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1. INTRODUCTION brief review of the experimental facts, primarily ob-
tained with cosmic rays at energies E > 10'! eV (but
IN the last few years major changes have occurred in  also with accelerators, where results of basic impor-
the study of strong interactions at very high energies. tance were attained at the beginning of 1963), to the
We refer here to experiments at (1—3) x 1010 ev principal aspects of the theories and to their interrela-
in special accelerators and above 10! eV in cosmic tion and to the agreement with the experimental data.
rays. At the same time, new approaches have been There is no doubt that the earlier reviews 173 have
devised, and new theories developed, leading to defi- become obsolete. As to the theories, their develop-
nite predictions with respect to details of the process; ment has been marked, on the one hand, by the appear-
these predictions are already amenable to experimen- ance of the method of moving poles (or the method of
tal verification. The present article is devoted to a complex orbital momenta, the Regge pole method),
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henceforth designated the MMP, the two-year history
of which is brilliant and dramatic. On the other hand,
the so-called one-meson approximation (OMA), which
is physically based on the old almost-naive represen-
tations of the Weizsticker-Williams method and has
grown from the pole method, has received a much
more complete, rigorous, and developed form.

Of course, the very use of the word ¢‘theory’’ in the
plural is not very reassuring. If there were one good
theory, it would be sufficient. The two mentioned
methods do not start from some fundamental base,
but contain hypotheses or postulates. Each method
covers only part of the processes: the moving pole
method deals only with elastic (at best quasielastic)
processes and the total cross section connected with
them by the optical theorem; the one-meson approxi-
mation deals with inelastic peripheral collisions and
the elastic ones connected with them.

The simplicity and clarity of the MMP and the whole
tendency connected with it —‘‘Reggistics’’ —have at-
tracted many adherents. The mathematical orderliness
of the method expiates some of its abstractness and the
fact that the physical meaning of some of its postulates
is not perfectly clear.

The enthusiasm has increased even more when
proton-proton (pp) scattering experiments in accel-
erators, in the 10—20 BeV region, have confirmed one
of the main conclusions of the MMP. The opinion has
been advanced that the MMP, even in the form where
only one extreme right-hand pole is taken into account
is an all-inclusive theory and describes all the proc-
esses at high energies.

It soon became clear, however, that this is not the
case. The principal role has been played here by data
concerning elastic 77p interaction in the same energy
region, published approximately one year after the pp-
scattering experiments and in decisive disagreement
with the MMP predictions.

It became clear that the region of applicability of
the MMP, at least in its presently known form, was
more limited than its most ardent adherents believed.
Many have therefore interpreted this failure as a
breakdown of the entire method.

It seems to us that by now its strong and weak as-
pects and its connection with other methods have be-
come clarified to some degree, and the method is as-
suming a firm and important position, albeit more
modest than first prophesied, in the physics of high-
energy processes.

On the other hand, the one-meson-approximation
method, which is developed in parallel with and inde-
pendently of the Regge method, was more traditional,
perhaps less brilliant, and did not claim an all-em-
bracing role. At the same time, during the course of
its gradual development, it explained many experimen-
tal facts. ' Its attractive feature is that it is concrete.

It is therefore particularly important to clarify the

extent to which the deductions of both theories agree
with the actual facts.

At the present time we have reached, in some
sense, a new stage in the investigation of strong in-
teractions at high energies, where the mutual connec-
tion between elastic and inelastic processes can al-
ready be studied. In light of this, it is necessary to
re-evaluate the position of the hydrodynamic theory,
which for a long time was the only serious theoretical
scheme for processes at superhigh energies. The very
existence or nonexistence of hydrodynamic processes
is of great significance to the theory.

Particular attention must be paid to the information
that can be extracted from the experimental data ob-
tained on cosmic rays. Of course, the picture which -
they present is far from complete. As is always the
situation with cosmic rays, experiments are difficult,
hard to control, and frequently ambiguous. However,
as is always the case at lower energies, under careful
analysis it yields new fundamental information. Even
now, many distinct characteristics of the interaction
act, which have a decisive importance in the discussion
of theoretical problems, have been obtained with its aid
in the 101! —10' eV energy region. Many reliably de-
termined quantitative characteristics pertain to ener-
gies up to 1015101 ev.

We shall consider below essentially nucleon-nucleon
and nucleon-meson interactions, with the nucleon labo-~
ratory energy Ej, exceeding 10" ev. This value is
chosen for three reasons.

First, it is probable that this energy will remain
the upper limit attainable by accelerators for the next
five or ten years.

Second, the essentially new features of the phenom -
ena dealt with (production of independently decaying
particle clusters, etc.) appear when the number of
produced particles is large, n » 1. However, experi-
ment shows that in the mean

1
— EL 1,,
i~ ()
where u is the pion mass.* Thus, if n ~ 5 then EL .
~ un4 ~ 101 eV,

Third, it is already clear that an important role is
played by the following condition, which is encountered
both in the moving-pole method and in the one-meson
approximation,

-

In< >1,
o
re
whe o B
s M

(M —nucleon mass ), with the >» symbol significant.
When Ep ~ 10'' eV we have In(s/s;) ~ 4. Thus, the
region E, > 10! is indeed physically singled out.

*Here and throughout we useti = ¢ = 1.
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A few words about the character of the treatment
of the theoretical problems. There is apparently no
published exposition of the fundamentals of the moving~
pole method accessible to the non-specialist. We have
attempted to treat them here quite fully, avoiding com-
plicated elements, as a result of which the correspond-
ing chapter (II) is large and contains more material
than necessary for a mere comparison of the theoret-
ical deductions with experiment. The mathematics is
relegated where possible to the appendix.

The same can be said to some degree concerning
the one-meson approximation (Chapter III), which is
extensively used by many workers to analyze a great
variety of experiments, but is employed in different
variants without sufficient differentiation in the termi-
nology and in the assumptions made. It was necessary
to broaden the exposition here, too, in order to clarify
these questions.

In Chapter IV we present a few experimental re-
sults of research in the region E1, > 10! eV (cosmic
rays ), with considerable space allotted to special
methods of analysis of the data used in these questions.
The experimental data obtained in the verification of
the predictions of the MMP at accelerator energies
are given in Chapter II during the course of the ex-
position of the theory, and also in Chapter V, in which
the connection between the two theoretical methods is
considered. It must be stipulated that here, in spite
of widely used and recognized considerations, we de-
velop also our own general point of view, based on
many not yet extensively discussed recent investiga-
tions. The deductions resulting from these investiga-
tions and the mentioned point of view reduce to a state-
ment that the asymptotic properties of elastic scatter-
ing, which follow from the MMP in its traditional form
(inclusion of only the one pole on the extreme right)
reflect the result of one-meson inelastic interactions
of the same particles. Although we cannot assume that
this statement can be proved rigorously, it seems to
us justified to a certain degree both experimentally
and theoretically. It enables us to outline a single
scheme, in which the MMP and the OMA are not in
opposition but complement each other.

II. THE METHOD OF MOVING POLES
1. Introductory Remarks

The fact that quantum field theory, which has been
so successfully applied to electrodynamics, proved to
be ineffective when attempts were made to use it for
strong interactions, has spurred the efforts to con-
struct a theory on different formal principles. At first,
the diagram method became popular. In this method,
the calculation of the amplitude of the transition prob-
ability is based on the assumption of some Feynman
diagram (or a set of such diagrams ), in which, how-
ever, the vertex parts and the propagation functions
are assumed to be ‘‘overgrown,’’ and to include all

orders of perturbation theory, They must obey a whole
series of general relations established in field theory
(the Lehmann spectral representations, etc.) and
owing to the lack of a consistent theory they can some-
times take into account information extracted from a’
comparison of calculation results with experiment. An
example of the diagram method is the one-meson ap-
proximation (Chapter III). Thus, the only departure
from ordinary field theory is in practice the discard-
ing of perturbation theory.

Gradually, however, a more extreme trend began
to develop, based on the use of only the most general
theoretical premises, which are regarded as obligatory
for any theory. Indeed, we must face the possibility
that in the new range of phenomena of interest to us
it may be inconvenient to use the customary descrip-
tion with the aid of y functions, § operators, and the
Hamiltonian, which are applied to each stage of the
process. As far back as in 1943, Heisenberg proposed
a program for describing collisions between elemen-
tary particles exclusively in terms of matrix elements
(probability amplitudes) of transitions from the initial
(really observed) state of a system of non-interacting
particles to the final (also really observed) state of
likewise free particles. This concept starts from the
possibility that it is actually impossible in principle to
trace the process of interaction between particles by
using in each stage the detailed representations of
quantum field theory. The aggregate of the transition
amplitudes forms the S matrix, which encompasses
all the possible information on the processes. Of
course, the future theory should contain a certain al-
gorithm (like an equation of motion), which would per-
mit calculation of the S matrix. For the time being
we must attempt to make as full use as possible of
the fact that the S matrix must satisfy some general
requirements. These are: (1) causality, defined as the
absence of connections between observed events if the
events are separated by space-like intervals (when
the signal would have to propagate with a velocity ex-
ceeding that of light); (2) the closely associated rela-
tivistic covariance of all relations, which is closely
agsociated with the first requirement; (3) unitarity,
that is, the normalization requirement; the total prob-
ability of a transition from each initial state (summed
over all the final states) should remain equal to unity;
(4) the correspondence principle, that is, the require-
ment that on going to a case which can be described
from the point of view of quantum field theory (for
example, to quantum electrodynamics) the S-matrix
theory must go over into the corresponding ordinary
theory (for more details see [4]).

Of course, the results obtained in this way (if ob-
tainable at all) should remain in force even if it turns
out that the general principles and methods of the or-
dinary theory remain valid also in the problems under
consideration.
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The foregoing postulates, of course, are not enough
to produce a theory. Since the equation for the S ma-
trix is not known, all attempts (including the moving-
pole method ) are based on finding additional conditions
imposed on the S matrix, conditions which would make
it possible to specify it for at least a few particular
cases. Usually an attempt is made to obtain them from
general considerations, by studying the properties of
the S matrix in electrodynamics or by perturbation
theory, etc., and then postulating the correctness of
some of these properties in the new situation. This,
in particular, is how the double dispersion relations
for the scattering amplitude were formulated, the
crossing symmetry condition imposed, etc. The
method of moving poles is also based on these prin-
ciples.

Both the double dispersion relations and the MMP
consider only the amplitude of mutual scattering of
two particles. This amplitude is a function of the en-
ergy and the scattering angle or the momentum trans-
fer. It describes the transition from particles with 4-
momenta p; and p, to particles with 4-momenta p;
and p;. Convenient relativistic invariants reflecting
the energy and the scattering angle 6g are

s= —(p1-+p)? and t = —(p1— pa)* *.

In the center-of-mass system, where, if we speak of
collisions between identical particles, the energy of
each particle is equal to E, the momenta before col-
lision are p and —p, and those after collision are
p’ and —p’, these variables have the form

s={(p1o+ P2) — (P1+p2)? = 4E?,
t=(po— Pa)*— (Pr—ps)’ = —2p* (1 —cos 6,).

(2.1)
(2.2)

We shall speak in what follows of an amplitude
A(s,t), which is connected with the cross section
dog;(0g) of elastic scattering through an angle 6g by
the following relation (we introduce the ‘‘invariant
amplitude’’ A in place of the nonrelativistic amplitude
F, dog; = | F |2 dQ)

doa="F 1A, par (4= ZTSI’TF> . @2.3)
The investigation of the elastic-scattering amplitude
is of value, in particular, because according to the op-
tical theorem, which holds true under the most general
assumptions, knowledge of A for the angle 65 =0 en-
sures knowledge of the total cross section o(s):
s

Im A (s, 0) =57 9 (5)-

16 (2.4)

2. Derivation of the Fundamental Asymptotic Formula

The diagram of Fig. 1, which describes the mutual
scattering of particles 1 and 2, shows the time flowing

*The square of the 4-vector is understood in the sense p?
= p? — pZ, where p is a space vector.

N\

AlED) Po(EP)

FIG. 1. Notation for the momenta.

BEP)  pilEPY)
3 4

downward. The same diagram, however, can be read
differently by imagining that the time flows from left
to right. In such a case we encounter lines of particles
with 4-momenta p; and p,, directed opposite to the
time axis. As is well known, these describe antipar-
ticles with 4-momenta —p; and —p,. Consequently,
from the point of view of the general rule, when the
diagram is read in this manner we are dealing with
elastic scattering of a particle with 4-momentum pj
= p; by an antiparticle pj = —ps, yielding an antipar-
ticle pj = ~py and a particle p; = p,. For this second
process, the parameters s and t (denoted s’ and t’)
are

(2.5)
(2.6)

§'= —(pi+p)l=—(p1—ps)=t= —2p?(1 —cosb,),
t'= —(pi— Py’ = —(p1+p)=s=4E%

Thus, in the crossed channel of the reaction, the
role of the ‘‘energy’’ parameter is played by s’, which
is equal to the square of the 4-momentum transfer in
the direct channel t, while the role of the square of
the momentum transfer is played by the quantity t’,
which is equal to the square of the energy s in the
direct channel. Usually we do not introduce the new
(primed) quantities s’ and t’, retaining the foregoing
quantities s and t, but saying that the first channel is
the ‘‘s-channel,’’ since the role of the (square of the)
energy is played here by s, while the second channel
is the ‘‘t-channel,’’ since the square of the energy is
given here by t. All this in indicated by the supple-
mentary arrows in Fig. 1.

In (2.2) and (2.6) we have the cosine of the scatter-
ing angle in the direct channel (in which s is the
square of the energy). We can introduce the cosine
of the scattering angle in the crossing channel, cos 8¢
= z; in the future this quantity will play an important
role. In analogy with (2.1) and (2.2) we have

(2.5a)
(2.6a)

= —2p% (1 —cos By),
t=4E?,

where E and p are the energy and momentum in the
c.m.s. of the particles that collide in the crossed chan-
nel. p? is connected by the conservation laws with the
masses of the interacting particles and with the energy
vt . In the case when the masses are identical and
equal to m, we have in the t-channel

p2=% (t —4m?), (2.5b)
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2s *

COSGtEZ=1—t__—4”L2'

(2.6b)

Consequently, the amplitude A(s,t) represented by
the diagram of Fig. 1 can be regarded either as the
elastic-scattering amplitude in the s-channel with s
as the square of the total energy and t as the 4-mo-
mentum transfer, or as the amplitude elastic-scatter-
ing in the t-channel for a particle and antiparticle with
t as the square of the total energy and s the square of
the 4-momentum transfer. An important complication
arises here. If we know A(s,t) for a real process in
the s-channel, then s >0 and t < 0 [see (2.1) and
(2.2)]. But in the t-channel we should have for a real
process t > 0 (for here it is the square of the total
energy) and s < 0 (for here it is the square of the
3-momentum transfer taken with the negative sign).
When we deal with some single amplitude A(s,t) for
both channels, we essentially unify mechanically two
different functions, defined in different (non-overlap-
ping) intervals of variables: one for s >0 and t < 0,
and the other for s < 0 and t > 0. In particular, of
course, knowledge of A(s,t) for the real process in
one channel does not add anything, for the time being,
in the sense of knowledge of the amplitude of scatter-
ing for the real process in the other channel. Using
the coordinates s and t (Fig. 2) we can state that if
m is the mass of the particles and antiparticles, then
the regions of values of the variables s and t cor-
responding to different channels are different in this
case (they are shown shaded in Fig. 2). A new situa-
tion arises only if we state that this is actually a single
analytic function. In this case, knowing it as a function

AL
.

Physical 1
?region |
‘of the t- |
channel 1
-~ |

!

|

s

t=4m

/. Physical 20,05
region s

of the s-
channel

FIG. 2. Physical regions of the values of the parameters s
and t.

*In the more general case the expression for z becomes more
complicated. Thus, if as a result of collision between particles of
mass m one of them acquires a mass M, then by using the conser-
vation laws we obtain after some computation

—t (sg—m2—1)-}- 2t (s —4m?)

s 2.6c
(12— 4m20)/2 [(sy—m2 —1)2— 4m2¢ /2 ¢ )

sp="M2,

3=

If we deal with mutual elastic scattering of two particles of dif-
ferent masses y and m, we have

re t—2(m24pu2)—2s

.6d
=iy i (2:68)

of its variables in one channel, we can go over (con-
tinue it analytically) to the other channel. This postu-
late is used in the MMP and in the double dispersion
relations.

We note that the problem is usually symmetrized
(for convenience in notation). Instead of the usual
elastic scattering we consider elastic scattering with
conversion into antiparticles (Fig. 3). Then the pa-
rameters s and t, and also a third parameter u which
is analogous to them and which is determined uniquely
in terms of s and t, are equal to

s=—(P+p) t=—(pi+ps)’, v=—(p4p)h (2.7
Pttt pi=0, pl=pi=pl=pl= —m?
s+t -+u=4m? (2.8)

Accordingly, it is convenient to choose oblique co-
ordinates in the (s,t) plane. We then have the scheme
shown in Fig. 4. Thus, the physical (real) regions of
different channels (to which we add the u-channel—
collision of particles 1 and 4) do not overlap.

! 2
FIG. 3. Symmetrized collision
scheme.
4 N
Physical
- region of  /Q 4
\\ t-channel / < /Z\
\
——— L
t=0
M bhysical U
YS‘C"‘f Physical
re.g}xlon © f region of
U-channe s-channel

FIG. 4. Physical regions of the values of the variables s, t,
and u.

In this formulation of the problem it becomes under-
standable why the problem of the analytical properties
of the function A(s,t) is of prime significance. By
solving this problem we can relate the probabilities of
entirely different processes and make definite (albeit
limited in content) predictions for the experiments.

The analytical properties of A(s,t) are already
determined to some degree by the requirements of
causality and unitarity, on which is based the deriva-
tion of the so-called dispersion relations. We note
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that the ordinary dispersion relations have yielded the
important deduction that if the cross section of the in-
teraction of particle A with particle B tends to a con-
stant value with increasing energy, then the cross sec-
tion of the interaction of the antiparticle A with the
same particle B should tend to the same constant value
(this is called the Pomeranchuk theorem[%]). Experi-
ments on pp and 7p interactions apparently confirm
this relation. Further, on the basis of the double dis-
persion relations—and consequently, after addition of
some not-obvious postulates —it was deduced that the
total cross section cannot increase with energy E

= V's/4 more rapidly than[®]

(nEp~ (1o %)2.

The experimental data certainly satisfy this condition.
Before we discuss the analytic properties of the
function A(s,t), let us represent it in different form.

In place of considering the function A directly, we
can, taking this function in the t-channel when s
= s5(0t), expand this function in Legendre polynomials
P7 (cos 6¢)

A(s, t)= 2 f1(2) Py(cosBy) (21 +1),

and analyze the expansion coefficients f;(t) (which
have the sense of scattering amplitudes of particles
with a definite orbital angular momentum [ ) as func-
tions of t and I.

The central point in this case is the formal proce-
dure, namely the transformation of a sum over dis-
crete values of I (which has a clear-cut physical
meaning) into an integral over a certain contour in
the complex ! plane (which has no physical mean-
ing).* This procedure has long been known in the

*Let us explain how this is done. Since the sum over [ is
taken over the points [ = 0, 1, 2,..., each term of the sum can be
replaced by the integral over a small circle [ around the corre-
sponding points in the complex plane { (Fig. 5):

00

As, )= (+1) f(£) Py (cos By)
=0

M8

- 1 a(—1)fi(t) '
= o § 210 1) (cos 6 a. 2.8)
=0 T
Aimi
r
lo Lt L7 dy Lo 5 L5 ~L7
Rel
FIG. 5. Initial contour of integration in the [ plane.
Indeed, the integrand has poles at the points [ = 0, 1, 2, ..., and in

accordance with the general rule we obtain the integral along the
contour ['; by replacing sin { by its expansion about this pole 1@

theory of propagation of radio waves around the spher-
ical earth (the Watson-Sommerfeld transformation [7]),
where the wave equation has the same form as the non-
relativistic Schridinger equation, and the spherically
symmetrical potential corresponds to a radial de-
crease in the difference € (r) — 1, where e (r) is the
dielectric constant of the medium.

Everything which follows depends essentially on the
analytical properties of the function f(I,t) (where [ is
a continuous complex variable), that is, on the singu-
larities of these functions in the /~plane. The charac-
ter and number of these singularities determine the
physical content of the method of complex orbital an-
gular momenta.

We now arrive at the central point. Since there is
no consistent relativistic theory of strongly interacting
fields, we are forced to make use of some additional
considerations. The way was pointed by Regge’s paper
fel, Regge considered a problem which at first glance
is purely academic. He investigated the analytic prop-
erties of the function f(Z,t) in the nonrelativistic the-
ory for a particle in a potential field (the Schriddinger
equation ), but for a wide class of potentials of the
Yukawa type with an arbitrary interaction force. Regge
has shown that in this case the function f(7,t) has in
the I-plane (for Re [ > —%) only simple poles which
are located in the first quadrant.

We note that the same holds in the problem of prop-
agation of radio waves in a homogeneous atmosphere
around a homogeneous spherical earth. In the Regge
problem this corresponds to a potential in the form
of a rectangular spherically-symmetrical ledge. Ac-
tually (in a somewhat different form ), this property
holds also when the earth is surrounded by an inhomo-~
geneous (spherically symmetrical ) atmosphere, as
demonstrated by V. A. Fock[®J under rather general
assumptions with respect to the variation of e(r).

The rigorous result obtained by Regge in the non-
relativistic theory was further developed by Chew,
Gribov, and others in the relativistic theory, with
which we are dealing here. Two ways are used.

On the one hand, it is possible to stipulate simply
that in the relativistic theory we have exactly the same
singularities —simple poles in the first quadrant—as
found by Regge. This bold postulate is indeed the basis
of the MMP. Mathematically its content can be formu-
lated as a principle of maximum analyticity in the

il

sin ntl & sin i 4 ;v cos Wl (I — 1Dy =q (—1)"  (I—1D),

after which the residue of the integral yields the required quantity.
Now we can replace thg sum of the contours by a single contour
T, if we first put (~1)} = e'™:

inly, (8) (21-H1)P (cos B
sin m!

0 g, (2.8

1 e
Als, t)=27 X
T

A certain complication is caused by the need for considering even
and odd [ separately (for details see the appendix)[*°].
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sense that the only singularities admitted are those
which must be retained from considerations of the
correspondence between the relativistic and nonrela-
tivistic theories. The physical gist of this method is
not obvious. We shall return to this question in Chap-
ter V.

On the other hand, attempts were made to prove
this property on the basis of the Mandelstam double
dispersion relations which, as already mentioned, in
themselves contain a strong postulative element. These
attempts were not fully successful. It was only pos-
sible to prove {107 that the function f(l,t) should have
poles in the first quadrant, but it was not proved that
there are no other singularities.

The desired property could be proved in consistent
fashion only for a limited class of diagrams (11,127 op
under definite assumptions concerning the relativistic
potential 82,

Thus, we assume this premise. Then, in accord
with the main property of analytic functions, f(I,t)
can be represented as an expansion in terms of the
poles

0= 0 +h 2.9
where [j(t) is the pole at the given t, rij(t) the cor-
responding residue, and f; a function which has no
singularities in the right-hand half-plane of I (more
accurately, for Rel > —1).

Using this expression, we can transform the contour
in the l-plane in such a way that A(s,t) reduces to an
integral J along a vertical straight line and the sum of
residues at the poles [j(t) situated, as already men-
tioned, in the first quadrant to the right of the afore-
mentioned line (Fig. 6).*

When t changes, the position of the poles can
change, lj = lj(t), and the poles will move along cer-
tain trajectories (hence the name of the method). The
residues will contain Legendre polynomials of com-
plex index Pzi(t)(cos 6t), the analytic properties of
which have been thoroughly investigated(1¢]. In the
final expression it is convenient to go over from cos 6¢
again to s [using formula (2.6b)]. We obtain an ana-
lytic expression for A(s,t) in which we can substitute
for s and t the values t >0 and s < 0, and, in par-
ticular, we can take values which lie in the physical
region of the other channel, where s is the square of
the energy (and is positive) and t is the square of the
momentum transfer with the sign reversed (and nega-
tive). In this expression, A(s,t) is represented by a
sum of residues and an integral along the vertical line
which lies to the left of all the poles which are in-
cluded in the sum.

