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INTRODUCTION

AHE phenomenon of light scattering is well known.
Beginning with the classic studies of Rayleigh^ at the
end of the last century, its theory has been intensively
developed as one of the branches of physical optics and
molecular physics. Investigation of the scattering of
light by a homogeneous ("optically empty") medium
free from foreign particles shows that light can be
propagated in such a medium only in the directions
prescribed by the laws of geometric optics. In all
other directions, the light waves emitted by the elec-
trons of the molecules (or atoms) under the action of
the field of the incident light wave are strictly coher -
ent, and destroy one another by interference. Smolu-
chowski'-2^ is responsible for the very important idea
that complete homogeneity of media never exists, and
that light scattering takes place at the microhetero-
geneities of the medium, or density fluctuations occur-
ring in volumes that are small in comparison with the
cube of the wavelength of the light; these arise from
the chaotic thermal motion of the molecules. On the
basis of these ideas, Einstein'-3^ developed a quanti-
tative thermodynamic theory of light scattering in
liquids and solutions. In the latter theory, concentra-
tion fluctuations within volumes of the same order of
magnitude play the major role. As applied to gases,
Einstein's theory gives the same result as Rayleigh's
original theory. The fundamental law derived in these
theories—that the scattering intensity is inversely
proportional to the fourth power of the wavelength of
light—agrees with a number of light-scattering phe-
nomena of everyday observation, such as the blue color

of the sky and of sea water, the red color of the sun-
rise, etc.

Further experimental and theoretical study of mo-
lecular light scattering (especially the studies of L. I.
Mandel'shtam and G. S. Landsberg, Raman and Krish-
nan, Cabannes, and others) has made it possible to re-
late the measured characteristics of the scattered light
to the physical parameters of the molecules in the mat-
ter scattering the light. Thus, the study of the inten-
sity and polarization of the scattered light has become
a method for studying the structural details of mole-
cules. As applied to molecules of substances of low
molecular weight, these problems have been treated
in detail in a number of monographs. ̂ 4"7^ Relatively
recently, within the last two decades, light scattering
has also become one of the most important physical
methods of studying the structure and properties of
macromolecules, or polymer molecules. At present
its application is not limited to determining molecular
weights (which is a rather complicated problem in it-
self for polymers with Μ « 10e—107), but includes the
determination of such very important characteristics
of a polymer as the dimensions and structure of its
macromolecules, polydispersity of samples, compo-
sitional dispersion of copolymers, thermodynamic
parameters of intermolecular interaction in solutions,
etc. The relative experimental simplicity has facili-
tated the incorporation of the light-scattering method
into the practice of many laboratories involved with
polymer physics or physical chemistry. The vast ex-
perimental material that has accumulated in this field
has been very little systematized. In particular, there
exists not only no monograph literature on this prob-
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lem in Russian, but not even any review literature.
This review will endeavor to fill this gap to some ex-
tent. First place will be given here to the most impor-
tant theoretical and experimental studies performed
within the last 8—10 years, as well as to some prob-
lems requiring further development. This review is
concerned with light scattering by molecular solutions
of polymers. We shall not consider here such phenom-
ena as light scattering by colloidal solutions, latices,
or gels, nor light scattering by polymer films, bearing
in mind only the application of light scattering in study-
ing the structure of individual macromolecules. The
size of this review does not permit us to spend time
on the peculiarities of the necessary apparatus or on
certain important methodological problems that the
reader can find in part in the specialized literature.'-8'9-'

1. BASIC IDEAS OF THE THEORY OF LIGHT SCAT-
TERING BY POLYMER SOLUTIONS

a) General Relations

We shall not give here a systematic presentation of
the theory of light scattering by liquids and solutions.
The pertinent material can be found in monographs.^l~1^
We shall give a resume1 of the basic formulas and rela-
tions concerned with light scattering by polymer solu-
tions, which are necessary for the further discussion
of the theoretical and experimental studies.

Einstein ̂  derived the following relation for the
intensity I of scattering from molecularly -disperse
solutions:

Γ lie

J
RT

(1)

where c is the concentration of the solution, Π is the
osmotic pressure, Η is the optical constant of the so-
lution, as will be defined below; and R and Τ have
their usual meanings.

Since the osmotic pressure of the solution is given
by the series

JL__£
RT ~~ Μ

(2)

in which Μ is the molecular weight of the solute, and
A2 is the second virial coefficient, (1) and (2) imply
that

/ = -
He

or

Hi

(3)

(3a)

The general relation (3a) directly implies that one
can determine the molecular weight Μ of a polymer
from measurements of the scattering intensity I, if
one knows the concentration c and the constant Η of
the solutions, by graphical extrapolation of the quan-
tity Hc/I to c = 0.

FIG. 1. Derivation of the general relations: components of the
electric vector of the light wave in the primary (v, h) and scat-
tered (1^,36) beams, corresponding to scattered-light intensities
Iv, Ih, ^<s£

We shall now consider some concrete cases of light-
scattering measurements, and shall limit ourselves
here for the time being to solutions of identical non-
interacting particles. We shall assume that the solu-
tion is ideal (A2 = 0), and that the scattering takes
place without change of the wavelength of the incident
light. That is, fluorescence does not take place.

Let the scattered light be observed at point A in
the plane containing the primary (incident) and scat-
tered beams (Fig. 1) at a distance r from the scatter-
ing volume Ω of the solution. Then the relation be -
tween the intensity 1(9) of the scattered light (the en-
ergy flux per unit area at point A) and that of the pri -
mary beam Io has the form

(4)
Λο r

where No is the number of solute particles per cm 3 of
solution, P(9) is some function of the scattering angle
θ depending on the polarization of the light (in the in-
cident and scattered beams) and the properties (di-
mensions, structure, and anisotropy) of the scattering
particles, and a is the mean excess polarizability of
the scattering particles; λ0 is the wavelength of the
light in vacuo. Since in ordinary practice one makes
relative measurements of the intensities 1(9) and Io,
rather than absolute, the most important quantity is
the reduced excess scattering intensity* 1Q, which
equals

h = —r-k—~ •-""" ~Τϊ~ Λ ο (α)"ρ (θλ (5)

The mean excess polarizability a of the solute p a r -
ticles involves the refractive indices η of the solution
and n 0 of the solvent (at low concentrations), through
the well-known relation t

re2 — n\— 4nN0a. (6)

In very dilute solutions, Δη = η - n 0 « n0. Hence, tak-
ing into account the fact that c = N 0 M / N A , where Ν A
is Avogadro's number,

*In the foreign literature the reduced intensity is often called
the Rayleigh ratio, and denoted by RQ.

tCf.t7], Vol. I, p. 376.



272 V. Ε. ESKIN

Mn0

2πΝΑ

Jn_
dc

(7)

where

dn : Δη

is the refractive increment of the solution. Using (5)
and (7), we can derive

The factor standing in front of οΜΡ(θ) in (8),

4π'η§
λίΛ'Α

dn
dc

(8)

(9)

is a constant for a given polymer-so lvent s y s t e m ,
characterizing the optical properties of the solution.
Hence we can write the following general relation for
the reduced excess intensity:

(10)

b) Polarization Relations of Solutions of Particles of
Different Types

Further, we shall assume that the scattering is ob-
served at an angle θ from the incident light, and that
the plane containing the incident and scattered beams
is horizontal (as is usually the case experimentally).
We shall designate the component of the reduced inten-
sity of the scattered light belonging to light vibrations
having a vertical electric vector by T, and that having
a horizontal electric vector by S6 (Fig. 1). The sub-
scripts v, h, or u affixed to these quantities will in-
dicate the polarization state of the light in the incident
beam: ν and h for polarized incident light having a
vibration direction respectively vertical or horizontal,
and u when the incident light is natural (unpolarized).*

The six quantities &β\χ,<Μν,<Βϋ\^, ^ u , Tv, and Th
are related by the four obvious relations

(11)
= (Tv cos2 θ + S^v sin2 θ),

Thus, any two of these six quantities are independent, t
The total scattering intensity I9 0ou with natural in-

cident light can be expressed in terms of the quanti-
ties Tv,3Vh· and T\ as follows:

•Hereinafter we shall take the polarization direction of the
light to mean the direction parallel to the electric vector of the
light wave.

tThe latter conclusion from the relations (11) is valid for
particles of any dimensions, shape, and anisotropy (see below),
provided that they are not optically active, and their axes are
oriented at random with respect to the plane in which the scat-
tering is being observed.M

The depolarization of scattered light consists in the
appearance in the scattered light of an &β component,
which is absent in the case of isotropic scattering, re-
gardless of the polarization state of the incident light
(at θ = 90°), owing to the fact that the vibrations in a
light beam are transverse. When depolarization takes
place, it is measured by the value Δ of the ratio of the
36 and f components of the scattered light. Three
quantities, Δν, Ah, and Δα are to be distinguished in
accordance with the polarization state of the incident
light:

υ — ζϊ/ο υΙJ> j}·,

(12)

Optical anisotropy of a particle consists in its hav-
ing a polarizability that differs along the different axes
of the particle. In distinction from isotropic particles,
anisotropic particles in solution show depolarized scat-
tering. The cases of scattering in solutions of isotropic
and anisotropic particles, and small and large par-
ticles, essentially differ with regard to the angular
distribution pattern (indicatrix) of the scattered light
and its polarization. We shall treat these cases sepa-
rately below.

The relations (12) show that only two of the three
quantities, Δν, Δη, and A\i are independent. This fact
permits us to determine the quantity Ah, which is dif-
ficult to measure, from the measured values of Δ ν and
Δ α by using the last of the relations (12).

An analysis of the polarization state of the light
scattered by a system of particles can be useful in
establishing what type of particles they are. We must
bear in mind that Δ ν , Ah, and Δα are taken to mean
the values of the degree of depolarization of the excess
scattering of the solution obtained by extrapolation to
infinite dilution (c — 0) and measured at an angle of
90° with respect to the primary light beam.*

Small isotropic particles. In this case, the dipole
moment of the particles induced by the field of the
light wave coincides in direction with the field. Hence
(see Fig. 1) with natural (u) and vertically polarized
(v) incident light, J5?u = $ΰν = 0, and Tv > 0, while hor-
izontally polarized (h) light, 3>&h = ^ h = 0. Hence it
follows that

Δ ο = 0 , Au=0, ΔΛ=-5-.

Small anisotropic particles. In this case, the dipole
moment of the particles induced by the field of the
light wave forms an angle with the field direction
(see '-4>5-' or '-7-', Vol. I) . Consequently, the depolar-
ized components e%!,\, V^, and e^h are no longer zero.

•The quantity Δ extrapolated to zero scattering angle will
be denoted as Δ(0°) below, e.g., Δν(0°).
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Since from symmetry considerations ^\ = e^h. then
(taking into account the last of the relations (11)) all
three depolarized components are equal to one another.
Hence, (12) implies that

Λ. - Ι Α _ _ 2 Δ ^
ΖΛ/i — 1, L\u — Λ ι Λ

Large isotropic particles. When the dimensions of
the particles are comparable with the wavelength λ of
the light, the latter induces a quadrupole moment in
them, lying in the plane of observation of the scatter-
ing, as is shown in Fig. 2. At each given instant, two
oppositely-directed dipoles (solid arrows) are pro-
duced in two cross-sections of the particle. They can
be replaced by two dipoles (dotted arrows) emitting
in the y direction (at an angle of 90° from the direc-
tion χ of the light beam). The path difference for the
scattering of the latter dipoles is ((λ/2) + a) . Since
a «i λ, there is no longer total interference of the
emission of these dipoles in the y direction, and a
finite depolarized component remains, ffi?h > 0. The
quadrupole does not emit perpendicularly to its own
plane, and hence, f"n = 0. For the same reason, there
is no quadrupole emission in the y direction with ver-
tically polarized (v) incident light. That is, &ew - 0,
while the component Tv of the scattered light contains
only dipole emission.

+

y

a
X

FIG. 2. The quadrupole moment induced in a large particle by
the action of the field of the light wave, χ = primary-beam direc-
tion, y = direction of observation of the scattering, a = transverse
dimensions of the particle.

Here it follows from (12) that

Δκ = -

s*?h and Au increase with increasing particle di-
mensions, but if these dimensions do not exceed 0.2λ,
the depolarization Au still remains very small.

Large anisotropic particles. Just as for small
anisotropic particles, all three depolarized compo-
nents exist. However, owing to the quadrupole scat-
tering, the component e%?h is greater than S6W and f"n>
which are equal to one another. Hence the depolari-
zation factor Δ η > 1, and it increases monotonically
with the particle dimensions.

We shall now compare the depolarization factors
for the four types of particles:

small isotropic:

small anisotropic:

large isotropic:

large anisotropic:

0 0/0 0

>1 l >1

oo >°

>1 £?

0

>o

Thus, by measuring the depolarization factors Δ ν

and Au for vertically polarized and natural incident
light, and calculating Δ η from them, we can decide
which of the four classes the scattering particles be-
long to. We note that only the factor Δ ν contains in-
formation on the intrinsic anisotropy of the particles
(anisotropy of the substance), while the depolarization
factor Au arises to a considerable extent from the
dimensions of the particles (via the scattering compo-
nent G/#h, which is determined by the quadrupole emis -
sion).

2. SCATTERING IN SOLUTIONS OF SMALL PAR-
TICLES

a) Small Isotropic Particles

We must consider particles to be small when their
dimensions in solution do not exceed λ/20. Under this
condition, the scattering from all elementary centers
(oscillators) in the particle can be assumed to occur
with the same phase, and the scattering intensity of
the particle will be the sum of the scattering of all
its oscillators.

Strictly speaking, only spherical particles of an iso-
tropic substance are isotropic.

As was shown in Sec. 1 (b), depolarized scattering
does not occur for small isotropic particles, and
3ev = e%?h = 3%?u = o.

If we affix the subscripts v, h, and u to the func-
tion Ρ(θ) in accordance with the polarization of the
incident light,* then for solutions of such particles,

ΡΌ (θ) = 1, Ph (θ) = cos2 θ, Pu (θ) = ~ (1 + cos2 Θ). (13)

Thus, in this case the scattering is given by the r e -
lations

••HcM (14)

for incident light having the vibration direction verti-
cal, and

a= ~ HcM(l + cos2
(15)

for unpolarized incident light. In particular, in the
case of greatest practical importance, with scattering

*The functions Pv(ff), Ph(0), and PU(<?) correspond to measure-
ments of the total intensity of the scattered light. In those few
cases involving measurement of the vertical component (ψ°) of the
scattering alone, or the horizontal component (aW), the function
P(0) will have the necessary superscript [e. g., Ρ°ζ"(0°)].
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at an angle θ = 90° in unpolarized light,

(16)

The scattering attenuates the primary light beam
upon passing through a distance of I in the scattering
medium according to the exponential law:

where τ is a quantity called the turbidity of the me-
dium, having the dimensions of cm" 1 (just as IQ has).
The turbidity τ can be calculated by integration of
the scattering IQ of the solution over all directions
(over a sphere). Here we obtain

8Π
•HcM,

which, combined with (16), implies that

(18)

T = _^L-/M. I, (19)

(here we assume that the turbidity of the pure solvent
τ0 is negligibly small in comparison with the turbidity
τ of the solution; otherwise, we must take τ in (18)
and (19) to mean the excess turbidity of the solution
Texc = τ ~ τ ο ) · Ν- follows from (18) that we can deter-
mine Μ by measuring the turbidity (absorption) of
solutions from the intensity of light transmitted by
the solution. C10· " 3

b) Small Anisotropic Particles

In this case, depolarization of scattering takes

place, and e%V,h,u ^ 0·
We shall denote the principal polarizabilities of the

particle in three mutually perdicular directions by ait

a2, and a3. Then its optical anisotropy

*£- (20)

is related to the degree of depolarization Au by the
relation

6-7Δ,χ

For a solution of small anisotropic particles,

(21)

(22)

In the direction of the primary beam, θ = 0, and

Pu (0°) = | IP. (0°) + Ph (0°)} = 6J1K = 1 + γ0 δ2, (23)

Here

•ίο<

(24)

Since as a rule with solutions of small particles, one
performs the scattering measurements at an angle of
θ = 90°, P(90°) is especially important. Let the inci-
dent light have a vertical vibration direction. Then,

i.PO^Sr-.4Δ0 (25)

and in measurements with unpolarized light,

(26)

Thus, in comparison with the case of scattering
from small isotropic particles [see (16)], Eq. (26)
contains the factor (6 + 6Au)/(6 -7A U ), which is
called the depolarization factor (the Cabannes fac-

The relation analogous to (18) for a solution of
anisotropic particles has the following form:

(27)

Here we see that the coefficient relating τ to I9 0°u is
no longer equal to 16π/3, as for isotropic particles,
but depends on the anisotropy of the particles. In this
case,

_8π_

~3~ 80°u- (28)

3. SCATTERING IN SOLUTIONS OF LARGE PAR-
TICLES

a) Large Isotropic Particles

When the dimensions of the particles in solutions
are λ/20 or greater, the oscillators located at differ-
ent points in the particle no longer oscillate in phase,
and the waves that they scatter interfere. This leads
to a decrease in the total scattering intensity. Under-
standably, the phase difference of the scattered rays
is zero in the direction θ = 0, and increases with the
scattering angle Θ. Under these conditions, the form
of the function P(0), which determines the angular
scattering-intensity distribution of the particle (and
the solution), must essentially depend on the distri-
bution of the oscillators within the particle, i.e., on
its internal structure.

