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THE Second All-union Symposium on Wave Diffrac-
tion was held June 4 through June 9 at Gor’kii; it was
sponsored by the Commision on Acoustics of the Acad-
emy of Sciences, U.S.S.R., together with the Scientific-
Research Institute for Radiophysics at the N. I. Lo-
bachevskii Gor’kii State University.

Academician V. A. Fock and V. D. Kupradze, mem-
ber of the Georgian Academy of Sciences, were among
the 314 persons participating in the work of the sym-
posium. Altogether, representatives of more than 30
cities of the U.S.S.R. took part in the symposium.
Moscow sent the largest delegation ( 133 members),
followed by Leningrad ( 66 members) and Gor’kil ( 63
members). The majority of those taking part in the
symposium were young. Despite the presence of many
older scientists, the ‘‘average age’’ of the delegation
members was only 33.

More than 120 reports and communications were
read ( 20 more than at the first symposium, held in
1960 at Odessa).

In addition to the plenary sessions, the following
section meetings were held at the symposium: asymp-
totic methods, mathematical problems, nonstationary
problems, diffraction by various solids, the physical
theory of diffraction, diffraction by a sphere, numer-
ical methods, diffraction by a wedge, propagation in
layered media, periodic wavy surfaces, wave-guide
problems, simulation and propagation of radio waves
along the surface of the earth, periodic lattices, pro-
pagation of waves in plasma and other media, statisti-
cal problems, diffraction by plasmas, radiation of
electromagnetic waves, diffraction by gyrotropic
bodies, and statistically uneven surfaces.

The symposium was opened by Professor G. D.
Malyuzhinets, chairman of the diffraction section of
the Commission on Acoustics of the U.S.5.R. Academy
of Sciences; he presented greetings to the symposium
participants from the chairman of the Commission on
Acoustics, Academician N. N. Andreev, who was un-
able to attend.

The Acoustics Commission, said G. D. Malyuzhi-
nets, had always counsidered it useful to havea joint
discussion of questions dealing with diffraction, i.e.,
the behavior of various types of waves, by representa-
tives of the different ‘‘wave’’ branches of science and
technology. For many years it has been traditional
for the wave-diffraction sections of the All-union

Acoustics Conferences to hear reports from scientists
working in the fields of electromagnetic, elastic, and
hydrodynamic waves, as well as from mathematicians
concerned with the development of methods for solv-
ing wave problems. In 1960, Odessa was host to a
gathering unique in the history of world scientific
practice: the Joint Symposium on Wave Diffraction of
the Acoustics Commaission, held in conjuction with the
Acoustics Institute of the U.S.S.R. Academy of Sciences,
and the Odessa Electrotechnical Institute for Commun-
ications. Just six months later, in April 1961, a simi-
lar symposium was held for the first time in the U.S.A.
The success of the first Joint Symposium exceeded
expectations. About one hundred reports were heard
and discussed. The important results of the symposium
included: the extension of experience and wave-investi-
gation methods known in some branches of science and
technology to other branches and raising of the scien-
tific level of wave research in all sectors owing to the
special attention devoted to problems of methodology
at the symposium.

It was especially gratifying to see the way in which
physicists and mathematicians drew together; this
occurred as a result of joint discussions at the sym-
posium and continued subsequently in seminars on
diffraction theory organized in the mechanico-mathe-
matical faculties of Moscow and Leningrad Univer-
sities. In view of the well-defined tendency of modern
science toward expanded application of ever more
precise and powerful mathematical methods, it is ex~
tremely important from the viewpoint of future diffrac-
tion investigations that physicists and mathematicians
come together in this manner. Countless diffraction
studies, by their specific nature, fall into some given
field of physics or technology: acoustics, radio engi-
neering, etc. At the same time, many other diffrac-
tion problems and, in particular, the majority of theo-
retical studies, border on mathematics and must be
regarded as general scientific questions, and in parti-
cular problems of methodology. The wave-diffraction
symposia were devoted to the discussion of precisely
such questions. Naturally, these symposia did not ex-
clude consideration of diffraction problems in spe-
cialized conferences, where experimental and techni-
cal details characteristic of a given field could be
discussed intensively, but such topics were of less
concern than the general methodological questions.
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It was a stroke of good fortune that the present con-
ference was held in Gor’kil, where the tradition of the
Mandel’shtam -Andronov school of the physics of os-
cillations, which considers oscillatory processes of
any type from a single point of view, is especially
strong.

The first plenary session heard G. 1. Makarov’s
survey report ‘‘Some Problems of Diffraction and
Wave Propagation.’’ The next plenary session heard
the reports of P. Ya. Ufimtsev, ‘‘Physical Theory of
Diffraction,”” and V. D. Kupradze, ‘‘One Method of Ap-
proximate Solution for Certain Diffraction Problems.”’
The report of P. Ya. Ufimtsev surveyed the results of
an approximate solution to diffraction problems for
convex ideally conducting bodies with surface discon-
tinuities. The problems considered fall into the qua-
sioptical region, and represent a refinement of an
approximation from physical optics. The problems are
based on well-known results from the mathematical
theory of diffraction, but make use of self-evident
physical considerations as to the nature of scattered-
field formation. Special consideration was given to
the scattering of a plane electromagnetic wave by a
thin cylindrical conductor (dipole) of arbitrary length,
and the author indicated that the solution, which allowed
for multiple diffraction, was suitable not only for di-
poles nearly a wavelength long or longer, but also for
dipoles short in comparison with the wavelength. V.
D. Kupradze discussed a new method proposed and
developed by him, using as an example the diffraction
of elastic oscillations in the steady state. The author
assumed B; to be a finite plane or three-dimensional

region with a closed boundary S of the Lyapunov type
and B, the infinite complement of region B; formed
by the rest of space; specifying at point x in region B
a time-periodic source of elastic oscillations of fre-
quency w, he determined the displacement (as well as
stress) fields produced in Bg by the action of the
source in the presence of an empty inclusion B; in
the elastic region Be.

The solution to the problem is obtained in the form

u(x):% S ¢ (¥ TyT (2, ¥, @) dSy+E (2, z,), z€B, (1)
S

where the vector ¢(y) is found from the functional
equation

= Lo nre v, 0 +EE =0, z¢Bi (2

S
u(x) is the displacement vector, Tu (x) is the stress
vector at point x; I'(x, y, w) is a known fundamental
solution for the system (*) ( more accurately, a
matrix of fundamental solutions), and Ty is the stress
operator taken at the point y, i.e.,

Ty=2u a—’il—l—kndivy-i—p (ny x curly)

(ny is the unit normal at point y); the products that
y
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occur in the integrands of (1) and (2) are products of
a vector and a matrix. Making use of the basic prop-
erties of elasto-potentials ( elastic potentials) and the
theory of singular integral equations, the author re-
ported that (2) has a solution in the class of vectors
that satisfy the Hoelder condition, that this solution
is unique, and that when introduced into (1) it yields a
vector satisfying the conditions:

1) pAw(z)+ (A-+p) grad div u (2) + 02 () =0.

2) The limiting value of Tu(x) on S, when point
x approaches x; on S from without ( i.e., from Bg),
equals zero:

l Tu (z) ]e:O lBeax—beES'

3) u(x) - E(x; x,) satisfies the radiation condi-
tion at infinity.

In contrast to ordinary integral equations for bound-
ary-value problems of the elliptical type, functional
equation (2) possesses special properties that makes
it amenable to approximate solution by reduction to a
system of algebraic equations linear in ¢(y;). After
projection upon the coordinates axes, this system be-
comes a system of 2N (for the plane problem) or 3N
( for the three-dimensional problem) linear equations
in the components of the sought vectors ¢ (yi),

k =1, 2, 3. When the values found for ¢,(y;) are
introduced into (1), we obtain an approximate value for
the displacement vector u(x) at an arbitrary point x
within Bj. A numerical check of the method, carried
out by solving boundary problems with known solutions,
has established that it yields a very good approximation
(for example, when the Gauss quadrature formula with
16 ordinates is used, the approximate values agree
with the precise values to the sixth decimal place).

V. S. Buldyrev and I. A. Molotkov have developed a
method for isolating and ‘‘Investigating the Nonanalytic
Portions of a Wave field in Nonstationary Diffraction
Problems.’’ They analyzed the precise solutions to
typical problems of diffraction by a transparent cylin-
der and sphere, which take the form of Fourier series
whose coefficients contain cylindrical functions. The-
orems dealing with the reconstruction of the nonanaly-
tic portion of the function from the asymptotic expan-
sion of its Fourier coefficients make it possible to
construct converging series that describe the analytic
portion of the wave field in the neighborhood of special
field surfaces, which in the illuminated portion of space
are the normal wave fronts, and in the shadow zone are
the so-called sliding fronts. In the illuminated portion
of space, the first terms in the series obtained give
the geometric-optics approximation. In the neighbor-
hood of a caustic, the nonanalytic portion of a wave
field is described by associated Legendre functions.
An investigation of expressions describing the non-
analytic portion of the wave field in the shadow zone
made it possible to study in detail the nature of the
wave-field intensification in the neighborhood of the
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sliding fronts. It was established that the wave field

is included in the shadow zone continuously, together
with its derivatives. In problems concerning the pro-
pagation of waves in a ! inhomogeneous layered half-
space with an analytic refractive index of refraction
that rises monotonically in arbitrary fashion, the
authors investigated a solution in the form of an
iterated integral. The integrands are the solution to

a linear differential equation with variable coefficients.
By using the general properties of solutions to such
equations, the authors were able to obtain for the non-
analytic portion of the fields an integral representation
that can be investigated by asymptotic methods. Simple
functions were obtained that describe the increase in
the wave field behind the sliding front, depending upon
the properties of the index of refraction. Similar re-
sults were obtained in problems of diffraction by
bodies bounded by coordinate surfaces S (the system
of coordinates is assumed to permit separation of
variables in the wave equation) with boundary condi-
tions of the form U|g= 0. The methods developed

for studying the nonanalytic portions of a field can be
applied successfully to diffraction problems whose
solutions take the form of infinite series or improper
integrals. _

In recent years, antenna-synthesis problems have
acquired great importance in connection with the need
for creating small highly directional antennas. These
problems amount to the determination of classes of
radiation patterns that can be realized precisely with
the aid of various types of antennas ( discrete, linear,
plane, etc.), and to finding the 'distribution of sources
realizing these patterns; the calculation of distribu-
tions of sources ( currents or fields) in antennas that
create patterns representing sufficiently good approxi-
mations to any given patterns ( that do not belong to
the class of realizable patterns); the study of questions
connected with antenna ‘‘superdirectivity;’’ the exami-
nation of optimum patterns and methods for realizing
them.

