

points of the lens. In other words, a diverging beam

approaching the lens should be focused by the latter

and changed again into a converging beam. The trans-

verse diffusion occurring between the two lenses ^2 2^

again causes a diffraction divergence of the beam,

which should be compensated for by the focusing ac-

tion of the next lens. The quasioptical nature of the

process is probably most clearly illustrated by the

fact that it is necessary to use both diffraction and

geometrical-optics concepts to describe it.

Converging lenses (dielectric or metal-dielectric )

are, of course, not the only possible phase correcting

means. Focusing reflecting mirrors of different types

(Fig. 6a—b), proposed for this purpose in ^23^ and ^ 2 4^,

can also be used. The rays incident on different points

of the mirror pass through different paths, and this

produces the required phase correction. An obvious

advantage of such correctors, compared with lenses,
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a)

b)

c)

d)

FIG. 6. a—b) mirror transmission lines; c) open resonator with
plane mirror; d) open resonator with focusing mirrors.

is the absence of dielectric losses or analogous (and

likewise considerable) losses in the artificial dielec-

tric. The losses due to the conductivity of the mirrors

can be made very small by using waves that are polar-

ized parallel to the mirrors and strike the latter at a

small glancing angle. If, in addition, the mirrors are

made in the form of bodies of revolution, then the en-

tire system, namely the sequence of barrel-like mir-

rors with a common axis^2^, will have a field struc-

ture very similar to that of a round waveguide with a

symmetrical magnetic wave. A shortcoming of such

a system is the smallness (in the case of glancing in-

cidence of the wave ) of the effective beam width [the

value of a in (3.1)]; small radiation losses can there-

fore be ensured only for submillimeter and shorter

waves. In systems in which the angle of incidence is

of the order of π/4'-24'16^, the mirrors can be spaced

far apart.

3. A physical analogy exists between lines made up

of several phase correctors and the open resonators

with plane (Fig. 6c) or curved (Fig. 6d) mirrors, which

were proposed somewhat earlier [26~28]. The mathe-

matical formalism which describes these two types of

systems is in first approximation identical; after re-

flection from the right-hand mirror, the wave in the

resonator moves to the left-hand mirror, and the wave

moves in the line, after passing through each lens (or

after being reflected from each mirror), to the next

lens (or mirror ). If we speak not of mirrors or of

lenses, but of phase correctors, then the description

of the processes in the lines and in the resonators be-

comes identical—the wave passes in succession be-

tween correctors, and experiences phase correction in

each. The oscillation whose waveform is duplicated in

each succeeding corrector, and whose amplitude de-

creases exponentially, corresponds in a resonator to

the natural oscillation, and in the line to the natural

wave. The decrease in the oscillation energy on going

' from one corrector to the next gives in transmission-

line terms the running attenuation over a length L, and

in resonator terms the damping per passage.

Resonators are widely used in lasers (optical quan-

tum generators), where they serve as the oscillating

system, and in measuring techniques, as microwave

analogs of the optical Fabry-Perot interferometer.

The growing interest in them is due primarily to their

use in lasers.

From the technical point of view, the requirements

imposed on lines and resonators are not the same. In

long lines it is particularly important to ensure small

running losses, while in short lines it is necessary to

reduce the losses at the end of the path. A large beam

radius is a shortcoming for the line, whereas for res-

onators the dimension of the mirror is not so impor-

tant. In addition, the medium inside the resonator is

optically inhomogeneous, and this limits the application

of the relatively simple theory which will be described

below.

For open resonators, a very important factor is the

relative poverty of the spectrum E29^ compared with

ordinary (that is, closed) resonators. For lines this

means large attenuation of almost all the higher natu-

ral waves—a property which perhaps makes it possible

to employ the relatively simple frequency modulation

for communication t20^. Fabry-Perot interferometers

have their own specific problems (see, for example,

the literature in l-30^); as in the case of resonators,

the quality of their mirrors is most important.

In presenting below the results of the mathematical

investigation of the described systems, we shall be in-

terested first of all in the radiation losses. This in-

cludes the most interesting problems, dealing with the

relation between the geometrical-optics and diffraction

theories. It is precisely here that the most important

results have been obtained in recent years, although on

the whole the problem cannot be regarded as solved

even mathematically. Furthermore, in all the techni-

cal variants (Figs. 5 and 6) it is necessary to obtain

small radiation losses, although for quantum genera-

tors this is not so important as for transmission lines,

particularly long lines.

4. The most flexible and effective mathematical for-

malism for the investigation of the problem consists in

the following. We introduce as the unknown function

the field at the output of one of the correctors. From

this we determine the field at the input of the next cor-

rector. The field at the output of the latter is obtained

by a multiplication by exp [i<p(x, y)]. The requirement

is then made that the field at the output of the second

corrector differ from the field at the output of the first

corrector only by a constant factor (independent of χ

and y). This leads to a homogeneous Fredholm inte-

gral equation for the sought field.

