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I. INTRODUCTION

Q.'UANTUM electrodynamics, which is the most
modern description of the interaction between charges
and the electromagnetic field, was ultimately developed
in the late Forties, when the renormalization theory
was formulated. Measurement of the level shifts of
atomic electrons, of the anomalous magnetic moment
of the electron, and of many other effects has shown
splendid agreement between theory and experiment.
This success was attained, however, by systematic
utilization of the method of subtracting the diverging
integrals (renormalization), purely a cookbook pro-
cedure. Nonetheless, the situation in quantum elec-
trodynamics is much more favorable than in theories
of other interactions. In spite of the considerable
progress in the theory of dispersion relations and
spectral representations, some questions connected
with the structure and quantitative description of
strong interactions remain unclear. As regards the
weak interactions, although the V-A variant of the
theory is in good agreement at low energies with ex-
perience in the case of leptons, it is not clear whether
this variant is applicable (and even the four-fermion
interaction itself) at high energies. The theory was
constructed without solving the main problem, namely
the structure of space-time and the structure of the
interactions at small distances, although ideas con-
cerning the existence of a minimum limiting length
were advanced many times. We set aside the fact that
the theory does not enable us to calculate the masses,
spins, and other characteristics of elementary par-
ticles.

Nonetheless, in spite of this shortcoming of the
theory, not one of the hitherto performed experiments
contradicts it directly. Were such a contradiction to
be established, it would indicate the trend for further
development in the theory, and it would seem that a
contradiction must be sought at small distances.

Inasmuch as there is no quantitative theory of
strong interactions, the discrepancy between experi-
ment and modern theoretical notions can be estab-
lished only if new qualitative regularities are dis-
covered. A similar situation obtains for weak inter-
actions, too. Matters are entirely different in the case
of electromagnetic interactions, where there is a
theory that is in splendid quantitative agreement with
experiment, and any disparity between theory and ex-
periment can lead to a radical review of our notions

concerning the events that take place at small dis-
tances. This is precisely why electrodynamic exper-
iments are the most promising method of investigat-
ing the limits of applicability of modern theory.

However, a specific formulation of electrodynamic
experiment has been fraught until recently with ap-
preciable difficulties; the point is that only classical
electrodynamic objects, such as electrons and photons
can be employed in such experiments, for the use of
other particles (including muons) gives rise to un-
known form factors in the theoretical formulas. If the
experiments are performed on a target that is at rest,
it must be recognized that the energy E c in the center
of mass system (c.m.s.) is connected with the energy
in the laboratory system (l.s) E; in the following
manner:*

(1.1)

and Ej = 6000 MeV and Ec = 38 MeV for the maxi-
mum electron energy that can be hopefully obtained
from accelerators in the conceivable future. (Data on
accelerators now existing, under construction, and
projected, for energies in excess of 1 Bev and for
large currents, are listed in Table I.) Thus, the
c.m.s. energy of electrons scattered by a target at
rest is too small to allow us to speak, at the accura-
cies attainable at the present time, of a check on the
applicability of quantum electrodynamics at small
distances. Even now, the validity of quantum electro-
dynamics has been established for considerably
smaller distances than can be measured in experi-
ments wherein the c.m.s. electron energy is several
times 10 MeV. This follows, for example, from ex-
periments on the scattering of high-energy electrons
by protons, measurements of the electron and muon
anomalous magnetic moment, and many other experi-
ments (this question is considered in greater detail
in Chapt. III). An analogous situation arises also in
the case of the scattering of photons by electrons of
a target at rest.

The situation changed radically when the experi-
mental feasibility of so-called colliding beams was
demonstrated, in which two electron beams with equal
but opposite momenta collide. In this case the experi-
ment is carried out directly in the c.m.s. Experi-
ments on the scattering of electrons in colliding
beams are presently performed in many laboratories,

*We use the system of units where ΐ = с = 1 throughout.
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Table I. High-energy or large-current electron

accelerators both existing and projected

Accelerator

1. Linear accelerator [*] of the
Stanford University,

2. Cornell electron synchrotron[9]
(Ithaca, New York).

3. California synchrotron[*J
(Pasadena, California)»

4. Electron synchrotron of the
Frascati laboratory

(Rome, Italy)»
5. Cambridge electron synchro-

tron (Cambridge, Mass.).

6. German electron synchrotron^]
(Hamburg).

7. Linear accelerator!/] of the
National Bureau of Standards
(Washington, D. C ) .

8. Electron synchrotron^]
(Tokyo, Japan).

9. Stanford two-mile linear
accelerator!.9].

Maximum
energy,

B e V

1.2

1,5

1,2

1-2

6.0

6.0

0.15

1.2

up to 45

No. of
particles
acceler-
ated per
second

3-101 2

1011

10ΰ

6-101°

6-1012

project

5 - Ι Ο 1 2

project

3-1015

project

2· 10»

Starting
date

1960

1955

1956

1956

1962

1963

1961

Remarks

Placed in operation

gradually, starting
with 500 MeV in

1955

Operates at 1.2 BeV

Already in operation

Strong current

Approved project

in particular with electron energy up to 500 MeV in

each beam (corresponding to a laboratory-system

energy of 1012 eV!). An experimental colliding-beam

scheme is considered in Chapt. II.

The development of strong-current electron accel-

erators (see Table I) permits the conversion of elec-

trons into positrons on much larger scales and to

experiment with positron beams. Of exceptional in-

terest is the creation of colliding electron-positron

beams. We note that these beams can also be ob-

tained when the intensity of the positron beam is

relatively low; it is necessary to have in this case a

storage ring with a long lifetime. These beams can

be used not only to check the limits of applicability of

quantum electrodynamics, but also to discover new

charged-particle pairs and single neutral particles,

to investigate the electromagnetic form factors of

elementary particles, and to investigate the interac-

tions between different elementary particles. These

questions are considered in Chapt. IV.

Finally, experiments with colliding beams can

also answer the question whether any weak interac-

tion exists between electrons. This group of questions

is considered in Chapt. V.

II. SCHEME OF EXPERIMENTS WITH COLLIDING
BEAMS

Experiments with colliding beams aimed at study-

ing the electron-electron scattering at high energies

were proposed in 1956—1957 '-1>2^, For the reasons

pointed out above, these experiments attract presently

much attention, and particularly, according to avail-

able data'-3'4-', experiments with colliding beams with

electron energy of 500 MeV in each beam are being

carried out presently at Stanford University. In many

laboratories throughout the world experiments with

colliding electron-positron beams are under prepara-

tion; in particular, at the National Laboratory in

Frascati (Italy), an operating model of a suitable in-

stallation has been constructed to investigate the

physical processes that occur during the course of

storage of electrons and positrons; both electrons and

positrons are obtained in this installation upon con-

version of photons from an accelerator into an elec-

tron-positron pair Й5.96]

Let us consider the principal installation scheme
for experiments with colliding electron-electron
beams. The electron beam 1 emerging from the ac-
celerator (Fig. 1) is injected with the aid of a system
of turning magnets and momentum inflectors (2 and 3)
into two magnetic storage rings 6, and the electron
radiation losses are compensated by an external
electromagnetic field in resonators 4, while the beams
circulating in the storage rings collide in the region
5; the electrons which are scattered at an angle of
180° are registered by high-speed counter pairs con-
nected in a coincidence circuit 7.

Both storage rings act like synchrotrons. Upon
injection, the momentum inflectors ensure the capture
of the electrons into orbits. In compensating the
radiation losses, the external field replenishes only
the longitudinal component of the electron momentum,
whereas the radiation carries away both longitudinal
and transverse momentum. Consequently the electron
clusters contract during storage. The planes in which
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FIG. 1

FIG. 2

the beams rotate can be slightly inclined to each
other, so that the clusters cross in a small region
(Fig. 2).

The colliding-beam experiment differs in principle
from all the hitherto performed experiments where
the scattering has been on stationary targets. The
following new problems arise here: 1) the presence
of the beams on the orbits for a time long enough to
perform the experiment; 2) the time needed for a
sufficient number of scattered electrons to be regis-
tered, in view of the low particle density in the
" targe t . " 3) the specific peculiarities involved in
separation of the observed phenomenon from the back-
ground. Let us consider these questions briefly.

As a result of the relatively low particle density
in the " t a r g e t " (colliding beam) it is desirable that
the beams exist on the orbits, for a sufficiently long
time. Whereas in accelerators the lifetime of the
beam is determined essentially by multiple processes
(multiple Coulomb scattering, quantum fluctuations in
the radiation), the dominant role in the storage rings
is assumed by single bremsstrahlung and single
elastic scattering. This is connected with the fact
that in accelerators the comparatively short accelera-
tion time is usually much smaller than the lifetime
with respect to single processes. Under these condi-
tions, the decisive role in the particle losses is
played by multiple processes, all the more because
the acceleration cycle starts at a relatively low en-
ergy, when the multiple-scattering cross section is
large, and the beam dimensions are comparable with
the dimensions of the working region, with radiative
damping absent. As a rule, the injection into the

storage ring occurs at high energy, so that the radi-
ative damping is effective during the entire lifetime
of the beam and the beam dimensions very rapidly
drop below the permissible stability-region dimen-
sions . Therefore the time during which the beam is
contained in the storage ring is determined by single
processes which change the characteristics of the
particle radically. Emission of a bremsstrahlung
quantum of relatively high energy upon collision of
the electron with the nucleus of the atom of the resid-
ual gas in the storage ring chamber causes the par-
ticle to drop out of the stability region for longitudinal
motion, so that the particle no longer receives energy
to compensate for the radiative losses, and the orbit
radius decreases until the particle strikes the cham-
ber wall. In single Coulomb scattering through large
angles, the particle is lost as a result of collision
with the chamber wall. It is clear that the lifetime of
the beam relative to each of these effects is inversely
proportional to the density of the residual-gas atoms.
If a high vacuum (ρ ~ 10"9 mm Hg) is maintained in
the chamber, then the aforementioned lifetimes
amount to many hours. The influence of quantum fluc-
tuations in radiation can be made sufficiently small,
if the horizontal dimensions of the chamber are large
(the quantum fluctuations lead to a horizontal broad-
ening of the beam) and accelerating field of high in-
tensity is applied.*

Let us proceed now to the following question: how
fast can a set of readings of sufficient statistical size
be accumulated ? The electrons moving in the storage
rings are gathered into clusters of length I. The dia-
gram showing the collision between these clusters at
the point of beam encounter is shown in Fig. 2. The
number of electrons scattered per second in a solid
angle dfi can be represented in the form

where N1( N2—number of electrons in each beam,
f—frequency of cluster revolution in the storage ring,

σ(,?)—electron-electron scattering cross section,
s—transverse area of the cluster, q—number of har-
monic of the accelerating voltage (number of clusters
per orbit in each of the storage rings), ?int—dimen-
sion of the interaction region; the factor 2 is the r e -
sult of the target motion.

