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1. INTRODUCTION

The c i r c u l a r polar izat ion of light is a phenomenon

that has been studied for a long t ime, and effective

p o l a r i z e r s , which also serve as ana lyzers , have been

found for visible radiat ion. F r o m the point of view of

the wave n a t u r e of e lectromagnet ic radiat ion πν c l a s s i -

cal theory a c i r c u l a r polar izat ion is associated with a

rotation of the e l e c t r i c vector Ε around the direct ion

of the wave vector k ( E 1 k). Right c i r c u l a r p o l a r i z a -

tion c o r r e s p o n d s to clockwise rotat ion (right-handed

screw), and left c i r c u l a r polar izat ion to counterc lock-

wise rotation (left-handed screw) . This definition of

c i r c u l a r polar izat ion does not agree with the optical

definition, for in optics the name left-polarized light

is given to radiat ion which has the s y m m e t r y of a

right-handed screw. This difference is due to the use

of a different coordinate sys tem, in which the o b s e r v e r

faces in the direct ion opposite to the wave vector .

For nuclear y radiat ion in a quantum t r e a t m e n t of

the phenomenon is m o r e natura l . Here c i r c u l a r , or

cyl indrical , polar izat ion is associated with the p r o j e c -

tion of the spin σ γ of the photon onto the direct ion of

its momentum p , , , with right c i r c u l a r polar izat ion

corresponding to the projection μ = +1 , and left c i r -

cular to μ = - 1 . If the probabi l i t ies of the two p r o -

ject ions a r e equal, there is no c i r c u l a r polar izat ion.

In the general case the probabi l i t ies of the two values

can be different. Then one introduces the concept of

the degree P c of c i r c u l a r polarizat ion,

P C = W L , (i)

where I r and I j a r e the respect ive intensi t ies of

photons with right and left c i r c u l a r polar iza t ions .

G a m m a - r a y quanta with c i r c u l a r polar izat ion a r e

emitted by polar ized nuclei . This can be seen from

the s imples t example, in which the spin of the initial

polarized nucleus is j] = 1 , and the spin after the

radiative t rans i t ion is j 2 = 0 . In this case , in a c c o r d -

ance with the law of conservat ion of total angular

momentum, the γ - r a y quanta emitted in the direct ion

( θ = 0) of polar izat ion of the nuclei (the ζ axis in Fig.

1) will have right c i r c u l a r polarizat ion with P c = + 1,

and those in the opposite d i rect ion (θ = π) will have

left c i r c u l a r polar izat ion with P c = — 1 . The γ r a d i a -

tion emitted in d i rect ions perpendicular to the ζ axis

will not be polarized, P c = 0. Thus the c i r c u l a r p o l a r -

FIG. 1

ization of γ rays emitted by polar ized nuclei is a func-

tion of the angle θ .

In the m o r e genera l c a s e the nuclei in the initial

s tate a r e part ia l ly polar ized, ji is not n e c e s s a r i l y

equal to 1, and the spin in the final s tate can be differ-

ent from z e r o . In the determinat ion of P c it is then

n e c e s s a r y to take into account the probabi l i t ies of

var ious spin project ions in the initial and final s ta tes

of the nuclei . Exact calculat ions have been made by

Tolhoek and Cox ' 1 - and by Stenberg'-2-' and a r e p r e -

sented in monographs. '- 3 ' 4 - For a fixed angle θ of

emiss ion of the γ r a y s (θ & π/2) the degree of c i r -

cular polar izat ion P c depends on the degree of p o l a r -

ization of the nuclei in the initial s tate, ( j z ) / j , the

spins j , and j 2 of the initial and final s ta tes , and the

multipole c h a r a c t e r L of the radiative t rans i t ion. The

angular dependence is given in the form of an expan-

sion in Legendre polynomials .

We note that for c i r c u l a r polar izat ion there will be

an angular dependence and a degree of polar izat ion

P c * 0 even in c a s e s in which there is no anisotropy

in the direct ional cor re la t ion (for example, when

jj = 1/2 or when there is nuclear capture of a fermion

in an S s ta te) . In p a r t i c u l a r , c i r c u l a r polar izat ion of

γ rays has been observed1-5- in the react ion (n, y) of

radiat ive capture of polar ized thermal neutrons .

The c i r c u l a r polarizat ion of γ rays emitted by

nuclei subsequent to β decay is a consequence of

par i ty nonconservation in weak interact ions . In the i r

f irst paper Lee and Yang, in consider ing the q u e s -

tion of pari ty nonconservation, suggested along with

other possible exper iments the m e a s u r e m e n t of the

c i r c u l a r polar izat ion of γ rays accompanying β d e -

cay, though they regarded the exper iment as techni-

cally unfeasible. In the r e p o r t by I. S. Shapiro at the

All-Union Conference on Nuclear Spectroscopy (Jan-

uary, 1957) it was pointed out that there is an actual
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-possibility of such an experiment, and soon Schopper
made an experiment of this kind, and thus confirmed
one of the consequences of parity nonconservation in
β decay. F u r t h e r r e s e a r c h led to definite changes in

the theory of β decay and opened up broad e x p e r i m e n -

tal poss ib i l i t ies . These questions were t rea ted in d e -

tail in a review by Ya. A. Smorodinskff '-9- in 1959.

In the las t few y e a r s many exper iments have been

made on the c i r c u l a r polar izat ion P c of γ rays e m i t -

ted subsequent to β decay. The r e s u l t s of these r e -

s e a r c h e s a r e presented below. P a r t of the data, ob-

tained before 1959, a r e also contained in a review by

Fagg and Hanna. '-10- The phenomenon of c i r c u l a r

polar izat ion of x - r a y s and γ r a y s has been t rea ted

from a h i s tor ica l point of view in 1- 1 1-.

The leptons produced in β t rans i t ions a r e longi-

tudinally polar ized; the neutr inos a r e completely

polar ized, and the β p a r t i c l e s have a polar izat ion

~ v/c. ^12- Therefore after β decay the daughter nu-

cleus is part ia l ly polar ized re la t ive to the d i rect ion

of emiss ion of the β p a r t i c l e . The degree of such

polar izat ion is determined by the c h a r a c t e r i s t i c s of

the β t rans i t ion. The polarizat ion has opposite signs

for e lect ron and posi tron decays, s ince the hel ic i t ies

of e lectron and pos i t ron a r e opposite. Thus if we s in-

gle out the direct ion of e m i s s i o n of the β p a r t i c l e s ,

then the γ - r a y quanta emitted after the decay at a

fixed angle θ * π/2 (Fig. 2) will in the genera l case

be c i r c u l a r l y polar ized. By m e a s u r i n g the degree of

c i r c u l a r polar izat ion of the γ r a y s one can get infor-

mation about the c h a r a c t e r i s t i c s of the β t rans i t ion

and the subsequent γ t rans i t ion. In this r e s p e c t these

exper iments a r e analogous to exper iments with nuclei

polar ized by l o w - t e m p e r a t u r e methods.

FIG. 2

We shall now p r e s e n t the theoret ica l re lat ions which

a r e the bas is of the exper iments on the c i r c u l a r p o l a r -

ization of γ rays emitted after β decay.

2. FUNDAMENTAL THEORETICAL RELATIONS

Immediately after the f irst exper imenta l conf i rma-

tion of par i ty nonconservation in β decay a number of

authors '- 1 3 " 1 6 - independently made theoret ica l ca lcu la-

t ions of var ious effects which a r e consequences of

this new phenomenon. In p a r t i c u l a r , ' 1 7~ 1 9^ expres s ions

w e r e obtained for the angular c o r r e l a t i o n function

W(0) between the e lect ron (or positron) and the c i r -

cular polar izat ion of the γ ray following the β decay

( θ is the angle between the d i rect ions of the β p a r t i -

cle and the γ ray) . The most genera l express ion for

is of the following form:

W (θ) = Σ
R

^κ (cos θ) (211 + 1), (2)

where β-g a r e coefficients which depend on the c h a r -

a c t e r i s t i c s of the β t rans i t ion (the interaction con-

stants , the nuclear m a t r i x e lements , the energ ies and

momenta of the leptons, the charge of the nucleus),

and 7 R a r e coefficients which depend on the c h a r a c -

t e r i s t i c s of the t rans i t ion (the multipole c h a r a c t e r and

the angular momenta of the final nuc lear levels) . The

number R which fixes the o r d e r of the Legendre poly-

nomial is connected with the degree of forbiddenness I

of the β t rans i t ion by the re lat ion 0 < R ί 2l + 1 .

The express ion for the c o r r e l a t i o n function is o r -

dinari ly normal ized so that the f irst t e r m , with the

z e r o t h - o r d e r Legendre polynomial, is equal to unity.

Equation (2) is then wr i t ten:

W(Q)=: ψ * 1'R (COS 0) (2Λ + 1). (3)

a ) T h e c i r c u l a r p o l a r i z a t i o n a n d t h e c h a r a c t e r o f

the radiat ive t rans i t ion. In the c a s e of a " p u r e " γ

t rans i t ion of multipole c h a r a c t e r L the quantity γ R

in the expres s ion (2) can be wr i t ten in the following

form:

YR = CL

LZl™ V'(2/2 + 1) (2L + 1 j W (UJzRL; Li,), (4)

where j 2 , j 3 a r e the angular momenta of the excited

and ground s ta tes of the final nucleus, μ = +1 c o r r e s -

ponds to right c i r c u l a r polar izat ion of the γ ray, and

μ = - 1 to left c i r c u l a r polarizat ion. The c [ C ^ R O a r e

Clebsch-Gordan coefficients, and the W(j 2 j 3 RL; Lj2)

a r e Racah coefficients. For even R the coefficients

C L - μ d° n o t depend on the sign of μ , but for odd

R they do; that is, the c i r c u l a r polar izat ion is d e t e r -

mined by the odd t e r m s of the express ion (3).