The field at ζ = L is determined from the field at

ζ = 0 by using the Huygens principle. Assume at first

that we are dealing with a lens line. We denote by

u(x, y ), for example, the x-component of the magnetic

field at ζ = +0. The field outside the corrector is as-

sumed equal to zero. For the same component of the
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magnetic field at ζ = L - 0 we get

, y)
k

"2π
(3.2)

In two-dimensional problems | A | = V k/2ir , and R in
the denominator must be replaced by R1//2. The inte-
gration is carried out here over the aperture of the
first corrector (line aa on Fig. 5), the field is ob-
tained at the input of the second corrector (line bb on
Fig. 5), and

η)2. (3.3)

We further replace R in the denominator by L, and R
in the numerator by

This is valid if

2L

L3 > λα4

2L
(3.4)

(3.5)

a condition satisfied when ka » 1 and c/2ir ~ 1. We
substitute (3.4) in (3.2) and multiply by exp [ ϊφ (ξ, η)] ,
and then obtain the field at the output of the second
c o r r e c t o r , that i s , at ζ = L + 0 (line cc on Fig. 5 ) .
If we stipulate then that

ν (ξ, η)|ζ=ΐ.+ο = λ«(ξ, Τ|) | ζ = + 0 , (3.6)

we obtain an integral equation for the function u:

βίςχΐ, η) ξ α (χ, y)K(x, y, I, = Xu(l, η), (3.7)

where the kernel, in accordance with the foregoing, is

K = A e~ihL -i (3.8)

The quantity λ has a simple meaning; according to
(3.6) it is equal to the decrease of the field on going
from lens to lens. The radiation losses are equal to
1 - Ι λ | 2 . Thus, the losses of the different modes are
determined by the moduli of the eigenvalues of (3.7),
while the structure of the field is determined by the
corresponding eigenfunctions, and the phase velocity
is determined by the argument of the eigenvalues.

In place of (3.7), it is frequently convenient to con-
sider for the field at the output of the lens the equation
for the field in the central plane of the lens; we denote
this field by w(x, y). From the definition of the func-
tion <p(x, y) it follows that

u ( x , y) = w ( x , y ) e 2 <p (χ, υ)
(3.9)

Substituting this in (3.7) we obtain an integral equa-
tion

w(x, y)K(x, y, \, η) e4 " [ φ ( Ι · f )+Φ (E>2 = Xw (x, y).

(3.10)

This method of analysis was initially proposed not
for lens lines but for open resonators'-2 7 '2 8^. In the
early papers L17>W containing the theory of lens lines
(called there beam waveguides), a different method

was developed. Mathematically it leads to the same
results, although via a more artificial and more com-
plicated path. However, it emphasizes somewhat dif-
ferent aspects of the entire process. The sought field
of the natural wave is represented in the form of an
aggregate (beam) of plane waves, the direction of
propagation of which lies inside a narrow cone. The
unknown quantity is a function that gives the distribu-
tion of the amplitudes of these plane waves as a func-
tion of the angle between their propagation direction
and the system axis (the ζ axis).

The variation of the wave field from ζ = + 0 to
ζ = L - 0 is described in this case simply by the laws
of plane-wave propagation. The field at ζ = L + 0 is
then obtained from the field at ζ = L - 0 by means of
an operation which reduces essentially to multiplica-
tion by exp [ \ψ (χ, y )] and a condition equivalent to
(3.6) is stipulated.

A similar "beam method" was used also for open
resonators in one of the earliest investigations^32-',
in which the two-dimensional problem of a resonator
consisting of two flat mirrors was considered.

We present an analysis for both lines and resona-
tors by the unified method described above, which leads
to the integral equations (3.7) and (3.10).

We shall show that (3.10) describes also oscillations
in an open resonator made up of two mirrors (Fig. 7),
provided w(x,y) is taken to mean the magnetic field
(or current) on the mirrors . Assume that w(x,y) is
specified on the first mirror, and that w(£, η) on the
second mirror is determined from the Huygens prin-
ciple. Since the field on the first mirror is equal to
zero, formula (3.2) will have for the field incident on
the second mirror an additional factor V2. However,
this factor disappears from the expression for the total
field on the second mirror, since this mirror is also
metallic and the magnetic field on it is double the in-
cident-wave field. It is assumed in this argument that

FIG. 7. a) Phase correction of focusing mirror in resonator;
b) phase correction of focusing mirror in line.
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the surfaces of the mirrors are nearly plane, so that
the normals to the mirrors make everywhere small
angles with the axis—a condition which we shall as-
sume satisfied. The quantity R in (3.2) is now the
distance between two points on bent mirrors . It differs
from (3.4), which gives the distance between two points
on the apertures, by terms equal to the distances be-
tween aperture and mirror points lying on one ray
traveling from the opposite mirror (Fig. 7a). These
distances can be replaced by the distances Δ(χ, y) and
Δ(ξ,η) between the aperture and mirror points having
the same coordinates x,y or ξ, η.

A simple connection exists between Δ and φ :

| φ ( ζ , y)=C~M(x, y), 4·Φ(Ι, T))=C-*A(g, η),(3.11)

where the value of the constant C is immaterial. The
phase correction which occurs upon reflection from
the bent mirror is due precisely to the fact that the
rays reflected from different points of the mirror
cover different distances 2A(x,y). They acquire
thereby additional phase shifts 2A(x,y)k; (3.11) then
follows from the definition of the function cp(x,y).

Thus, allowing for the additional terms (3.11) in the
expression for the distance, we get for the current on
the second mirror

w(x, y)K(x, y, ξ, η) e

where Κ is given in (3.8). The condition that the field
be repeated on each mirror leads to (3.10).