Figure 3 shows the crossing of the beams in the
interaction region. Assume that identical and ho-
mogeneous beams of height h and width d cross at
an angle a. In practice the following case is realized:
a « 1 (h/sin a « I), and then

dN
f Ι γ 2σ (θ) a .

~K.e J Ufa ahi'
(2.2)

*A careful investigation of the lifetime of the beam in the
storage ring has been recently made in [5>61 (see also ["]).
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t

FIG. 3

Here I is the current that circulates in one of the
tracks and e the electron charge. We see that in this
situation the number of scattered electrons does not
depend on the height of the clusters. If we assume
a = 0.03, I = 20 cm, d = 1 cm, and I = 1 A (at an
orbit radius r = 1 meter this corresponds to 1.3
x 1011 particles in the cluster), then

ώΤν = 3·1Ο3οσ(θ)ίίΩ. (2.3)

Inasmuch as the measured cross sections (see
Chapters III and IV below) lie in the range ΙΟ"3 0—10"3 4

cmVsr, it is clear that even a current of 1 amp yields
fair statistics, if we take into account the fact that the
beams can exist on the orbits for many hours.

Let us consider now the separation of the observed
phenomenon from the background. We note first that
the scattered electrons coincide exactly in time and
move in almost exactly opposite directions; the radi-
ation accompanying the scattering causes the scatter-
ing angle of the electrons to possibly differ from 180°
(for more details see Chapt. III). Second, the scattered
electrons have the same energy as the initial ones
(disregarding the radiation losses), whereas the elec-
trons scattered by a stationary target, for example by
the nucleus of a residual-gas atom, lose appreciable
energy to recoil or to inelastic processes. Any char-
acteristic can be used to separate the investigated
process.

Inasmuch as it is difficult to create instruments
that subtend large solid angles and have high energy
resolution, the principal means used to identify elec-
tron-electron scattering events presently is the in-
dicated time and space correlation. An experimental
setup intended to extract the electron-electron scat-
tering events consists of many pairs of counters,
distributed over the surface of a sphere surrounding
the interaction region, and connected in coincidence
with a resolution time ~10"8—10"9 sec. The large
number of counters is used to increase the effective
solid angle of observation so as to accelerate the ac-
cumulation of the statistics, particularly in large-
angle scattering. The background produced by the
scattering of the electrons by the residual gas atom,
by pion production on the residual gas, and also by
cosmic rays is excluded quite satisfactorily by the
coincidence circuitry.

Thus, the investigation of electron-electron scat-
tering by the colliding-beam technique is perfectly

feasible experimentally and can be carried out with
high precision.

Of exceptional scientific interest is the creation of
colliding electron-positron beams, which can be used
not only to investigate the limits of applicability of
quantum electrodynamics, but also for many other
physical researches (see Chapters III—V). The fun-
damental new problem, on top of those listed above,
is in this case the creation of a positron beam of high
intensity (ΙΟ11—1010 particles in the beam)*. The
conversion coefficientt μ of electrons with energy
Eo into positrons with energy Ε + in an energy inter-
val dE+ has been calculated for practical converter
thicknesses in'--; for example, for Eo = 500 MeV,
E+ = 250 MeV, and dE + /E + = 5 per cent we get
μ = 1/400 if the convertor thickness is approximately
equal to the radiation length unit. The created posi-
trons are emitted essentially forward; in the example
considered, rough estimates show that the angular
spread of the positron beam is ~4°. Thus, other con-
ditions being equal, to produce a positron beam the
required electron beam must have some one-thousand
times more intensity than is necessary to produce
colliding electron-electron beams. On the other hand,
if the positron beam is obtained by storage in small
batches, the storage time is accordingly increased by
a thousand times.

In addition, the separation of the observed phenom-
enon from the background becomes a much more com-
plicated matter. This is connected with the fact that
elastic electron-positron scattering is accompanied
here by two-quantum annihilation, and by production
of pairs of charged particles, with the probabilities
of all these processes approximately equal. It is
clear that each of these processes will produce
paired coincidences. However, inasmuch as each of
these processes is of great physical interest, the
problem consists in fact not of cutting out the back-
ground but of separating (and possibly simultaneously
observing) the different processes. Modern experi-
mental means are perfectly capable of coping with
such separation.

A possible scheme for obtaining colliding electron-
positron beams is shown in Fig. 4. Inasmuch as the
electrons and positrons rotate in the magnetic field
in opposite directions, one storage ring is used in
this case. The electron beam from accelerator 1
enters into converter 2, from which the emerging
positron beam is focused and brought by means of

*We note that positron annihilation in flight does not in-
fluence the beam lifetime. Indeed, the annihilation cross sec-
tion is much smaller than the elastic electron-electron scatter-
ing cross section, and this scattering does not influence prac-
tically the lifetime of the beam in the electron storage ring.

tThe conversion coefficient μ is defined as
_ number of positrons with energy E+ in interval dE+

total number of initial electrons
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FIG. 4

inflector 6 into storage ring 4; conversion is accom-
panied by energy loss (in the case considered here
the energy is reduced to one-half). The storage ring
operates like a synchrotron, and after a sufficient
number of positrons is accumulated in it it changes to
an accelerator mode, raising the positron energy to
the value of the incident electron beam energy. The
electron beam is then guided directly to the storage
ring from the accelerator 3 by means of the system
of deflecting magnets 5 and the inflector 6. In such
an injection system it may be advisable to use elec-
tron and positron beams of different intensity, say a
circulating electron current Ie = 10 A and a circu-
lating positron current I p = 0.1 A, although the ac-
celerating-field generator must in this case have a
higher power than in the case of equal currents in
order to obtain a given number of counts. If we as-
sume that the beams have identical dimensions, then
the number of particles scattered (or created) in a
solid angle dfi will be

dN=-is—nfirdQ, (2.4)

Here σ(,?) is the differential cross section of the
process of interest to us. Thus, to guarantee a suffi-
cient rate of accumulation of statistics we can use
currents of 10 A and 0.1 A in place of two currents
with intensity 1 A.

The lifetime of electron and positron clusters
captured in the storage ring were measured in the
storage ring model for electron-positron colliding
beams in the Frascati (Italy) laboratory, in which
processes connected with storing are investigated.
The experiments carried out with clusters of negligi-
ble intensity have shown that in a vacuum of 4 x 10"10

mm Hg the beam lifetimes reach 48 hours.

The scattered (created) particles are registered
in the case of two-particle processes by pairs of
counters connected in coincidence and distributed
over the surface of a sphere surrounding the point of
encounter 7.

Naturally, to produce colliding electron-positron
beams it is desirable to have strong-current electron
accelerators, such as accelerator No. 7 of Table I,
where monoenergetic electron beams with intensity
-Л011 particles/second are expected to be produced.

Let us make, finally, one remark concerning types
of storage rings. We have seen that the number of
scattered (created) particles increases with decreas-
ing cross section of the cluster. In storage rings with
hard focusing, the cross section of the cluster can be
made approximately 100 times smaller than in storage
rings with weak focusing. It is particularly important
to use this margin at very high energies (above 1 Bev),
where the cross sections of the processes decrease
rapidly, all the more since in storage rings with hard
focusing the requirements imposed on the intensity of
the accelerating field are less stringent. These re-
qurements are quite burdensome in the case of high
energy in view of the fast growth (proportional to the
fourth power of the energy) in the radiation losses.

Ш. CHECK ON THE APPLICABILITY OF QUANTUM
ELECTRODYNAMICS AT SMALL DISTANCES

3.1. Calculation of the radiative corrections to
electrodynamic cross sections. Experiments on the
scattering of electrons in colliding beams are pro-
posed for a check on the applicability of quantum
electrodynamics at small distances. As was already
noted, in view of the fact that quantum electrodynamics
is a quantitative theory, any deviations of the experi-
mental cross sections from the theoretically calcu-
lated ones will be evidence of failure of quantum elec-
trodynamics at small distances. This is the undis-
puted advantage of such experiments over experiments
in which strongly-interacting particles participate.
In light of this, it is of particular importance to take
a correct account of all the theoretical contributions
to the electrodynamic cross sections.

In the lowest perturbation-theory order, electron-
electron scattering is represented by two Feynman
diagrams (Fig. 5). The scattering cross section in
this order was first calculated by Moller (see, for
example [ 1 0 ' 1 1 ] )

2s" s4+g4~| .
?'4 J ' (3.1)

Here r 0 is the classical radius of the electron,
γ = E/m, Ε is the energy of the electron, s = p t + p2,
Q = Pi — Pi, q' = Pi — Рг- The invariant variables s,

P, a) P, b)

FIG. 5
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q, and q' will be used extensively from now on. In
the c.m.s.*

q2 = — 2p2 (1 — cos θ); q'* = — 2p2 (1 + cos θ); s2 = 4Я2,
(3.2)

where £ is the scattering angle.
For ultrarelativistic electrons, Moller's formula

can be reduced in the c.m.s. to the following simple
form

^ [ 4 Г · ( 3 · 3 )

To estimate the accuracy of this formula it is nec-
essary to calculate the next higher terms of the per-
turbation-theory series in the coupling constant e,
that is, to find the radiative corrections. Calculation
of the radiative corrections of order e6 was made in
D2~19J. In this case it is necessary to consider the
diagram shown in Fig. 6, adding to it the exchange
diagrams ( p{ ~— p$). Figure 6 does not show graphs
containing the self-energy of the electron, for these
drop out in the regularization, which is carried out
by standard means OO.HĴ  -phe m a t r i x elements of
diagrams 2, 3, 5, and 5' diverge also in integration in
the region of small virtual-photon momenta ("infra-
red catastrophe"). As is well known, the reason for
it is that the very concept of an elastic process is
purely arbitrary, for in each scattering event soft
quanta are emitted, and the radiation cross section
also diverges in the region of small frequencies, but
the total cross section of elastic and inelastic scatter-
ing contains no divergences. Thus, to eliminate the
infrared catastrophe it is necessary to take into ac-
count diagrams with emission of real photons (Fig. 7,
to which the exchange diagrams must also be added).

