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I. INTRODUCTION

QUANTUM electrodynamics, which is the most
modern description of the interaction between charges
and the electromagnetic field, was ultimately developed
in the late Forties, when the renormalization theory
was formulated. Measurement of the level shifts of
atomic electrons, of the anomalous magnetic moment
of the electron, and of many other effects has shown
splendid agreement between theory and experiment.
This success was attained, however, by systematic
utilization of the method of subtracting the diverging
integrals (renormalization), purely a cookbook pro-
cedure. Nonetheless, the situation in quantum elec-
trodynamics is much more favorable than in theories
of other interactions. In spite of the considerable
progréss in the theory of dispersion relations and
spectral representations, some questions connected
with the structure and quantitative description of
strong interactions remain unclear. As regards the
weak interactions, although the V-A variant of the
theory is in good agreement at low energies with ex-
perience in the case of leptons, it is not clear whether
this variant is applicable (and even the four-fermion
interaction itself) at high energies. The theory was
constructed without solving the main problem, namely
the structure of space-time and the structure of the
interactions at small distances, although ideas con-
cerning the existence of a minimum limiting length
were advanced many times. We set aside the fact that
the theory does not enable us to calculate the masses,
spins, and other characteristics of elementary par-
ticles.

Nonetheless, in spite of this shortcoming of the
theory, not one of the hitherto performed experiments
contradicts it directly. Were such a contradiction to
be established, it would indicate the trend for further
development in the theory, and it would seem that a
contradiction must be sought at small distances.

Inasmuch as there is no quantitative theory of
strong interactions, the discrepancy between experi-
ment and modern theoretical notions can be estab-
lished only if new qualitative regularities are dis-
covered. A similar situation obtains for weak inter-
actions, too. Matters are entirely different in the case
of electromagnetic interactions, where there is a
theory that is in splendid quantitative agreement with
experiment, and any disparity between theory and ex-
periment can lead to a radical review of our notions

concerning the events that take place at small dis-
tances. This is precisely why electrodynamic exper-
iments are the most promising method of investigat-
ing the limits of applicability of modern theory.

However, a specific formulation of electrodynamic
experiment has been fraught until recently with ap-
preciable difficulties; the point is that only classical
electrodynamic objects, such as electrons and photons
can be employed in such experiments, for the use of
other particles (including muons) gives rise to un-
known form factors in the theoretical formulas. If the
experiments are performed on a target that is at rest,
it must be recognized that the energy E, in the center
of mass system (c.m.s.) is connected with the energy
in the laboratory system (1.s) E; in the following
manner:*

Ec=V2Em, (1.1)
and E; = 6000 MeV and E, = 38 MeV for the maxi-
mum electron energy that can be hopefully obtained
from accelerators in the conceivable future. (Data on
accelerators now existing, under construction, and
projected, for energies in excess of 1 Bev and for
large currents, are listed in Table 1.) Thus, the
c.m.s. energy of electrons scattered by a target at
rest is too small to allow us to speak, at the accura-
cies attainable at the present time, of a check on the
applicability of quantum electrodynamics at small
distances. Even now, the validity of quantum electro-
dynamics has been established for considerably
smaller distances than can be measured in experi-
ments wherein the c.m.s. electron energy is several
times 10 MeV. This follows, for example, from ex-
periments on the scattering of high-energy electrons
by protons, measurements of the electron and muon
anomalous magnetic moment, and many other experi-
ments (this question is considered in greater detail
in Chapt. III). An analogous situation arises also in
the case of the scattering of photons by electrons of
a target at rest.

The situation changed radically when the experi-
mental feasibility of so-called colliding beams was
demonstrated, in which two electron beams with equal
but opposite momenta collide. In this case the experi-
ment is carried out directly in the c.m.s. Experi-
ments on the scattering of electrons in colliding
beams are presently performed in many laboratories,

*We use the system of units where #i = ¢ = 1 throughout.
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Table I. High-energy or large-current electron
accelerators both existing and projected

No, of |
Maximum | particles | Starting ‘
Accelerator energy, | acceler- date Remarks ‘
BeV ated per
second \
!
1. Linear accelerator [’] of the Placed in operation i
Stanford University, 1.2 31012 1960 gradually, starting !
with 500 MeV in |
1955 i
2. Cornell electron synchrotrcm[’] - i
(Ithaca, New York). 1.5 1oL 1955 | Operates at 1,2 BeV !
3. California synchrotron(®] i
(Pasadena, California). 1,2 10° 1956 |
4, Electron synchrotron of the |
Frascati laboratory i
(Rome, Italy). 1.2 6. 1010 1956 i
5. Cambridge electron synchro- . !
tron (Cambridge, Mass.). 6.0 61012 1962 Already in operation
project
6. German electron synchrotron(®]
(Hamburg). 6.0 | 5.1012 1963
project
7. Linear accelerator[’] of the }
National Bureau of Standards | ~
(Washington, D. C.). 0.15 S0 Strong current
project
8. Electron synchrotron{?®]
(Tokyo, Japan). 1.2 ( 2. o1 1961
9. Stanford two-mile linear _
accelerator|®|. up to 45 ‘ Approved project

in particular with electron energy up to 500 MeV in
each beam (corresponding to a laboratory-system
energy of 102 eV!1). An experimental colliding-beam
scheme is considered in Chapt. II.

The development of strong-current electron accel-
erators (see Table I) permits the conversion of elec-
trons into positrons on much larger scales and to
experiment with positron beams. Of exceptional in-
terest is the creation of colliding electron-positron
beams. We note that these beams can also be ob-
tained when the intensity of the positron beam is
relatively low; it is necessary to have in this case a
storage ring with a long lifetime. These beams can
be used not only to check the limits of applicability of
quantum electrodynamics, but also to discover new
charged-particle pairs and single neutral particles,
to investigate the electromagnetic form factors of
elementary particles, and to investigate the interac-
tions between different €lementary particles. These
questions are considered in Chapt. IV.

Finally, experiments with colliding beams can
also answer the question whether any weak interac-
tion exists between electrons. This group of questions
is considered in Chapt. V.

II. SCHEME OF EXPERIMENTS WITH COLLIDING
BEAMS

Experiments with colliding beams aimed at study-
ing the electron-electron scattering at high energies
were proposed in 1956—1957 1,2 For the reasons
pointed out above, these experiments attract presently
much attention, and particularly, according to avail-

able data [3’43, experiments with colliding beams with
electron energy of 500 MeV in each beam are being
carried out presently at Stanford University. In many
laboratories throughout the world experiments with
colliding electron-positron beams are under prepara-
tion; in particular, at the National Laboratory in
Frascati (Italy), an operating model of a suitable in-
stallation has been constructed to investigate the
physical processes that occur during the course of
storage of electrons and positrons; both electrons and
positrons are obtained in this installation upon con-
version of photons from an accelerator into an elec-
tron-positron pair (35,967

Let us consider the principal installation scheme
for experiments with colliding electron-electron
beams. The electron beam 1 emerging from the ac-
celerator (Fig. 1) is injected with the aid of a system
of turning magnets and momentum inflectors (2 and 3)
into two magnetic storage rings 6, and the electron
radiation losses are compensated by an external
electromagnetic field in resonators 4, while the beams
circulating in the storage rings collide in the region
5; the electrons which are scattered at an angle of
180° are registered by high-speed counter pairs con-
nected in a coincidence circuit 7.

Both storage rings act like synchrotrons. Upon
injection, the momentum inflectors ensure the capture
of the electrons into orbits. In compensating the
radiation losses, the external field replenishes only
the longitudinal component of the electron momentum,
whereas the radiation carries away both longitudinal
and transverse momentum. Consequently the electron
clusters contract during storage. The planes in which
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FIG. 2

the beams rotate can be slightly inclined to each
other, so that the clusters cross in a small region
(Fig. 2).

The colliding-beam experiment differs in principle
from all the hitherto performed experiments where
the scattering has been on stationary targets. The
following new problems arise here: 1) the presence
of the beams on the orbits for a time long enough to
perform the experiment; 2) the time needed for a
sufficient number of scattered electrons to be regis-
tered, in view of the low particle density in the
“‘target.”’ 3) the specific peculiarities involved in
separation of the observed phenomenon from the back-
ground. Let us consider these questions briefly.

As a result of the relatively low particle density
in the ‘“target’’ (colliding beam) it is desirable that
the beams exist on the orbits for a sufficiently long
time. Whereas in accelerators the lifetime of the
beam is determined essentially by multiple processes
(multiple Coulomb scattering, quantum fluctuations in
the radiation), the dominant role in the storage rings
is assumed by single bremsstrahlung and single
elastic scattering. This is connected with the fact
that in accelerators the comparatively short accelera-
tion time is usually much smaller than the lifetime
with respect to single processes. Under these condi-
tions, the decisive role in the particle losses is
played by multiple processes, all the more because
the acceleration cycle starts at a relatively low en-
ergy, when the multiple-scattering cross section is
large, and the beam dimensions are comparable with
the dimensions of the working region, with radiative
damping absent. As a rule, the injection into the

storage ring occurs at high energy, so that the radi-
ative damping is effective during the entire lifetime
of the beam and the beam dimensions very rapidly
drop below the permissible stability-region dimen-
sions. Therefore the time during which the beam is
contained in the storage ring is determined by single
processes which change the characteristics of the
particle radically. Emission of a bremsstrahlung
quantum of relatively high energy upon collision of
the electron with the nucleus of the atom of the resid-
ual gas in the storage ring chamber causes the par-
ticle to drop out of the stability region for longitudinal
motion, so that the particle no longer receives energy
to compensate for the radiative losses, and the orbit
radius decreases until the particle strikes the cham-
ber wall. In single Coulomb scattering through large
angles, the particle is lost as a result of collision
with the chamber wall. It is clear that the lifetime of
the beam relative to each of these effects is inversely
proportional to the density of the residual-gas atoms.
If a high vacuum (p ~ 10~° mm Hg) is maintained in
the chamber, then the aforementioned lifetimes
amount to many hours. The influence of quantum fluc-
tuations in radiation can be made sufficiently small,
if the horizontal dimensions of the chamber are large

(the quantum fluctuations lead to a horizontal broad-

ening of the beam) and accelerating field of high in-
tensity is applied.*

Let us proceed now to the following question: how
fast can a set of readings of sufficient statistical size
be accumulated? The electrons moving in the storage
rings are gathered into clusters of length I. The dia-
gram showing the collision between these clusters at
the point of beam encounter is shown in Fig. 2. The
number of electrons scattered per second in a solid
angle dQ can be represented in the form

dzvzﬂ;;"—”’l—"“és (9) dQ; (2.1)
where Ny, Ny—number of electrons in each beam,
f—frequency of cluster revolution in the storage ring,
o (& )—electron-electron scattering cross section,
s—transverse area of the cluster, g—number of har-
monic of the accelerating voltage (number of clusters
per orbit in each of the storage rings), lint—dimen-
sion of the interaction region; the factor 2 is the re-
sult of the target motion.