As we shall see as we go on, in a large number of

c a s e s the express ion (3) stops with the value R = 1.

Then W(0) depends only on the rat io Ύχ/Ύ^- Calculat-

ing the coefficients c £ l ^ R 0 and W(j 2 j 3 RL; Lj2) for

R = 0 and R = 1 for a ' ' p u r e " radiat ive t ransi t ion,

we get

V, h (/2-

2Λ (
(5)

F r o m t h e f o r m of t h e e x p r e s s i o n (5) w e c a n d r a w a

n u m b e r o f d e f i n i t e c o n c l u s i o n s . F i r s t , f o r j 2 = j 3 t h e

rat io γι/γο ι and consequently also W(0), do not d e -

pend on the multipole c h a r a c t e r L . Second, for

j 2 > j 3 the sign of Τ Ί / Τ Ό is determined by the sign

of μ; a lso the quantity yj/yo d e c r e a s e s somewhat as
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L i n c r e a s e s . If, on the other hand, j 2 < J3. then the

sign and magnitude of y\/y§ depend on j 2 , j 3 , and L .

If the γ radiat ion is a mixture of e l e c t r i c radiat ion

with multipole c h a r a c t e r L + 1 and magnetic radiat ion

with multipole c h a r a c t e r L, then according t o ^ 1 9 -

3JRZ,; Lj\)

; L +1/ , )

2pL+i-\xR0 f' L-\-2

X (6)

Here Δ is the ra t io of the amplitudes of the e l e c t r i c

and magnetic radiat ions in the m i x t u r e . Consequently,

in this c a s e the c o r r e l a t i o n function depends not only

on the values j 2 and j 3 of the spins of the s t a t e s , but

on the mixture ra t io Δ of the multipoles, jus t as in

other c o r r e l a t i o n effects. Thus there is an additional

p a r a m e t e r , which makes the unambiguous i n t e r p r e t a -

tion of exper imental data m o r e difficult.

As an example, Fig. 3 shows the dependence of

γι/γο on the quantity Δ for an Ml + E2 t rans i t ion with

the values j 2 = 3/2 and j 3 = 5/2. As can be seen

from the figure, there a r e changes not only of the

magnitude but also of the sign of yj/γο : this is ex-

plained by the p r e s e n c e of the inter ference t e r m in the

express ion (6).

O.5

0,3

oz

Qi

-a'

~0,Z

-0.3

FIG. 3. Dependence of y^yo o n the ratio Δ of the amplitudes of
the E2 and Ml multipoles for j 2 = 3/2, j 3 - 5/2.

In the c a s e in which the β t rans i t ion leads to an ex-

cited nucleus with the angular momentum j 2 which

goes to levels j 3 , . .., j n + 2 with success ive e m i s s i o n s

of γ - r a y quanta with multipole c h a r a c t e r s Lj, L 2 ,

..., Ln> we have for the " p u r e " γ transit ion'- 1 9 -

V W 70,0

(2Z,ft + l) W(/ n + 1 / n + 2 J?L n ; Lnjn+l)

(7)

It must be noted h e r e that the value of γι/γο for the

n-th γ- ray quantum is in any case not l a r g e r than that

for the f irst one. As the resu l t of success ive " p u r e "

radiat ive t rans i t ions the corre la t ion coefficient can

change, but its sign r e m a i n s the s a m e . A s i m i l a r r e -

m a r k has been made previously in*-20-^ in a d iscuss ion

of the p r o b l e m of the depolar izat ion of nuclei in c a s -

cade t r a n s i t i o n s .

b) C i r c u l a r polar izat ion in allowed β t r a n s i t i o n s .

The quantity ; 3 R in Eq. (2) is a sum of s q u a r e s and

binary products of nuclear matr ix e lements for β d e -

cay with appropr ia te coefficients and /3-interaetion

constants , and a s previously pointed out depends on

the angular momenta j t and j 2 , where j j is the angular

momentum of the initial nucleus, which decays to the

level with angular momentum j 2 in the final nucleus

(Fig. 4). The express ion (3) contains ra t ios β^/β0,

and consequently in a given case W(0) is a function of

the rat io of the nuclear matr ix e l e m e n t s . The explicit

form of /3R//3O will be given below for the concrete

c a s e s of allowed and singly forbidden β t r a n s i t i o n s :

all of the expres s ions for /3R//30 a r e given for the

theory in which the β interact ion contains only the

vector and axia l-vector t e r m s (V - A).

FIG. 4. /3y-cascade.

In the case of allowed β t rans i t ions the angular

c o r r e l a t i o n function W(6>) of Eq. (3) takes the s imple

form

W (0) = \ + μΑ — cos Θ, (8)

where v/c is the ra t io of the speed of the β par t ic le

to the speed of light, and μ = ± 1 c o r r e s p o n d s to r ight

and left c i r c u l a r polar izat ion of the γ r a y s . F r o m

Eqs. (8) and (1) we get the express ion for the degree

of c i r c u l a r polar izat ion P c of γ- ray quanta emitted

after β decay at the angle θ with the direct ion of the

momentum p e of the β par t ic le (see Fig. 2)

(9)

The coefficient A is given by

„ t - nz V Γ 2 X 1 2 + h 1) 1
) J

H e r e X = C V M F / C ^ M Q _ χ , w h e r e c y and c ^ a r e

the constants for the vector and axia l-vector β i n t e r -

act ions. Mjr and MQ__rp a r e the F e r m i and Gamow-

Tel ler matr ix e l e m e n t s . The express ion in the square

b r a c k e t s in Eq. (10) is the ra t io /31//30 · The plus sign

c o r r e s p o n d s to e lectron decay (β~), and the minus

sign to pos i t ron decay (β*). As has been shown in'- 1 7-,
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inclusion of effects of the Coulomb field of the nucleus
does not change the expression (10).

For a F e r m i β t rans i t ion (Mp * 0, M Q _ T = 0)

the formula (10) gives the value A = 0, as is to be

expected from genera l cons iderat ions, s ince the lepton

pair is emitted in a s inglet s tate and the nucleus c a n -

not be polar ized after the β decay. For a Gamow-

Tel le r β t rans i t ion (Mp = 0, M Q _ T * 0) we have

X = 0, and the express ion (10) does not depend on the

matr ix e lements . Therefore the value of A can be

calculated exactly if one knows the c h a r a c t e r i s t i c s of

the success ive radiat ive t rans i t ions (γι/γο)· For ex-

ample, for Co 6 0 (5+ -~ 4+ - ^ 2+ - ^ 0+) we have

A = - 0 . 3 3 , and for Na 2 2 (3+ — 2+ ^ - 0+) we have

A = + 0.33. Actually the conditions Mp * 0 and

M Q — 'P = 0 a r e real ized only in t rans i t ions of the type

0 —· 0, and Mp = 0, M Q _ - ρ ^ 0 only in β t rans i t ions

in which the angular momentum changes by unity,

A] = 1. If, on the other hand, the angular momentum

of the nucleus does not change in the β decay (A) = 0),

then both matr ix e lements a r e allowed by the funda-

mental selection ru les (Mp ^ 0 and M Q _ T * 0).

Figure 5, taken from , shows graphical ly the d e -

pendence of A on the ra t io C y M p / c A M Q _ ' p = X for

the values jj = 1, j 2 = 1, j 3 = 0, L = 1. The upper

curve (X > 0) c o r r e s p o n d s to different phases of M p

and M Q — ' P , and the lower curve to equal p h a s e s .

Thus by measur ing the degree of c i r c u l a r p o l a r i z a -

tion P c [Eq. (9)] of γ rays emitted after β decay one

can find the exper imenta l value Α β χ ρ · By compar ing

the exper imenta l value of A with the theoret ica l value,

Eq. (10), for allowed β t rans i t ions one can d e t e r m i n e :

first, the total angular momenta j j , j 2 , j 3 of the levels,

and second, the ra t ios of nuclear matr ix e lements ,

X and Δ for the β and γ t rans i t ions , respect ive ly .

The most valuable possibil i ty is that of determining

the ra t io of the F e r m i and Gamow-Tel ler matr ix e l e -

m e n t s , including the phase re lat ion (cf. Fig. 5). If in

addition one uses the values of ft for the β t rans i t ion

in question, which a r e as a ru le known, then one can

also d e t e r m i n e the absolute values of the matr ix e l e -

ments M p and M Q _ - p . In Section 4 of the p r e s e n t

a r t i c l e we shall give the r e s u l t s of exper imenta l r e -

s e a r c h e s on this point.

c) The case of forbidden β t r a n s i t i o n s . The i n t e r -

pretat ion of the r e s u l t s of m e a s u r e m e n t s of c i r c u l a r

a
10
ae
0.6

az
ο

-az
-0,4
-ae

ο,οι o.i -1*1

Fig. 5. Dependence of the cor-
relation coefficient A in Eq. (8)
on the ratio X = CVMF/CAMG-T
of Eq. (10) for j t - 1, j 2 = 1, and
J,-o.

polarizat ion in forbidden β t rans i t ions is decidedly

complicated by the fact that the number of nuc lear

matr ix e lements that affect even a singly forbidden β

t ransi t ion is much l a r g e r than for allowed t r a n s i t i o n s .

We shall confine ourse lves to the discuss ion of singly

forbidden β t rans i t ions , s ince the information in the

l i t e r a t u r e about more highly forbidden β t rans i t ions

is not ent ire ly definite.

It is well known that the rank Λ of the nuclear

matr ix e lements of a β t rans i t ion, equal to the total

angular momentum c a r r i e d away by the two leptons,

satisf ies the relat ion

l/i — (11)

where j j and j 2 a re the angular momenta of the in i-

tial and final s ta tes of the nucleus in the β t rans i t ion.