The calculation of the function Ρ(θ) for large par-
ticles is a very complicated problem. It has been
solved by Mie'-12-' for the case of isotropic conductive
spheres, and by Blumer^13^ for dielectrics. The prob-
lem becomes considerably simpler when the mean r e -
fractive index n' of the particle is near the refractive
index n0 of the solvent, so that

D4π (η' — n0) -r- (29)

(here D is the maximum dimension of the particle,
and λ = λ0 /n 0 is the wavelength in the liquid).

Inequality (29) usually holds for polymer solutions.*

*The volume of a polymer molecule swollen in a solvent greatly
exceeds its "dry" volume, and hence, (n' —n0) <K 1.
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This permits us to calculate P v (θ) for certain spe -
cific structures; the most interesting of these to us
are the sphere, the rod, and the Gaussian coil.

The function P v(0) = Ig v/I0, in full analogy to the
relative intensity of scattering of X-rays by electrons
in atoms, Ci·*, 15H c a n ̂ e c a i c u i a t e d as follows: l-163

JV
χι

V = l < = 1

(30)

where μ = (Απ/λ) sin (θ/2), and rpt is the distance
between the pair of emitters ρ and t in the particle.
The double summation is performed over all possible
pairs of emitters, the number of which in the particle
is N. For flexible particles, we must average the
summand over all conformations, taking into account
the probability of a conformation having any given

value for the distance The factor 1/N2 is re-
p

quired for normalization, since Pv(0°) = 1, while
for θ —- 0, the double summation becomes N2. The
summation in (30) has been calculated for particles
of various structures. The results obtained for the
structures of interest to us are given below.

Spherical particle (globular proteins). For a sphere
of diameter D, the function P v(0) has the form ^17J

2ΛΌ
sin ~ . (31)

Rodlike particle (e.g., tobacco mosaic virus). For
a rod having a length L much greater than its cross-
section, ̂ ^

sin y

c . / o ν f sini ,, 2rt£ . θ
Si (2V) = \ —Γ~ dt' V = — s m ~2 •

(32)

Gaussian coil. For a randomly coiled linear (un-
branched) macromolecule,'-14'15^

(33)

where R2 is the mean square radius of gyration of the
coil.*

Scattering functions have also been calculated for
ellipsoids of rotation, E20>213 cylinders, ̂  and thin
disks.C 2 3 ]

A general property of the function P v (θ) in all
cases is that it becomes unity when θ = 0. That is,
Pv(0°) Ξ ι. This obvious characteristic of the func-
tion Ρν(θ) is a consequence of the fact mentioned
above—there is no phase difference in the direction
of the primary beam, there is no interference, and
weakening of the scattering does not take place. Under

*Here we assume averaging over all possible conformations
of the macromolecule having the same total length L (as extended
without altering the valence angles of the chain).

standably, the simple relation (19) does not hold for
solutions of large particles. The relation between τ
and L9o° must be calculated with account taken of the
function P(0) for solutions of particles of the given
type.

The course of the function P v(0) for particles of
various shapes is shown in Fig. 3. We shall point out
that for large isotropic particles of any shape,

and hence,

(34)

\N
\

\
\\
\

\
\ \

\

\ ^̂

***
-—— 3
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FIG. 3. Relation of the function P v ( 0 ) for intramolecular inter-

ference of scattering to the argument z, \J x, or y, for particles of

various structures: 1—spheres (z = (2irD/A) sin (β/2)); 2—coils

(x = 16TT 2 (R7A 2 ) sin 2(0/2)); 3-rods (y = 2>r(L/A) sin (Θ/2)).

b) Large Anisotropic Particles

The problem of calculating the function P(0) in
this case is very complicated. For the simplest cases
of a rodlike particle and a Gaussian coil, the solution
has the following form.

Rodlike particle: ̂ ^

~02~0Ϊ~W~if W U 2.6 3£ 3,4 3i 42 *.ί 5β
f

γ 2 J L y

. δ Ν Γ cos 2;/ , sin2y 1_ Si (2y)~]
]f2 ^ V^2 / L 2Ϊ/2 4Ϊ/^ y2 .V

27 g 2 Γ sin2y _ cos 2y χ sin 2y cos_2i/ _ 4 _^ Si (2y) "|
16 L 8^^ 4t/i ! 4^3 2ΐ/2 3ι/2 ' t/ J '

(35)

, sin 2y 1 Si(2y)
;̂ 2 ' ^yi yi ' y

cos 2y . sin 2y , cos 2y
4v^ ' 4y^ 2v2

cos θ Γ 5 sin 2y 5 cos 2y , cos 2y 8

, Si(2y)Ί
1 y J

Si(2y)

y

where y and Si(2y) have their previous meanings
(see (32)).

(36)
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One can also find a more cumbersome expression
for p f (Θ) in»*] .

The polarizability of all the oscillators distributed
along the axis of a rodlike particle is approximated
here by an ellipsoid of rotation (a 2 = a^), whose long
axis (αϊ) coincides with the axis of the whole particle.
Thus, the optical anisotropy of the whole particle re-
sembles that of the oscillators comprising it.

It is highly important that when θ = 0, Pv(0°) is
no longer unity, as for a large isotropic particle. In
this case,

ΓΡΓ (0°) = 1 + 1 62, (0°) = ^ δ2,

(37)

Thus, at θ = 0, where interference has no effect,
anisotropy affects the scattering by large rodlike par-
ticles in the same way as for small particles (see
(23)-(23)).

Gaussian coil. Let the polarizability of each link
(monomer unit) of the chain be approximated by an
ellipsoid of rotation having its long axis («j) in the
direction of the link. Then one can derive»5^

2O'Q

5JV

η/ο

Κ 10iV

(38)

where Ν is the number of links in the chain, and δ§ is
the anisotropy of the link. Since the number Ν of links
is usually sufficiently large, Ρ^(θ) does not differ ap-
preciably from the same quantity for a coil having iso-
tropic links (see (33)). The second of the relations in
(38) gives a value for the reduced intensity of the ver-
ticle scattering component (for a horizontal vibration
direction of the incident light):

- ^ - . (39)

Thus, the quantity VQ\I does not depend on the degree
of polymerization (Mo is the molecular weight of the
monomer unit), but is determined by the anisotropy
of the link (monomer unit).

At 9=0, for a solution of Gaussian coils, we have

i>u(0°)=l + l ^ i (40)

4. INTERPRETATION OF EXPERIMENTAL DATA

Usually, in undertaking light-scattering measure-
ments, the experimenter already has an idea of the
order of magnitude of the polymer molecules (molec-
ular weight) from the value of the intrinsic viscosity
of the solutions being studied. Accordingly, he selects
a method for the light-scattering measurements. How-
ever, what one has learned about the characteristics
of the function P(0) permits one to determine the se-
quence and scope of the measurements within the lim-
its of the light-scattering method alone.

It is evident from Eqs. (13) and (22) that for solu-
tions of small particles, the function P u ( 9 ) is sym-
metrical with respect to the direction θ = 90°:

Λ. (θ) = ^(180°-θ) (41)

[ the same is true of the function P v (θ)].
Hence, above all, symmetry of scattering is evi-

dence that the solute particles are small in size. The
subsequent analysis essentially differs for small and
large particles.

a) Solutions of Small Particles

In this case, the classical method of light scatter-
ing in dilute solutions can give no information on the
dimensions of polymer molecules.* To determine the
molecular weight, one measures the intensity Ι90»α

(or Igo°v)
 a t several concentrations, and by graphic

extrapolation to c = 0 determines

M =
'90° S c=A

b) Solutions of Large Particles. The Dissymmetry
Method

There are two fundamental methods of interpreting
the results of measurements for solutions of large par-
ticles—the dissymmetry method and the double-ex-
trapolation method. We shall discuss them in turn as
applied initially to solutions of isotropic particles.

A knowledge of the form of the function Ρ ν ( θ ) per-
mits us to calculate the value of the dissymmetry of
scattering

lor particles of any shape (structure) as a function of
their relative dimensions D/λ. Figure 4 shows the
value of | ζ | for spherical, rodlike, and coillike par-
ticles. C19»26H As we see from Fig. 4, we can in some
cases draw conclusions on the shape of the scattering
particles from the value of the intrinsic dissymmetry
| ζ |. Thus, a dissymmetry | ζ | > 2.2 excludes a rod-
like shape of the particles, and | ζ | > 4.5 excludes a
coiled structure. Conclusions of this sort, however,
can be only qualitative in nature, and must be con-
firmed by supplementary data. The intrinsic value
of the dissymmetry of the excess scattering

is usually determined graphically by extrapolation to
c = 0 of the quantity l/(z - 1) taken from measure-
ments on 5—8 solutions of decreasing concentrations.t

*Some possibilities have arisen here in connection with the
phenomenon of critical opalescence (seet'l).

•tit has been shown inM that the extrapolation of the quantity
l/(z — 1) has the advantage over extrapolation of ζ that l/(z — 1)
is a linear function of the concentration c in the range of low c.
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FIG. 4· Relation of the intrinsic scattering dissymmetry to the
relative dimensions D/λ for particles of various structures:
spheres (1) , coils (2), and rods (3).

Using a suitable table or graph, we can determine from
the quantity | ζ | the relative dimensions of the par-
ticles in solution, as well as the factor Ργ'ίδΟ 0), which
is necessary in calculating the molecular weight (I-26^,
Fig. 5, Table). The latter is calculated by Eq. (10) by
multiplying the reciprocal of the intercept of the plot
of Kc/I90° against c by the factor Py'OO"):

M= -£i- P;>(90°).
V '90» A = 0

We should point out that for | ζ | < 2, the relative
dimensions of coiled molecules can be determined'-27-'
by the following relation, which is sufficiently accurate
in this region:

jz| = l- r 6.565 ( - ^ - ) •

c) The Double-extrapolation Method

P. Debye^15-' was the first to point out a very im-

p-'(SO')
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' W~ 1.5 ~i0'~Mi £0 $S 4.0 4.5 5β 5.5 6ft

FIG. 5. The factor Pv(90°) for particles of various shapes:
rods (1), coils (2), and spheres (3), as a function of the intrinsic
dissymmetry \z\.

J
f
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/

/

/

/

portant characteristic of the function of intramolecular
interference of light scattering Ρν(θ). This charac-
teristic consists in the fact that if one expands
or Ργ '(θ) in a power series in the argument

P v (θ)

μ =

near μ = 0

: 2 μ 4 - . . · , (42)

-«;μ4 + . . . (42a)

the coefficient a t of the second term of the series
characterizes the mean dimensions of the particle in-
dependently of its shape.

In fact, an expansion of sin μΓρ^ in a power series
in the quantity (μΓρΐ;) in the general expression for
P v ( 0 ) (Eq. (30)) gives

(43)
P . f = l

The quantity r p t can be represented as the vector dif-
ference between the distances r j c from the corre-
sponding emitters to the center of inertia of the par-
ticle; then

rU = (rpc - rtcf = r£c - 2 (r i cr ( c) + rfc . (44)

The mean square radius of gyration R2 of the particle
>\r f"lii3 pvnrPQfiinTiis given by the expression

(45)

Let us take into account the fact that, owing to sym-
metry for rods, spheres, disks, ellipsoids, and similar
structures, the scalar product Tpc'Ttc is zero on the
average. Then, the double summation in (43) gives
2N2R2 and

(46)

For Gaussian chains,

Η R2 = ~

where b is the length of the chain unit. '-8-' The double
summation of the quantity | t - ρ | gives N3/3, and for
coiled molecules we obtain

Α,ίθ) = ΐ — £ 4

Thus, the coefficient of the second term in the
series expansion of P v ( 0 ) or Ρν'(θ) in powers of μ2

is ^independent of the structure of the particle, and is

This fundamental characteristic of the function
P v ( 0 ) is extremely important, and in principle, it
makes it possible in the light-scattering method to do
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the following. If we plot Py*(0) against sin2 (0/2),

then at sufficiently low angles θ we obtain a straight

line whose slope gives the radius of gyration of the

particle, independently of any model concepts on its

structure.

This characteristic of the function Pv(0) (together

with the above-mentioned property that P v(0° ) = 1) is

the basis of a method proposed by Zimm [28,29] for j n _

terpreting light-scattering data, which has been called

the double-extrapolation method. In following this

method, one measures I#v for a series of concentra-

tions and different scattering angles Θ, and then plots

a graph (Zimm plot) of the quantity Hc/Igv as a func-

tion of the complicated argument sin2 (0/2) + kc. The

constant k is chosen so that k c m a x will be of the or-

der of several times unity. Then one extrapolates to

c = 0 from all the measurements at each of the angles

0, and extrapolates to 0 = 0 from all the measure-

ments at each of the concentrations c. The net ob-

tained is shown in Fig. 6. The intercept

A,= J=O
θ=0

is obtained as the point of intersection of the two ex

trapolated curves (c = 0 and θ = 0), and gives the

true value of the molecular weight

(47)

Thus, the accuracy of determination of Μ is consider-

ably increased. According to (34), for measurements

with natural light,

2/eu /c=0
6=0

According to (46), the initial slope s0 of the curve

(He/Igy)c = 0 in the double-extrapolation graph (Zimm

plot) gives the radius of gration R2 of the particles:

4*ίΓ."*1. (48)

•10°
Oil

0,8

0A -Ί 1

Mi

mm
7T7Z
^ ^
.—ί—ί •*-

-

ΤΤΊ
ts •I— / /

—° T^o

FIG. 6. Double-extrapolation graph (Zimm plot) for solutions of
ι poly-2,5-dichlorostyrene fraction (M = 16.7 χ 10') in dioxanet"].

For Gaussian coil§_, R2 = h2/6, and (48) gives for

the mean distance (h2)1//2 between the ends of the coil:

The relation of the reciprocal Debye function Py^ Θ)

for Gaussian coils to its argument

x = loit2 -νγ- sm ! -„-

[see (33)] is shown in Fig. 7. The monotonic curve of

the function Ρ^-(θ) consists of an initial and an asym-

ptotic branch. C2 ]̂ The initial tangent corresponds to

the equation (1 + x/3), while the equation of the asym-

ptote is (0.5 + x/2).

FIG. 7. Graph of the reciprocal Debye scattering function
Pv1 (Θ) for Gaussian coils,

x = 16ίτ2(τ?/λ2) sin2 (0/2).

