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INTRODUCTION

1. In 1956 Lee and Yang ^ questioned the invariance
of physical processes with respect to the operation P.

Ρ is defined (see, for example '-2-') Sec. 7) as the
operation of changing the sign of spatial coordinates
or momenta of all particles in the given physical sys-
tem: xj, y ,̂ z[ are replaced by — x[, — yj, — zj (i is
the particle number) or Pi is replaced by - Pi ( if
the state of the system is given in momentum repre-
sentation). Spin projections are left unchanged. All
other variables that may be needed to characterize
the state of each individual particle ( charge, isotopic
spin projection, etc) are unaffected by the operation
Ρ (by definition of Ρ ).

The process of transition of the system from some
state % into some other state Φ is said to be invari-
ant with respect to Ρ if the probability amplitude for
the transition from % to Φ is equal to the probability
for the transition from ΡΦ0 to РФ, where P% is the
state obtained from the state % on application of the
operation P.

Noninvariance with respect to Ρ has indeed been
established in a number of well known experiments
(see, for example, the review L3^).

This fact could be interpreted as evidence that
empty space (the physical vacuum) has definite spi-
rality so that inverted space differs from the non-
inverted. Such an interpretation is based on the fol-
lowing considerations ^ .

If space is homogeneous in all directions then it is
easy to verify that the geometrical operation of inver-
sion χ — - χ commutes with the geometrical opera-
tion of displacement ( shift) in time. Therefore if Ρ
provides a representation of the operation χ — - χ
(if the operation Ρ adequately describes the change
in the state of the inverted physical system compared
to the noninverted), then the operator Ρ should com-
mute with the operator U( t, t0)—the operator of evolu-
tion of the isolated physical system in time ( repre-
senting the geometrical operation of a shift in time by
the amount t - t 0 ) : UP = PU. Indeed, if the operators
Ρ and U pretend to be adequate (true) representations
of the corresponding geometrical operations then they
should satisfy the same commutation relations as do
the original operations. It follows from UP = PU or
P - 1 UP = U that <Ф, U*o> —the probability amplitude
for the transition from Фо into Φ —is equal to
<ΡΦ, UP* 0 >, i.e., that all physical processes should
be invariant with respect to P.

However another interpretation of the experiments
on "parity nonconservation" is also possible: they
only provide evidence that the above defined operation
Ρ is not an adequate (true) representation of the geo-
metrical operation χ — — χ. Space is not " r i g h t " or
"left' and therefore there should exist another ope-
rator that provides a representation of χ — — χ, and
commutes with U. Already in 1952 Wick, Wightman
and Wigner ^ showed that the operator PC also
provides a representation of χ — - χ, where С is
the charge conjugation operator.*

This point of view can also be expressed in terms
of the concept of "pseudoscalar charge" '-6-': upon
spatial inversion of a particle its electric charge
changes sign so that a charged particle does not have
a well-defined Ρ parity ^ . Since the operation PC
also involves a change of the sign of the lepton and
baryon numbers and of strangeness, these character-
istics are also pseudoscalar.

One may give one more formulation L'i8J; the mir-
ror image of a particle is its antiparticle and not the
particle itself.

If the operator PC provides a representation of
χ — — χ then all physical processes should be invari-
ant under PC. This hypothesis of "conservation of
combined pari ty" reestablishes the equivalence of
right and left in the vacuum, explains at the same time
the experiments on "parity nonconservation," and—
which is no less important—insures "parity conser-
vation" in strong interactions when augmented by the
hypothesis that the strong interactions are also in-
variant under the operation C. t One may then intro-

*Usually С is defined as the operator that replaces the particle
by its antiparticle; one then must make additional statements as to
what one means by the antiparticle of such particles as the π or К
mesons. More directly С may be defined as the operator which
changes the electric charge, baryon number, lepton number and
strangeness of each particle into its opposite (in the sense of the
algebraic change of the sign in front of the corresponding character-
istic). The signs of the momenta, and in general all the mechanical
characteristics of the particle (mass, spin), are left unchanged by C.

t According to the definition of invariance of a process (given
above with P-invariance as an example) this means, for example,
that the angular distribution of the particles, their polarization, and
other mechanical characteristics of the process a + b -* с + d (the
collision of particle a with particle b giving rise to the appearance
of particles с and d) should be the same as those of the corres-
ponding antiparticles in the charge-conjugate process a + Б -» с + 3.
It should be noted that it would have been sufficient for the inter-
pretation of each individual experiment on "parity nonconservation"
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duce the conventional concept of intrinsic spatial P-

parity for the particles involved in the given process.

For particles that are not self charge conjugate this

concept is of limited applicability ( although of wider

applicability than the concept of isobaric spin).

2. The hypothesis of PC invariance is sufficient

to explain the experiments on "parity nonconservation,"

it is not however a necessary consequence of these

experiments. Let us pose the problem of how to test

for such invariance. If it were to turn out that this

invariance is absent one would have to either look for

a different representation of χ — — χ, or admit the

possibility of "spirality" for the physical vacuum.

Having posed the problem as being that of experimen-

tal clarification of the properties of space we must

not base our proposals for appropriate experiments

on some preconceived notions about the form of ad-

missible types of interactions (for example, the no-

tion that interactions must be local). In particular

one must not replace the study of PC invariance by

the study of invariance under the Wigner time rever-

sal Τ (for a definition of Τ see below, Sec. 1) by

resorting to the Luders-Pauli theorem ^ 2 ' 9 ^ which is

valid only for a certain class of theories (see item 3,

below).

This means that we must compare the character-

istics of a given process with the characteristics of

the charge conjugate process.

We restrict ourselves to the testing of PC invari-

ance for decay processes only (for "weak interac-

tions"). For "parity conserving" interactions the

test of PC reduces to the test of С invariance. С
invariance has been solidly established for electromag-
netic interactions. It is not expected that it should be
violated in strong interactions either. The most ac-
cessible experiments in that direction are, apparently,
the experiments on the interactions of antiprotons with
protons C10;11^. Some of these experiments have al-
ready been carried out C12,i3] we have to give up the
discussion of processes charge conjugate to β decay.

The most accessible of them, the β decay of the anti-

neutron, cannot be studied at this time because of the

small number of antineutrons and their long lifetime.

The decays of π±, μ1, Κ mesons and also antihy-

perons have already been observed. The correspond-

ing experiments will therefore be discussed with the

aim of summarizing the known data on PC invariance

and of indicating additional possible experiments.

3. It turns out that a majority of these experiments

may be looked upon as a test of PC Τ invariance. In

this paper these experiments will be discussed from

to assume that the decaying particle has no well defined intrinsic
parity (i.e., can be represented as a superposition of even and odd
eigenfunctions of the operator P), without connecting this fact with
the existence of charge. Then homogeneity of space does not forbid
the observed asymmetries, however it becomes difficult to explain
"parity conservation" in strong interactions.

that point of view, and also from the point of view of

distinguishing the experimental consequences of PC

and PC Τ invariances.