This expression is particularly simple and conven-
ient when s is large, that is, for high energies, when

*To this end we deform the contour I"into the contour C, and
add integrals over the contours C,, C,, C,, ... surrounding the
poles Iy, I,, 1,, ... of the function f(/,t).

Imt

FIG. 6. Transformed integration contour in the / plane.

we can substitute for Pli(COS 6t) an asymptotic ex-
pression. Indeed*

A(s, t) == 3 Bi(t) s 47 (s, 1). (2.10)
i

Here Bj contains the residue of the function f(7,t)
at the point /j(t) and some additional factors.

3. Properties of the Elastic Scattering Amplitude at
High Energies

Let us consider extremely large s, s — . Itis
obvious that it is possible to retain in the sum over the
poles the higher-order terms with the largest real part

of 1j, which play the principal role as s — . This
raises the question of how many such terms make an
appreciable contribution. In the MMP, as formulated
in [1615-171 " one makes at this point still another im-
portant assumption, that among the poles I;(t) there
is one and only one pole [y(t) which has the largest
real part in the range of values of t of interest.t This

*The expressions
28
Pli (COS Bt) = Pli (1 +m>

which are contained in the residues must then be taken for arbi-
trarily large positive values of the argument. The asymptotic be-
havior of P, is as follows[']:**

1
Py, (ch n)=r_‘_<_iz_>_e_h_]

Vari+1)
where
1
cos 0; =chn= 5 e,
consequently
2s s
and

p [+ lilnt.—fm s L
cOs - e - —_— .
1 ( ¢) ( t_4m2>

**ch = cosh.
tThe limits of this region are not discussed especially in
[1%15]. As a rule, it is assumed that the interval of interest is
—M? < t < 164° The left half of this interval encloses part of the
physical region of the s-channel. The right half, namely the
region t > 44°, determines the principal analytical properties of
the function [,(t).
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assumption has no connection with the preceding as-
sumptions. Its physical meaning is not perfectly clear
(some considerations in this respect are advanced in
Chapter V). However, it greatly simplifies the calcu-
lations and yields results which are usually connected
with the MMP.

Making this assumption, we can as s — = retain in
the sum (2.10) one higher-order term, since the re-
maining terms will make an asymptotically decreasing
contribution. For the same reason we can discard the
integral J(s,t) along the straight line C.* Conse-
quently, as s — =,

iB,

A(s, t)— B0 qoen) -

o (2) s
16

16 (2.10a)

iBy (t) etlo(h—D1ns,

with By(0) regarded as pure real [see (2.14a) below].
Now, using the optical theorem (2.4), we can obtain the
total interaction cross section o — B(0)s'0®™!, we
see that the result depends on the limiting position of
the most essential —the extreme right—pole at t = 0.
In this theory it cannot be calculated (to this end it
would be necessary to have the equation which 7,(t)
obeys; knowledge of this equation—the ‘‘dynamic prin-
ciple’’ —would be equivalent to some degree to knowl-
edge of the S-matrix algorithm referred to above). We
can, however, proceed in two ways. We can either ac-
cept as experimental the fact that the total cross sec-
tion at superhigh energies tends to a constant. Then
we should have [,(0) = 1. We can alternately assume
the double dispersion relations and the conclusion
based on them that if o increases at all it does so not
in accordance with a power law [see above, ¢
< (In s)?], and therefore impose the ‘‘principle of
maximum force’’” (Chew[18]), that is, to stipulate the
maximum cross section which is still compatible with
the double dispersion relations. We again obtain 7,(0)
=1.
Thus
lim o (s) =0y =B, (0).

E—oo

(2.11)

We present, in addition, an expression for A(s,t)
in terms of the residue ry(t) of the function f(7,t) in
the extreme right-hand pole
1 inlo(7) Io(t)

e " (2l (t) +1) (2—;2> oo

A (S, t) =Ty (t)—Sln—ﬂlo(i—)—

(2.11a)
Of great importance for what follows is the gquestion of
the dependence of I; on t, the question of the character
of the principal pole trajectory. If /; =1 and does not
depend on t (the pole is then called ‘‘standing’’) the
amplitude can be represented in the form

A (s, t)=ImA(s, t)=s9(t) (ReA(s, t)=0).

(2.12)

This multiplicative form corresponds completely to

*We note that in the theory of radio wave propagation in a
homogeneous atmosphere around a homogeneous earth this integral
vanishes because the integrand is odd [°].

the classical diffraction pattern: the angular distribu-
tion of the scattered particles depends on the angles
and the energy only in the combination

t= —2p*(1—cosb;).

However, as shown by Gribov[m], this is impossible
by virtue of the unitarity condition and the double dis-
persion relations, and the pole cannot be standing (see
the appendix). Therefore I, should depend on t and,
it turns out that its derivative

( aly (t)

. ot t=0

=1'(0)

should be positive and cannot vanish (otherwise the
residue ry and the total cross section also vanish).
The latter property is very important for it leads to
the important and not trivial consequences of the MMP.
For sufficiently small t, confining ourselves tfo the
first terms of the expansion.

Lit) = (0)+1(0)t=1+yt, y=1(0),
we have
ImA4 (s, t)&-—u;?Bo(t)e_v“”n‘iO, so=2m%  (2.13)
Further, according to (2.11a)
Red (s, t)~ ytImA(s, t). (2.14)

From these formulas, first derived by V. N. Gribov
(103* follow the important properties of elastic scat-
tering at extremely large energies.

First, the characteristic values of the momentum
transferred in elastic scattering are, according to
(2.13),

1
Vitlett ~——F—=

s ’
‘/’yln—s;

that is, YV |t|eff and the transverse component of the
momentum transfer decrease with energy, albeit
weakly. It can be stated that the reciprocal quantity,
which has the meaning of the effective interaction
radius, increases like

(2.15)

1 s
—_— ~ l — . »
Vitegl Tett L (2.15a)
Accordingly
1
s
n->
Sg
that is, the amplitude becomes pure imaginary as
s —  and in this sense elastic scattering becomes
pure diffraction and is brought about by inelastic

processes. However, if we now substitute A(s,t)

(2.14a)

[Re A (s, t)]| ~ [Tm A (s, t){< | Im A(s, t) |,
1

*Qutwardly they coincide exactly with the formulas obtained by
Regge in the nonrelativistic theory, and some authors[**!°] have
simply transferred them to our relativistic problem without any
special discussion.
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~ Im A(s,t) from (2.13) in (2.3) and calculate the total
elastic scattering cross section, then, as can be readily
seen, we obtain (neglecting the dependence of B on t,
that is, assuming B(t) = B(0) = g;)

2
0*

1
s g,
In —
So

Tel ~

Consequently, og7 decreases with energy. Thus, in the
limit elastic scattering disappears completely. This
means that the particles ‘‘swell up’’ so to speak [see
(2.15a)], but at the same time they become ‘‘grayer’’
and more transparent, in such a way furthermore that
the total absorption remains unchanged, o = gy, and
the diffraction scattering by such a rarefied cloud
vanishes.

Formula (2.13) in conjunction with (2.3) is fre-
quently written in the form

d0ey/dt

(doer/dt)_y (2.16)

~ edl, A=2y1n?so-

It is clear that in accordance with the ‘‘principle of
maximum force’’ (for a more detailed derivation see
the appendix ) the results must not depend on the type
of the strongly interacting particles, that is, [,(t)
should be the same, for example, for nm, 7N, and NN
{N is the symbol for the nucleon). For all these proc-
esses the scattering cone should shrink in the t scale
with increasing s. This differs from the ordinary pic-
ture of diffraction scattering by a black sphere, which,
as already mentioned, would correspond to the multi-
plicative form (2.12). In this sense it is sometimes
stated that in the MMP the scattering does not have
a diffraction character. Thus, the term ‘‘diffraction
scattering’’ is used with different meanings.

These conclusions were experimentally confirmed
in investigations of proton-proton scattering energies
in the accelerator range (from 3 to 26 BeV). First,
these experiments show clearly shrinkage of the dif-
fraction cone with increasing energy (20,21]  This fact
is seen from Fig. 70211 (see also the reviews [22] and
[23]y, Second, on the basis of the experimental data it
became possible to determine the parameter y =1/(0),
which was found to be y ~ 1/M?[24:25] (according to
the latest determinations y ~ 1/1.5M? for 10 < E1,
<20Mm[2),

Third, the form of the function Py(t) could be de-
termined approximately. For |t| < 0.5M? it can be
approximated by the expression By(t) ~ exp (1.6t)
(see [331),

On the whole, the amplitude of the pp scattering
can be represented for 0 < —t < M2/2 in the form

1 s
1,647 IR 1
A(s, t)~ImA (s, t)=_si70_e( Tz n2M2) )

Tom (2.17)

4. Extension to Other Processes

This success of the theory has stimulated interest
in broadening the field of application of the MMP and

if r T T T T 1 i T 1 T ]
% wr p-7  Experiments# Diddens et al
77k o £78BeV/c w127
= Xq 97 s =
= . [
“,(-; jE \ 4 :
N ]
d ]
X 4
Q2
£
~ T -
< FE E
ol #E 3
818 [ ]
S i
S gz 4
\ 4
S
= —
25 -
ST L Lt ! v
g 47 42 43 44 45 45 47 48 44 19
—t (BeV/c)

FIG. 7. Experimental data on elastic pp scattering (according
to [**]). Different energies correspond to different dependences of
the differential cross section on t.

relating it with the problem of the systematics of
strongly interacting particles. We first call attention
to the fact that asymptotically, as E — «, the scatter-
ing amplitude reduces to a single term corresponding
to a single pole trajectory Iy(t), which produces in the
crossed channel scattering with energy v't/4, which
in the limit is equal to zero, and with angular momen-
tum [ =1(0)=1. It can be interpreted (in the s-chan-
nel) as scattering with the transfer of a ‘‘particle’’
which has at t = 0 an angular momentum I = 1 (the
zigzag line on Fig. 8). Since the scattering is elastic,
this ‘‘particle’’ does not transfer either charge or
baryon number or strangeness. In other words, it
has the same quantum numbers as vacuum. It is some-
times called a vacuum reggeon. Accordingly, this pole
and the entire trajectory are called the vacuum or
Pomeranchuk pole (to highlight its connection with the
Pomeranchuk theorem on the asymptotic equality of
the particle and antiparticle cross sections). Such a
particle can be observed as a free particle, with mass
Vvt > 0, as a resonance in a system of two pions for
even [. There are experimental indications [26] that it
actually exists and manifests itself as a resonance of
7 particles with t ~ 254% and [ = 2, the remaining
quantum numbers coinciding with those of vacuum.

In such a case the other non-vacuum trajectories
correspond to exchange of quanta with different quan-

FIG. 8. Interaction via exchange of a
vacuum pole.
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tum numbers and can correspond to really observed
particles. Further, in 7N scattering we can expect

the next pole, the one closest to the principal pole in
the t-channel, to correspond to a p particle—the res-
onance state of two pions (Fig. 9)—which is an unstable
formation with isospin T =1 (here, furthermore, T,

= 0) and with spin and parity 1*, with decay into two
pions with mass V't = 750 MeV ~ 5.5u.

l's

FIG. 9. Interaction via exchange of a p meson.

Chew[2'] postulated in this connection that any ele-
mentary particle (including a ‘‘stable’’ one, say a pion)
has its own pole trajectory lj(t). At the point where t
is equal to the square of the particle mass, t = m%, 4
should equal the momentum of the particle, that is, its
spin Jj:

Li(m)=J;

Chew proposed further that in the region |t| < M?
(M —nucleon mass) all the trajectories can be ap-
proximated by straight lines of constant slope

I (t)= b+ v,

where vy is a constant on the order of 1/M? and is the
same for all trajectories. In this case we can readily
determine bj from the condition j( ml) = Jj:

Mass, BeV
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2
my

b,=Ji—‘ TME‘.

ymi ~ J;—

This hypothesis makes it possible to look at the
systematics of strongly interacting particles from a
new point of view. Although the existing experimental
data on masses, spins, and other quantum numbers of
particles do not contradict this hypothesis (Fig. 10),
it has not yet been adequately confirmed.

If we accept this hypothesis, then the amplitude of
elastic scattering via exchange of one quantum or an-
other (vacuum pole, p particle, pion, etc.) can be cal-
culated with the aid of diagrams similar to Feynman
diagrams (Figs. 8, 9) but with allowance for the follow-
ing additional rules which are obvious from (2.11a),
where (s/2m?)l(1) js essentially Pyyt)(cos py) (25,281

1. An additional factor Pty (z) is introduced,
where z is the cosine of the angle in the crossed chan-
nel and /i(t) is the trajectory of the pole describing
the given elementary particle.

2. The propagation function D(k?) is replaced by

2% s wli(—42) -1
T [sm—z‘—] -
As kK® — —m% this quantity goes over for even Jj into
Do (k) = (k* +-mi)™,

that is, it coincides with the propagator. However,
when k% + m} > M? it can differ noticeably from the
propagator. We shall make use below of the possibility
of employing these rules.

So far we have referred to scattering of particles of
one sort. Naturally, the question arises, what predic-
tions are given by the method with respect to the char-
acter of other elastic processes (7p scattering, etc.)
and their connection with one another. Here, too, the
MMP has yielded significant results.

On the basis of the two-particle unitarity condition
in the crossed channel (for more details see the ap-

FIG. 10. Systematics of strongly interacting particles and
resonances, after Chew [*’]. Different lines correspond to dif-
ferent Regge pole trajectories with different quantum numbers
(iso-spin T, parity, G-parity). The masses of the individual
patticles are indicated (in parentheses) in MeV. Real particles
and resonances with definite spin correspond to the points of
intersection of the given trajectory with the lines / = const = Jj,
for integer or half-integer J;. The particle spins J; belonging to
a given trajectory should differ by AJ = 2.
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pendix ) it was established[10:16,17,28] that: first, all the
strong-interaction processes at high energies are de-
termined by the same universal vacuum pole trajectory
l,(t); this means that the shrinkage of the diffraction
cone in elastic scattering processes of arbitrary
strongly interacting particles should be the same;
second, the total cross sections [that is, the values

of By(0)} can be different, but are related by

(2.18)

2
0::0;; = Oijs

where i and j are the indices of the different particles.

Let us discuss now two specific processes, in which
these deductions can be used: the interaction between
nucleons and nuclei and scattering of pions by nucleons.

It is important to proceed to the particle-nucleus
case primarily because the greater part of the experi-
ments at ultrahigh energies—in cosmic rays—pertain
just to this process.

Let us attempt to apply to this process relation
(2.18). In this case it assumes the form

ONNGAA=ONa, (2.18a)

where ONN, ONA, and 0AA are the cross sections for
the interaction between a nucleon and a nucleon, a nu-
cleon and a nucleus of atomic weight A, and a nucleus
with a nucleus. It is easy to see that the usually em-
ployed ‘‘geometrical’’ dependence of ona on A,
namely oNA ~ oNNAY and oap ~ 4oNNA® does not
agree with this condition. Relation (2.18a) is satisfied
if oNA ~ A and opap ~ A%, This somewhat unusual de-
pendence of the cross sections on A can be illustra-
tively interpreted within the framework of the MMP.
Indeed, one of the deductions of the MMP, namely the
“‘swelling’’ and simultaneous ‘‘increase of transpar-
ency’’ of particles with increasing energy, predicts
the possible character of the particle-nucleus process.
When the effective impact paramter

El ~pt ln%
(k| —transverse component of the momentum trans-
fer) greatly exceeds the nuclear radius, which is equal
to u'1A1/3 (A is the number of nucleons in the nucleus),
then the incoming particles can be visualized as a
rarefied cloud and all the nucleons of the nucleus
should scatter it practically independently. The cross
section for the nucleon-nucleus interaction should
therefore be of the order of Agy (291, Yet at moderate
energies, according to experiment, so long as Ej,
< 10" eV, we have apparently

o5~ Gpd¥s,

However, even when Ep, ~ 10!% eV we have v1In (s/s¢)
~ 3.5, so that in the region of conceivable energies
such an asymptotic region may perhaps not be attained
(A8 ~ 6 for Pb). According to an estimate [3%1 which
to be sure contains arbitrary simplifications and does
not claim to be rigorously provable, when Ep, = 10!® eV
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the nucleon-nucleus cross section may differ from the
geometrical cross section 00A2/3 for carbon and for lead
by approximately 25%. This is precisely the accuracy
scale of the experimental data, which thus do not con-
tradict the foregoing conclusion?2]

5. Elastic 7 p Scattering and Contradiction Between
Theory and Experiment

We now consider the question of 7" p scattering.
According to the MMP, it should behave like pp scat-
tering, that is, the diffraction peak should shrink with
increasing energy. However, experiment (21,31] goes
not confirm this prediction. Experiments offer evi-
dence that the 77p scattering picture at energies from
7 to 17 BeV is much closer to the classical diffraction
picture: the distribution in t is the same at all ener-
gies (Fig. 11).
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FIG. 11. Elastic 7~ p scattering. Different energies correspond
to identical dependences of the differential cross section on t.

This departure from theory is of decisive signifi-
cance to the fate of the entire method. It was there-
fore natural to attempt immediately to discover within
the method itself some unaccounted for elements which
would explain the difference between the behaviors of
scattering in pp interaction on the one hand, and in
7 p interactions on the other. One of the possibilities
is to take into account the trajectories of the other
poles that are closest to the vacuum pole trajectory.
These are the poles corresponding to the exchange of
p and w mesons 32] (see Fig. 10). However, since it
is customary, in agreement with Chew, to assume that
the trajectories have identical slopes, this simple vari-
ant cannot be used to interpret the results. Moreover,
a detailed investigation 331 did not lead to the desired
result even when account was taken of possible changes
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in the slopes. The authors of that paper reach the con-
clusion (as did the authors of [¥17) that it is impossible
to explain simultaneously pp and n7p scattering with-
in the framework of the MMP. Another possibility lies
in discarding the assumption of uniqueness of the ex-
treme right pole. We can assume, for example, that

at t = 0 two pole trajectories Iy(t) and /y(t) intersect,
and that 7,(0) = 74(0), but, say,

( azgt(t) > < azét(z)
This apparently makes it possible to describe both pp
and 7 p scattering by choosing suitable parameters
(we shall return to this question in Chapter V).

Finally, it is possible, in contradiction to the initial
assumption[1%15-17] t5 assume that other singularities
of the amplitude f(I,t) exist in the [ plane along with
the poles. Recently particular attention has been paid
the possibility of appearance of branch points in the 1/
plane. An indication of such a possibility was obtained
from an analysis of the contribution of several Feyn-
man diagrams. However, the branch points cannot
make a contribution to the cross section that vanishes
with increasing energy. In addition, this gives rise
to new arbitrary parameters, and the method becomes
highly complicated and cumbersome, losing a consid-
erable part of its attractiveness.

Great interest is drawn to the question of the
“‘standing pole’’ in the [ plane (that is, a pole whose
position does not depend on [); this is just the pole
that can ensure the classical diffraction picture for
scattering. However, such poles can be introduced
only by discarding the Mandelstam representation.

The latter, as indicated above, is itself based on sev-
eral hypotheses which are far from unconditional. In
spite of the fact, it has governed the minds of theoreti-
cians for several years. The failures of the MMP sug-
gest a more critical approach to the Mandelstam rep-
resentation.

We see that we can distinguish in the described
method two aspects. On one hand, we are dealing with
representation of the scattering amplitude in the plane
of complex orbital angular momenta (the Regge
method ). In conjunction with the principle of analyti-
city and the requirements of unitarity and causality,
this representation can serve as a useful weapon in
the study of interactions at high energies.

On the other hand, a specific variant, (perhaps the
simplest one) of the method of complex orbital angular
momenta was proposed—the method of moving poles,
developed in [10:15-11] and containing additional hypoth-
eses concerning the character of the amplitude singu-
larities. It encounters contradictions when its deduc-~
tions are compared with experiment. The region of
its applicability is apparently limited and can be clari-
fied upon comparison with experiment and with other
methods of describing interactions at high energies.

At the same time, the physical meaning of the main
assumptions made in the MMP and of the results ob-

1=0"

tained becomes clearer (see Chapter V). A definite
stage in the development of this method has thus been
completed.

III. THEORY OF PERIPHERAL INTERACTIONS

1. Initial Concepts and Formula for Total Cross
Section

Unlike the MMP, which is confined to a study of
elastic processes, the theory of peripheral collisions
claims also analysis of numerous inelastic processes.

The model representation, according to which the
interaction between the nucleons themselves and be-
tween nucleons and other particles is realized most
frequently via exchange of a single pion, has been for
a long time the basis for attempting to treat collisions
between particles of very high energy. It started, first,
from geometrical considerations: the average impact
parameter d ensuring an experimentally observable
““geometrical’’ cross section o ~ 7r/u2 must be not
small, d 2 1/u; second, from notions borrowed from
nuclear interactions at low energies, namely that there
is an appreciable probability of encountering not more
than one virtual pion at such distances from the nu-
cleon. Accordingly, the pattern for nucleon collisions
was constructed by the impact parameter method: the
meson field of the colliding nucleons (which shrinks
relativistically along the motion) was expanded in
plane meson waves, a meson flux, and it was assumed
[34-37] that such a meson from the cloud of one nu-
cleon interacts with another nucleon as a whole (or
with a meson emitted by this other nucleon) in the
same manner as the free meson would interact. With-
out detailing the calculations, the corresponding model
was developed by several experimenters (38-40] jp the
form of a phenomenological picture of the exchange of
‘‘energy batches.”’

This rather primitive treatment gave rise to the
concept of ‘‘peripheral collisions,’’ which initially was
not very distinctly outlined. Essentially, the principal
attribute of peripherality was seen in the independence
of the decay of two (or more) excited centers produced
via meson exchange, something that in the c.m.s. looks
like the formation of independent oppositely directed
jets. The momentum and energy distributions of the
exchanging mesons (determined by the form of the
meson cloud of the nucleon or, in other words, by the
meson distribution function) determines to some de-
gree the ratio of the two jets L1,

Such an approach could not, of course, be regarded
as convincing. It is easy to see, however, that the
model representations which it contains serve as a
basis of the three more rigorous methods of the the-
ory of peripheral collisions: the Chew and Low method
[42]’ the pole approximation usually called in the lit-
erature one-particle exchange (3-41 and the one-
meson approximation [48],

It can be stated that the entire theory of peripheral
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collisions is based on the assumption that the contri-
bution is made to the amplitude of the inelastic process
by the Feynman diagram of Fig. 12, which contains one
intermediate meson. The vertex in which this meson
interacts with the primary particle can be as compli-
cated as desired* (Fig. 12a), but can also be very
simple (Fig. 12b).

/
P; Pzt Pm
(;p() =%

b)

FIG. 12. Feynman diagrams of inelastic one-meson iateraction.

The matrix element Mjs of such a process can be
written in accordance with the general rules.

If as collisions between particles of masses m; and
m, and 4-momenta Py and Q, result in particles with
4-momenta py, pg, .- ., Py in one vertex and qq, gg, - - -,
gn in the other vertex, and the transferred meson has
a 4-momentum Kk, then

Miy=Ti(k, Poy D1y Pas ««es Pu) D(E)Ta(k, Qo> g1y - -1 Gr)s
(3.1)
where P3=-m?, Q}= —m%; 'y —vertex parts, which

are functions of relativistic invariants constructed
from their arguments; D(k?) — propagation function
of the pion, which is close to (k? + p2)7! for small k2.
Strictly speaking, expression (3.1) should be sym-
metrized with respect to the variables pj and gj. In
other words, some particles with momenta qj could
generally speaking be produced in the knot 1 but not
in knot 2, while particles with momenta pj — in knot 2.
An account of this circumstance would lead to very

*0Of course, one-meson exchange can lead also to elastic scat-
tering. But it can be assumed that at high energies, when the
average number of the particles produced as a result of one-meson
exchange is very large, the probability that not a single new
particle is produced is exponentially small. Consequently, as will
be shown below, the main contribution to elastic scattering can
be expected to be made by the two-pion exchange.
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great complications, since interference terms appear
when a symmetrized matrix element is squared.