If the function u(x, y ) is defined by the condition
(3.9), then it represents the magnetic field on the plane
aperture of the mirror. Thus, we obtain for this field
u the same equations (3.7) as for the lens line.

Let us show, finally, that wave propagation in a
mirror line is described by the same integral equa-
tions (3.7) or (3.10). We consider for simplicity a
two-dimensional problem (the three-dimensional case
is analyzed in '-25-'). Let the mirrors consist of bent
ribbons, the sections of which by the plane y = const
are shown in Fig. 7b; the fields do not depend on y.
In determining the magnetic field w(£) on the second
mirror from the field w(z) on the first mirror by
means of the Huygens principle, we should assume
for the distance R in the exponential of (3.2) the ex-
pression

Λ = Λ 0 + - ^ ( ζ - ζ ) + - ^ ( ζ - Ζ ) ' + -|-[Δ(Ζ) + Δ(ζ)], (3.13)

where R§ = 4b2 + L2, and Δ(ζ) is equal to the distance
between the mirror and the aperture point having the
same value of z.

The difference between the theory of resonators
(Fig. 7a) and the mirror line (Fig. 7b) is connected
only with the difference in the expressions for R. The
expression (3.13) contains, in comparison with (3.4),
additional terms proportional to Δ(ζ) and Δ(£). This
means that each reflection from the bent mirror is ac-

companied by a phase correction; this phase correc-
tion is equal to, according to (3.13),

This formula can, of course, be obtained from the
usual geometrical calculation of the difference in the
path between the two rays for inclined incidence on
a bent surface. Formula (3.14) has the same meaning
as (3.11); it enables us to determine the required
shapes of the mirrors from the selected function φ .

The presence in (3.13) of a term linear in ζ and
in £ signifies that w(z) contains a rapidly varying
factor corresponding to wave propagation in the ζ
direction. Let us separate this factor, that is, let us
introduce the function

w (z) = w (z) e R<>' (3.15)

'dxdy, (3.12) a;

The integral equation for the slowly-varying function
w(z) turns out to be precisely the same as for the
current w(x) on the mirrors of some resonator (two-
dimensional problem ), if the width of these mirrors
is equal to the width of the beam, that is, 2a(2b/R0).
The latter statement follows directly from a compari-
son of the quadratic terms in (3.13) and (3.4). Intro-
ducing in the expression for the magnetic field on the
aperture of the mirrors in place of w(z) the quantity
u(z) in accordance with (3.9), that is, the factor pre-
ceding exp (ikLz/R0), we obtain for this quantity the
two-dimensional variant of (3.7).

Thus, (3.7) and (3.10) describe the fields in the lens
and mirror lines and in open resonators. Their solu-
tions—the forms of the eigenfunctions and the eigen-
values—are determined by the geometrical parameters
and by the form of the function φ , that is, by the char-
acter of the phase correction. It is noted in ^33^ that,
in general, problems involving the theory of equations
such as (3.10), which have a complex symmetrical ker-
nel, have been little studied.

5. The most interesting phase correction, which has
been investigated in greatest detail, will be considered
in the next section. We present here some results per-
taining to the special case when

φ (ζ) = 0, (3.16)

that is, when no correction is made at all; in resona-
tors and in mirror lines this takes place upon reflec-
tion from plane mirrors . The effect of each mirror
on the structure of the wave consists here only of re-
moving from the wave that part which goes past the
corrector. A " l e n s " variant of such a system is pos-
sible and has even been experimentally realized ^U1.
It consists of diaphragms arranged one after the other
in a row.

Resonators consisting of two flat mirrors were the
first forms of open resonators used in lasers'^26-'. It
could be assumed from the outset that the Q of such
resonators would be very small. Indeed, as shown in
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Sec. 1, when the current on the mirrors has uniform

distribution, each reflection is accompanied by a large

energy loss, of order 1/c. It became clear, however,

that the diffraction effects produced appreciable

changes in the field structure, and a current distribu-

tion on the mirrors such as would ensure much lower

losses. Finite mirrors separate from the aggregate,

as it were, the plane waves which form the beam; the

waves that travel at large angles to the axis rapidly

leave the resonator, and all the remaining ones are

reradiated many times.

Equation (3.10) for ribbon-type round (disc) mir-

rors was integrated ^27^ by successive iterations with

an electronic computer. This imitated, essentially,

the process of establishment of the oscillations; it was

found that some 300 successive reflections were

needed. The fields of the natural modes decrease quite

rapidly towards the periphery of the mirror. For ex-

ample, for the fundamental mode, at c ss 4π the field

on the edge of the ribbon or disc is approximately one-

quarter that at the center.

The radiation losses are smaller than 1/c, but

quite large. For example, for a ribbon operating at

the fundamental mode the loss is 0.08 at c = 2π, 0.03

at c = 4π, etc. For a round disc the corresponding

values are 0.18 and 0.07.

For rectangular mirrors, the distribution of the

current as a function of each coordinate is independent

and is determined by its own parameter c, in which a

is half the length of the corresponding side. The losses

connected with the finite size of the mirrors in each

of the two directions are additive.