In their survey report, L. D. Bakhrakh and Ya. N.
Fel’d reported on the antenna patterns found feasible
for antennas with linear and plane apertures, as well
as for some systems of discrete radiators. Thus, for
example, in the case of linear antennas, the patterns
realized belong to the class of entire functions of finite
degree which are absolutely square integrable along
the real axis; given such a pattern, it is possible with
the aid of the inverse Fourier transformation to deter-
mine uniquely the distribution of sources and the size
of antennas. Similar results are also obtained for
antennas with two-dimensional plane apertures, where
the pattern realized determines uniquely the distribu-
tion of sources and the form of the aperture plane.
Less study has been given to the systhesis of antennas
with two-dimensional curved apertures and three-
dimensional source distributions. When the distribu-
tion of sources providing a pattern that is a good ap-
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proximation to a given arbitrary pattern is found,
where in general the pattern does not belong to a
realizable class, the size and shape of the radiating
aperture are also specified. In this case, the solution
is arrived at by employing the method of integral
transformations ( Fourier, Hankel, etc.), or the method
of partial patterns. In the latter case, the specified
pattern is approximated by a portion of a series in
special functions (partial patterns) for each of which
an accurate solution to the synthesis problem exists
and can be found. The desired distribution of sources
is obtained here as a superposition of the partial dis-
tributions corresponding to the individual partial pat-
terns. Where the given directivity pattern and dimen-
sions of the radiating aperture are arbitrary, rapidly
changing source distributions with very large ampli-
tudes at isolated points may be obtained. With such
distributions, the system may have high reactive power,
and there may be an increase in the extent of the near
induction zone and, consequently, the directivity pat-
tern may be extremely critical with respect to very
small changes in source distribution. Such systems
are called ‘‘super-directive’’ and are almost impos-
sible to realize. Closely related to question of ‘‘super-
directivity’’ is the problem of creating a nearly-di-
rectional antenna that occupies minimum volume for

a given bandwidth. Patterns are called optimal when
they do not require for their realization ‘‘supernatural’’
source distributions and satisfy various practical re-
quirements as well as possible. Methods of construc-
tive function theory are widely used in solving such
problems. Recently, there has appeared the problem
of synthesizing swinging-beam antennas, in which it

is necessary to obtain a given pattern for a specific
beam speed; it has been necessary to synthesize anten-
nas with special phase patterns and relatively uniform
amplitude patterns, etc. In these cases, Fourier inte-
gral transformations are normally employed.

Those attending were greatly interested in the re-
port of V. A. Fock, G. D. Malyuzhinets, and L. A.
Vainshtein, ‘‘Lateral Diffusion of Shortwaves at a
Convex Cylinder.”” The problem of cylindrical-wave
diffraction at an arbitrary convex cylinder is solved
by the authors in ray ( evolute) coordinates. If the
radius of curvature of the cylinder on the path of the
diffracted wave is sufficiently large in comparision
with the wavelength, we can neglect the longitudinal
diffusion of the wave amplitude and use a parabolic
equation ( instead of an elliptical equation). Further
transformations (going over to a ‘‘natural’’ dimension-
less variable or a bilinear transformation) separate
one more small quantity that characterizes the rate
of change of the curvature. When this quantity is neg-
lected (it equals zero for a circle and for a special
type of spiral whose radius of curvature is proportional
to the cube of the arc measured from the focus) we
obtain a standard type of parabolic equation with separ-
able variables, which can be solved exactly with the
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aid of the Airy function. Analyzing the limits of ap-
plicability for this solution, the authors concluded that
it was necessary to supplement the solution ( near the
boundary between light and shadow at large dimension-
less distances from the point of tangency) with another
solution, written in ‘‘natural’’ variables.

The report of G. N. Krylov examined methods of
calculating the electromagnetic-field structure for
actual antenna arrangement under steady-state and
nonstationary conditions. In both cases, the antenna
field (one-, two-, or three-dimensional) is constructed
with the aid of the tensor Green’s function, while the
matrix elements that represent the tensors are inter-
preted as attenuation factors for the corresponding
electric and magnetic field components of elementary
dipoles directed along the three cartesian axes. The
method proposed makes it possible to find the com-
ponents field of any antenna on the basis of a standard
program for the matrix elements (in the cylindrical
coordinate system, there are seven independent ele-
ments in all), if we assume that the antenna currents
are given. It is proposed to find a solution for the
nonstationary state for the general case of stratified
paths by a frequency method, with Filon’s method used
for integration with respect to the frequency. The ac-
curacy of this method depends on the pulse length AT
and the width of the frequency spectrum Aw; a numer-
ical check by forward and inverse transformation
showed the accuracy to equal 1% for AwAT = 27 x 102,
In conclusion, the author analyzed matrix elements for
the steady-state and nonstationary cases for a homo-
geneous ground; here ( clearly a unique case) it proved
possible to employ a time-domain approach to the con-
struction of the solution.

In his report, ‘‘The Application of Wiener-Hopf-
Fock Type Integral Equations to Certain Diffraction
Problems,”’ V. I, Talanov surveyed studies in the
theory of diffraction of waves at semi-infinite imped-
ance structures permitting propagation of surface
waves. As examples, he considered problems of sur-
face-wave excitation by the open end of a waveguide,
diffraction of waves by a surface-impedance step in
shielded systems, and diffraction of waves by an im-
pedance half-plane. In his report, ‘‘Toward a Theory
of Nuclear Diffraction Processes,’’ A. G. Sitenko dis-
cussed the fact that the interaction of nucleons and
nuclei in energy regions for which the nucleon wave-
length is considerably less than the nuclear radius
has diffractive character. Thus, various nucleon-
nucleus interactions and, in particular, inelastic pro-
cesses, can be described on the basis of a diffraction
method developed in analogy with the Huygens principle
of optics. This diffraction method admits of generali-
zation, making it possible to account for the semitrans-
parent nature of the nucleus, as well as the Coulomb
and spin-orbit interaction of nucleons and nuclei. By
taking spin-orbit interaction into account, it may be
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possible to explain the polarization phenomena occur-
ring in various nuclear processes. The.optical para-
meters of nuclei can be connected directly with an
amplitude that characterizes pair interaction between
nucleons, and with the distribution of nucleons in
nuclei. Thus, the imaginary part of the optical poten-
tial is expressed in terms of the nucleon-nucleon
scattering amplitude and the spectral distribution of
the space-time correlation function of the fluctuations
in nuclear nucleon density. Such an approach enables
us to allow for the effect of the Pauli principle and of
interaction among nucleons in the nuclei upon the
nuclear optical parameters.

Most interest was attracted by the section at which
‘““asymptotic methods’’ were discussed. At present,
the asymptotic treatment of diffraction problems in-
volving stationary harmonic waves makes more and
more frequent use of the ray coordinates proposed by
G. D. Malyuzhinets in 1946, and the associated dif-
ferential equation for transverse diffusion of the com~
plex amplitude along the front of the propagating waves,
an equation which asymptotically describes the diffrac-
tion phenomenon in the narrow sense of the word. Inthe
case of shortwave diffraction by convex bodies, we are
especially interested in finding the field in the shadow
and half-shadow regions, since the very simple solu-
tion obtained with the geometric-optics approximation
normally proves adequate for the illuminated region.
The problem of finding an asymptotic representation
of the wave field just in the shadow and half-shadow
regions with the aid of the transverse diffusion equa-
tion is simplified by the fact that in this region the ray
coordinates are evolute coordinates. In this connec-
tion, a difficulty appears when we attempt to avoid con-
sideration of the diffraction field in the illuminated
region, where the ray coordinates are not evolute co-
ordinates and the transverse-diffusion equation takes
a more complicated form. In his report, G. D. Mal-
yuzhinets proposed a generalized localization principle;
he had already mentioned the principle briefly at the
Odessa symposium. According to the generalized
localization principle, an asymptotic representation of
a diffraction field in the shadow and half-shadow re-
gions is independent of the form of the incident wave
outside a narrow region containing the entire boundary
of the geometric shadow. On the basis of this princi-
ple, which figures in the basic conditions of the dif-
fraction problem, the incident-wave amplitude func-
tion can be replaced by another analytic function
coinciding asymptotically with the initial function only
on the boundary of the geometric shadow. As the re-
port showed, using the example of a plane problem of
diffraction by a cylinder, we can use for this function
the solution to the transverse-diffusion equation in
evolute coordinates, a solution that holds everywhere
outside the cylinder; the form of this solution was
shown for the case of a fluid cylinder of arbitrary
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shape. The application of the generalized localization
principle and its justification are given in the report
for the example of cylindrical-wave diffraction in a
region that branches around a rigid circular cylinder.

1. G. Yakushkin considered the problem of ¢‘dif-
fraction of a plane wave incident upon an infinite cone”’
in the direction perpendicular to its axis. The Max-
well equations for the field components in the shadow
and half-shadow zones are‘written in ray coordinates,
which are introduced for the region of space bounded
by an infinite cone, in accordance with the generalized
Fermat principle. A parabolic equation, solved by
separation of variables, is introduced for the individ-
ual field components. The approximate field-compo-
nent values obtained are quite close to the true values
in the shadow and half-shadow zones at large distances
from the apex of the cone. On the boundary of the il-
luminated zone, the solution coincides with the results
obtained from a calculation by the formulas of geo-
metric optics. In the half-shadow zone near the sur-
face of the body, the equation reduces to the form ob-
tained by Fock in his study of plane-wave diffraction
by an arbitrary convex body. It is possible to general-
ize the solution to the case of arbitrary plane-wave
incidence upon an infinite cone, and \also to allow for
the finiteness of the cone with the aid of Keller’s dif-
fraction-ray method.

B. E. Kinber and A. A. Federov showed that for
identical body cross-section profiles, there is a cor-
respondence between the solutions to the axially sym-
metric and two-dimensional ( cylindrical) problems
both for the scalar (acoustical ) and arbitrarily pola-
rized electromagnetic waves in the shadow zone. Be-
yond the focal focusing region, bordering on the axis
of symmetry, the difference between the solutions for
the axially symmetric and cylindrical problems lies
in the geometric-divergence factor 1/vhg (hg is the
Lamé factor), in the amplitude on the light-shadow
boundary (this is connected with the fact that the in-
cident field is cylindrical in one case and spherical in
the second), and in the effect of source directivity
(for electromagnetic waves). The solutions found for
the sphere and paraboloid coincide with solutions
known previously obtained with special assumptions
as to the positions of the points of radiation and ob-
servation. In his report ‘‘A Local Method of Calcula-
ting the Field of an Acoustic Wave Reflected from a
Boundary at Angles of Incidence Close to the Limiting
Angle,’’ B. Ya. Gel’chinskiil examined the problem of
reflection of a stationary acoustic wave from a plane
interface; the wave front (the equiphase surface) has
arbitrary shape for the case Q;,,, ® /2. It is as-
sumed that the field u, of the incident wave is given
and is described by a ray series. The local coordi~
nates 71, 7, vy, are introduced, where 7t is the eikonal
of the corresponding wave, 7 = sinfjjy, and v is the
angle formed by the plane of incidence with some
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initial plane. If we assume that the field of the re-
flected ( refracted) wave u can be represented in the
form u(r, 9, v)=U(7, 1, v) elwl and that the deriva-
tive du/8n is large, we can obtain impedance-type
local boundary conditions. The reflected-wave field
can be found at any point in the medium as the solution
to an approximate parabolic equation with given bound-
ary values, or with the aid of Green’s formula, which
is technically simpler. For the refracted wave, the
local boundary conditions determine the values of the
transmitted-wave field for n < 1 and the screened-
wave field for n > 1. The field Uj;j,, within the
medium is found by a method similar to that used for
the field u. Where n =1 ~ € and € — 0, the re-
fracted-wave front glides along the boundary and ex-
cites a frontal (lateral) wave. Local boundary condi-
tions are obtained for the field U, of the frontal wave,
in which U, is expressed in terms of Ujjy,. The value
of U, is next determined at any point in the medium.
Using a solution constructed by a recursion method,

it is possible to find the field of a wave propagating

in a multilayer system with arbitrary boundaries and
reflected from a plane boundary.