Figure 3 shows the crossing of the beams in the
interaction region. Assume that identical and ho-
mogeneous beams of height h and width d cross at
an angle «. In practice the following case is realized:
a « 1 (h/sin @ « 1), and then

AN = (%)22“’ 9 40.

ldfa (2.2)

*A careful investigation of the lifetime of the beam in the
storage ring has been recently made in [*-°] (see also 71y,
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Here I is the current that circulates in one of the
tracks and e the electron charge. We see that in this
situation the number of scattered electrons does not
depend on the height of the clusters. If we assume
@=0.03, I=20cm, d=1cm, and I=1 A (at an
orbit radius r = 1 meter this corresponds to 1.3

x 101 particles in the cluster), then

AN = 3.10% (©) dQ. (2.3)

Inasmuch as the measured cross sections (see
Chapters I and IV below) lie in the range 10730—10~%
em¥sr, it is clear that even a current of 1 amp yields
fair statistics, if we take into account the fact that the
beams can exist on the orbits for many hours.

Let us consider now the separation of the observed
phenomenon from the background. We note first that
the scattered electrons coincide exactly in time and
move in almost exactly opposite directions; the radi-
ation accompanying the scattering causes the scatter-
ing angle of the electrons to possibly differ from 180°
(for more details see Chapt. III). Second, the scattered
electrons have the same energy as the initial ones
(disregarding the radiation losses), whereas the elec-
trons scattered by a stationary target, for example by
the nucleus of a residual-gas atom, lose appreciable
energy to recoil or to inelastic processes. Any char-
acteristic can be used to separate the investigated
process.

Inasmuch as it is difficult to create instruments
that subtend large solid angles and have high energy
resolution, the principal means used to identify elec-
tron-electron scattering events presently is the in-
dicated time and space correlation. An experimental
setup intended to extract the electron-electron scat-
tering events consists of many pairs of counters,
distributed over the surface of a sphere surrounding
the interaction region, and connected in coincidence
with a resolution time ~1078%~10"? sec. The large
number of counters is used to increase the effective
solid angle of observation so as to accelerate the ac-
cumulation of the statistics, particularly in large-
angle scattering. The background produced by the
scattering of the electrons by the residual gas atom,
by pion production on the residual gas, and also by
cosmic rays is excluded quite satisfactorily by the
coincidence circuitry.

Thus, the investigation of electron-electron scat-
tering by the colliding-beam technique is perfectly
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feasible experimentally and can be carried out with
high precision.

Of exceptional scientific interest is the creation of
colliding electron-positron beams, which can be used
not only to investigate the limits of applicability of
quantum electrodynamics, but also for many other
physical researches (see Chapters III—V). The fun-
damental new problem, on top of those listed above,
is in this case the creation of a positron beam of high
intensity (1011—10!° particles in the beam)*. The
conversion coefficient y of electrons with energy
E, into positrons with energy E, in an energy inter-
val dE, has been calculated for practical converter
thicknesses in [8I|; for example, for E; = 500 MeV,

E, = 250 MeV, and dE,/E, = 5 per cent we get

u = 1/400 if the convertor thickness is approximately
equal to the radiation length unit. The created posi-
trons are emitted essentially forward; in the example
considered, rough estimates show that the angular
spread of the positron beam is ~4°. Thus, other con-
ditions being equal, to produce a positron beam the
required electron beam must have some one-thousand
times more intensity than is necessary to produce
colliding electron-electron beams. On the other hand,
if the positron beam is obtained by storage in small
batches, the storage time is accordingly increased by
a thousand times.

In addition, the separation of the observed phenom-
enon from the background becomes a much more com-
plicated matter. This is connected with the fact that
elastic electron-positron scattering is accompanied
here by two~quantum annihilation, and by production
of pairs of charged particles, with the probabilities
of all these processes approximately equal. It is
clear that each of these processes will produce
paired coincidences. However, inasmuch as each of
these processes is of great physical interest, the
problem consists in fact not of cutting out the back-
ground but of separating (and possibly simultaneously
observing) the different processes. Modern experi-~
mental means are perfectly capable of coping with
such separation.

A possible scheme for obtaining colliding electron-
positron beams is shown in Fig. 4. Inasmuch as the
electrons and positrons rotate in the magnetic field
in opposite directions, one storage ring is used in
this case. The electron beam from accelerator 1
enters into converter 2, from which the emerging
positron beam is focused and brought by means of

*We note that positron annihilation in flight does not in-
fluence the beam lifetime. Indeed, the annihilation cross sec-
tion is much smaller than the elastic electron-electron scatter
ing cross section, and this scattering does not influence prac-
tically the lifetime of the beam in the electron storage ring.

1The conversion coefficient p is defined as
- number of positrons with energy E_ in interval dE,
total number of initial electrons
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inflector 6 into storage ring 4; conversion is accom-
panied by energy loss (in the case considered here
the energy is reduced to one-half). The storage ring
operates like a synchrotron, and after a sufficient
number of positrons is accumulated in it it changes to
an accelerator mode, raising the positron energy to
the value of the incident electron beam energy. The
electron beam is then guided directly to the storage
ring from the accelerator 3 by means of the system
of deflecting magnets 5 and the inflector 6. In such
an injection system it may be advisable to use elec-
tron and positron beams of different intensity, say a
circulating electron current Ie = 10 A and a circu-
lating positron current I = 0.1 A, although the ac-
celerating-field generator must in this case have a
higher power than in the case of equal currents in
order to obtain a given number of counts. If we as-
sume that the beams have identical dimensions, then
the number of particles scattered (or created) in a
solid angle d will be

Ielp 35 (0) 40,

AN = (2.4)

Here o(s$) is the differential cross section of the
process of interest to us. Thus, to guarantee a suffi-
cient rate of accumulation of statistics we can use
currents of 10 A and 0.1 A in place of two currents
with intensity 1 A.

The lifetime of electron and positron clusters
captured in the storage ring were measured in the
storage ring model for electron-positron colliding
beams in the Frascati (Italy) laboratory, in which
processes connected with storing are investigated.
The experiments carried out with clusters of negligi-
ble intensity have shown that in a vacuum of 4 X 10710
mm Hg the beam lifetimes reach 48 hours.

The scattered (created) particles are registered
in the case of two-particle processes by pairs of
counters connected in coincidence and distributed
over the surface of a sphere surrounding the point of
encounter 7.

Naturally, to produce colliding electron-positron
beams it is desirable to have strong-current electron
accelerators, such as accelerator No. 7 of Table I,
where monoenergetic electron beams with intensity
~101t particles/second are expected to be produced.

Let us make, finally, one remark concerning types
of storage rings. We have seen that the number of
scattered (created) particles increases with decreas-
ing cross section of the cluster. In storage rings with
hard focusing, the cross section of the cluster can be
made approximately 100 times smaller than in storage
rings with weak focusing. It is particularly important
to use this margin at very high energies (above 1 Bev),
where the cross sections of the processes decrease
rapidly, all the more since in storage rings with hard
focusing the requirements imposed on the intensity of
the accelerating field are less stringent. These re-
qurements are quite burdensome in the case of high
energy in view of the fast growth (proportional to the
fourth power of the energy) in the radiation losses.

III. CHECK ON THE APPLICABILITY OF QUANTUM
ELECTRODYNAMICS AT SMALL DISTANCES

3.1. Calculation of the radiative corrections to
electrodynamic cross sections. Experiments on the
scattering of electrons in colliding beams are pro-
posed for a check on the applicability of quantum
electrodynamics at small distances. As was already
noted, in view of the fact that quantum electrodynamics
is a quantitative theory, any deviations of the experi-
mental cross sections from the theoretically calcu-
lated ones will be evidence of failure of quantum elec-
trodynamics at small distances. This is the undis-
puted advantage of such experiments over experiments
in which strongly-interacting particles participate.

In light of this, it is of particular importance to take
a correct account of all the theoretical contributions
to the electrodynamic cross sections.

In the lowest perturbation-theory order, electron-
electron scattering is represented by two Feynman
diagrams (Fig. 5). The scattering cross section in
this order was first calculated by Moller (see, for
example [10:11]y

ra s4+q’4 26‘4 S4+q4
00 () = g% [ ST+ R

(3.1)

Here r, is the classical radius of the electron,
v=E/m, E is the energy of the electron, s = p; + p,,
q=p; - p{; @’ = p; — p}. The invariant variables s,

10’/ ﬁz’ pz’ ﬂ,’

/ /s 4

FIG. 5

a)
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q, and g’ will be used extensively from now on. In
the c.m.s.*
¢@?= —2p*(1—cos®); ¢'?= —2p2(1+cos®); s$*=4E?
(3.2)
where ¢ is the scattering angle.
For ultrarelativistic electrons, Moller’s formula
can be reduced in the c.m.s. to the following simple
form

%®=3 [mig—1]"

=2 (3.3)

To estimate the accuracy of this formula it is nec-
essary to calculate the next higher terms of the per-
turbation-theory series in the coupling constant e,
that is, to find the radiative corrections. Calculation
of the radiative corrections of order e® was made in
[12-19) 1 this case it is necessary to consider the
diagram shown in Fig. 6, adding to it the exchange
diagrams (p{ «<— p}). Figure 6 does not show graphs
containing the self-energy of the electron, for these
drop out in the regularization, which is carried out
by standard means (%!, The matrix elements of
diagrams 2, 3, 5, and 5’ diverge also in integration in
the region of small virtual-photon momenta (‘‘infra-
red catastrophe’’). As is well known, the reason for
it is that the very concept of an elastic process is
purely arbitrary, for in each scattering event soft
quanta are emitted, and the radiation cross section
also diverges in the region of small frequencies, but
the total cross section of elastic and inelastic scatter-
ing contains no divergences. Thus, to eliminate the
infrared catastrophe it is necessary to take into ac-
count diagrams with emission of real photons (Fig. 7,
to which the exchange diagrams must also be added).