In ^29^ there was used an entirely different and at

first glance paradoxical treatment of the entire proc-

ess of formation of a field in an open resonator with

plane mirrors. The resonator was regarded as a seg-

ment of a waveguide open on both ends (with a wave

propagation direction shown vertical in Fig. 6c). The

following result is known from waveguide theory: if

the oscillation frequency is very close to the cutoff

wavelength of the wave incident on the waveguide from

its open end, then this wave will be reflected almost

completely from the open end. Such a wave will be suc-

cessively reflected in the waveguide segment from the

upper and lower ends, forming standing waves. For a

very broad waveguide (waveguide with L much larger

than the wavelength), a mode with arbitrarily large

wave number can occur. This will be possible not at

all frequencies, but at some discrete frequencies close

to the critical wavelengths in the waveguide of width L.

The natural frequencies of the open resonator are thus

separated. The most interesting in this case is the

possibility of relating the radiation losses in the open

resonator with the radiation coefficient from the open

end of a waveguide, and determining the analytical

form of the current on the mirrors. A comparison of

the results of such a calculation with the exact val-

ues L27^ obtained with an electronic computer from

(3.10) has shown that they are very close. This for-

malism makes it possible to carry out the calculations

also for a resonator with two plane circular mirrors.

4. CONFOCAL PHASE CORRECTORS

1. The plane mirrors considered in the preceding

section, for which φ = 0, are a degenerate form of a

corrector. Waves whose field decreases in a direction

perpendicular to ζ are produced in such mirrors only

because the correctors are finite in size, that is, owing

to diffraction effects. When φ = 0 (3.10) does not have

in an infinite region eigenfunctions that decrease at in-

finity.

An investigation of truly focusing correctors, which

concentrate the beam near the axis because of the cur-

vature of the mirrors or the lenses, can begin with an

examination of infinite correctors. The larger the field

concentration effected by the infinite correctors, the

smaller the dimensions of the finite correctors of the

same form need be to ensure propagation of the wave

with low radiation losses. In other words, the finite-

dimension corrector forms which result in the lowest

losses should be the same as those of infinite correc-

tors that ensure maximum concentration. This state-

ment is not fully convincing at first glance, since it

does not take into account the field redistribution

caused by diffraction. We shall show later, however

(Item 4), that under definite conditions this can be rig-

orously justified, so that this redistribution, which

plays a decisive role in the absence of correctors

(3.16), is not particularly significant if the correction

is properly chosen.

Infinite correctors are described by Eq. (3.10) with

infinite limits. Let us write it down for the two-dimen-

sional problem in the form

-ifti, +

(>
c° t ?*I _L Γ_** 2 χ 1 i [_'

A \ w(x) e L e2 *• L J 2 I

(4.1)

We confine ourselves further only to the most tho-

roughly studied quadratic correctors, that is, we put

φ (χ) = ν -j- . (4.2)

The first eigenfunction of (4.1) has under condition

(4.2) the form

w (x) = e (4.3)

This function will decrease as | χ | —• °° only if ν lies

in the interval 0 < ν < 2; this is correct also for the

remaining eigenfunctions of (4.1).

The greatest concentration is attained if ν = 1, that

is, when the phase correction is

φ {χ) = — χ2 (4.4)

This phase correction compensates for the terms with

the coordinates squared in the expression for the dis-
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tance between two points of different mirrors. A simi-

lar elementary analysis shows that the best phase cor-

rection in three-dimensional problems (that is, for

rectangular or round mirrors and lenses) is given by

the function

φ ( χ , y ) = - £ (x' + y ) . (4.5)

We can arrive at formulas (4.4) and (4.5) also in a dif-

ferent way, on the basis of intuitive geometrical-opti-

cal representations. We shall speak, for concreteness,

of resonators. We stipulate that all the rays which

emerge from some point on the left-side mirror be

reflected in the right-side mirror and again be gath-

ered at one point of the left-side mirror. In the ray

treatment this means minimum energy dissipation and

maximum energy concentration. This condition will

be satisfied if the path length for all the rays emerging

from a given point of the left-side mirror and arriv-

ing at another point of the left-side mirror is the same,

that is, it is independent of the point on the right-side

mirror from which the given ray was reflected. This

condition also causes the phase correction to compen-

sate the x2 terms, etc., in R, so that this distance

contains only the product of the coordinates

k_

~~L
(4.6)

From this we again obtain formulas (4.4) and (4.5).

Bent mirrors with phase correction (4.5) were also

introduced in optical Fabry-Perot interferometers^35'36-',

although the intent here was not so much to decrease

the radiation losses as to facilitate the adjustment of

the instrument.

According to (3.11), the mirrors of the resonators,

for which condition (4.4) or (4.5) is satisfied, repre-

sent, within the limits of accuracy of the entire analy-

sis, parts (round or rectangular) of spherical surfaces

with centers in the middle of the opposite mirror. Since

the distance between the focus of the spherical mirror

and its top is equal to half the radius, the foci of both

mirrors coincide. Such a system is called confocal.

In the two-dimensional case, that is, for mirrors in

the form of ribbons, the mirrors should be parts of

cylindrical surfaces whose axes lie in the middle of

the opposite mirror. Formulas (4.4) and (3.14) make

it easy to find also the shapes of the mirrors used in

a mirror line.

