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J.HE electrodynamics of media with spatial disper-
sion has been developing quite vigorously in recent
years, especially as a result of theoretical investi-
gations of plasma properties. Most hitherto con-
sidered problems in the electrodynamics of media
with spatial dispersion were devoted to electromag-
netic waves in unbounded homogeneous media or to
effects connected with the presence of a distinct
surface which also bounds a homogeneous medium '-1-'.
Very recently many papers appeared devoted to the
theory of the electromagnetic properties of a weakly
inhomogeneous plasma. The progress attained in the
development of such a theory is connected primarily
with the application of the method of geometrical
optics to electrodynamics of media with spatial dis-
persion. In the present review we present the prin-
ciples of the method of geometrical optics as applied
to media with spatial dispersion. By considering a
specific problem involving the oscillations of a
weakly inhomogeneous plasma confined by a strong
magnetic field, we shall present several results
which characterize the spectra of the natural oscilla-
tions of the plasma. Such spectra are described by
the Bohr and Sommerfeld phase integrals ("quasi-
classical quantization rules")'-2-'. With the aid of
such "quasiclassical quantization rules" we analyze
the spectra of the oscillations and obtain the condi-
tions for the instability of a weakly inhomogeneous
plasma.

1. METHOD OF GEOMETRICAL OPTICS IN THE
ELECTRODYNAMICS OF MEDIA WITH SPATIAL
DISPERSION AND THE DIELECTRIC TENSOR
OF A WEAKLY INHOMOGENEOUS PLASMA
CONFINED BY A STRONG MAGNETIC FIELD

As is well known, a plasma is a medium whose
electromagnetic properties are connected in many
respects not only with the frequency dispersion but
also with the spatial dispersion of the dielectric con-
stant. The concept of spatial dispersion was intro-
duced earlier for homogeneous media. In the lan-
guage of the material equations, the presence of
spatial dispersion is manifest in the fact that the
kernel CJJ in the integral relation

D\{t, ί ) = ξ dt' jj dr%j(t-f, T-r')Ej(r', t'), (1.1)

between the induction and the electric field depends

not only on the time* but also on the spatial vari-
ables. For homogeneous media, such a dependence
results only from the difference between the co-
ordinates of the points in which the field and the in-
duction are considered. The dielectric tensor is then
defined by the relation

8 υ (ω, k ) = jj dt τ). (1.2)

In an arbitrary inhomogeneous medium we can no
longer write relation (1.1). Consequently the dielec-
tric tensor (1.2) should be replaced by a function that
depends on two vectors, making the theory of elec-
tromagnetic properties of the inhomogeneous media
much more cumbersome and more complicated '-1-'.
On the other hand, it is clear that in weakly inhomo-
geneous media, if we consider wavelengths that are
much shorter than the characteristic dimensions of
the inhomogeneity, we can hope for an appreciable
simplification of the theory, as is usually the case
when using the method of geometrical optics.

For a weakly inhomogeneous medium the material
equation, which supplements the field equation

div D' = 4πρ0, rotE= —— dB

1 dD' 4π. η i U U . til
rot B = 7Γ-

c σί c

can be written in the form '

divB = 0, J

D'i(r,t)= [ dt' [ dT%}(t-t', r —r', r)Ej{r', t'). (1.4)

When speaking of a weak inhomogeneity we assume
here that the dependence of the kernel of the integral
equation (1.4) on r — r' is stronger than the depend-
ence on r, since it is precisely the latter which is
connected with the spatial inhomogeneity. This form
of the material equation is quite convenient when the
geometrical optics approximation is used.

We represent the electric field in the form ^

Ε = Eoe
i<F<r·'), (1.5)

where the principal and strongest dependence of the

field on the coordinates and on the time is determined

by the eikonal Φ, and the amplitude Eo is assumed

to be a slowly varying function. For media which do

*The corresponding dependence determines the temporal or
frequency dispersion of the dielectric constant,

t rot = curl
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not depend on the time, it is convenient to use the
abbreviated eikonal*

Ψι(Γ)=Ψ + ωί. (1.6)

In the zeroth approximation of geometrical optics, in
the absence of external sources, the field equations
(1.3) and the material equation (1.4) can be written in
the form

kD' = O, [kB]=— ̂ -D', [kE]=~B, kB = O,

D\ (r, 0 = ε-'ω'+ΊΊΟ ei} (ω, k, r)EBj.
Here k = V*j( r) is the local wave vector, and
(see [ 3 ])

CO

ε;,- (ω, k, r ) = ί dt [ dr'ei; (t, τ', r) e™'-ikr'. (1.8)
ο °

Formula (1.8) is analogous to (1.2). This is precisely
why we call the quantity defined by (1.8) the dielectric
tensor of the weakly inhomogeneous medium. In
writing down (1.7) and (1.8) we have neglected the
dependence of Eo and k on the coordinates. For
this to be permissible it is necessary to have a
large wave-vector component in the direction of the
spatial variation of the material properties. Specif-
ically, the product of this component by the charac-
teristic distance of the variation of the material
properties should be much larger than unity:

kLL (1.9)

where L is the characteristic dimension of the in-
homogeneity of the medium and kL is the projection
of the wave vector on the direction of the inhomoge-
neity [see also condition (2.3)].

The condition for the solvability of (1.7) is of the
form B ]

= 0. (1.10)

Equation (1.10) is the eikonal equation. The differ-
ence between (1.10) and the corresponding equation
for media without spatial dispersion lies in the de-
pendence of Cjj on k. In the general case Eq. (1.10)
is therefore transcendental in k and not a power
function, as in geometrical optics of media without
spatial dispersion.

The electromagnetic field can be frequently as-
sumed to be potential ( Ε = -V«i>, curl Ε = 0). Then
the eikonal equation is written in the form

(ω, k, r) == e (ω, k, r) = 0. (1.11)

In the sections that follow we shall use both (1.10)
and (1.11), and consider concrete spectra of plasma
oscillations. The eikonal equation in itself, of course,

*Since the question of media with slow time variation is in-
vestigated in the theory of electromagnetic properties of media
with frequency dispersion, we shall concentrate out attention be-
low on spatial inhomogeneity and spatial dispersion.

t[k B] = k χ Β

does not determine the spectrum of the field oscilla-
tions, and the determination of the spectra of the
natural frequencies will be treated in the next sec-
tion. In this section we derive the dielectric tensor
of a collisionless weakly-inhomogeneous plasma con-
fined by a strong magnetic field. We obtain here,
first, concrete expressions which serve as illustra-
tions of the formulas written out above. Second, we
are able to obtain initial relations for a subsequent
analysis of the spectra of plasma oscillations and
for an analysis of the stability of a plasma confined
by a strong magnetic field.

To describe a collisionless plasma we use, as is
customary, the kinetic equation in the self-consistent-
field approximation

11
dt

(1.12)

It is necessary to start with an analysis of the
equilibrium state of the plasma. We assume that all
quantities characterizing the fundamental state of the
plasma depend only on one coordinate x. The con-
stant magnetic field Bo with straight force lines is
assumed parallel to the ζ axis. Assuming that in the
equilibrium state there is no electric field*, we ob-
tain from (1.12) the following equation for the parti-
cle distribution function in an equilibrium plasma:

dtp (1.13)

Here Ω = eB0/mc is the Larmor frequency of the
particles, νj_ the absolute value of the projection of
the particle velocity on the plane perpendicular to
the magnetic field, and ψ the polar angle character-
izing the position of the velocity projection in this
plane.

Our first concrete assumption concerning the
weak inhomogeneity of the plasma is that the varia-
tion of the quantities characterizing the equilibrium
state of the plasma is small over distances on the
order of the Larmor radius of the particle. Namely,
we assume henceforth that the following inequality is
satisfied

(1.14)

where v-p = VT/m is the thermal velocity of the
particles and L is the characteristic dimension of
the inhomogeneity of the fundamental state of the
plasma. Accurate to terms of first order in this
small parameter, the solution of (1.13) can be written
in the form

/0(v, (1.15)

where F(V_L, VZ, X) is an arbitrary function of the
velocities ν χ and v z and of the coordinate x.

*In the low pressure plasma in which we are interested, when
the inhomogeneity of the magnetic field can be neglected (see
below), we can always choose a coordinate system in which there
is no constant electric field.
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Substituting (1.5) in the field equations, we obtain
the following equations for the plasma equilibrium:

(1.17)

where

(1.19)

and the summation extends over all the charged-
particle species in the plasma. We confine ourselves
to a low-pressure plasma, when

R = ? ^ - « l . (1.20)

In this case, writing Eq. (1.18) in the form

(1.21)

we see that the characteristic scale of the variation
of the constant inhomogeneous magnetic field turns
out to be much larger than the characteristic scale
of variation of the inhomogeneous distribution of the
particles of the equilibrium plasma. This circum-
stance makes it possible to neglect the spatial varia-
tion of Bo in the first approximation.

Proceeding now to a derivation of the dielectric
tensor of a weakly inhomogeneous plasma, let us
consider a small deviation from the equilibrium
state, which we describe by means of the small ad-
dition to the equilibrium distribution function of.
From (1.12) we then have

dt

Here Ε and Β are the nonequilibrium electric and
magnetic fields. To obtain the dielectric tensor we
can assume that the distribution function is propor-
tional to exp(—iwt), where ω has an infinitesimally
small positive imaginary increment . Bearing in
mind also the spatial homogeneity of the distribution
of the fundamental state along the y and ζ axes, we
seek a solution of (1.22) in the form

6/ (x) e-
i°»+i*vv+ih*\ (1.23)

We assume a similar dependence on the time and on
the coordinates y and ζ for nonequilibrium fields,
too. We can then write the following solution of (1.22)
(periodic in ψ):

Φ'
) . (1.24)

The quantity x' in the right side of (1.24) is connected

with χ, ψ, and the integration variable φ' by the
characteristic equation*

= ζ +-~r sin φ = const. (1.25)

Substituting (1.24) in the relation that defines the
nonequilibrium current density

and bearing in mind the definition [1]

(1.26)

we can obviously write

D'i(o>, x, ky, kz)

= \άχ'εί}(ω, χ — χ', x, ky, kz)Ej(<u, x', kv, kz)

(a), k, x)Ej(ti>, k). (1.27)

In order for the induction to be expressed only in
terms of the electric field, we use, as is customary,
Maxwell's equation

«&>B = c rot E.