1—The function P^1 (β); 2—initial tangent; 3—asymptote.

It is interesting to compare the asymptotic behavior

of the scattering functions Py 1 ^) (for large values of

the arguments ) for particles of different shapes. We

can derive from Eqs. (31) —(33): for spherical par-

ticles

for rodlike particles

and for Gaussian coils

*» ι

(50)

(51)

(52)

The asymptotic behavior of the P v(0) functions
comes into effect at sufficiently large particle dimen-
sions and at scattering angles that are not too small
(Θ w 180°). We see by comparing (50) —(52) that an
experimental study of the behavior of the quantity
(Hc/l0V ) C = O as a function of the argument sin (θ/2 )
can aid in solving the problem of the shape of a par-
ticle, since in the cited three cases Ρν'(θ) is respec-
tively proportional to sin4 (0/2), sin(0/2), and
sin2 (0/2).
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d) Solutions of Large Anisotropic Particles

This case is considerably harder to interpret. As
has been noted above, for large anisotropic particles,
Py(0°) * 1. a n d in principle, the double-extrapolation
method does not give a correct value for the molecu-
lar weight. According to (20), the extreme values of
the optical anisotropy δ2 of a particle are 2 (when
a2 = a3 = 0) and V2 (when αχ = 0, and a2 = a3). Here,
the function P|"(0°) for a rodlike particle has values
of 1.8 and 1.2, respectively [see (37)]. Thus, neglect
of anisotropy can give rise to er rors of from 20% to
80% in determining the molecular weight of rodlike
particles. We can obtain the value of δ2, which is nec-
essary in calculating Μ correctly, by measuring the
depolarization of the excess scattering Δ ν with double
extrapolation: 0 — 0 and c —* 0 (for the quantities
eS5?v and fv separately; for more details, see
Using the relations (37), we can easily obtain

whence

°)-

10A0 (0°)
3-4Δο(0°)

(53)

(54)

Relations (53) and (54) are valid for particles of any
dimensions and shape.

Upon determining the value of 62 from the depolar-
ization Δν(0 β ), we can calculate the molecular weight
of rodlike particles by using the ordinary double -
extrapolation method:

For measurements in natural light,

θ = 0

while δ2 is calculated from Δ ν(0°) by relation (53).
Figure 8 shows the relation of the scattering dis-

symmetry

/,35'U Λ =

for rodlike particles to their relative length L/λ for
various values of δ (ce2 = «3). Upon determining ό,
we can use this graph to find the dimensions of the
particles from the measured scattering dissymmetry
(see also [ 3°J).

For Gaussian coils of sufficiently large molecular
weight, Ρ^(0 ο ) is near unity [see (38)], and the
double-extrapolation method gives correct values of
Μ and h 2 A 2 .

5. DIMENSIONS AND FLEXIBILITY OF MACRO-
MOLECULES

Light scattering, along with small-angle X-ray
scattering, is one of the direct methods of determining
the dimensions of macromolecules in solution.

FIG. 8. The relation of the intrinsic scattering dissymmetry
\z\ of solutions of rodlike particles to their relative length L/λ
for various values of the anisotropy §.[M]

At present, systematic measurements of the dimen-
sions of macromolecules in solution are made for the
following basic reasons: to find the nature of the rela-
tion of the dimensions to the molecular weight, the
effect of thermodynamic polymer-solvent inveractions
on the dimensions, and the effect of the temperature
on the dimensions. While there is a rather large
amount of experimental data on the first problem, the
studies on the second and third problems have thus far
remained very few in number. Furthermore, it is p r e -
cisely these problems that are the most complex.

Figure 9 shows the relation of the coil dimensions
(h 2 ) 1 / 2 to the second virial coefficient A2 of the solu-
tions for four fractions of polymethylmethacrylate
(with Μ from 0.5 χ 106 to 6.6 χ JJ) 6), as obtained in
'-31-'. The correlation between (h 2) 1/ 2 and A2 is ob-
vious. As A2 increases, the dimensions of the coils
can increase twofold (or further) with respect to their
dimensions for A2 = 0.

The correlation between ( h 2 ) 1 ^ and A2 is based on
osmotic effects—the increase in the swelling coeffi-
cient of the coil

3000

y

-° —

μ—o~-

. κ •
_il

WOO

AyW9

FIG. 9. Relation of the coil dimensions (h2)^ for four frac-
tions of polymethylmethacrylate to the second virial coefficient
A2 of the solutionst"] (M from 0.5 χ 10' to 6.6 x 10').
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, • hi γ '
α = -=τ )

as the thermodynamic interaction of the segments

(links) of the coil with the solvent increases ((h2)1/2

is the size of the coil in an ideal solvent, for which

A2 = 0).

Temperature change has a different effect on the

coil dimensions in good and in poor solvents. In good

solvents, the thermodynamic interaction of the polymer

with the solvent varies very little with temperature.

Hence, the important factor here is the variation in the

short-range interaction in the chain. C32^ Thejresult

of this variation is that the coil dimensions (h2 )1//2

decrease with increasing temperature in good solvents.

Such a decrease has been repeatedly observed experi-

mentally (see, e.g. ^3 3^). In poor solvents, the varia-

tion in the short-range interaction also takes place.

However, here the prevailing factor is the increase

in the polymer-solvent interaction. The sharp increase

in the swelling of the coil initially results in an in-

crease in the coil dimensions with rising tempera-

ture.'-33'34^ _With further temperature rise, this in-

crease in (h2)1/2 must slacken off and give way to a

decrease when the variation in the short-range inter-

action in the chain begins to predominate.

Light-scattering measurements made over small

temperature ranges (as a rule not exceeding 30—40°)

have generally confirmed the simple notions presented

above on the nature of the variation of the coil dimen-

sions in good and in poor solvents.

An experiment performed recently by Reiss and

Benoit^35^ has shown that the variation of the coil

dimensions over a broad temperature range does not

fit the relatively simple pattern given above. Figure 10

shows the results of measuring (R2)1/2 for polystyrene

molecules (M = 2.5 x 106) in decalin from 31°C (the

Θ-point) to 120°C. The existence of a second region

of increasing dimensions (from 90° to 120°C) is rather

hard to explain, even though the variation in (R2)1/2

agrees with the trend in A2 in the same temperature

range. An analogous variation in (R2)1/2 has also been

established in toluene and xylene, which are good sol-

vents .

The authors of t-35^ suggest that for polystyrene the

complex temperature-dependence of the coil dimen-

sions involves partial ordering in the positions of the

benzene rings, leading to local helix formation in the

chain, while this vanishes at high temperatures. The

result of '-35-' has been obtained again in a less distinct

form,'-36^ but here it contrasted with a smooth increase

in the intrinsic viscosity [η] over the same tempera-

ture range. The data of £35,36] show that the tempera-

ture-dependence of the coil dimensions apparently is

more complex in nature than was previously supposed.

Quite probably, the general ideas presented above

must be essentially modified for actual polymers, de-

pending on their chemical structure, in particular on

FIG. 10. Temperature-dependence of the mean radius of gyra-
tion (R2)^ for polystyrene coils (M - 2.5 x 10') in decalin.["]

the composition of the side groups on the chain. This

interesting problem requires further special studies.

The relation of the coil dimensions (h2 )^2 to the

molecular weight has been subjected to many studies

(see, e.g., [33,34,37,38]̂  ojjg of ŷ g m o s t important re-

sults of such studies is the establishment of the fact

that the predicted statistical theory of proportionality:

(h2)V^~ M 1 ^ , is not valid in non-ideal (good) solvents,

as (h2)1/2 increases more rapidly than M1^. This

proves directly that the swelling coefficient a of the

coils increases with the molecular weight, and hence

in agreement with the predictions of the thermodynamic

theory of polymer solut ions.^ The cited studies

(and others) show that the exponent a in the relation

(h*)1/2=KMa

lies between the limits 0.5 < a < 0.6 for good solvents.

Thus, if Ν is the degree of polymerization,

h}=K'Ni+e, (56)

where 0 < e < 0.20. t 3 2 3

In ideal solvents (for which A2 = 0), a = 0.5. t34»39~463

Flory's theory'-32-' predicted that the coefficient Φ

is a universal constant in the well-known Flory-Fox

equation

Μ=Φ^Ή- (57)

relating the intrinsic viscosity [η], (h2)1/2, and M.

Subsequent measurements '-47-' have shown in a number

of cases appreciable deviations of Φ from the mean

value Φ = 2.1 χ ΙΟ23 mole"1 that Flory originally es-

tablished from various measurements. At the same

time, a theoretical treatment'-48-' has shown that the

interaction of the macromolecules with the solvent can

appreciably alter Φ by affecting the nature of the dis -

tribution of the links within the coil: Φ varied from

2.8 χ 1023 in an ideal solvent to 1.6 χ ΙΟ23 in a good

solvent. It is now known that other factors besides the

interaction with the solvent (swelling), in particular,
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increased rigidity of the chain, ̂ 49^ also alter the coef-
ficient Φ by affecting the hydrodynamic interaction of
the links in the coil. Hence, anomalous values of Φ
from measurements of the viscosity [ η ] and light
scattering (h2 and M) are a sign of special proper-
ties in the chains leading to disagreement (as com-
pared with the usual relation) between the optical (h 2)
and hydrodynamic ([ η ]) dimensions of the coils. We
encounter such a situation, e.g., in studying the light
scattering of polyvinylnaphthalene, cellulose deriva-
tives, and DNA.

The nature of relation of (h 2) 1/ 2 to Μ in the region
of transition from short rigid chains (oligomers ) to
Gaussian coils (M « 104) is of considerable interest.
However, this region is inaccessible to the classical
light-scattering method, owing to the small size of the
scattering particles. Certain researchers have deter-
mined (h 2) 1/ 2 in this region from measurements of
[η], using Eq. (57). ̂ 50^ The vulnerable point of these
studies is the use here of the value of Φ obtained in
the region of large values of M. As is known, for
short (rigid) chains, the coefficient Φ differs from
this value. C51.52-49^ The possible deviation_of (ϊ?)1/2

in the region of small Μ from the law, (h 2) 1^ 2 ~ M a ,
which is valid for large M, is apparently small. Thus,
it can be masked by the cited variation in Φ.

As has been stated, in non-ideal solvents, both the
short-range and the long-range interactions in the
chains vary with increasing T. This complicates the
interpretation of the results obtained. The measure-
ment of (hp)1/2 in several ©-solvents* at various
temperatures makes it possible to distinguish the
temperature-variation of the short-range interaction
alone. Such an experiment has been carried out by Schulz
andKirste'-53^ with apolymethylmethacrylate fraction
(M = 2.1 χ 105) in nine ©-solvents over the tempera-
ture range from -40°to+60°C. Here the ©-point was
determined in each case by light scattering (interpo-
lation of A 2), while the variation in dimensions was
determined from the value of [77] ®. According to (57),
the latter is more sensitive to variations in the coil
dimensions than_the scattering dissymmetry, which is
proportional to h2 The result, which is shown in
Fig. 11, indicates an increase in [η], and hence of
(hf)1/2, with the temperature. This is somewhat un-
expected, since we might suppose that the decrease
in the hindrance of rotation of the links in the chain
with increasing Τ would lead to an increase in the
flexibility of the chain and a decrease in its dimensions
(h2,)1/2. The authors of ^532_ point out two possible rea-
sons for the increase in (h2,)1 '2 with Τ that they found:
asymmetry of the internal-rotation potential, and com-
petition between the increase in freedom of rotation of
the side-chain groups and of the main links of the chain.
In any case, the result of this study (as of the above-

[η], cm'/g,
25

20

-40

2 •*'

1-—•—8"

-20 40 60
T,'C

FIG. 11. Temperature-dependence of the intrinsic viscosity
[τ/ίφ in an ideal solvent for a polymethylmethacrylate fraction
(M = 2.1 x 10s).["]

discussed study of Reiss and Benoit'-35^ with polysty-
rene ) shows that the variation of the coil dimensions
with the temperature is a very complex phenomenon,
and requires further study.

The authors of '-53-' discern in the smooth course of
the curve in Fig. 11 a proof that the solvent exerts no
specific effect on the dimensions of polymer coils. This
conclusion cannot be true in general. A number of
studies'-54'55-' have considered the possibility of such
an effect. It was shown in ^56] that the variation in
[η] in ©-solvents of differing chemical composition
at one given ® temperature can be as great as 20%
for polystyrene. An analogous result has been obtained
fqr_coils of hexene-1-polysulfone by determining
( R Q ) 1 / 2 directly by the light-scattering method. t 5 ? : l

The value of (Rj) 1 ' 2 was measured by the double-
extrapolation method in three ©-solvents: n-hexyl
chloride and two mixtures of butanone with isopropyl
alcohol.* They obtained for_a sample having Μ = 7
χ 105 in the first solvent (R§)1 / 2 = 600 A, and in the
two other solvents 500A (the values of [77]© differed
correspondingly). This important and interesting
problem also requires thorough study. Here, natu-
rally, one must determine (h^)1/2 in various ©-sol-
vents by the light-scattering method (rather than vis-
cosity ) to exclude the alternative possibility that the
coefficient Φ in Eq. (57), rather than the quantity
(h2,)1/2, depends on the specific polymer-solvent in-
teraction.

In ideal solvents, for which A2 = 0, the long-range
interaction forces in the macromolecule (repulsion
of remote segments along the chain upon fortuitous
approach) are compensated by the interaction with
the solvent. Consequently, the unperturbed dimen-
sions of the coils (hf)1·'2 are established. The latter
are determined only by the "skeletal" effects in the
chain (short-range interaction), which limit its flexi-
bility. Hence, the ratio (hjj/h| r_ ) 1 / 2 of the unperturbed

*We shall use the term "Θ—solvent" together with the term
"ideal solvent" for solvents in which A2 - 0.

*A correct determination of the value of Μ in a mixture of
solvents having refractive indices n^ and nt' requires that the
following condition be obeyed:

dn

The determination of the coil dimensions makes no limitations
on the choice of components of a mixed solventL1"] (seealsoL'J,
Chap. Ill, Sec. 5).
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Table I. The relative unperturbed coil dimensions (hjj/h| r )1^ of
various polymers in solution (A is the length of the statistical

segment of the chain, and S is the number of monomer units per
segment A). Methods of determining (h§/h| ) ^ :

L —light scattering in a ©-solvent, V —viscosity in a ©-solvent,
LA2 — light scattering in a good solvent and second virial
coefficient, VA2 —viscosity in a good solvent and second

virial coefficient

Polymer

1. Poly-
ethylene

2. Poly-
propylene

3. Poly-
isobutylene

4. Poly-
vinylbromide

5. Polyvinyl-
chloride

6. Polyvinyl-
benzoate

7. Poly-4-
vinyl-
pyridine

8. Poly-
styrene

9. Poly-2,5-
dichloro-
styrene

1Q. Poly-3,4-
dichloro-
styrene

11. Poly-β-
vinyl-
naphthalene

12. Poly-
acrylic
acid

13. Poly-
acryl-
onitrile

14. Polyvinyl-
acetate

IS. Polymethyl-
methacryl-
ate

16. Poly-
ethylmetha-
crylate

17. Polybutyl-
methacryl-
ate

Monomer
unit

-CH2-CH 2 -

-CH 2 ~CH-

CH3

CH3
1

-CH2-C—

CH8

—CH2—CH-

Br
—CH2—CH—

k
—CHi—CH-

1
Ο
1

c=o
I

—CHj—CH—

1

• % /

Ν
—CH 2 -CH—

1
^ \
1 II1
• ^ /

-CH2-CH—
1u

-CHs-CH-

li

Cl
-CH 2 -CH-

1

Ί
in
V

— C H 2 - C H -

O H - C = O

C H s - C H -

ΟΞΝ

— C H 2 - C H -

C H 3 - C — 0

CH3

- C H 2 - C —

CH3O—C=O
CH 3

1
—CH2—C

C 2 H 5 O - C = O
CH3

- C H 2 - C -

2.3-2.4

2.4

2.2

1,9

2.8

2.65

2.4

2.2-2.4

2.45

2.9

3.2

1.8

3.2-2.6

2.1—2.3

4,8—2,0—
2.2

1.9

2.1

A· 10s,cm

20,8

21.7

18.3

13.6

29,6

26,5

21.7

20.0

22.7

31.7

38.7

12.2

31.7

17.4

15.1

13,6

16.6

s

8.3

8.6

7,3

5.4

11.7

10.5

8.6

7.9

9.0

12.6

15.4

4.9

12.6

6.9

6.0

5.4

6.6

Method

VA2 59, LAj 60

LA261

L62, V 63-65

L e e

LA207

L 6 8

V 6 9

L33, 47, 62,34,39, 40, 70
V 6 4

L 4 0

L 4 2

L * 1

LA, »

LA271
VAj 59

L72 V'3

L 43, 75. 7«

L «

L 4 5
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Polymer

18. Poly-
hexylmetha-
crylate

|l9. Poly-
octyl-
methacrylate

20. Poly-
lauryl-
methacrylate

21. Poly-
cyclo-
hexylme
thacrylate

!22. Poly-p-
tert-
butyl-
phenyl-
me thacrylate!

|23. Poly-
phenyl-
methacrylate

24. Poly-p-
carbethoxy-
phenyl-
methacryl-
amide

25. [6,6]
Nylon

26. Poly-
dimethyl-
siloxane

27. Polymethyl-
phenyl-
siloxane

28. Poly-
butadiene

29. Natural
rubber
(cis)

30. Gutta percha
(trans)

31. Ethyl-
cellulose

32. Trini-
trocel-
lulose

Monomer
unit

CH3

- C H 2 - C -
C6H1 3O-C=O

CH3

Ci2H25O-r.=O

CH3

- C H 2 - C -

2-C--CH:

)» c\ /-O-C=O.