An account of the emission of real photons greatly
complicates the investigation of the scattering, since
the cross section depends on the specific experimental
conditions. In the early investigations [12,13] the caleu-

s B A e %a #
~e] ] | )
D By I —— l
|
A 2 BA 53 PP 4 PR 5 PBA s P
FIG. 6
o yn oA A 4
e '
1k \

A, B A 5 B4

FIG. 7

*Here and throughout (ab) = a"b° - (ab).

lation of the radiative corrections was made in the
laboratory system, it being assumed that the soft
quanta can be emitted in arbitrary directions
(““isotropically’’) and that the total energy of the
emitted quanta is AE <« m.

The results of these calculations cannot be used
directly to consider experiments with colliding beams
since, first, the experiments are carried out in the
c.m.s., and, second, the photons can, generally speak-
ing, carry away an energy on the order of the initial
electron energy. In fact, as we have already noted in
Chapt. II, the scattered electrons are registered by
counter pairs (Fig. 8) connected for coincidence. In-
asmuch as the energy threshold of the counters is
must smaller than the initial electron energy, the
counters will register practically all the electrons
that enter in them, independently of the energy lost
by them. Thirdly, the emission of hard quanta upon
scattering will be far from isotropic. To verify this,
let us note that when the following conditions are
satisfied [?9]

m E
Elnﬁf<<1

N (3.4)

eZ
—1In
I

the emission of guanta can be considered by pertur-
bation theory. Inasmuch as in the energy region
investigated at the present time we certainly have

e E
< 1, (3.5)

investigation of the emission of real quanta with en-
ergy AE ~ m and higher can without a doubt be
treated by perturbation theory. It follows from this
therefore that if many quanta are emitted upon colli-
sion of the electrons, only one of these quanta will be
hard, since the emission of two hard quanta occurs in
the higher order of perturbation theory and has con-
sequently low probability. The matrix element of
diagrams 6 and 6’ can be represented in the form

i

D

FIG. 8
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The matrix element of diagram 7 and 7/ has an ana-
logous form, except that the denominators contain the
combinations (kpj) and (kp,). Expressing the scalar
products in terms of the angle between the momenta
of the corresponding electron and photon, and in
terms of their energy, we obtain

(pk)=wE; (1 —B; cos ),

Moo =

u(m (G4

(kpi.
Ghy,
2 (kpl)

(3.6)

(3.7

where Bj is the electron velocity. Thus, in the ex-
pression for the photon-emission probability there
appear characteristic denominators of the type (3.7).
This causes the photons to be emitted (38; — 1) pre-
dominately in narrow cones about the directions of
the initial and final electrons.

The photons emitted in inelastic electron collision
can be arbitrarily subdivided into two classes—soft
and hard. This division is closely linked with the
geometry of the experiment. Let us assume that one
of the scattered electrons has struck the center of
one of the counters, and then the photon will be classi-
fied as soft if the second electron strikes the opposite
counter, regardless of the photon emission direction.
In the opposite case we shall assume that the photon
is hard.

The maximum energy of the soft photons emitted
in the cones around the directions py and p, is

EAY

L (3.8)
sin 0-+a9 (H522)

&=

Here A¢ is half the angular aperture of the counter.

We consider first the total cross section of the
elastic process and of the inelastic processes with
emission of soft quanta, the maximum energy of
which, €, is given by formula (3.8).

The calculation of the matrix element of order e
is carried out in standard fashion. In view of the
technical complexity, we neglect in the calculation of
the contributions of diagrams 2 and 3 (Fig. 6) the
terms that do not contain the large logarithms of the
type In (-q¥m?) and In (E/€). Consequently, the
final expression for the total cross section of the

elastic and inelastic scatterings can be Evvrittjen in the
14-16

6

c.m.s. only with the indicated accuracy , namely:
os(ﬂ)=aa(ﬁ){1+%[4<1— ES”‘"’)} +21n E]}
(3.9)

Inasmuch as we are interested in large scattering
angles (in practice ¢ = 30°), we can disregard the
logarithmic angle dependence in terms containing one
logarithm, for example, we need not retain terms
containing ln sin 4 and containing no other logarithms,

V. N. BAIER

since these terms are of the same order as the dis-
carded ones. Within the limits of accuracy of the
formula, the angle dependence must be taken into ac-
count only in terms in which the angle logarithm is
multiplied by a large logarithm.*

We should now take into account the contribution of
the hard photons with energy larger than €. Whereas
in considering the emission of soft photons we have
assumed that the photon energy is much smaller than
the initial electron energy, so that the terms contain-
ing k in the numerator could be discarded in (3.6) and
thus afford appreciable simplification, in the present
case we must carry out an exact calculation. The
exact formula for the cross section of the emission
of a single photon in an electron-electron collision
was obtained by means of an exceedingly complicated
calculation by Garibyan P11, This formula, naturally,
leads to the result given above, namely that the pho-
ton radiation is concentrated essentially in narrow
cones around the directions of motion of the initial
and final electrons.

Garibyan’s formula can be integrated with respect
to the angles and the energies of the emitted quanta
in reasonable form (under the condition that the
scattered electrons strike the counters) only accurate
to In ( E/e) [22,9]  In the integration with respect to
the angles, the main contributions are made by the
cones around the directions of the emitted electrons;
the integration with respect to the energies is over
the hard quanta € < w < E. As a net result we obtain

(3.10)

oh (8) = 0, (8) 2 leu "% 2_——1n_ ]
The integral cross section for the radiation of very
hard quanta in the interval from E; to E, with E;

>> €, can be obtained with single-logarithm accuracy:

EAD

m

% (3) =0 (9) 22

E?M)
mE \

E E 1 3
[21n-m ln—El —lnz——Aﬁ - In
1n2EA1‘)

1 El
(1 T—E—
EAG

+2 | Fma-n].

EV/E

t_
(3.11)

A characteristic feature of these formulas, unlike
those of Dsj, is that in the accuracy assumed the cross
section for the emission of hard quanta does not de-
pend on the scattering angle. We note that in view of

¥In considering terms that contain the angular dependence
in formula (3.9), it is necessary to take account of the fact
that in calculating the contributions of the inelastic scattering
in formula (3.6) we discarded terms containing k in the nu-
merator. This neglect is valid for small values of k. Actually,
however, in formula (3.8) we have € ~ 30-50 MeV, so that this
neglect is not correct and, generally speaking, the discarded
terms may produce terms with the same angular dependence as
the retained terms.
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the relatively large angular aperture of the counters
used in the specific experiments (as was already
noted in the preceding footnote), the choice of the
value given by (3.8} as the soft-quantum limit is in-
convenient. It is therefore necessary to choose in the
correct calculation € ~ m, and assume all other
quanta to be hard, so that formula (3.9) dctually be-
comes correct. The total radiative corrections are
obtained by adding the contributions of the soft and
hard photons, and the result should be independent of
the value of €, the boundary between the soft and
hard quanta, since this boundary is purely arbitrary.
All the formulas given above are valid, of course,
for arbitrarily small €. For experiments with collid-
ing beams it is particularly important to account for
the dependence of the radiative corrections on the
scattering angle, since what is actually measured is
the differential scattering cross section in relative
units, after which the resultant curve is normalized,
to the theoretical curve (with account of the radiative
corrections) for small scattering angles (small mo-
mentum transfers, for which quantum electrodynamics
is known to be valid). It is seen from (3.9) and (3.10)
that the angular dependence is contained only in the
terms with In (E/€). In 6] the value of € was
chosen in the form (3.8), and the dependence of the
radiative corrections on the scattering angle obtained
as a result of this is, for the reasons indicated above,
incorrect. In view of the extremely cumbersome
calculations, the correct result can be obtained by
numerically integrating Garibyan’s formula with the
aid of an electronic computer (or else by directly
calculating the corresponding diagrams on an elec-
tronic computer). The results of such calculations,
for specific parameters, are listed in Table IT (22,91,
We have examined in detail above the radiative
corrections to the electron-electron scattering
formulas. The radiative corrections calculated in
analytic form, for the electron-positron scattering
formulas, can be obtained by simple substitution. If
the initial positron momentum is p, and the final one
is p’%; then we must make in the corresponding for-
mulas the substitutions
Pr—>—pl,

2 (3.12)
Py—>—p,.

It is obvious that then

s2emg'?, (3.13)

q? — g2
If we make this substitution, then sin # in (3.9) goes

over into 2 tan (#/2), while formulas (3.10) and
(3.11) remain unchanged. Naturally, this substitution
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transforms ¢y(+#) into the formula for the scattering
of electrons by positrons, the so called Babbha
formula, the explicit form of which can be obtained
from (3.1).

The procedure for calculating the radiative cor-
rections to the cross section for the annihilation of
an electron-positron pair into a photon pair is analo-
gous to that given above. In this case, however, along
with the corrections for the differential cross section,
which contain, as we have seen, the characteristics
of the recording instruments whenever the contribu-
tions of the real photons are taken into account, we
canalso calculate the corrections to the total cross
section. This is connected with the integrability of
the differential cross section both in this case, and
in the case of Compton scattering. Although it is
necessary to have for the experiment corrections to
the differential cross section, the radiative correc-
tions to the total cross section are also of interest,
since the total cross section is an invariant and con-
sequently these corrections do not depend on the
reference frame or on the recording apparatus, and
are objective characteristics of the process. The
calculation of the total radiative corrections to the
annihilation cross section is contained in 1" and is
analogous to the corresponding calculations for
Compton scattering (50,99]  1f the total cross section
is represented in the form

a=0,(1+91), (3.14)
where ¢ is the total annihilation cross section in the
Born approximation, then ép = 8 per cent when

E = 350 MeV and &7 = 14 per cent when E = 3.5 BeV,

The analysis presented above shows that radiative
corrections to electrodynamic cross sections at high
energies are far from small and can be significant in
the experiments. This circumstance is not accidental
and will be considered below.