Relation (1.27) is a material equation of the type (1.4),
written for the Fourier components with respect to
the time and the variables y and z, something which
can be done in our case of a uniform inhomogeneity
along the χ axis only. The dielectric tensor is of the
form

Sij(a>, k, x)

χ ι ijte2 Γ
[ω - kv (φ

— ktvz

τ Ω (χ")
* (1-28)

Here, as in (1.24), the quantities x' and x" are
connected with χ by the characteristic equation
(1.25). Equation (1.28) takes into account the in-
homogeneity of the magnetic field and is therefore
convenient for a plasma with finite pressure.

Taking into consideration the formula (1.15) for
the equilibrium distribution function, we obtain from
(1.28)C5]

ε,, (ω, k, *) = e , , - Q e u ± dF

ω*
dF

X
F? (k) /·(."> (k)

Vj_'

•This characteristic equation is approximate and is obtained
from the exact equation v^_ sin φ + / x dx Ω (x) = const in an ap-
proximation in which the coordinate dependence of the constant
field is neglected, which is reasonable in the case of a low
pressure plasma when inequality (1.20) is satisfied.
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where

* ι Γ ' Ν k η Ω J— ft χ τ.—r~ J η

_ k

(1.29)

J
(1.30)

We assume further for the function F a Maxwellian
distribution of the particles, with inhomogeneous
density and temperature

N(x)
(2nmT (χ))3'1

and neglect the inhomogeneity of the magnetic field

(low pressure plasma, β « 1). As a result (1.29)

(1.31)

takes the form

/ ι Ν

β«(ω, k, a :) =

χΓ[ε«>(ω, k, x)-&ij]- (1.32)

Here ε{| ( ω, k, χ) is the dielectric tensor of one
species of particles and coincides with the corre-
sponding tensor of the inhomogeneous plasma, except
that Ν and Τ are now assumed to depend on the co-
ordinate x. The summation is over the electrons
and the ions, which we assume to be singly charged;
and in addition, we confine ourselves to only one
species of ions.

The expression frequently given in the literature
(see, for example, '-1-') for the dielectric tensor of an
homogeneous plasma is written in a coordinate frame
in which k = (kĵ , 0, k z ) . We need a similar expres-
sion, but in an arbitrary reference frame, where
k = (kx, ky, k z ) . We can easily show that its form is

^ i 0 ) cos2 α + e ^ sin2 a, sin a cos α (ε^ - ε&>) + ε̂ , εβ» cos a - ε̂  sin a\

sin a cos a (eft — s^) — ε̂ , ε̂  sin2 a + ε̂  cos2 a, e ^ cos a + ε}̂  sin a I , (1.33)

- B $ cos a sina,

where kjj = k^ cos a, k y = k^ sin a, and the six

components of the dielectric tensor have in the sys-
tem k = (kj^ 0, k z) the form ^'^

ω (ω—ηΩ)

(1.34)

We have used here the notation:

An (z) = e-z/n (a), /.(β) = ββ-Ρ

ω — ηΩ

\Κ\"τ

In addition, OIL = ( 47re2N/m)1'2 is the Langmuir fre-

quency and I n ( z) is a Bessel function of imaginary

argument.

This expression for the dielectric tensor of the

weakly inhomogeneous plasma is much simpler than

the corresponding expressions in ^ , where terms of
higher order in the small parameter defined by rela-
tion (1.14) are taken into account. An actual analysis
has shown that such higher-order terms are unim-
portant for the applications considered below*.

•The expression inl8] contains a whole string of terms which
add up to a dielectric tensor different from ours. However,
whereas the eikonal equations (1.10) and (1.11) are sufficient
for the use of our tensor, the tensor given inM can be used only
in conjunction with a much more complicated procedure, involv-
ing an analysis of the field equations (1.3).

It can be readily shown that an exact expression for the dielec-
tric tensor of an inhomogeneous plasma, with the dependence of
the constant magnetic field on the coordinate neglected, has the
form

ν

'vj exp -pr \ d<f" (ω —kv)

ντ a
ωΩ aF

vy, e)

d<p' (ω—kv) exp [ -Q- J άψ" (ω—kv) J j -

Here

[e=mvV2 and F(x, e)is given by (1.31)] is the equilibrium dis-
tribution function of the particles in the inhomogeneous plasma.
We note that if we retain only the first term of this expansion we
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Let us write out an expression for the potential
dielectric constant of a weakly inhomogeneous
plasma confined by strong magnetic field:

β (ω, k, x) = Ι . 1 " " Σ ω-ηΩ

Χ 1 —
kyVT ι I n TV n)}. d-35)

V dx ' dx d

It must be noted that the dielectric-constant terms
which contain the spatial derivatives of the particle
number and of the temperature play an important
role when the absolute magnitude of the ratio ω/ky
is small compared with the particle drift velocity
v d ~ v?pA2L. In the opposite case, when the frequency
of the oscillations greatly exceeds the drift frequency
W(j ~ kyV ,̂ we can neglect terms that contain spatial
derivatives, in which connection the dielectric tensor
of a weakly inhomogeneous plasma coincides pre-
cisely in form with the analogous tensor for the
spatially homogeneous plasma. Such an expression
for the dielectric constant can be obtained also for a
high pressure plasma. Moreover, it becomes possi-
ble to write down an expression for the dielectric
tensor of an inhomogeneous plasma with neglect of
the constant external magnetic field. In the latter
case we have

ι / c " i f i \ tr ι ι \ ι nir'J f / ι \

ey(», k, z ) = ( SiJ—-j^)e"r((o, k, x)+-j^-ε1 (to, k, x),

where

(1.36)

- U T = - U (1-37)

are the transverse and longitudinal (potential) dielec-
tric constants of the inhomogeneous isotropic plasma.

The formulas obtained above are directly applic-
able to the case of cylindrical geometry, which is
frequently realized in practical conditions, when a
radially inhomogeneous plasma cylinder is confined
by a strong longitudinal magnetic field Bo directed
along the ζ axis (plasma cylinder axis). Along with
condition (1.14), it is necessary in the cylindrical
case also to stipulate satisfaction of the condition

vJrQ « 1. (1.38)

Without presenting the corresponding derivation
(which is analogous in many respects to the one given

get (1.32). Since the operator -Jt"T- — is of the order of unity for
ιαΏ dx

the drift oscillations considered below, it is not sensible to ob-
tain the dielectric tensor in the approximation of a specified
number of spatial derivatives. This is precisely why only the
necessary first-order terms in the spatial derivatives are retained
in (1.32), just as not all the second-order terms have been retained
in.[*] Expansion of the equilibrium distribution function shows that
the small parameter is actually the quantity defined by (1.14).

above for the case of planar geometry) we point out
that the dielectric tensor of a cylindrically inhomo-
geneous plasma coincides in form with (1.28) [see
also (1.29)—(1.35)], provided we make in it the formal
substitutions

•r, (1.39)

where I are integers.* Taking this circumstance into
account, we confine ourselves throughout to results
for a planar geometry only. The transition to cylin-
drical geometry by means of (1.39) entails no diffi-
culty.

To conclude this section we note that the expres-
sion presented above for the dielectric tensor can be
readily generalized to include the case when the
plasma contains, in addition to the field Bz, also a
small, generally speaking inhomogeneous transverse
magnetic field Β χ ( small compared with Bz in the
direction transverse to the ζ axis and to the inhomo-
geneity plasma; in the case of planar geometry Β χ is
directed along the y axis, while in the case of cylin-
drical geometry it is directed along the azimuth). To
obtain the dielectric tensor of an inhomogeneous
plasma in this case it is necessary to make in (1.28)—
(1.35) the substitution

k z — A· L k
*« ΒΛ

(1.40)

An analogous substitution is made also in the case of
cylindrical geometry.

2. QUASICLASSICAL QUANTIZATION RULES AND
SPECTRUM OF OSCILLATIONS OF AN ISO-
TROPIC INHOMOGENEOUS PLASMA

In this section we determine the spectrum of the
natural oscillations of a weakly inhomogeneous
plasma in the case when there is no external mag-
netic field. The method used here to obtain the dis-
persion relations will be used in the following sec-
tions also for more complicated cases of a magneto-
active inhomogeneous plasma.

We begin with the simplest case of transverse
oscillations with phase velocities larger than the
thermal velocities of the plasma particles. Getting
a little ahead of ourselves, we note that the result
will show that the phase velocities of the transverse
oscillations, as in the case of a homogeneous plasma,
exceed the velocity of light. Therefore the imagi-
nary part of the transverse dielectric constant (1.37)
is equal to zero. Taking this circumstance into ac-
count, we obtain from (1.36), (1.37), and (1.10) the

*In the derivation of the dielectric tensor for a cylindrically
inhomogeneous plasma it becomes necessary also to stipulate
satisfaction of the condition 111 » 1 . This condition is used in
the elimination of the magnetic field of the wave with the aid of
Maxwell's equations. The expression for the potential dielectric
constant (1.35) is valid also without this limitation.
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following eikonal equation for the high-frequency

transverse oscillations of the field in an inhomogen-

eous isotropic plasma:

k*-~ ! _ (2.1)

On the other hand, if (1.37) is substituted in (1.27),

then we obtain in this case from Maxwell's equations

(1.3) the following equation for the transverse field:

(2.2)

Equation (2.1) is the eikonal equation corresponding
to the field equation (2.2) in the zeroth approxima-
tion of the geometrical-optics method. The small
parameter of geometrical optics is the quantity in
the left side of the inequality

In the case under consideration the function

is then purely real. From this condition it follows
that k xL » 1, that is, the wavelength of the oscilla-
tions along the inhomogeneity of the plasma is much
shorter than the characteristic dimension of the in-
homogeneity [see condition (1.9)].