CH3

- C H o - C -

f~>- O-C=0
Η

C,H3

- C H 2 - C -

Ufllh
00 f.r.

C H ,

- O - S i -

CH3

CH3

Λ

ν
- C H 2 - C H = C H - C

,CH 3

\ C H 2 —

C 2H 5 C21

NO2 NO2

I
Ο Ο

_J I

Ί "o
CH2ONO2

2.4

2.3

2.85

2,2

2.8

2.3

2.0

2.1

1:4-1,0

1.5

1.7

1.7

1.45

4.0

4,2

A- 108,cm

21.7

20.0

30.7

18.3

29.6

20.0
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dimensions (h2,)1/2 to the dimensions ( h | r )*/2 that the
coil would have with completely free rotation of the
links in the chain can serve as a measure of the ther-
modynamic (equilibrium) flexibility of chains in com-
paring the properties of polymers of different chemi-
cal structure.

Table I gives the results of determining the rela-
ative unperturbed coil dimensions (h§ / h | r )*/2 for
polymers of various chemical structures. Part qf_
these results have been obtained by measuring (hj)1^2

or [η] directly in ©^solvents. For a number of poly-
mers, the value of (h 2 ) 1 ^_or [η] was measured in
good solvents. Then a, (hjj)1/2, and (hjj/h| J1/2 were
calculated using the measured values of Μ and A2, in
line with the existing theory. ^58^ It is of considerable
interest to compare the flexibilities of polymer chains
as the composition of the side-chain attachments is
successively altered. Systematic studies along this
line have been carried out with derivatives of poly-
methacrylic acid and polystyrene. In the former ease,
one can compare the flexibilities for two series, with
aliphatic attachments in the side group (Nos. 15—20
in Table I), and with ring-containing attachments (Nos.
21—24). In either series, as one lengthens the side-
chain attachments (makes them more complex), one
notes a gradual increase in ( h 2 / h | r )1^2 correspond-
ing to a decrease in the flexibility of the chains.

It is pertinent here to compare the flexibility of the
chains of polystyrene, poly-/3-vinylnaphthalene, and
the chloro-derivatives of polystyrene. The replace-
ment of the benzene ring in the side groups of poly-
styrene by the naphthalene double ring leads to a con-
siderable decrease in the thermodynamic flexibility
of the chain (owing to the sharp increase in the steric
hindrance of rotation of the links). However, the poly-
/3-vinylnaphthalene chain is still not so rigid as to af-
fect the form of the (Hc/Ig ) c = 0 scattering curve of its
solutions. The coefficient Φ for poly-/3-vinylnaphtha-
lene is anomalously small, indicating that its "optical
dimensions" do not agree with its hydrodynamic di-
mensions. This has provided the authors of l-41^ with
grounds for characterizing it as a polymer having a
"semirigid" chain.

A comparison of the relative unperturbed dimen-
sions of polystyrene and its dichloro-derivatives'^40'42-'
permits us to draw an important conclusion on the ef-
fect of electrostatic (dipole) interactions of the side
groups on the equilibrium flexibility of polymer chains.
The unperturbed coil dimensions of poly-2, 5-dichloro -
styrene and polystyrene at an equal degree of polymeri-
zation almost coincide, while those of poly-3,4-dichlor-
ostyrene prove to be 25% larger. The structural dif-
ference consists in the fact that when the chlorine
atoms on the rings are in the 2,5-positions, the dipole
moments compensate, while there is a resultant dipole
moment «2.3 Debye units for the 3,4-positions in the
side groups of the chain. A detailed discussion of this
problem can be found in E42^.

We can draw some general conclusions on the rela-
tive thermodynamic flexibility of chain macromole-
cules. The most flexible ones are the polysiloxanes,
and then the polymers with conjugated bonds: polybu-
tadiene, rubber, and gutta percha. The greater flexi-
bility of the latter as compared with the polymers of
the vinyl series is apparently due to the greater free-
dom of rotation about the bonds adjacent to the double
bonds. We might suppose that the rigidity of the chains
of polyacrylonitrile involves the strong electrostatic
interaction of neighboring C = Ν side groups of the
chain, which have a large dipole moment (« 4 Debye
units). Finally, the highest rigidity is shown by the
macromolecules of cellulose derivatives. Thus, the
composition of the main chain of a macromolecule has
a greater effect on its thermodynamic flexibility than
the composition of the side groups. However, in cer-
tain cases the influence of the latter is also rather high
(polyvinylnaphthalene, polyacrylonitrile).

We can consider it to be established that the macro -
molecules of all the polymers in Table I form Gaussian
coils in solution. Some exceptions are the chains of the
cellulose derivatives, for which the data are contradic-
tory. The exponent a in the Kuhn-Mark-Houwink
equation

[η] = ΚΆΜ" (58)

is near unity for the cellulose derivatives. This is
commonly ascribed to the partial penetrability to the
solvent of its rigid (and hence open) colls. The nature
of the relation of the coil dimensions (h 2) 1^ 2 to the
molecular weight (degree of polymerization) is con-
troversial at present. Figure_ 12 (from E9°3) shows
the relation of the quantity R z / M z to M z for nitro-
cellulose in acetone and ethyl acetate according to the
data of C88-913. in spite of the considerable scatter of
the experimental points, in the aggregate they show
that the chains of nitrocellulose are rigid at small Μ
(where R2/M increases with M), but at M_« 5 χ 105

they_become Gaussian in behavior (where R2 ~ M,
and R2/M is independent of Μ).

On the other hand, Meyerhoff'-92-' analyzed the data
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FIG. 12. The relation of the quantity R|/Mz to Mz for nitro-
cellulose macromolecules in acetone and ethyl acetate (from the
data of f - " ] ) .
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on the coil dimensions of nitrocellulose in acetone, and
cojicluded that the length of the statistical segment A
= h2/L increases with Μ more rapidly in the region
of large JVL_* This contradicts the variation in the
quantity R2/M shown in Fig. 12. Data on the coil di-
mensions of cellulose tricaproate ̂ 93J and ethylcellu-
lose^87^ in solution indicate that the ratio R2/M de-
creases with increasing M, and approaches an asym-
ptote (Gaussian coils, R2" ~ M) from above, rather
thanjxom below as in Fig. 12. This type of relation
of R2 to Μ has not thus far received any explanation
at all.

At the same time, the nature of the variation of the
hydrodynamic properties of the coils with increasing
molecular weight, as manifested in the variation of
the coefficient Φ in the Flory-Fox relation (57), is
the same for_the cellulose derivatives having differing
relations of R2 to M. For nitrocellulose in acetone ^
and ethyl acetate, L89Jfor cellulose tricaproate in
1-chloronaphthalene, l-93^ and for ethylcellulose in
methanol, ^87^ the coefficient Φ increases with the
molecular weight. A comparison of the values of [ η ]
and A2 in various solvents shows in a number of cases
a lack of the usual correlation between them: accord-
ing to the data of ^93^, the viscosity [77] of cellulose
tricaproate in a good solvent, 1-chloronaphthalene, is
less than in a ©-solvent, dimethylformamide. Con-
trary to the usual idea of the large dimensions of cel-
lulose coils, the measurements of [η] in ^94^ showed
that the relative unperturbed coil dimensions
(hj)/h| )lft of cellulose tricaprylate and tributyrate
have a value of »2.0 in certain ©-solvents, just as
for flexible polymer chains.

Such contradictions and anomalies have led certain
authors E90'95^ to conclude that the specific interaction
of the cellulose derivatives with certain solvents (es-
pecially the polar ones) can have a prevailing influ-
ence on the height of the potential barr iers limiting
the freedom of rotation of the links in the chain. Thus
it governs the coil dimensions and the value of [ η ].
Thus, further study is required to determine the true
properties of the molecules of the cellulose derivatives
in solution. These studies are also of current interest
as a necessary stage in understanding the true proper-
ties and structures of other rigid polymers, in partic-
ular DNA.

6. THE STUDY OF POLYDISPERSITY

Up to now, we have assumed that the particles in
solution are identical both in shape and in mass (M).
However, in polymer solutions the latter condition is
practically never completely obeyed, and the assem-
blage of particles is characterized by some mass dis-
tribution. As Zimm^29^ showed, the nature of this dis-

tribution directly affects the angular dependence of the
light scattering of the solutions, while the measured
values of Μ and (R 2) 1/ 2 are averages^ An essential
point here is that the mean Μ and (R 2) 1 / i 2 obtained by
the light-scattering method involve different types of
averaging.

To elucidate the physical reasons for the differing
type of averaging for the molecular weight and the par-
ticle dimensions, we shall consider the general equa-
tion for the scattering intensity (10), writing it as
follows:

= HMPV (59)

Now we shall assume that the polymer is polydisperse,
and that its dispersion is characterized by a normal-
ized distribution function f(N), so that f(N)dN is the
weight fraction of the particles having a degree of poly-
merization Ν lying in the range from Ν to N+dN. At
"infinite dilution" the total scattering of the solution
is the sum of the scattering intensities of the individ-
ual particles. Then,

(60)

where the integration is performed over all possible
N. For small scattering angles, according to (46), we
can write

= H dN. (61)

If the particles being_studied are random Gaussian
coils, for w h i c h m R2 = KM = KNM0 (where Mo is
the weight of the monomer unit), then

I^L Υ o = HM0 [ Nf (N) dN — j 'ΗΚΜΙμ* [ JV3/ (N) dN.

(62)
Using the function f(N), the different types of aver-
ages of the degree of polymerization are defined as
follows: m

number-average

,„= \ Nf{N)dN,

weight-average

and ζ-average

Correspondingly, the molecular weights are:

Mn = M»Nn, Mw= MONW and MZ=MONZ

Thus,

(63)

(64)

(65)

lie
( 1 -\- -5- Κ μ*3 r (66)

*See the footnote following Eq. (33).

Equation (66) implies that the intercept of the graph
of Hc/Igv plotted against sin2 (Θ/2) (or against μ2,
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which is the same thing) is a quantity inversely pro-

portional to the weight-average molecular weight M w .

However, the initial slope of the graph is determined

by the coil dimensions Rz = KMZ, which corresponds

to the ζ-average molecular weight. We see from ex-

amining Eq. (66) that the scattering phenomenon in a

polydisperse solution occurs in such a way that the

"forward scattering" (Θ = 0), which determines the

measured value of the molecular weight Mw corre-

sponds to the averaging of the first power of the mo-

lecular weight (the first term). However, the decline

in the scattering with increase in the angle Θ, which

determines the measured value of the coil dimensions

R|, corresponds to the averaging of the square of Μ

(the second term).

ZimmL29J was also the first to establish the asym-

ptotic behavior of the function P y 1 ^ ) for large values

of the argument (for both coils and rods ). He pointed

out that the form of the graph of the function Py'( θ)

plotted against sin2 (9/2 ) depends on the type of poly-

dispersity.

A very simple estimate of the polydispersity is

based on comparing the average molecular weights

Mn. Mw, and M z of a sample; M w is determined by

light scattering. Mn and M z can be determined by

the methods of osmometry and sedimentation equilib-

rium. The study of polydispersity within the limits of

the light-scattering method alone requires measure-

ments of the angular dependence of the scattering of

the solutions.

After Zimm,'-29^ the problem of the effect of poly-

dispersity on the scattering indicatrix of polymer so-

lutions was studied in detail by Benoit. ^9 6^ Polydis-

persity affects the asymptotic behavior of the function

Py*(9). As has been shown in C29,963̂  the variation of

the function Py*(9) at large values of the argument χ

is described by the equation

Ρ^(θ)=-ί^+^- (67)

(here x w indicates that the weight-average value of

the coil dimensions R w is used in Eq. (33) for x).

For the intercept A^ of the asymptote Ρν^(θ), this

gives
Aoo 1 Mw

and, taking into account the fact that Ao = 1/MW,

1
Aoo= -

Διηΐί

The equation of the function

iV (Θ) = 1

(68)

for small χ is

(69)

From (67) and (69), we can derive the following expres-

sion for the ratio of slopes of the asymptote s w and the

initial tangent s0 of the graph of the function Py1( θ) or

the curve ( H C / I Q V ) C = 0 :

3 xw

2 x, 2 M,
(70)

Since in any case M w < M z, polydispersity diminishes

the slope of the asymptote, and S^/SQ < 3/2-
 m the

special case where the sample has a distribution for

which Mz : M w : Mn = 3 : 2 : 1 , the ratio s x /s 0 is unity,

and the curve for (Hc/Igy) c = 0 degenerates into a

straight line. '•29-' According to (67), we can also de-

rive

Λοο 2 ^ 3 λ 2 „
Mw
Mn

3 λ 2

whence

λ2 (71)

Thus, by studying the properties of the scattering

indicatrix, we can determine Mn, M w , and M z and

the corresponding average dimensions for a polydis-

perse system of Gaussian coils (Fig. 13).

rtn'-

FIG. 13. Determination of the mean square radius of gyration
Ra of the coils and the molecular weight Μ from the graph of
(Hc/l0 v) c =o plotted against sin2 (0/2) for a polydisperse sample

The theoretical relations presented above have been

used in a number of studies. I-97'88^ In ^99^, they were

tested on samples having a given polydispersity (as

obtained by mixing narrow fractions of polystyrene in

definite proportions ). The agreement of the calculated

and measured values of M w and M z was quite satis-

factory. We note that the agreement was considerably

poorer for Mn (this has also been noted in l-98^).

Apparently the reason for this lies in the difficul-

ties of extrapolating the asymptote of the (He/l0 V ) c ~ o

curve to determine its intercept.

The influence of polydispersity on the light scatter-

ing of solutions of rodlike particles has been discussed

in Cioô  which showed that the asymptote of the curve

of (Hc/l0V) c =o plotted against sin (9/2) (instead of

sin2 (9/2) as for coils ) permits one to obtain
2

Mn = « Μ

and (72)

In conjunction with M w and Rz+i, which can be deter-
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mined from the ordinary double-extrapolation curves
of (Hc/Ig v) against sin2 (0/2), Eqs. (72) give suffi-
cient information on the polydispersity. A more com-
plex case has been discussed in ^101^ involving light
scattering in a system of rodlike particles that are
polydisperse both in length and thickness.