In a lens line, the shapes of the lenses that ensure

phase correction (4.5) depend on the dielectric constant

e of the material. The lens half-thickness d(r) de-

pends on r in accordance with the formula ^'J

= x1 + y* (4.7)

which can be readily obtained by determining the opti-

cal path of the rays passing through the lens. Within

the limits of the accuracy of the entire analysis, it is

necessary here to carry out calculation for rays par-

allel to the axis of the system; this is the same approx-

imation made in (3.11).

Such lenses are also confocal—the foci of two neigh-

boring lenses lie in a single point located half-way be-

tween them. All rays from any one point on say, the

first lens are gathered at one point on the third lens,

and so on. In particular, the center of the first lens

is focused by the second lens on the center of the third

lens.

2. In this item we present the main results of an

analysis of confocal resonators. The starting point,

in accordance with the foregoing, is the integral equa-

tion (3.10) with phase correction (4.4) or (4.5).

We begin with two -dimensional problems. The in-

tegral equation, in which we introduce new variables

reduces to the form

' ="|/2πχα)(ξ').

(4.8)

() | χ ( ξ ) (4.9)
-Yl

Here c is defined in (3.1) and the eigenvalue χ differs

from λ in (3.10) by a phase factor; the loss per pas-

sage is equal to 1 - | χ | 2 . When c = °°, that is, for un-

bounded correctors, this equation has eigenfunctions

_ i , 2

wm(x') = Hm(x')e 2* , (4.10)

where Hm(x') are Hermite polynomials (Ho = 1,

H^x') = 2x', etc.), and the eigenvalues are xm = i m

([3'], No. 7.376.1). Equation (4.9) can be solved by ex-

panding the kernel in the unknown function in terms of

the functions (4.10). Then χ is determined from the

condition of the existence of a non-trivial solution of

the infinite system of linear equations for the expan-

sion coefficients of the sought eigenfunction in the

functions wm. However, for Eq. (4.9) we know also'-38-'

an explicit expression for the eigenfunctions and eigen-

values for any value of the parameter c. The eigen-

functions are proportional to the azimuthal wave func-

tions of a prolate spheroid of parameter c and argu-

ment x/a,

wm = SOm(c, -^), (4.11)

and the eigenvalues are proportional to the radial func-

tions of the argument 1:

where S and R are defined in ^ 3 8^.

Figure 8 gives the loss per passage as a function of
c for m = 0,1, 2.

These results also pertain directly to rectangular
mirrors. The losses due to the finite x and y dimen-
sions of the mirrors add up, while the eigenfunctions
are the products of the corresponding one-dimensional
functions (4.11), each of which depends on the corre-
sponding value of c.
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FIG. 8. Radiation losses for ribbon-type confocal correctorL"J.

The field on the mirrors is close to the field on the
infinite mirrors, and for small m it is described es-
sentially by the exponential factor in (4.10):

w (x) • where x. -V (4.13)

especially if a is noticeably larger than the width of
the "light spot" x s and the diffraction effects are
small.

Inside the resonator the field decreases with in-
creasing distance from the plane χ = 0, approximately
in accordance with the same law (4.13) as the current
on the mirrors, but somewhat more rapidly. The ef-
fective size of the field is smallest in the central plane
between the mirrors, where it is VT times smaller
than on the mirrors .

Expression (4.13) for x s can also be readily ob-
tained from elementary considerations. The dimension
of the focal spot, as is well known, is equal to the wave-
length divided by the sine of the angle at which the il-
luminated area is seen from the focus. If this area
has a dimension x s , then the size of the focal spot is
L/kxs· In the devices with a repeating field, which we
are considering, the light spot should satisfy the same
condition, that is, we should have L/kxs ~ x s .

The value of /cT is equal to the ratio of a to
(L/k) 1 / 2 . For large c in oscillations of the type (4.13),
only a small part of the corrector will be illuminated.
Of course, other oscillations are also possible, for
which the entire or almost the entire corrector is il-
luminated. In terms of the theory developed here, this
corresponds to oscillations of higher numbers; the light
spot (that is, the region in which w(x) has the same
order as w( 0)) increases with the number m, in ac-
cordance with (4.10). Analogous conditions occur also
in closed waveguides; when ka » 1, for example, a

plane wave, that is, the flux of optical rays, falling on
the mouth of a waveguide, generates an aggregate of
higher-mode waveguide waves. When C/2TT » 1, not
only the fundamental oscillation (n = 0) but many of
the higher modes have small radiation losses, and the
structure of the propagating wave is determined to a
great degree by the character of the excitation.

For confocal resonators with round mirrors, the
phase correction is given by the function (4.5). The
integral equation for the function w(r, S-) (•&—angle
in cylindrical coordinate system) has solutions with
arbitrary dependence on 3. By specifying this depend
ence we can carry out iteration with respect to d- in
(4.10), which leaves a one-dimensional equation; for
example, for the symmetrical oscillation, which, as
turns out, has the smallest damping, w = w(r) satis-
fies the equation ^27^

The eigenfunctions of this equation ̂ 37J with c = °° are
obtained by multiplying the Laguerre polynomials

(L 0 =Ln(r2/r|) 1, Lj(x) = 1 -x, etc.) by the function

e-r2/2ri r<=VT7k. (4.15)

The quantity r s can be regarded as the radius of the
light spot on the mirrors . Equation (4.14) and analo-
gous equations for w(r) in the expression w(r,i!>)
= w(r) exp (ini?) were solved in L1^39-1

 D V expanding
the unknown function and the kernel in series of the
eigenfunctions of the equation for c = °° and by reduc-
tion to an infinite system of algebraic equations. In -27^
this equation was solved directly by iteration. The r e -
sults of both numerical methods coincide.

