ACADEMICIAN Yakov Borisovich Zel'dovich celebrated his fiftieth birthday on March 8, 1964. He still continues with youthful passion to display his creative energy in all new domains of theoretical and experimental physics. Zel'dovich has notably succeeded in not allowing his scientific enthusiasm to diminish and to this day he is still finding more profound approaches to the numerous problems with which has been concerned during his scientific life. His first field of activity, which is still far from being exhausted, was chemical physics. Leaving the nine-year school (the only educational institution which he officially attended) he became a laboratory assistant in the Mekhanobr Institute (for mechanical processing and dressing of useful minerals).

During an excursion to the Leningrad Physico-technical Institute, the seventeen year old Zel'dovich made such an impression with his questions on the director of the laboratory (S. Z. Roginskii, former corresponding member of the U.S.S.R. Academy of Sciences) that the latter, with the help of A. F. Ioffe, arranged a transfer for the talented youth to the Leningrad Physico-technical Institute. The Institute was soon split up and he became a laboratory assistant in the Institute of Chemical Physics, where he took part in experiments in S. Z. Roginskii's laboratories. The first published work to which Zel'dovich contributed, with S. Z. Roginskii and L. A. Sena as joint authors, dealt with the mysterious phenomenon of "remembrance" of crystalline shape in the repeated crystallization of nitroglycerine. Of course, neither this work, nor the difficult measurements (carried out with S. Yu. Elovich) of the kinetics of the catalytic oxidation of CO by MnO$_2$, marked out the scientist's future path, but it is important to note that his theoretical work was preceded by a serious mastery of experiment. It is not without reason that, among the numerous pupils of Yakov Borisovich, a number of first class experimentalists are to be found alongside the theoreticians. From a study of the processes of heterogeneous catalysis, the scientific interests of the young investigator naturally moved on to their theoretical basis—the absorption theory for a heterogeneous surface; at the age of twenty he produced his first independent work, devoted to the theoretical interpretation of Freundlich adsorption isotherms. Here the power of the theoretician can already be felt. It was a case of a difficult mathematical problem, the general methods of solution of which had been a subject for dispute among specialists: the solution of a first-order integral equation, i.e., finding a spectrum from the integral effect. By a simple method of approximation, Zel'dovich produced a complete solution for the case which interested him. This work, together with the work of M. I. Temkin, who was going in a rather different direction, served as the beginning of the whole new field of chemical physics—the theory of adsorption and catalysis on heterogeneous surfaces, to which extensive monographs are now dedicated. Later the author himself moved away from these questions—perhaps the only case in his scientific career. The next stage was his participation in wide-ranging work under the inspiration and general guidance of N. N. Semenov on the combustion oxidation of nitrogen. Here
there appeared another trait of the scientist—an inclination towards problems which have important practical aspects, and a strong interest in the practical applications of results which had been obtained. The work in question concerns an extremely important and now practical task: the fixation of atmospheric nitrogen. It was not published as an individual monograph until several years later (jointly with P. Ya. Sadovnikov and D. A. Frank-Kamenetski). Zel'dovich soon became the director of a complex of experimental theoretical and technical operations. The production engineer, G. A. Barskii, who became one of his closest pupils and long standing collaborators, was invited to handle the technical and economic side. Zel'dovich has been working on this problem right up to the present time: articles by him and his colleagues appear in his collection “The Fixation of Atmospheric Nitrogen” which has just appeared.