We must bear in mind that one can draw quantita-
tive conclusions on the polydispersity from the form
of the (Hc/Igv)c=o curve when all other factors af-
fecting the variation of the function Py*(i)) have been
eliminated: branching or rigidity of the chains, or vol-
ume effects (see below). For ordinary (flexible) un-
branched polymers, one must therefore measure the
polydispersity in poor solvents, especially at high
molecular weights.

We should point out that a number of authors [ 1 0 2 " 1 0 6 ]

have suggested estimating the polydispersity of sam-
ples from the value of the second virial coefficient A2

of their solutions.

7. THE STUDY OF BRANCHING IN CHAIN MACRO-
MOLECULES

As is known, branching leads to a considerable de-
crease in the mean coil dimensions (R 2) 1/ 2 as com-
pared with the dimensions of linear macromolecules
at the same degree of polymerization. C107.108^ The
greater degree of swelling of branched macromole-
cules only slightly obscures this phenomenon. '-109^

The study of branching can be based in principle on
comparing R2/M for linear and branched samples of
a given polymer. Here the decrease in the ratio R2/M
serves as a measure of the branching. A number of
authors have studied in this way the branching of poly-
styrene^ 1 1 0 · 1 1 1^ and polyethylene. ^ 1 1 2 ' 1 1 3^ However,
this method involves an essential difficulty arising
from the great polydispersity of the branched samples.
Since the light-scattering method gives different types
of averages for the quantities R2 and M, we must
make a correction for polydispersity. This correction
is_ never accurate enough for a sound comparison of
R2/M of branched and linear samples.

Hence, it is more reliable to estimate the branch-
ing from the value of [η] (and determine Μ by the
light-scattering method). A certain degree of poly-
dispersity in the samples does not displace the points
on the graph of log [ η ] against log M, owing to the
similarity in the type of average made in the viscosity
and light-scattering measurements (especially in good
solvents). A given degree of branching leads to a cor-
responding downward shift in the point from the straight
line on this graph, as Thurmond and Zimm^1 1 4^ showed
with model branched copolymers (Fig. 14). Following
E114^, such a method has become rather widely used.
In particular, in ^-115^ they measured the intrinsic vis-
cosity and light scattering of linear polystyrene and a
styrene-styrene graft polymer. They showed that Ι η],

2> a n c j A 2 for the branched samples (the graft

[η], cm3/g.

200 r~r

Μ-10*

FIG. 14. Graph of the intrinsic viscosity [7/] as a function of
the molecular weight for linear (open circles) and branched (solid
circles and crosses) polystyrene fractions in butanone-propanol
mixture.[1I4J Scale: logarithmic. The slope of the straight line
corresponds to [77] "° M°'s.

polymer) were lower than for a linear polymer of the
same molecular weight. The coefficient Φ in the
Flory-Fox relation (57) proved to be appreciably higher
for the branched samples than for the linear ones.

Meyerhoff and Cantow^116^ came to the conclusion
that the ordinarily-used samples of " l i n e a r " poly-
styrene actually are always somewhat branched (of
the order of one branch per (3—4) χ 103 monomer units
of the chain). We should note two more of the results
obtained in £116^. Along with the general increase in
branching (as characterized by the decrease in R2/M)
with increasing molecular weight, the ratio of the num-
ber of branches per molecule to Μ decreases with in-
creasing M. This involves the fact that the branched
structure of the macromolecules becomes more "uni-
form" with increasing Μ (less frequent, but longer
branches). The macromolecules of isotactic polysty-
rene, in distinction from the atactic material, proved
to be not branched at all.

As was recently ascertained, all the quantitative
estimates of branching from the value of the intrinsic
viscosity [η] in studies prior to 1959 require serious
corrections. It had been assumed ^32^ that Eq. (57) is
valid even for branched chains, and hence,

hi* (WJ2

111; (Λ2)^ / 2 '

where the subscripts g and Ζ refer to branched and
linear samples of the same molecular weight. Zimm
and Kilb'-117^ examined the hydrodynamic interaction
of the links in a branched chain, and showed that
ίη]g/[η]l is proportional to the ratio (R2)g/2/(R2)J//2,
rather than (R2")3/2/(RT)r/'2> as had been previously
assumed. According to Bueche, E118^ the physical
meaning of this law is that the hydrodynamic dimen-
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sions of branched colls are determined not by the mean
radius of gyration (R 2) 1/ 2, but by the distance from
the center of the coil at which the density of segments
(links ) attains a certain value.

A further treatment of this problem is found in
[119,120] ^ particular, it was shown in ^U 9^ that in
the presence of polydispersity, one cannot get data on
the degree of branching (grafting) of macromolecules
by comparing the dimensions ( R 2 ) 1 / 2 and (_R_2)J/2 at
equal values of M w (in view of the fact that R2 and Μ
are determined by light scattering). They can be ob-
tained by comparing the intrinsic viscosities [rj]g
and [η]ι (at equal M w ) . This situation is illustrated
by Fig. 15, taken from'-119-', which shows the values

(m,—1) (m—2)
(74)

(W) and (for equal Mn, M wof g g
and M z, respectively) for different branching factors
γ (from γ = 0 for a linear polymer to γ = 1 at the
onset of gel formation).

Benoit^121-' has examined in general form the effect
of branching on the angular distribution of the scat-
tered light. He showed that this effect must consist
in a variation in the ratio S ^ / S Q of the (Hc/l0y) c = o

graph, such that

(73)

Since Rg < R|, then ( s ^ / s ^ g > 3/2, and branching must
distort the scattering indieatrix in a direction opposite
to the effect of polydispersity. In E121^, a n equation is
derived for the asymptote of the graph of the function
Ργι(θ) for a solution of branched macromolecules. In
the simplest case of branched macromolecules that are
monodisperse in mass, the equation of the asymptote
has the form

FIG. 15. The relation of the ratio of viscosities [Tj]g/[jj]/
(curves 1, 2, 4, and 5) and of the mean square radii of gyration
Rg/R] (straight lines 3, 6) for branched and unbranched macro-
molecules of the same molecular weight: Mn (1, 2), Mw (3, 4, 5)
and Mz (6) ["'] [a is the exponent in Eq. (58)].

where z m is the number of branch points of function-
ality m in the macromolecule.* The third term in the
equation is characteristic of branched chains. If the
functionality m of all branch points in the molecule
were the same, then in principle we could determine
the number of branches from the intercept of the
asymptote. In the case nearer to practice, having poly-
dispersity both in mass and degree of branching, the
equation of the asymptote is more complex, and in-
cludes the mass distribution function of the particles.
It becomes possible to determine the branching pa-
rameters from the asymptote of the ( H c / I g v ) c = 0

curve when the branches are all of the same function-
ality m throughout the macromolecule, or when the
mass polydispersity (the ratio M w / M n ) has been de-
termined by another independent method.

Now, the slope s«> of the asymptote of the ~Ργι(θ)
curve is determined by the weight-average coil dimen-
sions [ Eq. (67)], while its initial slope s 0 is deter-
mined by the ζ-average dimensions [Eq. (69)]. Thus,
when branching and polydispersity are simultaneously
present, according to (73), (67), and (69),

Taking into account the fact that < R2 ) z / ( R | )
= M7 / M w , we obtain from (75)

w

Mz

3 Mu

(75)

(76)

Equation (76) implies that we cannot distinguish the
effects of polydispersity and branching in the initial
and asymptotic slopes of the light-scattering indiea-
trix, and (in agreement with Kilb^119^), we must sup-
ply additional data. These might be data on the poly-
dispersity ( M z / M w ) obtained from sedimentation;
here we could determine a measure of the branching

or else, intrinsic-viscosity data. In the latter case,
according to E119^, we can determine the following
quantity from the ratio [ τ?lg/[ τ/lz (at equal M w ) :

?2 — 7ST * V· (77)

In such a case, the polydispersity can be calculated by
substituting (77) into (76):

(78)
Mw ~ 2 s«, 1 —V '

The determination of the degree of branching from
the ratio s0/soo is very rarely applied in practice,

*The functionality of a branch point means the number of
branches arising at the given point.
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since here one must completely exclude all other fac-
tors affecting the form of the scattering indicatrix:
polydispersity, volume effects (which are especially
marked for branched molecules), etc. As a rather
rare example of determining branching from the form
of the (Hc/I# v ) c = 0 curve, we can refer to1-122-1, in
which a highly branched native dextran was studied.

An attempt has been made to use the value of the
second virial coefficient of solutions to estimate
branching. E123^

8. THE SCATTERING INDICATRIX AND VOLUME
EFFECTS IN POLYMER CHAINS

It has been shown experimentally in '-"-̂  that the
scattering indicatrix [ the graph of the relation of
( H x / l 0 v ) c = o to sin2 (Θ/2)] for a given polymer frac-
tion changes in form as we go from a poor to a good
solvent. This problem has been treated theoretically
by Ο. Β. Ptitsyn, [ 1 2 4 ] and later by Benoit [ 1 2 5 ] and by
Hyde et al., ^126^ as well as other authors. ^127-' Accord-
ing to the cited studies, the scattering indicatrix cor-
responds in an ideal solvent to the Debye scattering
function Ργ1(θ), but changes in good solvents, owing
to the distortion of the Gaussian structure of the coils.
The reason for this distortion lies in the "volume ef-
fects," the repulsion of links of the polymer coil in
fortuitous proximity and their interaction with mole-
cules of the solvent.

The abovementioned theories [124~12<>] are based on
the assumption that the mean square r j ^ of the dis-
tance between a pair of links ρ and t in the chain in-
creases faster than proportionally to the number of
links 11 — ρ | between them; in particular,

where e is the parameter entering into Eq. (56). At
the same time, the distribution function of the links
(segments) in the chain is assumed to be Gaussian
as before. Naturally, since these theories proceed
from identical assumptions, they lead to coincident
results. These results are represented in the form
of a certain scattering function Ρ ν ( θ , e) in the stud-
ies of Ο. Β. Ptitsyn and Benoit, which has been tabu-
lated in the paper by Hyde et al. The function Ρν(θ, e )
taking into account the volume effects has the

Ρ 0 ( θ , ε)

1-i-e.

(79)

where

and χ is the argument of the Debye scattering function
P v ( 0 ) defined by Eq. (33), and

ττ'· άτ

is the incomplete Γ-function.
Figure 16 shows the variation of the scattering func-

tion P y 1 ^ , e ) as a function of χ for various values of
the parameter e within the range from 0.05 to 0.30.
The curve e = 0 corresponds to the Debye scattering
function Ργι(θ), since Ρ ν ( θ , Ο) Ξ P V ( 0 ) . We see also
from Fig. 16 that the influence of the volume effects
brings about a decrease in the asymptotic slope of the
P v ' (Θ, e) curve at large x, as compared with the be-
havior of the function Py1 (Θ), similar to the effect of
polydispersity. Precisely this sort of deformation of
the scattering indicatrix has been observed experi-
mentally. [ 9 9- The value of the ratio s0/sso of the ini-
tial and asymptotic^ slopes of the function Pv* (Θ, e)
as a function of (h 2 /X 2 ) l / 2

and £ has been calculated
by Ο. Β. Ptitsyn.1124-1 We shall give here only the ex-
pression for Pyx (Θ, e) in the region of large values
of the argument x:

6, ε) = -

2Γ

(80)

or

PiL· (θ, ε) = i ±
6 ) 1 + ε Γ 1 1 + 8

(80a)

It was found from these studies that the unreserved
use of the dissymmetry method, ignoring the actual
form of the angular dependence of the scattering, is
inadmissible in good solvents and in studying samples
of very high molecular weight. It is essential to take

FIG. 16. The relation of the function Pv1^, e) to the argument
χ •= I6172 · (R*/A2) sin2 (Θ/2) for various values of the parameter
e. t 1 2 ' ]
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into account the deformation of the scattering indica-
trix, not only in obtaining the true values of Μ and
(R 2) 1/ 2, but also in determining polydispersity cor-
rectly by the light-scattering method. We recall that
the polydispersity data are obtained from the deviation
of the measured slope ratio s o / s w from the value %.
Loucheux, Weill, and Benoitt1 2 83 have shown that in
principle one can obtain polydispersity data in good
solvents; they found that the asymptotic behavior of
the function Ργ 1 (θ, e ) in the region of large values
of χ does not change in the presence of polydispersity.
The interpretation of the results of the measurements
is rather complex in this case. Put very briefly, it
amounts to the following procedure. Since according
to (80a), ΡγΙο(θ, e ) is a linear function of
[sm2(e/2)]Va+€\ the authorsE128^ find e from the
slope of the graph of log (1/I0v) plotted against
log sin2 (Θ/2 ). The molecular weight and the (coil di-
mensions are then determined by constructing a plot
of (Hc/l0V)c=o against [sin2 ( 0 / 2 ) ] 1 / ( 1 + e ) and an or-
dinary double-extrapolation graph (Zimm plot) of
(Hc/l0V) against [ sin2 (0/2) + kc ]. One takes the
intercept and the slope of the asymptote from the first
graph, and the initial slope and intercept of the curve
from the second graph. Thorough experimental study
shows that, while the scattering indicatrix of a polymer
in a good solvent deviates from the Debye function
Ρ γ ^ θ ) , at the same time it does not precisely agree
with the function Py'iO, e ). Such a study has been
made in ^129^ with a very narrow ("monodisperse")
polystyrene fraction (M = 20 χ 106) in an ideal solvent
(cyclohexane) and a good solvent (toluene) (Fig. 17).
The determination of the coil dimensions in toluene
from the intrinsic dissymmetry | ζ |, using the func-
tion P y ^ e ) , gave ( ϊ ? ) 1 / 2 = 5000 A and α_^ 2.Ο. The
following method was used to calculate (h2 )^ 2 using
the function P " 1 (0, e ). The ratio Py1 (0, e )/V~i (0 )
was calculated as a function of a for several values
of the swelling coefficient near a = 2.0. Then the value
of a for which the function Ργι(θ,ε) best approxi-
mated the experimental points was found by the least-
squares method. This value proved to be a = 2.4, cor-
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responding to coil dimensions (h 2) 1/ 2 = 6000 A.
Thus, the difference in the coil dimensions of a

polystyrene of very high molecular weight in toluene,
as calculated with account taken of the influence of
volume effects, and without, amounted to 20%. The
difference is quite substantial, but considerably less
than we should expect on the basis_ of the theoretical
function P " 1 ^ , e ) (for a given (h 2 A 2 ) 1 / 2 . C126^ A n _
analogous method of determining the dimensions (h 2 ) 1 / 2

using the function Ργ 1 (θ, e ) has been applied in i-38^ to
a series of high-molecular-weight fractions of poly-
2,5-dichlorostyrene in dioxane.

We should note that the points on the graphs of
log (1/Iflv) against log sin2 (0/2 ) do not in all cases
fit a straight line. C129>38] This is a manifestation of
the fact that the measured scattering indicatrix does
not exactly correspond to the variation of the theoret-
ical function Ργι(θ, e ). This can be illustrated by
Fig. 18, which shows the ratio Ρ ^ ί θ , £)/Ργ1(θ) plotted
against sin2 (0/2) for polystyrene fractions (M = 20
χ 106) in toluene and cyclohexane. The circles corre-
spond to the measured scattering intensities, while
the curve is calculated from the theoretical functions
Ργ1(θ, e ) and P v

x ( 0 ) . It seems to us that the ob-
served discrepancy could arise from employing a
single parameter e in the theory in taking into ac-
count the influence of volume effects on the relative
distances of both distant (along the chain) and close
pairs of chain elements. Thus, the description of the
phenomenon with a single parameter e must appar-
ently involve a certain distortion. This problem r e -
quires further theoretical treatment. It would also
be desirable to perform additional thorough experi-
ments, since the existing experimental material is
still greatly limited.