These effects, however, can be neglected, if the
momenta of one group of particles greatly differ from
the momenta of the other group, for example, if in the
c.m.s. of the entire process the particles are divided
into two strongly collimated jets which move in oppo-
site directions. This actually takes place in experi-
ments at very high energies*. In any case, the as-
sumption that there is no interference (owing to the
strong collimation of the particles) is always made.
This makes it possible to simplify greatly the subse-
quent calculations. From (3.1) follows an expression
for the differential cross section of the process

LRI
(k222

do =2n deid (Po+Qo— Zp; — Zg;),  (3.2)

where dpf is the number of final states,
doy = H d3piI;]d3qj.
The quantity do can be also represented in the form
do =t ior |11|2]‘[ @pid (Po-tk—3 pi)
x J[ d*g;|Ta*6 (oo— E—=3g,).
i

Further, the quadruple integration with respect to k,
with the integral taken over the azimuthal angle, can
reduce to an integration with respect to k%, s; and s,:

atk— (3.4)

(3.3

Bkt ds,dss, Br=k—k) k=0,

where
== (@) s= (ot

Thus, with our definition (3.4) of the square of the 4-
vector, sy, Sy, and s are the squares of the energies
of the first and second particle groups and of the en-
tire system as a whole, respectively, in their corre-
sponding ¢.m.s. It is convenient to imagine (so long
as we are dealing with kinematic relations this is
known to be permissible, but it is possible that this
also reflects the physical aspect of the phenomenon,
see below ) that the particles pj form in the aggregate
a single ‘“cluster’’ of matter, which then decays into
individual particles, and the particles qj form another
cluster. In such a case

s= —(Py+ Q)2 (3.5)

si'-“i)ﬁfv 32=§):Rzy (3.5a)

where MM; and M, are the masses of the clusters. The
region of integration over the variables sj, sy, and k2
is determined by the conservation laws. It can have a
rather complicated structure. The principal role in
what follows will be played by that part of this region,
in which k? is small and s; and s, are large, but both

*In some papers [*°] there are theoretical estimates of the
interference terms.
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are considerably smaller than s, M2 « sy, and 8y « 8.%*
Under these conditions we obtain from the conservation
laws at knots 1 and 2 the following formulas for the
square of the 4-momentum transfer, for the square of
the 3-dimensional momentum, and for the square of its
transverse component:

—m? —m? 4
P=k?eo?~ (s4 ml)s(sz mj) + (51 :g) $157 +% (1 — cos Byp),

. (3.5b)
k2~ Gl s (1 cosy), (3.5¢)
Ky ~ - (1— cos Byy) ~ E20%, (3.5d)

where w is the energy transfer; fgq; —angle of emis-
sion of one of the clusters.

The minimum value of k? for fixed s; and s, is ex-
pressed on the basis of these formulas relatively sim-
ply: when 6gy — 0 it follows from (3.5b) that

Foin ~ (St—m?)s(32~m§) + (SH-SS:) 515 (3.5¢€)

We also emphasize that k* > 0 in the entire region
of integration. Consequently, the 4-momentum of the
virtual particle is space-like (for a real pion, to the
contrary, k? = —uz < 0, where p is the pion mass).

Let us examine in greater detail part of the diagram
of Fig. 12, corresponding to knot 1. It is easy to see
that the quantity

doy (s1,k% Py, .., Pm)=2m|T, |2 i[_]l @pd(Po+k—Y pi)
(3.3a)

can be interpreted as the differential cross section for
the production of m particles with momenta py, p;. ..,
Pm and a total mass «/El_ in the interaction between a
real particle with momentum P, and a virtual pion
with momentum k, s; = — (P, + k)2, If this cross
section is summed over all the possible numbers of
created particles, over their relative momenta, spins,
and other quantum numbers, then the quantity

A Sdm (s, k% P1y - -+ Pm)=01(s1, k%)

can be interpreted as the total cross section for the
collision between a virtual pion and a particle, the
nature of which (nucleon, pion, etc.) is characterized
by the index 1. The quantity |T' |? can be represented
analogously. We note that, owing to the requirements
of relativistic invariance, the total cross section
0i(si, k?) of the virtual pion can depend only on the
square of the 4-momentum k2; consequently, the fact
that k enters in s; and s, with opposite signs is of
no significance in this case.

The total cross section oy, is obtained from (3.3)

*The latter condition signifies that the rest energy of the
clusters is much smaller than the total energy. This always holds
in practice, since the greater part of the total energy goes over
into the kinetic energy of the clusters, R, M, << Vs, so that the
resultant particle jets are collimated.

after integration with respect to sy, sy, and k? (as-
suming the aforementioned summation over the num-

bers of created particles and their internal variables).

It can now be represented in the form

3 dk2. d;
Oy (8) = o) S S S (]:';jj‘;fzz)zsz 0y (81, k?) 04 (sq, £?)

X R(sh Sa, k21 miv mz)- (3-6)

If sy, 83, s > m?, m%, where m; and m, are the
masses of the colliding particles, then R ~ 1. In the
opposite case the integrand contains the additional
factor

1
$152

{[(s1— m} 4 k)% + 4mik%] (s, — mg + K2)? + 4mlk?] )V,
(3.6a)

2. Classification of Methods

We now can proceed to describe the different ap-
proximations in the theory of peripheral collisions.

1. Of great importance is the particular and sim-
plest process considered by Chew and Low [42], cor-
responding to the production of only one additional
particle upon collision between a nucleon and a pion
(Fig. 13), my = M, my = y. It is assumed here that
the vertex I'i can be written in the form g( zﬁyszp Yo .
Then we can obtain from (3.3) [taking (3.4) into ac-
count |

_ 2 V(53— 4p?) k2dk?ds, __b
doan =g BaL (Fr ey Onn (52 &%) f =937 & (3.7)
where s, = — (Qq + k)2 —square of the energy of the

two colliding (real and virtual) pions in their common
e.m.s., or(sy, k¥) —total cross section for the colli-
sion of these pions, and q1, — momentum of the pri-
mary meson in the laboratory system. As k? — —uz,
ory goes over into the cross section for the collision
of two real mesons. This formula enables us to use
the experimental data on the generation of the pion in
the mN collision, by extrapolating the quantity

Aoy (k24-p2)2
k2 dk® ds,

to the region K® < 0, to determine the cross section

FIG. 13. Diagram of the process considered by Chew and Low.
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(s, — %), which camot be measured directly for
unstable particles such as pions. This method was
used quite successfully. In spite of some uncertainty
in the extrapolation process, it was used to determine
the resonance in the 77 interaction at s, =~ 0.5 BeV
(Vs, ~ 750 MeV)[31] subsequently confirmed by a
study of the angular correlations and called p-reso-
nance.

The method of Chew and Low has been the subject
of an extensive literature (see, for example L45] ).
Furthermore, processes in which so small a number
of particlesis generatedare of rather subordinate sig-
nificance in the region of very high energies of inter-
est to us. We shall therefore not analyze it in detail.
We note only that in order for the extrapolation pro-
cedure to be successful, the quantity orr(s, k%) as a
function of k* must be sufficiently smooth. The agree-
ment obtained as a result of a comparison with experi-
ment shows that at least for small values of s the
quantity orq(s,k?) depends weakly on k% The differ-
ence between k% and —u? characterizes the difference
between the properties of the virtual meson and those
of the real one. Therefore the quantity k® + p®, which
is not equal to zero for a virtual particle, or simply
the quantity k?, is sometimes called the virtuality or
degree of virtuality.

Expression (3.6) enables us in principle to calcu-
late also the different characteristics of the process,
both integral (for example, the total cross section)
and differential (for example, the momentum distri-
bution of the secondary particles), if we know how
oi(s, k%) depends on k* (when we are talking of the
integral cross section) or on oji(s, k% py, g, - - -, Pm)
(when we deal with distributions ). This way (which
is the opposite of that used in the Chew and Low ap-
proximation, where orN was determined from oyr),
is used in a different method, called the pole approxi-
mation[#~47]  This is based on the assumption that
the oj(sj, k?) do notdepend at all on k%, but coincide
with the cross sections for the interaction of real
particles, that is,

O; (Si, k2) ~ 0; (Si, —-pz).

It can be stated that it is assumed here that the
principal dependence on k% in (3.3) is given by the
factor (k% + u?)72. This assumption is fundamental
for the pole method. It could be expected beforehand
for it to be valid only in a limited region of the vari-
ables s and k%, primarily so long as k? is small.
What this region is can be stated more precisely only
after comparison with experiment. It was first nec-
essary to verify, on the basis of qualitative consider-
ations, that the principal or at least a major role is
played in inelastic interactions with exchange of one
pion (or, if we deal with the variation of strangeness
in the knot, exchange of one K meson). This could
be realized first at low energies and corresponding
low multiplicities for nucleon-nucleon collisions. At

low energies an appreciable contribution is made by
the process in which the interaction between the pion
and nucleon in the knots of the diagram (Figs. 12a and
b) is resonant, and isobars with T =¥, and J = %, are
produced (two isobars are produced at 9 BeV (see

I. E. Tamm[®]) and one isobar at 2 BeVE4). On the
basis of this process it becomes easy to explain why
the proton conserves its charge and energy in a con-
siderable fraction of proton-neutron collisions (this
fact was observed experimentally at 9 BeV independ-
ently and somewhat ahead of the theoretical calcula-
tions).

These qualitative verifications, as well as more de-
tailed quantitative ones (4154751 give valid grounds for
assuming that the one-pion exchange causes at any rate
an appreciable part of all the strong interactions in the
region of accelerator energies.* The use of this
method turned out to be quite successful also in the
calculation of interactions between y quanta and nu-
cleons (generation of pions by photoeffect on a virtual ,
meson[J) and in many other cases. At first many
authors attempted [44:46] t5 adhere to a region of small
k?, for example k? < u?, but the pole approximation
gave unexpectedly good results in the description of
numerous details (energy, charge, and angular dis-
tributions of the products) observed in experiments
with nucleon-nucleon collisions with E1, % 9 BeV £55]
and at 2 Bev[5:5] for larger values of k% up to k?
~ 15 “2.

The agreement between the different characteris-
tics of the nucleon-nucleon interactions, calculated
and measured in experiment, makes it possible to
state that the one-meson interactions play a principal
role in this case. The contribution made to the cross
section by central collisions in NN interactions is
much smaller than the contribution of the peripheral
interactions.

With such an approach to 7™ p interactions at 7 BeV,
it was shown[%8] that the peripheral interactions are
significant in this process, too, but on the whole the
agreement between the measured characteristics and
those calculated in the one-meson approximation is
much worse. It was noted in [ that the cross sec-
tions for central and peripheral collisions, oC and
oP, are of the same order in 7 p interactions,
whereas in NN collisions o€ plays a minor role. To
estimate the contributions of ¢C and oF it is conven-
ient, for example, to use the energy distribution of the
recoil nucleons. Peripheral interactions make a con-
tribution principally in the region of small € (ei is
the kinetic energy of the recoil nucleons in the labo-
ratory system). Therefore the theoretical curves ob-
tained in accordance with the one-meson approxima-

*General symmetry criteria were formulated to verify the one-
meson interaction scheme in individual experiments by means of
the angular and momentum distribution [*] (or the charge distribu-
tion [**]). They have not been used to a sufficient degree.
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tion must be normalized to fit the experimental data
for small ek < 0.5M. The fraction of the observed
cases which do not fit on the one-meson approximation
curves in the region of large € can then be ascribed
to central collisions. This procedure was used for a
rough estimate of the ratio in pp and 77p interactions
(611 and yielded

(%; )pp ~0.2, (s—f’)ﬂ“p ~ 1.

Such a difference between the nucleon-nucleon and
meson-nucleon interactions will be of importance to
us in what follows. For the time being we emphasize
that peripheral interactions play a noticeable (essen-
tial) role in all processes and at accelerator energies
they are satisfactorily described by the simplest vari-
ant of the OMA (actually in the pole approximation).
To the contrary, at higher energies the pole approxi-
mation meets with considerable difficulties even in
the estimate of the value of the total cross section.
Let us discuss this in greater detail.

At high energies, sy, 85, s >» Mz, the expression for
the total cross section, as already mentioned, is ob-
tained from (3.6) with R = 1. We can write

(3.8)

dz(l"z

3 dk?
51 dsy 8y dsg = 8n? ‘ (k2--u2)2 (3.62)

o1 (51, k%) 02 (52, KP).

In the pole approximation the cross sections oj are
equal to the cross sections for the interaction of real
particles, and consequently at high energies they can
be assumed constant. It then turns out that the integral
of (3.6), taken over the region bounded by the conser-
vation laws, gives a cross section which increases with
energy, Sy ~ S. (2] This result contradicts the initial
premise that o approaches a constant value as s — «,
and contradicts in general the unitarity condition. The
region of values of k?* which make a contribution is in
this case also very large and increases with increas-
ing energy s. Already at Ef, = 10!! eV the cross sec-
tion calculated in this manner [62] turns out to be o

~ 1000 mb, which of course is absurd. The character-
istic values of k? reach in this case 10%,2.

The absurdity of these results indicates that the
pole approximation is not valid in the region of large
k? which grow without limit. A way out is to make
the integrand oj(sj, k?) limit the region of integra-
tion in sj and k**. This served as the basis for the
third method of the theory of peripheral collisions,

*One might think that there is another way—forego the use of
the approximate value of the propagator

D (k%) = (k2-}-p2)-1.
However, from the Lehmann representation
D (k)= (ke fp3m1+ | 0 () (n-nyt e,

where p(k?) > 0, it follows that in this case the total cross section
0,, would increase even more.

the so-called one-meson approximationtJ*  On one

hand, it can be assumed that oj(sj, k®) in each of the
two knots decreases with increasing k? all the more
rapidly, the larger sj. In this case a nonvanishing
contribution to the cross section should be made by

a process in which both vertices represent central
interactions and do not break up into a larger number
of knots. Processes in which there are more than two
knots can contribute here, but this contribution is small
and does not increase with increasing energy. This
variant of the OMA will be arbitrarily called the two-
center model.

On the other hand, it can be assumed that for a
given k? the cross sections in the vertices oj(sj, k?)
decrease rapidly with increasing sj. In the limiting
case we can assume that oj(sy, k%) differs from zero
only in a region of very small sj that are sufficient
for the formation of two particles only. The process
is then realized for high energies because each knot
of the diagram of Fig. 12a is subdivided into a large
number of knots connected by meson lines. We thus
arrive at the multicenter or completely peripheral
(multiperipheral) model.

3. The Two-center Model

Many authors (43,467 nave attempted to confine them-
selves at high energies to an account of the contribu-
tion made from the region of values of k* smaller than
a certain limited value &% = const: assuming that, in-
dependently of the value of sj, the pole approximation
can certainly be used for arbitrary energy when 52
< uz. This assumption that the contribution of small
k? is independent of s; is equivalent to some degree
to the assumption that, at least for small k?,

0:(s1y k) =0 (s:) @ (%), 0o(s:) =0y (s1, —p).
However, no matter how we choose 62, this approach
also leads to contradictions. An important aspect in
this case is the factorization of the dependence on the
two variables contained in ¢j. Namely, assuming that
o¢(sj) is constant as s; — « and substituting oy
= o4 (k?), we find that oy, is proportional to the log-
arithm of the energy[46,43]. Although this result does
not contradict the unitarity conditions [6], it does offer
evidence that the scheme is logically incomplete.t

3.8")

*Thus, the method which we call the one-meson approximation
differs from the so-called one-particle exchange (OPE) approxima-
tion [**#], which in accordance with our terminology coincides
with the pole approximation.

tIn a complete scheme the cross sections should have the same
energy dependence on the right and on the left of (3.6). Such a re-
quirement can be satisfied if we assume that ¢, decreases log-
arithmically with energy, o, ~ 1/In s. This possibility was
discussed extensively in the literature for some time [***?] but was
subsequently refuted both because of disagreement with experi-
ment (apparently there was no observed decrease in the cross sec-
tion) and because of the inapplicability of the multiplicative
relation
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In addition, the already mentioned difficulties of dif-
ferent nature arise here. Namely, from a comparison
of the theoretical calculations with experimental data
in the region E[, < 10 BeV it follows that &2
~ (50—60);;2 (64,651 However, if we use the same
quantity even at 10!! eV, the total cross section is
already many times larger than the observed one[62],

Thus, we cannot confine ourselves within the frame-
work of the two-center model to the simplest multipli-
cative form of (s, k?). In the general case, if we
write

(s, k%) =0,(s) Fi(s, k), (3.9)

then Fj depends essentially on s. The function

Fi(s, k%), which is sometimes called the pion form
factor [%J, is positive. Obviously, Fi(s, —pu?) =1

if oj(s) is the cross section for the interaction of
real particles. The properties of the function Fj were
investigated separately in [48,63] It was ascertained
that the class of possible functions Fj is greatly lim-
ited by four conditions: natural requirement of posi-
tiveness, analytic properties in k? (in the region k2

> 0), the condition Fj(s, —uz) =1, and the condition
of asymptotic constancy of all cross sections. For ex-
ample, the function Fj cannot be a ratio of two poly-
nomials in k%, etc. All these conditions are not suf-
ficient for a unique determination of Fj. By way of

an example satisfying all requirements we can con-
sider some expression, with k* > 0 and s > M?, which
goes over into the function

s o s
Fi(s, ) ~ pylngigie " "o, (3.92)

We see that the k? region contributing to the inte-
gral (3.6) decreases here with increasing energy in
such a way that the effective values of k* are of the
order of
. (3.9b)

$
yIn T

2
kegs ~

Such a logarithmic decrease in the effective k% is
quite likely, in spite of the fact that the function Fj
itself is not single valued. Indeed, this behavior of
Fj is simply the consequence of the fact that the in-
tegral (3.6) with F =const is logarithmically depend-
ent on the energy. Consequently, in order for this
dependence to disappear when oj is constant, we must
decrease logarithmically the region of integration with
respect to k2.

Further, the effective region is determined by the
parameter y. Experience in the application of the
method at accelerator energies, where In (s/2M? )'
~ 1 and ki ~ M?[%%] indicates that this parameter
has an order of magnitude y ~ 1/M?.

& (5, k2) =04 () p (k).

The latter follows, as shown in [**] from the general properties of
the scattering amplitude in the so-called Dyson-Jost-Lehmannl®*]
representation.

We note that an analogous behavior is displayed not
only by the invariant quantity k?, but also by the mod-
ulus | k|, and the components ky and k| of the three-
dimensional momentum, calculated in the ¢.m.s. of the
process. In particular,

kY eft ~
vIn

-
22

This denotes that in the one-meson interactions the
effective impact parameter resf ~ ki increases
with increasing energy logarithmically

$
Tege ~ ) VI gpm.

Any inelastic process causes some elastic process,
as follows at least from the optical theorem. Let us
clarify the properties that should be possessed by
particle elastic scattering due to an inelastic process
of a one-meson character. Using the optical theorem
(2.4) we can rewrite (3.6) in the form

(3.10)

Au(s, 0= 2 | Aslon L0400 1.0 g5, ds, i,
where Ajy(s,0) is the imaginary part of the amplitude
of the mutual forward scattering of two real particles
1 and 2; A(s;y, k%, 0) and Ay(sy, k%, 0) are the imag-
inary parts of the amplitudes of the forward scattering
of a virtual pion by real particles 1 and 2.

The diagram of elastic scattering resulting from a
one-meson inelastic process (Fig. 12) can be obtained
by squaring the inelastic-process diagram. It is shown
in Fig. 14. Calculating the imaginary part of the am-
plitude of this process by Feynman’s rules, we can
readily arrive at an expression for A(s,t) which goes
over into (3.10) when t = — (k; ~k,)% = 0.

From the fact that, in accordance with (3.9a), all
the components of the vectors k; and k, in the ¢c.m.s.
decrease with increasing energy, it follows that t
should also decrease at least as rapidly, for example
like

— teff ~ ! 5
v1ln T7E)
We recall that this is precisely the behavior of elastic
scattering in the MMP.

FIG. 14. Elastic scattering due
to one-meson inelastic interaction.
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Let us consider within the framework of the two-
center model the mutual connection between the total
interaction cross sections of different particles Les],

It is caused by the properties of the form factors
Fi(s,k?). It seems quite natural to assume that F; de-
pends only on the properties of the pion which trans-
fers the interaction, and does not depend on the prop-
erties of the real particle with which it interacts. Then

o; (s, k?) = 05 (s, k%) =~ 041 F (s, k%), (3.11)

where F(s, k%) does not depend on the type of the real
particle denoted by the index i (this can be the symbol
for a nucleon, pion, etc.). In the cases of nucleon-
nucleon collisions (the cross section is onN) and a
nucleon-pion collision (cross section o;)) we obtain
from (3.6), respectively,

(3.12a)
(3.12b)

2
ONN =ONaJx,
OxN = Onn O J s

where J, denotes a universal quantity which depends
only on the properties of the pion, particularly its
mass:

3 dsy- sy dsy dk?
Ix=go S “_&g%z_F(s,, ) F(sy, k9.  (3.13)
it follows from (3.12b) that
Tp=— (3.13a)
Oqn
Consequently, (3.12a) yields
ONN Onz = O2N. (3.14)

Analogously, for the interaction of any other particles
we obtain the relations already obtained in the MMP
[see (2.18)].

We emphasize that in this case all these conclusions
are the results of an investigation of the inelastic proc-
ess. We shall see later that similar results are ob-
tained also in the multiperipheral model. At the same
time, they coincide with the analogous deductions of the
MMP. Even the parameters y turn out to be the same
(in order of magnitude). All this suggests that a deep
connection exists between the OMA and the MMP. This
connection was considered in more general form in ree]
(we shall discuss this question in greater detail in
Chapter V). All these results give grounds for assum-
ing that the known asymptotic behavior of the elastic-
process cross section, prescribed by the MMP when
account is taken of the extreme right ‘‘vacuum’’ pole,
is due precisely to the fact that the inelastic processes
which generate such an elastic process are of the one-
pion type. If we assume this point of view, then it be-
comes possible, in order to verify and refine the MMP,
to make use of the abundant information on inelastic
processes at energies Ep 2 10" evV. Then, by verify -
ing the validity of describing the processes with the
aid of the OMA, we by the same token verify the cor-
rectness of the MMP in this region.

D. S. CHERNAVSKII

We recall that investigation of elastic scattering in
this energy region is practically impossible at present.
Therefore there is no direct way as yet of verifying
the MMP in this region.

We note also that these conclusions concerning the
connection between the two methods were advanced re-
cently (%661 and are not universally accepted. None-
theless, we shall henceforth use these conclusions in
some cases (in comparisons with experimental data).

Let us now list the main assumptions and the main
attributes of two-center interactions.

1. The diagram of the inelastic process must break
up at least into two parts (and perhaps even more
parts ), connected by a single pion line. The diagram
of the elastic process breaks up in this case into parts
which are connected by two pion lines.

2. The interference between the two beams of gen-
erated particles can be neglected.

3. The cross sections are calculated in accordance
with the Feynman rules, and it is necessary to take
into account in the quantities oj(sj, k?) the non-multi-
plicative dependence on s; and k%, which gives the
necessary decrease of sj with increasing k. General
theoretical considerations show that it is possible to
take this dependence into account, for example, by a
factor of the type exp(—k? In(s/2M?)] (comparison
with experiment shows that in such a case v ~ M%),

It follows therefore that the square of the 4~momen-
tum transferred from one of these jets to the other
should decrease with increasing energy, apparently in
logarithmic fashion:

Bl oM
eff ™ In(s72me)
The elastic scattering which results from such an in-
elastic process should have ‘‘Regge’’ properties.

In this connection, when comparing the experimen-
tal data with the theoretical ones, the quantity k® as-
sumes a fundamental significance.

So far we have dealt principally with the integral
characteristics of the process: the total cross section,
its asymptotic behavior, and the mean square of the
momentum transfer. In inelastic collisions, the most
important are questions of multiplicity, angular dis-
tribution of the secondary particles, etc.