The main contribution to the probabil i ty of a singly

forbidden β t ransi t ion comes from the matr ix e l e -

ments with three values of Λ , namely Λ = 0, 1, and

2:

A = 0,

ca \ ία, Λ = 1,

Λ = 2.

(12)

ηω = cA ^ στ,

= cA

r\l'v = cA \ £γ5,

r\x= — cv \ r, r\l'y =

Here the nuclear p a r a m e t e r s u, ν, ω, χ, y, and z, in-

troduced in accordance w i t h ^ 2 2 j , a r e the ra t ios of the

various matr ix e lements to the s tandard matr ix e l e -

ment η , so that | η | 2 appears a s a factor in the ex-

p r e s s i o n for the probabil i ty of β decay and its value

is determined from the value of ft. The factor

ξ ' = ( 1 / 4 ) R N ( R N ^ s the radius of the nucleus) is i n t r o -

duced in o r d e r that the p a r a m e t e r s ν and y, associated

with re la t iv i s t ic matr ix e lements , will have the s a m e

dimensions as u, w, and x. The formulas given below

will contain matr ix e lements expres sed in t e r m s of

the nuclear p a r a m e t e r s in accordance with Eq. (12).

Thus singly forbidden β t rans i t ions a r e determined

by six matr ix e l e m e n t s . In a number of c a s e s , how-

ever, some of them can be neglected. F o r example,

in singly forbidden β t rans i t ions with β s p e c t r a of

the allowed shape the matr ix e lement C A I By is.

smal l in compar i son with the o t h e r s . F u r t h e r m o r e , if

Δ] = 1, according to the rule (11) only the three m a -

t r ix e lements with Λ = 1 a r e different from z e r o , and

if A) = 0, the only nonvanishing e lements a r e the five

with Λ = 0 and Λ = 1. If, on the other hand, Aj = 2,

then we have the unique t ransi t ion, with the shape of

its β s p e c t r u m always different from the allowed, and

for which the only matr ix e lement is C A / By . Cases

of β t rans i t ions with s p e c t r u m shapes different from

the allowed will be considered in what follows.

The angular dependence of the c o r r e l a t i o n function

W(0) for singly forbidden β t rans i t ions can be o b -

tained from Eq. (2) and is found in t e r m s of Legendre

polynomials P o , P j , P 2 , and P 3 with suitable coeffi-
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cients . The coefficient β3 which o c c u r s with the poly-

nomial P 3 is a product with the matr ix e lement
C A / Bij a s a factor, and therefore when the β s p e c -

t r u m has the allowed shape the t e r m with /33 can be

dropped. The coefficient of P 2 does not depend on the

c i r c u l a r polar izat ion of the γ r a y s and can be ex-

p r e s s e d in t e r m s of the anisotropy coefficient e of

the βγ d i rect ional c o r r e l a t i o n . In the case of t r a n s i -

tions with the allowed shape of the s p e c t r u m there is

no such corre la t ion, and consequently the t e r m in

P 2 (cos Θ) does not contribute to the angular depen-

dence. Thus for singly forbidden β t rans i t ions with

the allowed shape of the β s p e c t r u m the c o r r e l a t i o n

function W (Θ) has an angular dependence which is

s i m i l a r to that for allowed β t rans i t ions and is given

by Eq. (8). F u r t h e r m o r e the coefficient A, jus t as for

allowed t rans i t ions , does not depend on the energy of

the β p a r t i c l e s , but for Aj = 0 is a function of all

five nuclear matr ix e lements corresponding to a f i r s t-

forbidden β t rans i t ion. If, on the other hand, Aj = 1,

the coefficient A does not depend on the m a t r i x e l e -

ments , as is the case for allowed t r a n s i t i o n s .

F r o m the point of view of the interpretat ion of ex-

p e r i m e n t the case with Aj = 0 is very complicated,

s ince it is not possible to do a large enough number of

independent exper iments to d e t e r m i n e the values of

all five nuc lear matr ix e l e m e n t s . By measur ing the

c i r c u l a r polar izat ion of the γ - r a y quanta one can find

the ra t io of the matr ix e lement of f i rst rank V and that

of second rank Y, which appear in the express ion for

A in the form V/Y:

ν = 1'ϋ + 1ω; Y = l'y-l(u + x), (13)

where ί = 0ίΖ/2Τ{-^ , a is the f ine-s t ructure constant,

and Ζ is the charge of the nucleus. In this r e s p e c t

the situation is somewhat simplified if the β t r a n s i -

tion is a " C o u l o m b " t ransi t ion.

When the Coulomb field of the nucleus is taken into

account in the express ion for the probability of a

forbidden β t ransi t ion t e r m s of o r d e r a Z appear,

and in heavy nuclei these t e r m s may be the most i m -

portant ones . Such β t rans i t ions a r e called " C o u l o m b '
,[23] and thentrans i t ions and were f irst considered in

in L 1 9 - . The condition for a β t rans i t ion to be of this

type is given by the inequalities

aZ > pBN and aZ ;§> ^ , (14)

where ρ is the momentum of the β par t ic le , R^ is

the mean radius of the nucleus, Vn is the speed of the

nucleons in the nucleus, and c is the speed of light.

F u r t h e r m o r e the shape of the β s p e c t r u m must not

deviate from the allowed shape. Besides neglecting

the t e r m CAJ BJJ , in Coulomb β t rans i t ions one also

neglects the re lat iv is t ic matr ix e lements cj^Jij5 and

c γ / io ·

The r e s u l t is that in Coulomb singly forbidden β

t rans i t ions with Aj = 0 the a s y m m e t r y coefficient of

Eqs. (8) and (9) depends on the three nuclear m a t r i x

e lements c y j v , C A f σ* r , and C A J i σ χ r . The ex-

p r e s s i o n for A in this c a s e takes L23.I a form s i m i l a r

to Eq. (10) if we replace X by

(15)

where ω, χ, and u a r e defined in Eq. (12). Figure 6

shows as an example the dependence of A on Ω for

J! - 5/2, j 2 = 5/2 , j 3 = 3/2 and a Ml + E2 radiat ive

transi t ion with Δ = 1. Thus by measur ing the c i r c u l a r

polar izat ion of the γ rays in the Coulomb type of β

t ransi t ion considered here one can d e t e r m i n e the rat io

between the nonrelat iv is t ic m a t r i x e lements of differ-

ent r a n k s .

A
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y - ~ al
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FIG. 6. Dependence of the correlation coefficient A on Ω

= -ω/(χ + u) for j , = 5/2, j 2 = 5/2, j 3 = 7/2 (sic) and a Ml +

+ E2 radiative transition with Δ = 1. The value of A e x p ob-

tained for Nd 1 4 7 in L72J is shown as a solid line, and as dashed

lines when allowance is made for errors.

The majority of f irst-forbidden β t rans i t ions have

the allowed shape of the β s p e c t r u m . This is ex-

plained by the so-cal led " ί approximat ion," in which

the probability of the β t ransi t ion is expanded in

powers of £ = « Z / 2 R N (a - 1/137, Ζ is the charge

and R N the radius of the nucleus) and one drops all

t e r m s except the first, which contains I and does not

contain the ener.^y W of the β p a r t i c l e s . In this a p -

proximation the factor (C) multiplying the shape of

the s p e c t r u m is a constant. In c a s e s in which the

s p e c t r u m deviates from the allowed shape the " ί

approximation ' ' is not valid and the t rea tment given

above cannot be used. The angular dependence of the

corre la t ion function W(9) will be given by Legendre

polynomials, including the polynomial of third d e g r e e :

W (0) = A0 + A2P2 (cos θ) + μ[ΑιΡί (cos Θ) + A3P3 (cos 0)]. (16)

Here, as in the genera l case also, only the coefficients
of polynomials of odd degree depend on the c i r c u l a r
polar izat ion μ . F r o m the express ion (16) and Eq. (1)
we get the degree of c i r c u l a r polar izat ion of the γ - r a y
quanta
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A{J AQ-P^OS Θ)-j- As/A0• P 3(cos Θ)ρ _ A{J AQ-P^
( 1 7 )

The coefficients A o , A ] , A 2 , and A3 depend on the

energy W of the β p a r t i c l e s and a r e expres sed in

t e r m s of the m a t r i x e lements , Eqs . (11) and (12), in-

cluding CA J Bjj , with Ao being s imply the c o r r e c t i o n

factor for the shape of the β s p e c t r u m , Ao = C(W).

The denominator in Eq. (17) is the direct ional c o r r e -

lation function, in which the a s y m m e t r y coefficient is

e = A 2/A o . For unique β t rans i t ions (Aj = 2) the

picture is simplified, s ince according to the select ion

rule (11) the coefficients A o, A ! , A2 • and A3 depend

only on the one matr ix e lement CJ^JB^ , which cancels

when one takes the ra t ios AJ/AQ , A 2/A 0, A 3 /A 0 .

Consequently for a unique t rans i t ion P c does not d e -

pend on the matr ix e lements at all and can be ca lcu la-

ted exactly.

Express ions for A o , Al, A 2 , and A3 (or for P c ) as

functions of the matr ix elements· and the energy W in

the genera l c a s e of a singly forbidden β t rans i t ion

a r e given in p a p e r s by Kotani^ 2 2 - * and by Weiden-

miiller. ^24- In these p a p e r s use has been made of the

Konopinski-Uhlenbeck approximation; this means that,

f irst, in the expansion of the probability of β decay in

powers of £ (or simply the "t expansion") only the

first three t e r m s a r e used, second, that no c o r r e c t i o n

is made for the finite s ize of the nucleus, and third,

effects from the third and higher o r d e r s of forbidden-

ness a r e neglected.