Leng and Benoit^130^ have used the light-scattering
method for a direct experimental proof of the influence
of volume effects on the dimensions of polymer coils
in solution. These authors used a block polymer of
the type ABA, in which short chains A of polymethyl-
methacrylate (PMMA) (amounting to from 7 to 40%
of the block polymer) had been joined to the ends of

FIG. 17. The form of the curve of the quantity (Hc/I#) c = 0 as
a function of sin2 (0/2) for a polystyrene fraction having Μ = 20
χ 10* in toluene (1) and in cyclohexane (2).[1291

FIG. 18. The ratio of the quantities Pv(0, e) and P~v

l(0) as a
function of sin2 (0/2). Curve - theory,['""'"I circles - experi-
ment.!129]
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long polystyrene (PS) chains Β of molecular weight
from 3 χ 105 to 1 χ 106. The double-extrapolation
method was used to measure the radius of gyration
( R 2 ) 1 ' 2 of the coils of the original PS samples and the
block polymer in benzene, which is a good solvent for
both components of the block polymer. This solvent
was chosen with the intent of using the highly effective
method of "phantoms" in light scattering. In fact,
since the increment dn/dc of PMMA in benzene is
near zero, the blocks of this polymer will contribute
nothing to the scattering intensity of the block polymers
in benzene. Thus, they could compare the dimensions
of PS coils in benzene with the dimensions of the same
coils when blocks of PMMA had been attached to the
ends, increasing the volume effects for the coils of
the block polymers. Multiply-repeated experiments
showed (with_an error no greater than 4%) that in all
cases the ( R 2 ) 1 ' 2 of the PS coils in the block polymers
is increased by 12—15% with respect to the coil dimen-
sions of the original PS.

9. THE STUDY OF MACROMOLECULES HAVING
RIGID CHAINS

The fact that the scattering indicatrix of the solu-
tions of certain chain polymer molecules, in particular
deoxyribonucleic acid (DNA), does not agree with the
Debye scattering function P~1(0)^131-' has made it
necessary to examine the problem of scattering in
solutions of particles more rigid than the Gaussian
coils. Thus, A. Peterlin1^1 3 2 '1 3 3^ has calculated the
scattering function P(0) for wormlike chain mole-
cules of varying rigidities (persistence length^-134^ a)

The scattering function P(0) for wormlike chains
has also been discussed by Benoit and Doty^135^ and
by Hermans et al.^1 3 6 > 1 3 7^ In the latter reference, they
also studied the scattering from solutions of zigzag
chains.

We should note that the application of the light -
scattering method to study native DNA molecules en-
counters certain difficulties involving the large di-
mensions of these macromolecules. The latter fact
makes it impossible to obtain a true initial slope of
the ( H c / I g v ) c = 0 curve at the smallest scattering
angles θ (25—30 ) attainable with the existing experi-
mental technique. In line with this, as Sadron^138^ has
emphasized, the data obtained by the light-scattering
method on the molecular weights and (especially) the
dimensions of DNA molecules cannot be considered
to be sufficiently precise. Sadron pointed out'-138'139-'
that the asymptotic branch of the graph of ( H c / I # v ) c = 0

as a function of sin (0/2 ) for DNA solutions is linear.
Theoretically, this corresponds to the case of rodlike
particles (in distinction from Gaussian coils). How-
ever, the asymptote intersects the vertical axis at a
negative intercept, while for rodlike particles it is
positive. In Sadron's opinion, relying on the calcula-
tions of Luzzati and Benoit, E140^ this type of relation

of ( H c / I g v ) c = 0 to sin (0/2) is evidence of a zigzag
structure of native DNA molecules. Luzzati and Benoit
showed that the following relation holds for the asym-
ptote of the scattering curve of solutions of particles
consisting of Ν linear freely-linked segments, each
of length Z:

=o
= 4 sin = Α ^5-sin θ/2

^ λ (81)

The distinction from a Gaussian freely-linked chain
consists in the fact that in this case Ζ cannot be con-
sidered to be much smaller than λ. When Ν = 1,
Eq. (81) goes over into the well-known formula for the
asymptote of the scattering curve of rodlike parti-

_ 4 L
:=0 λ Μ

θ
(82)

Evidently, when Ν > 2, the second term of Eq. (81) is
negative.

Recently Ptitsyn and Fedorov tU1^ have shown that
the zigzag model of a macromolecule is not the only
one giving rise to a negative intercept of the asymptote
of the (Hc/l0V)c = o· As these authors showed, for so-
lutions of wormlike molecules whose rigidity is char-
acterized by the value of the persistence length a, the
second term Β of Eq. (81) for the asymptote of the
scattering curve (Hc/Ig v) c=o takes on the form

oo

2 2
B = 3n2ma

(83)

where m = M/L is the mass (in molecular-weight
units) per unit length of the particle, whose total length
is L. For DNA molecules, L » a, and hence, Β < 0.
The first term A for solutions of wormlike chains is
(4/Am) sin (0/2), coinciding with the corresponding
term in Eq. (81), considering that NZ = L, and NZ/M
= m" 1 . Ptitsyn and Fedorov thus showed that a nega-
tive intercept of the asymptote of the graph of
( H c / I g v ) c = 0 against sin (0/2) does not solve the prob-
lem of whether a zigzag or wormlike model is pre-
ferred for the DNA molecule. For either model, one
can determine a quantity m = M/L from the asym-
ptotic slope. Since for native DNA molecules the first
term in (83) is much smaller than the second, one can
also calculate the persistence length a of the chain
from the intercept of the asymptote. The problem of
interpreting the light-scattering data from DNA solu-
tions has been subjected to further discussion in C142^,
where it was noted that for Gaussian coils of suffi-
ciently large dimensions it is very hard to establish
experimentally the true nature of the relation of the
function Py J(0) to the angle 0 in its asymptotic por-
tion. Plotting ( H c / I g v ) c = 0 for solutions of large
Gaussian coils as a function of sin (0/2 ), one can ob-
tain a straight line with a negative intercept for points
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at θ > 90° (even with a scatter in the experimental
points that is not too great). It is especially easy to
obtain the asymptotic branch of the ( H c / I g v ) c = 0

~ sin (θ/2) curve for solutions of polydisperse coils.
Thus, one can get a negative intercept of the asym-

ptotic line of the ( H c / l g v ) c = 0 ~ sin (0/2) curve either
for zigzag or wormlike molecules, or even for large
enough Gaussian coils (especially polydisperse ones,
whereas DNA samples are evidently polydisperseC1383).

The slope of the asymptotic line can give more def-
inite indications: the value m = M/L obtained from the
slope can be compared with the data obtained by other,
methods.

In Li*2]> the light scattering of solutions of native
DNA from calf thymus was measured. The molecular
weight M w was found from double-extrapolation graphs
(Zimm plots), and in two experiments turned out to be
16.6 x 106 and 14.3 x 106. One of the graphs is shown
in Fig. 19. The value of m = M/L was determined
from the slope of the asymptotic lines of the graphs
of ( H c / l 0 V ) c = o as a function of sin (0/2) (Fig. 20).
The values turned out to be 240 and 290 A"1, respec-
tively. These values of m agree with m = 200 A""1 for
the well-known Crick-Watson model. From the inter-
cept of the asymptote B, the persistence length a was
calculated. In the two experiments, this turned out to
be 180 and 200 A. The experimental data of other au-
thors, discussed in [ 1 4 1 ^, give a « 220—320 A. The
value a «200—300 A agrees with the estimate
(~ 360 A) made on the basis of sedimentation data.

Sadron^139^ had earlier obtained a similar value
m « 220—250 A by interpreting his data on the basis

-W •

FIG. 20. Graph of the relation of (Hc/Ifl) c = 0 to sin (0/2)
for solutions of calf thymus DNA. l l42l The straight lines are the
asymptotes of the curves.

of a zigzag chain model. Figure 21 shows the graph of
the relation of (Hc/Igv)c=o t o sin (θ/2) for the orig-
inal (native) DNA and products of its enzymatic deg-
radation. £138^ The constancy of slope of the straight
lines in Fig. 21 indicates that the density M/L does
not vary during the degradation of the DNA. The value
cited E139-l for the molecular weight per straight-line
segment of the zigzag was of the order of (5—6 ) χ 105.

The problem of interpreting the light-scattering
data from DNA solutions, as we see it, is in a state
of debate. Nevertheless, there is no doubt that the
light-scattering method is promising, as applied to

sin2

U 2J)

• 6000c

FIG. 19. Zimm plot of the light scattering of solutions of calf
thymus DNA, Mw - 15.5 χ 10*. t" 2 ]

-10 -

FIG. 21. The asymptotic relation of the quantity (Hc/l0)c=o
to sin (Θ/2) for a sample of native DNA and its fragments, from
the data of ['"I.
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Table II. Molecular weights and dimensions of PBG
particles in chloroform-formamide mixture'-143^

Μ.10-3

130

208

(R2) '
2
, A

263

408

L, A

910

1410

(R2)
1/z
/.M" M-iO-o

2.02 262

1,96 358

(R2)
1/2
, A

528

587

L, A

1825

2030

(R2)
1/2
/M

2.01

1.64

the problem of the DNA structure. However, this
problem is quite complex, and requires for its solu-
tion the application of the entire roster of physical
and physicochemical methods.

As an example of a study of a polymer having an
even more rigid chain, we can cite the light-scattering
measurements on solutions of poly-y-benzyl-L-gluta-
mate (PBG) in a chloroform-formamide mixture. E143H
Table II gives the values of Μ and (R2)1/2 determined
from the intercept and initial slope of the double -
extrapolation graphs (Zimm plots) for four PBG sam-
ples of the highest molecular weights. The ratio
(R2)1//2/M remains constant for the first three sam-
ples, but declines somewhat for the last one. The
constancy of this quantity in a polymer-homolog series
indicates a linear (helical) structure of the molecules
of this synthetic polypeptide, since only in such a case
could their dimensions be proportional to the molecu-
lar weights.

A number of theoretical and experimental stud-
j e s [24,144-146] nave b e e n concerned with the scattering
from rigid anisotropic macromolecules. The funda-
mental relations for scattering in solutions of aniso-
tropic rodlike particles have been derived in a theoret-
ical paper by Horn, Benoit, and Oster. ^24^ These re-
lations have been subsequently applied in studying
suspensions of tobacco mosaic virus (TMV) ^144'145-'
and other particles. In E144^ they measured the scat-
tering components (S^v)g=(, and (TV)Q=0 for TMV
suspensions by extrapolation to zero angle, and found
the depolarization of the scattering at zero angle
Δν(0°) = (3VV/Tv)e=o- F r o m Δν(0°), they calculated
by (53) and (54) the optical anisotropy δ2 which turned
out to be 0.184. Then, by comparing the theoretical
variation of the function 'Ρ'ζ'(θ) [ Eq. (35)] correspond-
ing to δ2= 0.184 and to various relative lengths L/λ
of the rods with the experimental points (Fig. 22), they
showed that L/λ = 0.7. This gives for TMV: L
= (2300 ± 200) A. According to [ 1 4 6 ] , one must like-
wise have a prior knowledge of the anisotropy δ2 in
determining the dimensions of rodlike anisotropic
particles directly from the initial slope of the double-
extrapolation graph, since here the initial slope is de-
termined not by the mean radius of gyration but by the
quantity

35

Nevertheless, the determination of the length of
TMV particles from the double-extrapolation graphs

1.5

ι
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FIG. 22. A comparison of the theoretical curve vf° (ff) and the
experimental points ( 9 ^ v ^ 0 ) c = o (δ2 = 0.184 and L/λ = 0.7)
for solutions of tobacco mosaic virus.I144]

gives L = 3200 A, ^195^ i.e., a value greater than that
obtained in '-144-' upon taking the anisotropy into account.
The value L = 3200 A agrees better with the data ob-
tained by the hydrodynamic methods (sedimentation,
viscosity) and electron microscopy. We also note that,
if the greater value of the depolarization factor Ah of
the massive TMV particles (M w40x 106) obtained
in E144J can be ascribed to their quadrupole emission,
then the value Δν(0°) = 0.55'-144-' corresponds to an
intrinsic anisotropy of TMV particles not agreeing
with other data. In fact, the anisotropy δ2 = 0.184 cor-
responds to a difference in the principal polarizabili-
ties of the particle (o^ — a2) ~ 3.5 χ 10~18. A direct
method of determining the anisotropy (flow birefring-
ence ) gives a value of («j - a 2) a n order of magnitude
smaller [147^ (see also m , Chap. VIII, Sec. 2). The
reasons for this discrepancy are not yet clear.

In E148J, measurement of the depolarized scattering
component ^ ? v is used to study the gradual decrease
in rigidity of short chain molecules with increasing
molecular weight. Let δ§ be the anisotropy per link
of a chain molecule consisting of Ν links. Then, ac-
cording to

r -r

eta V W 3 δ 0

Qjt Ό — r h — r 00 IQ ~</2

3 α ? , - 1
(84)

where Vvg is the light intensity scattered by a chain
of Ν jsotropic links of the same mean polarizability,
and â j is the mean square of the cosine of the angle
between the principal polarizability axes of the links
i and j of the chain. The summation is performed
over all possible pairs of links. For rodlike particles,
I ajj I = 1, and the double summation gives N2. For
sufficiently long chains, approximating Gaussian coils,
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the double summation gives N(l+<p ), where the con-
stant ψ is determined by the nature of the short-range
interaction in the chain. According to the general r e -
lation (5), Tv0 /c - N. If we plot the quantity Ji? v /c
as a function of Ν (or of M, which is the same thing),
then in the region of transition from rods to Gaussian
coils, SVy/c must decline and approach a constant
value. Figure 23 (from £148^) shows that such a varia-
tion in the depolarized scattering component is actu-
ally observed in solutions of low-molecular-weight
fractions of polystyrene. The quantity H v / c attains
a constant value at a molecular weight «5000, cor-
responding to the relatively low degree of polymeriza-
tion Ν as 50. Thus, measurements of the depolariza-
tion of scattering can be used to study the rigidity of
relatively short chains.

sow tsooo Μ

FIG. 23. The approach to the asymptote of the quantity
(Hv/c) c = 0 with incteasing molecular weight for the depolarized
scattering component of solutions of low-molecular-weight
polys tyrene.[14"]

10. THE STUDY OF STEREOSPECIFIC MACRO-
MOLECULES

As is known, the study of stereoregular polymers
is complicated by their considerably poorer solubility
as compared with their atactic homologs. Besides, the
solutions of isotactic polymers are often contaminated
with impurities of colloidal nature: residues of the
organometallic catalysts, as well as insoluble micro-
crystallites. This requires especially careful purifi-
cation of the solutions. Owing to these additional dif-
ficulties, the amount of experimental material obtained
on isotactic polymers is still very limited. A few au-
thors have measured the light scattering of the isotac-
tic stereoisomers of polystyrene, C149~151] polymethyl-
methacrylate, ^1523 polypropylene,'-153"155^ and poly-n-
butene.E156^ All of these measurements were per-
formed in good solvents. The most essential of the
obtained results are the following. We can consider it
to be firmly established that in good solvents the rela-
tion between [η] and Μ does not differ for the iso-
and atactic isomers. Ci50-i52,i54,i563 T n i s i s evidence
that the hydrodynamic properties of the macromole -
cules of the stereoisomers determining the value of
the viscosity [η] are the same.

We can also consider it to be established that the
relation of the second virial coefficient A2 to Μ in
good solvents differs in nature for iso- and atactic
isomers. The straight line log A2 ~ log Μ shows a
smaller slope for an isotactic polymer than for the
atactic one. [«ο,ΐίΐ,ΐΜ] this is illustrated by Fig. 24,
which was obtained for polypropylene in £154^. The
same result has been obtained for polystyrene and
poly-n-butene by the osmotic method.'-156'157^ _

Reliable determinations of coil dimensions ( h 2 ) 1 / 2

for stereoregular polymers are extremely scarce. The
coil dimensions of isotactic polystyrene and polypro-
pylene measured in C150.1543 d o not differ in good sol-
vents from those of the atactic isomers of the same M.