The one~-meson approximation encompasses a
rather broad circle of processes, which can differ
greatly from one another in these attributes. To de-
scribe a process in detail it is necessary to be more
specific.

Experience shows that it is hardly possible to pro-
pose a single scheme to describe the entire variety of
encountered processes (see Chapter IV). We there-
fore consider the possible processes separately. They
differ in the specific form of the vertices of the dia-
grams, which remain the only undetermined element.

1. Assume that neither of the two vertices can be
broken up into further parts connected by a single
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meson line. In other words, let the interaction at the
knots (the interaction between the virtual and the real
particle) have a peripheral character. We shall arbi-
trarily call it cenfral.* A typical process which in-
volves the production of many particles in one colli-
sion, and which is essentially caused by the many-
meson interactions, is the hydrodynamic process. It
is therefore natural to assume that here, too, the
‘“‘central’’ collision at the vertex follows the hydro-
dynamic scheme (of course this is not at all obliga-
tory according to the Landau hydrodynamic theory).
This assumption signifies, however, that in the asym-
ptotic region the peripheral interactions do not account
for all the possible processes, and along with these
there should be a finite and constant contribution from
other, central processes. Indeed, in (3.6a), as s — «
the effective s; and s, also increase without limit. In
order for the cross section of the one-meson process
on the left side to be constant as s — «, it is neces-
sary that the cross sections under the integral sign
also not decrease as s; and s, — «. However, in our
variant of the OMA we have under the integral sign in
the right the cross sections of central collisions (of
the pion and nucleon). Consequently, they themselves
should make a contribution which does not vanish
asymptotically.

Thus, in this variant the peripheral and central
(hydrodynamic) collisions are not contradictory but
supplement each other. The model is peripherally
hydrodynamic. In the general case we obtain compli-
cated formulas. We confine ourselves to two limiting
possibilities:

a) Let the excitation of the nucleons by symmetrical

S1 A S9 =g = M2.

According to (3.5b) and (3.9b)

s

2 L% . M2-
sy~ ki ~M T (s 200%) *

In the common ¢.m.s. the Lorentz factor y of the ex-
cited nucleons is (E; and My, are the energies of
each of the colliding nucleons in the c.m.s.)

— E 11/ s Ye R

Y= ﬁg=—§ g’\, l/-?"(ln 2M2) .
At high energies this quantity is large and increases
with energy. The number of secondary particles, if

determined at each knot by the hydrodynamic Landau
theory (or by the statistical Fermi theory), is

n=22(35)"~ 4 Grpemy)

Thus, the number of secondary particles increases in
this process with the energy somewhat more slowly

(3.14%)

(3.15)

*This type of process can be visualized as follows: owing to
the pion exchange, two (and only two) excited nucleons or ex-
cited clusters are produced, and then emit secondary particles.
This process was considered many times in the literature(***],

than in the case of central collisions; the angular dis-
tribution in the common c.m.s. is essentially aniso-
tropic (this is ensured by the large values of ¥).
Specifically, for E1 ~ 10 eV (y, ~ 70) we obtain
¥~ 10 and n =~ 10. The distribution over the variable
A = —log tan 6, where ¢ is the angle of emission of
the particles (see Chap. IV) will have for such a jet
the form of two strongly separated groups, with ap-
proximately three charged particles (altogether
3/2 x 3 ~ 5 particles) in each group. Such a scheme,
consequently, can correspond only to ‘‘lean’’ jets with
n appreciably smaller than in central collisions. The
angular distribution (for no other reason than that for
secondary particles p| does not depend on n, see
Chap. IV) is very anisotropic because n is small.

b) Let the excitation be essentially asymmetrical.
In the limiting case, when one nucleon is not excited
at all and in the other the multiplicity is given by the
Landau hydrodynamics (in this case the second term
in {(3.5b) assumes a role), we obtain

e}
S‘=Mz, So = Vmsy

n=2(g%)" =2 (upwemm )

The angular distribution can again be characterized by
one quantity y of the excited nucleon. The formula

- l/T

Y=V 5
is not sufficiently accurate here; using the conserva-
tion laws, we obtain the following more accurate for-

mula: B B
= (Vi V-

The multiplicity and the angular distribution in such
interactions do not differ very strongly from those ob-
tained for noncentral collisions. For example, for

Ep ~ 10" eV we obtain n ~ 14 and ¥~ 1.2. It is not
excluded that such interactions describe asymmetrical
jets with essentially different inelasticity coefficients
(Kigh # Kmir, see Chap. IV).

2. Let now the number of knots, which can no longer
be separated into smaller knots connected by a single
meson line, be larger than two but still small, say
three or four. The diagrams of such processes are
shown in Figs. 15 and 16. The cross section of such
a process can be obtained from (3.6) if oy(sy, k?) or
0q(sy, K?) is expressed again with the aid of (3.6). Ac-
cordingly, for example if we express in this manner
only one of the vertices, we obtain the diagram of
Fig. 15 and the corresponding formula (621 (with 84

~m?, s;—m?, spp > pu?)

1 bk, dbk,
o= s | TR (1) (52— )
X 64(81, ki) 03 (52, k;) Osn (Sna kf, k;) (3.16)

In order for such a mechanism to make a nonvanishing
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FIG. 15. One-meson inelastic interaction with formation of one
additional knot.

FIG. 16. One-meson interaction with formation of two additional
knots.

contribution at high energies, it is necessary that at
least one of the cross sections contained in the inte-
grand not be small when the corresponding sj in-
creases without limit. As in the preceding case, it is
therefore necessary to suggest that there exists a non-
peripheral central process which gives a nonvanishing
contribution at high energies. However, unlike the
preceding case, such a process can now be the inter-
action between two virtual pions. The degree of exci-
tation of the nucleons themselves can remain low in
this case if the energy of the entire process is high
(for example, this may be excitation to the isobar
states T =%, J=3%,). Inthis case, as before (except
that now we are considering a strongly excited nr
cluster), we must turn to the hydrodynamic theory.

An interpretation of the experiment in accordance
with the scheme of Fig. 15] or Fig. 16(%8] was pro-
posed by the experimenters (in the outer knots, cor-
responding to the collision between a virtual pion and
a nucleon, it was assumed by the experimenters either
that no new pions are produced at all, or that their
number does not exceed one or two). As shown by
comparison with experiment, in such an interpretation
the multiplicity is connected with sy by the rela-
tion [67-69]

Van

n~G5mE "

It corresponds to the multiplicity in a hydrodynamic
process with a Heisenberg equation of state[70],

A concrete example of such a process for a colli-
sion of nucleons with energy Ep, ~ 3 x 10!! eV in ac-
cordance with the experimental data obtained in [67]
was considered theoretically in (621,

The calculation of the diagram of Fig. 15 has led to
the following results. The effective values of the
squares of the transferred momenta k? and ki are of
the order of (20—25)u?. The distribution over the
‘““masses’’ of the 77 knot has a sharp maximum near

Man = Vs_mt ~ (3—4)M.

The excitation of the nucleons, that is, the ‘“masses’’
of the isobars in knots 1 and 2, is of the order My
~ 1.5 M.

To estimate the number of pions produced in the
77 knot, the multiplicity law corresponding to the hy-
drodynamic theory with the Heisenberg equation of
state was used. Then

@5’%%6, nni=3n,,~4.

Mz =7 3

The angular distribution of the secondary particles in
the rest system of the n7 isobar is in this case iso-
tropic. The total number of charged particles in the
process (if we take into account the fact that the decay
of each of the nucleon isobars results predominantly
in charged particles) is found therefore to be ng

~ 7—8. The inelasticity coefficients of the nucleons
lie in the interval 0.05 £ K < 0.25. The Lorentz fac-
tor of the 7w isobar in the c.m.s. of the entire process
is y ~ 1.1 and is consequently small.

All these results are in good agreement with part
of the experimental data obtained in [¢7]. Namely, the
diagram under consideration can describe satisfac-
torily symmetrical showers with small inelasticity
coefficients. Another part of the showers has dif-
ferent characteristics. We shall dwell on this in
greater detail in Chapter IV.

The process shown in Fig. 16 is important at higher
energies, namely Ep, ~ 102—-10!% ev. It will also be
discussed in Chapter IV.

4. The Multiperipheral Model

Expression (3.6) can be used to describe a process
with any number of intermediate ‘‘knots.’’ For this it
is sufficient, using an iteration procedure, to substitute
successively in the right half of (3.6) the cross sections
0i(sj, k*) in the one-meson form. The limiting case of
such a process, the multiperipheral model, has been
discussed in the literature. It was first considered by
Amati, Fubini, Stanghellini, and Tonin (AFST) L™ (it
was already mentioned in l:‘“;]). Let us dwell on this
model in greater detail. It is assumed here that the
smallest possible number of particles —two pions—is
formed in each knot of the diagram of Fig. 17 and the
process in this knot proceeds via formation of one res-
onant particle, for example a real meson, or in general
a ‘‘meson isobar,’’ which then breaks up into two pions,
while the number of the knots increases with the en-
ergy. The interferences between the different knots
are neglected. Such neglect is common to any OMA
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FIG. 17. Feynman diagram of the AFST model (multiperipheral
model) of a completely peripheral interaction.

case. In the given model this neglect is equivalent to
assuming that in the rest system of any meson isobar
the other isobars move relative to it with relativistic
velocities. We emphasize that the latter condition is
thus also included in the model (although this was not
stipulated in the original papers), and here it becomes
quite stringent.

The cross section for the interaction in the knot
o{R)(sj) plays a fundamental role in the model. The
assumption that only weakly excited two-pion isobars
are produced in the knots is equivalent to assuming
that the cross section oB of interaction of all the vir-
tual pions in the knot has a resonant character and is
large only at low energies, si ~ sq = 0.5M? (that is,
in the region where the pions can be produced via a
p meson, 1 meson, etc.). In order for the contribu-
tion from large sj not to enter, it is assumed that
B goes not decrease with increasing sj more slowly
than s ¢ This assumption is principal in character.
It is precisely because of this assumption that the
more complicated knots of the diagrams are excluded
from consideration. For the same reason, there is
no place for the hydrodynamic theory in the frame-
work of the model. To some degree the hydrodynamic
theory even contradicts the model, since the main as-
sumption of the model is equivalent to stating that the
many-meson exchanges make no contribution whatever
to inelastic processes. This is exactly why the model
can be called ‘‘completely peripheral.”’ We note that
such a model is closely connected with the approximate
method of the investigation of double dispersion rela-
tions, called the strip approximation (667,

The model was investigated in [11-74,501 1t was
found that the cross section oy(s) of each individual
process with Mt vertices, as a function of s, becomes
different from zero at a threshold value s = sy
= Esto, increases, reaches a maximum, and then de-
creases in power-law fashion. When s >» sy we
have

O =0 5 77— 3.17)

where a;, and § are some constants. Thus, each indi-
vidual process (with given RN) makes roughly speaking

a contribution only to a definite region of the values of
s, after which it gives way to the next process.

The value of oy as a function of N for a given s
is described, in accordance with (3.17), by a Poisson
distribution and has a sharp maximum at

N=No(s)~Plnl
So!

with half-width

A%~Vﬁln§5

(All these estimates, of course, are valid only if
N> 1).

The total cross section is equal to the sum of the
cross sections

(ﬁl s \R—1
n s

a B~2
Oiot = D) o= "3 __So__=%g<si> 7
=% 0 0 L

N—1)!
P ( )
= const (—i)a_‘
So

(where a = 8 —1), and according to the optical theo-
rem the amplitude of scattering through zero angle is
equal to the sum of the amplitudes

Auels, 0=, 4 (5, 0)= 2 (L)
N

The quantities o and § in this model are connected
with the quantity o(R)(sj) and with s,. This connec-
tion has the form [72]

(3.18)

(3.19)

@ (@-+1)= s g a® (s,) ds;. (3.20)
It must be noted that the quantity o (and consequently
the quantity s, which is basic to it) is of fundamental
significance for the entire model and determines the
main characteristics of the process.

Indeed, when « < 1 the total cross section oyt
~ A/s will decrease with energy in a power-law fash-
ion. In this case the model cannot claim to describe
the process and consequently becomes meaningless.
When « > 1 the cross section will increase with en-
ergy in power-law fashion, in contradiction to the uni-
tarity condition.

Let us ascertain first what results are obtained
with the AFST model when taken literally. According
to AFST, it is necessary to confine the integration in
(3.20) to the region near sj ~ sy ~ 0.5 M? =~ 252, for
it is precisely here that the resonances p, 7, ete.,
are located. In this case, according to (2] we get
a ~ 0.3. This value is appreciably smaller than unity
and consequently already offers evidence that the
model is not ‘‘realistic.””*

*The authors state, to be sure, that they can ‘‘stretch’’ their
estimates and make a close to unity. But to this end it is neces-
sary to increase the integral (4.20) by almost one order of magni-
tude (see below). This is difficult to do if the region of integration
with respect to s is not increased.
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Let us consider other characteristics of the act in
this model at high energies. The relations given above
are valid in the asymptotic region, that is, when smin
=Misy < s or, since

mo ] B In .% N
when
s\2 s *
(b)) <"
The number of knots R, is equal to

sﬁo(s)=(1+a)lnsio@ 131> . (3.21)

05212
It follows therefore that the multiplicity in this model
increases slowly (logarithmically) with the energy
(see also [503).

The angular distribution in the AFST model is es~
sentially anisotropic. With respect to the coordinate

= —log tan ¢ it is characterized by a very large
width o3, which increases with energy like Ins (in
the hydrodynamic model oy ~VIns).

All these results can be explained by considering
a simplified variant of the model. Let us assume that
‘“‘pion isobars’’ of definite mass M, = s, are produced
at the knots, and also that all the momentum transfers
ik} are identical and equal to k.

Let us consider two neighboring knots. In the rest
system of one of the isobars, the others move with
relativistic velocity. Even for the neighboring isobars
the relative velocity u should correspond to a large
Lorentz factor ¥y, (otherwise we cannot neglect the
interference of the particles arising in the neighboring
isobars, something which is essential for the method).
This of course makes the Lorentz factors of the neigh-
boring isobars yj and ¥j.y, in the common c.m.s. of
the process all the larger. From the formula for the
addition of the Lorentz factors [ see Chap. IV below,
formula (4.20)] it follows that

1
(l—u?) *=yo=vivia—Vvi—1 V§?+1—1

1 ii—“+i>

= (3.22)
2 Yi Yi+t

The quantity y; decreases as i increases from 1 to
M/2 and then again increases for R/2 <i <N. There-
fore ¥i > ¥i+q for i <M/2. From the expression for
v, it follows that the ratio

Vi =+ Vyi—1>1

Yi+1

is constant, that is, it does not depend on the number i
and on the energy s. It follows therefore that when 1
<i<N/2 we can write

*If B = 2 we get the condition s/s, >> 70. When 8 = 1.3 we
should have s >> 40s,.

Yi= ayid = a'i\ja'

The law of energy conservation for an f%t-th order
process gives

N/2 n
— P |
Ec=]/§=22I Vsoyi&Zl/soyoaz , (3.23)
i=1 :
s=4so§§am_2. (3.24)

From this we get for the process which makes the
largest contribution for a given s*

sa? 1 s
%O(S)=Hi—l~llnm mlng. (325)
Thus the multiplicity actually increases logarithmic-
ally with the energy.

In the angular distribution of dn/dn each knot will
make a contribution with respect to n in the region
ni ~ ln y; =1 In ay,. When these contributions are
added, they lead to a ‘‘table-like’’ dependence on 7.

The maximum value of nmax, which determines the

width of the distribution, will be

Msx =5 10 ¥y =Tolna~ yIn L, (3.26)

and in A coordinates the half-width is
1 1 1
0'?-.=§A)“=mnmax= 5 log sio .

For the energy interval 101!—10!% eV the numbers
No(s) [in accord with (3.25)] are given in the table
(for sy = M?/2). The table lists also the correspond-
ing expected values of the half-width o). The effective
value of k? does not depend here on the energy and its
order of magnitude is k% < 8o- Thus, in the literally-
taken AFST model we have kiff ~ 0.5M2. A compari-
son of these deductions with the experimental data will

Ep, ev | 101 | 1012 | 101
5/0.5 M2 400 | 4000 | 4-10°
RNy ~ 6 8| 13

n=2R~ | 12 16 | 26

o) ~ 1.3 |18 |28

*On the other hand, for R,(s) we have Ry(s) = B In(s/s,). Com-
paring these expressions, we can estimate the quantities a =
exp B and y, = (a + 1/a)/2. When 8 = 1.3 we obtain a = 2.2 and
¥ = 1.33. However, if the cross section is asymptotically constant,
then 8 = 2. Consequently 7, = 1.15 (this corresponds to a velocity
v, = 0.5). This fact urges some caution, since the assumption that
there is no interference (which is essential for the model) can be
justified only for large ¥,; we note that within the framework of the
model y, does not depend on s, and is determined only by the value
of the coefficient 8.
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be discussed in Chapter IV. We note beforehand, how-
ever, that for the majority of the experimental data on
the angular distribution we get o) ~ 0.5—1, in sharp
disagreement with these predictions.

Let us attempt to improve this model by bringing it
closer to reality.

We ascertain first under what conditions we can
eliminate the principal defect—bring « close to unity.
To this end it is necessary to extend the integration
over larger values of sj, which is equivalent to taking
into account the higher resonances in the 77 interac-
tion. Indications of the possible existence of such res-
onances (for example, in the reaction 77 — pp — 47)
can be found in the latest papers RIS ™ addition, we
can expect in principle for the #7 interaction that a
resonance will appear at energies on the order of sj
~ (2M)%. (This resonance appears if a nucleon-anti-
nucleon pair is produced in the intermediate statel[6])
Then the integral in (3.20) will cover a wide area. It
is sensible to assume o{R) in this region to be equal
to the geometrical cross section, oR) l/pz. The
upper limit of integration is determined from the con-
dition @ = 1, $j max ~ u? x 2 x 167° ~ 20 M®.. We note
that in the case of a nucleon-nucleon collision these
considerations do not pertain to the extreme vertices,
in which the 7N isobars can be produced. The char-
acter of these isobars does not influence the exponent
@, so it is sensible to leave them the same as before
in the framework of the model.

This variant of the model no longer has these at-
tractive features referred to above. Namely, we can
no longer assume that the character of the inelastic
interactions at high energies is determined completely
by the processes at low energies, since energies sj
~ 20M? cannot be regarded as low. However, this
variant is much closer to reality. The number of sec-
ondary particles is no longer determined here com-
pletely by the number of knots. The question of the
character of the decay of the clusters —the states pro-
duced in the knots —into secondary particles becomes
important. It becomes necessary to apply to this proc-
ess the statistical and hydrodynamic theories. The
model thus acquires the principal features of the ‘‘fire
ball’’ model. The quantities sg ~ 20 M? also approach
the experimentally observed values for the fire ball
scheme, Mg, = Vs, ~ (3—5) M.

The asymptotic region in which the simple relations
of the type

s
920~21n;(—’

are valid, moves higher in this case [see the footnote
preceding Eq. (3.21)], up to s > 70 sy max ~ 500 M?,
that is, to energies of the order of Ef, > 102 eV. On
the other hand, in the region Ep ~ 1011—1012 eV we
can only say that the number of 77 knots is small (on
the order of one or two).

Thus, if we wish to come in the AFST model closer
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to the actual properties of the process we find it nec-
essary to greatly increase the size of each pion isobar
(to approximately M, ~ 3—5 BeV), and to decrease
their numbers. :

We note that we have thus arrived at an estimate of
the characteristic size of one cluster, given in ['7],
and that the possibility of increasing the number of
clusters with increasing energy corresponds in a cer-
tain sense to the Hasegawa hypothesis L7ed,

The amplitude of the elastic scattering due to a
multiperipheral inelastic process, as already ex-
plained, has properties predicted by the MMP and
satisfies the Mandelstam representation.

In this model we can explain the physical meaning
of the swelling of the radius of the interaction and re-
late the parameter s; of the multiperipheral model
with the parameter

0!

T8t ji=0’

which determines the ‘‘velocity’’ of motion of the pole
and the increase of the radius in the MMP. The colli-
sion parameter of two neighboring knots rj can be
defined as

i

2 2
ri~ry~ szf
e

—
3
Inasmuch as the directions of the transverse compo-
nents k;| corresponding to different virtual pions are

independent in the model, the total interaction radius
for | knots will be
KN
Vi

— N2 2
R-—l/;r,a,l/ﬂkro:e o

But
s
5R~ﬁlns—o.

Consequently we get a logarithmic increase in the

radius
|/ b In2,
So

R = 5
keff

Thus, the increase in the radius, the shrinkage of the
diffraction cone, and other effects predicted by the
MMP are simply related with the fact that the number
of knots M increases with increasing energy. Com-
paring the obtained expression for R with the expres-
sion that follows from the MMP,

ky~V yln%, y=10),

we find

In the literally taken AFST model, where 8 ~ 1 and
sy~ 0.5 M?, the parameter v is sufficiently large to
be observable experimentally. On the other hand, in
the model with the ‘‘burdened’” knots (where S8 ~ 2
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and sy ~ 10 M?), the parameter y ~ 0.2 M™ is appre-
ciably smaller than the value y ~ M™? corresponding
to the observed shrinkage of the cone in pp scatter-
ing. The shrinkage of the diffraction cone is in this
case very small. Under modern experimental condi-
tions it can hardly be noted.

5. Supplementary Remarks

So far we have considered inelastic interactions
that result from the exchange of one pion. Naturally,
the question arises of what role can be played by anal-
ogous processes due to the exchange of a quantum of
different nature, for example an n meson, K mesons,
ete.

The relative contribution of these processes can
be estimated only by making two assumptions (which,
to be sure, are quite natural): (a) the cross sections
of the interaction between all the strongly interacting
particles are of the same order of magnitude; (b) the
pole terms predominate in the propagation functions of
the particles in the region of small k%:

1
Dj(k2)=m, (327)
where mj is the mass of the exchanged quantum.

Let us consider by way of an example the inelastic
process due to exchange of a kaon. The total cross
section is written in analogy with (3.6); the contribu-
tion for asymptotically large energies will, as in the
case of (3.6), be made by the region of small k2.
Therefore the cross section otK) of the process with
a one-kaon exchange will be proportional to |Dg(0) |2,
whereas in the one-pion exchange (considered above)
o{™ ~ | D7(0)|%. Their ratio will be of the order of

oK)

Dk (0|2 _mx _ 10-2
ey 3 .

Dn (0) mk
Analogous arguments can also be applied to any stable
or resonant particle which the incoming particles can
exchange. The ratios of all the cross sections to the
cross section due to the pion exchange will be small.
The pion is singled out because it is the lightest of all
the strongly -interacting particles.

All the foregoing pertains to the main group of in-
teractions, in which k* ~ s;s,/s. There exists, how-
ever, a different group of peripheral processes, which
makes a small contribution to the total cross section
(at asymptotically large energies ), but is nevertheless
of interest. In this group the principal process is dif-
fraction generation of particles, which we shall con-
sider in Chapter V.

(3.28)

IV. EXPERIMENTAL DATA FOR Ej, 2 10! eV.
COMPARISON WITH THEORY

Data on the interactions at Ey, > 10" eV are ob-
tained from cosmic-ray experiments. These experi-
ments are difficult, but, as in the past, they yield sig-
nificant results at lower energies. A distinction must
be made here between two energy regions. When Ej,

~ 1011—10% eV, owing to the extensive use of the emul-
sion methods (recently—emulsions interlined with
lead) and of ionization calorimeters, particularly
calorimeters combined with a cloud chamber in a
magnetic field, it has been possible to accumulate
rather detailed information on the interaction mech-
anism, over and above the information previously ob-
tained from studies of extensive air showers (and now
confirmed with the aid of the indicated new proce-
dures). On the other hand, in the energy region 10%
—1018 eV, extensive air showers remain as before
practically the only source of knowledge. New results
were obtained here, too.