An account of the emission of real photons greatly
complicates the investigation of the scattering, since
the cross section depends on the specific experimental
conditions. In the early investigations D2·13^ the calcu-

p; P;P; л' Ρ; Ρ/Ρ,' Ρ/Ρ/

χ ο

2 Рг Ρ, J Рг Ρ- 4 Ρ?Ρ> 5 Рг Ρ·

FIG. 6

Рг

Ρ: Ρ/ Ρ,' Ρ/ Ρ/

' \

ρ/ ρ; ρ/

7 Ρ, Ρ, 6 Ρι Ρ,

FIG. 7

Рг Ρ, 7- Ρ,

lation of the radiative corrections was made in the
laboratory system, it being assumed that the soft
quanta can be emitted in arbitrary directions
("isotropically") and that the total energy of the
emitted quanta is ΔΕ « m.

The results of these calculations cannot be used
directly to consider experiments with colliding beams
since, first, the experiments are carried out in the
c.m.s., and, second, the photons can, generally speak-
ing, carry away an energy on the order of the initial
electron energy. In fact, as we have already noted in
Chapt. Π, the scattered electrons are registered by
counter pairs (Fig. 8) connected for coincidence. In-
asmuch as the energy threshold of the counters is
must smaller than the initial electron energy, the
counters will register practically all the electrons
that enter in them, independently of the energy lost
by them. Thirdly, the emission of hard quanta upon
scattering will be far from isotropic. To verify this,
let us note that when the following conditions are
satisfiedί2<ΰ

-^-1η-^1η~<1 (3.4)

the emission of quanta can be considered by pertur-
bation theory. Inasmuch as in the energy region
investigated at the present time we certainly have

7>ί<1. < 3 · 5 >

investigation of the emission of real quanta with en-
ergy ΔΕ ~ m and higher can without a doubt be
treated by perturbation theory. It follows from this
therefore that if many quanta are emitted upon colli-
sion of the electrons, only one of these quanta will be
hard, since the emission of two hard quanta occurs in
the higher order of perturbation theory and has con-
sequently low probability. The matrix element of
diagrams 6 and 6' can be represented in the form

*Here and throughout (ab) = a°b° - (a-b). FIG. 8
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и (р'г) ·νμΐί (рг) -"00 [( {'Pi

(3.6)

The matrix element of diagram 7 and 7' has an ana-
logous form, except that the denominators contain the
combinations (kp|) and (крг). Expressing the scalar
products in terms of the angle between the momenta
of the corresponding electron and photon, and in
terms of their energy, we obtain

where 0i is the electron velocity. Thus, in the ex-
pression for the photon-emission probability there
appear characteristic denominators of the type (3.7).
This causes the photons to be emitted (β^ —- 1) pre-
dominately in narrow cones about the directions of
the initial and final electrons.

The photons emitted in inelastic electron collision
can be arbitrarily subdivided into two classes—soft
and hard. This division is closely linked with the
geometry of the experiment. Let us assume that one
of the scattered electrons has struck the center of
one of the counters, and then the photon will be classi-
fied as soft if the second electron strikes the opposite
counter, regardless of the photon emission direction.
In the opposite case we shall assume that the photon
is hard.

The maximum energy of the soft photons emitted
in the cones around the directions pj and p2 is

(3.8)

Неге Δ,ί is half the angular aperture of the counter.
We consider first the total cross section of the

elastic process and of the inelastic processes with
emission of soft quanta, the maximum energy of
which, e, is given by formula (3.8).

The calculation of the matrix element of order e6

is carried out in standard fashion. In view of the
technical complexity, we neglect in the calculation of
the contributions of diagrams 2 and 3 (Fig. 6) the
terms that do not contain the large logarithms of the
type In (—q2/m2) and In (E/e)· Consequently, the
final expression for the total cross section of the
elastic and inelastic scatterings can be written in the
c.m.s. only with the indicated accuracy'-14"16-', namely:

Ε , 22,

• £ ] } •
(3.9)

Inasmuch as we are interested in large scattering
angles (in practice i> fe 30°), we can disregard the
logarithmic angle dependence in terms containing one
logarithm, for example, we need not retain terms
containing In sin J and containing no other logarithms,

since these terms are of the same order as the dis-
carded ones. Within the limits of accuracy of the
formula, the angle dependence must be taken into ac-
count only in terms in which the angle logarithm is
multiplied by a large logarithm.*

We should now take into account the contribution of
the hard photons with energy larger than e. Whereas
in considering the emission of soft photons we have
assumed that the photon energy is much smaller than
the initial electron energy, so that the terms contain-
ing к in the numerator could be discarded in (3.6) and
thus afford appreciable simplification, in the present
case we must carry out an exact calculation. The
exact formula for the cross section of the emission
of a single photon in an electron-electron collision
was obtained by means of an exceedingly complicated
calculation by Garibyan '-21 .̂ This formula, naturally,
leads to the result given above, namely that the pho-
ton radiation is concentrated essentially in narrow
cones around the directions of motion of the initial
and final electrons.

Garibyan's formula can be integrated with respect
to the angles and the energies of the emitted quanta
in reasonable form (under the condition that the
scattered electrons strike the counters) only accurate
to In ( E/e) 02,98]̂  jjj t n e integration with respect to
the angles, the main contributions are made by the
cones around the directions of the emitted electrons;
the integration with respect to the energies is over
the hard quanta с < ω < Ε. As a net result we obtain

I / a \ / a \ 2 θ Γ η ι Ε ι Ε ι ο ί 3 ι Ε 1 / Q 1 л \ah (•&) = а„ (ϋ)— 2LJ — In In2—-=- — ^ r l n — . (o. lu)
j t L . m ε Δ\τ ζ τη J

The integral cross section for the radiation of very
hard quanta in the interval from Ej to E, with Ej
» e, can be obtained with single-logarithm accuracy:

σ"(ΰΛ = σ (*) —
Jt

+ 2 $ find-*)]. (3.11)
El/E

A characteristic feature of these formulas, unlike
those of'-16-', is that in the accuracy assumed the cross
section for the emission of hard quanta does not de-
pend on the scattering angle. We note that in view of

*In considering terms that contain the angular dependence
in formula (3.9), it is necessary to take account of the fact
that in calculating the contributions of the inelastic scattering
in formula (3.6) we discarded terms containing к in the nu-
merator. This neglect is valid for small values of к. Actually,
however, in formula (3.8) we have e ~ 30-50 MeV, so that this
neglect is not correct and, generally speaking, the discarded
terms may produce terms with the same angular dependence as
the retained terms.
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the relatively large angular aperture of the counters

used in the specific experiments (as was already

noted in the preceding footnote), the choice of the

value given by (3.8) as the soft-quantum limit is in-

convenient. It is therefore necessary to choose in the

correct calculation e ~ m, and assume all other

quanta to be hard, so that formula (3.9) actually be-

comes correct. The total radiative corrections are

obtained by adding the contributions of the soft and

hard photons, and the result should be independent of

the value of e, the boundary between the soft and

hard quanta, since this boundary is purely arbitrary.

All the formulas given above are valid, of course,

for arbitrarily small e. For experiments with collid-

ing beams it is particularly important to account for

the dependence of the radiative corrections on the

scattering angle, since what is actually measured is

the differential scattering cross section in relative

units, after which the resultant curve is normalized,

to the theoretical curve (with account of the radiative

corrections) for small scattering angles (small mo-

mentum transfers, for which quantum electrodynamics

is known to be valid). It is seen from (3.9) and (3.10)

that the angular dependence is contained only in the

terms with In ( E/e). In '-16-' the value of e was

chosen in the form (3.8), and the dependence of the

radiative corrections on the scattering angle obtained

as a result of this is, for the reasons indicated above,

incorrect. In view of the extremely cumbersome

calculations, the correct result can be obtained by

numerically integrating Garibyan's formula with the

aid of an electronic computer (or else by directly

calculating the corresponding diagrams on an elec-

tronic computer). The results of such calculations,

for specific parameters, are listed in Table II'-22'98·'.

We have examined in detail above the radiative

corrections to the electron-electron scattering

formulas. The radiative corrections calculated in

analytic form, for the electron-positron scattering

formulas, can be obtained by simple substitution. If

the initial positron momentum is p+ and the final one

is p'+; then we must make in the corresponding for-

mulas the substitutions

It is obvious that then

(3.12)

(3.13)

If we make this substitution, then sin •& in (3.9) goes

over into 2 tan (i?/2), while formulas (3.10) and

(3.11) remain unchanged. Naturally, this substitution

transforms σ0(ιί) into the formula for the scattering

of electrons by positrons, the so called Babbha

formula, the explicit form of which can be obtained

from (3.1).

The procedure for calculating the radiative cor-

rections to the cross section for the annihilation of

an electron-positron pair into a photon pair is analo-

gous to that given above. In this case, however, along

with the corrections for the differential cross section,

which contain, as we have seen, the characteristics

of the recording instruments whenever the contribu-

tions of the real photons are taken into account, we

can also calculate the corrections to the total cross

section. This is connected with the integrability of

the differential cross section both in this case, and

in the case of Compton scattering. Although it is

necessary to have for the experiment corrections to

the differential cross section, the radiative correc-

tions to the total cross section are also of interest,

since the total cross section is an invariant and con-

sequently these corrections do not depend on the

reference frame or on the recording apparatus, and

are objective characteristics of the process. The

calculation of the total radiative corrections to the

annihilation cross section is contained in'-100-' and is

analogous to the corresponding calculations for

Compton scattering C50'"λ If the total cross section

is represented in the form

= σο(1+δτ) (3.14)

where σο is the total annihilation cross section in the

Born approximation, then δ-ρ = 8 per cent when

Ε = 350 MeV and 6 T = 14 per cent when Ε = 3.5 BeV.