It is worthwhile to emphasize the distinction be-

tween the concept of PCT invariance and the PCT

theorem (or the Luders-Pauli theorem). PCT in-

variance means equality of the amplitudes for the

transition from the state Φ into the state Φ and from

the state Φ' to the state * ' , where * ' and Φ' are the

PCT-inverted states Φ and Φ ( see Sec. 1, below).

One may pose the question of experimental verification

of the hypothesis of PCT invariance of physical pro-

cesses, analogously to the question of verification of

P, PC or Τ invariance.

The Luders-Pauli theorem asserts that invariance

with respect to the operation PCT is the consequence

of certain general postulates C2>93, that do not include

the assumption of invariance under any inversion, i.e.,

that for a certain class of theories PCT invariance

is a property of that class, and not a consequence of

direct assumptions about the inversion properties of

space and particles. In view of the existence of this

theorem a test of PCT invariance is at the same time

a test of the validity of the premises on which this

theorem is based.

A majority of the experiments to be discussed has

been previously suggested in a number of papers

among which one should particularly note the papers

of Stapp ^ and Luders and Zumino ̂  devoted es-

pecially to the test of the PCT theorem.

4. The method for the experimental verification of

the invariance or noninvariance of some process with

respect to some operation is based on the following

logic. We assume that the invariance in question holds;

starting from that assumption we find the consequences

for observable quantities and then test these conse-

quences experimentally.

Some of the consequences of the invariances under

discussion for concrete processes may be rather sim-

ply obtained directly from the definition of the corres-

ponding operation ( see, for example, the last footnote),

without making use of any mathematical apparatus.

However it is rather hard to obtain in this way most

of the consequences, particularly since aside from the

invariances being discussed one must simultaneously

take into account invariance with respect to displace-

ments and rotations of space (i.e., the conservation

of the total momentum and angular momentum and re-

lativistic invariance). This invariance is assumed

throughout this paper. It must be taken into account

because certain symmetries in an experiment (in

angular distribution etc), which at first glance seem

to arise from the invariances under discussion, may

already follow from these conservation laws. We will

therefore discuss most of the experiments on the

basis of a theory that takes into account these conser-

vation laws, and also the unitarity of the transition

amplitude U (the so called general, or phenomenolog-
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ical, reaction theory). We shall use the theory in the
form presented in the papers C16"19^. *

This approach consists then of a test of PC and
PCT invariances in a pure form, without the help of
additional special assumptions such as for example
the local nature of the interactions, or some analytic-
ity properties of the transition amplitude.

1. TRANSITION AMPLITUDE. POLARIZATION VEC-
TOR. SELECTION RULES OF PC, T, AND PCT
INVARIANCES

1. We are interested in the transitions of one or
two free particles into some final state ( resulting
from the decay of a particle or from the interaction of
two particles) that also consists of free particles. The
probability amplitude for the presence at the instant
of time t of the desired final state Φ in the evolved
initial state * ( t ) is equal to <Φ, * ( t ) > , where
Φ( t) = U( t, t 0 ) * 0 . % is the given initial state (at
the instant of time t 0 ) , and U(t, t 0 ) is the evolution
in time operator, t

Thus the probability amplitude for a pion of mo-
mentum p 0 to decay into a muon of momentum p t and
spin projection n1 ; and a neutrino of momentum P2
and spin projection n2 is equal to the matrix element
of U between the wave functions of the corresponding
states of the free particles

(Φ, ί/Ψ0> = (|ΡΛΡΛ>, U\p0)).

All that we know about the matrix U is what follows
from the conservation laws. The latter impose defi-
nite restrictions on U, which may be obtained from
the commutation of U with the operators for displace-
ments and rotations in space, as well as with the
operators for other possible transformations: inver-
sions, charge conjugation, and so on, if invariance
with respect to these transformations is assumed, ί

•Aside from being relativistic and allowing for the discussion
of the neutrino, it is distinguished by its simplicity (in the sense
of less awkward formulas) even in comparison with the better known
formulation of Wolfenstein.M The latter, even in its relativistic
modification (see Stappl-21)), is inconvenient for a majority of the
decay processes discussed.

tin scattering processes U(°°,-°°) is called the S matrix. In
decay processes one should take instead of the S matrix U(T, 0);
the time count should start at the moment of production of the un-
stable particle. As Τ one should take a time many times larger
than the lifetime of the decaying particle (but shorter than the life-
time of its decay products).

t Processes occurring in an isolated physical system which has
been as a whole displaced, rotated, etc., in space should proceed
in the same way as in the untransformed system. Namely, if Ψ=υΨ0

is the result of the evolution of a certain state ψ0, and if the result
of the evolution of the displaced, rotated, etc., state ϋΨ0 is
Ψβ = UDW0, then this expression indicates "just as well" that 4"D

differs from ψ only by its distribution (orientation) in space.
Namely, for all transformation except Lorentz transformations we

In this manner the phenomenological theory consists
in the ability to describe the free particle states and
in knowing how to draw conclusions from the invari-
ance of U with respect to certain transformations ( for
details see Chap. VI т в д ) .

The initial and final states are given by stating
what are the particles in these states together with
the momentum ρ and the spin projection η of each
particle. Such a description will be relativistic if
given the wave function | p, n > of the state in one
Lorentz frame we can find the wave function of this
state in another frame of reference. The formulas
necessary for this follow from the theory of repre-
sentations of the inhomogeneous Lorentz group ( see,
for example, ^ 2 3 ^ ) .

The conservation law of the total momentum is ex-
pressed mathematically in the diagonality of U in the
total momentum indices. Thus, the above mentioned
element ( | p 1n 1p 2n 2>, U | p o > ) should be of the form

We have introduced in place of p ( and p2 the vari-
ables of the total momentum Ρ = Pi + p2 and the rela-
tive momentum ρ = ( p, - p2 )/2. In what follows the
indices Ρ will be omitted (it will be assumed that we
are in the barycentric system of the reaction, where
Ρ = p0 = 0), so that among the indices of the elements
of U only relative momenta will appear. For the r e -
strictions imposed on U by the law of conservation of
the total momentum see Sec. 4 and Appendix A.

2. In what follows we shall need the concept of the
polarization vector for a particle. Since we shall not
deal with particles of spin higher than 1/2 it is not
necessary to introduce more complicated concepts
( namely polarization tensors ). For the neutrino the
polarization concept is altogether unnecessary, * so
it will be sufficient to define the polarization vector
for particles with nonzero rest mass.

We define the state of a free particle with spin in
the following manner: 1) we indicate the momentum ρ
of the particle ( for example in the barycentric frame
of the reaction); 2) we indicate its spin state in the
Lorentz frame in which the particle is at rest. Let
< | n>, η = — 1/2, + 1/2 denote the wave functions of

have ΨΕ = ϋΨ. But if Ψο = ϋΨ then we have UD4O = DU4O, and
since this is true for any state Ψο it follows that UD = DU, i.e.,
U commutes with the corresponding operator for the transformation
in question.

In the case of Lorentz transformations L, Ψτ_ turns out to also
be displaced in space in comparison with LW. As a result of some-
what more complicated considerations one finds that although [L,U]
does not vanish it is equal to a known operator.