Considerable deviations from the allowed shape of

the β s p e c t r u m a r e observed exper imental ly in singly

forbidden t rans i t ions of the types

3-±;2*(Ga7 2, Sb124,La14°, Eu l i 2 ,Eu 1 5 4 ) and 2 - i ; 2 * (Rb88, Sb122)

with subsequent E2 radiat ive t rans i t ion to the ground

state of the even-even nucleus . F r o m the point of

view of the interpretat ion of the exper imenta l r e s u l t s

the s imples t case is that of the β-γ cascade

3 — 2* r^· 0 + , s i n c e t h e q u a n t i t y
E 2

P c for this case

d e p e n d s o n a s m a l l e r n u m b e r o f m a t r i x e l e m e n t s . F o r

t h i s c a s e t h e c o e f f i c i e n t s A o , A t , A 2 a n d A 3 a r e

written in*-22- and'-2 4- as functions of the nuclear p a r a -

m e t e r s x , u , ζ of Eq. (12) and Υ of Eq. (13). Setting

ζ = 1, we get the s tandard matr ix e lement η = cj^JBij,

whose value can be found direct ly from ft. This means

that C A / B I J ^ 0, whereas the other matr ix e lements

can be equal to z e r o . Thus in these t rans i t ions the

quantity P c is determined by t h r e e nuclear p a r a m e t e r s

χ , u, and Y. Consequently, by m e a s u r i n g the c i r c u l a r

polar izat ion of the γ rays one can get information

about the corresponding nuclear matr ix e l e m e n t s . To

make this a d e t e r m i n a t e problem, it is n e c e s s a r y to

*There is a misprint in [221. In Eq. (A5) on page 805, instead
of (u — z) it should read (u — x).

make m e a s u r e m e n t s of P c e i ther at different e lect ron

energ ies W or at different angles θ between the d i -

rect ions of the e lectron and the γ ray .

The angular dependence of the corre la t ion function

W(0) for the case in which the β s p e c t r u m deviates

from the allowed shape can conveniently be r e p r e s e n -

ted in a form analogous to Eq. (8):

θ) — cosO, (18)

where w(W, Θ), unlike the A in Eq. (8), is a function

of the energy W of the β par t ic le and of the angle 0 .

This s o r t of express ion for W(Θ) is given in'- 2 2-,

which also gives the explicit form of a ( W , Θ), ex-

p r e s s e d in t e r m s of the nuclear p a r a m e t e r s (12).

Figure 7, taken from^ 2 2 -, shows the dependence of the

a s y m m e t r y coefficient ω on the e lectron energy W for

Wo = 5.5 for two angles θ = 150° (dashed lines) and

θ = 135° (solid l ines) . Figure 8 shows the angular

dependence of ω for W = 5. The curves in Figs . 7

and 8 correspond to var ious choices of the nuclear

p a r a m e t e r s : l ) z = l , Y = 0 , x = u = 0 (unique β

t rans i t ion); 2) ζ = 1, Υ = 0.27, χ = u = 0 (the s o -

called " B y a p p r o x i m a t i o n " ) ; 3) ζ = 1, Υ = 1.8,

u = - 0 . 1 , χ = 0.75; 4) ζ = 1, Υ = 5.5, u = - 0 . 3 ,

χ = 0.7 (the case of " c a n c e l l a t i o n " of the nuclear

m a t r i x e lements ) . It can be seen from the figures that

the coefficient ic is ex t remely sensit ive to changes in

ω

az

F I G · 7. T h e corre la t ion coef f ic ient

ω = P c /[(v/c) cos Θ] as a function of

the energy W of the β particles (Wo

= 5.5). The solid curves are for the value ~O2

θ = 135°, the dashed curves for θ = 150°. -O.3

The curves are for the following values -OA

of the nuclear parameters: 1: Υ = 0,

χ = u = 0, ζ = 1; 2: Υ = 0.27, χ = u = 0,

z = l ; 3: Υ = 1.8, u = - 0 . 1 , χ = 0.75, ζ

- 1 ; 4: Υ = 5.5, u = -0.3, χ = 0.7, ζ = 1.
•27 -

-ΰ,δ -

-as

ae\-

FIG. 8. ω = P c /[ (v/c) cos Θ]
as a function of cos θ. θ is the
angle between the directions of
emission of the β particle and
the γ quantum. Curves 1 - 4 are
as in Fig. 7.
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the se t s of nuclear p a r a m e t e r s . For example, the

curve corresponding to the unique t rans i t ion (set 1)

differs markedly from that corresponding to set 4.

The case of a β t rans i t ion with the allowed form of

the spec t rum, for which the "t approx imat ion" holds,

is r e p r e s e n t e d by a s t ra ight l ine. The dependence of

G; on the energy W is l e s s sharp than that on the angle

θ , and therefore for the a c c u r a t e determinat ion of

absolute values of the nuclear p a r a m e t e r s it is m o r e

advantageous to use the angular dependence. E x p e r i -

ments of this sor t have been made by Alexander and

Steffen [ 2 5- and by Hartwig and Schopper [2S^ with

m e a s u r e m e n t s of the c i r c u l a r polar izat ion in Sb 1 2 4

and a number of other nuclei .

Other experimental ly observable quantit ies depend-

ing on the s a m e nuclear p a r a m e t e r s , besides the d e -

g r e e of c i r c u l a r polar izat ion P c of γ rays , a r e the

c o r r e c t i o n factor on the shape of the s p e c t r u m C(W),

the a s y m m e t r y coefficient in the βγ c o r r e l a t i o n e(W),

the longitudinal polar izat ion of the e lec t rons P e , the

βγ c o r r e l a t i o n with a selected longitudinal p o l a r i z a -

tion of the β p a r t i c l e s , and so on. Therefore in a

number of c a s e s it is possible to use the combined

r e s u l t s from different independent exper iments to

d e t e r m i n e the nuc lear p a r a m e t e r s , and consequently

the nuclear matr ix e l e m e n t s . This sor t of method has

been used ί η ^ 2 7 · 2 8 > 9 6 ^ j n dealing with the r e s u l t s of

m e a s u r e m e n t s of the c i r c u l a r polar izat ion of the

γ rays in L a 1 4 0 .

In the p r e s e n t section, in dealing with the t h e o r e t i -

cal re lat ions we have not taken into account the p o s s i -

ble depolarizat ion of the nuclei in the excited s ta tes

which appear as the resu l t of β decays . Such depolar-

ization can be due to the interact ion of the nucleus

with e x t r a - n u c l e a r fields, and it o c c u r s in all c o r r e -

lation phenomena if the l ifetime of the excited state is

sufficiently long. In the case of m e a s u r e m e n t of the

c i r c u l a r polar izat ion of γ rays the depolar izat ion of

the nuclei has been considered in the interpretat ion of

exper iments with Sc46'-29-' and will be discussed l a t e r .

3. THE MEASUREMENT OF THE CIRCULAR POLAR-

IZATION OF γ-RAY QUANTA

The m e a s u r e m e n t of the c i r c u l a r polar izat ion of

γ - r a y quanta emitted by nuclei after β decay cons is t s

of selecting βγ coincidences with a fixed angle θ b e -

tween the d i rect ions of emiss ion of the γ ray and the

β par t ic le (see Fig. 2), and s imultaneously detecting

the c i r c u l a r polar izat ion of the γ ray . F r o m the ex-

per imenta l point of view the main difficulty is in the

detection of the c i r c u l a r polar izat ion of the γ r a y s .

At angles θ = 0° or 180° the degree of c i r c u l a r

polar izat ion P c [Eqs. (9), (17)1 can in some c a s e s

reach quite l a r g e values (~ 30 percent) . At p r e s e n t ,

however, the available analyzers for c i r c u l a r p o l a r i z a -

tion of γ - r a y quanta (polar imeters) have smal l effi-

c iencies , and this great ly complicates the p e r f o r m -

ance of the e x p e r i m e n t s .

A review by S c h o p p e r ' 3 0 cons iders in detail the

various methods for measur ing the c i r c u l a r p o l a r i z a -

tion of γ - r a y quanta which a r e possible in pr incip le .

The method with g r e a t e s t efficiency uses Compton

scat ter ing by e lec t rons polar ized in magnetized f e r r o -

magnetic m a t e r i a l s . This method was f irst proposed

by Ya. B. Zel'dovieh -' and was l a t e r t reated in d e -

tail theoret ical ly by Gelberg and by Lipps and

Tolhoek. -' In the overwhelming majority of the ex-

p e r i m e n t s made at p r e s e n t on the c i r c u l a r p o l a r i z a -

tion of γ rays use is made of the Compton forward

scat ter ing by polar ized e l e c t r o n s . This method is

based on the large dependence of the Compton s c a t t e r -

ing c r o s s section on the angle between the d i rect ions

of the spins of the γ-ray quantum and the e lect ron.

The differential c r o s s section for Compton scat ter ing

is given by the formula

° + Λ (19)

Here r0 is the classical electron radius, k0 and k are
the energies of the incident and scattered photons, P,
is the degree of linear polarization, Pc is the degree
of circular polarization, f is the fraction of polarized
e lec t rons in the s c a t t e r e r , Φο is the Compton s c a t t e r -

ing c r o s s sect ion insensit ive to polar izat ion, and Φ!

and Φο a r e the p a r t s of the c r o s s section that depend

on the polar izat ion:

φ 0 = 1 + cos2 ϋ + (Ao - k) (1 - cos θ),

O c = — (1 — cos θ) [(k0 + k) cos ϋ cos ψ + k sin θ sin ψ cos φ]

1

(20)

where $• is the sca t ter ing angle, φ is the angle between

the momentum k0 of the incident γ - r a y quantum and

the spin s of the e lectron, and φ is the angle between

the planes (kos) and (kok). It follows from the e x p r e s -

sion for Φ ο that if the d i rect ion of the spin of the

e lect rons in the s c a t t e r e r is r e v e r s e d (which is a c -

complished by r e v e r s i n g the magnetization)—that is,

if ψ is replaced by ψ + π , the sign of Φ,, is changed.