Equation (2.2) is similar to the Schrodinger equa-
tion with a real potential k^( ω, x). It is well known
from quantum mechanics that from the uniqueness of
the solution of Eq. (2.2) (if condition (2.3) is satis-
fied) follows the rule for quasiclassical quantization,
which determines the spectrum of the eigenvalues of
this equation,

( S ^ y ' - n n , (2.4)

where n is an integer much larger than unity. The
integral in (2.4) is taken over the region of "trans-
parency" of the plasma (k^(u>, χ) ^ 0), located
between the transition points defined by the relation

χ(ΰ>, Χ) — Ι). \6·<>)

Κ there is no transition point in the physical region
of values of χ (region occupied by the plasma), then
the integration extends over the entire range of vari-
ation of x. [It is necessary to stipulate here that
nondissipative boundary conditions be satisfied for
Eq. (2.2).] Of greatest interest is the case when
transition points exist in the physical region of vari-
ation of x, for then the plasma oscillations are
locked in the region of "transparency" between the
transition points, that is, they are locked inside the
plasma. If there are several pairs of transition
points, such that the transparency regions are
separated by a distance larger than the wavelength of
the oscillations along the inhomogeneity, then the
integration in (2.4) must be carried out over any

"transparency" region included between two neigh-
boring transition points. These arguments are general
in character, and will not be repeated from now on.

From the quantization condition (2.4) we see that
the transverse oscillations of the isotropic inhomo-
geneous plasma are stable, that is, ω2 > 0, and the
phase velocity of the oscillations exceeds the velocity
of light. Therefore such oscillations of the inhomo-
geneous plasma, as also in the case of the homo-
geneous plasma, are undamped.

We now turn to the more complicated case of
longitudinal oscillations of an inhomogeneous iso-
tropic plasma in the frequency region ω » kvT e,
when the phase velocities of the oscillations exceed
the thermal velocities of the particles in the plasma.
From (1.36), (1.37), and (1.10) we obtain in this case
the following eikonal equation for the longitudinal
oscillations:

= 0. (2.6)

On the other hand, using (1.37) and (1.27) and taking
into account the conditions for the applicability of
geometrical optics (2.3), we can obtain from Max-
well's equations the following equation for the high-
frequency longitudinal field in a plasma:

1

 ω 2 " • "

= - i \άχ'ει"(ω, χ —χ', χ)Ει(χ'), (2.7)

where

έ'"(ω, χ —χ', x) = ~\dkxe
ihx(*-x'>&>~(o>, k, x)

0,1

Equation (2.6) is the eikonal equation for the integral
equation (2.7) in the zeroth approximation of geo-
metical optics. The quasiclassical spectrum of the
eigenvalues of Eq. (2.7) can be determined by two
different methods. The first was used in ^ and con-
sists in the following. Recognizing that the imaginary
part of the dielectric constant in the frequency region
under consideration is small, we note that the inte-
gral term in (2.7) is small. In the zeroth approxima-
tion, neglecting this term, we have

( 1 — Ε' + 3 AE< = 0. (2.9)

This equation no longer contains the integral and is
similar to Eq. (2.2), that is, to the Schrodinger equa-
tion with a real potential. The eigenvalue spectrum
of this equation is therefore determined in the geo-
metrical optics approximation by the dispersion
equation
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dxkx (ω, χ)

(2.10)

Integration in this formula, as before, is carried out
over the region of transparency of the plasma, with
the eigenfunctions of (2.9) inside and outside the
transparency region respectively (that is, between the
transition points and beyond these points) having the
following forms ^

if x

= — 7 ψ β χ ν [ — \ dx\kx{u>, a;)| — i - j - if
j

χ > xv. J

(2.11)

where x,, is the right-hand transition point (χ μ —
left-hand transition point), with χ μ < χ ^ χν corre-
sponding to the transparency region of the plasma
and a = ω ^ β ν χ θ ^ ω 4 ' Analogous formulas hold also
in the vicinity of the transition point χ μ .

Formulas (2.10) and (2.11) have been obtained by
completely neglecting the dissipative processes, and
determine therefore only the real part of the longi-
tudinal plasma oscillation frequency. To determine
the small imaginary part of the oscillation frequency
(ω —* ω + ϊγ) we write Eq. (2.7) in the following ap-
proximate form:

where Φ ( χ ) = αΕ' . From this, owing to the ortho-
gonality of the eigenfunctions ΦΟη (see formulas
(2.11) with different n), we obtain in first perturba-
tion-theory approximation the correction to the

eigenvalue for the n-th level [9]

y =
dx § άχ'ψΟη(χ)ψΟη{χ') ε1" (ω, χ —χ', χ)/3α (ω, χ')

{ 2 Λ 3 )

The main contribution to these integrals is made by
regions of plasma transparency, and the integration
is therefore carried out only over these regions.
Owing to the rapid oscillations of the function Φο η,
these integrals can be simplified by the stationary-
phase method (for details see ̂ ) . Taking in addition
account of (2.8), we obtain ultimately

Y= — Ϊ Γ
1 J

dx ε1" (ω, k, χ)

( ω ι X) a (<°l X)

δω

dx

(ω, X) WvT

dx
dkx(<i>, x)

δω

(2.14)

Formulas (2.10) and (2.14) determine the spectrum
of the high-frequency longitudinal oscillations of a
weakly inhomogeneous isotropic plasma.

We now derive these equations by a different
method (which is simpler albeit less direct), de-
scribed in L3J and based on the concept of the approx-
imately-equivalent equation. Using the smallness of
the imaginary part of the longitudinal dielectric
constant, we easily determine the complex quantity
k^( ω, χ) from the eikonal equation (2.6). We have

(CO, k,

Im*£(«o, x)= * 7 "'.
( x\ · ι 3α (ω, x)

1 f τ, Cl)(DLe
= -^ \/ JL —V

3 y 2 ak^
(2.15)

We note that in the expression for the imaginary part
Im k^( ω, χ) we must imply k2 = k 2 + k | + ( Re k x ) 2 .
Formulas (2.15) can now be considered independently
of the connection with the initial integro-differential
equation (2.7), the quasiclassical eigenvalue spectrum
of which we are determining. Namely, it can be said
that formulas (2.15), which determine the solutions
of (2.7) in the zeroth approximation of geometrical
optics, determine at the same time the solutions of
the zeroth geometrical-optics approximation of the
second-order differential equation

;(ω, ζ)Φ = 0. (2.16)τη ' X \ ' I ^

In this sense we can speak of the equivalence of Eqs.
(2.7) and (2.16) in the zeroth approximation of the
geometrical-optics method. We can now transfer the
results of the theory of asymptotic solutions of the
differential second-order equations, with the aid of
the approximately-equivalent equation (2.16), to the
theory of asymptotic solutions of integral equations.*

Equation (2.16) is analogous to the Schrodinger
equation with complex potential. The theory of
asymptotic solutions of equations of this type has
been well developed. For the case of real potentials
[real k^ ( ω, χ) ] such a theory is well known to
physicists from quantum mechanics. Therefore we
used above the quasiclassical quantization condition
(2.4) to determine the eigenvalue spectrum of (2.2)
without further explanation. For the case of complex
potentials, the theory of asymptotic solutions of
equations of the type (2.16) is far less known to
physicists. We therefore restate here the main
premises of this theory, which concerns the Stokes
phenomenon and the eigenvalue spectrum of Eq. (2.16).

*The hydrodynamic theory of stability, which originated with
the classical researches of Rayleigh, a splendid exposition of
which the reader can find in the reviewst10], is also customarily
connected with the use of asymptotic solution methods. It must
be emphasized, however, that in the most interesting cases of
hydrodynamic instability we can not confine ourselves to the geo-
metrical-optics approximation.
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For a detailed exposition we refer the reader to the
specialized literature ^ (see also E12~142).

We confine ourselves to the case when the imagi-
nary part of k^i ω, χ) is small. In practice this is
apparently the most interesting case, and we shall
deal with only such cases. We assume also that the
frequencies of the natural oscillations are almost
real, that is, ω —* ω + ϊγ, with y « ω. Finally, we
assume that the transition points, determined by
relation (2.5) and lying in general in the complex
region of x, are near the real axis, that is, they
likewise have small imaginary parts.

The asymptotic solution of Eq. (2.16) is of the
form

Φ(,) = ^ ) ' ω ΐ

+ ^ - ' 5 ω ΐ
(2.17)

In the general case the complex χ plane can be
broken up into regions in which the coefficients C±

have definite values. The transition from one region
to the other is accompanied by a jumplike change in
these coefficients. This is the Stokes phenomenon,
and the lines separating the indicated regions from
one another are called Stokes lines (Im k x = 0 on such
lines). It is obvious that the transition points lie on
Stokes lines. In the vicinity of the transition points
the solution of (2.16) is expressed in terms of
Bessel functions. The asymptotic behavior and the
Stokes phenomenon for such functions have been well
investigated. By stipulating that such an asymptotic
solution coincide with (2.17), we obtain the coeffi-
cients C±. This on the other hand leads to the quan-
tization rule which determines the eigenvalue spec-
trum of (2.16). Without discussing this question in
detail (as already pointed out, this question is
adequately treated in the literature), we present the
final result for the case when there are two transi-
tion points. The dispersion equation for the eigen-
value spectrum is of the form *-i2~l®

(2.18)

The integration in this formula is over the trans-
parency region, where Re χ χ ( ω , χ) > 0, between the
complex transition points. In view of the small
imaginary part of the frequency ω, of the function
kx(w, x), and of the points Χμ and xu (the latter
enables us to neglect the small contribution due to
the integration along the imaginary axis), we can ob-
tain from (2.18) two relations which determine the
frequency ω and the oscillation damping decrement
γ[ΐ5].

V dx Re kx (ω, χ) = πη,

dx Im kx (ω, χ)

- Re kx (ω, χ)
(2.19)

region between the projections of the complex points
of transition on the real axis. (In (2.19) and there-
after we neglect the V2 compared with the large
quantity n.) Formulas (2.19) will be used later to
determine the oscillation spectra of an inhomogen-
eous plasma. In particular, if we substitute (2.15) in
these relations, we obtain expressions which coin-
cide exactly with (2.10) and (2.14).