*The state of a two-component neutrino is fully characterized
by the single specification of its momentum. In the case of a four-
component neutrino one could introduce the polarization concept
(for reference see the papers L16'17J), however for the time being the
neutrino polarization is not accessible to experimental measure-
ments.
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a particle with definite spin projections η in that
frame. We define in the usual manner the density
matrix

Qn1.^=Tan{n1\n){ni\n)*, (1.2)
η

where a n are the weights of individual pure states
< I n > . For an unpolarized state α_ι/2 = αι/2· With
appropriate normalization Sp ρ = 1.

The polarization vector will be defined in the Lo-
rentz frame where the particle is at rest as twice the
average value of the total angular momentum operator
M, equal to the spin operator (since the orbital angu-
lar momentum is zero in this frame):

; = х, у, ζ), (1.3)

where σ^ are the Pauli matrices. For the connection
between this and other possible definitions see, for
example, ^24-'. The question of how does the polariza-
tion vector defined in this manner transform under
Lorentz transformations has been studied in the work
^18^, item 3. In what follows we propose the measure-
ment of those components of the polarization for which
these special transformations are irrelevant. The
measurement of the polarization vector is performed
by the usual methods (for example, from the difference
in the right-left secondary scatterings).

3. PC inversion. Let | pne > be the wave function
of a state of some particle of definite momentum ρ
and spin projection η on some fixed axis, e denotes
the sign of the charge, lepton number, baryon number,
strangeness. The action of PC is defined as the pro-
duct of the operations Ρ and C:

PC | pree) = | -- p, n, — (1.4)

It can be shown that the possible phase factor exp ίη
does not depend on ρ and n, but may be different for
different particles ( analogously to the intrinsic Ρ
parity of a particle). *

Let ( | p, щ, n2 > , U | Μ >) be the amplitude for
the transition a —• 1 + 2 (the decay of particle a
with spin projection Μ into two particles 1 and 2
with relative momentum ρ and spin projections nt

and n2). By definition of PC invariance the amplitude
for the transition a — 1 + 2 should be equal to the
amplitude for the transition from the PC-inverted
initial state [the antiparticle H with the same spin
projection Μ in accordance with Eq. (1.4) ] into the
PC-inverted state Ϊ + "2:
(Ipnjtt.,), U \А1)) = (РС\рплп,). UPC]Μ))

= f,i(na-4r-n2> ( | _ р И 1 « г ) , ϋ\Μ)). (1.5)

The tilde ~ over U in Eq. (1.5) means that the^ e l e -
ment in question r e f e r s to the p r o c e s s a —· 1 + 2 .

*This follows from the commutation properties of Ρ and С with
the generators of three dimensional rotations Mk (the total angular
momentum operator) and Lorentz transformations (see, for example,
M).

Thus PC invariance relates the amplitudes of mutually
charge conjugate processes.

The probability for the decay of the unpolarized
particle a* into the channel 1 + 2 is proportional
to the expression

2 2 5^|(|ряЛ),^|Л/»|«.

In view of Eq. (1.5) this expression is equal to

i.e., to the expression for the probability of the decay
a — 1 + 2. It therefore follows that the total decay
probabilities (through all channels) of a and a are
equal, i.e. that their lifetimes are equal.

In Appendix В are obtained consequences of PC
invariance also for decays of the type a —• 1 + 2 + 3
in the case when the particle a (and correspondingly
a) is polarized or when the polarization of the decay
products is measured. It will be shown on the ex-
amples of pion and muon decays how certain conse-
quences may be deduced by elementary means.

4. Wigner time reversal. The invariance with
respect to the Wigner time reversal Τ is formulated
differently from the other invariances. If Τ invari-
ance holds then the amplitude for the transition from
the state Φο into the state <i>f should be equal to the
probability for the transition from the state ΤΦ£ into
the state ΤΦ0. In the case of reaction of the type
a + b —· с + d this means the equality of the ampli-
tudes of the direct reaction and the inverse reaction
с + d — a + b, in which the initial state is the T-in-
verted (see below) final state of the direct reaction,
and the final state is the Τ-inverted initial state of the
direct reaction. For more details see Sees. 21 and 25
of the book^22^, and also Chap. I, Sec. 5 of the review
[9] . All that has been said can be expressed in terms
of the elements of the U matrix as follows:

(Φ,, U (t, 0) Ψο> = (ΓΨβ, ϋ (ί, 0) ΓΦ,), (1.6)

where T-inversion is defined by the relation (see
[22,25])

7ЧриЕ) = и'р, - и , e)(-l)Vi. (1.7)

As in Eq. (1.4) ξ does not depend on the momen-
tum ρ and the spin projection n. Under Τ inversion
the spin projections η onto a fixed axis of quantization
change sign. For the decay a —• 1 + 2 we obtain
from Eqs. (1.6) and (1.7)

(\pnin2),U\M))

-Μ), Ζ7| — ρ , - ι » ! , - ! (1.8)

*It can be shown (see Appendix B) that the total decay proba-
bility into any given channel does not depend on the state of polari-
zation of the particle; therefore the remark that the particle is un-
polarized is irrelevant.
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The relation (1.8) connects the elements of the
transition amplitude of the direct a — 1 + 2 and the
inverse 1 + 2 — a reactions. The latter is practi-
cally inexistent (in contrast to reactions of the type
a + b — с + d) and therefore from the Eq. (1.8) alone
no selection rules result for decay processes.

Let us show that if the products of the decay
a — 1 + 2 interact weakly, then the unitarity of the
U matrix, i.e., U+U = 1 (see Sec. 19 i n ^ ) , gives
rise together with Eq. (1.8) to a certain selection
rule for the process a —* 1 + 2.

Let us formally introduce the transition matrix R,
defining it by the relation U = 1 + iR. For transitions
involving a change in the state, U and iR coincide.
Let us rewrite 1 = U+U in the form 1 = U*( 1 + iR)
or 1 — U+ = iU+R, or R+ = iTR. Let us take matrix
elements of this last equality between the states | f > —
the final state and | a > —the initial state:

(1-9)

In the calculation of the matrix product the sum-
mation ~22 is taken over all possible states η into

η
which the particle a can decay. If these states can
transform into each other only via weak interactions
then one may ignore the term i £}< f I R+ I n >

η

χ < η I R I a > . Indeed, let us consider the decay
π —> μ + ν. The weakness of the interaction between
the decay products means that the matrix elements
< μ v\ R Ι μ ν > and < μ И R I ey > of the processes
μ + ν —* μ + ν and e + ν — μ + ν are very small
(the symbols μ, e, ν denote the particle type, its
spin projection and momentum). Starting from the
number 10~44 cm2 for the cross section for neutrino
(from a pile) interactions with nucleons, the univer-
sality of the Fermi four-fermion weak interaction
and the possible increase of the cross section with
energy that follows from that interaction form L26J,
one may give the estimate of 10~10 for the order of
magnitude of this element.

And thus, to an accuracy of better than a millionth
of one per cent, Eq. (1.9) transforms into the state-
ment of hermiticity for the R matrix

( a \ R \ f ) = ( f \ R \ a ) * . (1.10)

This relation (usually referred to as the principle of
detailed balance) also connects matrix elements of
the direct and inverse processes, like Eq. (1.8). There-
fore Eqs. (1.8) and (1.10) combined give rise to a se-
lection principle for the process a —• 1 + 2 itself

consequences. To test Τ invariance one must have
polarized particles a and study the polarization of
the decay products ( see Table I in Sec. 2).