The fractional effect δ produced in this way is defined

as follows:

0 = rfqffl —<?σ(ψ+π)

[
Φο (21)

Naturally for a given P c the effect will be l a r g e s t for

the maximum value1 of the ra t io Φ ο / Φ 0 ·

The rat io Φ 0 /Φο is a function of the angles £•, ψ ,

and φ and of the initial energy of the γ ray, Eq. (20).

When one uses forward Compton scat ter ing, together

with the r e p l a c e m e n t of ψ by ψ + π , it is convenient

to take φ = 0. The angles $ and ψ a r e chosen so as

to make the quantity Φ 0 / * ο a maximum. The optimum

values £m

 a n d $m °f the angles depend on the initial

energy k0 of the γ quanta. Questions re lated to the

choice of the optimum geometry for the m e a s u r e m e n t s

a r e t rea ted in
p

As an example we may state that
for k 0 = 2 (in units me 2) , ? m = 56° , ψ m = 25°. F i g -
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FIG. 9. The maximum
value (Φ 0/Φ 0)Π 1 at the opti-
mum angles »? = i^m and φ
= i/fm as a function of the in-
itial y-ray energy k0 (solid
curve), ν is the efficiency of
the arrangement. The dashed
curve represents | (Oc^<£0)co
θ\, averaged for the arrange-
ment used by the authors.

ure 9 shows the maximum value ( Φ ο / Φ 0 ) ΐ η at the o p -

timum angles -fi = t?m a n ^ Ί- = 4 m a s a function of

the initial energy k 0 . It can be seen from the figure

that the quantity (Φ 0 /Φο)ηι r e a c h e s values ~ 0.7 at suf-

cient A, Eq. (10), if the β s p e c t r u m has the allowed
shape, or ω, Eq. (18), if the s p e c t r u m depar t s from
the allowed shape. In both c a s e s P c is a function of
the angle θ between the d i rect ions of the β par t ic le
and the γ ray, and in an actual apparatus this angle
covers a spread of values. Consequently in going from
P c to A or a; it is n e c e s s a r y to average the quantity
(Φ 0 /Φο) cos Θ. The express ion obtained in this way
c h a r a c t e r i z e s the efficiency ν of the ent i re apparatus ,
with

ν = 2/ — (22)

The review paper u gives a method for calculating

the average value of ( Φ ο / Φ 0 ) cos θ for an apparatus

possess ing rotat ional s y m m e t r y . The dashed curve

in Fig. 9 shows the values of ( Φ Ο / Φ 0 ) cos θ\ , a s a
ficiently large γ - r a y energ ies (k0 > 8). For smal l e n - function of the γ- ray energy k 0 , for the p a r t i c u l a r
e r g i e s (k0 <, 1/2) the use of forward sca t te r ing for

the detection of c i r c u l a r polar izat ion of γ rays is in-

efficient because of the decreas ing value of Φ 0 /Φο ·

According to it is bet ter in this case to m e a s u r e

the azimuthal anisotropy given by changing from

φ = 0 to ψ = π with fixed ,« = π/2 and tp = π/2 .

Thus for k0 £. 1/2 the quantity (Φ 0 /Φο)ηι has
fairly large values (from 0.25 to 0.7). Since, however,
the fraction of polar ized e lec t rons is smal l and for
iron amounts only to 0.08, even with 100 percent p o -
lar izat ion of the γ r a y s ( P c = 1) the magnitude of the
effect (δ) cannot be l a r g e r than ~8 p e r c e n t . Actually
P c has values ^ 0.30. Moreover in an actual apparatus
the angles $, ψ , and φ always cover m o r e or l e s s of
a spread of values, so that in Eq. (21) we must use an
average value Φο/Φ~^ which is l e s s than the
( Φ ο / Φ 0 ) η ι which c o r r e s p o n d s to the optimal angles .
The resul t is that in the best case the effect o b s e r v a -
ble in pract ice amounts to 2 percent . The average
value of Φ 0/Φο depends on the concrete geometry of
the apparatus .

The express ion (21) which gives the effect δ also
involves a t e r m Ρ, Φ]/Φο with the l i n e a r polar izat ion
of the γ r a y s . In the p r e s e n t c a s e , however, of the
c i r c u l a r polar izat ion of γ rays emitted after allowed
β t ransi t ions and after singly forbidden β t rans i t ions
with β s p e c t r a of the allowed shape, there is no l inear
polar izat ion (P. = 0 ) . In the case of forbidden β t r a n s i -
tions for which the shape of the s p e c t r u m deviates from
the allowed shape, Pi * 0. Still, if the p o l a r i m e t e r has
rotat ional symmetry, the t e r m with the l inear p o l a r i z a -
tion drops out in the averaging over the geometry . This
fact, along with the large solid angle for detection of the
scat tered radiat ion and the wide l imits in which the
angles ,9 and φ a r e c lose to the optimum values, makes
an apparatus with rotat ional s y m m e t r y the most con-
venient one, which is used in a lmost all m e a s u r e m e n t s
of P c based on Compton forward sca t ter ing .

By measur ing the degree of c i r c u l a r polar izat ion
of the γ - r a y quanta emitted after β decay one d e t e r -
mines exper imenta l values of the c o r r e l a t i o n coeffi-

apparatus used by the p r e s e n t a u t h o r s . The r ight-

hand scale gives the corresponding values of the effi-

ciency ν , Eq. (22).

F r o m m e a s u r e m e n t s of the effect δ one gets ex-

per imenta l values of A and GJ:

A or ω = - (23)

As has been noted already, in forbidden β t rans i t ions
with s p e c t r u m shapes different from the allowed, the
corre la t ion coefficient w(W, Θ) depends on the angle
θ and the e lect ron energy W. In this case one gets
from the exper iment and Eq. (23) an average value
o>(W, Θ), which is not equal to the value w(W, Θ) c a l -
culated theoret ical ly for the average values W and θ.

In some c a s e s , however, when the s p r e a d s of W and
θ a r e smal l and the accuracy of the m e a s u r e m e n t s is
not high, one can a s s u m e that a;(W, θ) = ω(\ν, Έ).

The problem of process ing the r e s u l t s of m e a s u r e -
ments on forbidden β t rans i t ions is t reated in more
detail i n C 3 2 ] .

Owing to the s m a l l n e s s of the actually observable
effect ({ ^ 2 percent) , to get a reasonably accurate
resul t it is n e c e s s a r y to have high efficiency in count-
ing the βγ coincidences and to make prolonged m e a s -
u r e m e n t s . R e s e a r c h e s on the c i r c u l a r polar izat ion of
γ rays employ the scinti l lation method, which provides
high efficiency in counting the radiat ions and high r e -
solving power for the selection of coincidences in
t ime. The e lectronic s y s t e m s used in such e x p e r i -
ments must be extremely s table. Moreover, in the
construction of the apparatus special m e a s u r e s must
be taken to e l iminate possible apparatus effects a s s o c -
iated with influences of the s t ray magnetic field on the
scinti l lation counter s .

Figure 10 shows a block d i a g r a m of a concre te
apparatus for measur ing c i r c u l a r polar izat ion with
select ion of βγ coincidences. '-34-' The β p a r t i c l e s
emitted by the radioactive source a r e r e g i s t e r e d by a
scinti l lat ion γ - r a y detec tor with an anthracene c r y s -
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FIG. 10. Block diagram of an apparatusL"] for measuring circu-

lar polarization of y-ray quanta with selection of βγ coincidences.

tal; the γ - r a y quanta s c a t t e r e d by a magnetized cyl in-

d e r (the s c a t t e r e r ) a r e r e g i s t e r e d by a scinti l lat ion

γ - r a y detector with a c rys ta l of Nal(Tl) . The source,

s c a t t e r e r , and γ - r a y and /3-ray d e t e c t o r s have a

common axis (rotational symmetry) . Along the axis

inside the cyl inder there is located a lead cone which

shields the γ - r a y detector from direct ly incident γ

r a y s . The s c a t t e r e r is made of p e r m e n d u r , in which

the induction Β = 2.2 · 104 gauss is attained in fields

Η & 15 Oe. The change of d i rect ion of the polar izat ion

of the e lec t rons in the s c a t t e r e r is produced by r e v e r s -

ing the direct ion of the c u r r e n t in the magnet windings.

The fraction of polar ized e lec t rons in the s c a t t e r e r is

f = 8.2 p e r c e n t . The use of light guides of length up to

15 c m and of permal loy s c r e e n s prevents influence of

the s t ray magnetic field on the operation of the photo-

mul t ip l ie r s .

The two channels of the appara tus , which a r e s c i n -

til lation /3-ray and γ - r a y s p e c t r o m e t e r s , cons i s t of

ampli f iers and pulse-height amplitude ana lyzers , from

which the pulses go to a c i rcu i t for select ing binary

coincidences. In the γ channel, where the counting

rate is ~ 103 counts/sec, a " s l i t " pulse-height analy-

z e r is used. In the β channel, where the counting

rate is ~10 5 counts/sec, the pulses from the output of

the photomultipl ier a r e shaped by a shor t-c i rcu i ted

line, and after amplification go to a fast-acting analy-

zer . The apparatus employs a coincidence c i r c u i t

which gives s imultaneous se lect ion of the total

^ t r u e = 2 N a c c ) and accidental ( N a c c ) coincidence

r a t e s and has a resolving power of τ = 3 x 1CT8 s e c .