It is important to note that the second relation of
(2.19), for the damping decrement (or the growth
increment) of the oscillations, should be used only in
those cases when the frequencies determined from
the first relation (that is, neglecting completely the
dissipative processes) are real or, as is customarily
stated, the plasma oscillations are hydrodynamically
stable. The sign of the quantity γ shows in this case
whether these plasma oscillations are kinetically
stable or not [ 1 6 ].

We now employ relations (2.19) to determine the
spectrum of the low-frequency longitudinal oscilla-
tions of a non-isothermal inhomogeneous plasma in
the absence of a magnetic field (ionic sound in an
inhomogeneous plasma*). Such requirements exist
in the frequency region kv-pj « ω « kvxe, and, in
accordance with (1.26), the eikonal equation for these
oscillations takes the formt

π aiiiLe Λ. (2.20)

Taking into account the smallness of the imaginary
part of this equation and using (2.19), we obtain the
following dispersion equation for the spectrum of the
low-frequency oscillations of an inhomogeneous non-
isothermal plasma in which T e » TJ:

&Refc((o, x)= \ dx( — k\ — k\ + —^——£O 2 = nre,
0 V CDLi — ω 2 VTe J

(2.21)

t dx a>Le 1

ν ι

dx ωΐβ am

to*, ^ ( ω ΐ ί - ω *

From this it follows, in particular, that in an inhomo-
geneous plasma, like in a homogeneous one, the low-
frequency longitudinal oscillations are possible only
if ω2 < ω2^.

We note that the presence of plasma inhomogeneity

*For a comparison seet9], where a perturbation theory method
is used to investigate the spectrum of ionic sound in an inhomog-
eneous plasma.

tWe neglect here the ion absorption of the waves in the
plasma. This is legitimate if

0)2

in which the integration is over the transparency
In the presence of a magnetic field it is necessary to write in this

k z in place of k.
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only in the χ direction makes the plasma anisotropic.
This is particularly manifest in the anisotropy of the
velocity of sound, which follows from the relation for
the sound spectrum obtained from (2.21) in the limit

( 2 · 2 3 )

where v s ( x ) = (T e /M) 1 / / 2 is the local velocity of
sound. Formula (2.23) becomes particularly simple
for the propagation of sound along the inhomogeneity
direction. Indeed, in this case we have

(2.24)

The damping of the sound waves is determined by the
relation

8 Μ '
(2.25)

It must be noted that the right half of (2.25) does not
depend on the inhomogeneity of the plasma and coin-
cides with the corresponding expression of the theory
of the homogeneous plasma.

To conclude this section we present simple for-
mulas for the spectrum and the damping of high-
frequency oscillations in a Maxwellian plasma with
homogeneous temperature and with a density that
varies in a finite region near χ = 0 like

). (2.26)

We confine ourselves here to wave propagation along
the inhomogeneity. Then there exists near χ = 0 a
transparency region, bounded by the points

and

(2.27)

The oscillation frequency ω is close to
is equal to [ 9 ]

where r j ) e = VTe/4Te2N0. The damping is given by

Υ .
ω

3/3rf Yld
L 2rDe(2n + l)

(2.28)

As in a homogeneous plasma, the damping of the
oscillations in question, with a wavelength much
larger than the Debye radius, is exponentially small.

3. SPECTRUM OF OSCILLATIONS OF AN INHOMO-
GENEOUS MAGNETOACTIVE PLASMA

We now proceed to investigate the oscillation
spectrum of a weakly inhomogeneous magnetoactive
plasma. In view of the large variety of oscillation
modes of an inhomogeneous magnetoactive plasma,
we consider separately the region of frequencies that
are large compared with the drift frequencies of the
particles, and the region of frequencies that are
comparable with them. The present section is de-

voted to investigation of oscillations in the first of
these regions. Drift oscillations of an inhomogeneous
magnetoactive plasma will be investigated in the
next two sections.

As already noted, in the region of frequencies that
are large compared with the drift frequencies,
ω » ω^, the gradient terms can be neglected in the
expression for the dielectric tensor of the inhomo-
geneous plasma. The eikonal equation (1.10) then
coincides in form with the dispersion equation of the
homogeneous plasma, but differs essentially from it
in the fact that the density and the temperature of the
particles (and in this frequency region also the mag-
netic field) are assumed dependent on the coordinates.
Because of this circumstance, the natural frequencies
of the oscillations of the inhomogeneous plasma are
determined not by local but by integral relations. We
confine ourselves here to an examination of only
several branches of the oscillations of a magneto-
active plasma, namely high-frequency oscillations

in the frequency region ω » when the
motion of the ions can be neglected, and low-frequency
oscillations lying in the region a. « Ω | , when the
motion in the plasma plays a decisive role. The cy-
clotron oscillations of the inhomogeneous plasma
will not be considered. This question is dealt with in

It can be shown that in the frequency region
[17]

under consideration, when the gradient terms can be
neglected, only long-wave oscillations are possible
in the inhomogeneous plasma, like in the homogen-
eous one (an exception are cyclotron oscillations,
which are not considered here). We shall therefore
assume throughout this section that the condition
ζ = k^vFp/to2 « 1 is satisfied.

We start the analysis with the simplest case of
longitudinal (potential) oscillations of an inhomo-
geneous plasma. The eikonal equation (1.6) takes the
form

833*1+8^*1 = 0. (3.1)

To obtain the dispersion equations of the oscillations
of an inhomogeneous plasma we need to determine
from this equation the complex function k x ( ω, x) and
substitute it in (2.19). We consider the high-frequency
region ω » y/M/milj. If in addition, ω ± Ω β and ω
are much larger than k z v T e , then we get from (1.32)
and (1.34)

ί V T

y Ύ

(ω-Ω,)»

α ωωΐ

(3.2)

Substituting these expressions into (3.1) and neglect-
ing in first approximation the exponentially small
dissipative terms, we obtain the following dispersion
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equation for the determination of the oscillation
frequency

\ dx R e kx (ω, ΐ ) = \ ώ · • Α Ι -

ι —ω2—

The dispersion equations for the spectrum of the
oscillations under consideration are written, on the
other hand, in the form

= nn. (3.3)
[Lil<s> I "1

' Λ -1

We see therefore that these oscillations are hydro- v= — if — ω2 Γ \
dynamically stable, ω2 > 0. Account of the small
dissipative terms leads to damping of the oscillations
in question. The damping decrement γ is exponen-
tially small and is determined by the formula

>n dx 0)Le

= nn,

1
Re A-,

(3.8)

—a
dx d

Re Ax 3ω Ί Re**

Reε""
Re£33~ ε33

 Ί Γ
 Reε"

(3.4)

In the region of low-frequency oscillations, when
ω « Ω{, the plasma oscillation spectrum depends
essentially on the motion of the ions. The quantities
εη and ε33 in this frequency region, if ω » kzv-pe,
are of the form

ω ι
OXOLe

(3.5)

Substituting these expressions in (3.1) and taking into
account the smallness of the dissipative terms, we
obtain from (2.19) dispersion equations for the de-
termination of the spectrum of the low frequency po-
tential oscillations of the inhomogeneous plasma:

= ^dx[- k\-- = nn, (3.6)

y= -
rfl

Re $+)]'

exp ( —

| f J.

where v^ = V Β2/4πΝΜ is the Alfven velocity. We see
therefore that the oscillations under consideration
are damped, although the damping is exponentially
small.

Low frequency oscillations are damped much
more intensely under conditions when ω « kzVTe

in the entire transparency region. It is necessary to
assume here that ω » kzvri» for the opposite case
there is no transparency region and oscillations be-
come impossible. The last condition enables us to
neglect the ion absorption of the waves in the plasma.
The components εΗ and ε33 have under these condi-
tions the form

en = 1 +

E33 = 1 —

It is easy to see that these oscillations are also
damped, and the damping occurs in this case much
more strongly than in the preceding case, since the
damping decrement y is no longer exponentially
small. In the limit of a homogeneous plasma the
formulas (3.3), (3.4), (3.6), and (3.8) obtained above
go over into the known formulas for the spectrum of
the potential oscillations of a homogeneous magneto-
active plasma fr·18^.

A magnetoactive plasma is an anisotropic medium.
The potential oscillations of the electromagnetic field
in such a plasma are in general not natural oscilla-
tions. We therefore consider here general nonpoten-
tial oscillations of an inhomogeneous magnetoactive
plasma under conditions corresponding to the poten-
tial oscillations discussed above. In the region of
high frequencies ω » VM/mS2j and under the con-
dition ω, ω ± Qe » k zvp e, the total eikonal equation
(1.5) assumes the form

(3.9)

where and

ω (ω 2 —Ω|)

ε33 are given by (3.2), and

(ω-ηβ)»

τ V 2 ω I kt | vTe (3.10)
Equation (3.9) determines two functions kx(w, x),
which corresponds to two branches of the high fre-
quency electron oscillations of a magnetoactive
plasma—ordinary and extraordinary waves. Neglect-
ing the exponentially small dissipative terms in (3.2)
and (3.10), we obtain for the determination of the
spectrum of the oscillations under consideration the
following dispersion equations:

=<\i dx(-kl - (3.11)

describing the ordinary and extraordinary waves in
an inhomogeneous magnetoactive plasma. We use
here the notation

It is easy to see that in the limit, when c2k|/w2 » e u

or ε12, Eq. (3.9) goes over into the eikonal equation
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(3.1) for the potential oscillations. One equation of
(3.11) goes over here into Eq. (3.3), which describes
the high frequency potential oscillations of a mag-
netoactive plasma. In this limit, oscillations de-
scribed by the second equation of (3.11) are impossi-
ble. Thus, the high-frequency potential oscillations
of a magnetoactive inhomogeneous plasma can propa-
gate only at a sufficiently acute angle to the magnetic
field.

In the opposite limiting case c 2 k|/cj 2 « εη or ε12,
that is, when the oscillations propagate almost
transversely to the magnetic field, Eqs. (3.11) as-
sume the simple form

dx Re kx = ^ dx [ - kl
1 (ω2 — Ω | ) 2 — ω'

c2" ω^ΩΙ— ω?
Ω1 ,Va
— ι = nre.