The analysis presented above shows that radiative

corrections to electrodynamic cross sections at high

energies are far from small and can be significant in

the experiments. This circumstance is not accidental

and will be considered below.

3.2. Higher radiative corrections. In the investi-

gation of the contributions of the higher approxima-

tions of perturbation theory one must bear in mind

the following peculiarity: whereas at low particle

energies the perturbation-theory series is an expan-

sion in the small parameter e2 = 1/137 and con-

verges rapidly, by virtue of which the higher terms

of the series can be discarded with a high degree of

accuracy, at large energies the expansion parameter

is no longer e2 but e2 In n ( E/m) ( η = 1 or 2 )β 3" 2Ο.

In view of this, the perturbation-theory series con-

verges slowly, at a rate that deteriorates with in-

creasing energy, so that generally speaking a large

Table Π. Radiative corrections to the electron-electron
scattering cross section, Ε = 500 MeV, Δι? = 3.5°

Scattering angle
Radiative correction

40°
0,106

50°
0.121

60°
0.132

70°
0.137 0.141

90°
0.144
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number of terms is needed in the perturbation-theory
expansion. By virtue of the fact that a direct calcula-
tion of the higher approximations by the Feynman
technique is extremely difficult, inasmuch as the dif-
ficulty and complexity of the calculations increases
sharply with increasing order of the approximation,
it is necessary to have either radically new methods,
which get around perturbation theory, or an essential
improvement in the convergence of the perturbation-
theory series.

Calculation of electrodynamic effects without ap-
plication of perturbation theory is undoubtedly very
enticing. There were many attempts made in this
direction. Schwinger ^ 2 6 > 2 r^ formulated a system of
functional equations for the single-particle Green's
functions; however, in view of its functional character,
the system cannot be solved directly and must be re-
duced to a different form. One such form was devel-
oped by Ioffe, Galanin, and PomeranchukB8>2i l and
reduces to an infinite system of coupled equations.
At the present time there are no satisfactory methods
for solving this system. Another formulation of the
system of functional equations was obtained in I-30"32]
and consists of the following. The space (coordinate
or momentum) is replaced by a grid, and the function
of the coordinates in this space is replaced by a set
of values at the corners of this grid. Thus, the func-
tional is replaced by a function of N variables (de-
pending on the number of fields and corners). This
makes it possible to obtain the basic quantities in the
form of integrals with respect to these variables. In
the limit the number of variables N goes to infinity,
and the distances between corners tends to zero. The
results of the calculations are expressed in terms of
continual integrals. An approximate calculation of
the continual integrals, but as applied to a problem
much simpler than quantum electrodynamics (polaron
theory) '-33-' yielded results in good agreement with
those of other methods, particularly of the direct
variational method. Nonetheless, the question of the
possibility of approximately calculating continual in-
tegrals in the case of quantum electrodynamics re-
mains open, particularly because of the need for
eliminating the divergences.

At the same time it must be noted that there are
many questions in which the expansion in e2 is in
itself perfectly admissible, but, as we have already
noted, the series of the ordinary perturbation theory
converges too slowly, so that an appreciable improve-
ment in the convergence of this series is essential.
Among such problems are: the asymptotic behavior
of the basic functions of the theory at high energies,
the infrared catastrophe, and also the effects of in-
terest to us at higher energy.

Blank 04.30 integrated approximately the Schwinger
equations with the aid of the proper-time method, and
although he used expansion in e2 during the course
of the solution, this method makes it possible to im-

prove appreciably the convergence of the perturba-
tion-theory series.

A considerable improvement in the convergence of
the perturbation-theory series can be obtained also
with the aid of the renormalization-group method L36~41J.
We note that individual terms in the perturbation
theory expansions for the Green's functions of the
electron and photon and for the vertex parts are not
invariant with respect to the renormalization group,
whereas the quantities themselves are invariant. A
renormalization group is defined as the group of
transformations

е\->е\ = г?е\, (3.15)

the meaning of which is that the use of the quantities
Gj, Г), Dj, and ej leads to the same results as the
use of the quantities G2, Г2, D2, and e2, that is, to
a description of the interaction of the electrons and
photons with the same coupling constant, which can
be chosen equal to its experimental value. The gist
of the method is to superimpose the condition of re-
normalization invariance on each of the terms of the
perturbation-theory series. It turns out that each
term of the series obtained as a result is the sum of
an infinite number of diagrams. The general solution
of the Lie differential equations of the renormaliza-
tion group is determined with accuracy to arbitrary
functions of two arguments. Consequently, to obtain
the specific form of the functions it is stipulated that
the results agree with perturbation theory in case of
small e2; thus, when using the method of the re-
normalization group it is necessary to have calcu-
lated corrections in the lower perturbation-theory
approximation.

Landau, Abrikosov, and Khalatnikov Γ42-45Ί p r O p O S e c j

a closed system of quantum-electrodynamics equa-

tions, and took into consideration only terms contain-

ing the maximum power of the logarithm, which leads

to a consideration of a definite aggregate of diagrams.

Following the same path of separating the essential

diagrams containing the maximum power of the lo-

garithm, Sudakov C24>253 and AbrikosovГ20)23-' proposed
their own method of perturbation-theory summation
with logarithmic accuracy. Within the frame of this
method, one retains only those diagram contributions
which contain the logarithm to the highest power. It
turns out that in the case of the consideration of real
effects (when the vectors are time-like) these terms
in n-th order of perturbation theory are the doubly-
logarithmic terms of the type [e2ln2( E/m)] n ( Ε is

a quantity on the order of the energy of the particles

participating in the reaction). In this method we

neglect the single-logarithm terms of the type

[e2ln( E/m)] n . It is clear that the accuracy of the

method increases with the particle energy.

In scattering of electrons in colliding beams, one

investigates only large-angle electron scattering.
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The double-logarithmic corrections for this case

were calculated i n [ 4 M 9 : i .

A general n-th order diagram, as shown in Fig. 9,

was considered. We note that the parts of the diagram

containing the vacuum polarization do not produce

doubly-logarithmic terms and were left out, so that

the diagram of Fig. 9 is the most general type of

diagram that contributes in the doubly-logarithmic

approximation. This diagram was considered as the

skeleton diagram, into which the "overgrown" elec-

tron and photon Green's functions and the vertex

parts were inserted. After several transformations,

<
\

\ Χ/<·

FIG. 9

the expressions for the contribution of the diagram

could be reduced to a sufficiently simple form, in

which it was possible to sum all the topologically-

irreducible diagrams in the given n-th order. A

remarkable fact was that the contributions of all

diagrams containing more than one "ladder" (that is,

connecting different electron lines) photon line cancel

one another out. After summing with respect to η we

obtain the total cross section of the elastic process

in the doubly-logarithmic approximation

a(i)) = ao(*)e~4f, (3.16)

where σο(^) is the Moller cross section; f an inte-

gral diverging when p2 - m2 — 0 (pj is the electron

momentum, and p? - m2 is a measure of the energy

lost by the electron to radiation). It is seen that un-

like the ordinary method of eliminating the infrared

divergence, where σ — °° as pf - m2 — 0, in this
case σ —• 0 as p? — m2 0. This is the result of

using an improved perturbation theory and is un-

derstandable from the physical point of view, since it

denotes that the cross section of a purely elastic

process is equal to zero. The latter follows from the

fact that the probability of emission of soft quanta in

the collision tends to infinity as ω — 0.

As is well known, to eliminate the infrared diverg-

ence it is necessary to take into account the radiation

of the real quanta. The total cross section of the

elastic and inelastic processes can be represented in

the form

(3.17)

where ΔΕ is the total energy carried away by the

photons. We see that if ΔΕ = Ε (that is, the detector

registers all the electrons regardless of their energy

loss), then in the accuracy assumed the total cross

section coincides with the cross section calculated in

the lowest perturbation-theory approximation ( σ = σ0).

As is well known ^23-' this is connected with the fact

that in the doubly-logarithmic approximation the re-

duction in the cross section of the main process with-

out the radiation of additional quanta, brought about

by an account of the radiative corrections, is com-

pletely compensated by the increase in the contribu-

tions of the cross sections of the processes with ad-

ditional multiple radiation of hard photons in the case

of arbitrary radiation ( ΔΕ = Ε).

The importance of taking into account the doubly-

logarithmic terms is connected with the fact that in

the investigated energy interval, at sufficiently small

ΔΕ (which, as we have seen in the preceding section,

denotes either a detector with high energy resolution,

or a counter with small angular dimensions) the

doubly-logarithmic terms, meaning therefore the ex-

ponent in (3.17), turn out to be of the order of unity.

At the same time, as we have already noted (3.5), the

single-logarithm terms are much smaller than unity

at the energies attainable at the present time, and

perturbation theory accounts for them adequately.

Thus, one can conceive of two different situations:

1) the detectors have quite good energy resolution

( ΔΕ is small). Then the most important role among

the radiative corrections is played by the doubly-

logarithmic corrections, processes with emission of

hard photons are not registered, and the one-logarith-

mic terms can be taken directly from (3.9). 2) The

detectors have poor energy resolution ( ΔΕ large),

and in this case the contribution of the doubly-logarith-

mic terms is small, so that the radiative corrections

can be calculated in the e6 order of perturbation

theory. In this case a correct account is necessary

of the radiation of the hard photons.

If we are interested in the emission of η real

photons in the case of arbitrary radiation, then

ση (#) = σθ (ϋ) е-" ̂  , ~п = 4/; (3.18)

This is the Poisson distribution, showing that the
radiation has a classical character, and the emission
probability does not depend on the number of previ-
ously emitted quanta.

Formula (3.17) is valid also for the electron-posi-
tron scattering cross section. As regards the two-
quantum annihilation of an electron-positron pair, it
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is interesting to ascertain here the number of addi-

tional photons emitted along with the two main quanta.

For quanta with energy larger than ΔΕ, this number

is [ 4 9 ]

-rrT ie* . Ε . Ε
Ν = In — In -r-= .

л m &E
(3.19)

In the case when Ε = 700 MeV and ΔΕ = 10 MeV, the

average number of emitted additional quanta is

N = 0.3.