V. M. Babich gave ‘‘a rigorous mathematical justi-
fication for the geometric-optics approximation in the
plane case.”” He assumed that U(x, y, k) is the solu-
tion to the problem

B+ U=—d(z—=, y—u),

*

sv -
on |x,yes

Vr %—ikU\ — 0 for ry 224y — 4o
7

(S is a convex, sufficiently smooth closed boundary,
while x; and y)n are the coordinates of the source of
oscillations), used Arsello’s method to set up an in-
tegral equation for the function U| XyeS» whose kernel
is small at,large k, and solved the equation by the
method of successive approximations, deriving an
asymptotic formula for U/g with a remainder-term
estimate that is uniformon S ( as k — + =), The
asymptotic formula obtained by the author holds for
the illuminated region and for the half-shadow region.
If we know U| %, yeS» we may use Green’s formula to
study the behavior of U(x,y, k) as k — « outside
S. In the illuminated region, the standard geometric-
optics approximation was obtained for U(x, y, k).
Deep within the shadow, these methods yield only a
rough estimate U = o(k™¥%), V. S. Buslaev considered
the shortwave asymptotic approximation of the Green’s
function G(x, x’, k) of the external Dirichlet problem
for the Helmholtz equation on a plane, and obtained a
rigorous justification for the main terms of the asymp-~
totic approximation in the illuminated and in half-
shadow areas. This required an improvement in the
known asymptotic formulas: he gave an asymptotic
approximation Q(x, x’, k) of Green’s function for

any location of the points x and x’.
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Yu. G. Gukasov and 1. V. Sukharevskii found an
asymptotic solution to the problem of diffraction of
short electromagnetic waves by an ideally conducting
surface covered by a thin dielectric layer or a layer
of a material with finite conductance. The'thickness
of the layer 6 is of the order of 1/k (k is the wave
number). The solution obtained makes it possible to
represent the vectors E and H as products of oscil-
lating exponential factors and asymptotic series in
powers of a small parameter. The coefficients for
these series are found alternately in the layer and in
air by a recursion method, each step of which consists
of elementary operations. In practical calculations, it
is sufficient to take just the first term.

In many problems connected short-wave diffraction
it is necessary to find the asymptotic approximation
( as k — + «) for multiple integrals of the type

@ (k)= S g [RE (L) f (o 2 day L dan,
C

where F is a real function and C is some region in
the n-dimensional space E®. An asymptotic approxi-
mation was found by M. V. Fedoryuk for the case in
which C = ED and F has only simple saddle points.
He also investigated the asymptotic approximation for
integrals describing the field near a caustic and taking
the form

® (&, a)=S...R

C

eF (X1 - X, W) gz, @) day ., dEn,

where « is a real parameter, lal < 6,k = + =

for small o = 0. The function F has two saddle points
that merge at « = 0; the functions F and f are regu-
lar in the neighborhood of the saddle points, the con-
tour C passes through the saddle points and lies in

the complex space Ch; on its boundary, Re(iF) < - ¢
< 0, V. M. Drekov used the asymptotic expansion of
the integral

= g \ F@ Y dzay
A

for k > 1 to solve one diffraction problem in which
the phase function &(x, y) has an extremum, but is
not differentiable at some point in the region S.

The well-known asymptotic formulas of Hankel,
Debye, Fock, Laguerre, et al for the Hankel function
H‘)‘,’ (kr) can be regarded as asymptotic representa-
tions of the partial solution el¥® H‘;)(kr) of the Helm-
holtz equation for a constant value of the variable ¢.

Another type of formula (first proposed by G. D.
Malyuzhinets at the Odessa symposium) that is con-
veniently used in examining diffraction in the shadow
zone behind a cylinder of radius r, is obtained if we
go from the cylindrical coordinates r and ¢ to the
evolute coordinates ¢, 5, making use of the formulas

P=rft -2, re=n-try, ntanly=t—q

and hold fixed in the particular solution the ‘‘tangential
ray’’ (n = const) rather than the ‘‘radial ray”’
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{@ = const), and then seek an asymptotic expansion
for small values of the parameter € = (1/kry)"/? and
finite values of the parameter t = € (v — kry). The
first term in this expansion yields the formula

; 2
VPR (kr) = 7‘;: et RLHD) [} (t-522) W (t—12%)L 0 (e9)],
1 ELg

where x = ?kg/2, vy = ezkn/z, z =x ~y; W(t) is the
Airy-Fock function. In his report, I. V. Olimpiev gave
a new rigorous derivation of this formula with an esti-
mate of the constants in the remainder term, and
showed an application of the formula to an analysis of
the exact solution to a plane diffraction problem out-
side a circle r > rj, for a source located on the
boundary of the region r = r;,. He also demonstrated
the possibility of using the Malyuzhinets asymptotic
formula in the interior region r < ry; this is impor-
tant in the study of caustics.

R. G. Barantsev reported on ‘A Separation-of-
Variables Method in the Problem of Diffraction by a
Body of Arbitrary Shape.’’ Converging and diverging
radial waves are separated in the expansion of a solu-
tion to the Helmholtz equation in spherical functions
on a sphere enclosing a body with arbitrary (nonco-
ordinate) surface. Their amplitudes are expressed
in the form of integrals over surfaces containing pre-
cisely the same known function g. The scattering
problem appears as the problem of finding a sequence
of other functionals for the same function q. The es-
sence of the result is that in practice it is necessary
to deal with a finite system of linear algebraic equa-
tions, the number of which is determined by the ratio
of the body characteristic dimension to the wavelength.
N. 8. Smirnova reported ‘‘On the Calculation of the
Principal Parts of Wave Fields in the Limiting-Ray
Region in Media with Small Drops in Propagation
Velocity.”’

The reports on ‘‘Mathematical Problems’’ of dif-
fraction were concerned, in the main, with basic ques-
tions, and were directed chiefly at establishing the
legitimacy of mathematical methods employed widely
by physicists, frequently without proper proof. D. Z.
Avazashvili reported on uniqueness and existence
theorems for a solution to a problem of electromag-
netic-wave diffraction by a body with arbitrary bound-
aryand finite conductance. The results obtained were
generalized for layered and multiply connected regions.

In formulating boundary problems in the theory of
oscillations, it is possible to proceed from the fact
that within a region G in which harmonic oscillations
occur no energy should cross the boundary I' of this
region. This condition means that with harmonic os-
cillations of angular frequency w, the energy flux
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leaving the region under consideration through the
boundary I'" should be nonnegative; here p is the den-
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sity of the medium and P is the pressure in the me-
dium. The derivative is taken along the outward nor-
mal n to the surface. I. A. Urusovskii formulated
and communicated ‘‘Certain Uniqueness Theorems”
that hold for such boundary problems in the theory of
diffraction.

A difficulty also appears in representing the solu-
tion to the external Dirichlet problem for the wave
equation AU + KU =0, U/g = using the double-layer
potential: for the case in which A = K& is one of the
eigenvalues of the operator A an integral equation that
is not always solvable is obtained for the potential den-
sity in the complementary interior region at zero value
of the normal derivative on the boundary. The situa-
tion is the same with respect to the external Neumann
problem, if its solution is sought in the form of the
simple-layer potential, and A = K is an eigenvalue of
the Laplacian operator in the interior region for zero
value of the function on the region boundary. O. L
Panich reported on one method of overcoming this
difficulty. B. R. Vainberg discussed ‘‘Sommerfeld-
type Conditions for Elliptical Operators of any Order.”’

‘‘Nonstationary Problems’’ have been developed
further since the first symposium. New theoretical
methods have been developed, and solutions have been
given for several substantial problems that meet

practical needs and that also are of theoretical interest.

V. A. Afanas’ev reported on a solution to the prob-
lem of a plane wave, specified in unit step form, inci-
dent upon a wedge-shaped cut in elastic space with a
rigid closure on the boundary, by reducing it to a
boundary-value problem for two analytic functions in-
terconnected on the boundary of the region, and then
to a system of singular integral equations correspond-
ing to this boundary-value problem. The author proved
the existence and uniqueness of the solution. Solving
the plane problem of the diffraction of an arbitrary
nonstationary acoustic wave ( specified by a ray expan-
sion) by a wedge, with boundary conditions u = 0 or
du/an = 0, A, F. Filippov considered the reflection of
an arbitrary acoustic wave from a smooth boundary
whose curvature has a discontinuity at some point (or
for which the derivative of any order with respect to
the curvature has a discontinuity), and calculated the
principal part of the diffracted wave, i.e., the first
term of the ray expansion in the neighborhood of the
wave front. L. M. Flitman considered the problem of
motion of a bulky rigid strip located on an elastic
half-space, induced by a wave pulse. For a time in-
terval so small that secondary reflections from the
plate edges cannot be set up, the problem reduces to
equations with constant coefficients. The equation ob-
tained was investigated. In his report, V. A. Borovikov
investigated the three-dimensional problem of diffrac-
tion by an infinite prism S having as its base an arbi-
trary convex polygon, for the boundary condition
U g=0. For arbitrary positions of a point source a
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and observation point x, the singularities of the
Green’s function I'(a, X, t) of the wave equation were
determined as functions of t for fixed a and x. Next,
the author used the Fourier transform of t to deter-
mine the principal terms in the asymptotic series
(as k — =) for the Green’s function I'y{a, x, k) for
the Helmholtz equation. It turns out that for each opti-
cal path joining points a and x, there is a correspond-
ing contribution to the asymptotic series, beginning
with terms of the order of k™ ®/2)0*(/2) where n is
the number of kinks in the optical path. Explicit for-
mulas were obtained, yielding the first term of the
contribution to the asymptotic series as k — « for
each optical path, as well as recurrence formulas
( corresponding to the number of kinks in the optical
path) for the second term. A method was developed
that in principle makes it possible to find any term
in the asymptotic series, and it was extended to the
case with boundary condition du/én|g=0. S. 8. Voit
discussed the formation of unsteady long waves in a
rotating bounded basin. On the assumption that a flat
horizontal liquid layer bounded by a vertical plane
rotates about the vertical axis and raises the liquid in
the region of its free surface at the initial instant of
time, the author studied the further propagation of the
initial liquid crest, using the assumptions of long-wave
theory. It turns out that rotation of the basin destroys
symmetry in propagation of the initial crest. Kelvin~
type waves propagate along the basin boundary in just
one direction; they are not damped with increasing
distance from the region of initial crest. These bound-
ary crests have an amplitude that is attenuated ex-
ponentially with increasing distance from the basin
boundary and, thus, they are noticeable only in direct
proximity to the basin wall. As a result of the analysis,
asymptotic formulas for the direct and reflected waves
were obtained for the rise of the liquid surface at points
distant from the initial-crest region, and the asymmetry
in propagation of the initial liquid rise was established.
P. V. Krauklis showed that if a source exciting an
unsteady field is located in a layer of liquid between
elastic half-spaces, then in addition to that portion of
the field corresponding to expansion in normal un-
damped waves ( existing for the condition vy <vg < Vps
where v, is the speed of sound in the liquid layer
while vg and vp are, respectively, the velocity of
transverse and longitudinal waves in the elastic me-
dium), there exists a field with waveguide-type prop-
agation, characterized by anomalous dispersion, for
any relationships among v, vg, and vp. L. N. Sreten-
skil discussed diffraction of ship-wake waves. G. L.
Freidman showed that the problem of investigating
sustained electromagnetic shock waves in waveguides
with a thin layer of ferrite, where the lateral dimen-
sions of the transmission line are sufficiently small

and the configuration of the ferrite cross section suf-
ficiently simple, reduces to linear ordinary differen-
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tial equations that result from the Maxwell equations
and that determine approximately, in conjunction with
the nonlinear equation for the magnetization, the struc-
ture of the shock wave. The necessary condition for
uniqueness of the shock-wave front structure is the
same here as its stability condition in the discontinuous
approximation. Using special examples, the author
examined the effect on shock-wave structure of the
nonstatic character of the field in a line with ideally
conducting walls or the dispersion of the dominant
wave (i.e., the wave whose critical frequency equals
zero) in waveguides with reactive walls. It turns out
that for strong shock waves, the difference between

the structure of a field in a line with ideally conducting
walls and the static structure has very little effect
upon the parameters that determine the shock-wave
structure, even when the width of the wave front is
less than the distance between the walls of the wave-
guide. Dispersion of the dominant wave in delay lines,
however, does effect the structure of strong shock
waves.