(3.12)

In strictly transverse propagation ( k z = 0), the os-
cillations of a collisionless plasma are undamped,
since the dissipative terms of the dielectric tensor
(antihermitian part) are in this case exactly equal to
zero. However, when k z χ 0 the oscillations de-
scribed by Eqs. (3.11) and (3.12) attenuate only ex-
ponentially, but attentuate all the same. Thus, in the
limit of c2kz/w2 « εη or ε12, when relations (3.12)
are valid, the oscillations determined by the first of
these relations are undamped, since the phase veloc-
ity of such oscillations exceeds the velocity of light.
On the other hand, the oscillations determined by the
second equation of (3.12) are damped, with a damping
decrement*

dx . f , ef2
«11__

S?2

ειι

Re A.
Im

dx__
Re Αν

S R ^ K + | f ( - ^ + 2 ^ ) ] · <3·13>
We now proceed to consider low-frequency oscilla-

tions of an inhomogeneous plasma, when ω « Ω | . In
the frequency region ω » k z vxe. corresponding to
the limit of two-fluid hydrodynamics of a collision-
less plasma ^ , the eikonal equation breaks up into
the following two equations

ω2

where εη and ε33 are determined by expressions
(3.4), and ε22 = εη. The first of these equations leads,
taking (2.19) into account, to the dispersion equation

*To avoid misunderstanding we note that the hermitian part of
the component e1 2is imaginary and the antihermitian part is real
[see (3.10)].

which describes undamped low-frequency oscillations
of an inhomogeneous plasma. From the second equa-
tion of (3.14) we obtain the following dispersion rela-
tions :

Λ . -,1/2

dx Re k. "= ^dx\ -k\--

= nn,

dx
ω2 —

(3.16)

We see therefore that the low-frequency oscillations
of an inhomogeneous magnetoactive plasma, which
we are considering, are damped, although the damp-
ing is exponentially small.

In the frequency region ω « kzVAt Eqs. (3.15)
have no solutions, that is, such oscillations cannot
occur in a plasma. On the other hand, Eqs. (3.16) go
over in this limit into Eqs. (3.6), which describe low-
frequency potential oscillations of a magnetoactive
plasma. Thus, the condition ω « k z v^ determines
the region of applicability of formulas (3.6) or, what
is the same, the region where the oscillations are
potential. In the opposite limit, when ω » k z vg, the
oscillations described by Eqs. (3.16) become impos-
sible if we assume Ώ[ « ωΐ£, which is practically
always satisfied in a real plasma. To the contrary,
Eq. (3.15) has in this frequency region solutions
which correspond to transverse Alfven oscillations
of an inhomogeneous plasma.

To conclude this section let us consider oscilla-
tions of an inhomogeneous plasma in the frequency
region k z vxi « ω « k z v x e . corresponding to the
limit of the one-fluid hydrodynamics of a non-iso-
thermal ( T e » Tj) collisionless plasma ^19λ The
eikonal equation (1.5) in this frequency region
breaks up into the following two equations L16>2U:

3 + ^-^3 = 0, (3.17)

where (we confine ourselves here to a plasma of
relatively high density, in which c2 » v2^ for

strictly speaking the equations of one-fluid hydrody-
namics are applicable only to such a plasma)

8 2 2 = ·

tl "Te

633 = - "
I kz Ι "Τβ J '

(3.18)

From the first equation of (3.15) follows directly the
2 |relation ω2 = | v A= k | v A , which describes the spectrum of

undamped Alfven oscillations of an inhomogeneous
plasma, in which the mass velocity vector lies in the
plane perpendicular to the plane of the vectors k and
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Bo (that is, is parallel to the y axis). The depend-

ence of the frequency of such oscillations on the co-

ordinates should not cause any misunderstanding,

since the eigenvalue problem does not arise for these

field oscillations (an analogous situation occurs also

in ordinary magnetohydrodynamics of an ideally con-

ducting liquid ^ ) .

From the second equation of (3.17), taking into

account relations (2.19), we obtain the following dis-

persion equations for the determination of the spec-

trum of the magnetic-sound oscillations of an in-

homogeneous non-isothermal plasma:

(ω2 — k\v\) (ω2—k\v]) -ι'/t

Ί = nn.

dx

X

X

dx ω2 — k

\ vTe [

(3.19)

= VTe/M is the local velocity of sound inwhere v
the inhomogeneous plasma. Formulas (3.19) general-

ize the spectrum (2.21) to the case when a magnetic

field is present. In the case of a homogeneous

plasma these formulas go over into the well-known

formulas for the spectrum of the low-frequency os-

cillations of a non-isothermal magnetoactive

plasma &.«.*«.

4. SPECTRUM OF LOW FREQUENCY DRIFT

POTENTIAL OSCILLATIONS OF AN INHOMO-

GENEOUS PLASMA

In the preceding two sections we considered, using

the method of geometrical optics, the oscillations of

an inhomogeneous plasma under conditions when the

particle drift could be neglected. We now proceed to

an investigation of low-frequency drift oscillations of

an inhomogeneous plasma. In an inhomogeneous

plasma confined by a strong magnetic field, particle

drifts are produced transverse to the magnetic field.

The electrons and ions of the plasma drift in opposite

directions, as a result of which a relative motion of

particles in the plasma takes place. The relative

motion of the charged particles can in turn lead to a

buildup of plasma oscillations, that is, to instability

of an inhomogeneous plasma. Such an instability is

analogous to two-stream instability in the sense that it

occurs under conditions when there are in the plasma

slow waves, whose phase velocity is close to the

velocity of the relative particle drift. In the present

review we confine ourselves essentially to an ac-

count of only Larmor particle drift, that is, drift due

to inhomogeneity of the density and temperature of

the particles. Diamagnetic drift, which is due either

to inhomogeneity or curvature of the magnetic-field

force lines, will not be considered (see B2-2fl con-

cerning oscillations of an inhomogeneous plasma with

account of diamagnetic drift*). Moreover, we confine

ourselves here to an investigation of drift oscilla-

tions of an inhomogeneous low-pressure plasma,

when β = 8πΡ/Β^ « 1. It is precisely under this as-

sumption that we have obtained an expression for the

dielectric tensor of an inhomogeneous plasma. We

emphasize once more that this limitation is not es-

sential in the region of frequencies that are large

compared with the drift frequencies, so that the re-

sults of the preceding two sections are valid for a

plasma of arbitrary pressure under conditions when

particle collisions can be neglected. On the other

hand, in the region of frequencies that are compar-

able with drift frequencies, ω ~ ω^ ~ kyV^/ilL, this

limitation is important to us. All the results dis-

cussed in Sees. 4-6 are valid only for low-pressure

plasma.

It will be shown below that in the region of drift

frequencies α.· £ ω^ new branches appear in the

spectrum of the oscillations of the inhomogeneous

plasma, connected with the drift of the particles and

missing in the case of a homogeneous plasma. Under

real conditions the drift frequencies are quite low

(the observed drift frequencies are of the order of

several dozen kes '-25-'). Taking this into account, we

confine ourselves only to an investigation of low-

frequency drift oscillations of an inhomogeneous

plasma, when ω « Ω[Α

The present section is devoted to potential drift

oscillations of an inhomogeneous plasma. The drift

oscillations of the field can be regarded as potential

only under certain conditions. These conditions will

be derived in the next section, where we investigate

general oscillations, in the main non-potential, of an

inhomogeneous plasma and analyze the total eikonal

equation (1.10) in the region of drift frequencies.

From (1.35) we obtain the following eikonal equa-

tion for the potential drift oscillations of an inhomo-

geneous plasma in the frequency region ω « Ω(:

fd In Ν dT

(4.1)

•The article!22] is among the first devoted to the investigation
of the stability of an inhomogeneous plasma on the basis of the
kinetic equation. A great influence on the development of the
theory of oscillations of inhomogeneous plasma was exerted by
the paper[2SaJ, in which the finite Larmor radius of the ions was
first taken into account.

t Drift oscillations of an inhomogeneous plasma in the region
of the ion and electron cyclotron frequencies are discussed
i n t 2 " " ] . The interaction between a beam of charged particles and
the drift oscillations of an inhomogeneous plasma is considered
int2'].
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where rrj = V T/4?re2N—Debye radius of the particles.
In writing out this equation we have also assumed
that kzvp « Ω . Only under this condition can we
confine ourselves to terms with η = 0 in (1.35). To
obtain the dispersion equations of the oscillations we
must determine from (4.1) the complex function
k x( ω, x) and substitute it in (2.19). We then disting-
uish between three limiting cases: a) z e « zj, cor-
responding to longwave oscillations of the plasma;
b) z e « 1 and ẑ  » 1, corresponding to short-wave
oscillations, with wavelength shorter than the Larmor
radius of the ions, but longer than the Larmor radius
of the electrons; c) z\ » z e » 1, corresponding to
very short wavelengths, shorter than the Larmor
radii of both ions and electrons. In all these cases
we are considering oscillations in the frequency
region ω » kzVfi, for in the opposite limit, as can
be readily seen from (4.1), the potential oscillations

of an inhomogeneous plasma are impossible if the
inhomogeneity of the magnetic field is neglected (there
occurs the usual Debye screening of the field in the
plasma in this frequency region).

a) In the region of long-wave oscillations z\ « 1,
and under the condition ω » kzV'pj, the eikonal
equation (4.1) assumes the form

( 4 · 2 )

where VA = V B /̂4irNM is the Alfven velocity. By
determining from this equation the complex function
kx(uj, x) and using (2.19), we obtain the following
dispersion equations for the spectrum of the long-
wave oscillations of the inhomogeneous plasma:

\ dx Re kx = ^ dx j - k\ -
1 ' c ' ft VTi d 1

"*" v\ V ωΩ; dx

- = nn,

= 1/ 4f ( \ dx
3 Re * 3

θω

It is important to note that Eqs. (4.3) are valid under
the assumption that in the entire region of plasma
transparency the integrands have no singularities,
that is,

kyvTi d
4 dx

la NT,>·• (4.4)

In the region of "high" frequencies, considerably
larger than the drift frequencies of the electrons and
the ions, the gradient terms in (4.3) can be neglected.
These equations go over into Eqs. (3.6), which were
considered in the preceding section. The plasma
oscillations, as shown above, are always damped in
this frequency region.