1. Summary of Earlier Results

The main results, which were known already a few
years ago, can be summarized in the following fash-
ion (79,807

1. The cross section for collision between a nucleon
(and apparently also a pion) with the nucleus of an air
atom or with a heavier element remains constant to
high degree —from approximately 2 x 10° to at least
101 ev—and equal (accurate to +20%) to the so-called
geometrical cross section ogp of the nucleus (there is
one exception—the unreliable and unconfirmed indica-
tion that oo ~ (2—3) gga for ~ 10" eV in the case of
lead). Data on extensive air showers enable us to as-
sume that this is true with the same accuracy, ~ 20%,
up to ET, ~ 10" eV and even higher.

2. Pions are generated almost exclusively (~ 80%
of the particles).

3. The average multiplicity n increases very slowly
with the energy. It is customary to assume that up to
EL ~ 10 ¢V we have n ~ E¥%. However, a larger
spread in the values of n in individual events is typi-
cal. In nucleon-nucleon collisions at Ef, ~ 102 eV
we have n ~ 15—20.

4. In a very large number of events, the nucleon
retains an appreciable part, 1 —K, of its energy after
the collision: the average ‘‘inelasticity coefficient’’ K
is of the order of 0.2—0.3 for nucleon-nucleon colli-
sions, and 0.4—05 for nucleon-air collisions. These
values are approximately the same for all energies
at least up to 10! eV. A characteristic feature is the
tremendous scatter in the values of K, with both K
~ 0.01 and K ~ 1 encountered.

5. The particles generated in the collision are
scattered in a very characteristic manner: they form
in the c.m.s. two sharply collimated cones, which are
not necessarily of the same size.

On going over to the laboratory system (L-system),
the ‘“front’’ cone (the cone of particles moving in the
mean in the direction of the primary particle) shrinks
even more, while the ‘‘rear’’ cone ‘‘turns inside out’’
in the opposite direction and turns into a relatively
broad fan or cone of particles, also directed along"
the motion of the primary particles, enveloping the
narrow ‘‘front cone.”’
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6. The transverse momentum p; of the produced
particles is practically independent of the energy.
When 10! < Ef < 108 eV the average p; for pions
lies near 0.4 BeV/c, or (2.5—4) uc. For nucleons it
is 2—3 times larger. The most probable value of p;
is close to 2 uc. We see therefore that very large
values of p; are also encountered.

Thus, for high energies in the I system, the par-
ticles move forward in a narrow jet, which shrinks
with increasing Ejp, (in inverse proportion to E1)),
and this is the term used to denote the entire phe-
nomenon.

This general information have been firmly estab-
lished during the last years. Thus, in [22] there is
an analysis of data on the cross section of collisions
between nucleons and nuclei of atoms. The authors
reach the conclusion that up to E[, ~ 10!® eV the
cross section for the collision between the nucleon
and the air nucleus, as well as the law ga ~ A%,
hold within +10—20%. However, very important new
features were disclosed on top of this, principally on
the basis of a study of the angular distribution of the
emitted particles. Many important new indications,
which call for further study, have been obtained by
investigating extensive air showers in the region Ej,
~ 104—10'% eV (sece Sec. 3h, below).

2. Methods of Experiment Analysis

Perhaps the most difficult experimental problem in
the study of the elementary act in emulsions is the de-
termination of the energy E1, of the primary particles
which produces multiple generation. If E, £ 101 ev,
then the secondary charged particles (pions) frequently
have an energy still low enough to be determined by
combining the data on ionization, distance between
grains (blobs), etc. Using the firmly established fact
that ﬁl is approximately constant, the momenta |p |
of the secondary particles are sometimes estimated
from their angle of emission 6 in the L-system, as-
suming that |p| ~ p; /6 ~ M/20. (Such a determina-
tion, of course, can be sufficiently reliable only for
average values.) If Ej, is large, however, the best
that can be done is to estimate the lower limit of Ep..

Long ago (and this method is still used) the energy
determination started to be based on the so-called
half-angle 0;,. Namely, if we assume the following:
(1) that the nucleon-nucleon collision could be sepa-
rated, and (2) that the products are scattered symmet-
rically forward and backward in the c.m.s. of these
two particles, then we can easily find that the Lorentz
factor y, for the motion of the c.m.s. relative to the
L-system is

(4.1)*

where

*tg = tan.

=Eq=‘/Y+1
Ye=17 R

y="tL=2y2-1,

(4.2)

4.3)

M is the mass of the nucleon, Ec is the energy of the
nucleon in the ¢.m.s., and 8y, is the laboratory sys-
tem angle (relative to the direction of the primary
particle) separating one-half of the secondary par-
ticles (‘‘front’’ cone) from the second (‘‘rear’’ cone
in the c.m.s.).

Indeed, the transformation to angles ¢ of the same
particles in the ¢.m.s. is by means of the following
formula, which results from the law of velocity addi-
tion,

A
Ye= (1 —Bc) 2 ,

sin ¢

Bey

tgf —0——
Ye (cos 1‘)—|—ﬁ

4.4)

where S is the velocity (in fractions of c¢) of the par-
ticle in the c.m.s, and B, is the velocity of the c.m.s.
itself in the L-system. Since both g and S, are close
to unity and 6 is small, we have

1 L
tgemy—ctgj. (4.5)
In the case of front-rear symmetry in the c.m.s., half
the particles lie at & < 7/2 or, according to (4.5), at
8 > 1/ye. Consequently, by determining this half-value
angle, we obtain y, from (4.1), and then also Ey, from
(4.2) (the error due to assuming B¢ /8 = 1 is appar-
ently small 8],

However, the assumption that the scattering in the
c.m.s. is symmetrical in each individual act (and not
in the mean) can generally speaking not be justified.
Indeed, it was shown directly "7 that when ET, ~ 3
x 10! eV at least half of the jets are sharply asym-
metrical (see below). It is obvious, furthermore,
that the half-value angle method is certainly unreli-
able at very low multiplicity, and the number of such
acts is not small.

By using this method we can introduce an error of
a factor of several times in the estimate of E1 (ac-
cording to (871, for symmetrical showers the error is
~30%, for asymmetrical ones it can reach a factor
of 5).

Recently two new methods, based on similar ideas,
have been employed. The first, the ionization calorim-
eter method, was proposed in fe2] and developed and
employed in [83], and later used in combination with a
cloud chamber (871, Alternating layers of heavy mate-
rial (iron or lead) and ionization chambers are placed
under the chamber in which the interaction is investi-
gated. The total thickness of the material is sufficient
to absorb all the ionizing particles and the electron-
photon cascades which they produce. Since the over-
whelming part of the energy of the primary particles,
after all the cascades of interaction, multiplication,
and decays, is consumed in final analysis in ionization
produced by the relativistic particles, we can, by



26 E. L. FEINBERG and D. S. CHERNAVSKII

measuring the ionization in the many layers, deter-
mine this energy with an error of several times 10%
(apparently ~30%). This method has already been
used and yielded interesting results in the region Ep,
~ 3 x 1011101 gy [67,82,83,102,105]

In the second method, thick pellicle stacks are used,
interlined with layers of heavy metal and operating es-
sentially on the principle of the ionization calorimeter.
By tracing the ionization in a cascade which first in-
creases and then decreases over the entire thickness
of the emulsion, it is possible here, too, to determine
the energy of the cascade and consequently of the pri-
mary particle which produced it. This latter method
has made it possible to proceed to a systematic study
of all the interaction events in which only a few par-
ticles are produced at very high energy of the primary
particle (‘‘lean jets’’). Such cases were frequently
missed by the emulsion heretofore. Now it is possible
to notice even the production of a single 7° meson,
since it gives rise to a powerful electron-photon cas-
cade which can be readily observed and studied.

However, even if Ej, is not accurately determined,
it is possible to extract interesting results by studying
the angular distribution in a special manner, with spe-
cial coordinates.

Direct observations give the angles of emission of
individual particles 6 in the laboratory system. In-
stead of investigating the distribution with respect to
6, it is advantageous to consider the distribution with
respect to the coordinate

= —lgtg0. (4.6)*

Since 6 is a small quantity, we have A > 0. According
to (4.5) R
A=lgy.—lgtg 5

Therefore, by observing in the laboratory system the
distribution of the particles with respect to 6 and by
plotting it as a distribution n(A) with respect to A, we
immediately obtain the actual distribution with respect
to log tan ¢/2, that is, the distribution in the c.m.s.,
but shifted along the axis by log y,. Consequently, for
example, we can see directly whether symmetry exists
in the distribution with respect to the angles 4.
Sometimes even the primary experimental material
is plotted in terms of A. Thus, the lower part of Fig.
23 below, and also Fig. 26, show values for individ-
ual relativistic ionizing particles in one jet. Each ver-
tical bar denotes A for one individual particle. It is
clearly seen that the particles form two groups, and
their common center of gravity moves in the L system
with a velocity corresponding to v¢, the logarithm of
which lies somewhere in the vicinity of the dashed line.
Along with A it is convenient to use also a variable
1, which pertains directly to the angles in the c.m.s.
(this was the variable which appeared first in the
Landau hydrodynamic theory[®], and therefore it is

*1g = log.

sometimes called, like A, the Landau variable; see
also [87);

n=—1ntg%—~—2.31gtg%, tg—%=e—“. 4.7)
According to (4.5)—(4.6) we have
A:lgyc+2—'f'3, 1=2.3(A—1gv.) (4.7a)

Thus, the transition from the distribution in the L sys-
tem (coordinate A) to the distribution in the c.m.s.
(coordinate 7n) is by shifting the entire pattern by an
amount log y, along the abscissa (and by changing
the scale by a factor ~ 2.3, owing to the transition to
natural logarithms, which is by far not obligatory ).

If the distribution in the ¢.m.s. is of the form

dn(8) =+ n (9)sin® do,
then

dn () = (9 (1) (s =1 () e

A—18 v, —(A 18 Y2
10 ¢1-10 c
( + ) 4.8)

[n;(x) = n(#(X1))]. Thus, if the distribution is isotropic
in the c.m.s., n{#) = ny = const, then it has in the A
scale a symmetrical bell-shaped form with maximum
at A = log v,, decreasing exponentially on the skirts.
Obviously, if the distribution in A is not isotropic but
has a front-back symmetry, that is, n(#) =n {7 —#),
and consequently

ny(A)=n,(21gy.—2)

or
ny (A —lgye)=ni(—(A—lgve)),

then symmetry is also conserved in the A scale. The
center of symmetry A, will again yield log y, directly.

In practice this means that by plotting in the A scale
the distribution with respect to the angles 6, observed
for a given jet in the laboratory system, we can obtain
directly y,, and consequently Ej, from (4.2), provided
a symmetrical curve was initially obtained.

The A scale has the property that the narrower the
front and rear cones (the more anisotropic the jet),
the broader the distribution with respect to A. For a
jet which is isotropic in the c.m.s. we find, by approx-
imating the curve in the A scale to a Gaussian curve,
that the standard (half-width) of the distribution is

equal to
O}, isotrop. ~0.39. (4.9)

Integral construction in the A scale is very useful.
If we form the c.m.s. quantity

o T
F,,(ﬁ):S%n(x‘})sinﬁdf}/g%n(ﬁ)sinﬂd\‘} (4.10)
0 0

(it gives the fraction of the particles emitted at an
angle smaller than 4 relative to the direction of the
primary ), then in the case of isotropy in the ¢.m.s.
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[n($) = ny = const] we have Fg(s#) = sin? (4/2) and

Fo(® ®
lgi_"}c()ﬁﬁlgtgzg#Zlgvc—zx. (4.11)

To each ¢ in the c.m.s. there corresponds a definite 9
in the L system. Therefore in place of F,(4) it is
possible to substitute in (4.11) the integral distribution
in the L system. By plotting from the experimental
data the function log[F(8)/(1-F(8))], as proposed
by Duller and Walker (%], we ascertain immediately
whether the distribution in the c.m.s. is isotropic (in
this case a straight line should be obtained with a _
slope equal to 2), or at any rate, if the line is sym-
metrical, then we immediately obtain log y, from

the intercept on the abscissa axis.

A shortcoming of this method is first that in
nucleon-nucleon collisions in the region E, £ 10% eV,
where the most intense research has been carried out
so far, the total number of generated charged par-
ticles ng is still not very large (ng < 20), and is
frequently even quite small (ng < 10). Therefore the
plotting of the distribution curves is not an easy mat-
ter. Further, it is sufficient for one of the particles
to carry away a very large fraction of the energy in
order to produce a considerable error, if this particle
is charged and can be seen in the emulsion. Such a
particle will turn out to be far on the edge, there will
be no true symmetry, and the determination of vy, will
be impossible. However, if some group of particles
has symmetry by itself, then its center gives the
Lorentz factor vy of this group (or of the cluster of
matter from which the particles arise) as a whole,
relative to the laboratory system.

The method of the A coordinates turned out to be
quite effective for the analysis of the experiments.

In addition to the difficulty in the determination of
E1, experimenters are faced with the serious problem
of separating the nucleon-nucleon collisions from the
observed jets. It is customary to assume that the high-
energy pions are too little represented in the cosmic-
ray flux for the primary particle to be a pion.* Only
when the jet is generated in the emulsion by a charged
particle which was produced in a different jet in the
same emulsion can this particle be regarded as a pion
in the overwhelming majority of cases. On the other
hand, the emulsion consists predominantly of heavy
nuclei. If there are very many black tracks in the jet,
characteristic of slow protons, then it is clear that a
collision with the central part of the nucleus took place.
On the other hand, if the number of such tracks Ny is
small, then it is customary to assume that a collision
with a peripheral nucleon took place, and we deal with
a nucleon-nucleon collision. This is usually confirmed
by the fact that in collisions with the center of the nu-
cleus the number of produced particles is ‘much larger
than in collisions with a single nucleon—even when

*It was shown recently, however, that this generally accepted
premise may be very inaccurate [*"].
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Er ~ 10'3 eV their number is on the order of 100. The
choice of a definite criterion is the result of weighing
many subtle details. The Krakow schooll®8] is of the
opinion that if Ny < 5 and the number of relativistic
tracks is ng =< 20, then a nucleon-nucleon collision
has occurred. This criterion is not universally ac-
cepted. Thus, the criterion Nj < 2 is also used[ssj,
and even Np = 0. There is also the danger here that
by the same token we discard nucleon-nucleon colli-
sions with large multiplicity ng, that is, we select
artificially only that part of the nucleon-nucleon col-
lisions, for which the inelasticity coefficient is anom-
alously small.

In experiments using a cloud chamber in a magnetic
field and an ionization calorimeter [673, the collision
with the nucleon occurs in an LiH plate. All the nu-
clei are light here, and we can assume that almost
all the collisions are nucleon-nucleon.

An important characteristic of the interaction is
the already mentioned inelasticity coefficient. In each
interaction of two nucleons there are two such quanti-
ties.

The inelasticity coefficient K]gp of the incoming
nucleon, frequently denoted simply K, and a ‘‘mirror?’’
inelasticity coefficient Kmpijr, have been in use for a
long time[8%:67] K.\ gives the fraction of the energy
of the primary particle going into the production of
new particles,

ELi—ELf __E'Gj

E;  Eu’ (4.12)

Klab =

where E1 is the energy of the primary nucleon in the
laboratory system of coordinates; Ejs is the energy
of the same nucleon after the interaction; Z’€j is the
sum of the energies of the secondary particles after
subtracting the energy of the nucleon itself. The quan-
tity Kmijr is determined analogously, but in a system
in which the primary ‘‘incident’’ nucleon is at rest,
and the laboratory nucleon—the target-—moves with
energy Ei, in a system which is called the ‘‘mirror?’’
system relative to the laboratory system (or the anti-
laboratory system).

If the collision is symmetrical in the ¢c.m.s., then,
of course, Kjgp = Kpjy. However, symmetry does not
obtain, as shown in [67], in each individual collision.
Therefore certainly only equality of the average values
should occur, Kjah = Kmir, and in general equality of
the distributions over Kjgn and Ky

It is possible to define analogous quantities for both
nucleons in the ¢.m.s., where their initial energies
Ec(:11) and Egi) are equal, and the final energies E(clf)
and ng) are generally speaking different:
ER—EY
=

(1) (2)

Kc — Eci —Ecj
1 (1)
E¢i

, Ki= (4.12a)
In the general case these quantities differ from Kjgy,
and Knir. However, if the initial energy Ep, is suf-
ficiently large, and consequently, the Lorentz factor
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of the transition from the ¢c.m.s. to the L system is
large, yo > 1, and the inelasticity coefficients are
not very small, namely if Kjgpye > 1 and Kpyjr Ve
> 1, then K{ coincides with K}z, and K§ coincides
with Kpir, accurate to quantities of the order of
(ve Klab,mir)"!. We note that in practice K varies
between 0.1 and 1 (it cannot exceed unity by definition).
In this connection, inaccurate measurement of K
(‘‘order of magnitude’’ measurement) is meaningless.
Yet, for an experimental determination of K it is
necessary to know not only the energy of the primary
particles, but also its energy after the collision, or
else the energies of all the newly produced particles.
If we know only the angular distribution (for example,
in cloud-chamber observations without a magnetic
field), then Kjap and Kpjr can be determined only
on the basis of additional assumptions. Usually use
is made not only of the assumptions made above (the
transverse momentum is the same for all particles
and is equal to the average p, ~ 2.5, and the par-
ticles are emitted in the ¢.m.s. symmetrically for-
ward and backward), but also the hypothesis of charge
symmetry of the emitted pions. Namely, it is assumed
that the number of neutral mesons (which are not seen
in the photoemulsion and which are detected only if
electromagnetic cascades produced by the decaying 0
mesons can be traced) is equal to half the number of
charged mesons. Then, owing to the assumed front
back symmetry, Kigp = Kmir, E1 is determined from
(4.1), with

3
@

3
[

Zgi=

Pt 33— 1
‘ ei v\/?p_]_ oy (413)
i={1

of e

i

where 0j is the angle of emission of the particle in the
L system, As a result we obtain
Ty
3 — 1
3L
K=K, = =

4.1
2My? (4.14)

Under special assumptions concerning the scattering
symmetry and the energy per particle, we can obtain
also other simpler formulas [see (4.24) below].

It is possible to measure Kjg,, more accurately by
measuring independently both the energy of the primary
particle (for example, by calorimetric means), and the
energy of the secondary charged particles (for exam-
ple, in a magnetic field in a cloud chamber). It is then
possible to use formula (4.12) directly, taking into ac-
count the contribution of the neutral particles by using
the factor ¥,.

There is no need to assume here that the scattering
is symmetrical in the c.m.s.; to the contrary, it is pos-
sible to check whether the symmetry actually exists.

The value of the ‘“mirror’’ coefficient Kmj,r can
also be determined from experimental data in the lab-
oratory system. To this end we note that Ky, i, is
connected with the so-called ‘‘target mass’’ mg, which

was introduced and investigated in detail in (897, It is
equal to*

my= D\ (eir.— pir cos 1), (4.15)

=1
where €1, pj1, and 6; are the laboratory-system en-
ergies, momenta, and recoil angles of the newly formed
particles, with the target experiencing recoil eliminated
from the sum.
Transforming this equation to the system where the
incoming nucleon is at rest, we can readily verify that

m,=Kmir M. (416)

We see that here, unlike in the preceding case, there
is no need to know the energy of the primary particle
in order to determine m¢ and Ky,jp-

The smaller the secondary-particle energy in the
laboratory system and the larger the angle, the larger
their contribution to m¢. This circumstance is also
very favorable, since the characteristics of such par-
ticles can be measured more accurately. Thus, Kpj,
can be determined more reliably than Kj.j,.

As seen in Chapter 3, an important role is played
in the theory of two-center peripheral collisions by
the width of the square of the 4-momentum k? trans-
ferred from one group of particles to the other.
Namely, it is proved for this model that for the meson
which carries the interaction k? is small and decreases
with energy. In the analysis of the experiment this
gives rise to the question whether the jet particles can
be divided into two groups in such a way that the

*Indeed, if a collision occurs between a primary particle of
energy E; and momentum p and a resting particle with mass M,
then from the conservation of the energy and the longitudinal-
momentum pj} we obtain

Ep+M=28;,+E,
7
Pry = PL= > pir cos 8;+ py cos By,
T

where E¢, p; and §; characterize the target after the collision.
Recognizing that

M2
Py = Ep— 2F;, ~ Ep,

we get from this
M= (ey,— P,y €05 8;1) -+ Et— p; cos Oy,
i
The value of m;, defined by (4.15), is
myg=M—(E;— pt cos 8).

It is smaller than the mass M and is interpreted in [*] as the mass
of that “‘part” of the target, which interacts strongly with the in-
coming particle. For example, if m; = y, then this is a certain in-
dication that the collision occurred with a virtual target pion, that
is, it has a peripheral character. On the other hand if m; ~ M we
can assume that we are dealing with a central collision. There is
no doubt, at any rate, that if m; is much larger than M, for example
mt = 3M, then the collision has occurred with the center of the nu-
cleus and not with a single nucleon.
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square of the difference of their 4-momenta is small.

An attribute of low momentum transfer in a process
may be non-monotonicity of the particle distribution
relative to the parameter A, and the presence of sev-
eral, say two, maxima in this distribution. Then the
jet breaks up in ‘‘natural’’ fashion into jets correspond-
ing to these maxima. The values of k? transferred
from jet to jet are minimal in just such a ‘‘natural”’
breakdown. To determine k* by formula (3.5b) in the
case of two jets, it is necessary to know sy, Sy, and
cos Om (where 6y is the angle between the momen-
tum of the primary particles and the momentum of
one of the jets in the c.m.s.). In principle, of course,
all these quantities can be determined by measuring
the momenta of the secondary particles. Actually,
however, the requirements this imposes on the meas-
urement of 69 are very stringent, since the term
1 — cos Oy in the expression for k? is preceded by a
very large coefficient. In practice the accuracy with
which the angle 6gq; can be determined at present for
high energies is quite insufficient.

The requirements imposed by formula (3.5b) on the
accuracy with which sy and s; are determined are
much lower, since the first terms contain small coef-
ficients of the type 1/s or 1/s2,

From theoretical considerations it follows that in
the OMA (see Chapter III) k? is of the same order as
the first two terms in (3.5b). Therefore to determine
the order of magnitude of k? it is sufficient to retain
the first two terms of (3.5b), that is, to be satisfied
with the determination of the lower limit, k& ;,. Thus,
if we obtain from experiment a value of k%nin which
is larger than theoretically predicted for k2, this
means that the OMA is not applicable to this process.

Let us consider several cases.

1. If one of the particle groups contains only a nu-
cleon (in this case sy = M%), then the first term of
(3.5b) vanishes and

K =21 (4.17)
In this case, using the conservation laws, we can re-
late k? with the inelasticity coefficient K and obtain
by the same token a simple and effective method of
determining K2. Denoting k? for this process by k%\},
we obtain

K2
2 2
k=M —z-

(4.17a)

2. If there are several particles in each jet and sy,
Sg > Mz, then the second term of (3.5b) can be neg-
lected compared with the first, and

K (59— M?) (59— M2) 815
min — s ~ s .

(4.18)
3. If the jets are symmetrical we can use (4.14). We
note, however, that in this case k* can be related also

with the ‘‘generalized target mass’’ m{" proposed
in (897,
in :

29
k2 =4dm}*y2. (4.19)

The quantity mf‘ is defined in analogy with mg¢:
mi =(§ (eri — pricos ;). (4.192a)

The summation, however, unlike in (4.15), extends here
only over particles which belong to the narrow cone in
the laboratory system (the ‘“front’’ cone in the c.m.s.).

3. Fundamental Experimental Results of Recent Years
and Their Significance to the Theory

a) Model of two ‘“fire balls’’ for nucleon-nucleon
collisions. In 1958, a detailed analysis of both types
of plots, namely n(A) and log F/(1 —F), made by the
Krakow group of M. Miesowicz for several jets and
emulsions (and also for jets obtained by others),
interpreted as nucleon-nucleon collisions, has led the
Polish physicists to the conclusion®] that in many
cases the n(A) curve has two maxima. This analysis
was continued (%97 with the same result. During the
last four years enough material has been accumulated
in this field to confirm and refine the foregoing conclu-
sion (although still disputed by many experimenters).