The higher radiative corrections can be calculated

also with the aid of the renormalization-group

method ^ , where it turns out that the exponent in

formula (3.17) is equal to the entire lower-order

correction [see (3.9)]. The renormalization-group

method provides a negative answer to the question'-52-'

of whether the exponent can contain logarithms to an

intermediate power β, where β l ies between 1 and
2.C53D

An advantage of the procedure indicated above for

the investigation of the higher radiative corrections

i s the possibility of trivial generalization to include

the case of electromagnetic interaction between dif-

ferent part icles.

3.3. Radiative corrections due to strong interac-

tions. Along with the electromagnetic corrections to

the Moller formula, it is necessary to include also

corrections due to the strong and weak interactions.

The latter will be considered in Chapter V below.

We consider here the possible contribution of strong

interactions.

Inasmuch as the electrons can interact with other

fields only via the photons, it is first necessary to

calculate the contribution of the strong interactions

to the photon Green's function, since the contribution

of the meson " c l o u d " of the electron is quite small,

owing to the dependence on very high powers of e 2 .

We know^1 0·1 1^ that the polarization of vacuum by

the particles is invesely proportional to the squares

of their masses in the case when k2 « m 2 (k is the

momentum of the photon line, in the c .m.s . k2 = 4E 2;

m is the mass of the particle polarizing the vacuum).

In the case when k2 » m 2 the vacuum polarization is

proportional to In (k 2 /m 2 ) . Actually the region of

interest to us is intermediate, and the exact formulas

must be used. For pions with k2 = 4m2 (at the thresh-

old of a pion pair production) the contribution of the

diagram with the polarization of vacuum by the pions

amounts to 0.1 per cent of the contribution of the

lowest-order scattering diagram, and this value in-

creases very slowly with increasing energy. It is

meaningless to take this correction into account,

since the electrodynamic radiative corrections have

been calculated with much lower accuracy. The situ-

ation is s imilar also in the case of other strongly-

interacting particles, so that it remains only to in-

vestigate the contribution of the possible interactions

between the particles polarizing the vacuum. We con-

sider the consequences of resonant ππ interactions
[16,54]>

According to Kallen, the photon Green's function

can be represented by

n 2

, (3.20)

Here Π(ρ2) is the sum over all physical states with

momentum p m = p:

(3.21)

3„( 0) is the current operator and V the normaliza-

tion volume. The quantity Щ 0) - П(р2) is defined as

(3.22)

If we leave in the sum (3.21) only the two-pion states
for which the transition current can be represented in
the form ibg]

(0 | / μ (0) I kj, kj) = ( ^ γ / 2 №ΐμ - 2̂μ) (δ;1δί2 - δ;2δ;1) Fn (P2),

[where i and j are the isotopic indices of the pions

and F ^ p 2 ) is the pion form factor], then it only re-

mains to calculate the integral (3.22). Substituting

the resonant form of the form factor (ρ meson) in

the integral, we find that after taking the strong inter-

action into account the correction due to the pions is

on the order of 1 per cent, which as before is less

than the accuracy with which the radiative corrections

are calculated.

3.4. Phenomenological investigation of quantum

electrodynamics at small distances. Violation of

quantum electrodynamics at small distances may be

due to the following: 1) non-local nature of the inter-

action, in which case the local interaction operator

Hloc = βΑμ(χ) j^( x), in which the field and the cur-

rent interact at a single point, goes over into a non-

local operator of the type

«mice μ (χ) ρ (y) F(x-y) d*y, (3.24)

where the current at the point у interacts with a field
in some small vicinity, defined by the function
F(x — y); 2) a change in the space-time geometry at
small distances; 3) fields that appear only at very
small distances.

We introduce a fundamental length L, defined such
that at distances larger than L the factors mentioned
above play no role, but starting with r = L they come
into play. We estimate below the upper limit of L,
and, since we can make only crude estimates, the ob-
tained value of L will be attributed to any of the fore-
going factors.

It is clear that the distances measured in the ex-
periment are of order 1/q [see (3.2)]. More accurate
estimates can be obtained either by introducing form
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factors in the electron-photon vertices, or by modify-

ing the propagation function of the electron or photon.

Estimates obtained by these methods differ only by a

numerical factor.

Let us consider, for the sake of being definite, the

scattering of an electron by an electron (positron). In

Sec. 3.2 we saw that it is necessary to consider, with

a great degree of accuracy, the class of diagrams in

which one photon is exchanged. Then the matrix

element (Fig. 10.a) can be written in the form

μΟΊ, Ρι)#μν(92)Γν(ρ;, A). (3.25)

The form of the vertex function Γμ can be determined

by making the following rather general assumptions:

1) Г„ is a four-vector; 2) the current conservation
law (p{ — ρι)μΓ^ = 0 holds; 3) the electron has spin

1/2,

[ ^ ] (3.26)

The scalar functions fi(q2) and f2(q2) describe the

internal structure of the electron and are relativistic

generalizations of form factors of the type

= \

where p( r ) is the radial charge density; it is as-

sumed that the radiative corrections are taken into

account. For a particle with a point-like charge e

and a point-like anomalous magnetic moment μ we

have fι = f2 = 1. If the particles are not point like,

k,

FIG. 10

then for small q2 the functions fi and f2 can be ex-

panded in series:

i — 1 _ ь %ч

« 1 .

If furthermore

(3.27)

(3.28)

(3.29)

then &IJ is the mean square radius of the charge
distribution (of the anomalous magnetic moment dis-
tribution). Inasmuch as, unlike in the case of electron-
proton scattering в9-60!, the criterion (3.29) is known
not to be satisfied in the region of interest to us, the
indicated simple interpretation of the functions fj and
f2 is incorrect and both functions describe the distri-
bution of the current-charge in the electron.

At the present time we know nothing concerning the
functions fj and f2, so that we assume for estimating
purposes f2 = 0. Then the electron-electron scatter-
ing cross section assumes the form

(3.30)
The electron-positron scattering cross section can be
obtained from this by making the substitution (3.13).
The exact formula with account of f2 was obtained in
[61] ^

Let us consider scattering through an angle •& = 90°,
q2 = q'2 = _2E2, then

4a V Л л
ι—_Μ (3.31)

The relative deviation from the Moller cross sec-

tion is

ACT _ 4 a V

σ ~ 6 '
(3.32)

On the other hand, it can be assumed that the

vertex functions do not change, but the photon propa-

gation function changes,^

q' + l/λ"

which corresponds to a change in the Coulomb law

1.^.1(1 _е-гл\;

If q2A2 « 1, then

and the latter expansion is obviously not connected
with the specific form of the modification of the pho-
ton propagation function. If we again consider scat-
tering through an angle of 90°, then

A^ 9/i272 /o oo\
ώϋ /v. ( O . O O l

On the basis of scattering experiments only, it is

generally impossible to distinguish a change in the

vertex part from a change in the photon propagation

function, so that both interpretations are of equal

validity, and the distances at which quantum electro-

dynamics breaks down is a (or λ). To take both

contributions into account simultaneously, we intro-

duce the effective length

ί2 = -̂ - + λ2. (3.34)
о

In order to observe a deviation Δσ, it is neces-

sary to measure with accuracy not lower than δσ

= Δσ/2, then the length I, measured in experiments

on electron-electron scattering through 90°, is

1 - ^ У и й Л 0 ' 1 3 с т ' (3.35)

where Eo = 197 MeV. The measured distances for
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Table III. Effective distances I, measured at a
given experimental accuracy and at a given

electron energy, in units of 10 cm.

δσ
σ

0.10
0.05
0.03
0.01

100

0.44
0.32
0.24
0.14

Ε, MeV

300

0.15
0.10
0.08
0.05

500

0.09
0.06
0.05
0.03

1500

0,03
0.02
0.02
0.01

certain energies and accuracies are listed in Table
ΠΙ.

To detect deviations from quantum electrodynamics
at small distances, there is no need for carrying out
the very complicated measurements of the absolute
cross sections. Inasmuch as q ~ 0 in small-angle
scattering, it is sufficient to carry out the measure-
ments of the relative cross sections, normalizing
them at small angles to the Moller curve, with ac-
count of the radiative corrections.

The use of electron-positron scattering to check
the validity of quantum electrodynamics at small
distances offers some new possibilities: 1) the in-
vestigation of the form factors in the time-like do-
main [f( s2), s2 > 0]; 2) measure shorter lengths,
other conditions being equal, this being connected
with the possibility of investigating scattering through
angles larger than 90°; to be sure, the cross section
of scattering through these angles is appreciably
smaller than the corresponding Moller cross sec-
tion[4«.

Investigation of the process e+ + e" —- 2 γ (Fig.
10b) enables us to determine the electron propagation
function G(p) and the vertex part, which, generally
speaking, should be written in the form Γ μ ( ρ2, ρ'2,
к 2 ). Compared with the case of electron-electron
scattering, where we investigate the function Γ μ ( m2,
m2, k2), in the case of annihilation we are investi-
gating the function Γμ(ρ2, m2, 0), that is, the vertex
part in another domain of the arguments. This is
precisely why a study of the annihilation process is
of very, great interest for a check on the applicability
of quantum electrodynamics at small distances. It
must be noted that in this case the phenomenological
analysis is more complicated than that given above,
since, first, two scalar functions appear in G(p),
and, second, there is no analog of (3.26).

The form factors in the time-like domain of the
arguments can be investigated also in polarization
experiments that are sensitive to small-distance in-
teractions.

Let us proceed now to an estimate of the upper
limit of the length L, up to which quantum electro-
dynamics is known to be applicable. We shall list
below tho> experiments on whose basis this estimate
can be made.

Hofstadter's experiments ^9>6<0 ο η t n e electromag-
netic structure of nucleons have made it possible to
determine the structural functions Ft (q2) and F2 (q2)
over a wide range of values of momentum transfer q.
If we assume that the deviations of the functions Fj
and F2 from unity are due not only to the nucleon
meson cloud but also to violation of quantum electro-
dynamics, then

('•2>obs= {r\ + 6/2 = (0,8· 10"13cm)2, Z<0.3· 10"13cm.(3.36)

It is obvious that an appreciable portion of the effect
is due to the nucleon meson cloud, so that we can as-
sume that Hofstadter's experiments imply the validity
of quantum electrodynamics up to distances on the
order of (1-2) x 10"1 4cm.