Four sessions were devoted to problems of diffrac-
tion by various bodies, including the sphere and the
wedge. S. M. Travinin considered wave diffraction
around a half-submerged elliptical cylinder; this is
connected with the problem of calculating the perturb-
ing forces in movement of a ship through swells (for
arbitrary location of the horizontal axis ( x) of the
cylinder relative to the direction in which the wave
travels). The solution reduces to finding an auxiliary
function ¢ (y, z) that satisfies the expressed wave
equation and the boundary conditions. The function
f(y, z) introduced by Khaskind and connnected with
p by the equation — 9f/8z = 9y/9z + ky (k is the
wave number) can be represented in elliptical coordi-
nates (£, n) with adequate accuracy as a series of
products of Bessel functions of imaginary argument
with cosines of multiple arcs:

0
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M. G. Sukharev studied the behavior of ‘‘Ship-Wake
Waves over an Uneven Periodic Bottom,’’ on the as-
sumption that the irregularity and pressure were of
the same order of smallness. He found the velocity
potential as a Laplace solution, satisfying the given
boundary conditions, in the region occupied by liquid;
he then expanded the solution in powers of a small
parameter, obtaining in first approximation the classi-
cal problem of ship-wake waves. The second-approxi-
mation equations were solved by the method of inte-
gral transforms. V. V. Martsafel studied the ‘‘Radia-
tion of Electromagnetic Waves by an Infinite System of
Flat Waveguides with Walls of Infinite Conductance.”’
For the case in which Eg, or Hyy (n=1,3, 5, ...)
waves are excited in phase in the waveguides, this

eg, ¢ = l/ a?—b? .
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problem can be solved by the Wiener-Hopf method.
Here the field in the distant zone is expressed as a
finite sum of plane waves. I. G. Petritskaya solved

in linear approximation the boundary problem for de-
termination of the velocity-vector field of air particles
in a thin layer bounded by rigid cylindrical side walls
between two circular plates, one of which vibrates
harmonically at constant amplitude, and the other is
stationary; she obtained a value for the acoustical-
mechanical resistance of the air layer to the vibrations,
considering the case in which the stationary plate has

a single circular aperture. The resistance of the thin
air layer proved to depend substantially upon the radius
and location of the circular aperture. A similar prob-
lem was solved for the case in which the moving plate
has a distributed vibration amplitude 5 = ny[1 - (r/2)?%]
(r is the radius of the plate). The hydrodynamic prob-
lem of ¢‘Diffraction of Plane Sound Waves (long) by a
Moving Torus with Elliptical Cross Section’’ was re-
duced by P. L. Tsol to the Neumann problem (i.e., to a
solution of the wave equation with given normal deri-
vative of the velocity potential on the surface of the
stationary torus); he used the velocity-potential equa-
tion in the toroidal coordinates in parametric form.

M. G. Belkina, obtaining a rigorous solution to the prob-
lem of diffraction by an ideally conducting disk of an
electromagnetic wave excited by an electric dipole
located on the disk axis parallel to its surface, ex-
pressed the results in the form of a series in spherio-
dal functions. E. A, Ivanov reported on the diffraction
of electromagnetic waves by two ideally-conducting
infinitely thin disks of identical radius with a common
vertical axis of rotation, located in a vacuum. The
source of the primary field is a horizontal magnetic
dipole with magnetic moment m. The dipole is located
at a certain point between the disks on their axis of
rotation. The potential functions in terms of which the
components of vectors E and H of the secondary field
are defined are found as series in the wave functions of
an oblate spheriod. The unknown coefficients of the
series are found from the infinite system of linear
equations obtained from the boundary conditions for

the potential functions sought on the surfaces of the
disks, using the addition theorems for the wave func-
tions. The infinite systems of equations become quasi-
regular following some substitution of coefficients;
their solution is found by the method of truncation.

I. N. Korbanskii reported briefly on the ‘‘Radiation
Resistance of a Hertz dipole Located Near an Ideally
Conducting Paraboloid of Revolution.”” The radiation-
resistance calculation was based upon a formula for
the power radiated by a Hertz dipole in the presence
of diffraction: P = P; — (w/2) Im ( P*, E), which fol-
lows directly from the method of induced emf’s ( P,
is the power radiated by an isolated dipole, P is the
dipole moment, w is the frequency, and E is the elec-
tric field intensity of the reflected wave at the point
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at which the dipole is situated). To determine the
electric field intensity of the reflected wave, the author
solved the diffraction problem of radiation from a
Hertz dipole located near a paraboloid of revolution to
do this, he utilized the mathematical apparatus devel-
oped by Fock, by introducing a special form of the
Hertz vector; this made it possible to write the bound-
ary conditions on the paraboloid of revolution in a
fairly simple form. The asymptotic solution for the
cases in which the Hertz dipole is situated on the para-
boloid axis and on its exterior surface made it possible
to follow the change in the radiation resistance as the
dipole is displaced with respect to the paraboloid. The
report of N. A, Yablochkin dealt with ‘‘The External
Electrodynamic Problem of Ideally Conducting Bodies
of Complex Configuration.”’

In recent years, the problem of ‘‘diffraction by a
wedge’’ has become very urgent. At the symposium,
an entire group of reports was devoted to this question.
In their report, G. D. Malyuzhinets and G. V. Vinel’
examined plane scalar problems of field diffraction in
one or several adjacent angular regions bounded or
separated from each other by rays on which the bound-
ary conditions are given. For opaque boundaries, an
impedance boundary condition at v = 0 (the Leonto-
vich condition) of the type

.

Zv L ikgU=0... (1)
is used. For the case of a translucent boundary, the
two following boundary conditions are given for » = 0:

%% (4-0)+ ikall (+0) —ikbU (—0) =0,

U (2)
o (—0)—thall (—0)+ikbU (4-0) =0.

If a plate has thickness d and is made of material with
a wave number k; = kp, then when |n| > 1, the coef-
ficients a and b are expressed in terms of parameters
of the plate material (index 0) and of the surrounding
medium for the acoustical and electromagnetic cases
of two polarizations ( the edge of the semi-infinite
plate coincides with the z axis). If Im ked — «, then
b — 0, a — g, and the conditions (2) go over into (1).
In the opposite case, kd — 0, where complete trans-
parency is reached, conditions (2) go over to the con-
ditions for continuity U(+ 0) = U(- 0) and smooth~
ness (8U/av)(+ 0) =(8U/dv) (- 0). For each point
in the region under consideration, the fields due to the
plane waves reflected from and transmitted through
the translucent plates are calculated in the geometric
approximation. The report considers problems that
differ in the shape of the region and in the boundary
conditions. In all the examples, the region and the
boundary conditions are symmetric about each trans-
lucent plate. The asymmetry introduced by the form
of the incident wave can be eliminated by partitioning
the fields sought into sections that are odd or even
relative to the translucent plates. Here all examples
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are reduced to the solution obtained by G. D. Malyuzhi-
nets in 1950 to the problem of diffraction of a plane
wave in an angular region ~ & < ¢ < & with given
boundary impedances

10 .
(70—;I}szgj:u=0, @:i@) .

The report of A. A. Tuzhilin dealt with diffraction
of spherical electromagnetic waves excited by an elec-
trical or magnetic dipole in an angular region with
ideally conducting boundaries. Using a rigorous solu-
tion for this problem in the form of a Sommerfeld in-
tegral, the author obtained an asymptotic representa-
tion of the wave field both close to and far away from
the edge of a wedge. In addition, there was an investi-
gation of the transition in the limit to the case of an
arbitrarily small distance from the field source to
the edge. R. P. Starovoitova and M. S. Bobrovnikov,
using the Sommerifeld integral method, obtained a
rigorous solution to the problem of excitation of an
impedance wedge by a filamentary magnetic current
located in it vertex. An analysis using the special
functions of G. D. Malyuzhinets showed that the field
of the current located at the vertex of the wedge con-
sisted of a cylindrical radiation wave and two surface
waves propagating along the boundaries of the wedge
from the vertex to infinity. The width of the radiation
pattern at the nulls always coincides with the aperture
angle of the wedge; the direction of maximum radiation
is determined by the relationship of the impedances on
both boundaries. The power radiated decreases as the
boundary impedances rise; here there is an increase
in the energy delivered by the source to the surface
wave.

L. N. Lemanskii and L. N. Zakhar’ev have calcu-
lated radiation patterns for sources located on the
surface of an ideally conducting infinite wedge with
arbitrary vertex angle. The radiation patterns were
calculated for various amplitude and phase character-
istics of surface radiators an arbitrary distance away
from the edge of the wedge. Where the sources are
far (in comparison with A) from the wedge tip, an
asymptotic formula was obtained for the radiation
patterns; it yields satisfactory results (as shown by
comparison with a rigorous calculation) for sources
more than 2A - 50 away from an edge of the wedge.

D. P. Kouzov considered the steady-state problem
of acoustic-wave diffraction in a liquid half-space
from the boundaries of two eleastic plates located on
the liquid surface. As we know, at low frequencies
( for which the wavelength in the plate material is quite
large in comparison with the plate thickness) it is
possible to neglect the variation in the wave field with
the lateral coordinates of the plate. A mathematical
problem of this type reduces to solving the Helmholtz
equation for the half-space with certain boundary con-
ditions containing higher-order derivatives. In these
boundary conditions, the plate thickness enters solely
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through the coefficients ( together with other parameters
that characterize the eleastic properties of the plates).
Since longitudinal waves interact less with the liquid
than the transverse waves, the author excluded from
consideration processes associated with the existence
of longitudinal waves in the plate material. On these
assumptions, he arrived at a solution to the diffraction
problem for a plane wave traveling from within a liquid
in a direction perpendicular to the plate interface, and
considered cases for various possible contact condi-
tions.