This s o r t of coincidence c i r c u i t makes it poss ible to

el iminate e r r o r s associated with changes of τ during

the m e a s u r e m e n t s . The measur ing p r o c e s s is c a r r i e d

out automatical ly. The durat ion of a single coincidence

m e a s u r e m e n t is fixed by the t ime relay and is

tj = 20.5 s e c . After the t ime tj the switching s y s t e m

turns off one set of counting devices, r e v e r s e s the

direct ion of the magnetic field in the s c a t t e r e r , and

turns on the other set of counting devices . The n u m -

b e r s of βγ coincidences corresponding to the differ-

ent d i rect ions of the magnetic field a r e accumulated

as the working cycle is gone through over and over .

The resu l t of the operation of the apparatus is the

determinat ion of the numbers of βγ coincidences a s -

sociated with two opposite d i rect ions of the spins of

the e lec t rons in the s c a t t e r e r . The measured effect

δ is defined as

B . (24)

where N( t ) is the number of coincidences with the

magnetic in the s c a t t e r e r field d i rected toward the

source, and Ν (* ) is the number with the field

d i rec ted away from the s o u r c e . The coefficient A o r

ω is calculated from the value of δ.

In some c a s e s the apparatus used in the work of

other authors differs from that descr ibed in the e l e c -

t ronics and the shape of the magnet. For example, if

the intensity of the γ rays is smal l , a magnet with a

s e m i c i r c u l a r c r o s s section (Fig. 11) has some advan-

tages, s ince with it the solid angle is much l a r g e r and

the angles d- and ψ a r e still c lose to their optimal

values. [37 J In some work use has also been made of
so-cal led " f a s t - s l o w " coincidence c i r c u i t s : this

makes it poss ible to improve the resolut ion t ime to

τ ~ 5 x 10~9 s e c . [ 2 1 ]

Source

FIG. 11. The geometry of a polarimeter for circular polari-
zation of y rays which provides a large solid angle.t37]

For m e a s u r e m e n t s of the dependence of the c i r c u l a r

polar izat ion P c oil the angle θ the apparatus is m o d i -

fied somewhat. In this c a s e a m o r e r e s t r i c t e d g e o m e -

try is n e c e s s a r y and rotat ional s y m m e t r y is i m p o s s i -

ble. For this purpose use is made of s e c t o r s of lead
[25,26] which serve to cover p a r t s of the in ter ior of the

scat ter ing cyl inder.

4. SURVEY OF THE EXPERIMENTAL RESULTS

a) Allowed β transitions. Table I contains data

from m e a s u r e m e n t s of the c i r c u l a r polar izat ion of

γ - r a y quanta emitted after allowed β t rans i t ions , as

reported in the l i t e r a t u r e received up to the middle

of 1963. The table shows: the initial nucleus and

type of β t ransi t ion, the spins and other c h a r a c t e r -
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Table I
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is t ics of the levels and the s c h e m e s of the βγ c a s -

cades which were studied, the energ ies of the β p a r -

t ic les and γ - r a y quanta, the exper imenta l values of

the c o r r e l a t i o n coefficients A and the values of

X = CyM-p/c^MQ_'p obtained from them by using

Eq. (10), and also some physical conclus ions.

The exper iments on the c i r c u l a r polar izat ion of γ

rays accompanying allowed β t rans i t ions can be div i-

ded into two groups : a) m e a s u r e m e n t s made for the

purpose of determining the unknown spins of levels

involved in the βγ t rans i t ions in question, and b)

m e a s u r e m e n t s made for the purpose of determining

the ra t ios of nuclear matr ix e lements in β t r a n s i t i o n s .

An important l imitat ion of the f irst group of e x p e r i -

ments is that there a r e s i m p l e r and m o r e rel iable

methods for determining spins, but in a number of

c a s e s such exper iments have been very effective.

Na 2 2 , Na 2 4 , C o 6 0 . The f irst exper iment on the m e a s -

urement of c i r c u l a r polar izat ion of γ- ray quanta

emitted by nuclei after β decay was made, as we have

mentioned, in 1957, by Schopper"- ' for the purpose of

test ing the hypothesis of pari ty nonconservation in

weak interact ions . The m e a s u r e m e n t s were made with

Co 6 0 and Na 2 2 nuclei, in which there a r e intense

(~ 100 percent) allowed t rans i t ions (with e m i s s i o n

of β' and β+, respectively) with Aj = 1. C o n s e -

quently in both c a s e s the corre la t ion coefficient A of

Eq. (8) does not depend on the nuclear matr ix e lements ,

and this is t rue for e i ther combination of types of β

interact ion (ST o r VA). The theoret ical ly predicted

values A t n e o r a r e - 1 / 3 for Co 6 0 and +1/3 for N a 2 2 .

The values A e x p found from the m e a s u r e m e n t s were

in excellent a g r e e m e n t with the theoret ica l values,

and this was further convincing confirmation of par i ty

nonconservation in β decay. Subsequently m e a s u r e -

ments with Co 6 0 and Na 2 2 were also made by other au-

t h o r s . " 4 2 j The accuracy of the values Aexp was i m -

proved, and their a g r e e m e n t with the theoret ica l val-

ues was taken as proof that the apparatus was working

reliably and that the mathematical t r e a t m e n t of the

geometr ica l averaging was c o r r e c t . For Co 6 0 and Na 2 2

Table I gives the one most a c c u r a t e resu l t obtained in

m e a s u r e m e n t s with each of these nuclei .

Immediately after the f irst exper iments , which con-

firmed pari ty nonconservation, var ious authors made

m e a s u r e m e n t s of the c i r c u l a r polar izat ion of γ - r a y

quanta for the purpose of determining the type of the

β interact ion. 3̂9,42-44] Allowed β t rans i t ions with

both Aj = 1 and Aj = 0 were investigated. The ex-

p e r i m e n t a l r e s u l t s could be reconciled with the theory

if one assumed that the β interaction contained e i ther

the S and Τ types, or e lse the V and A types. The

exper iment with Na 2 4 played a great p a r t in the s u b s e -

quent developments . The value of the corre la t ion c o -

efficient A e x p for Na 2 4 indicated within the l imits of

e r r o r that e i ther the matr ix e lement Mjr or e l se the

element M g - χ was equal to z e r o . On the bas is of

the isotopic-spin selection rule the conclusion was

drawn that Mjr = 0. F u r t h e r m o r e it followed from

the exper iments of Burgov and Terekhov on the

resonance scat ter ing of γ rays that the Gamow-Tel ler

interact ion is an axial-vector interact ion. This con-

clusion was confirmed by many r e s e a r c h e s . '-12-' The

r e s u l t was to prove that the β interact ion is of the

vector and axial vector types.

F 2 0 , N b 9 5 , P r 1 4 4 . In an exper iment with F 2 0 it was

shown L 5 6 -' that the spin of the ground state of F 2 0 is

j t = 2, and not 1, as had been supposed before, and

consequently the β t rans i t ion o c c u r s without change

of the angular momentum (Aj = 0). In m e a s u r e -

ments [ 4 6 > 4 7 ] with Nb 9 5 the value of A that was found

could be made to agree with theory only if one assigned

to the level of the final nucleus which was reached as

a r e s u l t of the β decay the spin value j 2

 = 7/2 .

M e a s u r e m e n t s with P r 1 4 4 gave an unexpected r e -

sult. The respect ive spin and par i ty values assigned

to the ground s ta tes of P r 1 4 4 and Nd 1 4 4 a r e 0" and 0 + .

On this bas i s an analysis of the shape of the s p e c t r u m

of the β t rans i t ion between the ground s ta tes (Γ — 0+

was c a r r i e d out in o r d e r to e s t i m a t e the amount of the

pseudosca lar type p r e s e n t in the β interact ion. The

m e a s u r e m e n t s of the c i r c u l a r polar izat ion of the γ

rays emitted after the β decay of P r 1 4 4 to the 2.2

MeV level of Nd 1 4 4 ^ 2 1 - agree with the spin value

ji = 1 ; that is, they exclude the possibil i ty of d e -

tecting a pseudosca lar interact ion. This exper iment

is very complicated, however, s ince the branching

rat io for the β s p e c t r u m in question is only ~ 1 p e r -

cent, and therefore the conclusion about the spin of

P r 1 4 4 needed further confirmation. There was an a n a l -

ogous situation in the m e a s u r e m e n t s with E u 1 5 2 m .

It was shown in^ 8 6- that all the existing data on the β

decay of P r 1 4 4 a r e not in contradict ion with the con-

clusions of'-21 .

Meanwhile, values of AgXp for P r 1 4 4 have been o b -

tained recent ly '- 9 3 ' 9 4 which a r e not in contradict ion

with the spin ]i = 0" for the ground s ta te . Moreover,

m e a s u r e m e n t s L9 0·9 7- of the dependence of the βγ d i -

rect ional c o r r e l a t i o n on the energy of the β p a r t i c l e s

of P r 1 4 4 and C e 1 4 4 agree only with the value j t = 0" .

Thus ^98-' the ground state of P r 1 4 4 c o r r e s p o n d s to the

c h a r a c t e r i s t i c s 0".

Allowed β t rans i t ions with Aj = 0. The g r e a t e s t

value of the e m p e r i m e n t s made with allowed β t r a n -

sit ions is due to the possibil ity of determining the

rat io of the nuclear matr ix e lements X = cyM-p/
C A ^ G - T ' including the phase re la t ion. In the genera l

c a s e one gets from Eq. (10) two possible values of X

(see Fig. 5), but one of them is much l a r g e r than unity

and can justifiably be re jected, s ince it is improbable

that Mp » M Q _ X .