5. PCT inversion. PCT invariance means the
equality (apart from a phase factor) of the amplitudes
for the direct process and the process in which the
initial and final states are interchanged, the particles
are replaced by their corresponding antiparticles, and
their spin projections have their signs changed [the
definition of PCT inversion is obtained by combining
Eqs. (1.4) and (1.7)].

For decay processes in the case of weak interaction
between the decay products the selection rule that fol-
lows from PCT invariance is obtained by combining
Eqs. (1.5) and (1.11) and has the following form for the
process a —• 1 + 2

( |ρη Λ >, Я | M))

I _ p , _ _ n ) , R\ -M))*. (1.11)

Ιρη,η.,), , - η,.-я,), г/I - Af))*. (1.12)

This selection rule has no simple experimental

The phase a is composed of the phases η and ξ.
From here, exactly as in the case of PC invariance,
follows the equality of the weights of mutually charge
conjugate decay channels a and a E14>9^ and the equal-
ity of the lifetimes of a and a П27,ЗД . We note that
the last equality is also obtained in the case of strong
interactions among the decay products. This case is
discussed in Appendix B.

2. DECAYS OF PIONS AND MUONS

The experimentally established equality of the life-
times of the π+ and iT, and the μ+ and μ" ( see ^29^,
Chap. 2) is one of the simplest consequences of PC
and PCT invariances and the first indication of the
validity of at least one of these invariances L27,14!.
The next simplest consequence should be the identity
of the angular distributions of the charged decay pro-
ducts in the decays of π+ and π" and unpolarized μ +

and μ". However the isotropy of all these distributions
follows already from invariance with respect to three
dimensional rotations ( so that this identity has no r e -
lation to any tests of PC or PCT invariances). In-
deed, a pion at rest or an unpolarized muon at rest
does not give rise to any preferred direction in space.
In the final state the direction of the momentum of the
charged particle is measured. The amplitudes (and
probabilities) for transitions from an arbitrarily ro-
tated initial state (which will be fully equivalent to
the original unrotated state) into the correspondingly
rotated final state must therefore be equal, but such a
final state corresponds to an unrotated final state
characterized by a different direction of the momen-
tum of the charged particle ( it is, of course, assumed
that the decaying particle or its decay products can be
treated as an isolated physical system, not subject to
the action of any external fields). Consequently tran-
sitions into states with different momentum directions
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are equally probable, i.e., the angular distribution
must be i sotropic*

Let us consider some more complicated experi-
ments.

1. First of all we note that as a consequence of r o -
tational invariance the muons in the decay π —» μ + ν
and the electrons in the decay μ — e + ν + Ъ oi \m-
polarized muons can only be longitudinally polarized
(the directions of emission of the neutrino in
μ — e + ν + ν are not detected), t Indeed, suppose
that there is some nonvanishing component of the
polarization Pj_, perpendicular to the momentum ρ of
the muon or the electron. By arguing as before we
conclude that we should obtain a quantity of the same
magnitude for the component obtained from Pj_ by
rotating that vector about p, including therefore also
the component in the opposite direction, i.e., we con-
clude that the particle should at the same time have
the component Pj_ as well as - Ρχ; this means that
its resultant perpendicular polarization component
vanishes.

Let us show that if the pion decay at rest is PC
invariant then the directions of the longitudinal polari-
zations of the decay μ* and μ~ are opposite. In Fig.
l a is shown a μ" emitted in the direction p. The
vector shown along with the momentum vector ρ ( and
parallel to it) represents the meson polarization.
After Ρ inversion we obtain Fig. lb (we recall that
the polarization is a pseudovector) and if this is fol-
lowed by С inversion we obtain Fig. lc . As can be
seen the polarization vector of the μ+ comes out anti-
parallel to its momentum. For convenience of com-
parison with the initial Fig. la one may perform a
rotation by 180° in the plane of the paper (see Fig.
I d ) . The requirement of PC invariance (together
with rotational invariance) means that whatever num-
ber of π" decays into the state shown in Fig. la, the

t t t
a)

г μ- 'μ'
b) c) d)

FIG. 1

*One may also argue as follows: in the initial state there exists
no direction with respect to which one could measure the direction
of emission of the charged particle.

tin the case of a two-component neutrino the muons from the
decay π -> μ + ν are completely polarized along the momentum.
Computations using the four-fermion interaction theory with a two-
component neutrino and a V — A o r V + A type of interaction give
for the longitudinal polarization of electrons from the μ -> e + ν + ν
decay a number close to 100%.L30"33J A similar number is obtained
under the hypothesis of nonobservability of the sign of the
massi"·3 4!

same number of π+ decays into the state shown in Fig.
Id.

In precisely the same way one shows that if the
longitudinal component of e" from the decay of μ" is
parallel to the momentum of the e", then as a conse-
quence of PC invariance the longitudinal component
of e+ from the decay μ+ — e+ + ν + ν should be anti-
parallel to the momentum of the e+. One can convince
oneself that this assertion is also valid if the μ- have
polarizations acquired in the process of the я* decays
(see also Appendix B).

In passing into the laboratory frame of reference,
wherein the pion is in motion, the momentum of the
decay muon changes direction whereas its polarization
does not. * Therefore in the laboratory frame it will
not be along the momentum. However, as before, the
polarization vector of the μ" will be directed oppositely
to the direction of the polarization vector of the μ* if
the directions of emission of the μ" and μ+ form the
same angle with the direction of flight of the pion. In
particular, the longitudinal components of such μ" and
μ+ will be antiparallel also in the laboratory frame.

In Appendix В it is shown that all the discussed
relations between the polarizations of μ+ and μ" (or
e+ and e") also follow from PCT invariance. Below
we shall give a summary of the remaining consequences
of PC and PCT invariances (see Table I) . They are
particular cases of Eqs. (B.4) and (B.5), Appendix B.

2. As a consequence of the existence of a nonlongi-
tudinal component for the muon polarization in the
laboratory frame the angular distribution F of the
electrons produced in μ decay depends not only on the
angle θ between the momenta Ρ μ ι & β and p e (electron
momentum in the barycentric frame of μ decay), but
also on the angle φ between the vectors Ρ μ ι & ^ χ p e

and Pjriab χ Ρ μ ^ · и c a n D e shown that as a result
of rotational invariance the angular distribution
F ( θ, φ) must be an even function of φ.

If the μ" and μ+ were produced in the decay of π"
and π+ respectively (and did not become depolarized)
then it follows from PC invariance that F~(0, φ)
= F + (0, -φ), and from PCT invariance that F~(0, φ)
= ¥*(θ, φ). Since F is an even function of φ it fol-
lows from either PC or PCT invariance that the
angular distributions of e" and e+ are equal.

3. For the experiments discussed so far, Τ in-
variance leads to no conclusions ( see Table I) as can
be established starting from Eq. (B.12). For this rea-
son PC and PCT invariances led to the same conse-
quences. Differences between them arise only in
most complicated experiments: those in which elec-
tron polarization is observed in decays of polarized
muons.