The symposium participants were very much inter-
ested in the session dealing with the ‘‘Physical Theory
of Diffraction.’”’ In the report of L. A. Cherches, the
approximate solution to the problem of ‘“Wave Diffrac-
tion by Bodies with Discontinuities’’ was considered.
On the assumption that the linear dimensions of the
bodies are small in comparison with the wavelength,
that the edge at the point of discontinuity is wedge-
shaped or of finite thickness, and that the parameters
of the discontinuity periphery ( radius of curvature,
thickness, or angle of the edge) varies slowly, the
author calculated the diffraction field at rather large
distances from the edges of discontinuities. Zero
boundary conditions were used at the body surface, and
it was assumed that the field scattered by the edges is
set up by additional ‘‘diffraction’ sources located along
the discontinuity peripheries, with the phase of the in-
cident-wave field determining the phase of these sec-
ondary sources; it was also assumed that the field of
an elementary diffraction source depends on distance
in the same manner as the field of a spherical radiator,
and that the angular characteristic corresponds to the
nature of the discontinuity. The scattered field is
found by summing the diffraction-source fields over
all discontinuity boundaries. The most important role
is played by the discontinuity sections near radiating
points. The paper considered plane-wave diffraction
by a disk of arbitrary profile and finite thickness with
a wedge-shaped edge, by convex bodies with discon-
tinuities, as well as by concave bodies, for which in
some cases it is necessary to consider the additional
effect of multiple reflections. The method employed
is an original generalization of the stationary-phase
method to a body with discontinuities; it makes it pos-
sible to allow for secondary scattering of waves from
diffraction sources. The relationship between the
method of diffraction sources reported and the Keller
diffraction-ray method is the same as that existing
between the stationary-phase and geometric-optics
methods in reflection techniques. The scattered field
is reduced to expressions identical with those obtained
in the method that considers the ‘‘nonuniform’’ current
component near the discontinuity. This serves as a
check on the method employed.

B. E. Kinber discussed ‘‘Diffraction by the Open
End of a Plane Sectorial Horn.”” The radiation from
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the open end of a sectorial horn is considered as the
diffraction of the natural wave of an infinite horn by
its edges. Here the natural wave of the infinite horn
is represented as the sum of two waves, resembling
Brillouin waves in a plane waveguide, and their dif-
fraction by the horn edges as the diffraction of cylin-
drical waves by a wedge ( since flanges may be pres-
ent). The cylindrical edge wave that forms upon
primary diffraction is modified in part and reflected
in part into an interior plane, giving rise to edge dif-
fraction waves of a lower order of magnitude. In
another communication, the same author dealt with
diffraction by an aperture in a screen for the first
Schwartzschild approximation. The Kirchhoff approxi-
mation takes into account neither the orientation of
the screen edges nor the polarization of the primary
wave. The near field may be considered as the sum
of a plane wave and two edge waves. In the far zone,
this approximation produces the normal expression
for the radiation pattern. Lateral radiation is formed
at a distance 1/2m? further away than the major lobe
(m is the number of the side lobe). N. G. Bondarenko
and V. I. Talanov discussed beam waveguides using
mirrors of special form as phase shifters. They cal-
culated the waveguide parameters with allowance for
the diffraction and ohmic losses in the shifters, and
compared them with lens-type beam waveguides. V.
V. Kvartsov obtained ‘‘Integral Equations of the First
Type with Regular Kernel for Current Harmonics of a
Body of Revolution’’ for the scalar and stationary
electro-magnetic case, as well as an integro-functional
equation of the first type for the same quantities in
the nonstationary case; he proved uniqueness for the
solution to the equations obtained.

The next session of the section heard reports on
‘‘Diffraction by a Sphere.’’ Z. A. Yanson and V. S.
Buldyrev examined an elastic sphere of radius R,
covered by a spherical layer of thickness H = R,

- R(R; =R + H). The system is excited by a concen-
trated rotational effect applied to the external surface
of the layer (it is assumed that the wave velocity is
greater in the underlying medium than in the layer).
The solution is obtained by separating variables, and
in spherical coordinates (r, 9, ¢) takes the form

U(r, 8, )y=¢; /_J(Pa (r, t)P:,“(COSG)v
R=1

(1)

where ¢o(r, t) are contour integrals whose integrands
are meromorphic on the plane of the variable of inte-
gration. The contour integrals ¢(r, t) are calculated
by residues, and the solution is then transformed by
Watson’s method to a sum of contour integrals on the
plane (7). The contour integrals obtained are reduced
by a series of manipulations to Fourier-type integrals
to which the stationary-phase method is applied. As

a result, the field is represented by the sum of inter-
ferring waves, each corresponding to a specific fre-
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quency component. It is of particular physical interest
to study the family of disperson curves (phase- and
group-velocity curves) for the interference waves ob-
tained, and to compare them with the existing Love
curves for the case of a plane layer lying at a half-
space, investigated by G. I. Petrashen’. In their re-
port, O. A. Germogenova and G. V. Rozenberg dis-
cussed scattering of a plane electromagnetic wave with
a complex wave vector and complex amplitude by a
sphere. They introduced the electric and magnetic
potentials for which the boundary problem is solved,
similar to that treated in Mie’s theory. The coefficients
in the expansion of the scattered-field potential in
eigenfunctions of the Helmholtz equation turn out to be
proportional to the corresponding Mie coefficients.

As a special case, they examined dipole scattering

and the way in which it depends on the wave inhomo-
geneity factor. The possible application of the results
obtained to problems of optics and radiophysics was
discussed. Yu. A. Erukhimovich and Yu. V. Pimenov
obtained a new and convenient asymptotic solution to
the problem by means of the Huygens-Kirchhoff method
on the assumption that the density of an electric cur-
rent induced on a sphere is proportional to the mag-
netic component of the incident wave; they compared
the numerical results with data from the rigorous
theory. D. S. Chernavskii discussed the inelastic dif-
fraction interaction of elementary particles.

The widespread introduction of electronic computers
into theoretical investigations has again raised the
question of ‘‘numerical methods’’ in the solution of
wave-propagation and diffraction problems. An inter-
esting report on the ‘Application of Integral Equations
of the Second Type to Calculating the Current Distri-
bution on a Cylinder of Finite Length’’ was presented
by E. N. Vasil’ev and A. R. Seregina. To solve the
excitation problem for a cylinder of finite length, they
employed integral equations of the second type for the
azimuthal harmonics of density for the electric cur-
rent flowing along the cylinder surface. The integral
equations were solved numerically, They considered
axially symmetric excitation by radial and longitudinal
dipoles, as well as excitation by a transverse slot in
which the voltage depends upon the 'azimuthal coordi-
nate. For the axially symmetric case, they determined
the effect of cylinder length and diameter, slot width,
and the shape of the end surface upon current distri-
bution. Here they noted the existence of azimuthal-
current density maxima at the narrow edge of the
cylinder. The effect of source position on current-
density distribution, etc., was considered. Similar
current-distribution investigations were carried out
for the case in which a cylinder is excited by a radial
dipole and a transverse slot having a field depending
on the azimuthal coordinate. N. N. Govorun found
that for a thin cylindrical dipole the kernel of the ap-
proximate integral equation of the first type describing
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the current distribution on the surface of a body of
revolution located in a lossy medium is identical with
the kernel for the similar equation applying to the
lossless-medium case. Extending the results of a
numerical solution for the integral equation to the
case of thin dipoles for various wavelengths and con-
ductivities, he estimated the region of applicability
for the quasi-stationary method of calculating the cur-
rent distribution in a dipole according to a given cur-
rent at the supply point. The two reports of D. M.
Sazonov dealt with the arbitrary electromagnetic ex-
citation of ideally conducting finite metal wedges and
hemispheres with small electrical dimensions. A. F.
Chaplin discussed the excitation by arbitrarily distri-
buted sources of strips located on an infinite ideally
conducting shield with a surface impedance varying

in the transverse direction. For a strip with a constant
impendance varying linearly and represented by a har-
monic law, the integral equations for the distribution
functions of the electrical and magnetic currents on
the strip surfaces were solved numerically by the
Krylov-Bogolyubov method.

The reports on ‘‘Propagation in Layered Media’’
deal basically with plane boundaries, chiefly of elastic
layers. V. Yu. Zavadskii considered Rayleigh waves
propagating along the free boundary of an inhomoge-
neous elastic half-space with LLamé parameters in-
creasing (or decreasing) linearly within the medium.
Finding a rigorous solution, the author obtained asymp-
totic formulas (for large w) for the dispersion and
attenuation of these waves. In his report ‘““Toward a
Theory of Standing Waves of Finite Amplitude on the
Free Interface Formed by a Heavy Liquid with Two
Layers of Different Densities and Depths,’’ Ya. I.
Sekerzh-Zen’kovich considered a heavy ideal incom-
pressible liquid consisting of two layers of different
density, located one above the other. The upper layer
is assumed of finite depth and the lower infinite.
Lagrangian variables are used to give the complete
formulation of the problem of plane standing waves on
the free surface and on the interface. The author uses
a small-parameter method to solve this problem to
any approximation; calculations of the first two and
of part of the third approximations are carried through
to conclusions. An approximation formula is obtained
connecting the oscillation frequency with the amplitude
and wavelength, and the specific features of the radiated
waves of finite amplitude, distinguishing them from the
standing waves of linear theory, are established. In
his communication, L. V. Jogansen presented a calcu-
lation of the conditions necessary for the appearance
of the so-called ‘‘Resonance Diffraction of Acoustic
Waves in Plane-Layered Systems’’ ( considered first
by the author for the electromagnetic-wave example)
for the case of liquid layers playing the role of barriers
with differing densities, and for solid isotropic bar-
riers. Longitudinal and transverse waves appear
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simultaneously in such layers. Exponential resonant
accumulation is possible if on the liquid-solid bound-
ary there occurs simultaneously complete internal re-
flection for both the longitudinal and transverse waves
in the solid. An expression was obtained for the
characteristic resonant-diffraction length I,

which has an order of magnitude [; = tang

-dsexp (qdy ), where ¢ is the wave angle of incidence
from the liquid to the solid totally reflecting layer,

dy and d; are respectively the thickness of the solid
totally reflecting layer and of the liquid resonator, q
is the imaginary portion of the transverse-wave wave
vector in the totally reflecting layer.

V. N. Krasil’nikov discussed the propagation of
elastic waves from concentrated sources into a liquid
half-space bounded by an elastic plane-parallel layer.
For the case in which the transverse-wave propagation
velocity in the layer material is greater than the speed
of sound in the liquid, there will appear just one un-
damped surface wave; at low frequencies, it will ap-
proach a flexural wave, and at high frequency a Ray-
leigh wave on the solid-liquid interface. The numerical
data obtained were compared with known approximate
results based upon the representation of the elastic
layer by a plate capable of supporting only flexural
and longitudinal oscillations. It was found that longi-
tudinal waves in the plate for the problems of the type
considered do not play an independent role; the strains
and stresses caused by them are relatively small, and
do not form the major portion of the error associated
with a transition from elastic-layer deformations to
pure plate bending. In L. A. Molotkov’s brief com-
munication ‘“‘On Low-frequency Oscillations in an
Elastic Layer’’ it was noted that the use of dynamic
elasticity theory made it possible to justify and refine
equations for plate oscillations, and also to determine
the conditions under which engineering theory is ap-
plicable. By using the action principle, it is possible
to obtain equations for plate oscillations in various
approximations, and to write the appropriate expres-
sions for displacements in a layer. An analysis of
these expressions in first and second approximation
makes it possible to understand the nature of the de-
formation, and to compare the results obtained with
the assumptions of Rayleigh, Timoshenko, and Uflyand.