3.2. Higher radiative corrections. In the investi-
gation of the contributions of the higher approxima-
tions of perturbation theory one must bear in mind
the following peculiarity: whereas at low particle
energies the perturbation-theory series is an expan-
sion in the small parameter e’ = 1/137 and con-
verges rapidly, by virtue of which the higher terms
of the series can be discarded with a high degree of
accuracy, at large energies the expansion parameter
is no longer e? but e? In™ (E/m) (n = 1 or 2)[23-25,
In view of this, the perturbation-theory series con-
verges slowly, at a rate that deteriorates with in-
creasing energy, so that generally speaking a large

Table II. Radiative corrections to the electron-electron
scattering cross section, E = 500 MeV, Ag = 3.5°

Scattering angle
Radiative correction P

40°
0,106

50° | 60°
0.121 [ 0.132

70°
0.137

80°
0.141

90°
0.144
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number of terms is needed in the perturbation-theory
expansion. By virtue of the fact that a direct calcula-
tion of the higher approximations by the Feynman
technique is extremely difficult, inasmuch as the dif-
ficulty and complexity of the calculations increases
sharply with increasing order of the approximation,
it is necessary to have either radically new methods,
which get around perturbation theory, or an essential
improvement in the convergence of the perturbation-
theory series.

Calculation of electrodynamic effects without ap-
plication of perturbation theory is undoubtedly very
enticing. There were many attempts made in this
direction. Schwinger [26,27) formulated a system of
functional equations for the single-particle Green’s
functions; however, in view of its functional character,
the system cannot be solved directly and must be re-
duced to a different form. One such form was devel-
oped by Ioffe, Galanin, and Pomeranchuk [28,29] 49
reduces to an infinite system of coupled equations.

At the present time there are no satisfactory methods
for solving this system. Another formulation of the
system of functional equations was obtained in [30-32]
and consists of the following. The space (coordinate
or momentum) is replaced by a grid, and the function
of the coordinates in this space is replaced by a set
of values at the corners of this grid. Thus, the func-
tional is replaced by a function of N variables (de-
pending on the number of fields and corners). This
makes it possible to obtain the basic quantities in the
form of integrals with respect to these variables. In
the limit the number of variables N goes to infinity,
and the distances between corners tends to zero. The
results of the calculations are expressed in terms of
continual integrals. An approximate calculation of
the continual integrals, but as applied to a problem
much simpler than quantum electrodynamics (polaron
theory) (33] yielded results in good agreement with
those of other methods, particularly of the direct
variational method. Nonetheless, the question of the
possibility of approximately calculating continual in-
tegrals in the case of quantum electrodynamics re-
mains open, particularly because of the need for
eliminating the divergences.

At the same time it must be noted that there are
many questions in which the expansion in e? is in
itself perfectly admissible, but, as we have already
noted, the series of the ordinary perturbation theory
converges too slowly, so that an appreciable improve-
ment in the convergence of this series is essential.
Among such problems are: the asymptotic behavior
of the basic functions of the theory at high energies,
the infrared catastrophe, and also the effects of in-
terest to us at higher energy.

Blank 3435 integrated approximately the Schwinger
equations with the aid of the proper-time method, and
although he used expansion in e’ during the course
of the solution, this method makes it possible to im-~

prove appreciably the convergence of the perturba-
tion-theory series.

A considerable improvement in the convergence of
the perturbation-theory series can be obtained also
with the aid of the renormalization-group method [36-41]
We note that individual terms in the perturbation
theory expansions for the Green’s functions of the
electron and photon and for the vertex parts are not
invariant with respect to the renormalization group,
whereas the quantities themselves are invariant. A
renormalization group is defined as the group of

transformations
G, —Gy=2C,, T'—T,=z1,

2 2 __ 41,2
ei—s e =1z,'el,

Dy, — D, =2z,D,,
(3.15)

the meaning of which is that the use of the quantities
Gy, Ty, Dy, and ey leads to the same results as the
use of the quantities Gy, Ty, Dy, and ey, that is, to
a description of the interaction of the electrons and
photons with the same coupling constant, which can
be chosen equal to its experimental value. The gist
of the method is to superimpose the condition of re-
normalization invariance on each of the terms of the
perturbation-theory series. It turns out that each
term of the series obtained as a result is the sum of
an infinite number of diagrams. The general solution .
of the Lie differential equations of the renormaliza-
tion group is determined with accuracy to arbitrary
functions of two arguments. Consequently, to obtain
the specific form of the functions it is stipulated that
the results agree with perturbation theory in case of
small e?; thus, when using the method of the re-
normalization group it is necessary to have calcu-
lated corrections in the lower perturbation-theory
approximation.

Landau, Abrikosov, and Khalatnikov proposed
a closed system of quantum-electrodynamics equa-
tions, and took into consideration only terms contain-
ing the maximum power of the logarithm, which leads
to a consideration of a definite aggregate of diagrams.
Following the same path of separating the essential
diagrams containing the maximum power of the lo-
garithm, Sudakov (24251 and Abrikosov '2:2] proposed
their own method of perturbation-theory summation
with logarithmic accuracy. Within the frame of this
method, one retains only those diagram contributions
which contain the logarithm to the highest power. It
turns out that in the case of the consideration of real
effects (when the vectors are time-like) these terms
in n-th order of perturbation theory are the doubly-
logarithmic terms of the type [e?In?( E/m)]™ (E is
a quantity on the order of the energy of the particles
participating in the reaction). In this method we
neglect the single-logarithm terms of the type
[e’In(E/m)] ™. It is clear that the accuracy of the
method increases with the particle energy.

In scattering of electrons in colliding beams, one
investigates only large-angle electron scattering.

[42-45)
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The double-logarithmic corrections for this case
were calculated in 1847,

A general n-th order diagram, as shown in Fig. 9,
was considered. We note that the parts of the diagram
containing the vacuum polarization do not produce
doubly-logarithmic terms and were left out, so that
the diagram of Fig. 9 is the most general type of
diagram that contributes in the doubly-logarithmic
approximation. This diagram was considered as the
skeleton diagram, into which the ‘‘overgrown’’ elec-
tron and photon Green’s functions and the vertex
parts were inserted. After several transformations,
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FIG. 9

the expressions for the contribution of the diagram
could be reduced to a sufficiently simple form, in
which it was possible to sum all the topologically-
irreducible diagrams in the given n-th order. A
remarkable fact was that the contributions of all
diagrams containing more than one ‘‘ladder’’ (that is,
connecting different electron lines) photon line cancel
one another out. After summing with respect to n we
obtain the total cross section of the elastic process
in the doubly-logarithmic approximation

0 () = g (8) 4, (3.16)

where ap(#) is the Moller cross section; f an inte-
gral diverging when p1 -m?—0 (p; is the electron
momentum, and p1 ~ m? is a measure of the energy
lost by the electron to radiation). It is seen that un-
like the ordinary method of ellmlnatmg the infrared
divergence, where c— © as p — m? — 0, in this
case 0 — 0 as p - m?— 0. Th1s is the result of
using an 1mproved perturbation theory and is un-
derstandable from the physical point of view, since it
denotes that the cross section of a purely elastic
process is equal to zero. The latter follows from the
fact that the probability of emission of soft quanta in
the collision tends to infinity as w — 0.

As is well known, to eliminate the infrared diverg-
ence it is necessary to take into account the radiation

of the real quanta. The total cross section of the
elastic and inelastic processes can be represented in
the form

—In -—}

where AE is the total energy carried away by the
photons. We see that if AE = E (that is, the detector
registers all the electrons regardless of their energy
loss), then in the accuracy assumed the total cross
section coincides with the cross section calculated in
the lowest perturbation-theory approximation (o = gy).
As is well known 2% this is connected with the fact
that in the doubly-logarithmic approximation the re-
duction in the cross section of the main process with-
out the radiation of additional quanta, brought about
by an account of the radiative corrections, is com-
pletely compensated by the increase in the contribu-
tions of the cross sections of the processes with ad-
ditional multiple radiation of hard photons in the case
of arbitrary radiation (AE = E).

The importance of taking into account the doubly-
logarithmic terms is connected with the fact that in
the investigated energy interval, at sufficiently small
AE (which, as we have seen in the preceding section,
denotes either a detector with high energy resolution,
or a counter with small angular dimensions) the
doubly-logarithmic terms, meaning therefore the ex-
ponent in (3.17), turn out to be of the order of unity.
At the same time, as we have already noted (3.5), the
single-logarithm terms are much smaller than unity
at the energies attainable at the present time, and
perturbation theory accounts for them adequately.

Thus, one can conceive of two different situations:
1) the detectors have quite good energy resolution
(AE is small). Then the most important role among
the radiative corrections is played by the doubly-
logarithmic corrections, processes with emission of
hard photons are not registered, and the one-logarith-
mic terms can be taken directly from (3.9). 2) The
detectors have poor energy resolution ( AE large),
and in this case the contribution of the doubly-logarith-
mic terms is small, so that the radiative corrections
can be calculated in the e® order of perturbation
theory. In this case a correct account is necessary
of the radiation of the hard photons.

If we are interested in the emission of n real
photons in the case of arbitrary radiation, then

6 (§) =0,y (¥ exp{———-—l (3.17)

o (B =0 (B) e m—ygf; (3.18)
This is the Poisson distribution, showing that the
radiation has a classical character, and the emission
probability does not depend on the number of previ-
ously emitted quanta.

Formula (3.17) is valid also for the electron-posi-
tron scattering cross section. As regards the two-
quantum annihilation of an electron-positron pair, it
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is interesting to ascertain here the number of addi-
tional photons emitted along with the two main quanta.
For quanta with energy larger than AE, this number
. [49

is

(3.19)

In the case when E = 700 MeV and AE = 10 MeV, the
average number of emitted additional quanta is
N =0.3.

The higher radiative corrections can be calculated
also with the aid of the renormalization-group
method (1 , Where it turns out that the exponent in
formula (3.17) is equal to the entire lower-order
correction [see (3.9)]. The renormalization-group
method provides a negative answer to the question
of whether the exponent can contain logarithms to an
in%?agmediate power B, where 8 lies between 1 and
2.

An advantage of the procedure indicated above for
the investigation of the higher radiative corrections
is the possibility of trivial generalization to include
the case of electromagnetic interaction between dif-
ferent particles.

3.3. Radiative corrections due to strong interac-
tions. Along with the electromagnetic corrections to
the Moller formula, it is necessary to include also
corrections due to the strong and weak interactions.
The latter will be considered in Chapter V below.

We consider here the possible contribution of strong
interactions.