If PC invariance holds then e+ polarization in the
cascade IT* — μ+ + ν, μ+ — e+ + ν + ν is related to

*More precisely, it is slightly rotated, [18·23] However, this slight
rotation of relativistic origin does not change the conclusions.
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Quantities measured

Muon polarization vectors from
the π -* μ + ν decay

Longitudinal components of the
e + and e~ polarizations in
the cascades ττ* -*μ^ -»e-

Angular distributions of e+ and e~
in the cascades π* ~* μ^- -» e±

Perpendicular components of the
e + and e~ polarizations in the
cascades π~-*μ^~* e-

PC

κ μ - κ μ

г>+ ρ-
' II - ~ / l l

ί·*(θ,φ) = ί-(θ,φ)

PCT

p+ p -
*μ — *μ

Ρ* P-
^ l l ~ II

ί-*(θ,ψ· = /-(θ,φ)

τ

-

-

-

Ρ χ = 0

the e polarization in the cascade π —» μ~ + ν,
μ' —> e" + ν + "ν as follows (see Appendix В):

/'ζ (θ, φ) =-ΡΖ (θ, - φ) = - Ρ; (θ, φ),

Ρί(θ,φ)= - P i (». -Φ)· (2-1)
ρ;(θ,φ) = Ρ;(«, - φ ) .

Here P z is the projection of the polarization vector
onto the direction of the momentum p e of the electron
in the barycentric frame of the μ decay, P y is the
projection onto the direction Ρ μ ΐ ^ x Pe> i-e-> the di-
rection perpendicular to Р ц ^ ^ and to the electron
momentum in equally well the barycentric frame of
the μ decay or the laboratory frame. The χ axis is
chosen so as to form with the above defined ζ and у
axes a righthanded orthogonal coordinate system.

If instead the π and μ decays are invariant under
PCT then

Ρ£(θ>φ)= -ΡχΦ, Ψ). (2.2)
Ρ;(θ, φ ) = - Ρ ; (θ, φ),

i.e., Ρ " ( θ , ρ) = - Ρ + (θ, φ ) .
Since the electron polarization component

Pi. ( θ, φ), parallel to the* electron momentum
is a linear combination of the components P z and P x

it follows that in the case of PC invariance P| | ( 9, φ)
= — FT, (θ, —φ), and in the case of PCT invariance
P{|(0, φ) = - Pf| (f3, φ). The component P± perpen-
dicular to Puiak and P e i a b is equal to Py.

In Table I are listed the relations between the com-
ponents P | | (0, φ) and Pj_(0, φ) integrated over φ ,
denoted by Рц and Pj^. Of course if Τ invariance
holds the distinction between PC and PCT disappears:
in that case Ρ χ ( θ, φ) is an even function of φ and
Py( θ, φ) = Pj_( θ, φ) is an odd function so that, in

2π
p a r t i c u l a r , P ^ = ίάφΡ±(θ, φ) = 0 . * The even n a t u r e

*Many authors have noted that a measurement of Pj_ would test
Τ invariance. Hori et аГ ^ start from a parity violating Fermi in-
teraction of the most general form; the neutrino is taken to be a
four-component neutrino, see alsol3sJ. In the papers L36>37J it is

of P z ( θ, φ) follows already from rotational invari-
ance.

4. Experiment. The longitudinal components of the
e+ and e" polarizations were measured in the papers
^38^ and E39^ . Let us note that P|| and PJj have op-
posite signs both in the case of unpolarized muons and
in the case of muons with the polarization acquired in
the π decay process (see item 1). The polarization
of the electrons was measured by means of absorption
of their bremsstrahlung in magnetized iron. The co-
efficient of absorption of the γ quanta depends in this
case on their polarization, which in turn is uniquely
related to the electron polarization. The signs of the
longitudinal components of the e+ and e~ polarizations
turned out to be opposite and, within the experimental
errors (which were rather large), equal in magni-
tude. *

The attempt to measure the polarization of cosmic
μ+ and μ", undertaken by Alikhanov, Lyubimov et al
L41", has not as yet yielded a definite conclusion on the
relation of the signs and magnitudes of the polariza-
tions ( although within the experimental e r rors the

shown that the large forward-backward asymmetry, as well as the
experimentally determined large longitudinal polarization of the
electronsL3*J from μ decay (close to a 100%), make it unlikely that
Pĵ  should be large even if Τ invariance does not hold.

*Green and Hurstt40] have remarked that since the forward-back-
ward asymmetry in the η •* μ •* e cascade is not a pseudoscalar
quantity, its presence, strictly speaking, does not prove Ρ ηοη-
invariance. It could be explained by the introduction of muon par-
ity doublets (two μ+ and two μ~ with opposite parities). The
above described experiment eliminates this hypothesis: it is not
capable of explaining the observed difference in the number of у
quanta absorbed for opposite directions of the magnetic field.

In addition this experiment provides direct evidence for С non-
invariance in the decay μ-te + v + V; if it were charge conjuga-
tion invariant then the signs of PJj and P^ would be the samej" !
One usually concludes that С invariance is not valid by making
use of the Luders-Pauli theorem!27]: since the forward-backward
asymmetry proves also PT noninvariance (the same consequences
follow from PT invariance as from Ρ invariance for all experiments
except those of item 3) this means that there is no С invariance
either.
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results are not in contradiction with PC and PCT
invariances).

It should be noted that in recent experiments with
μ" mesons obtained from accelerators ^42^, the pre-
cision with which the magnitude of the μ' longitudinal
polarization is measured has been substantially in-
creased. However the corresponding experiments
with μ+ mesons have not as yet been carried out.

The large depolarization of μ" mesons in matter
prior to decay makes it impossible to test for the
equality of the magnitudes of the forward-backward
asymmetries in the π* —• μ* —* e* decays (experi-
ment of item 2). The existing measurements (see '-29-',
Chap. 7.10) confirm only that the signs of these asym-
metries are the same.

The perpendicular component of the polarization
Pĵ  has not been measured so far even for positrons.

5. As we have seen, the symmetries tested so far
(the equality of lifetimes and P|| = — Ρ]ρ are conse-
quences of either PC or PCT invariances. One
might ask, what can be properly considered as having
been tested ( see editor's remarks to the paper '-43-') ?

In the first row of Table II are written out the four
possibilities: there is neither PC nor PCT invariance,
there is no PC but there is PCT invariance, etc.
In the second row we write the experimental conse-
quences of each possibility in the form of the answer
to the question: if one possibility or another is as-
sumed, do the relationships between the polarizations
and angular distributions of charge conjugate processes,
written out in the first three rows of Table I, hold or
not?

It is seen that if experiment answers this question
with a " n o " then there is neither PC nor PCT in-
variance. If the answer is "yes," as is the case at
this time (it would perhaps be better to say that ex-
periment is not in contradiction with the "yes" answer),
then there remain three possibilities. If PCT invari-
ance is considered to be more fundamental from a
theoretical point of view (i.e., its violation is expected
in the last place), then the experimental ' 'yes'' should
not be interpreted as a confirmation of PC invariance.
If one has no preconceived theoretical viewpoint then
the objective consequence of the answer "yes" is sim-
ply the establishment of the validity of one of the three
possibilities of Table II.