If we select the jets in accordance with the criteria
adopted by the Krakow group for the separation of
nucleon-nucleon collisions of sufficiently high energy,
namely if we stipulate the following: (1) not too many
slow recoil protons, Ny =< 5; (2) not enough relativ-
istic charged particles to be able to suspect collisions
with the center of the nucleus, 5 < ng = 20; (3) vy, de-
termined from the half-value angle exceeds 23 (if this
is a true symmetrical collision of the nucleon-nucleon
system, then the cases with Eg, > 10 eV are sepa-
rated by the same token), then it turns out that all the
material accumulated in the world’s laboratories
amounts to about 200 cases. The nucleon-nucleon
collisions amount here to 35% of all the jets with v,
>23 (N =5 and 5 <ng = 20). Seventy per cent of
these have a half-width o) > 0.6 in the A scale.*

Inasmuch as ng = 20, it is clear that a statistical
reduction of each individual jet is not reliable. None-
theless, we can conclude (special methods were used
to group the material) 0911 that all the nucleon-nucleon
collisions with o) > 0.6 agree with the two-maximum
distribution in A. Figure 18 shows a summary histo-
gram of 11 jets (a total of 138 charged particles) for
23 <y < 90 (102 < Ey, < 1.5 x 10!) from the first re-
port of [8] showing a total half-width oy ~ 0.55 (con-
sequently, since o) > 0.39, the distribution as a whole
is not isotropic in the c.m.s., but is rather strongly
collimated). The histogram can be divided into two
practically identical curves with appreciably smaller
o). It was shown subsequently that such a structure
(of course, with very large fluctuations ) agrees with

*These figures were obtained and kindly supplied by Professor
J. Gierula (Krakow), to whom we are very grateful.
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FIG. 18. Summary data showing a distribution with two maxima
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FIG. 19. Diagram showing the distribution in the case of two
cones, displaying two maxima.

the data for many individual jets. This picture is

shown schematically and in idealized fashion in Fig. 19.

The interpretation given for this structure by the au-
thors of L8] is based on further details of this struc-
ture. It turns out that the pertinent Duller-Walker
curve for each individual jet has the character shown
in Fig. 20 (we show here two jets from the Krakow

" laboratory and one from Chicago). On the other hand,
if we consider separately the particles in the front
(Fig. 21a) and in the rear cone (Fig. 21b), then both
groups lie on a single straight line with a slope cor-
responding to the isotropy of the scattering of each
subgroup in the c.m.s.

Starting from this, the authors propose the follow-
ing scheme for the process. Actually the particles in
each jet are generated in two centers, in two clusters
of nuclear matter, in which the decay occurs independ-
ently. The particles are scattered isotropically in the
c.m.s. of such a cluster, but since the centers move
relative to each other, a front and rear cone are ob-~
tained in the c.m.s. of the entire jet. The velocity vy
of each cluster as a whole in the common c.m.s. is
determined from the distance of one of the maxima
from the center of symmetry of distribution (Fig. 19),

F
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FIG. 21. Summary Duller-Walker plots shown for the front
(*‘narrow’’) and rear (‘‘broad’’) cones separately.

and is expressed usually by the corresponding Lorentz
factor y in the c.m.s.

As can be readily verified, the relativistic formula
for addition of velocities

vy - o3’

Vol3
1 j:——cz

U=

corresponds to a formula for addition of Lorentz
factors

'Y1='Y2Ya:tVY§—1V‘Y§— 1=v2v, (1i ”ﬁ';a ) .

(4.20)

Using this formula to calculate the y-factors y; and
¥, of the individual clusters in the c.m.s. of the entire
jet, from their y-factors y4 and vy, in the L system,
we get

V==V =D —1), Ye=v2vc — V(2 — 1) (vi- 1),

from which, assuming yf > 1 and, as is customary,
that ¥, = ¥ = ¥, we can obtain the approximate for-
mulas

1
Ye="1vz lgve=5 (g vi+lgva),

Y= V== VY2
) n=Ye=y 2 Vv
This parameter y is small, while y, itself, as already
noted, exceeds 23, so that ¥ <« ys. Additional experi-

mental material has made it possible to construct the

4.21)
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FIG. 20. Duller-Walker plot for individual jets, which show
a two-maximum distribution,
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following table, which still cannot be regarded as re-
liable (921

E; (eV) 1011 1012 1013 1014
4 l

The idea was expressed 93] that the decaying clus-
ters are colliding excited nucleons, as had been as-
sumed long ago in several papers (34,817 Subsequently,
however, the opinion accepted was that inasmuch as
Y < ve and K is small, these clusters, at least in the
majority of cases (a special case is, for example, the
‘“lean jets,”’ see below) are separated from the pri-
mary nucleons, that they are emitted by the nucleons
and explode like meteors or fire balls. Further, the
experiment was interpreted at the very outset[68] in
the sense that the produced pions have in the ¢.m.s.
of the cluster approximately the same energy ¢,
which can be easily estimated by starting from the
already noted constancy of the transverse momentum
of the pions. The estimate yields

v 1,2 1,5 2

ex~0.5BeV~1 M. (4.22)
In such a case, since there are ng /2 charged pions in
each cluster, and if we include the neutrals the number
is 34+ ng particles, the mass of the two clusters is

2-%-%n,-%M=%Mns, 4.23)
and their energy in the common c.m.s. is % Mngy. If
we assume that the energy 2E of the primary nucle-
ons in the c.m.s. is correctly given by the position of
the symmetry center of log vy, that is, 2E = 2y,M,
then we can determine from this the inelasticity coef-
ficient K —the fraction of the nucleon energy which
goes over into newly formed particles:
3 ng
K=+ —Yl . (4.24)

Summarizing the results of these investigations and
the properties of the above-described two-center or
fire ball model, we must emphasize once more that
owing to the smallness of ng in the nucleon-nucleon
collisions, only very few individual jets have a struc-
ture close to the ideal one shown in Fig. 19. There is
undoubtedly an appreciable spread in the half-widths
of all the jets o) (as already mentioned, it exceeds
0.6 in 70% of the cases). It is by no means possible
to state that the described mechanism actually occurs
in all cases.* Moreover, there is a known case when

*In more than half of the cases, a nucleon-nucleon jet ob-
served in emulsion has a rather disorderly appearance and it is
impossible to construct not only a two-maximum but even a smooth
single-maximum distribution with respect to A. The widths ¢, for
the same values of Ef, have a variety of values, from oy, = 0.4

spherically symmetrical scattering of all the particles
in the c.m.s. is observed at very high energy Ey, ~ 10
eV.[%] This clear-cut case certainly does not fit the
two-fire-ball scheme.

Although the two-maximum character is sufficiently
reliably established for the greater fraction of jets, the
notion that the clusters that are scattered (and sepa-
rated from the two primary nucleons) decay independ-
ently remains a plausible model possibility. At this
point we encounter a difficulty which is particularly
pronounced in the analysis of nucleon-nucleus colli-
sions (see below).

It must be emphasized that the existence of two
maxima in the A scale is a subtle effect, which does
not reduce at all to the presence of two narrow cones
(front and rear) in the ¢.m.s. Thus, the usual hydro-
dynamic Landau theory also predicts for the central
nucleon-nucleon collision two narrow oppositely di-
rected cones, but with such an angular distribution
n(4), that in the n scale (meaning also in the A scale)
we get a single-maximum Gaussian curve [853, and the
plot of log (F/(1—F)) is a straight line with unity
slope. Whether the hydrodynamic theory can be modi-
fied in such a way that in the A scale, with A = log v,
(corresponding to ¢ = r/2 in the c.m.s.) we get a
maximum and not a minimum is an unsolved problem.

b) Comparison of the fire ball model with theory.
We thus assume, subject to the stipulations made
above, that a considerable part of the nucleon inter-
actions at 10'2—10%% eV (by far not all of them) are
described by the model of two fire balls. We shall
attempt to compare the characteristics of such a
process, obtained by experiment, with the proposed
theory:

1) With the hydrodynamic theory of frontal nucleon
collision.

2) With different variants of the OMA: (a) with the
two-center model, which assumes that the nucleons
are a part of the excited clusters; (b) with a one-
meson scheme in which two virtual pions experience
a central interaction (Fig. 15); (¢) with a one-meson
scheme in which two virtual pions experience a one-
meson two-center interaction (Fig. 16); (d) with the
multiperipheral model taken in its literal sense;

{e) with the same model containing heavier clusters.

In this comparison we can make use of the experi-
mental values of the inelasticity coefficients K and
the squares of the momentum transfers k2.

In the fire ball model, the K are small for bothnucleons
and of the same value, Kjah ~ Kyyir ~ 0.1—0.3, show-

(isotropy of the entire c.m.s. distribution) to oy~ 1.2 and more.
This means that there exists some scatter in the initial conditions,
perhaps (as indicated earlier (*]) determined by some parameter
(for example—we are citing this exclusively by way of an example
—the impact parameter). In the ‘‘fire ball’’ model we can assume
that two clusters are always formed, but sometimes—owing to the
smallness of 3, and y,—the two maxima almost overlap.
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ing immediately the nonapplicability of the initial hy-
drodynamic theory of central ‘‘frontal’’ collisions of
two nucleons. Indeed, this theory prescribes a dis-

tribution in the form [cf. (4.7a)]
__mnz 2,82 (A—log v,)?
n 20?,1(8) 2,3

= an ¥V 2n on V20
with

dn 204 d, (4.25)

s

03=0.56In 57+ 1.6.

Accordingly, the distribution with respect to A has a
single maximum (with half-width o) = 05/2.3 approx~
imately to 1.0 for Ep =102 eV and s = 2ELM ~ 2000).
Each nucleon carries away after the collision an energy

ey ~ M exp ‘/1.12111% ,

which is only M/u times larger than the average me-
son energy, so that the inelasticity coefficient is very
close to unity:

1—K&2exp<—%lnm%+]/lnw%>.

These two facts exclude the central hydrodynamic
collision scheme for jets of this type, at least in the
form that follows from Landau hydrodynamics.

Let us proceed to different variants of the OMA.
The two-center model with identically excited nucle-
ons (Sec. 2a) is immediately excluded, for in it the in-
elasticity coefficients are large and the multiplicity is
small (when E ~ 10'% eV we have n ~ 10).

To discuss other variants it is important to know
the values of the momentum transfer in the fire ball
model. We are talking of three values of the squared
momentum-transfer: k,, k§3, and k?u. In view of the
symmetry of the process we can assume that kfz = Kki,.
To determine these quantities we use (4.17a) and
(4.18).

If the extreme groups are simply nucleons, then
according to (4.17a) we have for K= 0.3

(4.26)

k= K}, = kx~0,1M%~ 5p?, (4.27)

If the nucleons are excited to the state of isobars with
masses M = vs; = 1.3 BeV, then we must start from
the expression

(Emin =S¥ M) 7% 2 (4.272)
The value of s, is obtained here as the difference be-
tween the square of the energy and the momentum of
the entire system. If the total momentum of the two
average clusters (the energy of each being yMyy) is
equal to zero, and the momentum of the second nucleon
after collision is approximately equal to its energy

(1 —-K)Eg, then we get

sz=(2&m,m}+(1 —K)E)—((1—K)E.)?

= 4INEaY? -+ 4Meny (1 — K) Eo, sm,,,‘=—§’~ns.M. 4.27h)

Substituting the experimental values, we obtain (for
Ep =102 eV, K= 0.2, ng =14, My7z =5M, and y
=1.5)

k%,~0.28 M*®

(when Ef =10% eV, ng = 20, My = 7.5, and ¥ = 2
we get ki, ~ 0.14 M*).

For the quantities k2; we obtain much larger num-
bers. We can use here formula (3.5b), in which we must
put sy =85 = smfm and s is taken to be the square of the
sum of the 4-momenta of the colliding pions k;, and
kg, §—s = —(ky + kg ). Since we have assumed
that the total momentum of the two-pion clusters is
equal to zero, we also have kyy + ks; = 0. But the en-
ergy of each of these pions is equal to KE; or, what
is the same, to yMyrr. Thus, § = (2yWrr)?. As a re-
sult we obtain for Ep, ~ 10%2—~108 eV, M;; ~ 5M, and
Yy~ 1.5-2,

2 Mhn 2%
B = ~ (B —AME. (4.28)

Let us compare these values of k%, and k¥; with the
results of variants (b)—(e) in the OMA.

The process shown in Fig. 15 corresponds to vari-
ant (b). It could lead to two ‘‘fire balls’’ if a cluster
that decays with formation of two maxima in the Lan-
dau scale is produced following a central collision of
the virtual pions. However, the only existing theory
of central collisions is the hydrodynamic theory in all
its variants, and it leads to a single-maximum distri-
bution. It is possible, to be sure, that allowance for
viscosity[*€], allowance for the dependence of the ve-
locity of sound on the temperature (such a possibility
was indicated in a private conversation by G. A.
Milekhin), or allowance for the resonant interaction
between the particles in the final stage of their moving
apart can lead to a two-maximum distribution. These
possibilities, however, have not yet been sufficiently
well investigated, and we must state here that the
process of Fig. 15 is difficult to reconcile with the
model of two fire balls. '

Variant (c) of the OMA corresponds to the diagram
of Fig. 16. In this case we naturally obtain small in-
elasticity coefficients for the nucleons, and two maxi-
ma in the A-distribution. The value of k35, as in gen-
eral in the two-center model (see Chapter III) (with
a c.m.s. energy E. . = 2y, of the two colliding
pions) can be of the order of

s 2M?

R Ty 0.5212.

This is noticeably smaller than the experimental
value ki; = (3—4) M2,

We note that in variants (b) and (c) the diagrams of
Figs. 15 and 16 should also give a constant contribution
at higher energies. In order to check whether this is

*An analogous estimate was obtained for kZ, in ["7*°].
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so, it is necessary to ascertain whether the two-maxi-
mum structure is retained and whether the quantity ki
varies at high energies.

Some information can be obtained here even now.
Recognizing that M, = % Mn/2 and n = 3ng /2, we
can rewrite (4.28) in the form

2 __i 2 (3ng\2
k=M §> : (4.28a)
If, as is customarily assumed, ng ~ EY4 and v is

given correctly by the table that follows Eq. (4.21) and
consequently, also varies approximately like Eiﬁ“, then
k3; does not vary with the energy.* However, these
data are not sufficiently accurate to be able to draw
final conclusions.

Let us consider now the multiperipheral model
() and (e)].

The literally-taken AFST model (where we assume
st ~ 0.5 MZ) cannot claim any agreement with experi-
ment, as was already mentioned in Sec. 4 of Chap. III.
First, the cross section at Ep, ~ 1012—10% eV is ob-
tained too small (see page 21); second, the angular
distribution in this model has not two but many max-
ima and has too large a width in A coordinates (see
page 22). Third, in this model the values of k* should
be small, on the order of k? < sy = 0.5 M2.

The model with the heavier clusters (variant e)
comes closer to the experimental fire ball scheme.

At E1, = 10! eV the main contribution is made in this
model by the process with two intermediate 77 knots
(that is, a diagram of the type of Fig. 16). The masses
of the 77 knots, M, ~ Vs, = (4—5)M; correspond
in this case to the observed masses of the fire balls.
Within the framework of the model, as indicated above,
k%; may differ from k), and ki;, and can exceed them.
Thus, this model agrees with the fire ball scheme if
E1, ~ 10'% eV. It must be emphasized that in accord-
ance with this theory the number of fire balls should
increase at higher energies and the angular distribu-
tion becomes multi-centered.

We note that variants (c) and (d) reduce for Ej,
=10 eV to a consideration of the same diagram of
Fig. 16. Therefore the decision as to which variant
corresponds to reality can be made only at a higher
energy.

¢) Presence of two maxima in the nucleon-nucleus
collision. It was shown as far back as in 1958 that a
two-maximum structure is encountered also in the
case of nucleon-nucleus collisions. [?7,%8] By now
rather extensive material has been systematized fe9]
on nucleon-nucleus collisions (distinguished by the
fact that N > 8, and in the mean it is much larger,
Np 2 15 and ng > 40). At energies Ey, > 1012 eV
some 50 or more charged particles are produced

*A recent analysis of experiments has recently led Czech in-
vestigators [**] to the conclusion that the quantity k2, (4.28a) can
actually be constant.

here in one act. The n(A) distribution is therefore
constructed with sufficient certainty. A scatter in
the values of o) is again observed for the entire
curve. However, in those cases when the width is
large, o3 > 0.9, two maxima are always observed
clearly, with the same qualitative characteristics as
in the nucleon-nucleon collision, approximate equality
of the particles in the front and rear cones, isotropy
of the scattering in the proper system of each cone,
the same average energy for each of the particles in
the proper system of the cluster, € = M/2, ete. (Ac-
tually, in the rear cone there are a few more particles
and the cone is somewhat more collimated. But this
can be attributed to distortion due to secondary inter-
actions in the material surrounding the nucleus, since
the particles of the rear cone leave the channel pro-
duced in the nucleus relatively slowly).

The general qualitative similarity between the
nucleon—nucleon and nucleon~heavy nucleus collision
patterns is so great that we are again induced to turn
to the model of the two fire balls produced by the pions.
Indeed, we can imagine that, as in the case of the
nucleon-nucleon collision, the pion of the incident nu-
cleon interacts with the group of pions of the target
nucleus, and the nucleons themselves (their cores )—
both the incident nucleon and the target nucleons —
take no part in this process and retain a considerable
part of their energy (101011 Fayoring such a pattern
are experiments which show that the nucleon retains
a considerable fraction of its energy even following a
collision with an iron nucleus 1021 Continuing in anal-
ogy with the nucleon-nucleon collision, we can state
that in the OMA this pattern corresponds to the dia-
gram of Fig. 22, where the nucleus is shown by a set
of lines of individual nucleons. We recall that this
picture of the interaction between the nucleon and the
nucleus is preferable also from the point of view of
the MMP (if we assume the correspondence between
the OMA and the MMP discussed in Chap. III).

However, several questions arise in a2 more detailed
examination of this mechanism. First, it is difficult to
understand how a collision between several pions re-
sults in only two clusters which are furthermore of
equal size and decay isotropically. Such a symmetry

Nucleus

Y /

FIG. 22. Possible scheme for formation of a cluster in a one-
meson interaction with a nucleus.
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could be ensured, naturally, by the hydrodynamic the-
ory. However, as emphasized above, in those forms in
which the theory is developed, it yields only one maxi-
mum in the angular distribution (in the A coordinate).

To describe the two sharp maxima, each containing
many particles, it would be necessary to modernize the
hydrodynamic theory, as mentioned in the preceding
section. This question has not yet been sufficiently
thoroughly treated. To this end it is very important,
first, to determine more accurately and more reliably
the energy retained by the nucleon after interacting
with the center of a sufficiently heavy nucleus. There
is no doubt that the two-maximum structure in the
nucleon-nucleus collision is one of the most interesting
experimental facts, which so far has received not even
a heuristic explanation.

d) ‘“Lean jets’’ and excitation of one cluster at high
energies. The second of the new facts are the proper-
ties of the ‘‘lean’’ jets. Improved procedures, which
made their study possible (emulsions interleaved with
lead), led to a detection at Ep, > 102 ¢V of such jets
with ng < 5, in which there is one excited center,
yielding 2—4 charged particles, and a second center
yielding 1—2 particles1%2]. They are so far apart in
Ay~ Yc) that they should be regarded more readily
as the decay of excited nucleons rather than an explo-
sion of ‘fire balls’’ emitted by the nucleons, or else
as a decay of one ‘‘fire ball’’ and weak excitation of
one of the nucleons (which gives not more than one
additional particle). In this connection mention should
be made of other similar cases, for example the known
“Bristol jet’’[1%] (Fig. 23), where two clusters gave
only three charged particles each, but they were so far
apart in A coordinates (¥ ~ y5/2 ~ 40) that they can
be interpreted as the decay of excited nucleons.

From the theoretical point of view these processes
can be interpreted in two ways. On one hand, they can
be interpreted as the excitation of nucleons in the OMA
[see (3.15) and the subsequent estimates}. Actually

|| J#%2
T2l =4

FIG. 23. ‘‘Bristol jet.”’

there should occur here showers of low multiplicity
and with a very anisotropic angular distribution. On
the other hand, diffraction inelastic processes (see
Chapter V below) also lead to a similar picture.

The scarcity of experimental data (the investiga-
tion of such processes is only beginning) has not made
it possible so far to draw any conclusions with respect
to the preferred interpretation in this case.

As to cases of sharp asymmetry (one cluster) and
considerable multiplicity, the authors of [1%] compare
them correctly with the one-center jets, which were
previously observed at 3 x 10! ev 7], and assume
that this is the same phenomenon but at a higher
energy.

e) Comprehensive study of interactions at Ey ~ 3
x 101! eV. One of the most important latest results is
the proof that front-back c.m.s. symmetry may not
occur in individual nucleon-nucleon interactions. This
proof was obtained[8?] (the research was carried out
on Pamir) through the use of a new procedure: a cloud
chamber in a magnetic field, located above an ioniza-
tion calorimeter. The first results were reported in
1959 (see [1%J) and in more complete form at the end
of 1960.

The average energy of the processed cases is Ej,
~ 3 x 10! eV (the energy was determined by the ioni-
zation calorimeter accurate to several dozen per
cent). Knowing Ej, the entire picture could be trans-
formed to the c.m.s. It was observed here that in ap-
proximately half the cases the number of particles
emitted forward and backward was approximately
equal (Fig. 24a), in one-quarter of the cases the par-
ticles moved predominantly forward, and in the other
quarter backward (Figs. 24b and ¢). Knowing all the
energies and assuming that the 7 mesons can be ac-
counted for by a factor 3/2, it is possible to calculate
the inelasticity coefficients Kiap and Ky,jpr for each
individual jet. The authors designate each case by a
symbol in the Kjap and Kpyip frames (Fig. 25) (the
symbols ®, A, and ¥ denote the ¢c.m.s. angular dis-
tributions shown in Figs. 24a—c respectively ). There
is an obvious correlation between the position of the
symbol and the angular distribution, making it possible
to interpret these events in the following fashion 1061,
In the case of Fig. 24¢, a collision occurred between
the target nucleon and the pion from the meson cloud

\ J

a b c

FIG. 24. Symmetrical and asymmetrical jets investigated in
[*”] (scheme).
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of the incoming nucleon. The latter, giving up a pion,
lost little energy (Kgp ~ 0.2—0.3), while the target
nucleon experienced in the mirror system a cata-
strophic collision, Kmjpr ~ 1. This resulted in an ex-
cited cluster, which, decaying isotropically in its
own rest system, produced in the c.m.s. (relative
to which it moves) a backward-directed fan. The
inverse case (Fig. 24b) corresponds to collision
between the incoming nucleon with a pion from the
nucleon cloud of the target (Kpyjy ~ 0.2—0.3 and Kjap
~ 1). These asymmetrical cases can thus be inter-
preted as single-meson processes, in which a virtual
pion experiences a ‘‘central’’ interaction with one of
the nucleons and greatly excites it (see Chap. III).
Finally, among the symmetrical cases of Fig. 24a,
when it turns out that Kyjpr ~ Kjgp, we can distinguish,
on the one hand, the catastrophic collisions with Ky iy
~ Kjgp ~ 0.7, which can be interpreted as ‘‘central”’
collisions of the nucleons, and on the other hand the
cases Kpijr ~ Klagp ~ 0.2—0.3, when it can be as-
sumed that two pions from the clouds of the two im-
pinging nucleons have collided. In addition, the last
process can be regarded as a peripheral interaction
between the virtual pion and the nucleon.