Figure 9 gives the percentage loss per passage for
the fundamental wave as a function of c, while Fig. 10
gives the amplitude of the current on the mirrors as
a function of r/a for several values of c^27-'. These
two figures (along with more detailed and more com-
plete data pertaining to other waves, given in C27>38J);

together with the formula (4.5), are essentially the
central result of the theory of open resonators. They
show, in particular, that when c = 2π the radiation
losses are quite small, but they increase very rapidly
with decreasing c, approximately 100-fold when c is
halved.

3. An analysis of unbounded phase correctors is
useful also in investigations of finite non-confocal
correctors with quadratic correction (4.2); if a > x s ,
then the field on the finite and infinite correctors are
nearly the same. For unbounded symmetrical quad-
ratic correctors, the three-dimensional problem al-
ways reduces to a two-dimensional problem, to which
we confine ourselves.

For two identical mirrors with radius of curvature
p, the field is written out in (4.3), where we must put
ν = L/p. When ν = 1, that is, for confocal resonators,
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FIG. 9. Radiation losses for round confocal corrector^7].

(4.3) coincides, of course, with (4.10) with η = 0, or

with (4.13). For ν = 0 we get ψ(χ) = 0 and we have

the degenerate case of plane mirrors (p = °°). Pre-

cisely the same conditions obtain also if ν = 2, when

the curvature of the mirror is twice as large as that

of the confocal mirrors, that is, when their centers of

curvature coincide. When ν < 0 or ν > 2, that is, for

mirrors with even larger curvature or for convex mir-

rors, the field cannot be concentrated by infinite mir-

rors and no oscillations are produced.

The expression 2v -v2 is invariant under the sub-

stitution v' = 2 - v. Therefore the resonators corre-

sponding to such values of ν and v' have, in accord-

ance with (4.3), the same field structure on the mir-

rors. The curvature of the mirrors of one of these

resonators is larger than that of the confocal reso-

nators, while that of the other is smaller. The width

of the light spot on the mirrors of both resonators is

the same and according to (4.3) it is equal to

Υ Ljk
(4.16)

Apparently we can assume, provided only a is larger

than (4.16), that the radiation losses of such non-con-

focal resonators are equal to the losses of confocal

resonators with the same ratio of a to the width of

the light spot. In other words, the losses of non-con-

focal resonators can be determined from the Fig. 8,

if we take c to mean the parameter ka2(2y - vl )^2/L,

which is equal to

_ka^/2L Ζ" Λ 1/2 (4.17)

This assumption'-38'40-', which is not completely rigo-

rous (it does not take into account the differences in

the perturbation of the field by diffraction effects in

the compared resonators) was verified in ^41^ for one

value of c (c = π) by direct calculation. The dashed

curve of Fig. 11 gives the loss as a function of ν -1,

calculated in accordance with (4.17) and Fig. 8; the

continuous curve was obtained by numerically integrat-

ing (3.10) subject to the condition (4.2).

A similar analysis can be made also for a resonator

with two unequal mirrors. Assume that the first mir-

ror has a radius of curvature v^ and the other y2, so

that the phase corrections are determined by (4.2), in

which Ρχ = L/pi for the first mirror and y2 = L/p2

for the second. The functions Wj(x) and w 2 ( | ) , which

give the currents on the first and second mirrors, are

connected by the transformation

(4.18)

and by a second such transformation from w2(£ ) to

w ^ x ) . From this we can obtain an integral equation

for Wj(x) or w 2 ( | ) L41J β j s simpler, however, to

put immediately

Wi (x) ~ e~ai ~i, w2 (1) ~ e~°2 ~L. (4.19)

We then obtain from (4.18) the simple expressions for
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FIG. 10. Current on mirrors of confocal round correctors!.27J.
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and α 2

(V l-l)(v 2-l)

α 2 = - ι
(ν, —1)(ν2-1)

7 (4.20)

When ν\ = v2, expressions (4.19) and (4.20) go over
into (4.3). v± and v2 will not be real for all values of
«! and a2. If the radicand in (4.20) is negative, then
α.ι and a2 are pure imaginary and the fields (4.19) in
the infinite correctors do not decrease at infinity. In
resonators with finite correctors, this corresponds to
very large radiation losses. The oscillations have ap-
proximately the same character as in resonators made
up of plane or concentric mirrors .

The region of values of the parameters V\ and v2,
in which the infinite correctors form a beam of finite
width, is determined in accordance with (4.20) by the
conditions

0 < (vi —l)(v 2—1)< 1. (4.21)

In the region (4.21), the obvious energy requirement
| λχλ21 = 1 is also satisfied. Condition (4.21) was first
derived in -40^ by a different method.

Figure 12 from ^41^ is drawn in coordinates v^ — 1
and 1̂2 — 1. The shaded region is the one in which
(4.21) is violated. At the points lying in this region,
no oscillations are produced in the case of infinite
correctors, while in infinite correctors the losses are
appreciable. The curves on this figure show the atten-
uation for finite two-dimensional correctors (c = π);
in the shaded area it increases much more rapidly on
moving away from the confocal system.