In calculating the anomalous magnetic moment of
the electron (muon), integrals are obtained with re-
spect to the momenta of the virtual photons. If we
assume that quantum electrodynamics breaks down at
a distance I, then the radiative corrections to the
magnetic moment assume the form '-63-'

α
"2ΪΓ

(3.37)

In view of the large mass, the use of the muons is
preferable. The latest measurements of the anomalous
magnetic moment of the muon have shown that experi-
ment agrees with theory accurate to 0.5 percent of
the radiative correction, that is, (2/3) l2m2 £ 0.5
x 10"2, hence ! < 1 . 5 x 10"14 cm.

These distances are indeed the minimum distances
to which the applicability of quantum electrodynamics
was measured; consequently, L ^ 1.5 χ 10~14 cm.

The value of the Lamb shift is also sensitive to
cutoff at large momentum. In accordance with the
latest data^65'101^, theory agrees with experiment
within 0.1 Me, hence Ζ < 3 x 10~14, and the aggregate
of data on hydrogen hyperfine structure '-66-' leads to
I < 5 x l0" 1 4 cm.

Experiments on the verification of quantum elec-
trodynamics with the aid of the reaction у + ρ — e +

+ e~ + ρ in the case of pair production at large angles
[67,68] a r e being carried out at the present time ^ .
However, the two diagrams (on which the photon is
absorbed and emitted by a proton) cannot be reduced
to the Hofstadter form factors, and their estimates
(strong interactions!) can be made only theoretically.

In conclusion it must be noted that in the region
that will be measured in the nearest future (energies
up to 700 MeV, accuracy not higher than 2—3 per
cent), there are no characteristic parameters that
would point to the possibility of breakdown of quantum
electrodynamics at these distances. However, the
observation of a breakdown of quantum electrody-
namics would be of all the more interest here. As
regards the suggestions advanced frequently in recent
times (see, for example '-70-') that the fundamental
length is connected with weak interactions, the corre-
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sponding distances ( 6 x 10 1 β cm) can be eventually

measured, apparently, in experiments with colliding

beams. For this purpose it is necessary, for example,

to carry out an experiment in colliding electron-

positron beams with two BeV energy and 1 per cent

accuracy.

IV. CREATION OF PARTICLES IN ELECTRON-

POSITRON COLLISIONS AND INVESTIGATION

OF THEIR STRUCTURE

Experiments on the creation of elementary parti-

cles upon annihilation of an electron-positron pair

seem to us to be unique both with respect to the

amount of information on interactions between ele-

mentary particles, and with respect to its importance.

The cross sections of the corresponding processes

are of the same order in the electromagnetic interac-

tion constant e2 as is the cross section for elastic

scattering. Therefore all these processes are per-

fectly observable.* We shall list below the possible

experiments on particle production in the annihilation

of an electron-positron pair, indicating the informa-

tion that can be extracted from them. We shall then

consider some of these experiments in greater de-

tail, t

1. A check whether there exist charged particle

pairs (other than those hitherto discovered) independ-

ently of the properties of these particles with respect

to strong interactions, if their mass is smaller than

the limiting beam energy and their lifetime is not less

than 10~9—10~10 sec. These particles can be observed

directly. In the case of a shorter lifetime, their decay

products will be observed.

2. A check on the existence of strongly-interacting

particles, including neutral particles, based on the

anomaly in the cross sections of other processes and

threshold effects.

3. The e+ + e " — π°+γ process, and the investi-

gation of unstable neutral particles, the lifetime, and

the electromagnetic form factor of the π° meson. The

reaction threshold is 70 MeV.

4. The process e+ + e" —- μ* + μ', investigation

of the muon form factor, the threshold effect, bimuon-

ium, radiative corrections. Reaction threshold 106

MeV.

5. The process e+ + e~ — ir+ + π", investigation

of electromagnetic form factor of the pion for time-

like momentum transfers, the associated ππ interac-

tion and unstable neutral particles, the investigation

of radiative corrections. Threshold 140 MeV.

*The particle-pair production cross section in electron-
electron collisions contains the additional factor e4 and in
the case of production at large angles is 104 times smaller.
These cross sections can be large only in the case of produc-
tion at small angles, but the colliding-beam technique does
not permit observation at small angles.

tThis group of problems is considered also in [""I.

6. The process e+ + e — ττ+ + τ + π°, investiga-

tion of the pion form factor, study of тгтг interactions
in other (compared with process 5) isotopic and spin
states, investigation of ω and η mesons. Threshold

210 MeV.

7. The process e+ + e" — K+ + K" (K°+ K°),

investigation of electromagnetic form factor of the К
meson, and of KK and πΚ interactions. Threshold

494 MeV.

8. Process e+ + e~ —* 2K '+ π, investigation of πΚ

interaction, and of the K' meson. Threshold 564 MeV.

9. The process e+ + e~ — p + p~(n + n), investiga-

tion of electromagnetic form factors of nucleons for

time-like arguments (unlike the Hofstadter's experi-

ments, where the space-like momentum transfer re-

gion was investigated). Threshold 940 MeV.

10. The process e+ + e" —> X + X (hyperon-pair

production), investigation of electromagnetic form

factors of hyperons and тгХ interaction.

11. Processes with production of ΧΧπ for the in-

vestigation of πΧ interactions of different hyperon

resonances ( Υ*, Υ*, Y**).

12. Processes with production of К mesons and
hyperons ( for example Σ~ηΚ+), for the investigation

of the corresponding interactions and resonances.

The listed experiments are among the most direct

experiments with which it is possible to determine

directly the properties of the elementary ππ, πΚ, ΚΚ,

and πΧ interactions. Recently these interactions

have been widely investigated in many other experi-

ments, particularly in processes with annihilation of

a proton-antiproton pair. The latter are analogous to

some degree with the experiments on electron-posi-

tron annihilation. In all other experiments it is neces-

sary to separate the strong interaction of the reaction

products in the final state, something that can be done

only crudely and far from unambiguously. Although

the particle-production cross section in the annihila-

tion of a nucleon-antinucleon pair is four orders of

magnitude larger than the particle production cross

section in electron-positron annihilation, the accumu-

lation of statistics in the latter experiments can be

much faster, since the difference in the intensities of

the anitproton and positron beams is much larger.

The advantage of experiments with electron-positron

colliding beams lies also in the fact that the measure-

ments can be carried out over the entire energy spec-

trum, whereas in experiments with nucleon-antinu-

cleon annihilation there is a threshold near 2 BeV, so

that a considerable region of great interest becomes

unphysical.

Let us make, finally, a remark concerning the

quantum numbers of the final states. We consider

processes in the lowest electrodynamic approxima-

tion, that is, when the electron-positron pair goes

over into a photon which then decays into the final

reaction products (Fig. 11). In the c.m.s. the virtual

photon is at rest, as it were, к = ( 2E,0); since, on
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FIG. 11

the other hand, к„а/* =0, it is clear that a4 = 0; con-
sequently, the virtual photon is described by a polar
vector. It follows therefore that the angular momen-
tum of the intermediate state is J = 1 (vector particle),
the parity is Ρ = —1, and the parity with respect to

charge conjugation is С = —1. Inasmuch as all these
characteristics are conserved in electromagnetic and
strong interactions, all the final states which are ob-
tained upon annihilation of an electron-positron pair
(accurate to radiative corrections) have the afore-
mentioned quantum numbers.

4.1. Muon pair production. In the preceding chap-
ter we have seen that, with a high degree of accuracy,
muons are subject only to electromagnetic interac-
tions '-64-'. The cross section for the production of a
muon pair in the annihilation of an electron-positron
pair has in second order perturbation theory (Fig. 12)
the form

< 4 Л>

Here q is the muon momentum and t? is the angle of
muon emission relative to the direction of the e lec-
tron motion.

The doubly-logarithmic corrections to the produc-
tion cross section are calculated in the same manner
as the corrections considered in the preceding chap-
t e r for the electron-electron scattering cross section
'-71^. In exactly the same way, only diagrams with a
single ladder line make a contribution. An account of
the radiation of the real quanta leads to a dependence
of the cross section on the maximum energy ΔΕ c a r -

ried away by the quanta; however, in view of the jump

in mass ΔΕ ^ Ε — μ and in the case of arb i t rary

radiation (when the detector reg i s ters all the muons,

regardless of their energy) we have ΔΕ = Ε — μ.

This case therefore differs in principle from the

scattering and annihilation into photons, which was

considered in the preceding chapter, where in the

case of arb i t rary radiation the reduction in the cross

section of the main process (without emission of ad-

ditional quanta) due to an account of the radiative cor-

rections is completely offset by the increase in the

cross sections of the processes with multiple addi-

tional photon radiation. In the present case, however,

p.

P_

9.

no such compensation takes place, and in the case of

arbitrary radiation we have

^-in-^-l^} , (4.2)

where φ{ 4Ε2) is the muon form factor which, as we

have already noted, is equal to unity in the space-like

domain, and μ is the muon mass. It is clear that the

effect is most noticeable at the threshold, when

Ε » Ε - μ. For nonrelativistic muons (near threshold)

formula (4.2) can be rewritten in the form

(4.3)

and the factor | ф( 0) | takes into account the Coulomb
interaction of the final muons, which likewise is sig-
nificant near threshold "®:

ΙΨ(0)| 2 = - (4.4)
1 - е

FIG. 12

Both the foregoing effects change the dependence of
the cross section of the process on the momentum of
the outgoing particles. In the region where the Cou-
lomb interaction is insignificant (2πΖ2/ν « 1) we ob-

tain σ ~ q1"1 in place of σ ~ q.

The Coulomb interaction between the produced

muons can lead to the formation of a bound state of

positive and negative muons— bimuonium^. Bi-

muonium can decay not only into photons (the lifetime

of parabimuonium is ~0.6 χ 10~12 sec) but also into

an electron-positron pair (lifetime of orthobimuonium

is ~2 x 10~12 sec). The scattering of an electron by a

positron and the annihilation of an electron-positron

pair into photons can proceed via the aforementioned

intermediate bound state. Therefore investigation of

bimuonium is of interest not only for a study of the

properties of muons, but also as an example of an

unstable intermediate state which is amenable to

exact calculation. In this case a very narrow (~10~3

eV) and a very high (~10~25 cm2) peak appears in the

cross section. We note that the cross section without

account of this effect is ~10~31 cm2. Because of the

scatter in the particle energy in the colliding beams,

this effect becomes smeared out, nonetheless it can

be observed under certain conditions .