Inasmuch as the electrons can interact with other
fields only via the photons, it is first necessary to
calculate the contribution of the strong interactions
to the photon Green’s function, since the contribution
of the meson ‘‘cloud’’ of the electron is quite small
owing to the dependence on very high powers of e?

We know [1911] that the polarization of vacuum by
the particles is invesely proportional to the squares
of their masses in the case when k% « m? (k is the
momentum of the photon line, in the ¢c.m.s. k? = 4E?;
m is the mass of the particle polarizing the vacuum).
In the case when k% > m? the vacuum polarization is
proportional to 1n (k¥m?). Actually the region of
interest to us is intermediate, and the exact formulas
must be used. For pions with k% = 4m? (at the thresh-
old of a pion pair production) the contribution of the
diagram with the polarization of vacuum by the pions
amounts to 0.1 per cent of the contribution of the
lowest-order scattering diagram, and this value in-
creases very slowly with increasing energy. It is
meaningless to take this correction into account,
since the electrodynamic radiative corrections have
been calculated with much lower accuracy. The situ-
ation is similar also in the case of other strongly-
interacting particles, so that it remains only to in-
vestigate the contribution of the possible interactions
between the particles polarizing the vacuum. We con-

[52]

?ider the consequences of resonant 77 interactions
16,54)

According to Kallen, the photon Green’s function
can be represented by

gy TuPy
. Zuv wy 2 — — X
Diiy = 2%+ i [ (0) — T (p%) — ind (p%)].  (3.20)

Here H(pz) is the sum over all physical states with
momentum pm = p:
II(p? —‘—3—1,2 Z (01 7u (@) [m)(m |, (0)|0); (3.21)
P =P
] (0) is the current operator and V the normaliza-
tlon volume. The quantity II(0) - II(p ) is defined as

oo

i (0) — T (p®) = Pp? SW‘ +‘2) da. (3.22)

If we leave in the sum (3.21) only the two-pion states
for which the transition current can be represented in
the form ¢

O]/ (O Faf, iy = —2

——1/2 (Rtn— k) (B 18:5 — 8,56,1) Fou (P7),
(3.23)
[Where i and j are the isotopic indices of the pions
and F.,r(pz) is the pion form factor], then it only re-
mains to calculate the integral (3.22). Substituting
the resonant form of the form factor (p meson) in
the integral, we find that after taking the strong inter-
action into account the correction due to the pions is
on the order of 1 per cent, which as before is less
than the accuracy with which the radiative corrections
are calculated.

3.4. Phenomenological investigation of quantum
electrodynamics at small distances. Violation of
quantum electrodynamics at small distances may be
due to the following: 1) non-local nature of the inter-
action, in which case the local interaction operator
Hloe = eAu(x)j“( x), in which the field and the cur-
rent interact at a single point, goes over into a non-
local operator of the type

y) dly, (3.24)

Hnonloc =e S AM(I) ™ (y) F(z—
where the current at the point y interacts with a field
in some small vicinity, defined by the function

F(x - y); 2) a change in the space-time geometry at
small distances; 3) fields that appear only at very
small distances.

We introduce a fundamental length L, defined such
that at distances larger than L the factors mentioned
above play no role, but starting with r = L. they come
into play. We estimate below the upper limit of L,
and, since we can make only crude estimates, the ob-
tained value of L will be attributed to any of the fore-
going factors.

It is clear that the distances measured in the ex-
periment are of order 1/q [see (3.2)]. More accurate
estimates can be obtained either by introducing form
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factors in the electron-photon vertices, or by modify-
ing the propagation function of the electron or photon.
Estimates obtained by these methods differ only by a
numerical factor.

Let us consider, for the sake of being definite, the
scattering of an electron by an electron (positron). In
Sec. 3.2 we saw that it is necessary to consider, with
a great degree of accuracy, the class of diagrams in
which one photon is exchanged. Then the matrix
element (Fig. 10.a) can be written in the form

Tu(pi, PV D" (¢ Ty Py Pa).

The form of the vertex function T'j; can be determined
by making the following rather general assumptions:
1) I‘u is a four-vector; 2) the current conservation
law (p}{ — py)uT" = 0 holds; 3) the electron has spin
1/2,

(3.25)

B0y
2m-

Iy=e[vwhi)+—52 @] - (3.26)
The scalar functions f;(q*) and f,(q?) describe the
internal structure of the electron and are relativistic

generalizations of form factors of the type

Fp) = e(r) e ar,

where p(r) is the radial charge density; it is as-
sumed that the radiative corrections are taken into
account. For a particle with a point-like charge e
and a point-like anomalous magnetic moment y we
have f; = f, = 1. If the particles are not point like,

A- —
Pe ———k
b
FIG. 10

then for small q? the functions f; and f, can be ex-
panded in series:

a) g 3.27
fl 2= 1 __71:; ’ ( )
Dl g1, (3.28)
If furthermore
2
<, (3.29)

then a;, is the mean square radius of the charge
distribution (of the anomalous magnetic moment dis-
tribution). Inasmuch as, unlike in the case of electron
proton scattering 5959, the criterion (3.29) is known
not to be satisfied in the region of interest to us, the
indicated simple interpretation of the functions f; and
fy is incorrect and both functions describe the distri-
bution of the current-charge in the electron.
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At the present time we know nothing concerning the
functions f; and f,, so that we assume for estimating
purposes fy = 0. Then the electron-electron scatter-
ing cross section assumes the form

2 54 ‘4 24
o= g [ TR @+ 4,

4 1 a4 -
= A @A@Y+ 1@y |
(3.30)
The electron-positron scattering cross section can be

obtained from this by making the substitution (3.13).

’[I‘h]e exact formula with account of f, was obtained in
61

Let us consider scattering through an angle $ = 90°
012 = q'2 = —2E?, then
4q

242
0,:(70(1—— ﬁq >=GO—A0‘

(3.31)

The relative deviation from the Moller cross sec-
tion is
Bo _ datg?

7 = (3.32)

On the other hand, it can be assumed that the
vertex functions do not change, but the photon propa-
gation function changes,[m

RS S
¢ ¢ @M

which corresponds to a change in the Coulomb law

1 1 —-r/Ay:
T-—>T(l——e Y;

If A% «< 1, then

1 1

7 (= g2,

and the latter expansion is obviously not connected
with the specific form of the modification of the pho-
ton propagation function. If we again consider scat-

tering through an angle of 90°, then

29 agzpe. (3.33)

On the basis of scattering experiments only, it is
generally impossible to distinguish a change in the
vertex part from a change in the photon propagation
function, so that both interpretations are of equal
validity, and the distances at which quantum electro-
dynamics breaks down is a (or A). To take both
contributions into account simultaneously, we intro-
duce the effective length

=2 e, (3.34)
In order to observe a deviation Ag, it is neces-

sary to measure with accuracy not lower than §o

= Ag/2, then the length I/, measured in experiments

on electron-electron scattering through 90°, is

~ Lo /5 4g
= 7 55—0-10 cm,

where E, = 197 MeV. The measured distances for

(3.35)

’



988 V. N. BATER

Table III. Effective distances I, measured at a
given experimental accuracy and at a given
electron energy, in units of 1078 cm.

E, MeV
8o
o 100 300 500 1500
0.10 0.44 0.15 0.09 0,03
0.05 0.32 0.10 0.06 0.02
0.03 0.24 0.08 0.05 0.02
0.01 0.14 0.05 0.03 0,01

certain energies and accuracies are listed in Table
III.

To detect deviations from quantum electrodynamics
at small distances, there is no need for carrying out
the very complicated measurements of the absolute
cross sections. Inasmuch as q ~ 0 in small-angle
scattering, it is sufficient to carry out the measure-
ments of the relative cross sections, normalizing
them at small angles to the Moller curve, with ac-
count of the radiative corrections.

The use of electron-positron scattering to check
the validity of quantum electrodynamics at small
distances offers some new possibilities: 1) the in-
vestigation of the form factors in the time-like do-
main [f( sz), s2>01; 2) measure shorter lengths,
other conditions being equal, this being connected
with the possibility of investigating scattering through
angles larger than 90°; to be sure, the cross section
of scattering through these angles is appreciably
smaller than the corresponding Moller cross sec-
tion[%,

Investigation of the process e* + e~ — 24 (Fig.
10b) enables us to determine the electron propagation
function G(p) and the vertex part, which, generally
speaking, should be written in the form T, (p?, p’%
kz). Compared with the case of electron-electron
scattering, where we investigate the function T'j(m?,
m?, k%), in the case of annihilation we are investi-
gating the function I‘u(pz, m?, 0), that is, the vertex
part in another domain of the arguments. This is
precisely why a study of the annihilation process is
of very, great interest for a check on the applicability
of quantum electrodynamics at small distances. It
must be noted that in this case the phenomenological
analysis is more complicated than that given above,
since, first, two scalar functions appear in G(p),
and, second, there is no analog of (3.26).

The form factors in the time-like domain of the
arguments can be investigated also in polarization
experiments that are sensitive to small-distance in-
teractions.

Let us proceed now to an estimate of the upper
limit of the length L, up to which quantum electro-
dynamics is known to be applicable. We shall list
below tho experiments on whose basis this estimate
can be made.

Hofstadter’s experiments [9,60) on the electromag-

netic structure of nucleons have made it possible to
determine the structural functions F;(q’) and F,(q?)
over a wide range of values of momentum transfer q.
If we assume that the deviations of the functions Fy
and F, from unity are due not only to the nucleon
meson cloud but also to violation of quantum electro-
dynamics, then

(r?)ops=(r?), 4 612=(0,8-10"% em)?, 1< 0,3.-10-'¢ cm.(3.36)

It is obvious that an appreciable portion of the effect
is due to the nucleon meson cloud, so that we can as-
sume that Hofstadter’s experiments imply the validity
of quantum electrodynamics up to distances on the
order of (1—2) X 10"%cm.

In calculating the anomalous magnetic moment of
the electron (muon), integrals are obtained with re-
spect to the momenta of the virtual photons. If we
assume that quantum electrodynamics breaks down at
a distance I, then the radiative corrections to the
magnetic moment assume the form L63]

2 (1—§zzm?>. (3.37)
In view of the large mass, the use of the muons is
preferable. The latest measurements of the anomalous
magnetic moment of the muon have shown that experi-
ment agrees with theory accurate to 0.5 percent of

the radiative correction, that is, (2/3)7?m? = 0.5

x 1072, hence I =1.5 x10"" e¢m.