An unexpected result is the instability of the con-
focal system. If the radii of curvature of both mirrors
deviate from the condition ρ = L in opposite directions
(pi > L and p 2 < L), then a nonfocusing system is pro-
duced (a1 and a2 are pure imaginary), and the limi-
tation of the field in finite systems is due only to dif-
fraction on the edges, which is accompanied by appre-
ciable radiation losses. This effect was verified ex-
perimentally " 4 2 j . Physically, of course, no jump-like

FIG. 12. Losses in resonator made up of different ribbon cor-
rectorst41].

changes in the oscillation conditions occur when a
small change takes place in the curvature; an infinite
corrector is a good idealization only in the case when
the field in it decreases rapidly as | χ | — °° . How-
ever, it is apparently advantageous to use resonators
with somewhat larger or smaller mirror curvature
than for confocal resonators, in order to guarantee
against an accidental transition into the region of large
los ses . [ 4 0 ]

We note that the analysis of resonators with non-
identical mirrors does not enable us to draw any con-
clusions with respect to the line tolerances. Deviation
of the form of one of the mirrors in the resonator from
the theoretically calculated value is equivalent to iden-
tical deviation of the forms of all the even (or all the
odd) correctors in the line, that is, to a case not r e -
alizable in practice. The question of tolerances in the
lines should be solved independently; in particular, the
problems of lines and resonators are no longer iden-
tical in this case.

4. The confocal correctors (4.4) and (4.5) have the
following property: the eigenfunctions w of the inte-
gral equation (3.10) are real. This means in-phase
mirror current (or field on the central plane of the
lens). This circumstance emphasizes the geometrical-
optical meaning of the assumed focusing. All the rays
emerging from the different points, for example the
left-side mirror, arrive at the center ( | = 0, η = 0)
of the right-side mirror with the same phase, so that
their fields are additive. The rays arriving at any
point ( | * 0, η * 0) of the right-side mirror from
the points (x,y) and ( - x , - y ) add up and also yield
a real quantity; an in-phase current on the left-side
mirror ensures an in-phase current also on the right-
side mirror.

However, the reality of w(x,y) is important also
in another respect, namely in the analysis of some
optimal properties of confocal resonators, to which
we now proceed.

We have indicated in Item 1 that the phase correc-
tion (4.4) or (4.5) is optimal in the sense that it shapes
a beam for which the radiation losses are the smallest
possible at the given frequency, given beam cross sec-
tion, and given distance between the coordinates. We
now prove this premise.

Assume that the field u(x,y ) is specified on the
aperture, that is, where the beam crosses the plane
ζ = 0. According to (3.2), the field at the section ζ = L
is given in terms of u by the formula

y)K(x, y, ξ, i\)dxdy. (4.22)

The kernel Κ is given in (3.8); it satisfies the condi-
tion K(x,y, ξ, η) = K(y, χ, η, ξ ). In (4.22) and in all the
succeeding formulas of that Item, the integral has been
taken over the area of the collector aperture, that is,
over the section of the beam at ζ = 0 and ζ = L. We
set up ̂ 43J the quantity
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["(Ι.
' u (χ, y) u* (or, y) dx dy

(4.23)

and call it the transmission coefficient. Strictly
speaking, X is the ratio not of the integral energy
fluxes across the first and second apertures, but of
the integral energy densities. The energy density and
flux are proportional to each other only for fields close
to plane waves. If u(x,y) or ν(ξ,η) vary noticeably
over distances of the order of the wavelength, then it
is necessary to write for the energy transfer coeffi-
cient a different expression which, however, is much
more difficult to investigate than (4.23). Assuming
expression (4.23) for X, we exclude from considera-
tion "superdirectional" systems, analogous to super-
directional antennas.

The functions u(x,y) obtained below, which guaran-
tee a maximum of the functional X, are smooth func-
tions. Consequently, they really ensure an optimal so-
lution among the non-superdirectional systems.

Substituting (4.22) in (4.23) we obtain

\\u.(x, y)u*(x',y')Ki(x, y, x\ y')dxdydx'dy'
X[u{x, v)] = —

jj u (x, y) u* (x, y) dx dy

where

Ki(x, y, x', y')

(*, y, l,n)K*(x', y', ξ, n)dldr\.

(4.24)

(4.25)

The functional (4.24) has an extremum, as is well
known, if the function u(x,y) satisfies the equation

u(x, y)Ki(x, y, x', y')dxdy = Au(x', y'). (4.26)

Its eigenvalues are real, since the kernel Kj (4.25) is
hermitian; the largest of them is equal to the sought
maximum of the coefficient X~i3^.

Let us show, following'-24^, that the field of the nat-
ural waves of confocal resonators (or of corresponding
lines) satisfies (4.26). The already noted reality of the
functions w(x,y) —the eigenfunctions of (3.10) for the
phase correction (4.5) —signifies that the functions
u(x, y) satisfy the condition

u*(x, y)=u(x, (4.27)

Equation (3.7) has therefore for fields of confocal r e s -
onators the form

u(x, y)K(x, y. Ι, η) dx dy = Ku* (ξ, η). (4.28)

Let us take an equation which is the complex conjugate
of (4.28) and form an iterated equation. We then obtain
an equation identical with (4.26), the eigenvalue of
which is the quantity | λ | 2 .