‘“‘Diffraction at Periodic Undulating Surfaces’’ held
the attention of those working in the fields of acoustics,
optics, antennas, or interested in problems of electro-
magnetic-wave propagation. Although the basic funda-
mental problems might be considered to have been
studied in this field, practical physical and engineer-
ing investigations turn up new problems all the time,
and their solution provides an impetus for development
and refinement of theory. A. D. Lapin solved the prob-
lem of plane-wave diffraction by a sawtooth surface
with rectangular teeth. The diffraction field above the
uneven surface is found as a superposition of Bragg
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spectra. The problem is solved by joining the fields
at the boundaries of specially selected rectangular
regions in which the eigenfunctions are known. An
infinite system of algebraic equations with constant
coefficients is obtained for the diffraction-spectra
amplitudes. This system of equations is solved nu-
merically by the reduction method for certain para-
meter values. G. V. Poddubnyi examined ‘‘Scattering
of Electromagnetic Waves by a Periodic Surface’’ for
oblique incidence of a plane electromagnetic wave by
an infinite periodic surface with d and equation

x = f(y). The scattered field is
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where n is the outward normal to the scattering surface,
and the integration path L is a single period of this sur-
face. Thefunction G(y —&,z —n) is expressedinterms
of the wave number, the angle of incidence, and the period
of the scattering surface. Thus, the field can be found
approximately in the far zone if the appropriate bound-
ary conditions are given, for example, those of a saw-
tooth surface. Yu. M. Cherkashin reported briefly on
scattering of sound by a stationary interface for two
media with an abrupt, but small, relative change in

the refraction index n? — 1 = Ac/c < 1. He explained
that scattering of sound in the form of a periodic inter-
nal wave appearing by a poorly defined interface be-
tween two media is very similar to scattering of plane
waves by a similar absolutely reflecting surface; in
both cases, we obtain an identical arrangement of scat-
tered-sound intensity maxima on an angular scattering
diagram, while the pressures at the maxima differ in
value. V. I. Aksenov proposed an approximate method
for calculating the amplitude of an electromagnetic
wave specularly reflected from a periodic irregular
dielectric surface; the method is based upon the re-
placement of this surface by ‘‘equivalent’’ layered-
inhomogeneous medium. If the equation for the uneven
surface is given in the form z = Z (x, y), then the die-
lectric properties of the ‘‘equivalent’’ medium vary
along the z axis. The method is applicable where the
plane electromagnetic wave is normally incident upon
the irregular surface, and the wavelength A and ir-
regularity period A satisfy the inequality A <A. For
the case in which the incident-wave electric vector

is perpendicular to the plane of incidence, the limita-
tion on the angle of incidence 8, is removed, and the
second condition is replaced by the following condition:
(1 +sin §3) A < A. The author obtained calculation
formulas for determining the law obeyed by the varia-
tion in effective dielectric constant of the ‘‘equivalent’’
layered-inhomogeneous medium from the given form
of irregularity and the known dielectric properties of
the surface material; the calculation formulas yield
good agreement between theory and experiment.
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In the group of reports on ‘‘waveguide problems,”’
L. A. Vainshtein presented an interesting paper on an
accurate ‘‘Theory of Contactless Plungers.’’ He in-
vestigated contactless ( reactive) plungers in a coaxial
line in the form of metal cylinders, closed at one end,
placed over an inner conductor. Such plungers pro-
vide almost complete reflection within a certain range
of frequencies, while there is no direct contact between
the inner and outer conductors of the line. The report
gave both the elementary theory of such plungers,
based on the telegrapher’s equations and the more ac-
curate electrodynamic theory, which takes into account
diffraction at the open end of the plunger and is based
upon the Wiener-Hopf-Fock method; the physical anal-
ysis for the blocking action of contactless plungers is
given, along with an analyiss of the corrections used
in going from the elementary theory to diffraction.

The report of A. S. II’inskil and A. G. Sveshnikov deals
with the application of a general calculation method for
matching waveguides with substantially different cross
sections to a specific problem of matching waveguides
with circular and square cross sections. The essence
of the general method lies in the fact that an arbitrary
irregular waveguide can be represented, using an ap-
propriate transformation of coordinates, as a wave-
guide with a regular side surface, but an inhomogeneous
filler. The problem obtained by a method similar to
Galerkin’s method reduces to a boundary problem for
a system of ordinary differential equations. The au-
thors demonstrate the convergence of the approximate
solution thus obtained. A numerical calculation per-
formed on a computer for an actual problem showed
that the method converges well. In her report ‘‘Trans-
formation of Electromagnetic Waves in a Waveguide
with Slowly Varying Impedance,’”’ N. P. Kerzhentseva
studied the transformation of waves propagating in a
multimode cylindrical waveguide with a slowly varying
wall surface impedance. The solution is carried out
by the cross-section method, according to which the
field in each section is found as a series of natural
modes for a regular waveguide with an axially constant
surface impedance; the coefficients of this series are
found in explicit form.

Methods of scaled and physical simulation play a
considerable role in the investigation of the complex
phenomena appearing in the emission and propagation
of various types of waves. Problems of ‘‘Wave Simu-
lation”’ were discussed in a separate session. Until
recently, simulation of sound-wave propagation was
chiefly employed to study the acoustic field in two-
layer systems, and in connection with problems of
sound scattering on an uneven surfact bounding a homo-
geneous medium. In addition, simulation is quite pos-
sible in investigations of the laws followed by sound
propagation in such inhomogeneous media as the earth’s
atmosphere and the waters of the oceans and seas. In
the latter case, in fact, there are both regular and
statistical inhomgeneities. The simulation of inhomo-
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geneities of fluctuation nature according to the criterion
for the various statistical characteristics first re-
quires a study of the conditions for the formation of
the various fluctuations in parameters of the medium,
which is quite complicated. The simulation of the
regular inhomogeneities of such media as sea water,
however, is quite possible. These media can be con-
sidered as layeredinhomogeneous media with vertical
and horizontal sound-velocity gradients. Naturally,
hydroacoustical measurements carried out by the
simulation method cannot replace those carried out
under natural conditions, but can add considerably to
them, refine details, help in checking theory, and in
addition accomplish this with little drain on material
or personnel resources in comparison with measure-
ments conducted on the ocean. Model measurements,
in contrast to natural measurements, make it possible
to recreate individual types of regular inhomogeneities
in the natural medium in isolation, and to study their
effect upon sound propagation with greater clarity. A.
N. Barkhatov discussed investigations, in a special
modeling tank, of sound propagation in various media
of the ‘‘antiduct’’ type ( with a constant negative verti-
cal sound-velocity gradient; with a quasihomogeneous
surface layer, in a medium with a bilinear sound-veloc-
ity distribution profile) and in an acoustical duct, and
of the reflection of bounded sound packets from various
layered inhomogenous media; of the effect of an uneven
surface on sound propagation in the shadow region and
at the surface of an acoustical duct; of the effect of
internal waves on sound propagation. He checked the
applicability of normal-wave theory to various cases
of sound propagation in layered inhomogeneous media,
clarifying the effect of undulating and rough surfaces
on the sound field in layered inhomogeneous media,
depending on the parameters of the rough surface and
the characteristics of the media.

Although it has been more than half a century since
the radiowave-prospecting method was proposed, its
application has been delayed until recently owing to
the fact that the theory was not worked out; the method
uses the ‘‘shadow ’ effect due to well-conducting bodies
for locating and mapping ore deposits in the space be-
tween mine workings and the earth’s surface. The
basic theoretical problems are the propagation of
radiowaves in layered media, diffraction at semi-in-
finite bodies and bodies of finite dimensions, and an-
tenna problems. In speaking of the ‘“Electromagnetic-
Wave Diffraction Problem in the Radiowave-prospecting
Method,’’ A. D. Petrovskii took note of the need for
considering the field in an absorbing medium, most
frequently in the zone immediately adjacent to the
radiator. In order to determine the field due to an
underground radiator at the earth’s surface and the
shielding coefficients for various strata, approximate
solutions obtained with the aid of impedance boundary
conditions were used. In the near zone, and in the
presence of ‘‘weak’’ shields, these solutions are nat-
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urally unsuitable, but there is still nothing to replace
them. Although it is possible with the aid of simula-
tion to establish certain interesting relationships char-
acteristic of radiowave diffraction in a conducting
medium, the method does not permit the complete ex-
clusion of numerical computation; in this case, for
bodies of finite dimensions solutions must be obtained
in the quasistatic, intermediate, and quasioptical fre-
quency regions. It is also necessary to provide a
theoretical foundation for the results of an experi-
mental investigation into the effect of mine workings,
wells, and conductors on the radiowave field in radio
propecting. In speaking of a method for measuring
lumped capacitances by the electrolytic-trough method,
G. P. Prudkovskii gave examples of resonator design.
He considered a method of simulating wave fields in
waveguide-type systems having an arbitrary but con-
stant cross-section in one direction, and gave examples
of resonator and periodic-system calculations. G. P.
Grudinskaya, Yu. K. Kalinin, and Ya. S. Rodionov dis-
cussed ‘‘Experiments in Ground -Wave Propagation
Simulation Under Laboratory Conditions.”’ There is
good agreement between theory and their data on radio-
wave propagation along a coast line and on the effect

of the irregular surface of the earth on field strength.
Using approximate boundary conditions of the impedance
type, Yu. K. Kalinin obtained formulas for the coeffi-
cient of reflection from a curved surface forming one
of the coordinate surfaces in an orthogonal coordinate
system. He derived the pole equation for a waveguide
system consisting of two coordinate surfaces, the space
between which contains weakly absorbing media. The
reflection coefficient and pole equation are expressed
in terms of the boundary values of logarithmic deriva-
tive systems of characteristic solutions to a differen-
‘tial equation along the normals to the coordinate sur-
faces. O. G. Shamina reported on the simulation of
diffraction and refraction waves.

At the session dealing with questions of ‘‘Propaga-
tion of Radiowaves Along the Earth’s Surface,’’ ex-
perimental papers were presented. V. N, Troitskii
reported on the fact that an experimental investigation
on uhf diffraction by mountain ranges has shown that
the attenuation introduced by the ranges is consider-
ably greater than that computed from the Fresnel for-
mula for all paths investigated with wavelengths com-
mencing in the centimeter range and ending in the
meter range. A comparison of the experimental re-
sults with the theory of diffraction by a perfectly re-
flecting parabolic cylinder has shown that it is impos-
sible to explain even quantitively the anomalous
difference in field-strength level for different polari-
zations, or certain other phenomena. It turns out that
in the majority of cases the field strength for horizontal
polarization was noticeably greater than with vertical
polarization.