Such an interpretation enables us to estimate roughly
the ratio UC/(TP of the contributions of the central and
peripheral collisions for N and NN interactions. We
represent the cross section of the NN interaction as
the sum of central and peripheral cross sections
crg\%%: UI%N + O'II\I)N. Using the Weizsﬁcker—WilliamsP
@ethod, we can write of = agﬁ) + ogg’, wherg oqip
is the cross section of the one-meson process, in
which the target nucleon ‘‘gives up’’ its meson and
its excitation is known to be little; the inelasticity
coefficient in this case is small. ¢E{2 is the cross
section of the analogous process when the meson is
““given up’’ by the incoming nucleon. The last two
cross sections are proportional to the total cross
section U‘l:\?t of the 7N interaction, which can also be
represented as the sum of the cross sections of the
central and peripheral interactions, of0t = 0§ + of.
Then O'II\I)N will be proportional to the sum of the four
cross sections

C P (1)

P (1 C (2 P(2
ONN OO Oy )‘}‘ OnN )+0nN +0n1\(7 ),

However, in a peripheral interaction between a
meson and a nucleon, the latter is also excited little.
Thus, the two last terms describe identical processes:
showers that are symmetrical in the ¢.m.s. and in
which both inelasticity coefficients are small, with
Kmir ~ Kjap- The cross sections ¢Q(1) and agm
correspond to showers which are directed ‘‘forward”’
and ‘‘backward’’ in the ¢.m.s. The borderline value
Ky will be assumed for concreteness to be Ky = 0.35.
We then have the following:

1) The number of cases with Kpjp ~ Kjgp > 0.35
is proportional to the fraction of central NN interac-
tions; according to Fig. 25, there are 15% such cases.

35
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FIG. 25. K;,p and Ky, for individual showers: @ — symmet-
rical in the c.m.s.; A — directed predominantly forward; ¥ — di-
rected prodominantly backward.

2) The number of cases with Ky < 0.35, Kigp
> 0.35 or Kmijr > 0.35, Kjgp < 0.35 is proportional
to the fraction of the central 7N interactions, of which
there are here 20 + 20 = 40%.

3) The number of cases with Kp i ~ Kjgp < 0.35 is
proportional to the fraction of the peripheral 7N inter-
actions; there are 45% such cases. Using these figures,
we find that

o® 15 o€ 40
(Pla—s~02 (), ~8~*

We note that analogous data for the ratios oC/aP
were obtained from experiments at accelerator ener-
gies %11 [see (3.8)].

In addition, interpreting the groups of cases with
Kmir ~ Klgb ~ 0.35 as a result of collision between
virtual pions, we can extract from the experimental
data the value of the ‘““mass’’ of the pion cluster M
and its c.m.s. Lorentz factor y. It turns out that the
values of M, center about a value My, ~ 4 M. The
values of y are different: for half of the collisions
(namely, in the ‘‘symmetrical’’ cases) ¥ ~ 1.05. In
the ‘‘asymmetrical’’ cases y ~ 1.3.*

From the point of view of the OMA, this process is
naturally considered on the basis of the diagram of
Fig. 15.

This analysis was carried out in [%2] and the theo-
retically obtained values (Myg)eff ~ 3M and y < 1.1
agree well with the experimental figures given above.
Thus, the symmetrical cases agree qualitatively with
the OMA. An increase in the statistics and an increase
in the energy Ej, will apparently permit in the near
future to obtain more reliable data on the structure of
the collision process. We note that although one de-
caying cluster is obtained here, analysis shows fe2]
that in a very large fraction of the cases the nucleon
which has lost little energy turns out to be excited,

(4.29)

*It must be emphasized, however, that symmetrical and asym-
metrical jets are not sharply distinguishable. The distribution of
events with respect to 7 is also smooth, and there is no sharp
borderline between the regions of y.
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with spin and isospin values 3/2, that is, in the isobar
state which usually appears in resonant scattering of
pions by a nucleon in the pion energy region near 2u.
The conclusion that the nucleon which has lost little
energy is usually in the isobar state (3/2, 3/2) and then
decays with emission of a single pion, is an assump-
tion made also in several other investigations [100:107],
Such a decay can explain the existence of high-energy
muons in extensive air showers (as a result of the
decay N* = N+7—N+u+v+ V). The correspond-
ing calculations were carried out{!1®] but comparison
with experiment yielded no definite conclusions so far.
The observed cases of decaying isobars in individual
acts are more convincing[100,106]

f) Existence of the hydrodynamic process. The fact
that the two-maximum jets predominate among the
nucleon-nucleon collisions and the success of the
model of peripheral interactions have cast doubts on
the reality of the Heisenberg-Fermi-Landau hydrody-
namic process. The opinion has been advanced that
this process does not exist at all (the opinion was
based essentially on the desire to explain the observed
inelastic processes by means of a single scheme). The
situation is not so simple, however. It is clear, first,
that the central collisions initially considered in this
theory should be rare events. In the majority of
cases, inasmuch as the impact parameter of the two
nucleons is not small and is of the order 1/u, the
picture should be different. It has been clear for
quite some time that the hydrodynamic description
should be applied to the decay of excited centers
which are produced in peripheral collisions, that is,
an appreciable part of the interactions must be con-
sidered using a mixed scheme, which can be called
peripheral-hydrodynamic (which was indeed used in
(62,1067 and in other investigations). If we apply this
scheme to each cluster (77 fire ball) then, taking
account of the experimental data, we arrive at the
need for using the Heisenberg hydrodynamics in 77
interactions.

On the other hand, we can attempt to apply, as men-
tioned above, the hydrodynamic description to the de-
cay of a heavier cluster and attempt to attribute the
appearance of fire balls to the scattering asunder of
the single hydrodynamic system produced upon colli-
sion between two virtual pions. However, attempts
to modify the hydrodynamies by taking into account
viscosity, etc., in such a way as to explain the appear-
ance of two maxima with isotropic scattering and high
multiplicity, have not yet been successful (%], It is
possible that this could still be attained by varying the
equation of state. There is, however, one property in-
herent in the hydrodynamic process, which is quite
typical, namely that the presence of a traveling wave
should disclose a considerable number of cases (sev-
eral times 10%) in which almost the entire energy of
the primary particles is carried away by a single pion,
and that in one-third of the cases this pion should be
neutral (193, From this point of view, considerable in-

terest attaches to the observations of N. L. Grigorov
and his co-workers[11%], who used an ionization calo-
rimeter to study nuclear-electron cascades generated
in lead and iron by nucleons with Ey, ~ 10'—10%2 ev.
These experiments lead to the conclusion that in 5—
10% of the investigated cases almost the entire pri-
mary energy is transferred to the electromagnetic
cascade, that is, a 7* meson of rather high energy

is first produced. This clearly agrees with the hydro-
dynamic picture and can be interpreted only in very
far-fetched manner as the decay of the nuclear isobar
state (3/2, 3/2) into which the primary nucleon goes over.
Indeed, from experiments with a cloud chamber [67]
(see Fig. 25) it is known that in nucleon-nucleon col~
lisions the primary nucleon jumps forward, retaining
a considerable fraction of its energy in less than half
of the cases. In the case of nucleon-nucleus collisions,
such cases should be even rarer. Further, in the rest
system of the isobar the decay produces a pion with
energy ~ 200 MeV and a momentum of the order of u.
The decay occurs in this system almost isotropically.
In the L system the pion energy is

€ar.= Y5 (2u-- pup cos ¥),

where yp is the Lorentz factor of the isobar relative
to the L system, and ¢ is the angle of emission of
the pion in the c.m.s. Obviously, yg = vy, = E,/M.
Consequently, only in specially favorable cases, when
cos ¢4 ~ 1, can we hope that the pion energy in the L
system will be

gar ~ YL 3 =% E;.

Even in this case it cannot be close to Ep, as is ap~
parently obtained in experiment. One must expect that
further experiments of this type will make more pre-
cise and more reliable the foregoing conclusions.

g) Multicenter jets. Hasegawal’8] advanced the hy-
pothesis that with increasing energy (say, at 101 eV)
the distribution of the generated particles with respect
to A frequently displays not one (as in the case at
3 x 10! eV, see Sec. 3c), and not two (as for 1012—10%1
eV), but four maxima, interpreted respectively as four
independently decaying fireballs. Figure 26 shows ex-
amples of interactions so interpreted. The existence
of such multicenter stars would be of great interest.

It would correspond to the AFST theoretical scheme

of the multiperipheral collision (modified to increase
appreciably the mass of each cluster, see Chap. III).

It is important that the observed values of the distri-
bution widths o, can be reconciled with the model of
many centers only by foregoing the isotropy of the de-
cay of each center in its own rest system and by as-
suming that the pions are emitted predominantly in a
transverse direction. The experimental data are so
far very skimpy and it is by far not clear whether such
a grouping of the tracks goes beyond the limits of sta~
tistical fluctuations. We note that the cited experimen-
tal cases with this appearance are distinct in having a
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relatively small number of particles (for such an
energy).

h) The question of the change in the character of the
elementary act at Ey, R 5 x 10% evV. This question has
been raised by investigations of extensive air showers
of large size (the number of electrons of the observa-
tion level is N = 10%, that is, the primary-particle en-
ergy is ET, 2 5 x 10 eV). Things are far from clear
here and further thorough research is greatly needed.
The entire problem has been discussed in detail in a
recent review by S. I. Nikol’skil [1113, and we confine
ourselves here to a brief summary of the conclusions
of this survey.

Experiments show apparently that many typical
characteristics of extensive air showers change ap-
preciably on going through the indicated energy region.
Thus, the relative number of nuclear-active particles
in the shower changes, the fluctuations in the distribu-
tion of the energy among the shower components de-
crease, the structure of the shower core changes, nar-
row showers with a small number of muons appear,
and the fraction of the energy carried away by the
nuclear-active component decreases. It should also
be noted that the spectrum of the single photons in the
the atmosphere changes at Ef, ~ 10'? eV.L12) This
implies that the nucleon interaction which generates
the photons changes at Ep, ~ 10", ete.

All this may be due, as shown by an analysis [11],
to a change in the elementary act of collision, such
that: (a) the inelasticity coefficient of the colliding
nucleons increases, and (b) additional electrons or
photons appear, as well as muons with energy Ej,
~ 10% eV and with transverse momenta p| < 1018
eV/c.

In this energy region, a change takes place also in
the character of the primary spectrum. However, this
change alone is insufficient to cause the entire aggre-
gate of anomalies. To the contrary, an increase of
20—30% in the cross sections of the nucleons in inter-
stellar matter could explain the change in the primary
spectrum itself.

We note that the threshold Ej, ~ 5 x 101 eV cor-
responds quite accurately to the characteristic weak-
interaction energy at which perturbation theory be-
comes inapplicable. However, the cross section of
weak interactions is too small here to be able to as-
cribe any significance to this coincidence. (3]

Of all the possible causes for the increase in the
fraction of the energy going over into the electron-

photon component and the production of muons, we
point to a mechanism [3,113,114] yhich explains the ad-
ditional electromagnetic radiation as ‘‘black body ra-
diation’’ of a cluster of nuclear matter, which occurs
during the interaction process and decays into pions.
Quantitatively, the role of this mechanism (which in
itself undoubtedly exists) depends strongly on the rate
of expansion and decay of the cluster or, what is the
same, using hydrodynamic terminology, on the equa-
tion of state of the nuclear matter. At the present
status of the theory, this question cannot be resolved
unambiguously in quantitative terms.

4. Conclusion

The experimental data obtained recently offer evi-
dence that the interactions between high-energy par-
ticles are varied and they cannot be fitted in the frame-
work of one scheme.

The hydrodynamic theory of head-on collisions,
which a few years ago was the only developed theory,
is now certainly incapable of describing all (or even
an appreciable part) of the interaction events. How-
ever, it is likewise impossible to state that it has no
possible field of application. There are processes
where it seems essential to use this theory.

Indeed, the decay of a meson cluster containing
10—20 mesons even in a nucleon-nucleon collision
(and on the order of hundreds of particles in a nucleon-
nucleus collision) naturally calls for the use of the hy-
drodynamic treatment. However, even here it may be
adequate only after appreciable modifications. Namely,
in the model of two fire balls the multiplicity and the
angular distribution in the decay of each of the clusters
are such that they correspond to hydrodynamics with
an equation of state different from that assumed by
Landau, and the square of the velocity of sound should
be appreciably smaller than 1/3. On the other hand, if
two clusters result from a hydrodynamic decay of one
larger cluster, then some other singularities should
come into play, for example viscosity, etc.

The theory of peripheral interactions (OMA) con-
tains some still undetermined parameters and there-
fore leads to several mechanisms and admits of many
variants. Its limiting case, the multiperipheral AFST
model, apparently has no region of application in the
form in which it was developed in [717-1]

Different intermediate variants of the OMA, and
primarily the model with ‘‘loaded’’ clusters (the pion
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cluster breaks up not into two pions as in the AFST,
but into approximately 10 pions) agree qualitatively
with many experimental data. It can be assumed that
an appreciable fraction of the nucleon collision proc-
esses at energies 1011—10' eV do not contradict this
model.

The most general and most important property of
the other variant of the OMA —the two-center model
—can be seen in the fact that it predicts small values
of the square of the momentum transfer (which de-
crease with energy) for inelastic collisions, and con-
sequently also for elastic collisions.

In spite of the variety in the OMA variants, it seems
to us that we can still not assume that this approxima-
tion can describe all the interaction acts. Further,
cases are encountered in nucleon interactions when
one energetically favored pion is produced (see Sec.
3f), cases which are difficult to understand in the
framework of the OMA. One can therefore think that
in addition to peripheral processes of the one meson
nucleon-nucleon interaction, which occur in accord-
ance with the OMA scheme, ‘‘central’’ collisions exist
in 10 to 20% of the cases. This estimate is confirmed
also by other independent considerations [see (3.8)
and (4.29)].

Bearing in mind the correspondence between the
OMA and the MMP, referred to above ( Chap. III ),
we can reach the conclusion that in this energy region
the method of moving poles in its canonical form can
likewise not claim to describe all the nucleon-nucleon
interaction processes.

V. CONNECTION BETWEEN THE METHOD OF
MOVING POLES WITH THE DIAGRAM APPROACH
AND THE ONE-MESON APPROXIMATION

1. Formulation of the Problem

The analysis of the MMP (Chap. II) on the one hand,
and of the theory of peripheral collisions based on the
one-meson approximation (Chap. III) on the other,
raises, naturally, many questions.

First among them is the quesfion of the connection
between these two approaches, which lead in the main
points to agreement between the results with respect
to the elastic process, and also the question of what
information can be obtained from the comparison. In
particular, it is important to know whether this com-
parison can clarify the limits of applicability and the
validity of each of the methods, and to attempt to un-
derstand why in some cases the MMP predicts cor-
rectly the experimental facts and in others it leads
to errors.

The second question concerns the structure or the
diagram interpretation of the vacuum reggeon. Over-
simplifying somewhat, we can ask: what particles is
the reggeon made of?

Finally, the third question consists in the following.
In the MMP all the particles (both ‘‘compound,’’ such

as the resonant p and w mesons, etc., and ‘‘elemen-
tary’’ —pion, nucleon, etc.) are regarded from a single
point of view as ‘‘moving poles’’ in the plane of the
complex orbital angular momentum. What new con-
sequences follow from this when peripheral (single-
quantum ) inelastic processes are considered?

At first glance these questions seem to be far
afield. Actually, however, they are related. This is
seen in particular if we consider them from the point
of view of diagram methods. This explains both the
physical meaning of the postulates made in the MMP,
and also the region of applicability of the MMP and
the OMA . *

2. Diagram Interpretation of the MMP

Let us consider the diagram of elastic scattering
through a zero angle, when t = 0, and let us consider
the case of large s (when according to the MMP the
main contribution is made to the amplitude by the
vacuum reggeon). The amplitude is then pure imag-
inary.

Consequently it follows from the unitarity condition
that this amplitude can be represented in the form of a
product (more accurately, a sum of products) of the
two amplitudes of the inelastic process. From the di-
agram point of view this means that the diagram of the
elastic process can be cut in two by a line perpendicu-
lar to the s direction (Fig. 27), and the crossed lines
‘‘are on the mass shell,”’ that is, they describe real
and not virtual particles. (This is designated, as cus-
tomary, by strokes through the lines.) Therefore each
half of the thus obtained diagram represents a diagram
of a real inelastic process.

It already follows from this that when t = 0 the
vacuum reggeon propagating in the t channel (see
Fig. 8) corresponds to the aggregate of the two rec-
tangles joined by the vertical lines in Fig. 27. There-
fore it cannot be described by a Feynman diagram

:
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FIG. 27. Diagram of elastic scattering.

*We must note that some considerations advanced in this
section are not yet fully accepted. In particular, the rapid develop-
ment of the methods has not yet led to a single point of view even
with respect to the MMP,
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which contains only one virtual line. In other words,
the vacuum reggeon consists of at least two quanta,
one of which carries the interaction in the upper
part of the diagram of Fig. 27, and the other in

the lower. How many and which particles really take
part here? By answering this question we not only de-
termine the structure of the vacuum reggeon, but also
explain the character of the inelastic process which
results in elastic scattering of the Regge type.

We recall first that in the MMP we are considering
not Feynman diagrams but the so-called dispersion di-
agrams, where the pion lines lie on the mass shell
(that is, k% = _“2 for these lines ). Further, one of the
fundamental premises of the MMP is the use of the
two-particle unitarity condition in the interval 4 <t
< 16u2.

This means that the process shown by the Feynman
diagram of Fig. 27 is represented in the MMP in the
form of the ‘‘dispersion’’ diagram of Fig. 28. Such a
limitation is also used directly to justify the absence
of other singularities except the moving poles in the
derivation of the relation between the cross sections
(see the appendix). We can therefore say that the
main contribution to the vacuum reggeon, a contribu-
tion without which the reggeon is meaningless, is made
by a state of two pions. In this connection, a vacuum
reggeon is sometimes called a bipion.

N

\ , /

/o

FIG. 28. Diagram corresponding to two-particle unitarity in
the t channel.

If such dispersion diagrams, which take into ac-
count only the two-particle unitarity, are represented
as an aggregate of Feynman diagrams, the latter will
have the same property: the contribution of the process
of Fig. 28 will be made only by those Feynman dia-
grams (Fig. 14) which admit, at least in one place, bi-
section by a line L which crosses not more than two
pion lines. It follows in turn that the Feynman dia-
grams for the inelastic processes that serve as the
basis for the considered elastic process are such that
they admit (at least at one place) bisection by a line
which crosses only one pion line (Fig. 12). But this is
the main attribute of one-meson processes considered
in the OMA; the same class of diagrams is thus con-

AT VERY HIGH ENERGY 39

sidered in the OMA and in the MMP. This gives
grounds for assuming that these methods are equiva-
lent with respect to the character and extent of sim-
plifying assumptions made (65,667

The regions of applicability of both methods should
also coincide in this case, and where the OMA is not
applicable, the MMP can likewise not give good re-
sults.*

In light of the foregoing, it becomes understand-
able that many consequences obtained in the MMP
(shrinkage of the diffraction cone, logarithmic de-
crease of the square of the momentum transfer, and
the relation between the cross sections) can be ob-
tained in the OMA in a manner which is to a consid-
erable degree independent. This was already men-
tioned in Chap. III.

The question remains: what is the place occupied
by many-meson or in general many-particle processes
in the entire picture (as before, we shall call them ar-
bitrarily ‘‘central’’)? Let us consider the Feynman
diagram of an inelastic process, the bisection of which
(perpendicularly to the t line) at any point crosses
not less than N = 2 pion lines. The diagram of the
corresponding elastic process will contain not less
than 2N pion lines. If the aggregate of such diagrams
makes a constant contribution to the cross section
(that is, a contribution proportional to s to the imagi-
nary part of the forward scattering amplitude ), then
the corresponding partial amplitude should have in the
l-plane a singularity at t = 0 and !/ = 1. We note that
such a many-meson amplitude cannot have a branch
point at t = 4,u2. Its partial amplitude on the first and
second sheets of the t plane should therefore be the
same. However, the presence of a pole at the function
f(l,t) on two sheets simultaneously contradicts the
analytic continuation of the unitarity condition in the
! plane. The latter, however, is a unique consequence
of the Mandelstam representation{!®]. Thus, a con-
stant contribution of many-meson processes is not
compatible with the Mandelstam representation and
can raise the question of the need for reconstructing
the latter.

3. Mixed Model

In light of the foregoing, it becomes sensible to con-
sider for the time being peripheral and central colli-
sions separately and to use different formalisms for

*We can attempt to formulate the region of applicability of the
asymptotic MMP (account of one vacuum pole) in the s and t
variables. This will be the region where

s M2
gz > Land ¢ 1oronrs -

It must be borne in mind, however, that from the point of view of
the OMA, the MMP may not be applicable even in this region of s and
t, if for some reason the ‘‘central’’ collisions make a large con-
tribution to the inelastic process in this region.
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their description. In particular, to describe the con-
tribution to the elastic amplitude from peripheral in-
teractions we can use either the MMP or the OMA,
while the contribution due to central collision is ob-
tained by assuming the invariant amplitude of elastic
scattering to be multiplicative: AC = sf(t), that is,
we essentially apply the optical models [61],

Let us explain the physical meaning of the fore-
going, considering the classical diffraction scattering
by a black (or gray) disc from the diagram point of
view.

The inelastic process responsible for diffraction in
this case is merely absorption of the incident wave.
This absorption causes heating of the body and subse-~
quent radiation of softer (thermal) quanta. From the
diagram point of view this process is essentially not
a single quantum one. Indeed, it proceeds via an in-
termediate ‘‘compound’’ state, the existence of which
is possible only if there are many quantum-transfer
acts. Only from such processes can we expect that
the distribution with respect to the quantity t, due to
such processes, will not contract with increasing en-
ergy in the case of elastic scattering.

Peripheral one-quantum (in particular, one-meson)
inelastic interactions have a different nature. The in-
cident particle is not completely absorbed in this case
and no ‘‘compound’’ state is formed. In this sense the
peripheral process does not have a complete analog
within the framework of the classical optical model.

It is therefore clear that the elastic process which it
produces does not have to have all the features of the
classical diffraction scattering by a black disc.

This leads to a consequence which can be verified
experimentally. Namely, if the inelastic processes in
some interactions are well described by the OMA, and
consequently the main contribution is made by periph-
eral collisions, then the elastic scattering should be
well described by the MMP. On the other hand, if the
inelastic processes fit poorly in the OMA framework
(meaning that the contribution of the central interac-
tions is appreciable), then the elastic process should
be poorly described by the MMP. In other words,

there should be a correlation between these properties.

By way of an example let us consider proton-proton
and pion-proton interactions at accelerator energies.
It was noted above (Chap. III) that pp collisions are
well described by the OMA, while the contribution of
central interactions was estimated to be 10—20%. At
the same time, 7 p collisions are much more poorly
described by the OMA. The contribution of central
and peripheral interactions is of the same order here.
In accordance with the considerations developed above,
it should be expected that elastic pp scattering at the
same energies will be well described by the MMP,
while 77p scattering will not fit fully in the MMP
framework.

The experimental data apparently confirm this con-
clusion. It was already noted in Chap. II that in elastic

pp interaction there appeared clearly a shrinkage of
the diffraction cone, and this made it possible even to
determine the parameters of the vacuum pole trajec-
tory. It was also noted that in 7™p scattering the
shrinkage of the diffraction cone was practically nil.
(21] Attempts to describe simultaneously both the
pp and 77 p elastic scattering within the framework
of the MMP only have not been successful (33,211 gyen
with a sufficiently large set of free parameters.

On the other hand, a mixed model was used in [61]
wherein the amplitude of elastic scattering was written
in the form

F(s, )=0FFP (s, t)+-oCFC (). (5.1)

The first term represents here the contribution of the
Regge scattering, identified with the peripheral scat-
tering (index P), and therefore depends both on s and
on t. The second term is the contribution of the cen-
tral collision (index C), in which either the dependence
on s is completely eliminated (‘‘standing pole’’ in the
MMP terminology) or the motion of the pole due to
the many-meson interactions (and accordingly high
thresholds with respect to unitarity ) is so slow that
the s-dependence can be neglected. These two terms
enter with coefficients proportional to the correspond-
ing total cross sections.

The expression for FP(s,t) must be taken in Regge
form, with Z,(t) borrowed, for example, from [20] op
f21] (actually this quantity would have to be determined
anew by applying to the experiment a formula of the
type (5.1), but the error which this procedure intro-
duces in the preliminary calculation is apparently in-
significant). The expression for FC(t) can be taken
from the optical model. In L61] 3 Gaussian distribution
of the absorption was assumed. Thus,

Rt
Uo()—1)1n =2 4 Agt ==
P2 AL et R S (5.1a)

Here A, for t < M?/2 is a constant, A, ~ 1.6/M?2[20,23]
reflecting the additional dependence B(t) in (2.10). The
quantity 0C/cP was already discussed in Chapter III.