These distances are indeed the minimum distances
to which the applicability of quantum electrodynamics
was measured; consequently, L = 1.5 X 10°% cm.

The value of the Lamb shift is also sensitive to
cutoff at large momentum. In accordance with the
latest data [6%100 theory agrees with experiment
within 0.1 Mc, hence I =3 x 10714, and the aggregate
of data on hydrogen hyperfine structure ¢ leads to
1 =5x%x10"%em.

Experiments on the verification of quantum elec-
trodynamics with the aid of the reaction v +p — e*

+ e~ + p in the case of pair production at large angles
(67,68] 4re being carried out at the present time (691,
However, the two diagrams (on which the photon is
absorbed and emitted by a proton) cannot be reduced
to the Hofstadter form factors, and their estimates
(strong interactions!) can be made only theoretically.

In conclusion it must be noted that in the region
that will be measured in the nearest future (energies
up to 700 MeV, accuracy not higher than 2—3 per
cent), there are no characteristic parameters that
would point to the possibility of breakdown of quantum
electrodynamics at these distances. However, the
observation of a breakdown of quantum electrody-
namics would be of all the more interest here. As
regards the suggestions advanced frequently in recent
times (see, for example ("J) that the fundamental
length is connected with weak interactions, the corre-
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sponding distances (6 X 10~ ¢m) can be eventually
measured, apparently, in experiments with colliding
beams. For this purpose it is necessary, for example,
to carry out an experiment in colliding electron-
positron beams with two BeV energy and 1 per cent
accuracy.

IV. CREATION OF PARTICLES IN ELECTRON-
POSITRON COLLISIONS AND INVESTIGATION
OF THEIR STRUCTURE

Experiments on the creation of elementary parti-
cles upon annihilation of an electron-positron pair
seem to us to be unique both with respect to the
amount of information on interactions between ele-
mentary particles, and with respect to its importance.
The cross sections of the corresponding processes
are of the same order in the electromagnetic interac-
tion constant e’ as is the cross section for elastic
scattering. Therefore all these processes are per-
fectly observable.* We shall list below the possible
experiments on particle production in the annihilation
of an electron-positron pair, indicating the informa-
tion that can be extracted from them. We shall then
consider some of these experiments in greater de-
tail.¥

1. A check whether there exist charged particle
pairs (other than those hitherto discovered) independ-
ently of the properties of these particles with respect
to strong interactions, if their mass is smaller than
the limiting beam energy and their lifetime is not less
than 107°—107!% sec. These particles can be observed
directly. In the case of a shorter lifetime, their decay
products will be observed.

2. A check on the existence of strongly-interacting
particles, including neutral particles, based on the
anomaly in the cross sections of other processes and
threshold effects.

3. The e* + e~ — 7’ + v process, and the investi-
gation of unstable neutral particles, the lifetime, and
the electromagnetic form factor of the 7' meson. The
reaction threshold is 70 MeV.

4. The process e* + e~ — uy* + p~, investigation
of the muon form factor, the threshold effect, bimuon-
ium, radiative corrections. Reaction threshold 106
MeV.

5. The process e* + e~ — 7* + 77, investigation
of electromagnetic form factor of the pion for time-
like momentum transfers, the associated nrn interac-
tion and unstable neutral particles, the investigation
of radiative corrections. Threshold 140 MeV.

*The particle-pair production cross section in electron-
electron collisions contains the additional factor e* and in
the case of production at large angles is 10* times smaller,
These cross sections can be large only in the case of produc-
tion at small angles, but the colliding-beam technique does
not permit observation at small angles.

1This group of problems is considered also in [roe],

6. The process e* + e~ — 7* + 7~ + 1, investiga-

tion of the pion form factor, study of =7 interactions
in other (compared with process 5) isotopic and spin
states, investigation of «w and n mesons. Threshold
210 MeV.

7. The process e* +e~ — K* + K~ (K" + K?),
investigation of electromagnetic form factor of the K
meson, and of KK and 7K interactions. Threshold
494 MeV.

8. Process e* + e” — 2K # 7, investigation of 7K
interaction, and of the K’ meson. Threshold 564 MeV.

9. The process e* + e~ — p+ p(n+1), investiga-
tion of electromagnetic form factors of nucleons for
time-like arguments (unlike the Hofstadter’s experi-
ments, where the space-like momentum transfer re-
gion was investigated). Threshold 9:10 MeV.

10. The process e* + e~ — X + X (hyperon-pair
production), investigation of electromagnetic form
factors of hyperons and X interaction.

11. Processes with production of XXr for the in-
vestigation of 7X interactions of different hyperon
resonances ( Yy, Y§, Y§*).

12. Processes with production of K mesons and
hyperons (for example Z nK*), for the investigation
of the corresponding interactions and resonances.

The listed experiments are among the most direct
experiments with which it is possible to determine
directly the properties of the elementary =nm, 7K, KK,
and 7X interactions. Recently these interactions
have been widely investigated in many other experi-
ments, particularly in processes with annihilation of
a proton-antiproton pair. The latter are analogous to
some degree with the experiments on electron-posi-
tron annihilation. In all other experiments it is neces-
sary to separate the strong interaction of the reaction
products in the final state, something that can be done
only crudely and far from unambiguously. Although
the particle-production cross section in the annihila-
tion of a nucleon-antinucleon pair is four orders of
magnitude larger than the particle production cross
section in electron-positron annihilation, the accumu-
lation of statistics in the latter experiments can be
much faster, since the difference in the intensities of
the anitproton and positron beams is much larger.
The advantage of experiments with electron-positron
colliding beams lies also in the fact that the measure-
ments can be carried out over the entire energy spec-
trum, whereas in experiments with nucleon-antinu-
cleon annihilation there is a threshold near 2 BeV, so
that a considerable region of great interest becomes
unphysical.

Let us make, finally, a remark concerning the
quantum numbers of the final states. We consider
processes in the lowest electrodynamic approxima-
tion, that is, when the electron-positron pair goes
over into a photon which then decays into the final
reaction products (Fig. 11). In the c.m.s. the virtual
photon is at rest, as it were, k = (2E,0); since, on
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FIG. 11

the other hand, kua}i = 0, it is clear that a; = 0; con-
sequently, the virtual photon is described by a polar
vector. It follows therefore that the angular momen-
tum of the intermediate state is J =1 (vector particle),
the parity is P = —1, and the parity with respect to
charge conjugation is C = —1. Inasmuch as all these
characteristics are conserved in electromagnetic and
strong interactions, all the final states which are ob-
tained upon annihilation of an electron-positron pair
(accurate to radiative corrections) have the afore-
mentioned quantum numbers.

4.1. Muon pair production. In the preceding chap-
ter we have seen that, with a high degree of accuracy,
muons are subject only to electromagnetic interac-
tions (¥4, The cross section for the production of a
muon pair in the annihilation of an electron-positron
pair has in second order perturbation theory (Fig. 12)
the form

cro(ﬂ)=_“;vi,%[1+%:—+-§—,coszﬁ] , (4.1)
Here ¢ is the muon momentum and ¢ is the angle of
muon emission relative to the direction of the elec-
tron motion.

The doubly-logarithmic corrections to the produc-
tion cross section are calculated in the same manner
as the corrections considered in the preceding chap-
ter for the electron-electron scattering cross section
1, m exactly the same way, only diagrams with a
single ladder line make a contribution. An account of
the radiation of the real quanta leads to a dependence
of the cross section on the maximum energy AE car-
ried away by the quanta; however, in view of the jump
in mass AE = E — i and in the case of arbitrary
radiation (when the detector registers all the muons,
regardless of their energy) we have AE = E — .
This case therefore differs in principle from the
scattering and annihilation into photons, which was
considered in the preceding chapter, where in the
case of arbitrary radiation the reduction in the cross
section of the main process (without emission of ad-
ditional quanta) due to an account of the radiative cor-
rections is completely offset by the increase in the
cross sections of the processes with multiple addi-
tional photon radiation. In the present case, however,
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no such compensation takes place, and in the case of
arbitrary radiation we have

4e? E E

o (9) = 0, (8) ¢* (4E?) exp {_-—n—lnEJM lno-

, o (4.2)

where ¢(4E?) is the muon form factor which, as we
have already noted, is equal to unity in the space-like
domain, and p is the muon mass. It is clear that the
effect is most noticeable at the threshold, when

E >» E — p. For nonrelativistic muons (near threshold)
formula (4.2) can be rewritten in the form

. . §e—21n£
— 2 (42 q rom 2
0@ =0 ¢ (45 ()" T IR O,
and the factor | 4(0) |? takes into account the Coulomb
interaction of the final muons, which likewise is sig-
nificant near threshold [2;

(4.3)

2me?
v

2me2
"o

PO r= (4.4)

1—e

Both the foregoing effects change the dependence of
the cross section of the process on the momentum of
the outgoing particles. In the region where the Cou-
lomb interaction is insignificant (27/%v « 1) we ob-
tain ¢ ~ qi'1 in place of o ~ q.

The Coulomb interaction between the produced
muons can lead to the formation of a bound state of
positive and negative muons—bimuonium ", Bi-
muonium can decay not only into photons (the lifetime
of parabimuonium is ~0.6 X 10712 sec) but also into
an electron-positron pair (lifetime of orthobimuonium
is ~2 x 10712 gec). The scattering of an electron by a
positron and the annihilation of an electron-positron
pair into photons can proceed via the aforementioned
intermediate bound state. Therefore investigation of
bimuonium is of interest not only for a study of the
properties of muons, but also as an example of an
unstable intermediate state which is amenable to
exact calculation. In this case a very narrow (~107%
eV) and a very high (~107%° cm?) peak appears in the
cross section. We note that the cross section without
account of this effect is ~107°! cm?. Because of the
scatter in the particle energy in the colliding beams,
this effect becomes smeared out, nonetheless it can
be observed under certain conditions ("1,

4.2. Creation of pions in electron-positron colli-
sions. Of exceptional interest is the investigation of
7n interaction as one of the fundamental interactions.
This interaction contributes to the cross section of
many processes in which pions and baryons partici-
pate. Data on this interaction are obtained at the
present time from an analysis of the reactions p +p
— n7, ™+ p — 27 + p, and many other processes. It
follows from these experiments that the 77 interac-
tion indeed exists and has a resonant character.