M e a s u r e m e n t s of the c i r c u l a r polar izat ion of γ - r a y

quanta emitted after allowed β t rans i t ions with

Aj = 0 have been made on the nuclei F 2 0 , Na 2 4 , Α Ι 2 4 ,
A 4 1 , S c 4 4 , S c 4 6 , V4 8, M n 5 2 , C o 5 6 , C o 5 8 , F e 5 9

 : Zr,95

Ag' 1 O m , and C s 1 3 4 . The most intensive studies have
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been those on the β t rans i t ions in the nuclei N a 2 4 ,

Sc4G , and Mn 5 2 . These a r e comparat ively light nuclei

and the isotopic spins Τ of the levels involved a r e

known, the β decay occurr ing with Δ Τ = 1. In this

case , according to the isotopic-spin select ion ru le ,

M p = 0, and consequently also X = 0, if isotopic in-

var iance holds. As can be seen from Table I, for Na 2 4

all of the m e a s u r e m e n t s except one give X ~ 0 within

the l imit s of e r r o r . It is poss ible that for Mn 5 2 the

quantity X may be smal l but st i l l different from z e r o .

As for S c 4 6 , here the data obtained m

[ 2 9 ' 3 8 ' 4 2 ' 4 8 · 4 9 - a r e

in good agreement with each other (X = 0.22—0.32).

This indicates considerable inter ference and a c o r r e -

spondingly large value of M p . Small values of X have

been obtained, however, in'-50-' and ^51 , in a g r e e m e n t

with the isotopic-spin select ion rule but in c o n t r a d i c -

tion with the r e s u l t s of the other p a p e r s mentioned.

Owing to this d i screpancy in the data Boehm and

Rogers made control m e a s u r e m e n t s with var ious

chemical compounds of S c 4 6 . Their r e s u l t s indicate

that the effect depends on the chemical nature of the

s o u r c e ; this could be due to depolar izat ion of the ex-

cited s ta te of Ti 4 6 , although the influence of the e x t r a -

nuclear fields cannot be understood because of the

smal l lifetime of the excited s t a t e . Recently ^

s i m i l a r m e a s u r e m e n t s have been made, but with a

large number of different chemical compounds of Sc 4 6 .

No dependence of the r e s u l t s on the chemical c o m p o -

sition of the s o u r c e was observed, but the value found

for X was X = -0.040 ± 0 . 0 1 1 . Thus in the β t r a n s i -

tion of Sc 4 6 there is evidently a violation of isotopic

invariance and a deviation from the isotopic-spin

selection r u l e .

Figure 12 shows the exper imenta l values of | X |

for all the nuclei that have been studied as a function

of the m a s s number A (the c r o s s e s a r e for values

X > 0, the c i r c l e s for X < 0). As can be seen from

7.5

7fi

7.3

7.Z

7.7

7.0

0.3

0.6

O.7
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O.5

as
O.Z
ΰ.7
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FIG. 12. Dependence of the ratio of nuclear matrix elements of
a l l o w e d β t r a n s i t i o n s , X = C V M F / C A M G - T > on t h e m a s s number A of

the n u c l e u s .

t h e f i g u r e , i n t h e o v e r w h e l m i n g m a j o r i t y o f c a s e s

| X | « 0 . 2 5 , i . e . , \MF\<,<\\MG_T\. ( 2 5 )

T h e o n l y p o s s i b l e e x c e p t i o n s a r e t h e n u c l e i Z r 9 5 ί 3 9 > 6 8 -

a n d A 4 1 L s l - . I n t h e c a s e o f Z r 9 5 w h a t i s m e a s u r e d i s

the combined effect from two βγ cascades with 0 - d e -

cay energ ies 360 keV (Aj = 0 ) and 3 9 6 k e V (Aj = 1).

The values of A e x p obtained ΐ η ^ 3 9 ' 4 6 · 6 8 - agree well

with each other and give the value A e X p = — 0.40

± 0.07 . In the determinat ion of A e x p for the β t r a n -

sition with Aj = 0 use is made of the theoret ica l

value A ^ e o r for the β t ransi t ion with Aj = 1.

t i [39,68] the γ t rans i t ion with energy 726 keV is taken

to be a pure Ml t rans i t ion (Atheor = ~ 0-5, and

X = - 1), but i n [ 4 6 ] it is assumed that there is ~ 6

percent admixture of E2 (Atheor = ~ 0.63, and

X = + 0.07). Consequently, the interpretat ion of the

radiative t rans i t ion with energy 726 keV ~~ is c r u c -

ial for the value of X for the cascade 5/2+ &• 5/2+

^— 9/2+, that is, to get an accurate value of X it is

n e c e s s a r y to d e t e r m i n e the amount of E2 in the t r a n -

sition accurate ly . In the case of F e 5 9 the t r e a t m e n t of

the exper imenta l data is also made difficult by the

p r e s e n c e of a t rans i t ion of nearly the s a m e energy

with Aj = 1 (Atheor = ~ 0.5) as a background masking

the effect of the β t ransi t ion with Aj = 0, so that the

conclusion as to a relat ively large value of | X | c a n -

not be regarded as entirely re l iab le . F o r A4 1 and also

for Sc 4 4 there a r e two contradictory va lues . In the

case of A 4 1 the large v a l u e ' 6 1 - of X is improbable,

since it differs sharply from all the values of X for

neighboring nuclei . F u r t h e r m o r e the value X ~ 0 ob-

tained in'-52- a g r e e s with the isotopic-spin selection

rule , although from the shel l model the F e r m i β t r a n -

sition is allowed (f7/2 '-» f7/2) - Thus there a r e evi-

dently no exceptions to the rule (25).

A compar i son with the theory of nuclear shel ls can

be made for the nuclei A 4 1 , F e 5 9 , and Z e 9 5 , for which

the one-part ic le c h a r a c t e r i s t i c s of the levels of the

βΎ cascades that have been studied a r e known. For

all of these nuclei there is no supplementary forbid-

denness from the one-par t ic le c h a r a c t e r i s t i c s . The

other nuclei with A] = 0 t rans i t ions that have been

studied (see Table I) a re odd-odd nuclei . Therefore

thei r initial one-part ic le configurations cannot be r e -

garded as unambiguous. Moreover the β t rans i t ions

occur to collective levels of the even-even nuclei . As

can be seen from Fig. 12, for the majority of nuclei

that have X = 0 outside the l imits of e r r o r the values

of X a r e negative (c i rc les in the d i a g r a m ) : that is, in

the majority of c a s e s the phases of M p and M Q _ T

a r e the s a m e . In the β t rans i t ions of V48 and C s 1 3 4 ,

however, X > 0 and the phases of the matr ix e lements

a r e different.

In"- 5 3 ' 5 4 - theoret ica l calculations of the F e r m i m a -

trix e lements were made for the β t rans i t ions in Na 2 4 ,

Sc 4 4, and Mn 5 2 for the purpose of explaining the e x p e r i -

ments which give values X ^ 0. The calculations were



T H E C I R C U L A R P O L A R I Z A T I O N O F γ - R A Y Q U A N T A 115

made with Coulomb effects included and with the wave

functions accepted in the nuclear shell model with jj

coupling. This s o r t of t r e a t m e n t is not able to explain

the exper iments that show a d e p a r t u r e from the i s o -

topic-spin selection ru le , and reasonable a g r e e m e n t

is obtained only for Mn 5 2 . The authors of the c a l c u l a -

tions suggest that the speeding up of F e r m i β t r a n s i -

tions with Δ Τ = 1 might be explained by meson ex-

change effects.

The dependence of the c i r c u l a r polar izat ion of the

β p a r t i c l e s on v/c for Mn 5 6 and Co 6 0 has been studied

in a number of p a p e r s . C55,49,56-58: ^ M n 56 t n e r e i s a

deviation from the v/c law in the region of /3-particle

energ ies E^ < 1.5 MeV. For Co 6 0 the data of the

different authors do not a g r e e . Indeed, in'-5 6- it is

indicated that the c i r c u l a r polar izat ion does not d e -

pend on v/c, i n C49,58i a g r e e m e n t with the v/c law is

found, and in'-57-' a deviation from the v/c law is found

for Εβ < 150 KeV. Therefore no definite conclusion

can be drawn at p r e s e n t . We note that the deviations

from v/c that a r e found a r e large and that no i n t e r p r e -

tations for them have been given. Actually smal l devia-

tions ~ 5 — 7 p e r c e n t would not be surpr i s ing , s ince they

can be connected with deviations of the longitudinal

polar izat ion of β p a r t i c l e s from the v/c law which

have been observed by P . E. Spivak and L. A.

Mikaelyan and the i r coworkers LG9>70- for many nuclei .

b) Singly forbidden β transitions. In the la s t few

y e a r s there have been many studies of the c i r c u l a r

polar izat ion of γ - r a y quanta accompanying singly

forbidden β t rans i t ions , which have been made for

the purpose of examining pecul iar i t ie s of these t r a n -

s i t ions, and in p a r t i c u l a r to d e t e r m i n e the nuclear

matr ix e l e m e n t s . The r e s u l t s of the exper iments

a r e presented in Table II, which shows the initial

nuclei, the c h a r a c t e r i s t i c s of the levels and the

schemes of the βγ cascades which have been studied,

the existing data on the values of the c o r r e c t i o n fac-

t o r s C (W) on the shapes of the γ s p e c t r a , and some

physical conclusions, mainly concerning the nuclear

matr ix e lements of the β t rans i t ions , expressed in

t e r m s of nuclear p a r a m e t e r s in accordance with Eqs .

(12) and (13). According to Sec. 2 of the p r e s e n t a r t i -

c le it is n a t u r a l to divide the nuclei studied into two

groups having different c o r r e l a t i o n functions W(0) .