FIG. 24. The relation of the second virial coefficient A2 of solu-
tions of isotactic (2) and atactic (1) polypropylene in 1-chlorona-
phthalene to the molecular weight Μ (from the data of t 1"]).

The modern thermodynamic theories of polymer
solutions establish a relation between the quantities
(h 2 ) 1 / 2 , M, A2, and a (or [η], Μ, Α2, and a). Thus,
they permitjme to calculate the unperturbed coil di-
mensions (h2))1'2 from measurements in good sol-
vents. [ 5 8 ] It is pointed out in £150,166] that the smaller
values of A2 (for equal [17] and M) of the isotactic
polymers imply smaller values of a, and hence, a
value of (h\)l/2 that is 15—20% larger than for the
atactic polymers. An experimental confirmation of
this conclusion would imply the establishment of a
relation between the flexibility of polymer chains and
their stereoisomerism. This would be of importance
in determining more exactly the nature of the short-
range interaction in the chains. A direct test of this
conclusion by direct measurement of ( h | ) 1 / 2 in an ideal
solvent is practically ruled out. However, we might
hope that for certain isotactic polymers it would prove
possible to measure the intrinsic viscosity [77] @ in
an ideal solvent; this would make considerably fewer
demands on the purification of the solutions. In view
of the direct relation between [77]© and (h2,)1^2, the
important problem of the effect of stereoisomerism on
the flexibility of chains probably could be solved in
this way.

11. THE STUDY OF COPOLYMERS

Interest has arisen in the theoretical treatment of
the problem of light scattering of copolymers in con-
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nection with the experimental fact that their solutions
show anomalously intense scattering and a very small
refractive increment. ^158^ In order to explain it, the
idea has been advanced that this anomaly involves in-
homogeneity of composition in the copolymer E159^ (we
shall refer to inhomogeneity of a copolymer with re -
gard to the chemical composition of its macromole-
cules as compositional inhomogeneity or compositional
dispersion).

Based on an initial assumption that the refractive
increment of a copolymer solution is a linear function
of its composition, Stockmayer et al., ^160^ and later
Bushuk and Benoit'-161'162-' have developed a theory of
light scattering by solutions of copolymers. In L161>162] ;

this theory was first applied for a quantitative study of
compositional dispersion of copolymers.

We introduce the following notation. Let the copol -
ymer contain weight concentrations CA and eg of
components A and B. Let the refractive increments
of the copolymer and the homopolymers in the given
solvent be denoted by v, v^, and yg, respectively.
Then, for dilute solutions C160^

ν = χνΑ-\-(1—χ)νΒ, (85)

where χ = C A / ( C A + eg) is the weight fraction of
component A.

We shall denote by M a p p the apparent molecular
weight of the copolymer obtained by the ordinary ex-
trapolation to zero concentration according to the gen-
eral relation (10), by M w the true (weight-average)
molecular weight of the copolymer, and by M A and Mg
the weight-average molecular weights of components A
and Β in the copolymer. In a simple fashion we can
derive the following equations:

•]xMA

or

(86)

(87)

where Ρ and Q are parameters of the compositional
inhomogeneity of the copolymer, equal to

Ρ =
i, i

= ~[(l-~x)(Mw- MB) - Ζ (MW-MA)] (88)

and

Q = - Mw); (89)
i.i

Here oxj = xj - x is the deviation in composition of the
i-th particle from the mean composition x, and y^ is
the relative concentration (fraction) of the particles
having the composition Xj. In the expressions for Ρ
(88) and Q (89), the summation is performed twice:
over the differing compositions of the molecules ( i),
and over the differing molecular weights ( j).

On the basis of Eq. (87), we can in principle calcu-
late the three unknown quantities M w , P, and Q (or
M w , MA, and Mg) from measurements of Mapp in
three solvents. If we then plot this quantity (or
Mapp / M w ) as a function of the argument (vp̂  - ^g )/v
(i.e., as a function of n 0 ), then the points must lie on
a parabola.

The parameters Ρ and Q lie within the limits

-xMw<P*C(l-x)Mw, 0<cQ^Mwlx(l-x)].

The parameter Ρ characterizes the tendency to
variation in the composition of the chains with increas-
ing molecular weight of the copolymer. It can be either
positive or negative, depending on which of the compo-
nents (A or B) predominates in the high-molecular-
weight fraction of the copolymer.

The parameter Q (or more conveniently, Q/Mw)
characterizes the mean compositional dispersion of
the copolymer. This parameter is always positive,
and the maximum possible value of Q/Mw is x(l -x) .

As a measure of the compositional dispersion of
copolymers, Bushuk and Benoit have introduced the
quantity Q/Q m a x ·

We shall discuss some special cases.
Copolymer having chains of homogeneous compo-

sition. In this case, OXJ = 0, and hence Ρ = Q = 0,
and (87) implies M a p p = Mw. Equations (88) and (89)
give for this special case MA = xMw and Mg
= ( l - x ) M w .

A mixture of two homopolymers A and Β having
molecular weights Μ A and Mg and relative concen-
trations γ^ and yg. In this case,

P=x(i-x)(MA-MB),
Q = x(l-x)[(l-x)MA+xMB}.

Equation (87) gives

vByBMB).

(90)

(91)

If we choose n0, γ^, and yg such that ν » 0, then
here M a p p » » . If we choose a solvent in which u^
= 0 (or v^ = 0), then from (91) we can calculate the
weight-average molecular weight of the second homo-
polymer Mg (or M A ) · As we see from (90), when
MA = Mg, the parameter Ρ becomes zero (we note
that if a copolymer is monodisperse in mass, again
Ρ = 0). The parameter Q/Mw attains its maximum
value x ( l — x) for a mixture of homopolymers (having
MA = Mg = M w ) . Such a mixture is the limiting case
of compositional inhomogeneity of a copolymer.

This theory has been tested by Bushuk and
BenoitClel»1623 on three objects: mixtures of poly-
styrene with polymethylmethacrylate, random, and
block S-MMA copolymers. The results agreed with
the theory. The compositional dispersion turned out
to be near the maximum ( Q / Q m a x = 0.72) for the
random copolymer, and very small for the block
polymer (Q/Q m a x = 0.05), in accord with the con-
ditions of synthesis of the latter.
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In £1G3^, the compositional dispersion was studied

in a random S-MMA copolymer and a series of frac-

tions of it obtained in two solvent-precipitant systems.

One of these (I) was sensitive to the composition of the

macromolecules, and the other (II) was not very sen-

sitive to composition. £1M-I In agreement with the the-

ory of fractionation of copolymers in such systems,E165^

the study of the compositional dispersion of the frac-

tions made in ^ 1 6 3^ showed that the first fractions from

system I have a smaller dispersion (Q/Qmax ~ 0.30),

while the last fractions have a somewhat greater dis-

persion than the original sample ( Q / Q m a x ~ 0.60).

The fractions from system II did not show such a dif-

ference in dispersion. Figure 25 shows the relation

of M a p p / M w to (VA~VB)/V obtained in ^ 1 6 3^ by study-

ing the original copolymer in five solvents having n0

from 1.380 to 1.601.

FIG. 25. The experimental relation of M a p p / M w to (V A — <-/B)/V
for an unfractionated random S-MMA copolymer (21:79).L163]

The theory of light scattering by copolymer solu-

tions holds both for small and large macromolecules,

under the condition (for the latter) that one extrapo-

lates the results to zero scattering angle. It is valid

for copolymers of any structure: random copolymers,

block polymers, and graft polymers.

The problem of the angular dependence of the light

scattering of copolymer solutions has been discussed

by Benoit and Wippler.[166^ In C 1 6 6 · 1 6 7^ relations are

derived that are necessary in determining the coil di-

mensions of copolymers by light scattering.

Let R|.pp denote the mean square radius of gyra-

tion of the copolymer molecules, as determined from

the initial slope of the (Hc/l0V) c = o curve. Then, the

following equation holds for this quantity:

RlPP = ̂ rlx*vARA + (l-x)*vBRB + 2x(l-x)vAvBRAB], (92)

where x, v, vA, and v-g have their previous mean-

ings, R\ is the mean square radius of gyration of

component A in the copolymer molecules, and Rg

is the same quantity for component B,

RAB^^(RA + RB+12), (93)

and Z2 is the mean square distance between the cen-

ters of gravity of components A and Β in the copol-

ymer molecules.

If we introduce the variable y = xvA/v, then we can
write (92) in the form

fiapp = yR\-\-(l — y) RB-\-y (1 — j/) i2, (94)

This implies that, in general, R a p p is a quadratic

function of y (i.e., of the refractive index of the sol-

vent). For copolymers of concrete structure, Rapp

will be expressed in various ways in terms of R. and

Rg as a function of the quantity I2. It is not hard to

envision the limiting cases in which I2 will have its

greatest and least values. For a random copolymer,

the centers of gravity of components A and Β in the

molecules will coincide on the average, and I2 = 0.

The other limiting case is a block polymer whose

molecules consist of only two blocks, A and B. It

was shown in application to E167] that in this case I2

= 2 ( R A + R^). Hence,

In analyzing the structure of a copolymer, a con-
venient step is to form the product M a p p R a p p , which
equals

MARA „
y -4- -Λ— y)

where

MABRAB

05)

06)

Let R2 be the mean square geometric radius of gyra-

tion of the copolymer (assuming that all the segments

have the same mass). Then

«app xMAR\

(97)

Equations (92) and (97) show that in principle we can

determine R2, R2

A, and R^ (or R2

A, R^, and R \ B )

from measurements in three solvents. According to

(95), M a ppR a p p is a quadratic function of y, or a

parabola with a vertical axis. The ordinates corre-

sponding to abscissas of unity and zero give the quan-

tities M^R^/x and MgRfg/(l-x), which permit us

to calculate R^ and Rg. The direction of convexity

of the parabola is determined by the coefficient D of

the y2 term in (95):

n _ MAR% ι MBR%
U ~ χ + \ — x

Let us introduce, along with δχ\
lar quantity Z? = 2R^ B i - R2^ - ]
(98) in the form:

D

2MABRAB (98)

ViAf,*,(!-»<) 1}

= x̂  -x, the molecu-

g^· Then we can write

(98a)

Equations (98) and (98a) permit us to analyze the vari-
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ation in the quantity MappRapp as a function of y (n0

of the solvent) for concrete copolymer structures. We
shall discuss some important cases.

a) Random copolymer. In this case, as was stated
above, we can assume Z| = 0. In addition, R^j = Rgj.
Under these conditions, D is simplified to the quantity

MappRapp

which is essentially positive. For a copolymer having
compositional dispersion, this gives a relation of
MappRapp to y in the form of a parabola convex down-
ward. For a random copolymer with homogeneous
chain composition (δχ^ = 0 ) , D = 0, and the parabola
degenerates into a straight line.

b) Block polymer of the type AB. In this case, I2

= 2(R A + R B ) , and by applying (93), (96), and (98), we
can convince ourselves that D is negative. The
MappRapp curve is a parabola convex upward. *

c) Graft polymer. The relation between the quan-
tities Rapp» RA· a n <^ ^B n a s b e e n derived only for a
graft polymer of the simplest structure: one branch of
component Β grafted to a chain of component A. The
following equation was derived in L1 6 6J for this case
(considering that the branch Β can be grafted onto
any point of the chain A):

(99)

By using the genera l re la t ion (94), we can easi ly
show, upon convert ing (99) to the form

pp , (99a)

that for such a graft po lymer, I2 = R ^ + 2 R B . Upon
applying (93), (96), and (98), we can convince o u r s e l v e s
that the coefficient D of y 2 in (95) i s negative, and the
curve of M a p p R | p p a s a function of y i s a p a r a b o l a
convex upward. This is to be expected, s ince the c a s e
of a graft p o l y m e r having one grafted b r a n c h s t r u c -
tura l ly r e s e m b l e s a block po lymer of the type AB.

d) Mixture of h o m o p o l y m e r s . In th i s c a s e , M w

+ (1 - x ) M g , and M ^ g = 0. Hence,

MAR\ .
1 — χ

and the MappRapp curve is a parabola convex down-
ward. This case coincides with that of a random co-
polymer having the extreme of compositional inhomo-
geneity of its chains.

*A recent papert154] developing the results obtained in ['"]
has shown that for a two-block polymer of the type AB, the curves
of the relation of the quantity HcMi//I to the argument (16η·2 χ
(R2/A2) sin2((?/2) ) have a positive initial slope if the value of y is
within the range from 0.5 to 1.2. At larger values of y, these curves
have a negative initial slope, and pass through a minimum. As an
example of an experimental confirmation of this calculated result,
the authors oft1'4] presen t a graph of l0~sin2(0/2) for the scatter-
ing from a PS-PMMA block polymer (of the type BAB) in styrene,
showing a maximum at sin2(#/2) = 0.07.

χ

J

R'
"A

f

0

<^y \
1
1

I

J

y

FIG. 26. Theoretical curves of the relation of the product
MappRappto the quantity y = xvp^/v for: a random copolymer having
compositional inhomogeneity (1), a random copolymer of homogen-
eous composition (2), and a block copolymer (3). ['"]

Figure 26 shows the variation of the value of the
product MappRapp as a function of y for the cited
cases.

An analysis of the structure of block and graft
polymers of more complex structure from light-
scattering data has not yet been developed. We can
only state that in ^167^ the values of R^g and I2 were
calculated for block polymers consisting of η blocks
of A alternating with an equal number of blocks of B.
If the A blocks contain Ν segments of length a, and
the Β blocks contain Κ segments of length b, then

P = ±.(Na* + Kb*).

Understandably, as the number η of blocks increases,
I — 0, and we go over to a case similar to that of a
random copolymer having uniform chain composition,
for which the M appR app parabola degenerates into a
straight line. We can state only some general notions
with regard to graft polymers. Graft polymers con-
taining several Β branches grafted onto a main A
chain will give an MappRapp curve similar to that of
a block polymer having a small number of blocks.
Graft polymers containing a very large number of
short Β branches grafted onto an A chain will give
an MappRapp curve similar to that for a random co-
polymer. The intermediate case for a graft polymer
will be more complex.

In the most general case, in which the copolymer is
polydisperse in mass, composition, and structure, it is
hard to predict the variation of the MappRapp curve in
advance.

References E1 6 7·1 6 8^ give experimental data on the
relation of MappRapp to y for a random copolymer,
a block polymer, and a mixture of homopolymers;
these data agree with the theoretical ideas presented
here. From the experimental data, they directly cal-
culated in the corresponding cases the quantities R^,
Rg, R^g, and I2, which are directly involved in the
molecular structure of the copolymer. They showed
thereby that one can use the light-scattering method
for detailed study of copolymer molecules. However,
we must point out that the practical realization of this
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possibility depends on the optical properties of the
components of the copolymer. A successful analysis
of the structure of a copolymer is possible only when
the refractive indices of the components differ suffi-
ciently. If the values of vp^ and VQ are close to one
another, an analysis of the structure of the copolymer
is impossible. Nevertheless, as Eqs. (86) and (97)
show, when vp^ = V-Q, we can obtain the true values of
the molecular weight M w and the radius of gyration
R2 of the copolymer, regardless of the refractive in-
dex of the solvent (with the exception, of course, of
ν = 0, and of too small values of v).

We note that the method developed in l-167^ of deter-
mining the dimensions of copolymer molecules by light
scattering requires some qualifications. The point is
that the determination using (92) or (97) of the values
of R^, RA, and R A B (or R2) from light-scattering
measurements in three solvents assumes that these
quantities have the very same values in all three sol-
vents. In addition, if the set of solvents includes both
poor and good solvents (for one or both components of
the copolymer), then certain of the quantities R2, RA,
and Rg (or all three) can vary considerably in going
from one solvent to another. Understandably, the neg-
lect of this fact cannot help but affect the accuracy of
determination of the dimensions by Eq. (92) or (97),
From the standpoint of successfully applying the
method developed in C16T3, it is preferable to include
in the set of solvents (having differing n0) only those
that are good solvents for both components of the co-
polymer (if such a choice is possible).