One of the most direct methods of investigating the
7 interaction is the reaction

v
e 4 e —>nmx,

(4.5)




HIGH-ENERGY INTERACTIONS BETWEEN ELECTRONS AND POSITRONS

which yields information on the vertex y — n7 and
consequently on the electromagnetic form factor of
the pion, which can be connected with the phase shifts
of the 77 scattering. In addition, the electromagnetic
form factor of the pion is in itself a fundamental
quantity and is contained in the cross sections of
other processes.

As was already noted, accurate to radiative cor-
rections, the final pions are in a state with J =1,

= ~1, and C = -1. In addition, a system of n pions
has a definite G parity, (-1 )®. In electromagnetic
transitions, in the lowest order, the isotopic spin
either remains constant or changes by unity. There-
fore, accurate to radiative corrections, the isospin of
the n created pions is either 0 or 1. Taking into ac-

count that G = CT, and C = -1, we obtain T, = (-1)%"1,

Thus, for an even number of pions we obtain an iso-
topic spin 1 (an isotopic vector, which reverses sign
upon the rotation T,), while for an odd number of
pions we obtain isospin 0 (an isotopic scalar, which
does not reverse sign upon the rotation Ty). From the
fact that in the final state C = -1 it follows, in par-
ticular, that a process in which all the final particles
are neutral pions is forbidden.

We are interested in the transition current

1

v 4" Tu (U)[O):qu (q% 4° (4.6)

g' ¢, ... S g,
where qi are the momenta of the created pions. From
the current conservation law it follows that k,JV = 0;
inasmuch as the spatial part of k is equal to 0 in the
c.m.s., it follows that EJ, = 0. We shall therefore
consider only the spatial component of the transition
current J. Since J is multiplied by a polar vector, it
follows from the parity-conservation law that J is a
polar vector made up of the vectors qi, qz, e, qn
if n is even, and an axial vector if n is odd. Taking
Elsloljs into account, we readily obtain the cross section
e? 1

One = 3501 (Zmyan-s

a

<\ T dqd (Y o, - 2E> 8 (D )Ipsinie,  (47)
i=1 i i

since in the initial state there is only one vector—the
collision direction; # is the angle between the colli-
sion line and the vector 4. Thus, the angular distri-
bution follows only from the gauge invariance and

does not depend on the properties of the vertex y — nw.

In the case of the creation of two pions, there is a
unique vector J( q1 = —qz), and the angular distribu-
tion is completely determined by the factor sin%¢. In
the case of the creation of three pions, J should be
proportional to the axial combinations (q1 X qz)

= —(q1 X q3) etc.; it follows therefore that the vector
J is normal to the plane of creation and consequently
the angular dependence of the cross section on the
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angle between the normal to plane of creation and the
collision line is again sin®$.

In the case when two pions are created, they are
created in a state with relative angular momentum
! = 1. The cross section of the process is

027 (8) =

9 sin? OF (AE?).

ey BB (4.8)

Thus, it is possible to measure directly in the experi-
ments the isovector electromagnetic form factor of
the pion, Fr(s). The region where the form factor

is determined for different processes is shown in
Fig. 13. In experiments on pion-pair production the
form factor is investigated in the time-like region,
while the form in the space-like region can be meas-
ured in principle in experiments on the scattering of
pions by electrons.

Absorption region

Space-like Time-like
ke< 0 ke > 0
// A

Physical region
for 27+ 0 =TT "

Physical region
for &XT ~ &+
#2=0 he=bu

FIG. 13

In the interval s < 16p?, the form factor Fr(s)
can be expressed in terms of the 77 scattering phase
shift in a state with isotopic spin 1 and angular mo-
mentum 1 "

PR
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n
Fa(s)=e W

(4.9)

The form factor F (s) was first investigated theo-
retically, particularly within the framework of the
Mandelstam representation (81-83) and in many investi-
gations°»%%:71) a resonant form of 77 interaction was
obtained for certain values of the parameters, leading
to the appearance of sharp peaks in the function
Fr(s). Even the first analysis of the experiment has
confirmed qualitatively [/%8¢-87) the resonant charac-
ter of the mr interaction. Such an interaction can be
described as an unstable meson with T =J =1 and
negative parity, which rapidly decays into a 7*n~
pair. The recently discovered p meson02:193] gng

¢ meson [104] phave precisely these properties, and
consequently the form factor as a function of the en-
ergy will have at least two peaks. The simplest form
of the function F;(q?) takes into account only the in-
dicated resonant interactions (pole diagrams) of Fig.
14a;

9 9
m? m2
Q 4

Falq®) ~ 2

2 mI i V. ' gt —me—g *
g —mg—imgVy  qF—mi uncrg

(4.10)

It must be noted that the indicated resonances have
not yet been sufficiently investigated, and experiments
with colliding electron-positron beams, in which high
energy resolution can be obtained, could provide the
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exact form of the peaks, and in particular would make
it possible to determine whether the p0 meson splits
up into two fo6], Naturally, formula (4.10) does not
hold in the nonresonant region. A study of the form
factor in this region is also of interest, since this
method makes it possible to determine directly the
phase shifts of the mm scattering, something particu-
larly valuable near threshold, since the absorptive
cut begins directly at the threshold, while the region
of many particles is located sufficiently far away.

To estimate the heights of the peaks it is necessary
to know the level widths of the p and ¢ meson. If we
put mp = 750 MeV, T, ~ 100 MeV and mg = 575 MeV,
Ty =70 MeV, then the height of the p-meson peak is
~ 60 (compared with Fy = 1), while the height of the
Z-meson peak is ~70. The form of the dependence of
the form factor | Fy(q?) | on the momentum transfer
is shown in Fig. 15.

[Fe(/?
70}
60}
50}
40y
3o}
20}

10t “aene?

i wa a0 708
FIG. 15

W0 L2, MeV

The three pions (n*, 7, 77) are created in states
L=1I=1, L=1=3, L=1=25, etc., where [ is the
relative angular momentum of the positive and nega-
tive pions and L is the relative angular momentum of
the 7° meson, referred to the center of mass of the
n*r~ system. The transition current (4.6) can be
represented in this case in the form
V(g ¢° ¢ = i evobvglapgyH (E, o,, o). (4.11)

V s0.0_0,

The isoscalar form factor of the pion H is a function

of three variables (we choose E, w,, w_). The vec-
tor J has the form
J=2——F (¢ xq)H(E, 0., 0). (4.12)

Y 80, 0_w,

With our choice of independent kinematic parameters,
the cross section can be represented in the form

d?o et H?

d0do, do_  (2n)® 64E® X (4.13)

q" X q)[*sin?d,

where, as already noted, ¢ is the angle between the

collision line and the normal to the creation plane.

The isoscalar form factor of the pion H plays an
important role in explaining the isoscalar part of the
electromagnetic form factors of nucleons. A theoreti-
cal investigation of this form factor is very difficult.
However, appreciable information on the properties
of the form factor can be gained from the fact that the
w and 7 mesons exist 19:1%] (if the 5 meson is a
vector particle %), In fact (see Fig. 14b), a virtual
photon can go over into an w (or 1) meson, which
then breaks up into three pions. If we take into ac-
count only such pole diagrams then, as in the case of
the form factor Fr(q®), we can estimate the depend-
ence of the form factor H(E) on the momentum
transfer only in the resonant region (Fig. 16). The
peaks of the form factor H( E) are much narrower
than those of the form factor F 5 ( qz), inasmuch as
the level widths of the w and 7 mesons are appreci-
ably smaller than those of the p and ¢ mesons, and
according to many estimates amount to ~0.3 MeV 107,

4.3 Processes in which 7° mesons participate.
The decay of a m¥ meson into two photons can be de-
scribed with the aid of the phenomenological interac-
tion

1 8n A% (z) 9A4Y (2)
Hint = — F ¢ (.’II) Eapys 02:ﬂ Bz(ﬁ

: (4.14)

Of great interest are processes in which one of the
photons is virtual. In these processes it is possible
to investigate the electromagnetic form factor of the
7% meson. The three processes shown in Fig. 17
cover the entire region of momentum transfer of the
function Trq(k% 0, p?). In experiments with colliding
beams it is possible to use the process e* + e~ — 7°
+ v (see the diagram of Fig. 18), the cross section of
which is 74776

2
Gy (0):#1—2(1+ cos? §) g* (4E?); (4.15)

Here T is the lifetime of the 7’ meson (7= 2 x 10716
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sec), u is its mass, and q is the momentum, and
g(4E?) = Ty (4E?, 0, p?). An investigation of a
process with production of 7¥ and v is quite difficult
because of the difficulty in observing three photons
and because of the small cross section, which does
not exceed 107% em? if the form factor is not taken
into account; this is connected with the relatively
large lifetime of the 7° meson compared with the
characteristic electromagnetic time. However, an
account of the new resonances changes the situation
radically: the virtual photon can go over into any one
of four mesons, w, 1, p, and ¢, and any of these can
decay into a 7% and y. Moreover, according to the
available data 1%, the probability of an n-meson de-
cay into 7% and v is three times larger than the
probability of a decay into three pions. Therefore the
cross section of the process with production of 7% and
vy turns out to be of the same order as the cross sec-
tion for the production of three pions (or two pions)
and can reach 1072%—1073% ¢m? in the resonances.
Thus, a process with formation of 7% and v can be
used to investigate unstable neutral mesons, the
quantum numbers of which coincide with the quantum
numbers of the virtual photon.

4.4. Production of K mesons and baryons in elec-
tron-positron collisions. The electromagnetic form
factor of the K mesons can be investigated in the re-
action e* + e~ — K* + K~; the cross section of this
process is given by formula (4.8), but now F denotes
the electromagnetic form factor Fi of the K meson.
A theoretical investigation of the form factor Fyg is
quite difficult, since apparently it is determined to a
considerable degree by the 7K interaction, about
which practically nothing is known at present. Infor-
mation concerning this interaction can be obtained
also from the process e* + e~ — 2K + 7, in which K’
resonance (a K’ meson) will appear.

Along with the charged K mesons, there can be
created pairs of neutral K mesons (unlike the crea-~
tion of neutral pions). Inasmuch as the pair (K, I'Zo)
should be in a state with charge parity C = -1, the
final-state function should have the form Koﬁo
- IN{OKO; changing over to K{ and K‘z’ mesons, we ob-
tain KJKJ — KJK}. It is clear therefore that only the
pair K! — K} can be created, but not the K{-K{ or
the Kg - Kg pairs.