The f irst group includes the nuclei C e 1 4 1 , N d 1 4 7 , and

Hg 2 0 3 with β t rans i t ions which have the allowed shape

of β s p e c t r u m . In this case the form of W(0) is given

by Eq. (8), and the c o r r e l a t i o n coefficient A does not

depend on the angle θ and the energy W of the β p a r -

t ic le . The second group includes the nuclei R b 8 4 ,

Sb 1 2 4 , L a 1 4 0 , E u 1 5 2 , Au 1 9 8 , and evidently also R b 8 6 ,

which have t rans i t ions in which the β s p e c t r u m devi-

ates from the allowed shape, and for which there is an

a s y m m e t r y in the βγ d i rect ional c o r r e l a t i o n . In this

case the c o r r e l a t i o n function W(9) is of the m o r e

complicated form (15) and the c o r r e l a t i o n coefficient

ω of Eq. (18) is a function of the angle θ and of the

energy W of the β p a r t i c l e . For some nuclei definite

conclusions cannot be drawn because the data a r e in-

adequate, and these will not be d i scussed h e r e . For

example, in , which d e s c r i b e s m e a s u r e m e n t s with

Κ 4 2 , the bas ic data on the βγ cascades which were

studied a r e not given. As for As 7 6 and S b 1 2 2 , in these

c a s e s there is no definite information about the shape

of the 0-ray s p e c t r a .

The Coulomb β t rans i t ions in C e 1 4 1 , Nd 1 4 7 , H g 2 0 3 .

The β t rans i t ions in Hg 2 0 3, Nd 1 4 7 , and C e 1 4 1 can be r e -

garded as Coulomb t rans i t ions , since the condition (14)

is satisfied and the β s p e c t r a do not deviate from the

allowed shape. The β t rans i t ion in Hg 2 0 3 o c c u r s with

Aj = 1 or 0 : therefore it is not possible to calculate

Atheor exactly, s ince we do not know the mixing ra t io

of the multipoles in the Ml + E2 radiat ive t rans i t ion

accurate ly enough. F o r the other β t rans i t ions of this

group of nuclei Aj = 0, and A is given by Eqs . (10)

and (15). The analys is of the m e a s u r e m e n t s with C e 1 4 1

and Nd 1 4 7 is s i m i l a r , s ince in both c a s e s the values of

Aexp a r e smal l , and equal to z e r o within the l imits of

e r r o r .

As an example let us cons ider the β t rans i t ion in

N d 1 4 7 , which is accompanied by a γ t rans i t ion Ml + E2

with Δ = 1. [85] The interpretat ion of the exper iment
with Nd 1 4 7 which is given by the authors in*-72- is based

on the value j 2 = 7/2 for the spin of the excited state

of P m 1 4 7 (with energy 530 keV). It will be shown in

what follows, however, that j 2 = 5/2, i .e., the β t r a n -

sition o c c u r s with Δ] = 0. In Fig. 6, which shows the

dependence of A on the ra t io Ω of the z e r o t h - r a n k

and f i r s t - r a n k m a t r i x e lements , Eq. (15), calculated

yfor the cascade 5/2" ^* 5/2+

Ml + E2, Δ = 1
3/2+,

the value A e x p'- 7 2 -' for Nd 1 4 7 is shown, with allowance

made for the exper imental e r r o r s . As can be seen
from the figure, the exper imenta l value A e X p allows
the following ranges of possible values of the nuclear
p a r a m e t e r s , Eq. (12):

a) 0.12<
x-j-u

< 0 . 4 a n d b ) - 0 . 2 , + 0.04.

In est imating the nuclear matr ix e lements of the β

t rans i t ion which correspond to these two ranges it is

obviously reasonable to s t a r t from the assumptions

that a matr ix e lement of zeroth rank is at any r a t e

not s m a l l e r than the matr ix e lements of f i rs t rank,

and that the m a t r i x e lements of a given rank must be

of the s a m e o r d e r of magnitude. These assumptions

a r e based on the absence of supplementary select ion

r u l e s for the m a t r i x e lements in question. According

to this , in the range a) the nuclear p a r a m e t e r s ω, χ,

and u a r e of the s a m e o r d e r of magnitude, and χ and u

have the s a m e phase . In region b) there a r e two poss i-

bi l i t ies : e i ther the quantities x, u, and ω a r e of the

s a m e o r d e r , and then χ and u differ in phase, o r e l se

ω » χ and u.
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β t rans i t ions of the type 3 —· 2+ . In the second

group of nuclei with β t rans i t ions whose s p e c t r a a r e

not of the allowed shape, t h e r e have been detailed s tud-

ies of the β t rans i t ions of the type 3~ —• 2+ in Sb 1 2 4

and E u 1 5 2 , which have high values of ft (log ft = 10.5

and 11.6, respect ively) . As was shown in Section 2,

for such β t rans i t ions the degree of c i r c u l a r p o l a r i z a -

tion P c , Eq. (17), or the c o r r e l a t i o n coefficient ω,

Eq. (18), can be expressed explicitly in t e r m s of the

nuclear p a r a m e t e r s Υ , χ , ι ι and ζ = 1. The values of

ω found in"-3 9 '7 4- a r e not in contradict ion with smal l

values χ » u ~ 0 and Υ * 0. This indicates the e x i s -

tence of supplementary se lect ion r u l e s for the nuc lear

matr ix e lements of the f irst rank, for example, ru les

for the A] of an individual nucleon in accordance with

the shell model. In the work of Hartwig and Schopper

and especial ly in that of Alexander and Steffen[26,75Γ

125,76- ^ e a n g U i a r d e p e n d e n c e of the c i r c u l a r p o l a r i z a -

tion w a s care fu l ly i n v e s t i g a t e d . Thus a c c u r a t e and

mutual ly c o n s i s t e n t v a l u e s w e r e obtained for the nu-

c l e a r p a r a m e t e r s and a c c o r d i n g l y a l s o the n u c l e a r

m a t r i x e lements , which definitely confirmed that χ

and u a r e smal l and the p a r a m e t e r Υ is l a r g e . C o n s e -

quently the high values of ft in these t rans i t ions a r e

associated with smal l values of the f i r s t - rank nuc lear

matr ix e lements Jr and Jiff x r . It is interes t ing to

note that the exper imenta l values of the corresponding

nuclear p a r a m e t e r s for Sb 1 2 4 and Eu 1 5 2 a r e of nearly

the s a m e s i z e . The finding of a se t of n u c l e a r p a r a -

m e t e r s χ ~ u f» 0 and Υ ^ 0 c o r r e s p o n d s to the s o -

called " B y approximat ion," which has often been

considered in the l i t e r a t u r e (see a l so^ 9 9 -) .

In L27,28_ > w n j c n r e p o r t m e a s u r e m e n t s of the c i r c u l a r

polar izat ion of the γ - r a y quanta emitted after the β

decay of L a 1 4 0 , a combined t r e a t m e n t has been applied

to the r e s u l t s of m e a s u r e m e n t s of the c i r c u l a r p o l a r -

ization, the shape of the β spec t rum, the βγ d i r e c -

tional corre la t ion, and the value of ft. This t r e a t m e n t

provides the conclusion that in this case the high value

of ft (log ft = 9.1) is probably due to an "effect of c a n -

ce l la t ion" L22- of the nuclear matr ix e lements (x * 0,

u * 0). The r e s u l t s of"-27- make it possible to find a

relat ion between the matr ix e lements of the f irst rank

(see Table II)(confirmed in1-96-) (see note added in

proof).

R b 8 4 , R b 8 6 , Au 1 9 8 . In m e a s u r e m e n t s with Rb 8 6

(Aj = 0 ) L44,7i,T7_ j t n a s j - , e e n observed that there is an

angular dependence of the c i r c u l a r polar izat ion. It is

concluded from the r e s u l t s of the m e a s u r e m e n t s that

the matr ix e lements j\a x r , Jr, and J By may be

of decis ive importance .

In'-9 5- m e a s u r e m e n t s of the angular dependence

have been used to find a c c u r a t e values of the nuclear

p a r a m e t e r s for Rb 8 4 and Rb 8 G . Most of the e x p e r i -

ments with Au 1 9 8 (2" —•» 2+ β t ransit ion) indicate that

this β t rans i t ion is a Coulomb t rans i t ion. [ 4 0 ' 4 2 > 4 3 ' 5 7 ' 6 5 '

78,79- JJ. j j a g D e e n founts however, in m e a s u r e m e n t s of

the longitudinal polar izat ion of the β p a r t i c l e s in the

low-energy region ( ^ 200 keV) that there a r e large

deviations from the v/c law (~ 20 percent) . - F u r -

t h e r m o r e there a r e indications that the β s p e c t r u m

d e p a r t s from the allowed shape in the same range of

energ ies . - Along with this it has been found in

that the coefficient A3 in the express ion (16) is equal

to z e r o within the exper imental e r r o r , and on this

bas i s it is concluded that the case a g r e e s with the

" ξ approximat ion," in which the β s p e c t r u m has the

allowed shape. Therefore no unambiguous conclusions

can be drawn in the case of Au 1 9 8 .

Thus m e a s u r e m e n t s of the c i r c u l a r polar izat ion of

γ - r a y quanta emitted by nuclei after β decay have

provided important information about the nature of β

t rans i t ions of atomic nuclei . Extensive exper imenta l

m a t e r i a l re lat ing to the nuc lear m a t r i x e lements of β

t rans i t ions has been published, and has served in a

number of c a s e s as a bas i s for the determinat ion of

the absolute values and re lat ive phases of individual

m a t r i x e l e m e n t s . This has been the f irst d e t e r m i n a -

tion of these quantit ies for quite a number of nuclei .

F u r t h e r exper iments will p e r m i t improvements in the

accuracy of some of the data and the secur ing of new

data. The elucidation of the nature of the observed

regu lar i t i e s will r e q u i r e theoret ica l calculations of

the nuclear matr ix e lements .

Note added in proof. An analysis of the rat io of the

matr ix e lements of singly forbidden β t rans i t ions of

the type 3" — 2+ on the b a s i s of the theory of conserved

vector c u r r e n t has been c a r r i e d out in C100]
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