Zel'dovich is one of the founders of an important branch of chemical physics—macroscopic kinetics, which investigates the laws of a chemical reaction in connection with the physical phenomena of diffusion and heat transfer, phenomena which complicate the real course of a reaction both in nature as well as in technology. To him must be given credit for the basic result in the diffusion kinetics of porous media: the velocity of the total reaction on a porous surface is the geometric mean of the reaction velocity and the diffusion velocity. Continuing the classic investigations of N. N. Semenov and his school, Zel'dovich made a particularly noteworthy contribution to that important branch of macroscopic kinetics which is concerned with combustion theory. Together with D. A. Frank-Kamenetskii, the first of his many pupils (and he had pupils from the time when he was twenty onwards) he found a quantitative link between the propagation velocity of a flame and the kinetics of the chemical reactions within it. They were the first to understand that the problem of the stationary flame distribution mode is a problem with its own significance. Zel'dovich later investigated this problem in an exhaustive manner and accurately established the essential approximations and idealizations, in particular the importance of the assumption about the zero reaction velocity in the neighborhood of the initial state. Further investigations into this question produced nothing that was significantly new. He continues the development in depth of flame-propagation theory to this day. As early as 1962, his graduate students A. G. Istratov and V. B. Librovich established with accuracy the method of approximation which they had used in calculating the flame velocity for individual chain reactions and obtained remarkable agreement with the measurements which another of his pupils, A. I. Rozlovskii had obtained using chlorine-hydrogen compounds. Zel'dovich is responsible for the refined mathematical solutions of such basic problems of combustion theory as ignition by an incandescent surface, the limits of flame propagation and many others. The very setting of the ignition problem presented considerable mathematical difficulties which he overcame brilliantly by finding the invariance of the equations in relation to a certain transformation group. It must in general be said that some special sense invariably suggests to him the mathematical approach needed for the particular problem, which frequently produces what are innovations even for mathematicians. Through him there arose a large scientific school that concerned itself with theoretical and experimental investigations of combustion reactions and worked out an original and fruitful approach to them.

In recent years the prominent mechanical engineer G. I. Barenblatt was attracted to the work, and in cooperation with him, Zel'dovich successfully applied contemporary methods of computer mathematics to combustion problems. Developing the method proposed by the English research worker, Spalding, they calculated the flame propagation velocity for a number of complicated systems by actually analyzing the result of the solution for the stationary mode, and brilliantly confirmed in this way the conclusions of the approximate theory.

Work on flame stability belongs to this chapter of events. The stability of the uniform propagation mode was successfully proved, based only on the monotonic behavior of the temperature distribution curve. Zel'dovich and his school are responsible for the very idea of studying high temperature chemical kinetics by measuring the flame speed, as well as for its successful experimental realization.

During the Second World War, combustion theory acquired a practical significance of vital importance. The well-known work “On the Combustion Theory of Gunpowder and Explosive Substances” shows the nature and extent of his work in that period and the monograph “Reaction Momentum of Solid-Fuel Rockets” (in collaboration with M. A. Rivin and D. A. Frank-Kamenetski) is a comprehensive work on combustion mode stability in a semi-enclosed space.

With these works, Zel'dovich established the physical basis for the internal ballistics of solid-fuel rocket motors. The importance of this science in our times cannot be over-estimated. Starting from the fact that the combustion of gunpowder takes place in the gaseous stage (similarly to the manner in which, according to A. F. Belyaev, the combustion of evaporating liquid explosives takes place) after the stage of relatively low temperature decomposition—the gasification of the powder—he obtained expressions for the powder combustion velocity and its dependence on temperature and pressure.

Fundamental innovations were the analysis of non-stationary modes, the understanding of non-stationary combustion velocity which Zel'dovich introduced and the clarification of the limits of stability of the stationary modes.
The transient mode theory made it possible to explain the extinguishing of the powder when pressure is decreased and the increased combustion velocity at increased pressure. From this theory can be derived the amplification of sound when reflected from a burning surface, which leads to undesirable oscillations in solid-fuel rocket motors. The same theory explained a malfunction in these motors consisting of a flame-out followed by extinguishing of the powder.

Zel'dovich recently published, in cooperation with P. M. Zaldel', a new main work on combustion, in which combustion is considered not in the flame propagation mode, but in the induction mode, where a compound is heated up by local reaction heating and by heat transfer from the flame. In the first years after the war, Zel'dovich opened a Combustion Process department in the Moscow Mechanical Institute and delivered a course of lectures on the subject. Notes made on two parts of this course, revised by him with V. V. Voevodskii and D. A. Frank-Kamenetskii and then lithographed, still enjoy great popularity among students, although they are out of print.

The combustion theory was for him a stepping stone to a series of new directions in science.