Table II

PC, PCT

Experiment

No, no

N o

No, yes j Yes, no Yes, yes

I
Yes ! Yes Yes

In order to establish which of the possibilities in
reality occurs it is necessary to measure experimen-
tally the nonlongitudinal components P^ = P y or Ρ χ ,
as can be seen from Eqs. (2.1) and (2.2).

If it turns out that P\ = P]_ = 0 then both invari-
ances are valid. If instead P\ and Ρχ do not vanish
( but are equal in magnitude) then either PC or PCT
invariance is valid, depending on the relative sign of
P*L and Ρχ.

The measurement of Ρ χ ( 0 , φ) [with the aim of
establishing whether the relation Ρ χ ( θ, φ)
= - Ρ χ ( 0 , -φ) or the relation Ρ χ ( 0 , φ) = - P x ( 0 , φ)
is valid, see Eqs. (2.1) and (2.2) ] requires tedious
transformations from the laboratory frame into the
barycentric frame of the muon with relativistic spin
rotation taken into account C18>231.

3. DECAYS OF К MESONS

1. First of all we note the fact of the equality of
the lifetimes of the K+ and K" and the approximate
equality of the weights of the corresponding decay
channels, which has been established for the channels
К — μ + ν, ~ π + π, — тг + тг + тг [«,«] . This is
the first and so far the only evidence in favor of PC
and PCT invariance of K* decays.

Let us note that if there existed strong transitions
ττ + π —»π + 7Γ + 7Γ, then the equality of the weights
of the channels K+ — тг+ + тг° and Κ" - π " + π°, as
well as K+ — тг+ + тг+ + тг" and К" — тг" + π" + тг+,
would not follow from PCT invariance ( see !-15^ and
also Appendix B). However such transitions are for-
bidden by the generalized Furry theorem ( see ^2J,
Sec. 17).

Let us discuss the possibilities of more detailed
tests of PC and PCT invariances in K1 decays.

2. The channel К — μ + ν has the largest branch-
ing ratio. Since all the experimental data agree best
with the assumption of zero spin for the К meson,
with respect to the decay К — μ + ν one can repeat
everything that has been said with respect to π — μ
+ ν (and then followed by μ — e + ν + V, see Table
I). Experimentally only the angular asymmetry in
the cascade K+ —• μ+ —· e+ has1 been measured ^45^ .

3. Among the pionic channels one can discuss only
the Κπ3 decays. The zero spin of the К meson gives
rise to isotropy in both K ^ and K^2 decays.

From PC invariance follows the equality of the
angular and momentum distributions in the decays
K+ — π+ + 7Γ+ + тг" and К ' — тг" + тг" + ττ+, and also
K+ — тг+ + тг° + тг° and К" — π" + π° + π° :

h) (3-D

(see Appendix B, Sec. 1). With the help of Eq. (A.I)
one verifies easily that the angular distribution de-
pends only on Θ2 [the function D·* ( — π, θ, тг — φ) is
equal to unity for J = 0]. <?2 is defined as the angle
between the vectors p ( 1 ) and p(2>, where p ( 1 ) is the
momentum of the тг~ (in the barycentric frame of the
reaction) in the case of K+ —- ττ+ + тг+ + тг" and the
momentum of the π+ in the case of К" —• тг" + тг" + π+,
and p ( 2 ) is the relative momentum of the two π* or
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the two π" respectively in the Lorentz frame in which
their total momentum vanishes ( see Appendix A).

Equation (3.1) does not follow from PCT invari-
ance L15^. if the matrix elements for the transition
K+ — 7г+ + π+ + тг~ were known (i.e., if the function
F + ( p ( 1 \ 02) were known], as well as the matrix ele-
ments of the reactions π+ + π+ + π" — тг+ + π+ + π~
and — π* + π° + π0, then there would follow from
PCT invariance a definite form for the function
F ~ ( p ( 1 \ Θ2) (see Sec. 4, item 4 below), which could
be compared with the experimental distribution. The
relation (3.1) has not been tested as yet because there
exist sufficient statistics only for the τ+ decay '-46^ .

4. In principle the Κμ3 and K e 3 decays provide
many opportunities for testing PC and PCT invari-
ances. However the branching ratios of these channels
are small and only few events of Κμ3 and K e 3 have
been observed !-w^. We shall therefore not discuss
the corresponding experiments. By considering all
possible special cases of the relations (B.8) and (B.15)
it is not hard to construct a table similar to Table I.

In essence all these experiments have been proposed
by various authors (mainly for a different reason—to
determine the type of the weak interactions). With
respect to angular distributions see, for example,'-47-';
the measurement of the polarization component of μ
or e, perpendicular to the plane of the decays
К — μ + ι< + ι or К — e + ν + IT was proposed in
L48J; for a complete set of experiments for these de-
cays see the paper L50^ . Let us remind the reader that
for our purposes it is necessary that similar experi-
ments be performed with both K+ and K" decays.

5. The interpretation of the decays of neutral К
mesons from the point of view of testing PC and PCT
invariances presents definite difficulties.

In the decays strangeness is not conserved, there-
fore the distinction between K° and K° is lost: a free
K° can exhibit some time after production the proper-
ties of a K° in a strong interaction with matter ( as a
consequence of the possible transition K° — π + π
— К 0 ) .

Experimentally one observes decays of neutral К
mesons with two sharply different lifetimes ( about
10~10 and 10"7 s e c [ 4 4 1 ) .

In most proposals for testing PC invariance ( see,
for example, '-51^ and also t 5 2^ ) the Gell-Mann and
Pais hypothesis '-53^ is assumed, according to which,
among other things, the longlived K° meson possesses
a well-defined charge ( more precisely, PC) parity
with respect to decay processes. Certain selection
rules follow from this hypothesis and from the assumed
invariance under PC of the decay processes. Should
these rules turn out not to be valid one should, before
arriving at the conclusion of PC noninvariance, make
sure about the less fundamental Gell-Mann and Pais
hypothesis.

In view of this situation we limit ourselves to the
discussion of two experimental facts involving the de-

cays of the longlived neutral К meson, which will be
denoted by Kj (for longlived).

1) Equality of the number of π+ and π~ mesons in
Kj decays. The main channels of K^ decay are

and ΚΙ ~> μ* + я' (3.2)

and the charge conjugate channels. The total number
of π" mesons from channels (3.2) should be equal to
the number of all π+ mesons from the charge conjugate
channels if: a) the К°г has well-defined PC parity (or
PCT parity, since the Τ operation has no effect on
the wave function of a spinless particle at rest) , i.e.,
it is the same as the K\ in the notation of Gell-Mann
and Pais; b) the above mentioned decays are invari-
ant with respect to PC £51^ or PCT C27,i4D_ I n latest
experiments Γ5*3 the ratio of the total number of π+

mesons detected in K°j decays to the total number of
π~ mesons turned out to be equal to 0.90 ± 0.18, i.e.,
not in contradiction with assumptions a) and b).
Should this ratio be different from unity ( as was the
case in earlier papers, see ^u^ p. 262) then first of
all one should question assumption a).