The situation is different in the region of "low"
frequencies, comparable with the drift frequencies
of the particles in an inhomogeneous plasma. The
plasma oscillations in this frequency region can be-
come unstable under certain conditions. In order to
verify this, we consider long-wave hydrodynamic
oscillations ( ω » k z vp e ) of an inhomogeneous
plasma in the region of frequencies smaller than the
drift frequencies of both the electrons and the ions.
In a plasma of relatively high frequency, in which
c2 » v^ (such a case is encountered in practice
quite frequently), we then obtain from the first equa-
tion of (4.3) [ 2 i l

kvvTe( d Ν ω*
ω Ω β V ax YT,2k\v?re dx

3 1 η Λ Γ Γ |
dx '

(4.3)

We see therefore that when the local inequality

a In NT.
θ In NT >o (4.6)

is satisfied in the transparency region of the plasma,
which in this case is determined by the condition
ω » k zvx e, the oscillation frequencies are pure
imaginary and correspond to aperiodic instability of
the inhomogeneous plasma relative to such oscilla-
tions. This instability of the plasma is not connected
with the dissipative processes and in this sense is
purely hydrodynamic. The growth increment of such
oscillations can reach sufficiently large values,
namely the maximum increment is y m a x ~ v-pj/L
«Ωχ. However, from the condition ω » kzVTe it
follows that such an instability is possible in a plasma
whose longitudinal dimensions (along the magnetic
field) exceed the transverse ones by more than
i/M/m ~ 40 times. We note also that from the condi-
tion that the long wave oscillations be potential,
namely ω « kzv^ (see formula (5.4) of the next
section), it follows that the oscillations in question
can exist only in a plasma of very low pressure, when
β = 8πΡ/Β? « m/M.

We now consider long-wave drift oscillations in
the frequency region kzvxi « ω « kzvrpe. From the
dispersion equations (4.3) in this frequency region
we obtain
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Be kx = Χ ΐ Ay
dx

1+4-/1

Va

and

dx OXuLe
1 ί^—-g-ln

ωΩ,, dx -ι/γ

If we neglect the gradient terms in the region of fre-
quencies larger than drift frequencies, these equa-
tions go over into Eqs. (3.7). The frequencies deter-
mined by the first equation of (4.7) are always real,
thus evidencing hydrodynamic stability of the in-
homogeneous plasma relative to the oscillations
under consideration. The damping decrement γ,
however, can in this case become positive. This
corresponds to kinetic instability of the plasma (with
γ becoming the growth increment of the oscillations).
A simple analysis of (4.7) shows that for both nega-
tive and positive values of (4.4) the following local
condition must be satisfied in the transparency
region if the plasma is to be unstable relative to the
oscillations in question:

kvvTe din Ν f t 1 dlnTe

~ 2<£>Ω, dx

In the case when (4.4) is positive and ω > k zv s,
this condition can be replaced by the stronger local

condition for plasma instability

1

fa
1 d\n Te

2 d\nN •
(4.9)

It follows from this, in particular, that oscillations
with wavelength longer than the Debye radius of the
electrons are certainly unstable, provided
9 ln Te/9 ln Ν ̂  0 in the entire region of plasma
transparency. On the other hand, oscillations with
wavelength shorter than the Debye radius are un-
stable if 9 ln Te/9 In Ν ί 2. Such instability condi-
tions for an inhomogeneous plasma are indicated
in '-3'15-' (the first of these conditions, with an in-
equality sign was derived earlier in D0"3^*). We must
point out also the instability condition which holds
when (4.4) is positive. Namely, in the region of very
low frequencies ω < k zv s, which are possible only
in a strongly nonisothermal plasma in which T e

» Tj, it follows from the local condition (4.8) that
the inhomogeneous plasma can be stable relative to
oscillations with wavelength larger than the Debye
radius of the electrons if 9 ln Te/9 ln Ν ^ 2 in the
entire transparency region.

In the case of negative values of (4.4) the local
instability condition (4.8) can be replaced by the
stronger condition

*See alsoM, which contains the statement that the inhomog-
eneous plasma is unstable against long-wave oscillations at con-
stant temperature, that is, when dlnT/dlnN = 0.

« , «2 Λ Vf-ί a
1 ν iSoTa*

(4.7a)

(4.7b)

(4.10)

In a nonisothermal plasma in which T e » Tj, the
quantity (4.4) is positive and such an instability is
therefore impossible. As regards an isothermal
plasma, condition (4.10) can be satisfied in it (for
c2 » v^) if -4 < 9 ln T/9 ln Ν < - 1 .

The growth increments of the oscillations under
consideration can reach values comparable with the
oscillation frequency, which is of the order of the
drift frequency of the electrons, that is,

Ymax < ω < ^ - £ .

It must be noted that the local instability condi-
tions given above are necessary but not sufficient
conditions for the instability of an inhomogeneous
plasma. On the other hand, satisfaction of these
conditions in the entire plasma transparency region
is certainly sufficient for the instability. The neces-
sary and sufficient condition of instability can be
written in the form of the integral relation y > 0.
The foregoing pertains to all the kinetic plasma in-
stabilities which will be considered below. This will
therefore be implied without special stipulation.

b) We now proceed to consider short-wave drift
oscillations of an inhomogeneous plasma under con-
ditions when ZJ » 1 and z e « 1. In a homogeneous
plasma there are no low frequency oscillations in
this region of wavelengths (ω « Ωί). We shall there-
fore consider here only the region of frequencies
that are comparable with the drift frequencies of the
particles, in which the plasma inhomogeneity be-
comes essentially manifest. Recognizing that kĵ
» kz in the wavelength region under consideration,
we obtain from (4.1) in the limit ω » ^ν*ρβ the
following eikonal equation:

(OLe (kyvqed\n Ν

/?π ω
2 | * Z | T . £

d In T.

)]}• = 0. (4.11)

From this, taking into account (2.19), we obtain the
following dispersion equations for the spectrum of
the shortwave oscillations of the inhomogeneous
plasma:



THE ELECTRODYNAMICS OF AN INHOMOGENEOUS PLASMA 223

ΓϊδΙηΛΤ

dx Re kx =
Γ 7 f , 2 ωΐ,ί" ωΩ: dx "11h

;x = \ dx \ — ft J f- - -—- ,—r-j— f = lire,

i 9 In iV

V = -
dx <οΩ; _5x__ Ν -j r _dx_ m L 1 e 2*14 e Γ 1 , Tj ^ T i ^ 0)2 d In Te

(4.12)

It is easy to see that the spectrum determined by
these equations corresponds to hydrodynamically
stable oscillations. If in addition we recognize that
in the entire plasma transparency region we have

then we get from the expression for γ that if
8 In Te/9 In Ν s 0 (when it is satisfied in the entire
transparency region) the oscillations in question are
also kinetically stable. However, since ω2 » k|v2 ,
these oscillations can become unstable for any
finite negative value of the quantity 9 In Te/9 In Ν
< 0 in the transparency region of the plasma. The
growth increment of such oscillations is exponentially
small, and is therefore of little interest from the
point of view of plasma instability. We note that in

accordance with the condition ω » k,vzvTe· such
oscillations can exist only in a plasma whose longi-
tudinal dimensions exceed the transverse dimensions
by at least a factor VM/m ~ 40. From the condition
that the oscillations be potential [see (5.4)] it follows
that such oscillations are possible when

From the point of view of plasma stability, of
greater interest are the short-wave drift oscillations
in the frequency region kzvpj « ω « k z vp e . As
will be shown below, an inhomogeneous plasma is
practically always unstable against such oscillations,
with the growth increment of the oscillations being
far from small [see (4.15) and (4.16)]. The eikonal
equation for the potential oscillations of the inhomo-
geneous plasma (4.1) assumes in this region of wave-
lengths and oscillation frequencies the form*

f i l l i
V. TJ • rt

/-»

I
K2S

ω

iiil
* χ Β

Kyi

Ti ω ς

k ν2

ωΩ;

'ft

3x
l r

In
>

iV

Λ

(4.13)

*For the sake of simplicity we confine ourselves here to an
investigation of oscillations with wavelength larger than the
Debye radius of the particles, which is legitimate under these
conditions only in a plasma of relatively high density, with
c2 » vA

2. An account of the finite Debye radius of the particles
does not change the local instability condition (4.18) derived be-
low for an inhomogeneous plasma. On the other hand, the oscil-
lation frequencies decrease in this case by an amount 1/(1 +

+ k j .r 2 Di)·

To determine the spectrum of the oscillations of the
inhomogeneous plasma we obtain in this case the
following dispersion equation [3]

dx ω kuVTi Ν

Γ Λ 2
a N \
5- ln-r=- )
5x yT J

(4.14)

The spectrum obtained for the short-wave oscilla-
tions in question offers evidence of hydrodynamic
stability of the inhomogeneous plasma. However,
kinetic instability takes place for practically any in-
homogeneity in this case. Indeed, if we recognize
that in the entire transparency region of the plasma
we have

ky θ , Μ „

^ki* Wi

< '
we get from the second relation in (4.14) the local
condition for the instability of the inhomogeneous
plasma

1+4-2 d In
(4.15)

which apparently is satisfied in all practical real
cases of inhomogeneous plasma. This instability
condition was derived in such a form in ^ . On the
other hand, in the case of an isothermal plasma the
deduction of the so-called "universal" instability of
the inhomogeneous plasma relative to the oscillations
under consideration was first made in'-31"33·^.