Thus, the transition from the study of chain reactions of combustion to nuclear chain reactions was quite natural. And indeed, shortly after the appearance of a nuclear physics section in "Uspekhi Fizicheskikh Nauk" Zel'dovich and Yu. B. Khariton published a survey entitled "Fission and Chain Disintegration of Uranium"—the first comprehensive exposition in the world's scientific literature of this series of problems, an exposition which contained a great many original and fundamental results, and which is valued to this day as a classic work on the scientific basis of nuclear energy theory.

Another important field into which he moved, starting from combustion theory, was the theory of shock waves and detonations.

Detonation combustion was investigated long ago; in the gaseous state the reaction propagates with a velocity of the order of 2 km/sec and in the condensed state with a velocity of the order of 7—8 km/sec.

At the beginning of the 20th century Chapman and, part from detonation waves, he studied extensively ordinary shock waves in inert chemical compounds. Particularly interesting is his simple theory on the propagation of converging spherical shock waves. For a rigorous solution this problem demands complex numerical calculations; starting from simple physical premises, Zel'dovich produced an analytical procedure of perfectly satisfactory accuracy.

Another interesting problem, first solved by Zel'dovich, is that of the high velocity impact on the surface of a medium. This is one of the first of the special self-similar problems. It is interesting, that in the case of such an impact, the shock-wave momentum

*In a later erratum [UFN 83, 196 (1964)] Ya. B. Zel'dovich states that the most important qualitative concepts in this question are due not to him but to K. I. Shchelkin.
received by the medium can be much greater than the momentum of the striking body because of the momentu
m of the scattered matter which is borne in the op
posite direction.

The participation of conduction processes in shock
wave propagation was considered long ago. It happened,
under known conditions, that a strong transfer of ther-
mal (radiant) energy can smooth out a shock. Zel’dovo-
vich showed that this is correct only in that approxi-
mation where the radiant energy range is considered
to be insignificantly small; at a finite value of the range
the pressure discontinuity is always conserved. Atten-
tion must also be drawn to Ya. B. Zel’dovich’s work on
the radiant energy transfer not connected with the
shock wave. This is dealt with principally in his work
on the cooling of air by radiation (in cooperation with
A. S. Kompaneets and Yu. P. Radzicer) where for the
first time account was taken of the sharp variation in
the transparency of air at 10,000°, due to ionization.
It leads to appearance of the characteristic thermal
wave whose existence Zel’dovich deduced theoretically.

Another example of non-linear conduction is the
problem of heat propagation from a point source. In
distinction to linear conduction, a steep traveling front
arises here.

Later, together with G. I. Barenblatt, Zel’dovich
analyzed also the thermal dipole. This problem is the
thermal analogy of the short blow problem.

A great part of his creative work, particularly in
later years, is devoted to the theory of elementary
particles. Here is clearly displayed his remarkable
intuition and ability to see the new qualitative peculi-
rarities of a problem where no clear theory had been
formed before.

A more convincing example is doubtless his dis-
covery in 1955 (in cooperation with his young and
talented pupil S. S. Gershtein) of the phenomenon of
the conservation of a vector current in weak interac-
tions. The close analogy with electrodynamic inter-
action, which was discovered by him, lies now at the
base of the theory.

The universality of the theory of weak interactions
permitted Zel’dovich to forecast the life time of π-
meson β decay. Experiments performed in Dubna and
Geneva revealed this rare process and confirmed what
had been forecast.

Zel’dovich and Gershtein’s work on the theory of
the catalysis of nuclear reactions by negative muons
led to the development of a new trend—μ-mesic chem-
isty (the interaction of muons with the electron shells
of atoms) and inspired some excellent experiments
which were carried out in Dubna.

Involvement with nuclear theory and the theory of
elementary particles led Zel’dovich to a new field—
astrophysics. The beginning of this quite recent period
was marked by a series of outstanding lectures and
many articles on the application of the ideas of the
general theory of relativity to questions of the evolu-
tion of the stars and the universe. Brilliant sugges-
tions he had made about the role of the neutrino in the
development of the universe indicated new paths along
which further investigations might be carried out. And
in this new field, his work was characterized by the
way it unexpectedly cut across ideas and methods of
extreme variety.