It represents the relative contribution of the central
collisions to the total pp and 77p interaction cross
sections. Experimental estimates were yielded by

(3.8) and (4.29)
), (), 02

With such an approach only the parameter R, the ef-
fective radius of the central collision, remains rela-
tively arbitrary. Of course, it can be different for pp
and 7p collisions. However, even if we assume for
simplicity that it has for both collisions a value R

~ 1/2 u, we can explain satisfactorily, within the limits
of experimental error, the older experimental data on
both pp and 77p interactions (20,283,313 More accurate
measurements (211 necessitate either a two—three fold
increase in the ratio (cC/ O'P)7r‘p [ which incidentafly

(5.2)
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comes closer to the estimate in [80] than does (5.2)],
or the use of different values of R for pp and mp
scattering.

The most important aspect of this approach is the
breakup of the elastic amplitude into two different
terms (peripheral and central), the relative roles of
which are determined on the basis of the data on the
inelastic interactions.

Let us discuss some consequences resulting from
the addition of the non-Regge term in (5.1).

First, at high energies, when

s 1 R2 of
e > =t (- —AeHIn gz )

the second term becomes principal even for a small
ratio ¢C/cP, since t < 0. Further shrinkage of the
diffraction cone should then stop; the cross section
for the elastic scattering will not decrease without
limit, but will tend to a constant (to be sure, small)
value. The average value of the square of the momen-
tum transfer will also not decrease without limit, but
will tend to a constant value (Jt{eff ~ 2/R%). On the
other hand, the effective interaction radius is deter-
mined by the peripheral, Regge term and therefore

it will behave as predicted earlier, that is, it will in-
crease with energy. According to estimates based
on (5.1) and (5.2), all the foregoing properties should
appear for pp scattering at E1, 2 50 BeV.

Second, at low energies and small values of [t],
the role of the first (Regge) term can be appreciable
also in mp interactions. Therefore some shrinkage
of the diffraction peak can occur also for 7p scatter-
ing in the region of small s and t. In this region,
however, the expression for FP, which is contained
in (5.1), may turn out to be incorrect for other rea-
sons, merely because the contributions of other poles
cannot be neglected when s is small.

Third, relations (2.18) and (3.14) between the cross
sections for the interaction of different particles, due
to the presence of the non~Regge term, should gener-
ally speaking not hold. They remain in force only for
the cross sections of the peripheral interactions.

It must be noted that although qualitatively the
foregoing properties of the collisions follow from the
general considerations concerning the presence of

ferent nature. Thus, in the OMA (Chapter III) we have
already talked of an interaction via exchange of K me-
sons and other particles. In the MMP, however, these
interactions are due to the corresponding moving poles.
It is not clear whether this fact that the poles move is
taken into account in the OMA. On the other hand,
there is a known class of inelastic interactions inves-
tigated in the MMP. We have in mind the inelastic
diffraction processes, which until recently were con-
sidered independently of the one-quantum processes.
[115-118] The experimentally observed diffraction gen-
eration of pions in nucleon collisions[1?%], called quasi-
elastic nucleon scattering, was interpreted within the
framework of the MMP as being due fo reggeon ex-
change [12:122]  yet a general analysis, which covers
all the inelastic processes in a single scheme, is pos-
sible (1283, It is based on the application of the MM P
to inelastic processes which proceed via exchange of
any of the poles which represent a ‘‘stable’’ (pion,
etc.) or ‘‘compound’’ (p meson, etc.) particle. The
idea used here is that the inelastic processes repre-
sent mutual scattering of two initial particles with
masses my and m,, accompanied by conversion of
the particles into two ‘‘particles’’ with masses My
=+vVs, and M, = Vs, , which then decay in an inde-
pendent process to form the final particles. Such a
‘‘scattering’’ act is shown by the diagram of Fig. 29.
It was regarded as the cause of the main class of in-
elastic collisions in the OMA, where ‘‘scattering’’ was
assumed to be realized via exchange of a meson (see
Chapter IIT), and as the cause of diffraction generation
in the MMP, where ‘‘scattering’’ is assumed to pro-
ceed via reggeon exchange[121,122]  Here, however, we
shall regard Fig. 29 as a ‘‘Regge’’ diagram even for
exchange of a ‘‘stable’’ particle. This means that the
amplitude corresponding to such a diagram will be
calculated not by following the Feynman rules, but the
rule of correspondence between the imaginary part of
the amplitude, say (2.11a) and (3) (see the appendix),
and the diagram of Fig. 8 representing it. We see
(this was already mentioned in Chapter II) that in
place of the propagator .

D (k?) = (k24-m?)~1,

which corresponds in accordance with the Feynman

many -meson interactions, which become superimposed
on the Regge or one-meson interaction, the very break-
up of the amplitude into two sharply distinct parts, ex-
pressed by (5.1), and also the quantitative estimates,
are of course merely rough approximations and serve
primarily only for illustration.

4. Inelastic Processes in the OMA and the MMP

Let us proceed now to the third question formulated
at the beginning of the section, that of the relative role
and difference in the character of interaction via par-
ticle exchange and general exchange of quanta of dif-

J 4

FIG. 29. Inelastic interaction due to reggeon exchange.
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rules to an intermediate particle, we use here the
function
oyl 4+ it

2 sinml

Further, the vertex part contains a Legendre polyno-
mial Prjt)(z) of order Ij(t). The technique of oper-
ating with Regge diagrams[%4:28] has been developed
only for the simplest cases, when the process can be
represented by a diagram with one intermediate reg-
geon—a ‘‘particle’’ with definite parity, strangeness,
isospin, and baryon number. The angular momentum
of the reggeon—the ‘‘spin’’ Jj —is not included among
these quantum numbers, since it changes when t is
varied.

The Feynman and Regge diagrams coincide when
t = m? (when the quantum transferring the interaction
can be regarded as real). We note also that the Feyn-
man and Regge diagrams would coincide everywhere
if the pole of the corresponding quantum were to be
standing, lj = const = Jj.

The region t = m? > 0 is the unphysical region of
the direct s channel (where s is the square of the en-
ergy and t is the square of the momentum transfer).
In the physical region, as already noted, an appreciable
contribution is made by the values ~t « m?. In this
region the Regge one-particle diagram can be reduced
to a one-particle Feynman diagram and, strictly speak-
ing, a contribution must be made by the many-meson
Feynman diagrams which ensure that 7;(0) differs
from Jj. However, the closer the employed region of
negative values of t, t < 0, |t| < m?, comes to the
value t = m}, that is, the smaller the difference I;(t)
-Ji =~ m% the smaller is this contribution (for pions,
for example, this difference is of the order of u?/M?
~2x1072).

Using the rules for operating with Regge diagrams,
we can write in following fashion the cross section for
the inelastic processes due to exchange of the i-th
quantum, For simplicity we confine ourselves to the
case when only one of the primary particles is excited,
sy = m? (the so-called single-jet processes)*. Then

2.2 2 il (e
o y sgm Ty 1+e
m—S Dopdh2f* T (7) <*sm?a,.— Py, (ney ()01 (50 &%)

X [(sg—m2-H k2)2--ban2k2] 2, (5.3)

This expression differs from that obtained in the OMA
[for example (3.7)]. However, the replacement of the
propagator (k?—-m?)7! by another function is of no

significance and appears only when k? + m} > M?, and
this region makes a small contribution. The presence
of the Legendre polynomial of order li(kz) in the co-
sine z of the angle in the crossing channel, on the

other hand, plays an essential role. The value of z is

*It is shown in ['?*] that the deductions obtained for single-jet
processes are valid also for two-jet processes.
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given by (2.6¢). In the most important case when s,
> m? and k? « m}, it simplifies considerably:

7~ r%s% (5.4)

Of decisive significance in what follows is the fact
that, as we have seen in Chapter III, the main contri-
bution to the cross section for the inelastic one-quan-
tum collision to the integral (5.3) is made by the re-
gion of values of k? for which

B~ (5.4a)

and s, are large. In such a case z is small, z ~ 1.*
Accordingly, the function Py;(z) ~ 1 is also small
(see also L125]), This factor is then insignificant and
(5.3) coincides completely with the expression obtained
in the OMA [for example, by integrating (3.7)].

The factor Pli(z) appears only in the region where
z is large and increases with increasing energy. We
can put there

~ zli (hz),

Pli(M)2 (55)

It can be shown that in the same region there will ap-
pear effects connected with the motion of the poles
corresponding to different elementary particles. We
can state beforehand that in this region, too, the main
contribution will be made by quantum exchange, for
which Re I(k?) is a maximum as k?— 0, that is, ex-
change of a vacuum reggeon.

Integrating (5.3) over all the final states (for which
it is necessary to integrate with respect to s, and k%)
we obtain the total cross section

inl, 2
o=2\awe, (1) P@sids, (5.6)
where we put C; = mf%0(s,, k?) and assume, since very
small k? are effective when o(s,, k?) ~ oy, that C,
= const.

Expression (5.6), as expected, is analogous to the
expression for the elastic cross section in the MMP
[the integral of the square of the modulus of the am-
plitude (2.11a)]. The only difference is that there is
an additional integration over the degree of excitation
S9.

In order to investigate the process in greater detail
let us consider first the region of small s,, where z
is large. It is necessary to agree here on the manner
in which z increases with increasing energy, with in-
creasing s.

*This exceedingly important circumstance constitutes the
main difference between inelastic processes of this kind, which
make the main contribution to the cross section, and the elastic
processes (and also accordingly the quasielastic processes
such as diffraction generation investigated in [*****?]) where z is
always large when s > =, z ~ s/(t — 4m?*) >> 1. Thus, at large
excitations (s, large) z is of the order of unity, while at small ex-
citations and in the limit of elastic scattering (R; = m;) z is large.
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In the region where z increases in proportion to s,
as can be seen from (5.4), s, should be bounded. The
contribution from this region to the integral (5.6), as
can be verified, will decrease with the increasing en-
ergy in power-law fashion.

If z increases very weakly with increasing s, for
example if we consider the region where z R (s/2m?)¥
with v « 1, then the substitution Py(z) = z! will be
valid only at very high energies, which are of no prac-
tical interest. It is therefore sensible to confine one-
self to an investigation of the region z 2 (s/2M?)Y
with v~ 1—v ~ Y,

The contribution to the cross section (5.6) from the
vacuum reggeon will in this case be equal to

Gy

O = T (5723

(56.5"
The contribution from other trajectories will decrease
in power-law fashion with increasing energy. For ex-
ample, the contribution made to this region from one-
pion exchange (for which I;(0) = —pu?/M?) will be

(n)_< s )“2”_3__“1;_&
OV =\Mr ) VInE Tn (5/2MY pf

(5.6%)

We can thus conclude that at high energies the con-
tribution of the vacuum reggeon, that is, of the inelas-
tic diffraction processes, is predominant in interac-
tions with small excitation (small multiplicity ). How-
ever, even this contribution decreases logarithmically
with increasing energy and cannot ensure a constant
cross section. This is to be expected, since the cross
section for elastic scattering itself (the consequence
of which are the inelastic diffraction processes) de-
creases in the MMP logarithmically with increasing
energy.

We note also that the inelastic diffraction process,
which proceeds via exchange of one reggeon, makes a
corresponding contribution, in accordance with the uni-
tarity condition, to the amplitude of elastic scattering
(which in this case contains exchange of two reggeons).

It is shown in %72 that in this case there appears
in the function f;(t), in addition to a pole, also a
branch point (cut) at = 1. This contradicts the main
premises of the MMP and has been recently the cause
of lively discussions, as already mentioned before
(see page 12).

Thus, the main contribution to the cross section of
the peripheral interactions is made by the region z
~ 1, in which the predominant process is one-pion ex-
change and the OMA is valid.

The expression for o{™ contains a large coefficient
M*4/u4, not contained in the expression for o{vVac),
which describes an inelastic process that proceeds via
a vacuum pole exchange.

This is connected with the fact that in the case of
pion exchange we have in the region kK2 —0

1

M2
sinwl . pE >1

and in the case of exchange of a vacuum reggeon this
quantity is of the order of unity.

We can therefore conclude that at moderate energies
(on the order of several dozen BeV), even in the re-
gion of small excitations, z 2 (s/2M? )Y, the contribu-
tion of the diffraction inelastic processes cannot pre-
dominate. Thus, we can expect that these processes
will manifest themselves distinctly only when (u2/M?)
s/2M? ~ 1, that is, for Ey, ~ 20—30 BeV. In this re-
gion they were actually observed (1201,

We now can formulate the main attributes of pe-
ripheral diffraction in elastic processes, which en-
able us to distinguish them against a background of
other interactions.

a) The quantum numbers of the clusters—isospin,
charge, strangeness—cannot differ from the corre-
sponding quantum numbers of the colliding particles
0211 This follows directly from the fact that the cor-
responding quantum numbers of the vacuum reggeon
are equal to zero. Consequently, the charge transfer,
etc., is excluded from these processes. In particular,
in the diffraction inelastic interaction between nucle-
ons, isobars cannot be produced directly with isospin
%,, only with isospin ¥. It must however be noted that
the same takes place for any diffraction generation,
not only the one obtained by reggeon exchange. This
property appears already in the phenomenological
analysis of such processes [116,118]

The spin and parity of the clusters can differ from
the spins and parities of the colliding particles. This
is connected with the fact that I(k* — 0) — 1 for the
vacuum reggeon and consequently it can cause momen-
tum transfer.

b) The excitations s; and s,, on which the multi-
plicity depends, are strongly limited by the condition
z 2 (s/2M?)¥ [in conjunction with (5.4) and (5.4a)).
Their effective values are of the order of magnitude
of M%(s/2M2)17Y that is, (s/2M2?)” times as small
as in the case of one-pion exchange in the region z
~ 1 which is fundamental to it. In this connection, the
diffraction mechanism of the inelastic processes (ex-
change of a vacuum reggeon) can be significant only
for relatively lean jets.

c) Finally, as already noted above, when z ~ 1 the
components of the momentum transfer are the same
in order of magnitude: k} ~ k2 + kf.

At small excitations, z » 1, these components are
essentially different, namely ki > k*-k}. We recall
that ki = ¥, s6% (where 6y —angle between the mo-
mentum of the primary particles and one of the jets)
and kﬁ —kg =848, /5. Both quantities can thus be meas-
ured experimentally. The inequality k]?_ > kﬁ — k(z) can
be used to clarify the mechanism of the process.

For an experimental observation of diffraction in-
elastic processes at accelerator energies, an original
procedure for indirect study of the inelastic processes
was developed [2%] (described in detail in [22]). What
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were essentially selected were ‘‘lean’ jets, that is,
cases in which one nucleon is not excited at all, and
the other is excited to the resonance state. It turned
out that only isobars with isospin T = 1/2 (and spins J
=%, and %,) are produced in this case; isobars with
spins %, %, are not formed. All this agrees with the
attributes listed above and gives grounds to regard
these processes as proceeding via vacuum reggeon
exchange[121],

At higher energies, in cosmic rays, the experimen-
tal data are not sufficiently clear-cut to separate these
relatively rare processes unambiguously. The princi-
pal role should be assumed here by one-pion exchange
(for pp collisions ) in conjunction with central inter-
actions (for 7p collisions).

Thus, on the whole, it is possible to answer the
questions raised at the start of this section.

APPENDIX

1. As was already detailed in the footnotes of
Chap. II, the amplitude A(s,t) for the elastic scat-
tering of two scalar particles of mass m is best
expanded in partial waves in the t-channel

As, n="2U+) i(®P1(z), z=cosBy 1)
J3

If, as assumed in Chapter II, this amplitude describes
in the t channel an even state, A = A,, then the terms
with odd I should be missing. On the other hand if the
state is odd, A = A_, then there are no terms with
even [. We can therefore write

Ay (s, 1) =-;— 2 @141) (1 4 e 1) (1) Py (2). (2)

l

This sum can be written in the form of a Watson-
Sommerfeld integral

A, 0= S fo B @y EE Lh@a, @)
where the integral is taken over the contour I' in the

! plane (see Fig. 5). I the functions f (I,t) are ana-
lytic in the right half plane (where they have only poles
and decrease sufficiently rapidly as |I|— «), then the
contour can be deformed in such a way that the integral
breaks up into two parts, the integral along the line C
and the sum of the residues at the poles of the function
f.(1,t) (see Fig. 6).

Elastic scattering unaccompanied by charge ex-
change in the s-channel corresponds to an even state
in the t-channel. We shall therefore consider hence-
forth the function f, (I,t). Assume that it is expressed
in the terms of the poles i and the residues rj at
these poles in the following fashion:

f+(l t)"z l l (t)

Then

btioco N
1 iml
A 0= | e nereD Ll NO¥L
+ X0 tfn*ﬂ, Py @) @L+1). )

i

For s > m? and |t| — 0 we have

S

The asymptotic expression for Py(z) is of the
form [14]

r (i) g TOIED o
Varat+y | 20t

(we put cosh n = z). If the sum over i contains one
higher-order term with a largest real part (that is,
there are no two or more terms with identical real
parts—there is no crossing of the poles, see above),
then the remaining terms can be neglected.

We can also verify that the first term in (4), that is,
the integral along the straight line C, where Re I =b
= const, makes a contribution of the order of sb, which
vanishes as s — « compared with the contribution
from the poles (inasmuch as b < Re !j). Thus, in the
asymptotical region there remains only the contribu-
tion from the highest-order term—the extreme right

pole. When t < 4m? we have
14ciho 5 \lo()
sin nl, ( 2m2 ) '

From the condition ¢ — const as s — « it follows that
1g(0) = 1. Indeed, if ;=1 for t =0, then

, 3m s Iy
nmi B (i)

We recall that O{n) =n-1!, I'(2)=T(1)=1, and

Py (z)=P; (cosh )=

T (20y1-1)
20T (lg 1)

Ar (s, =5 r®) Qlo+1)

12n2

0=%1ma, ¢ 0=, )(2mz>l° Ot o
We call attention to the following circumstances:

a) If two particles of mass m and u are scattered
in the s channel {for concreteness, m > u, so that in
the t channel this is the process involving conversion
of two particles of mass m into two particles of mass
©), then z ~ 2s/4m? for t < 4mu. Then the cross
section is of the form

1
o= 12ty (0) - (62)
b) If the state in the t-channel is odd, but 7_(0) =1,
then we have in (6) in place of the factor

1+einlo
sin i,

the factor
4 inl-

sin nl__

Then as t — 0, first, this factor will tend to infinity,
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and second, the real part of the amplitude will be much
larger than the imaginary part. It follows therefore
that states that are odd in the t-channel cannot ensure
the correct asymptotic behavior of the scattering in
the s-channel.

2. The unitarity condition for the partial amplitude
is of the form
t—am?

Maofe. @

ao—fo=2%n0m0=2 1/

Here w =Vt is the energy in the t-channel ¢c.m.s.
This relation is valid for* 4m? <t < 9m?, that is, in
the interval where two particles can exist, but the in-
elastic processes cannot occur as yet and there cannot
be even three intermediate particles.

When t < 4m? the quantity f;(t) is real (for real 1
and t).

This relation can be illustrated by the diagram of
Fig. 28. The strokes denote that the particles are
real, that is, k! = —m? for these particles.

The analytic continuation of this condition to the
complex I plane is of the form (Gribov[10])

10 o—pras o=2 Y =2 0 g pan . O

It follows from (8) that the function f(I,t) tends to
infinity (that is, has a pole) when

—_ 2
Uy - 2 l/t f’" .

We investigate the behavior of £(I,t) near the pole[16],
We represent f(Z,t) in the form

™ ()

r® __ and g @, D=1 ©

fd, t)‘:l_lo ©

For v (t-4m?)/t <« 1 we can assume that Im r(t)
< Re r(t) and consequently r*(t) = r(t). Substituting
(9) in (8) we get

r(6)=1Im & (¢). (10)

It follows therefore that when t > 4m? the quantity
1,(t) cannot be real (the pole cannot be on the real
axis); in the opposite case the value of the residue
r(t) is equal to zero. In addition, it follows therefore
that the sign of the imaginary part of [y(t) is connected
with the sign of the residue [that is, the function r(t)].
It is shown in (18] that rv/ (t —4m?)/t is positive when
t > 4m?, This is connected with the fact that the total
cross section in the s~channel is positive. Thus,

Im {)(t) >0 when t > 4m? (we note that the same con-

dition, according to Regge, occurs also in the nonrela-
tivistic case). When t < 4m?, r(t) and 1o(t) are real.
This determines the analytic properties of the function
Iy(t): it has a branch point when t = 4m?, and t ac-

*If the particles are not scalar but pseudoscalar (say pions),
then the transition from two to three particles is forbidden by G-
parity. Then the next possible state includes not three particles
but four, and the next threshold is equal to 16m?>.

quires a positive imaginary part when t > 4m? Wwe
note also that ,(t) should be bounded for all values

of t on the upper (physical) sheet (in the opposite
case A(s,t) ~ sl would have an essential singular-
ity on the physical sheet, in contradiction to the Man-
delstam representation). Taking this into account, we
can draw in the t plane a cut from the point t = 4m? to
the right and represent [y(t) in the form of a Cauchy
integral, after which we can assume that the integral
over the semicircle of infinite radius vanishes

et ML),
=1+ S e (11)
im2
We already took account here of the condition y(0)
=1 referred to above. Consequently,
aly (1 . 1 ¢ Iml
gl() t=0=lO(0)=Y=? S mt";ﬁdt,' (12)

im2

It follows therefore that y is positive and cannot vanish
(otherwise we would have

Im I, (¢)=0 (13)

and the residue would vanish). In other words, [,(t)
cannot be a constant, that is, the pole cannot be
‘‘standing.’’

2. Let us consider now the relation between several
processes. Let the amplitude f;;(l,t) describe in the
s-channel scattering of particles of mass p (we desig-
nate these particles with the index 1), let fy,(Z,t) be
the scattering of the particle of mass m by a particle
of mass m (we designate it with the index 2), and let
f55(1,t) be the scattering of particles of mass m (for
concreteness let m > pu). Then in the two-particle in-
terval the unitarity relation takes the form

T —4u?
T @ D—fh (%, =2 ]/” @ amer s, (4a)
fz, —fl (%, )=2 ‘/t—_tﬂ fu s DR (¥ 0, (14b)
f 0—fhar 0=2 ) 5 s 0 nmar 0. (l4c)

These relations follow directly from the diagrams
of Fig. 30, in which the intermediate states are iden-
tical and consist only of two light particles (other real
states in this interval are forbidden by the conserva-
tion laws ).

Solving this system of equations, we obtain

i (3% 9 i

fu (, f)= — = s (15a)
_. I—1(t
12 l/t—i:iizf’{l(l*, 1) o)
* (l*v t) rio
f12 2y t)= 2 = , (15b)
— [— Iyt
T VA N S
fitt, =i e, o421 )/ LB B G
1—2 1/ = e
= (1% O T2 (15¢)
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FIG. 30. Dispersion scattering diagrams. Straight lines—
nucleons, wavy lines—pions.

where

1 —4p2
ry=p ‘/t—__tm'g—i, rio=pfls ro=p2i l/t :m (f1z (2%, 1)),
1
man=[1-t—nwg] 5 Vi

As s — « and for small t the elastic-scattering am-
plitude will be of the form

s N\t
A“=ru (21+1) zig(t) =) 3}‘“ (m) 0 N (163.)
o (1) s\ (16b)
Ayp=rio(20-H1) 23~ 3re prom ,
lg (¢
Agg=ry5 (2014+1) 21200 x 3rpp < 2,;2 ) o (16¢c)

It follows therefore that all the functions have a pole
ly(t) in one and the same place, in the I-plane,

In other words, the pole trajectory [ (t) is univer-
sal and for large s it should determine the asymptotic
behavior of the amplitudes of arbitrary strongly inter-
acting particles. Further, it follows from (16a)—(16c)
that the residues are related by ryry, = rl,. The total
cross sections of the processes connected with the
amplitudes Aj; of the optical theorem

Gij=—{g? Aij,
will therefore be connected by an analogous relation,
which was already cited (2.18):

Gy4-Ggp== 0ty (17)
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