There are practically no data in the literature on
light-scattering studies of graft polymers. In E1693,
which was concerned with studying a methyl metha-
cry late-sty rene graft polymer, the molecular weight
Mg of the grafted polystyrene was determined by the
light-scattering method. For this purpose, benzene,
in which upi = 0, was chosen as the solvent. In line
with (86), Mg was calculated here by the relation

while the value of χ was determined by refractometry.

12. THE STUDY OF INTERMOLECULAR INTERAC-
TIONS (SECOND VIRIAL COEFFICIENT)

The second virial coefficient A2 entering into the
general scattering equation (3a) characterizes the de-
gree of deviation of the solution from ideal behavior
(van't Hoff's law), and is a qualitative measure of the
intermolecular interaction in solution. Modern ther-
modynamic (and statistical) theories of polymersC32,ITO3
relate A2 to the molecular parameters. Hence, the
study of A2 is important in a well-rounded study of
the properties and structure of macromolecules in
solution.

The existing theories of A2 as a measure of the in-

termolecular interactions introduce the so-called "ef-
fective excluded volume" v0 of a segment. This quan-
tity involves the impossibility of a given segment of a
polymer molecule occurring in a volume element of
the solution occupied by another segment (of the same
or an adjacent molecule). It is defined as

<P(r>

(100)

where φ{ΐ) is the interaction potential of two seg-
ments occurring at a distance r apart. As Stock-
mayer^171^ has pointed out, the exact form of the po-
tential <p(r) plays no essential role, since the ex-
cluded volume v0 depends very weakly on the form of
the function φ ( r ) .

In terms of the quantity v0, A2 can be represented
in the form t m l :

A> = JT-lfrFM< < 1 0 1 >
where Mo is the molecular weight per segment (link),
and F (ζ ) is a function of the quantity ζ proportional
to the number of contacts between segments per unit
volume, which equals

(102)

here Ν is the number of segments (links) in the poly-
mer molecule, and b is the effective length of the con-
nection between consecutive segments (links ) of the
chain.

At the Θ-point, φ(τ) = 0, and hence, v0 = 0 and
ζ = 0, whereby F(0) s i .

The form of the function F(z) depends on the mo-
lecular model adopted in the given theory, which deter-
mines the probability of contacts (interactions, colli-
sions ) between segments (links), and also depends on
how fully we account for the number of such contacts.
If we limit ourselves to single contacts only (contacts
of one segment of the given macromolecule with one
of the segments of an adjacent macromolecule, or a
"pair interaction"), then, regardless of the molecular
model applied,

In the modern theories of A2, methods have been de-
veloped of taking into account double and triple con-
tacts (simultaneous contact of two or three pairs of
segments of the interacting macromolecules ). A strict
account of interactions of high order (triple and higher)
involves considerable mathematical difficulties.

In the most widely-known theory of Flory, '-32-' which
he has developed in conjunction with Krigbaum^102^ and
Orofino, ^58J each of the interacting macromolecules
is represented by the model of a cloud of segments.
Its density is spherically symmetrical with respect
to the center of inertia, and decreases according to
a Gaussian law. This model gives the following ex-
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p r e s s i o n for F ( z ) :

Ζ V 3a

where

and at small z,

3V3S
τ za 3

a5 — a3 = — ξ — z,

/7(z)=l-1.15z+6.25z a-...,

(103)

(104)

(103a)

where a is the swelling coefficient of the coil in go-
ing from an ideal solvent (A2 = 0) to the given solvent.

As Stockmayer has shown, ^172^ the coefficient
3V3V2 in (104) must be replaced by 134/105 to recon-
cile the theory with the experimental data. With this
value of the coefficient, F(z ) can be represented at
small ζ in the form of the series

/•(z)=l-l,15z+3.97z 2-... (103b)

We note that in representing the function F (ζ ) as
a power series, the corresponding terms of the series
take into account the contribution to A2 made by double
(the ζ term), and then triple (the z2 term), etc., in-
termolecular contacts (interactions).

Following Flory and his associates,'-102'58^ a number
of other authors have derived expressions for the func -
tion F(z) by using a more realistic model or by mak-
ing a strict statistical account of double and triple in-
termolecular interactions. [173-18°3 The power series
obtained in the cited studies for F (ζ) converge poorly,
so that they can be used only for small ζ (z < 0.15),
i.e., in the vicinity of the ©-point.

In order to compare the theory of A2 with experi-
ment, one studies experimentally the relation of A2 to
the temperature and molecular weight of the polymer.
In such a comparison, one must express the excluded
volume v0 per segment in the expression (101) for A2

in terms of the thermodynamic parameters of the
polymer-solvent system. Here we can obtain'-32^

(105)

where v s is the volume of a segment, Vj is the vol-
ume of a solvent molecule, >pt is a parameter charac-
terizing the entropy of mixing of the polymer with the
solvent, '-32-' and © is the temperature at which A2 = 0
(the ©-temperature).

If we substitute (105) into (102), the argument ζ of
the function F(z) takes on the form

(106)

if we bear in mind that v s = VM 0 /NA, and Nb2 = h§
(v is the partial specific volume of the polymer in the
solution, and Vj is the molar volume of the solvent).
Substituting (105) into (101), we have

(107)

Since v, Vlt φ, and © are constants for a given
polymer-solvent system, Eq. (107) makes evident the
relation of A2 to the temperature Τ and the molecular
weight, in terms of z. In the single-contact approxi-
mation (F (ζ) = 1), A2 is independent of the molecular
weight (and correspondingly independent of the molec-
ular model used). In the double-contact approximation
(the linear term of F(z)), A2 is proportional to
(1 -KM1/2), and in the further approximations, the
relation of A2 to Μ is more complex.

Many authors have carried out tests of the theory
of A2, but for the most part with a limited experimen-
tal material. The studies of Kirste and Schulz, ^181^
and especially E182J, have been concerned with syste-
matically studying the relation of A2 in PMMA solu-
tions to the molecular weight and the temperature.
They measured A2 for four PMMA fractions (having
Μ = 3 χ 104; 2.1 χ 105; 1.1 χ 106; and 4.6 χ 106) in
various solvents and at different T.

The results of the comparison of A2 with theory
proved to favor the theory of Isihara and Koyama. E173]
The temperature-dependence of A2 in the region where
it is positive is also well described by the Flory-
Krigbaum-Orofino theory. However, in the region A2

< 0, the latter strongly disagrees with experiment
(Fig. 27) (as do all the other theories except that of
Isihara and Koyama).

Kirste and Schulz have come to the conclusion that
a strict account of the interactions is not necessary
for an adequate theory of the second virial coefficient
(its necessity is implied by the existence of the bonds

W 52° 56'

Ht-W"

FIG. 27. The temperature-dependence of the second virial co-
efficient A2 of solutions of a polytnethylmethacrylate fraction
(M = 2.1 x 10s) in butyl chloride; comparison with the theories of
Flory, Krigbaum, and Orofino (FKO), Isihara and Koyama (IK), and
Casassa (C).["2i
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between the links in the actual polymer chain), and
that a model of the coil in the form of a cloud of seg-
ments with a Gaussian density distribution is quite
sufficient for a satisfactory theory of A2. E182^ This
conclusion seems premature to us, in spite of the im-
portant significance of the experimental material ob-
tained in C182^. Further systematic studies of the r e -
lations A2(M) and A 2(T) in other polymer-solvent
systems are necessary. In this regard, we should r e -
fer to the study of Schulz and his associates, £183>184]
in which the idea is developed of separating A2 into
entropic and enthalpic portions for exothermic solu-
tions (polystyrene-benzene), whereas the Isihara-
Koyama theory is valid in endothermic solutions
(PMMA-butyl chloride).

A most important result of the modern thermody-
namic theory of polymer solutions is the establishment
of a relation between A2 and (h 2) 1/ 2 . We can easily
derive from Eqs. (106) and (107) (bearing in mind the
fact that ϊ ? = a 2 hl) :

A. Ψ (α),

where

(108)

(109)

It is quite important to know the exact form of the
function Ψ(α) . In fact, since all the quantities enter-
ing into (108), except for Φ(α), are determined ex-
perimentally, a knowledge of the function Φ ( α ) should
permit us_to determine a from measurements of A2,
M, and ( h 2 ) 1 / 2 in a good solvent. This implies also the
determination of the unperturbed coil dimensions
(h^) 1 / 2 in an ideal solvent, characterizing the flexibil-
ity of the chains. In particular, this is important in
stereoregular polymers, for which one cannot obtain
solutions in ideal solvents.

According to (109), each function F(z) in the above-
mentioned theories of the second virial coefficient cor-
responds in principle to its own particular function
Φ(α) . Figure 28, taken from C185^, shows the variation
of the function Φ (a ) according to some of the existing
theories. To test the theoretical Φ(α) functions, one
must use measurements of A2, M, ( t?) 1 / 2 , and a
made by the light-scattering method with double ex-
trapolation of the results of the measurements. The
most desirable region of measurements for this pur-
pose is that of large a values (good solvents and large
M). Here the determinations of (h 2 ) 1 / 2 and a must
necessarily take into account the influence of the vol-
ume effects. At present, such measurements are very
few in number. Figure 28 contains the experimental
data collected in £185^, which we have supplemented
with those from C38^. The experimental data in the r e -
gion a > 1.5 are still clearly insufficient to solve the
problem of the true variation of the function Ψ (a). In
addition, the very concept of "unperturbed dimensions"
(h2,)1/2 of a coil, and hence also of a, perhaps should

0,6
Ψ(β)

0J

0.Ί

0J

0.2

0,1

1,0 1.2 ΙΛ 1.6 1.8 2,0

FIG. 28. The variation of the function ψ (α) with increase in
the swelling coefficient α of the coils according to the theories
of Flory, Krigbaum, and Orofino (1 and 2), Ptitsyn (3), and
Casassa and Markovitz (4). Experimental points: Δ - polystyrene
in toluene;!"' 1 2 3 ' 1 ' 7 '" 8] O - polystyrene in butanone;[1"]
ο - polyisobutylene in cyclohexanejt1"] n - polyvinylacetate in
butanone;L72J V - polystyrene in cyclohexane;!47] · — poly-2, 5-
dichlorostyrene in dioxane.t38]

be made more exact. t l 8 6 : i Hence, although the experi-
mental points occurring in the region a > 1.5 lie be-
low the curves 1 and 2 for Φ ( α ) , nevertheless, no
conclusion on the preferability of any given function
Φ(α) seems to us to be sufficiently substantiated.

We shall briefly take up the problem of the "angu-
lar dependence" of the second virial coefficient. In
Zimm's well-known study, t28^1 which is devoted to tak-
ing into account the effect of the intermolecular inter-
actions on the light scattering of polymer solutions,
the treatment has been limited to the single-contact
approximation. In this approximateion, the scattering
equation has the form

17 = MPW)Jr2AiC + A z R ^ ) c ' i + •••' ( 1 1 0 >

where the second term of the series expansion of Ig1

in terms of the concentration is independent of the
scattering angle Θ. Strictly speaking, this approxi-
mation is valid only in poor solvents near the Θ-point.
Albrecht [ 1 8 7^ and Flory and Bueche^188^ have shown
that in the next approximation taking double intermo-
lecular interactions into account, the second term in
(110) now depends on the scattering angle. Flory and
Bueche E188^ have considered the problem within the
framework of the characteristic model of Flory's stud-
ies of a "Gaussian smoothed density". Albrecht^1873
gives a stricter statistical solution, which is limited,
however, to the region of small ζ values or small
scattering angles Θ. The result of [ 1 8 7 ] and [ 1 8 8 : l dif-
fers from (110) in the appearance of a new function
Q(0) involving the mean square distance between the
centers of two interacting molecules E187^1 (analogously
to the way that the function P( θ) involves the mean
square radius of gyration of a single molecule):
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He 1

' ΜΡφ)
(Ill)

At zero scattering angle (Θ = 0), the interference of
the light scattered from two interaction molecules van-
ishes (just as for intramolecular interference), and
Q(0°) = 1. In the single-contact approximation, as has
been stated, Q(0) = 1 independently of the scattering
angle. Albrecht's solution'-187-' for small ζ (or small
angles ) has the form

Q (Θ) = 1 - 0.296a:z + . (112)

where

is the well-known argument of the Debye scattering
function P v ( # ) .

The less strict solution of Flory and Bueehe ̂ 188^
has a wider range of applicability, including large
angles θ and good solvents (large z) . Flory and
Bueehe relate the function Q(9) to the thermodynamic
parameters of Flory's theory. C32.58] As Albrecht
points out,^187^ in the approximation involving the
"Gaussian smoothed density" model used in [188]; the
series for Q (θ) takes on the form

= l - 0 . 1 5 3 z z + . . . (113)

A comparison of the coefficients in (112) and (113) r e -
veals the degree of approximation in the study of Flory
and Bueehe'-188^, as compared with the exact statistical
treatment, t1*^

Equation (112) implies that the function Q(9) de-
clines with increasing scattering angle Θ. This should
be manifested experimentally in an apparent decrease
in A2 with increasing angle Θ. Such a phenomenon has
actually been observed experimentally in a number of

C]
y
C189-191] manifested as a decrease in thecases.

slope of the concentration curves (Hc/Ig) Q= const with
increasing angle Θ. In t 1 9 1 ] we reported that the con-
verse phenomenon is observed in the systems poly-/3-
vinylnaphthalene-benzene and poly-p-tert-butylphenyl-
methacrylate-acetone: an increase in the slope of the
( H c / I g ) 0 = c o n s t curves with increasing angle Θ.* The
theories of Albrecht and of Flory and Bueehe do not
provide for such a behavior of the function Q (θ). In
fact, according to (112) or (113), Q(0) > 1, and it in-
creases with χ for negative z. However, ζ < 0 cor-
responds to A2 < 0, whereas in the systems described
in ^ 1 9 1 3, the positive slope of the ( H c / l g ) g = c o n s t
curves increased with increasing angle Θ.

In line with the fact that the contribution of the high-
molecular-weight fractions to the scattering increases
with decreasing angle Θ, the decrease in A2 as θ—-0,
as observed in υ 1 9 2 . 1 9 3 ] , is probably due to a marked
polydispersity inherent in the polyethylene samples.
This idea cannot apply to the fractions used in ^

Apparently, special cases of intermolecular interac-
tion not covered in the existing theories can be mani-
fested in light scattering. The entire problem thus r e -
quires more detailed further study.

In our opinion, the creation of an adequate theory
of the second virial coefficient of polymer solutions
is still far from completion. The experimental ma-
terial on this problem also requires a substantial
goal-directed expansion.

CONCLUSION

We have discussed the most important applications
of the light-scattering method in studying the structure
and properties of chain macromolecules. Naturally,
most of the space has been devoted to problems on
which substantial progress has been made in recent
years (the analysis of copolymer structure), or which
are of especial interest (the structure of rigid macro -
molecules). The lack of space has prevented us from
taking up a number of applications of light scattering,
e.g., the study of polymerization kinetics, the study of
intermolecular interactions in the phenomenon of crit-
ical opalescence (see '-8-'), and several others.

We must bear in mind the fact that, in spite of the
value of the information furnished by the light-scatter-
ing method, its application in isolation cannot provide
an exhaustive solution to the problem of the structure
and properties of polymer molecules. This problem
is complex, and considerable advances in its individ-
ual branches are to be attained by complex studies.
The latter must include all of the most important meth-
ods of studying the structure of macromolecules. At
the same time, as we have tried to show, many special
problems can be solved within the framework of the
light-scattering method alone.

*The same behavior of A2 has been observed in[192·193] for
polyethylene solutions.
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