The growth increments of these oscillations can
reach values comparable with the frequency Tmax
< ω < νχί/L « Ω^ (that is, they are smaller than the
drift frequencies of the particles).

c) Finally, it remains to consider the potential
oscillations of an inhomogeneous plasma in the region
of the shortest wavelengths, shorter than the electron
Larmor radius. It can be shown that such oscilla-
tions are possible in an inhomogeneous plasma only
in the frequency region ω » kzv-pe. (In the fre-
quency region ω 5L k z vp e such oscillations are im-
possible.) The eikonal equation (4.1) assumes under
these conditions the form
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N ω2 a Inf.
2*!»r, a *

(4.16)
Taking into account the last footnote, which remains
in force also in this case, we confine ourselves here

to oscillations with wavelength longer than the elec-
tron Debye radius (this means that the formulas
(4.17) and (4.18) derived below are strictly speaking
valid only for a high-density plasma, in which c2

» MvA/m). From (4.16) and (2.19) we obtain the
following dispersion equations for the determination
of the spectrum of the short wave plasma oscilla-
tions:

= πη,

Jl ο J

dx <?Z l ^ r / oi2.,2VT
(i+Tt/Te)*

dx
γ = —

We see therefore that these oscillations are hydro-
dynamically stable. The kinetic instability is possible
if the following local condition is satisfied in the
transparency region of the plasma:

dlnTe ^.n

2*14, a in NIVYJ
Ti"h

T, l-f-̂ -

1 + - (4.18)

Thus, for an inhomogeneous plasma to be unstable
against such short-wave potential oscillations it is
necessary to satisfy one of the conditions:

either
a i n ,

< 0, or din Ν

The growth increment of the oscillations is expo-
nentially small, but at the border of the frequency
region under consideration, ω ~ k z v j e , the incre-
ment can reach values comparable with the oscilla-
tion frequency, which is of the order of ω ~ v^e/L
(larger than all the drift-oscillation frequencies con-
sidered above). From the condition that the oscilla-
tions be potential [see (5.4)] it follows that such
oscillations are possible when β « mzj/M ~ z e . For
β « 1 this condition is known to be satisfied.

In conclusion let us dwell briefly on the question
of the role of ion absorption of waves in an inhomo-
geneous plasma. We have neglected above every-
where ion absorption compared with electron absorp-
tion, as being an exponentially small effect. The
validity of such a neglect is due to the inequality

However, the presence of a large factor in front
of the small exponential (particularly in the case of
a non-isothermal plasma in which T e » Tj) may
violate this inequality. It is no longer possible to
neglect ion absorption of waves in this case. It is
obvious that such a situation can occur only in the
frequency region ω « k zvx e. On the other hand, in
the frequency region ω » k zvx e i° n absorption of
waves is always negligibly small. Without presenting

Ν

(4.17)

the corresponding derivations, we merely point out
that in the case of a homogeneous ion temperature,
that is, when VTj = 0, the terms that account for the
Cerenkov effect on the ions in the expression for y
always lead to absorption of waves. Therefore in the
case of unstable oscillations of plasma these terms
assume a stabilizing role.* On the other hand, if the
plasma ion temperature is not uniform, then the
Cerenkov effect on the ions can lead under certain
conditions to a buildup of oscillations, that is, it may
cause instability. It can be shown that in the limit of
long-wave oscillations, zj « 1, this is possible if
the following local condition is satisfied in the trans-
parency region of the plasma:

V ΙϊίΤΐ f\ ι Λ QfV\

τΰπν<°· ( 4 · 2 0 )

In the l imit of short-wave osci l la t ions, when ZJ » 1
and ze « 1, the Cerenkov effect on the ions c o r r e -
sponds to buildup of osci l lat ions under the condition

CO, (4.21)
d In

That is, either when 3 lnTi/9 In Ν < 0, or else when
9 lnTj/8 In Ν > 2. We note that conditions (4.20) and
(4.21) can be obtained directly from the analogy be-
tween the ion buildup of the oscillations with the elec-
tronic buildup in the frequency region ω » kzv>pe

(see (4.12), (4.17), and (4.18) with their corollaries).

5. NON-POTENTIAL DRIFT OSCILLATIONS OF AN
INHOMOGENEOUS PLASMA

Proceeding to the investigation of low-frequency
(ω « Ωχ) non-potential drift oscillations of an in-

*It must be noted that the Cerenkov effect for drift oscillations
on the plasma ions increases with increasing plasma pressure
(with increasing /3 = 8πΡ/Βο). As shown in[24], the drift oscilla-
tions become stabilized in the frequency region ω> k z vri at
/S>0.13, owing to ion absorption of waves in a plasma with con-
stant temperature.
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homogeneous plasma, we first note that the condition
VA >:> ( T e + Tj )/M (or, what is equivalent,
β = 8πΡ/Βο « 1 ) , leads to the inequality

y € kyvs < kvvA.
QL M (5.1)

As in the case of potential oscillations, we also as -
sume that the conditions ω » kzv-pj and kzv*p « Ω
are satisfied. From the inequality (5.1) we then get
ky » k z . Taking all this into consideration, we can
write the eikonal equation (1.10) for the drift non-
potential oscillations in the form

(5.2)

where

_L Γι k"v^ (dN d dT d ΛΛ
Τ |_ ωΩ \~dx dN ~"~ dx dT J J

«33 = '

V r fd\ntf , dT 3
(5.3)

Equation (5.2) goes over into (6.14) and (6.13) of L8J

in the frequency regions ω » k z v p e (neglecting ex-
ponentially small terms) and kzv-pj « ω « kzv-pe,
and z e « 1 (wavelength larger than the Larmor
radius of electrons).

It can be seen that if ω 2 ε η « c 2k z equation (5.2)
goes over into the eikonal equation for the potential
field oscillations (4.1), investigated in the preceding
section. Thus, the condition for the low-frequency
drift oscillation of an inhomogeneous plasma to be
potential can be written in the form

(5.4)

All the results of the preceding section are valid if
this condition is satisfied. Consequently, in particu-
lar, it follows that the long-wave potential oscilla-
tions in the frequency region ω » k z v ^ e are possi-
ble in a plasma of very low pressure, when β « m/M.
On the other hand, shortwave potential oscillations in
this frequency region can exist in a lower pressure
plasma, in which β « mzj/M.

For the opposite limit, when ω2εη » k | c 2 , Eq.
(5.2) breaks up into the following two equations:

6 1 1 = 0 ' (5.5)
* 1 - £ β » = 0, (5.6)

the first of which describes potential oscillations of
an inhomogeneous plasma propagating transversely
to the magnetic field, and the second describes non-
potential oscillations.

We restrict the investigation of non-potential
drift oscillations of an inhomogeneous plasma to an

analysis of Eq. (5.6). The reason is that, on the one
hand, the analysis of (5.2) in the general case is
quite cumbersome, and on the other hand, Eq. (5.6)
is in itself of interest, since it describes the oscilla-
tions of an inhomogeneous plasma in a limit opposite
the limit of potential oscillations.

Equation (5.5) leads in all cases to a spectrum of
stable plasma oscillations with frequency on the
order of the drift frequencies ω ~ ω^. This can be
readily verified from Eq. (5.5) itself, which is linear
relative to ω and contains no imaginary terms. We
shall therefore not analyze this equation and concen-
trate our attention on Eq. (5.6). In the long-wave
region, when ZJ « 1, expression (5.3) for ε33 takes
the form

(02

. Γ χ VT* dIn Te (5.7)

Substituting this expression in (5.6) and taking (2.19)
into account we obtain the following dispersion equa-
tions for the spectrum of the non-potential oscilla-
tions of an inhomogeneous plasma in the frequency
region ω » k

dx ZK ±
ax

Re/tx
dx

(5.8)

It follows from the first equation of (5.8) that the os-
cillations under consideration are hydrodynamically
stable, with the oscillation frequencies being on the
order of the electron drift frequencies

Recognizing that in the plasma transparency region
we have in accordance with the first equation in (5.8)

1

we obtain from the expression for γ the necessary
local condition for the kinetic instability of the in-
homogeneous plasma relative to such oscillations:

d
1 — -

dx In NTJ 1 +2k\v\ed\o.NTt

(5.9)

It follows therefore that the inhomogeneous plasma
can be unstable for any finite negative value of the
quantity 9 lnT e /9 lnNT e in the transparency region,
that is, under the condition

a I n TV
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The growth increment of such oscillations is
generally speaking exponentially small, but at the
border of the frequency region considered, that is,
when ω ~ k zvp e, it can reach values comparable
with the oscillation frequency "Vniax κ ω ~ ωά·

In the frequency region kzv^ « ω « kzv>pe, which
is possible in a plasma when

we obtain from (5.6), (5.7), and (2.19) the following
dispersion equations for the spectrum of the long-
wave nonpotential oscillations of the inhomogeneous
plasma:

5<faHeAst=5<fa[-Al+^(l-^ dx

; = — 1 / — ω2

dx d In .V

ωΩ, dx
_ A alnT*X]

2 θ In Nj\
dx

2 —
V r e d In ΛΓ
ωΩβ dx

(5.10)

It is easy to see that these oscillations are hydrody-
namically stable, and the oscillation frequencies,
like those considered above, are of the order of the
electron drift frequency. The local condition for the
kinetic instability of the inhomogeneous plasma
relative to such oscillations is of the form (recog-
nizing that according to the first equation of (5.10)
we have 1 - kyv

2

Te/wae 9 In N/9x > 0)

V!> a in Ν ,
1 —ωΩ β dx

(5.11)

From this we find that in the case

9\τιΝ > 0

the plasma can be unstable if 9 In Te/d In Ν < 0,
while in the case

0 it is unstable lwhenJ£J>2.

The growth increments of the oscillations on the
border of the frequency region ω ~ kzv-pe under
consideration can likewise reach in this case values
comparable with the oscillation frequency, that is,
Tmax < ω ~ ωά·

Formulas (5.7)—(5.11), obtained in the limit of
longwave oscillations, remain valid also for the case
of shortwave oscillations, when zj » 1 and z e « 1.
Of course, the local instability conditions (5.9) and
(5.11) also remain in force. All that change are the
conditions under which such short-wave oscillations
are possible. Namely, the oscillations described by
formulas (5.10) and (5.11) are possible in the case of
short waves in a plasma in which

8 l t P

Zu

whereas in the limit of long-wave oscillations they
are possible in a plasma in which β » m/M.