The many sided nature of Zel’dovich’s activity can
be seen in one more example. It is well known that a
student learning higher mathematics frequently meets
great difficulty in attempting to apply his knowledge
to the analysis of physical and mechanical processes.
Zel’dovich devised a new teaching approach in which
the necessity of differentiation and integration was
evident from the problem that was set.

Using this approach, he wrote his “Higher Mathe-
matics for Beginners” in which the exposition is ar-
ranged so that all the mathematical concepts are
closely limited to concrete physical phenomena. The
book was well received by teachers in establishments
of higher education. They considered it as a new spirit
in the task of spreading mathematical knowledge. It
ran through two huge editions in this country and was
also published in a number of other countries.

What has been said here is far from a complete
catalogue of the most important fields in which Zel’-
dovich did brilliant work, but it may give some idea of
his scientific make-up. The creative activity of a sci-
entist increases exponentially. The circle of his ac-

tivities widens as the acquisition of new interests en-
hances the earlier ones. In our century of narrow
specialization Zel’dovich can be seen to approach more
closely the ideal of the universal scientist, so rare in
our days. His talent as a theoretician and experimen-
talist, his passionate love of science and his indomi-
table temperament stand out brilliantly. An analysis
of the dynamics of his scientific creative work gives
firm grounds for believing that it is entering a period
of highest creative accomplishments. And so we wish
Yakov Borisovich Zel’dovich these successes, for the
good of science and humanity.

LIST OF PUBLICATIONS BY Ya. B. ZEL’DOVICH

1. Three-dimensional Chains in Catalytic Hetero-
geneous Reactions, ZhFKh (J. Phys. Chem.) 4(2) (with
S. Z. Roginski).

2. The Use of Statistical Mechanics in Heterogene-
ous Equilibria, JETP 4, 133 (1933) (with V. S. Sorokin).

3. The Mechanism of Catalytic Oxidation of an Oxide
of Carbon by Manganese Dioxide, ZhFKh 6, 234 (1935),

4. Theory of Interaction of an Atom and a Metal,
JETP 3, 22 (1935).

5. On the Theory of the Freundlich Adsorption Iso-

12. The Relation Between the Liquid and Gaseous State in Metals, JETP 14, 32 (1944), Acta Phys. 18, 194 (1943) (with L. D. Landau).

15. Investigation of an Equation of State with the Help of Mechanical Measurements, JETP 32(6), 1577 (1957), Soviet Phys. JETP 5.

2. Chemical Physics—Combustion

7. The Kinetics of Chemical Reactions in Flames, JETP 10, 1116 (1940) (with N. N. Semenov).

8. The Influence of the Grashof Number on a Flame, JETP 11(1) (1941).

25. The Possible Modes of Stationary Combustion, PMTF 4, 27 (1962) (with R. M. Zaibel’).

3. The Physics of Shock Waves and Detonations

3. The Distribution of Pressure and Velocity in the Products of a Detonation Explosion, Particularly in the Case of Spherical Propagation of a Detonation Wave, JETP 12(9), 389 (1942).

25. The Stability of a One-dimensional Detonation and Its Extinction, PMTP 6 (1963) (with R. M. Zaïdel').

27. The Transformation \(K_s^0 \rightarrow K^0\) by Electrons, JETP 36, 1381 (1959), Soviet Phys. JETP 9, 1284 (1960).

38. The Form Factor for \(K_{33}\) and \(K_{33}\) Decays, JETP 39, 1766 (1960), Soviet Phys. JETP 12, 1232 (1961).

5. Cosmogony

6. Monographs

1. Teoriya gorenii i detonatsiya gazov (Theory of Combustion and Detonation of Gases) AN SSSR, 1944.

2. Teoriya udarnykh voln i vvedenie v gazodinamiku (Theory of Shock Waves and Introduction to Gas Dynamics) AN SSSR, 1946.

5. Teplovoi vzryv i rasprostranenie plameni v gazakh (Thermal Explosion and Propagation of Flame in Gases) Mosk. mekh, inst., 1947 (with V. V. Voevodski).