Uhf propagation owing to diffraction around moun-
tainous obstacles far beyond of line-of-sight limits
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opens new possibilities for reliable multichannel radio-
communications and television in mountain regions,

in view of its technical and economic advantages over
ordinary troposcatter communications links. S. A.
Amanov’s experiments, designed to find the spatial

and temporal diffraction-field distribution pattern be-
yond mountain ranges along various routes have shown
that when there are sharp mountain peaks or crests in
the propagation path, the signal level beyond the ob-
stacle is greater and more stable than in ther absence.
Over such routes, attenuation is less by tens of decibels
than for propagation over a smooth portion of the
earth’s surface, while the diurnal and seasonal signal-
level variations do not exceed 3 and 7 db, respectively.
There is an interference-type relationship between
field strength and the distance and height of a receiv-
ing antenna. This is explained by the presence of
complicated phase relationships among the rays due

to surface features on the earth and the relief of the
obstacle itself. Especially sharp and frequent signal
fluctuations occur in the direction perpendicular to

the path. These deviations amount to 30 db. Experi-
mental data obtained for numerous routes crossing
very different forms of mountainous obstacles show
that at a great distance from the obstacle the shape of
the upper mountain surface and the relief near the
reception point have a substantial influence on the re-
ceiving-point signal level. Thus, an intelligent utili-
zation of mountain peaks and local features near the
reception point ( choice of single peaks with sharp
edges, location of the reception point on moist soil

and on elevations that provide direct line-of-sight be-
tween obstacles and terminal points) can produce a
considerable increase in signal level and stability.

On very long routes, crossing sharp rocky ranges,
with high antennas (small diffraction angles) uhf propa-
gation conditions are very nearly optical and Fresnel
diffraction theory may be used in calculations; moun-
tain peaks are approximated by wedges around which
direct rays and in some cases ground-reflected rays,
diffract. Experiments have supported theoretical
conclusions that relatively sharp mountainous obstacles
produce a considerable reduction in attenuation, reach-
in 50—60 db.

It is well known that approximate boundary condi-
tions ( Leontovich boundary conditions, reduced surface-
impendance type conditions) are commonly employed
in electromagnetic-wave propagation problems. In
solving problems by such methods, the lateral wave
is neglected and in this connection, we are faced with
the problem of the best impedance definition according
to Leontovich and Ryazin § = 1/V € + cos?y (where
€’ is the complex dielectric constant for the earth),
and if we allow for the nature of radiowave propagation
along a plane boundary, it is necessary to assume

=71 —costyje’-

A brief communication of G. N. Krylov and A. D. Pe-
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trovskii dealt with the question of the best choice of

impedance, depending upon the initial-parameter values,

and explained the physical premises connected with the
two determinations mentioned.

The session devoted to ‘‘Periodic Gratings,’’ began
with the report of L. A. Vainshtein ‘“Toward an Elec-
trodynamic Theory of Gratings.’’ If the spacing of an
infinite plane grating formed by parallel metal cylin-
ders of radius b located a distance ! apart is small in
comparison with the wavelength, the complex distri-
bution of electromagnetic fields near the grating can-
not be considered, and it is treated as a semitranspar-
ent layer — 6 < x < §, satisfying certain boundary
conditions at x =+ 6 and x = — §. The parameters
entering in these conditions for the case of circular
cylinders are given in tables as functions of the ratio
b/1. For cylinders of other cross-sections, they may
be found with by conformal mapping. The derivation
of the boundary conditions for electromagnetic waves
yielded as a byproduct similar boundary conditions for
acoustic fields at ‘‘hard’’ and ‘‘soft’’ gratings ( where
kl «< 1). The value of § in the boundary conditions
can be taken arbitrarilly; thus, for example, we may
let 6 =0 or 6 =b, but we should have ké < 1. Special
choice of & is necessary only in the case in which the
gap between neighboring cylinders is extremely small;
then 6 must be so chosen that the boundary conditions
for the reflecting undulating surface obtained upon
contace of the cylinders will be satisfied. V. V. Malin
solved the problem of plane electromagnetic-wave dif-
fraction by a grating of ribbons for the case in which
the electric-field vector parallels the ribbons. The
method proposed by L. Levin consists in seeking a
certain singular integral equation for the sought field
at the grating apertures, and then solving this equation.
In the system of infinite algebraic equations finally
obtained, it is necessary to consider only two equations
in two unknowns (for normal incidence) in order to
obtain results that hold for spacing values less than
or equal to the length of the incident wave. For oblique
incidence, the number of equations that must be taken
into account is nearly doubled. Consideration of just
one equation in one unknown yields the well-known
solution to the problem in the quasi-static approxi-
mation. For the special case of half filling, consider-
ation of three equations yields results that coincide
with the precise theory ( L. A. Vainshtein) for spacing
values less than or equal to two wavelengths.

In their report ‘‘Diffraction of Electromagnetic

Waves by Dual Plane Metal Gratings,’’ O. A. Tret’yakov,

D. V. Khoroshun, and V. P. Shestopalov considered the
case of normal incidence of plane electromagnetic E
and H waves of arbitrary polarization for arbitrary
spacing-wavelength ratios and any metal-ribbon width
in equal-spacing and equal-slit gratings, arranged
symmetrically one above the other. The reflection
coefficients, as well as the diffraction-spectra ampli-
tudes are obtained from a solution to an infinite system
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of linear algebraic equations. In like manner, the
authors solve problems for a dual grating whose in-
terior region is filled with a dielectric of arbitrary
dielectric constant: for a p-layer equal -spacing and
equal-slit gratings, for dual equal-spacing and equal-
slit gratings. The case of oblique incidence of plane
electromagnetic waves upon a metal-ribbon grating
with spacing [ and slit width d in the presence of a
metal shield and a dielectric sublayer of finite thick-
ness has been examined by A. I. Adonina and V. P,
Shestopalov. They plotted the reflection and trans-
mission coefficients and the diffraction-spectra ampli-
tudes for various values of d/I, I/A, «, €, and a/l

(a is the distance from the grating to the shield, € is
the dielectric constant of the medium in the region
between the grating and the shield). Average boundary
conditions were obtained for a grating in free space,
and a grating with metal and dielectric shields; the
conditions were used to find the dispersion equation
for circular and helical waveguides immersed in the
medium. S. A. Masalov, E. N, Podol’skii, and I. E.
Tarapov examined the problem of plane electromag-
netic-wave incidence at an arbitrary angle to a lattice
formed by infinitely thin metal strips and normal in-
cidence on a lattice formed by metal plates of rectan-
gular cross section. The first problem reduces to the
solution of an infinite system of linear algebraic equa-
tions that can be represented as a ratio of always-con-
verging series. The second problem is solved with the
aid of Fourier series. The boundary conditions and
joining conditions lead to two infinite systems of linear
equations. Good convergence of solutions to the trun-
cated systems was observed. The numerical results
obtained clarified the nature of the transition from an
infinitely thick grating to an infinitely thin grating on
the one hand, and to a system of waveguides on the
other.

The symposium participants were much interested
in the session on the problems of wave propagation in
plasma and diffraction at plasma and gyrotropic ob-
jects. G. I. Makarov studied the propagation of a plane
electromagnetic wave in a symmetric layer of an
ionized medium whose properties are described by a
dielectric constant €p,(z) that depends solely upon
the z direction. Here he assumed that when z — -~ «,
a plane electromagnetic wave of the form

E, inc (. 7) — Eoejhx sin p—1ikz cos P (z —> ——o0),

E; inc @, 2) —> Eoeihx sin Pp—ikz cos P (z—> — o).

is incident upon the layer. The problem was solved
by the standard-equation method; here the quantity

19 was used as the major parameter for the problem;
from the physical viewpoint, this was equivalent to
requiring slow variation of the parameters in a layer
of the scale of a wavelength in a vacuum. It turns out
that for a layer possessing the properties described,
the standard functions are Whittaker functions whose
argument is found by solving a certain transcendental
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equation. In contrast to the solutions obtained pre-
viously for unbounded layers, there is no need for
approximate joining within the layer. The reflection
coefficient for the layer was found, and the way in
which it depends upon the presence of the singular
point z = 0 and the layer thickness was determined
(down to zero thickness). The results obtained were
generalized to the point-source case. V. V. Zheleznya-
kov and E. Ya. Zlotnik discussed the conversion of
plasma waves into electromagnetic radiation under the
conditions of an isotropic plasma; they studied the
‘‘interaction’’ of normal waves in a stationary plane-
layered medium and in a plasma moving in accordance
with the law V =v(z)x,. For plasmas with a homo-
geneous magnetic field, they considered the conversion
of ordinary waves into extraordinary waves and vice
versa, a phenomenon occurring in the quasi-transverse
propagation region. N. A. Kuz’min investigated the
relationship of plane electromagnetic phase and group
velocities in a unbounded plasma located in a magnetic
field. Particle collisions were not considered. The
regions and boundaries for wave existence were indi-
cated. The results obtained for special ordinary-wave
velocity relationships make it possible to explain fun-
damental regularities in the behavior of plane waves
with variations in plasma parameters, and to select
the regime needed. M. E. Gertsenshtein and V. L.
Pustovoit presented a theory of ‘‘Sound-wave Propa-
gation in Crystals in the Presence of a Direct Current.”’
If a longitudinal electric field appears during propaga-
tion of sound waves in a crystal due to the piezoelectric
properties of the crystal, the electrostriction effect in
the lattice upon sound propagation along a strong con-
stant field, to the differing movements of carriers and
the lattice in an ionic cyrstal, E = Eoei“)t'ikX tt K,
then div E = — ikE # 0, and a space charge pulsating
at the wave frequency will appear. If, in addition there
is a constant field E_ within the semiconductor, caus-
ing the carriers to drift at a speed V_, the alternating
component of the conductance current =q,V_+q V.,
where q; is the dc component of space-charge density,
and q_ the ac component. The term q,V_ is the cur-
rent due to oscillatory motion of carriers, which is
normally considered in the theory of conductance. The
second term q_V_ is the current due to orderly space-
charge motion. For a certain current magnitude, the
conductance becomes negative and, consequently a
longitudinal wave in such a medium must be considered
to be accompanied by a longitudinal electric field. In
the survey ‘‘Diffraction of Partially Coherent Radia-
tion,”” N. G. Denisov and L. S. Dolin examined from a
single viewpoint diffraction of partially coherent ( non-
monochromatic) radiation by regular objects, in con-
nection with problems that appear in optics, radio-
astronomy, and the theory of wave scattering.

N. G. Denisov discussed the reception of fluctuating
radiation from highly directional antennas through a
layer with turbulent inhomogeneities. He computed
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the mean intensity at the output of the receiver device
(at the lens focus) for small and large fluctuations in
the radiation parameters. The effect of attenuation of
the received radiation due to trubulent inhomogeneities
in a layer was discussed. In the report ‘‘Diffraction
of Modulated Waves by Arbitrary Inhomogeneities,”’

V. A. Zverev discussed the fact that the diffraction of

a modulated wave by an inhomogeneity leads to a
change in the nature of wave modulation. This varia-
tion can be determined quantitatively by considering
the phase invarient, which is the carrier phase minus
the sideband phase half-sums. The magnitude of the
effect turns out to depend upon the relationship between
the wavelength and size of the inhomogeneity. For
waves propagating in a medium containing random
inhomogeneities characterized by a spatial power
fluctuation spectrum F(«y, k3, 3}, the author computed
the spatial spectrum of phase-invariant fluctuations.
Here the spectrum of the phase invariant proves to be
proportional to F(«ky, k9, 0) and contains a diffraction
factor that depends upon the wave parameter at the
modulating frequency. If it is possible to radiate a
wave field in just one point of space by employing
several modulating frequencies, it is possible to de-
termine the spatial spectrum of the random inhomo-
geneities. If the random inhomogeneities occupy only
a certain part of space, it is possible to determine the
amount of space filled by the inhomogeneities, using
the magnitude of the phase-invariant fluctuation as a
function of modulating frequency. This is of interest
in determining the scattering volume in receiving a
signal scattered from random inhomogeneities.