The cross section for the production of a pair of
fermions with spin 1/2 in the annihilation of an elec-
tron-positron pair has the form
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0y (8) =gy g {| F1 (AE9) + WP, (4E9) P (1 -+ cost 0)

1 sin?d { APy (AEY) + 4wl (4E?)

2} , (4.16)

Here pu is the static anomalous magnetic moment and
Fy and F, is the analytic continuation of the electric
and magnetic form factors of the fermion into the re-
gion of time-like momentum transfers. Figure 19
shows the situation for the special case of the isovec-
tor part of the electromagnetic vertex of the nucleon.
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The form factors have an imaginary part along the
absorption cut. This gives rise to fermion polariza-
tion normal to the creation plane. We note that in the
process e + f — e + f this polarization cannot be
produced, accurate to radiative corrections, as fol-
lows from the invariance with respect to time rever-
sal. The fermion polarization is given by the formula

P ()= —sin 20 2 Im {F? (4E%) pF, (4E?));  (4.17)
the polarization of the antifermion is —P (), as fol-
lows directly from the CPT theorem.

The final pair of particles is produced in states
3S; and ®Dy, as follows from parity conservation and
from the fact that the total angular momentum is
equal to 1. As regards the isotopic structure of the
vertex +ff, it breaks up into an isoscalar and isovec-
tor part (for the A and ¥° hyperons there is only
the isoscalar part). The absorption cut begins with
4u2 for the isovector part and with 9uz for the iso-
scalar part. An exception is the 725 vertex, for
which the transition © — A + 7 leads to an anomalous
threshold ¥, An investigation of the electromagnetic
form factors of the nucleons in the time-like region
is of very great interest, since one cannot exclude
the possibility that the nucleon core presently ob-
served in experiment is connected with singularities
at large positive k2.

Along with creation of the fermion-antifermion
pair, the reactions e* +e~ — 2%+ A or %+ A are
also possible. The cross section of this process de-
pends on the relative parity of X-A. This effect can
be investigated directly by observing the behavior of
the production cross section at threshold. In fact, if
the relative parity of £-A is positive, then the final
particles are produced in states 3S1 and °Dy; on the
other hand, if it is negative, then the final states will
be 'P; and ®P;. Consequently, for positive parity the
cross section increases linearly with the final mo-
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mentum ¢ and is isotropic, whereas for negative
parity it increases as q® and generally speaking con-
tains terms of the type cos %3.

If we leave out the terms with anomalous magnetic
moment, then the cross section (4.16) decreases as
E~2, while the terms with the anomalous magnetic
moment are multiplied by a rapidly decreasing form
factor 9, Ag a result of this the cross sections for
baryon production are small (~10"% ¢m?), and the
observation of the corresponding processes is quite
a complicated problem.

4.5. Detection of the existence of new particles.
As we have already noted, experiments with colliding
beams can be used for the detection of particle-anti-
particle pairs, both charged and neutral.

We have already given the cross sections for the
production of particles with spin 0 (4.8) and with spin
1/2 (4.16). The cross section for the production of a
particle with spin 1 (vector boson with anomalous
magnetic moment pup) is [108]

o5 (8) = J_Q)Y_Z_"s {2 (14 pp)? (%)2 (1 + cos? )

[ (5 (Shema) o}

The search for the intermediate vector boson of weak
interaction is of great interest. We note that such a
boson should have a proper quadrupole moment and,
generally speaking, is characterized by three form
factors (08,

Even if we exclude terms with anomalous magnetic
moment and with quadrupole moment, which increase
as E?, the cross section for the production of the
vector boson does not decrease with energy. This is
connected with the non-normalizable character of the
interaction. Inasmuch as, accurate to the radiative
corrections, the angular momentum of the final state
is equal to 1, only the lower waves contribute in this
approximation and from unitarity considerations the
cross section cannot exceed 37x%/4. Therefore,
starting with certain energies, the cross section
should decrease, something that can be ensured by
the form factors. If formula (4.18) has a certain re-
gion of applicability (a region where the form factors
are of no significance), then the cross section for the
production of the vector boson may become larger
than the other cross sections. Because of the short
lifetime (~10'“ sec), a vector meson can be observed
only by its decay products.

Experiments with colliding beams are very con-
venient for the separation of neutral (bound) resonant
states (or unstable mesons). We have already seen
this with the form factor resonances and bimuonium
as an example. Let us consider this question in gen-
eral. Assume that annihilation of an electron-positron
pair is accompanied by the production of a resonant

(4.18)
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state with mass M, spin J, and decaying with a rela-
tive probability I'j at a total level width I'. We have
to consider different ratios between the level width I’
and the energy resolution AE: 1) narrow resonance,
AE > T'; 2) broad resonance, AE < I'; 3) intermediate
case, AE ~ T'. The resonant contribution to the proc-
ess e + e~ — final state, averaged over the interval
AE, will be: for case 1) oky = 2rx¥(7/4)

x (2J + 1) T4T'{(T/2AE); for case 2) L%

=nA2(2J + 1) I'¢Tj; for case 3) we can use either of
the formulas. It is simplest to observe the resonant
state with J =1 and C = — 1, as we have seen above.
The contributions of resonances with other quantum
numbers will contain an excessive smallness in e?
(for in this case at least two photon lines must par-
ticipate), thus T'j ~ €® for J=1, C = 1, etc.

V. INVESTIGATION OF WEAK INTERACTIONS IN
EXPERIMENTS WITH COLLIDING BEAMS

A characteristic feature of the theory of local weak
interactions is the quadratic increase of the cross
sections with the energy. Therefore cross sections
that are very small at low energies, may become
comparable with the cross sections for the electro-
magnetic and strong interactions at high energies.
However, from the general premises of modern
theory 1199 jt follows that the cross section of any
process at large energies should not grow more
rapidly than In?E. It is very important to establish
where the growth of the cross sections of the weak
interactions with energy is reduced. At those ener-
gies the form factors enter into play, and a study of
these form factors is of great interest, particularly
since this may be a manifestation of the fundamental
length.

Colliding-beam techniques may produce energies
so high that, at least in principle, weak interactions
at high energies can be investigated.

As is well known, all the available experimental
data are well described by the V-A weak-interaction
scheme 2] In this scheme we retain only charged
currents, which describe the scattering of charged
particles by neutral ones. It is possible, however, to
include in this scheme also neutral currents, which
describe the scattering of particles of like charge.
The scheme obtained is quite symmetrical and simple,
and is also in good agreement with all the available
experimental data (93,941 1 et us consider within the
framework of the scheme with neutral currents the
processes that can be investigated with colliding
beams X

We consider the influence of weak interactions on
the scattering e + e — e + e and annihilation e* + e~
— p*+pu” and et + e~ — N + N processes.

The total cross section of each of these processes
can be represented in the form
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0=0¢+ Oj+ Oy, (5.1)
where o is the cross section of the electromagnetic
interaction, oy is the cross section of the weak inter-
action, and gj is the interference term of the electro-
magnetic and weak interactions. All the cross sec-
tions are in the c.m.s.

For ultrarelativistic electrons the cross section
for weak electron-electron scattering is

ow=r2 (%) () 6+cost ), (5.2)
and the interference term has the form
P r3 Gm? 5-}3costd (5.3)

sin? & ’

i7" VZ' e?
where G is the weak-interaction constant, G
G=10""M"%, and M is the nucleon mass. For the
cross section of the weak annihilation e* +e~ — u*
+ ¢~ we obtain

7 Gm® N2/ E N\2 ]
— 2/ = 4
ow=2r8 (== ) (4 ) cost -, (5.4)
1 Gm? b}
03 =T/Tr37 547_ (5.5)

Comparing the energy dependence of the various
cross sections, we see that with increasing energy
the electromagnetic cross section decreases as E7?,
the interference term is independent of the energy,
and the weak-interaction cross section increases, as
was already noted, like E2. It follows therefore that
in the local theory the electron-electron scattering
cross section has a minimum at several times 10
BeV, and that the absolute value of the cross section
is very small there (~1073¢ cmz). On the other hand,
if the interactions are ‘‘smeared,’’ this minimum may
not occur, and the absolute cross sections may be
even smaller. At the energies attainable at the
present time, the contribution of the weak interactions
is rather small, for example, at 3 BeV the contribu-
tion of the weak interactions to the electron-electron
scattering cross section does not exceed 0.2 per cent.

We note that if a weak interaction is realized via
an intermediate boson, this leads to an appreciable
distortion of the angular cross sections given above
for energies exceeding the bogson mass. Furthermore,
if it follows from the interference term that the con-
stant G is negative, this means that the intermediate
boson does not exist.

To consider weak annihilation of an electron-posi-
tron pair into a nucleon-antinucleon pair it is neces-
sary to take the strong interactions into account using
form factors. The cross section of the process has
the form

: 2 [ Gm? E N
ow(t) = %"u <‘::+>’ (;)av{(pf-i-gf) (1 4+ v?cos? )
+ o (Fi— ) +4RFFy+ pF) [(—,‘E})' (i—v’cos”ﬂ)ﬂ]

+4g, (Fy+ pFy) v cos B}, (5.6)

995
2:/ir§ —(i—n:’-u{FlF{v<1+v*cos2ﬁ+<M \2>

o (0) = 7/)
N N N[ E®
+ 2(#NFYF, + pF,FY) + ppNFyF) [W(i—vzcosﬁﬁ)ﬂj

+ 2g; (FY 4 pNFY) v cos 0} ; (5.7)
Here F%\T and F%\I are the electromagnetic form fac-
tors of the nucleon, F; and F, are the isovector
parts of the corresponding nucleon form factors, and
uN is the anomalous magnetic moment of the nucleon,
u= pP - un, gy is the axial form factor, and v is the
velocity of the produced nucleon. Near threshold o
amounts to 0.1 per cent of og.

Along with the phenomena considered above, parity
nonconservation in weak interactions will lead to
characteristic polarization phenomena. The longitud-
inal polarization of the produced muons is given for
the process e™ + e* — u* + 1~ by the formula

(14-cos $?
1) 1-+4cos? ¢ (1+4-¢) (1cos? @) ’

PE= 1t (5.8)

where €=~ 6.2 x 10"4(E/M)2.
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