2) Absence of decays K0^ —» π + π. It has been
shown by Weinberg C554 that when the existence of two
lifetimes for neutral К mesons is taken into account
and if it is assumed that their decays are PCT invari-
ant then from the absence of the decays K0^ —* π+ + π"
and —* π0 + π0 there follow, in particular, relations of
the type of Eq. (B.14), characteristic of Τ invariance
(see Dalitz ^5e^, Chap. 5). Consequently the absence
of Kj — ι + IT establishes Τ invariance or, since
PCT invariance was assumed anyway, PC invariance.
In Weinberg's proof Jthe Gell-Mann and Pais hypothesis
is not utilized.

4. THE CASCADE p + p — Λ + Λ, Λ — ρ + π ,

Λ Ρ

This cascade is considered not only as an example
of a possible experiment in which the relative polari-
zations of the hyperon and antihyperon are known ^ 5 7 1 ,
The reaction ρ + ρ — Λ + Λ has given so far the
largest number of antihyperons, and indeed antilamb-
das, seen. For the decays of Λ and Λ it is possible
to realize a complete set of experiments for testing
PC invariance, i.e., a set such that from it PC invari-
ance necessarily follows (i.e., such that it follows from
it that all of the relations of the type (1.5) are satis-
fied).

1. In order to indicate such a complete set we need
certain results of the general reaction theory.

We shall specify the state of a free particle by in-
dicating its momentum and the projection m of its
spin onto the direction of the momentum (helicity).
In Sec. 1 we discussed only the consequences of con-
servation of the total momentum (not counting the
discussion of PC, Τ and PCT invariances). The con-
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servation law of the total angular momentum imposes
additional restrictions on the matrix elements
( | р т ! т 2 > U | M > = < р т ! т 2 | и | М > [see Sec. 1,
item 1, in particular Eq. (1.1) ] describing the decay
of particle a with spin J and projection Μ into two
particles, 1 and 2, with spins st and s2 and projec-
tions m t and m2 (onto the direction of their relative
momentum p ) . It can be shown Li6,i7,59] ̂ a t t n e s e

elements are of the form

χ (т1тг\и*\);

2 M ( _ л, 0, я - φ )

(4.1)

where J and φ are the spherical angles of ρ with r e s -
pect to a certain triplet of axes O a (with respect to
which also the projections Μ are referred). | p | is
expressed in terms of the rest masses of the particles
a, 1 and 2. Dm)n(<?>2· θ> ψ\) a r e known functions, that
reduce for the special cases of m = 0 or η = 0 to
spherical harmonics (see Appendix D). The angles
- π, Λ π - φ are the Euler angles φ 2 , θ, φ χ of the
rotation* of the axes O a into coincidence with the
triplet of axes Ojrzj II p, yt II Za χ ρ (Oj is precisely
that triplet of axes with respect to which the projec-
tions mx and m2 are referred). The relation (4.1)
means that the t? and φ dependence of < pm tm21 U | Μ >
is completely known. This is the fact that represents
the consequences of the conservation law of the total
angular momentum.

In the case of the decay Λ - ρ + ι we have

(4.2)

We have introduced the matrix R = (U - l )/ i , the
rest of the notation is obvious. Since m = ± 1/2, the
decay Λ — ρ + π is fully described by the two com-
plex elements < - 1/2 | R1 / 21 >• = R_ and
< + 1/2 | R1/21 > ^ R + C 5^. it is usual in the l itera-
ture to take for the parameters describing the decay
Λ —» ρ + π the s and ρ amplitudes Ro and Rj, i.e.,
the elements of the transition matrix labeled by the
values 0 and 1 of the orbital angular momentum of
the decay products ^60^. The two descriptions are r e -
lated by

1 1 ,

"" v 2 "V 2

In terms of the elements < m | R(^, φ) | Μ > the
selection rules of PC invariance have the form

— φ ) | — (4.4)

•Definition of the Euler angles (when the coordinate system is
rotated): 1) <pl is the angle of rotation about the ζ axis. At that
angle the у axis goes into the y' axis; 2) θ is the angle of rota-
tion about the y' axis. At that ζ goes into z'; 3) φ 2 is the angle
of rotation about the z' axis. All rotations are clockwise (when
looking from the end of the axis about which one is rotating). It is
understood that the axes form right-handed triplets.

The derivation of Eq. (4.4) is analogous to the deriva-
tion of Eq. (B.4) of Appendix B. With the help of Eqs.
(4.1) and (D.7) Eq. (4.4) may be rewritten in the form
of the following relations between the elements
< m | RV21 > :

(where к is some phase factor, see Appendix B).
In terms of the elements Щ, I = 0,1 we have cor-

respondingly

Д, = И (-1) 'Л, . (4.6)

In a complete set of experiments designed to test PC
invariance there should be included experiments that
test the validity of these two complex relations (or of
the corresponding four real relations, see below).

It is clear that first of all we must have Λ and Λ
with known polarizations. We then may hope to be
able to obtain and compare the elements R and R by
measuring and comparing the angular distributions
and polarizations of the protons and antiprotons in
the decays.

2. Suppose that the reaction

Γ = Ο, 1 , 2 , (4.7)

is invariant under P. Then the polarization vectors
of Υ and Υ will be perpendicular to the momentum
p a of the incident antiproton and the momentum ρ of
the hyperon Υ if one integrates over all variables
connected with the mesons. It has been shown by Chou
Kuang-Chao ^57^ that the polarization vectors of Υ and
Υ (which on the average are emitted in opposite di-
rections after the above mentioned integration) are
equal in magnitude and either both parallel or anti-
parallel to the vector p a χ ρ, If the polarization does
not vanish upon integration over all angles of emission
of the hyperon, then the average (perpendicular) po-
larization of Υ is equal to the average polarization of
Y.

On transforming into the laboratory frame the per-
pendicular component is unchanged C21>23] a n ( j conse-
quently the same relation between the polarizations of
Υ and Υ holds also in the laboratory frame.

3. By making use of Eq. (4.2) and the formulas of
Appendix A we can obtain expressions for the angular
distribution and polarization of the decay products in
the decay Λ —• ρ + π" (or Λ —* ρ + τ+ ) in terms of
the elements < m | R1/2 | > .

We choose the ζ axis of quantization for the spin
projections Μ of the hyperon ( anti hyper on) along the
direction of the momentum of the hyperon ρ . ( anti-
hyperon p^) in the laboratory frame. The у axis is
taken, for the Л as well as for the Л, parallel to
p a χ Рд, i.e., along (or opposite to) the polarization
vector of the Л or Л (see above). In this coordinate
system the polarization vectors of the Л and the Л
have the projections

P2 = Px = 0, PV = PA. (4.8)
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We give only the results of the calculations. The
angular distribution of the protons from the decay
Λ —* ρ + π is given by

(4.9)

where £ and φ are the spherical angles of the momen-
tum ρ of the proton referred to the above described
axes. The asymmetry coefficient a is more familiar
in the form a = 2 Re R0R*/( | Ro |

2 + I Rt I2) [ 6 o : l . Upon
integrating Eq. (4.9) over •$ and φ we find that the
probability for the Λ to decay via the channel ρ + τΓ
is equal to |R_| 2 + | R + I 2 . We find analogously that
the probability for the Л to decay via the channel
ρ + 7Г+ is equal to I R_ I2 + | R+ |2, which in view of
Eq. (4.5) is equal to | R + | 2 + | R_|2. Since the proba-
bilities for the corresponding channels are equal so
should be the lifetimes. The measured lifetimes of
Л and Л are respectively equal to E44'58^:

(2.7±O.l)-«r10 sec and( 2.8 +*'*^)-10"10 sec.