The polarizability of a plasmoid located in an alter-
nating electric field Eei®wt depends on the thermal
velocity of the electrons. Since the electrons in a
relatively stable plasmoid execute a finite oscillatory
movement within a certain potential well, this relation-
ship is in turn determined by the relationship between
the ‘‘most probable’’ frequency wi of the electron
natural oscillations and the field frequency w. V. B.
Gil’denburg examined a concrete example of field in-
teraction with a plasmoid localized in a square poten-
tial well with a Maxwellian distribution of electrons
in the blob; he showed that even in this case, where the
natural oscillations were far from harmonic and showed
a large spread in frequencies, the relationship of the
equivalent dielectric constant of the plasmoid and the
frequency in the region w =~ wy was clearly of reso-
nance nature. The results obtained make it possible
to evaluate the effect of thermal motion on the effec-
tive plasmoid scattering cross section. A. V. Gurevich
presented a brief paper on diffusion in the ionosphere.
M. D. Khaskind assumed that plane electromagnetic
waves were incident upon an ionized meteor trail at
an arbitrary angle to the trail axis, and investigated
the scattered-wave field. On the basis of the polarized-
currents method, he established very general integral
equations for the vector scattering characteristics in
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the far zone. The energy relationships are obtained,
and the shortwave asymptotic series is examined in
detail in second approximation for trails of various
structures. The longwave approximation is evaluated
for a high trail linear electron density. A complete
solution is obtained, chiefly in the intermediate region,
with the aid of special electromagnetic potentials for
an axially symmetric plasma; a system of simultaneous
equations is found for the potentials, and their limiting
properties are studied. The report pays especial atten-
tion to normal incidence of electromagnetic waves upon
a meteor trail for two polarizations. In this case, the
electromagnetic field in the plasma is described by

two mutually independent equations, each determining
one of the polarizations. An investigation into the re-
flection of normally incident electromagnetic waves
from meteor trails was carried out with the aid of
approximation methods from the quantum theory of
scattering, which make it possible to establish the
basic features of scattering in the intermediate region.

Using a diffusion equation, Yu. K. Kalinin found the
electron-concentration distribution of a moving point
source of ionization. He represented the source in-
tensity by the effective meteor parameters, and used
a perturbation method to find the scattering cross sec-
tion of the transparent portion of the meteor trail and
it lifetime. In the paper ‘‘Scattering of Monochromatic
Electromagnetic Waves by Inhomogeneous Absorbing
Plasmas,’’ Yu. S. Sayasov formulated an eikonal method
for an inhomogeneous medium with a complex dielec-
tric constant, i.e., complex rays were introduced as
trajectories orthagonal to the surface of the complex
eikonal, and formulas were found expressing the
change in polarization along these rays in terms of
their curvature and torsion.

The elementary solutions thus obtained, corres-
ponding to individual rays, were used to find the emis-
sion characteristics of conducting bodies surrounded
by an absorbing medium, as well as the scattering
cross sections for a plane wave of an inhomogeneous
absorbing system, and in particular of a conducting
body surrounded by an absorbing medium. The results
are simplified when the absorption is so great that the
electromagnetic energy propagates along selected rays
that correspond to minimum attenuation, and also for
the case in which the dielectric constant is close to
unity and, consequently, the rays are nearly straight.

In their paper, V. B. Gil’denburg and I.G. Kondrat’ev
discussed certain features of the reflection and re-
fraction of electromagnetic waves by inhomogeneous
plasma layers within which the dielectric constant
passes through zero. As the basic task, the authors
selected the problem of oblique incidence of a wave
on a plane infinite layer with a dielectric constant
depending upon the transverse coordinate; they used
ordinary linear material equations containing dielec-
tric constants that do not depend upon the structure
of the field determined by them. Only in cer-
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tain very important places are estimates given for the
influence of effects associated with spatial dispersion.
The values found for the reflection and transmission
coefficients make it possible to estimate the absorp-
tion in the resonance regions of an inhomogeneous
plasma, to find the resonances, and to show the way

in which their number depends upon the nature of the
inhomogeneity; it is also possible to estimate the in-
fluence of the inhomogeneity upon the diffraction char-
acteristics of various plasma.

Reports on several different subjects were read
at the ‘‘Radiation of Electromagnetic Waves’’ session:
V. Ya. Eidman found the spectral and angular energy
distribution for a plasma wave emitted by a charge
moving in a magnetoactive plasma. G. N. Krylov cal-
culated the ‘‘Electromagnetic Field Structure and
Radiation Resistance of a Hoop-shaped Antenna’’ (a
thin hollow cylinder of finite length), in which the cur-
rent is distributed in accordance with some law; the
solution was carried out by resolution into multipoles,
using the apparatus of Sommerfeld integrals. This
makes it possible to generalize the results obtained
to the case in which the antenna is located under
finitely conducting ground. The radiation resistance
of the antenna coincides precisely with that obtained
with the induced-emf method. B. M. Bolotovskil studied
the ‘‘Radiation of Charged Particles in Uniform Motion
near Optical Inhomogeneities.”” V. P. Dokuchaev ex-
amined hydrodynamic perturbations appearing in
gaseous media in which there move solid bodies with
finite ‘‘frontal’’ resistance and dimensions less than
the mean free path in the medium. He analyzed the
conditions for emission of acoustic waves by moving
particles, and considered the radiation resistance.

Yu. P. Verbin reported ‘‘On Certain Boundary Tran-
sient Processes in the Propagation of Radiowaves
along the Earth’s Surface.”’

Reports on ‘“Diffraction at Gyrotropic Bodies’’ had
been presented at the first All-union Symposium on
Diffraction. Intensive investigations into this field
served as the basis for several new interesting com-
munications. Yu. V. Vaisleib, investigating free sym-
metric waves included between an ideally conducting
cylinder of finite length and a coaxial gyrotropic rod,
and analyzing the characteristic equation for the case
of longitudinal magnetization of the rod, evaluated the
characteristics of a cylindrical resonator and ampli-
fier with a gyrotropic rod. A. T. Fialkovskii was con-
cerned with roughly the same problem, and studied
free symmetric electromagnetic waves in a cylindri-
cal gyrotropic rod magnetized longitudinally and in
the vacuum surrounding it in order to find the radia-
tion pattern of an antenna made in the form of a gyro-
tropic rod of finite length. G. I. Freidman reported
‘‘On Electromagnetic Shock Waves with a Thin Layer
of Ferrite.”” V. A. Permyakov discussed ‘‘Diffraction
of Electromagnetic Waves on an Inhomogeneous Plasma
Sphere.’?




SECOND ALL-UNION SYMPOSIUM ON WAVE DIFFRACTION

Problems of reflection from ‘‘Statistically Uneven
Surfaces’’ were discussed with great interest at the
symposium. V. I. Mikhallov considered scattering of
electromagnetic waves by statistically homogeneous
areas in the Kirchhoff approximation. Certain addi-
tional conditions that limit the applicability of M. A.
Isakovich’s results were investigated, and they were
generalized for two limiting cases. Setting himself
the problem of finding the scattered field at a statis-
tically rough surface for a given arbitrary law of re-
flection “‘in the small,”” R. G. Barantsev gave a com-
plete solution to the problem for an isotropic
differentiable random surface z(x, y) and investigated
various versions of simplified models, in particular
normal surfaces with small fluctuations in ¢, and
quasi-Markov profiles. L. M. Yurkova and I. N.
Tamolkina noted that the known solution in the Fraun-
hofer zone for the mean intensity of the field scattered
from a statistically rough surface with irregularities
exceeding the length of a sound wave may be extended
to the Fresnel region. The scattering at angle yx is
determined by only a narrow portion of the field spec-
trum at the rough surface near point P = qy/v2q,0 :

gx=k (cosp—cos X), ¢,=—k(sinp-}siny);

o? is the variance of the roughness amplitude, while

p and x are the angles of emission and reception.
The conditions for formation of the scattering pattern
of a statistically rough surface are

D21V 20 cot Xf)\l"

R = 5

(D is a linear dimension of the scattering area). An
experimental check was run on a model statistically
rough surface (with the necessary amplitude distribu-
tion sign, amplitude variance, a definite form of the
correlation function and correlation interval) made of
plastic foam and permitting good simulation of reflec-
tion from a water-air interface. Using the small-
perturbation method, E. P. Gulin obtained expressions
for the longitudinal and transverse (in the horizontal
and vertical planes) autocorrelation functions for the
amplitude and phase fluctuations in a sound wave
(emitted by a point source) reflected from a perfectly
soft two-dimensional statistically rough surface. The
spatial autocorrelation coefficient of roughness for
the surface is given as a damped oscillatory function.
The stationary-phase method is used in geometric
approximation to isolate the rough-surface regions
that are most important in scattering; the conditions
are obtained for which the regions important in scat-
tering lie in the neighborhood of a specular-reflection
point on a plane surface. The author found that the
spatial autocorrelation coefficients for amplitude and
phase fluctuations in a sound wave reflected from an
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uneven surface coincide: the longitudinal and trans-
verse ( in the horizontal plane) correlation intervals
for the amplitude and phase fluctuations are deter-
mined by the spatial autocorrelation intervals for the
irregularities in the same directions, by the vertical
coordinates of radiator and recievers, by the distance
between radiator and receivers, and by the ratio of
the sound-wave length to the oscillation period for the
spatial autocorrelation coefficient for irregularities
in the longitudinal and transverse directions, respec-
tively. For low arrival angles, the fluctuation-coore-
lation interval for receivers located at different heights
is considerably less than the longitudinal correlation
interval. Some level of residual amplitude and phase
fluctuation correlation remains until the receivers are
separated by a distance comparable with the distance
from the radiator.

The Second All-union Symposium on Diffraction
summed up the large amount of work carried out in the
Soviet Union by mathematicians, physicists, and engi-
neers in creating new methods and developing known
methods for the theoretical analysis of problems of
diffraction, wave propagation in inhomogeneous media,
wave emission, and similar questions. These methods
have very great scientific and practical value, and will
aid in the development of a variety of engineering fields
in which it is necessary to deal with wave processes.

The essential role of the first and second symposia
on diffraction lies in consolidating the efforts of theo-
reticians and experimenters working on related prob-
lems in different branches of science and technology.
We should take note of the substantial benefits result-
ing from the exchange of knowledge on methods devel-
oped to solve problems and the results achieved among
mathematicians and physicists, and specialists in
acoustics, optics, radiophysics, heat engineering,
geophysics, hydrodynamics, etc. The final plenary
session unanimously adopted a resolution noting the
achievements in diffraction studies summarized by
the symposium, and calling for certain measures to
be carried out in the future. It was proposed that the
next symposium be held in May of 1964 at Thilisi. It
was resolved to increase the number of survey reports
at sections dealing with the present state of the prob-
lem under consideration by the section. Basically,
the symposium should retain its methodological nature.
In conclusion, the symposium participants took note
of the excellent organization of the symposium. The
symposium participants were glad of the opportunity
to become acquainted with the noteworthy features of
such a great industrial, scientific, and cultural center
as Gor’kii.

Translated by W. Mitchell