Thus, the beam shaped by the correctors (4.5) is
optimal, since the function (4.5) has the property that
equation (3.10) generates real eigenfunctions. The
largest attainable value of the transfer coefficient
(4.23) is equal to the square of the modulus of the

largest eigenvalue of (3.7) and (3.10).
5. It is obvious that the field formed in a line or in

a resonator with optimal phase correctors ensures the
smallest losses also for single transmission between
two antennas with identical apertures, located at a rel-
atively small distance of order ka2 from one another.
However, there exists also a simple and fruitful anal-
ogy [w] between transmission at short and^ong dis-
tances. · It can be shown that the functions w(x, y) ob-
tained above solve simultaneously also the problem of
antennas with optimal directivity patterns. It turns out
that if an in-phase field is produced on the plane aper-
ture of an antenna, with a distribution given by the so-
lution of (3.10), then the radiation pattern of such an
antenna ensures concentration of maximum relative
energy within a specified angle 2a.* The parameter
c for this distribution is equal to

c = kaa. (4.29)

It is known that the width of the directivity pattern
is of the order of 27r/ka. Equation (4.29) and the con-
dition ο/2π > 1 obtained above are necessary in order
for the energy outside the given angle to be small, and
show that if one does not go over to superdirectional
antennas, the directivity pattern of the beam cannot be
noticeably decreased. However, it is just the produc-
tion of an optimal field distribution (according to Fig.
10) which enables us to make the summary energy out-
side the angle 2π quite small. This energy is equal to
the radiation losses in the equivalent confocal system.
For circular diaphragms it is given by the curve of
Fig. 9; the parameter c is determined from (4.29). hi
order, for example, that the energy in the side lobes
not to exceed 4 χ 10"3 of the total radiated energy, the
ratio of the radius of the aperture to the wavelength
should be not less than 0.8/a. A small increase in c
enables us to decrease the energy in the side lobes
practically to zero, but it is impossible to reduce no-
ticeably a for a specified ka, since Λ increases very
rapidly with decreasing c.

Let us formulate once more the condition for the
optimality of the re-radiators located in the near zone,
and the condition for the optimality of the antennas. As-
sume that the dimension of the correctors, the wave-
length, and the distance between correctors are speci-
fied. This defines the parameter c (3.1). By making
the correctors confocal, we can ensure the maximum
possible energy transfer between them; the losses de-
pend on the value of c and are obtained from Figs. 8
and 9. This produces an in-phase field on the concave
surface of the mirror (or on the plane surface in the
middle of the lens). The distribution of the field over
the radius for the symmetrical (most convenient) dis-
tribution for round correctors is given in Fig. 10. The

*For the two-dimensional problem this follows from a com-
parison of the results contained int" ' 4 5 ' 4 8 ] ; however, a general
proof valid also for a rectangular and round aperture can be given.
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same distribution, produced on a plane surface, results

in the far zone in an optimal diagram for a solid angle

equal to the angle at which one corrector can be seen

from the center of the neighboring one. The parameter

c for the diagram is given by formula (4.29).

6. The calculation of systems which are under quasi-

optical conditions reduces formally to asymptotic dif-

fraction problems. These problems have a character

different from the classical problems, for which ef-

fective calculation methods have been developed long

ago. The use of the parabolic equation has not led so

far to qualitatively new results. A theory based on

wave equations or Maxwell's equations is always com-

plicated, and the transition to the asymptotic conditions

is very cumbersome.

On the other hand, although direct application of the

ray representations is not justified, it nevertheless

seems to us that in the construction of a general and

effective theory the starting point should be some mod-

ification of ray optics rather than wave optics. This

modification should consist in the fact that within the

concepts of geometrical optics there will be included

several—two, three (not more)—of the simplest r e -

sults of diffraction theory. It may be sufficient to use

the theory of the focal spot and the theory of diffraction

on a half-plane. Were such a simple extension of the

ray treatment to be successful, one could attempt to

apply to the quasioptical problems the entire tremen-

dous arsenal of geometrical optics. This apparently

is the direction in which ^4 9^ is oriented.

It would be desirable, for example, to formulate the

ray treatment for confocal systems in such a way as to

make rigorous precisely the geometrical-optic proof

of their optimality. Then it would probably be possible

to clarify the question of tolerances and the character

of those serious disturbances occurring in the opera-

tion of confocal systems under certain deformations

of the correctors W°~423. The development of input

converters for lines which match the field of the source

with the field of the wave in the line should probably

also be based on the optical theory of lenses. A more

confident introduction of geometrical optics in the the-

ory of broad waveguides will make it possible to con-

struct a flexible and effective theory of prisms, lenses,

and other wave guide devices.

Note added in proof. The parabolic equation was used not
only inM but also in[50'53]. Of particular interest is the treatment
jn[so,52j Q£ j.jje exponential decrease of the field for small values
of m (4.10) as the manifestation of caustics that bound ray bun-
dles. Int"], which is related tot29], use was made in the deriva-
tion of (3.10) of the fact that following replacement of L by χ - ξ
the factor in the kernel of (3.8), which depends on χ and y, be-
comes the Green's function of the parabolic equation. Im35J it has
been proposed to use the parabolic equation to refine the geomet-
rical-optical calculation of lenses.
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