4.2. Creation of pions in electron-positron colli-

sions . Of exceptional interest is the investigation of

ττπ interaction as one of the fundamental interactions.

This interaction contributes to the cross section of

many processes in which pions and baryons partici-

pate. Data on this interaction are obtained at the

present time from an analysis of the reactions ρ + ρ

— ηττ, π· + ρ — 2π + ρ, and many other processes. It

follows from these experiments that the ππ interac-

tion indeed exists and has a resonant character.

One of the most direct methods of investigating the

πττ interaction is the reaction

e* + e~—>ηπ, (4.5)
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which yields information on the ver tex γ — ηπ and

consequently on the e lect romagnet ic form factor of

the pi on, which can be connected with the phase shifts

of the ππ sca t te r ing . In addition, the e lect romagnet ic

form factor of the pion is in itself a fundamental

quantity and is contained in the c r o s s sect ions of

other processes.

As was already noted, accurate to radiative cor-

rections , the final pions are in a state with J = 1,

Ρ = —1, and С = — 1. In addition, a system of η pions

has a definite G parity, ( -1 ) n . In electromagnetic

transitions, in the lowest order, the isotopic spin

either remains constant or changes by unity. There-

fore, accurate to radiative corrections, the isospin of

the η created pions is either 0 or 1. Taking into ac-

count that G = CT2 and С = - 1 , we obtain T2 = (-1)
Thus, for an even number of pions we obtain an iso-
topic spin 1 (an isotopic vector, which reverses sign
upon the rotation T2), while for an odd number of
pions we obtain isospin 0 (an isotopic scalar, which
does not reverse sign upon the rotation T2). From the
fact that in the final state С = —1 it follows, in par-
ticular, that a process in which all the final particles
are neutral pions is forbidden.

We are interested in the transition current

n - i

\ <72 1, • • - . 9 " ) , ( 4 - 6 )

where q* are the momenta of the created pions. From
the current conservation law it follows that kv J " = 0;
inasmuch as the spatial part of к is equal to 0 in the
c.m.s., it follows that EJ4 = 0. We shall therefore
consider only the spatial component of the transition
current J. Since J is multiplied by a polar vector, it
follows from the parity-conservation law that J is a
polar vector made up of the vectors q1, q2, . . . , qn

if η is even, and an axial vector if η is odd. Taking

this into account, we readily obtain the cross section
[80]

32Δ 4 (2 i t) 3 "" 5

η

'S Π dq ie( (4.7)

since in the initial state there is only one vector—the

collision direction; J is the angle between the colli-

sion line and the vector J. Thus, the angular distri-

bution follows only from the gauge invariance and

does not depend on the properties of the vertex γ — ηπ.

In the case of the creation of two pions, there is a

unique vector J ( q1 = —q2), and the angular distribu-

tion is completely determined by the factor sinV. In

the case of the creation of three pions, J should be

proportional to the axial combinations ( q1 x q2)

= -(q 1 x q3) etc.; it follows therefore that the vector

J is normal to the plane of creation and consequently

the angular dependence of the cross section on the

angle between the normal to plane of creation and the

collision line is again sin2i?.

In the case when two pions are created, they are

created in a state with relative angular momentum

I = 1. The cross section of the process is

(4.8)

Thus, it is possible to measure directly in the experi-

ments the isovector electromagnetic form factor of

the pion, Fjri s ). The region where the form factor

is determined for different processes is shown in

Fig. 13. In experiments on pion-pair production the

form factor is investigated in the time-like region,

while the form in the space-like region can be meas-

ured in principle in experiments on the scattering of

pions by electrons.

Space-like

k-<0

Physical region·
for е+л~е+л Т

к

Absorption region

Time-like

Physical region
for е++Р~—Ж*+Я

-iu

FIG. 13

In the interval s < 16μ2, the form factor Fv( s)

can be expressed in terms of the ππ scattering phase

shift in a state with isotopic spin 1 and angular mo-

mentum 1

s' (s'-s)

(4.9)

The form factor Τ?π( s) was first investigated theo-

retically, particularly within the framework of the

Mandelstam representation L81~83J a n cj ш many investi-
gations^57'58'77-! a resonant form of ππ interaction was

obtained for certain values of the parameters, leading

to the appearance of sharp peaks in the function

Τπ{ s ). Even the first analysis of the experiment has

confirmed qualitatively'-79'84"87-' the resonant charac-

ter of the ππ interaction. Such an interaction can be

described as an unstable meson with Τ = J = 1 and

negative parity, which rapidly decays into a π+π"

pair. The recently discovered ρ meson'-102'103-' and

ζ meson'-104-' have precisely these properties, and

consequently the form factor as a function of the en-

ergy will have at least two peaks. The simplest form

of the function FT( q2) takes into account only the in-

dicated resonant interactions (pole diagrams) of Fig.

14a;

j . _ Л—fr. (4.10)

It must be noted that the indicated resonances have
not yet been sufficiently investigated, and experiments
with colliding electron-positron beams, in which high
energy resolution can be obtained, could provide the
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FIG. 14

b)

exact form of the peaks, and in particular would make
it possible to determine whether the p° meson splits
up into two'-105-'. Naturally, formula (4.10) does not
hold in the nonresonant region. A study of the form
factor in this region is also of interest, since this
method makes it possible to determine directly the
phase shifts of the ππ scattering, something particu-
larly valuable near threshold, since the absorptive
cut begins directly at the threshold, while the region
of many particles is located sufficiently far away.

To estimate the heights of the peaks it is necessary
to know the level widths of the ρ and f meson. If we
put mp = 750 MeV, Г р ~ 100 MeV and m f = 575 MeV,
Υ ζ = 70 MeV, then the height of the p-meson peak is
~ 60 (compared with Υτ = 1), while the height of the
f-meson peak is ~70. The form of the dependence of
the form factor | F,,- (q2) | on the momentum transfer
is shown in Fig. 15.

70

60

50

iO

30

20

W

300 iOO SOU 600 700

FIG. 15

BOO t=2£, MeV

The three pions (π+, π°, π ) are created in states
L = ?= 1, L = Z= 3, L = Z= 5, etc., where I is the
relative angular momentum of the positive and nega-
tive pions and L is the relative angular momentum of
the π0 meson, referred to the center of mass of the
7г+7г~ system. The transition current (4.6) can be
represented in this case in the form

JV(Q\ 9°, ?-) = •
У 8ω+ω_ω()

(Ε, ω4, ω.). (4.11)

The isoscalar form factor of the pion Η is a function
of three variables (we choose Ε, ω + , ω_ ). The vec-
tor J has the form

eE
J = 2 (q*Xq-)H(E, ω., ω.). (4.12)

With our choice of independent kinematic parameters,
the cross section can be represented in the form

in2d, (4.13)

collision line and the normal to the creation plane.
The isoscalar form factor of the pion Η plays an

important role in explaining the isoscalar part of the
electromagnetic form factors of nucleons. A theoreti-
cal investigation of this form factor is very difficult.
However, appreciable information on the properties
of the form factor can be gained from the fact that the
ω and η mesons exist D°2>1063 (if the η meson is a
vector particle r i 0 6 ] ) . In fact (see Fig. 14b), a virtual
photon can go over into an ω (or η) meson, which
then breaks up into three pions. If we take into ac-
count only such pole diagrams then, as in the case of
the form factor F7r(q2), we can estimate the depend-
ence of the form factor Η ( Ε) on the momentum
transfer only in the resonant region (Fig. 16). The
peaks of the form factor H( Ε) are much narrower
than those of the form factor F n (q2), inasmuch as
the level widths of the ω and η mesons are appreci-
ably smaller than those of the ρ and ζ mesons, and
according to many estimates amount to ~0.3 Mev'-107-'.

4.3 Processes in which 7r° mesons participate.
The decay of а тг° meson into two photons can be de-
scribed with the aid of the phenomenological interac-
tion

'«* = ΊΓ V -w φ (χ) (4.14)

Of great interest a re processes in which one of the
photons is virtual. In these processes it is possible
to investigate the electromagnetic form factor of the
π 0 meson. The three processes shown in Fig. 17
cover the entire region of momentum transfer of the
function Γ π 0 ( ^ , Ο, μ 2 ) . In experiments with colliding
beams it is possible to use the process e + + e~ — π°
+ у (see the diagram of Fig. 18), the cross section of
which is [ 7 4 " 7 6 ]

c o s 2

Here τ is the lifetime of the π° meson ( τ = 2 x 10" 1 6

/mi1

I
II

iOO 500 600 700 SOB

FIG. 16
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where, as already noted, $ is the angle between the
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FIG. 17
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ν 2) Γ

FIG. 18

sec), μ is its mass, and q is the momentum, and
g( 4E2) = Γ π 0 ( 4Ε2, 0, μ2). An investigation of a
process with production of ir° and у is quite difficult
because of the difficulty in observing three photons
and because of the small cross section, which does
not exceed 10~35 cm2 if the form factor is not taken
into account; this is connected with the relatively
large lifetime of the тг° meson compared with the
characteristic electromagnetic time. However, an
account of the new resonances changes the situation
radically: the virtual photon can go over into any one
of four mesons, ω, η, ρ, and ζ, and any of these can
decay into a ir and y. Moreover, according to the
available data '-106-', the probability of an η-meson de-
cay into 7Г0 and у is three times larger than the
probability of a decay into three pions. Therefore the
cross section of the process with production of π° and
у turns out to be of the same order as the cross sec-
tion for the production of three pions (or two pions)
and can reach 1O~29—1O~30 cm2 in the resonances.
Thus, a process with formation of тг° and у can be
used to investigate unstable neutral mesons, the
quantum numbers of which coincide with the quantum
numbers of the virtual photon.