Finally, it remains to analyze Eq. (5.6) in the
region of the shortest wavelengths, when z e » 1.
Here, as in the case of. potential oscillations, oscilla-
tions are impossible in the frequency region kzv^
« ω « kzVTe. On the other hand, in the frequency
region ω » k zvx e we have from (5.3)

'/τπ
ΙΩ.

°T,
2 dx (5.12)

From (5.6) and (2.19) we obtain in this case the fol-
lowing dispersion relations for the spectrum of the
short-wave oscillations of an inhomogeneous plasma

Re kx = \ dx j — k\

r _
L

Tin,

ω?. IR.

?_dx_
}Rekx

dx

KyvTe d

ωΩβ dx

dx

.l(Re/

Tirl, . ω 2 dlnT,

(5.13)

We see from these formulas that the oscillations
under consideration are hydrodynamically stable,
and are possible in the frequency region in which

From the expression for y we obtain in this case
the following local condition for the kinetic instabil-
ity of an inhomogeneous plasma relative to such
oscillations:

1 τ^- ^5—1 (5-14)

s, for the plasma to be stable it is necessary to
satisfy the condition 9 lnTe/9 ΙηΝ/Τ^Γ < 0 in the
transparency region or, what is the same, -2 <
< 8 In Te/9 In Ν < 0. Although the growth increment
of the oscillations does contain an exponentially small
factor, it can reach at the border of the frequency
region ω ~ kzvpe values that are comparable with
the oscillation frequency, which has the same order
of magnitude as the drift frequency of the electrons,
that is, 7 m a x < ω & ω^.

It must be noted that all the non-potential oscilla-
tions considered above and described by (5.6) are
stable if the electron temperature is uniform, T e

= const, in that in all cases the oscillation frequency
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is of the order of the drift frequency of the electrons.
The instabilities have a kinetic character, and there-
fore the oscillation growth increment is smaller than
the frequency ωά- We note also that unlike potential
oscillations ( ω^ « kzv'A), which are unstable for
all density and particle-temperature gradients, non-
potential oscillations which are described by Eq.
(5.6) ( u.'(j » kzv^) are unstable only outside the
region determined by the inequality 0 < 8 In Te/9 In Ν
< 2.

It was pointed our earlier, in the analysis of po-
tential oscillations of an inhomogeneous plasma,
that the condition (4.19) under which the ion absorp-
tion of waves can be neglected may become violated
in the low-frequency region, when ω « ^ν ·ρ θ . It
then becomes necessary to take into account the
Cerenkov effect on the ions, which under certain
conditions can lead to stabilization of the unstable
drift oscillations even in a low pressure plasma, in
which

R 8 a P <? \

It is easy to see that in the region of non-potential
oscillations, investigated in this section, ion absorp-
tion of waves can always be neglected. Indeed, from
the condition that the oscillations are potential we
have ω ~ ω^ » kzv*^ » k z v T i . Thus, in this region
of frequencies the phase velocity of the oscillations
should exceed the thermal velocity of the ions by at
least an order of magnitude, causing the condition
(4.19) to be satisfied without doubt.

6. EFFECT OF NONPARALLEL MAGNETIC FORCE
LINES. STABILIZATION OF DRIFT OSCILLA-
TIONS

So far our analysis pertains, strictly speaking, to
the case of a magnetic field with parallel force lines.
In the formulas derived above we used wave numbers
ky and kz which in the case of planar geometry
should be taken literally, while in the case of
cylindrical geometry ky stands for Ι/τ [see (1.39)].
However, all the results can be directly extended to
the case when the force lines of the magnetic field
are not parallel, namely when along with a longitud-
inal magnetic field B z there is also a small trans-
verse field Bĵ  « Bz, perpendicular to the direction
of inhomogeneity of the plasma.* In the case of
planar geometry the field Bi is directed along the y
axis, while in the case of cylindrical geometry it has
an azimuthal direction. All the formulas obtained
above retain the same form, if ky and kz are taken
to mean the quantities defined by (1.40). In the case
when the transverse magnetic field Bj_ varies slightly
in the region of plasma transparency relative to

some oscillations (compared with the variation of the
density or temperature), it naturally exerts no in-
fluence on these plasma oscillations, since the force
lines of the total magnetic field remain in this case
parallel in the transparency region, and the entire
matter reduces to the usual rotation of the coordinate
frame. The situation is different if the transverse
field Β χ varies strongly in the transparency region
(as indicated above, the field Β χ can be arbitrarily
inhomogeneous, provided Β χ « B z ). In this case the
transparency region itself is determined essentially
by the transverse magnetic field Βχ, and under cer-
tain conditions it can be generally missing. In this
sense the inhomogeneous transverse field exerts an
appreciable influence on the spectrum of the plasma
oscillations.

All the inhomogeneous plasma oscillations con-
sidered above lie without exception in the frequency
region ω » kzv-pi. This is just the condition that
determines the region of transparency of the plasma
relative to the oscillations in question. The drift
oscillations fall in this frequency region if ω^
» kzv-pj. With increasing transverse magnetic field,
the effective kz increases and this condition may
become violated. Drift oscillations then become im-
possible. Naturally, in this case there are likewise
none of the drift instabilities of the inhomogeneous
plasma considered above. In this sense we can say
that drift oscillations of inhomogeneous plasma be-
come forbidden. Taking formulas (1.40) into account,
the condition for the forbiddenness of drift oscilla-
tions can be written in the form I-35-'

*« B± ^ ντ _, Tm vTi (6.1)

where T m = max ( T e, Tj). We see from this condi-
tion that even sufficiently small inhomogeneous
transverse magnetic fields stabilize the drift insta-
bility of the inhomogeneous plasma.

It is even easier to stabilize drift instabilities
relative to oscillations in the frequency region
ω » kzVTe and ω » kzvj£ [the latter, in particular,
include the nonpotential oscillations of the inhomo-
geneous plasma considered above, see (5.4)]. Thus,
the condition for forbiddenness of drift oscillations
in the frequency region ω » k zvx e can be written
in the form

B , »?. . ΓΤίΓ f T\. ' „„. .„ _.
(b.2)LQ,

On the other hand, the condition that forbids the non-
potential oscillations which we have considered, in
the long-wave region when zj « 1, is of the form

BX
~B~7 ~ vALQ /

SnP υπ Ί / Τ Γ "Tt (6.3)

*We do not consider here the effect of gravitational (convec-

tive) plasma instability, connected with the presence of a magnetic

field component along the inhomogeneity.

Finally, in the case of short-wave nonpotential oscil-
lations of the plasma, the forbiddenness condition is
written in the form
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Frequency region, type of oscillations Local instability condition Maximum possible
increments

Stabilization
condition

potential oscillation

2. kzvTi

potential oscillation

3. ω»
potential oscillation

4- kzvTi < ω <C kzvTe,
potential oscillation

5. ω1^ kzvTe, ζ ΰ > 1 ,
potential oscillation

6. ω > Α ζ ν Τ β , 2 j < l ,
nonpotential oscillations

7. M A « U ) « W , 2
nonpotential oscillations

8. O)»VTe- * i » l . *
nonpotential oscillations

9. *2»χ « ω < *ζ»τ«,
nonpotential oscillations

10. 1 ) > ί Λ « , «e» l
nonpotential oscillations

1, ze

dlnNT
• > o

0 > > 2

T f r m l n fey " r

r i

 kv"Ti 1

Ymax < ω ^ -y- ;

Tj 1
J f. . . . 2 2

! r l \ 1 + «χ roe

-T, L Ω ;

L T i ~

r T i Te

(6,2)

(6.1)

(6.2)

(6.1)

(6.2)

(6.2), (6.3)

(6.3)

(6.2), (6.4)

(6.4)

(6.2), (6.4)

"•z x. ~j. /*/i:
From conditions (6.1)—(6.4) it follows that the

most difficult to eliminate is the instability of an
inhomogeneous plasma relative to potential oscilla-
tions in the frequency region kzv-pi « ω « kzv-pe

or kzVA. especially if the plasma is furthermore
non-isothermal, T e » Tj. These conditions that
forbid drift oscillations were derived in 04-36] ^ t h e

same papers we can find the conditions for the
stabilization of the inhomogeneous plasma against
some specific form of instability of drift oscillations.
Such conditions are obtained without difficulty by
substituting the frequencies of the drift oscillations,
determined in the preceding sections, in the condi-
tions ω » kzvxi, ω » k zvp e, and ω » kzv^ (de-
pending on which of these conditions determines the
particular region of frequencies of the drift oscilla-
tions). The table lists the local conditions for insta-
bility of an inhomogeneous plasma relative to the
drift oscillations considered above, and indicates the
conditions under which they are forbidden.

We have restricted the present review to an ex-
position of the applications of the methods of geo-
metrical optics in the theory of oscillations of one-
dimensionally inhomogeneous plasma. This is due
primarily to the fact that only such a case is treated
in the literature. On the other hand, it is by now
already clear that practical demands will call for the

development of a theory of plasma oscillations for
both the case of two-dimensionally inhomogeneous
distributions and for the case of three-dimensional
inhomogeneities. Only the first steps are being made
at present in this direction E37'38^. Furthermore, if
the eikonal equation can be set in correspondence
with an approximately equivalent partial differential
equation of the elliptic type, then we can determine
the oscillation spectrum by using the Bohr and
Sommerfeld multidimensional phase integrals

n=\j dXi dxm

where η is an integer much larger than unity, m the
number of dimensions of the space, and k the wave
vector. It is important to indicate the region of in-
tegration. First of all, integration with respect to k
is carried out over a volume bounded by a surface
described by the eikonal equation. We note that the
corresponding volume is finite for equations of the
elliptic type, and also for certain oscillations de-
scribed by an equation of the parabolic type '-38-'.
Integration over the space variables is carried out
either up to the boundaries on which the nondissipa-
tive boundary conditions are specified, or over the
region bounded by the surface (or line) k2 = Σ k? = 0.

In the latter case of locked rays, the ray trajectory
practically fills the transparency region of the
plasma. Here obviously, we cannot speak of separa-
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tion of the variables in the field equations. To the

contrary, when such a separation is possible it is

obviously possible to reduce the three-dimensional

problem to a two-dimensional one and the two-

dimensional problem to a one-dimensional one.
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