4.4. Production of К mesons and baryons in elec-
tron-positron collisions. The electromagnetic form
factor of the К mesons can be investigated in the re-
action e+ + e" — K+ + K~; the cross section of this
process is given by formula (4.8), but now F denotes
the electromagnetic form factor Fj^ of the К meson.
A theoretical investigation of the form factor FJJ is
quite difficult, since apparently it is determined to a
considerable degree by the πΚ interaction, about
which practically nothing is known at present. Infor-
mation concerning this interaction can be obtained
also from the process e+ + e" —* 2K + π, in which K'
resonance (a K' meson) will appear.

Along with the charged К mesons, there can be
created pairs of neutral К mesons (unlike the crea-
tion of neutral pions). Inasmuch as the pair (Ko, Ko)
should be in a state with charge parity С = —1, the
final-state function should have the form K0K0

— K0K0; changing over to K° and KJ> mesons, we ob-
tain К?к£ - K^Kj. It is clear therefore that only the
pair K° - К" can be created, but not the K?-Ki or
the K\ - K°2 pairs.

The cross section for the production of a pair of
fermions with spin 1/2 in the annihilation of an elec-
tron-positron pair has the form

(4.16)

Here μ is the static anomalous magnetic moment and
F t and F2 is the analytic continuation of the electric
and magnetic form factors of the fermion into the re-
gion of time-like momentum transfers. Figure 19
shows the situation for the special case of the isovec-
tor part of the electromagnetic vertex of the nucleon.

Time like

Space like ,k> <0 Absorption
region

Physical region forPhysical region

FIG. 19

The form factors have an imaginary part along the

absorption cut. This gives rise to fermion polariza-

tion normal to the creation plane. We note that in the

process e + f — e + f this polarization cannot be

produced, accurate to radiative corrections, as fol-

lows from the invariance with respect to time rever-

sal. The fermion polarization is given by the formula

= - sin 2d (4.17)

the polarization of the antifermion is -P(,y), as fol-
lows directly from the CPT theorem.

The final pair of particles is produced in states
Sj and Dj, as follows from parity conservation and

from the fact that the total angular momentum is
equal to 1. As regards the isotopic structure of the
vertex "yff, it breaks up into an isoscalar and isovec-
tor part (for the Λ and Σ0 hyperons there is only
the isoscalar part). The absorption cut begins with
4 μ2 for the isovector part and with 9 μ2 for the iso-
scalar part. An exception is the у Σ Σ vertex, for
which the transition Σ — Λ + π leads to an anomalous
threshold '-89^. An investigation of the electromagnetic
form factors of the nucleons in the time-like region
is of very great interest, since one cannot exclude
the possibility that the nucleon core presently ob-
served in experiment is connected with singularities
at large positive k2.

Along with creation of the fermion-antifermion
pair, the reactions e+ + e" —> Σ0 + Λ or Σ° + Λ are
also possible. The cross section of this process de-
pends on the relative parity of Σ-Λ. This effect can
be investigated directly by observing the behavior of
the production cross section at threshold. In fact, if
the relative parity of Σ-Λ is positive, then the final
particles are produced in states 3St and 3D t; on the
other hand, if it is negative, then the final states will
be 'Pj and s Pj. Consequently, for positive parity the
cross section increases linearly with the final mo-
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mentum q and is isotropic, whereas for negative
parity it increases as q3 and generally speaking con-
tains terms of the type cos 2i>.

If we leave out the terms with anomalous magnetic
moment, then the cross section (4.16) decreases as
E~2, while the terms with the anomalous magnetic
moment are multiplied by a rapidly decreasing form
factor 1-6(Я. As a result of this the cross sections for
baryon production are small (~1O~33 cm2), and the
observation of the corresponding processes is quite
a complicated problem.

4.5. Detection of the existence of new particles.
As we have already noted, experiments with colliding
beams can be used for the detection of particle-anti-
particle pairs, both charged and neutral.

We have already given the cross sections for the
production of particles with spin 0 (4.8) and with spin
1/2 (4.16). The cross section for the production of a
particle with spin 1 (vector boson with anomalous
magnetic moment μ-η) is '

JLY
J

Ε* (4.18)

The search for the intermediate vector boson of weak

interaction is of great interest. We note that such a

boson should have a proper quadrupole moment and,

generally speaking, is characterized by three form

factors a o 8 ] .

Even if we exclude terms with anomalous magnetic

moment and with quadrupole moment, which increase

as E2, the cross section for the production of the

vector boson does not decrease with energy. This is

connected with the non-normalizable character of the

interaction. Inasmuch as, accurate to the radiative

corrections, the angular momentum of the final state

is equal to 1, only the lower waves contribute in this

approximation and from unitarity considerations the

cross section cannot exceed 3πλ2/4. Therefore,

starting with certain energies, the cross section

should decrease, something that can be ensured by

the form factors. If formula (4.18) has a certain re-

gion of applicability (a region where the form factors

are of no significance), then the cross section for the

production of the vector boson may become larger

than the other cross sections. Because of the short

lifetime (~10~1T sec), a vector meson can be observed

only by its decay products.

Experiments with colliding beams are very con-

venient for the separation of neutral (bound) resonant

states (or unstable mesons). We have already seen

this with the form factor resonances and bimuonium

as an example. Let us consider this question in gen-

eral. Assume that annihilation of an electron-positron

pair is accompanied by the production of a resonant

state with mass M, spin J, and decaying with a rela-

tive probability Γι at a total level width Γ . We have

to consider different ratios between the level width Γ

and the energy resolution ΔΕ: 1) narrow resonance,

ΔΕ > Γ; 2) broad resonance, ΔΕ < Γ ; 3) intermediate

case, ΔΕ ~ Γ . The resonant contribution to the proc-

ess e+ + e~ — final state, averaged over the interval

ΔΕ, will be: for case 1) a a v = 2π*2( π/4)

x(2J+1)Γ£Γι(Γ/2ΔΕ); for case 2) σ^ ν

= 7r\2(2J + 1) Tf Γχ; for case 3) we can use either of

the formulas. It is simplest to observe the resonant

state with J = 1 and С = - 1, as we have seen above.
The contributions of resonances with other quantum
numbers will contain an excessive smallness in e2

(for in this case at least two photon lines must par-
ticipate), thus Г[ ~ e8 for J = 1, С = 1, etc.

V. INVESTIGATION OF WEAK INTERACTIONS Ш
EXPERIMENTS WITH COLLIDING BEAMS

A characteristic feature of the theory of local weak
interactions is the quadratic increase of the cross
sections with the energy. Therefore cross sections
that are very small at low energies, may become
comparable with the cross sections for the electro-
magnetic and strong interactions at high energies.
However, from the general premises of modern
theory E91'109J it follows that the cross section of any
process at large energies should not grow more
rapidly than ln2E. It is very important to establish
where the growth of the cross sections of the weak
interactions with energy is reduced. At those ener-
gies the form factors enter into play, and a study of
these form factors is of great interest, particularly
since this may be a manifestation of the fundamental
length.

Colliding-beam techniques may produce energies
so high that, at least in principle, weak interactions
at high energies can be investigated.

As is well known, all the available experimental
data are well described by the V-A weak-interaction
scheme ^ . In this scheme we retain only charged
currents, which describe the scattering of charged
particles by neutral ones. It is possible, however, to
include in this scheme also neutral currents, which
describe the scattering of particles of like charge.
The scheme obtained is quite symmetrical and simple,
and is also in good agreement with all the available
experimental data ^93>94^. Let us consider within the
framework of the scheme with neutral currents the
processes that can be investigated with colliding
beams C 9 4 ] .

We consider the influence of weak interactions on
the scattering e + e —* e + e and annihilation e+ + e"
— μ + + μ~ and e+ + e~ — N + N processes.

The total cross section of each of these processes
can be represented in the form
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о* — 0"e-t-Oj-f-o*w, (5 .1)

where σ6 is the cross section of the electromagnetic
interaction, aw is the cross section of the weak inter-
action, and σ± is the interference term of the electro-
magnetic and weak interactions. All the cross sec-
tions are in the c.m.s.

For ultrarelativistic electrons the cross section
for weak electron-electron scattering is

2 / 2
Μ \21 + ν* cos2 ϋ + ̂ -g- )

= г1(^У(^-У(5 + со5^),
J

and the interference term has the form
r? Gm* 5-f3cos2d

(5.2)

(5.3)

where G is the weak-interaction constant, G
G = 1O~5M~2, and Μ is the nucleon mass. For the
cross section of the weak annihilation e + + e" — μ*
+ и' we obtain

Gm*
• COS* ~ .

(5.4)

(5.5)

Comparing the energy dependence of the various
cross sections, we see that with increasing energy
the electromagnetic cross section decreases as E~2,
the interference term is independent of the energy,
and the weak-interaction cross section increases, as
was already noted, like E2. It follows therefore that
in the local theory the electron-electron scattering
cross section has a minimum at several times 10
BeV, and that the absolute value of the cross section
is very small there ( ~10"34 cm2). On the other hand,
if the interactions are "smeared," this minimum may
not occur, and the absolute cross sections may be
even smaller. At the energies attainable at the
present time, the contribution of the weak interactions
is rather small, for example, at 3 BeV the contribu-
tion of the weak interactions to the electron-electron
scattering cross section does not exceed 0.2 per cent.

We note that if a weak interaction is realized via
an intermediate boson, this leads to an appreciable
distortion of the angular cross sections given above
for energies exceeding the boson mass. Furthermore,
if it follows from the interference term that the con-
stant G is negative, this means that the intermediate
boson does not exist.

To consider weak annihilation of an electron-posi-
tron pair into a nucleon-antinucleon pair it is neces-
sary to take the strong interactions into account using
form factors. The cross section of the process has
the form

(5.7)

Here Fj and F2 are the electromagnetic form fac-
tors of the nucleon, Fj and F2 are the isovector
parts of the corresponding nucleon form factors, and
μ is the anomalous magnetic moment of the nucleon,
μ = μ*3 — μη, gj is the axial form factor, and ν is the
velocity of the produced nucleon. Near threshold oj
amounts to 0.1 per cent of σθ.

Along with the phenomena considered above, parity
nonconservation in weak interactions will lead to
characteristic polarization phenomena. The longitud-
inal polarization of the produced muons is given for
the process e~ + e+ —- μ + + μ" by the formula

(5.8)
l-)-cosJd+E (

where e « 6.2 x 1O"4(E/M)2.

+ ε) (l + cos2

(5.6)
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