It further follows from Eq. (4.5) that the coefficients
of angular asymmetry for Л and Л are of opposite
sign: a = — a. Since the Л and Л are polarized in
the same way [ if they are taken from the reaction
(4.7) ] this means that F(£, φ) = F(£, - φ), or that
as a consequence of PC invariance the up-down asym-
metry A = ( U - D ) / ( U + D ) has opposite sign for Λ
and Λ. ( U stands for the number of decay protons
emitted into the upper hemisphere with respect to the
reaction plane; " u p " is defined in the same way for
Л and Л, namely as the direction of p a χ рд.)

The component of the polarization of the decay pro-
tons perpendicular to рд and Pp is given by

/>i(fl. <p)F(9, φ) =4^-(He Л.Д? cos φ-4- Jm#_.ff*cos6sincp);

(4.10)

P^ is calculated in the barycentric frame of the decay.
Since it is the component in the direction of рд χ Ρρ,
it can also be defined in the laboratory frame as the
component perpendicular to the momentum of the Λ
and the decay proton [because (рд χ Ρρ)
" (ρΛ x Pp.lab^ 1 · I1; i s t n i s possibility of calculating
such an invariant component that influenced our choice
of the coordinate system zyx.

Let us compare the average perpendicular compo-
nents of the polarization of the decay protons and anti-
protons in the cascade

Λ—> ρ-г π", Λ—s- (4.11)

emitted into hemisphere - π/2 < φ £ π/2 (to be
called left):

+JI/2 π д _

we have used here Eq. (4.5). We remind the reader
that the ζ axes for Λ and Λ are different.

The same relation holds for the averages over the
right hemisphere. Since P J J = - P^ r one may in-
clude in the statistics all protons ( antiprotons) pro-
vided that in the averaging the polarization of the pro-
tons in the right hemisphere is taken with the opposite
sign:

For the perpendicular components averaged over the
region 0 S ( ? s i , 0 < ^ < π/2 (emission up and
forward, denoted by the abbreviation uf) we find

π π/2

„1 = \ Ар \ sin Λ

, <p) = 4 r Im R_R*t = - (4.14)

pJ±l=

One also has the relation, analogous to Eq. (4.13),

(4.15)

(the subscripts uf, ub, df and db denote respectively
up and forward, up and backward, down and forward,
down and backward).

The above illustrates the manner in which one ob-
tains from PC invariance, i.e., from the equalities
(4.5), relations between angular distributions and
polarizations of the products of the decay of particle
and antiparticle. These relations are derived in a
general form in Appendix В.,

3. Let us suppose that the equality of lifetimes, the
relation a = - a and the relations (4.13) and (4.15)
have been experimentally confirmed ( Table III). Do
Eqs. (4.5) follow from these relations? It turns out
that the system of equations

(4.16)

indeed has Eq. (4.5) as its solution regardless of the
sign choice in the last two equations. The ± signs
are put down to include the case when the sign of the
antiproton polarization PR is not determined ( see the
paper £61^ ). The sign of the polarization of the proton
is also unnecessary for our purposes.

4. Τ and PC Τ invariances. The intereactions be-
tween the products of the Λ decay belong to the class
of strong interactions. However the corresponding
phase shifts of the πΝ interaction at ~30 MeV are
all less than 10° ^62^ . If this interaction is completely
ignored then it follows from Τ invariance and the
hermiticity of the R matrix that ( see Appendix B,
item 2):

-π/2
( 4 - 1 2 ) (m | | m) = Ξ ο {πι \ R'h \)* (4.17)
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Table ΠΙ. The Decays Λ and Λ

Quantities measured

Up-down asymmetry

A = (U - D)/(U + D)

for Λ and Λ

Polarization component of

the decay proton (anti-

proton) perpendicular to

ΡΛ(ΡΛ) a "d t o Pp'(Pp)

PC

A = -A
or

α = — α

Ρ1ι = pli

pP _ p?
luf ~~-^±uf

PCT

A=s—A

Ρ1ι ^pli

Piut^+Piui

r

-

hence ImR_R? = 0 . Therefore the right and left
sides of Eqs. (4.14) and (4.15) should vanish (see Ta-
ble III).

By combining Eqs. (4.5) and (4.17) one obtains the
"selection ru le" for PCT invariance:

{m\ RV*\) = KE0{ -m\R4i\)*. (4.18)

From here follows R e R . R j = R e R ^ R . , i.e., the
same relation as from Eq. (4.5), but ImR_R?
= Im R* R. = + I m R . R i . This means that we can
obtain the corresponding consequences of PCT invari-
ance by changing in the right side of Eq. (4.15) the
- sign to a + sign ( see Table III).

In principle PCT invariance may be tested also
without neglect of the ?rN interaction. To that end it
is necessary to perform a complete experiment for
Λ and determine R+ and R_. Then with the help of
the relations [see Eq. (B.14) ]

K*{-m\ (4.19)

which replace Eq. (4.18), one may find R_ and R+

and compute the results to be expected from experi-
ments with Λ (angular distribution and polarization
of the antiprotons). We note again that one should not
obtain an exact equality for the weights of the channels
Λ — ρ + π", Λ —* ρ + π + , and also Λ — η + π°,
Λ — η + π 0 , but rather a definite relation between
them.

In the simpler case of the decay Σ" —» η + π",
where there is only one channel, Chou Kuang-Chao'-63-'
obtained the following expression for the ratio of the
asymmetry coefficients:

c o s ( A s — Д р — ( δ 5 — δρ))α

а cos (Δ, — Ap+(6S—
(4.20)

where 6S and о„ are the phase shifts of the π~ + η
— тг" + η scattering at 120 MeV ( 6 S - 6 p = - 17°)
and the phase shift Δ 8 is defined as the difference
of the phase of the element < I = 0 | R | Σ~ > and δ

s*
(I = 01R |B"> = \(l = 01 R | 2->|е*(А»+Ч

Δρ ( I = 1) is defined analogously.
If the decay Σ" — η + τΓ is invariant under Τ

then Δ 8 = Δρ = 0, and a/a = — 1 ( a s in the case of

PC invariance, since invariance under PCT has been
assumed). If however it should, for example, turn
out that Δ 8 — Δ ρ ~ 90°, then the ratio (4.20) can
turn out to even be positive. The decay will not be in-
variant under PCT if the value of a calculated from
Eq. (4.20) should turn out to be different from the
measured value.

CONCLUSIONS

Existing experiments are not in contradiction with
the assumption of PC or PCT invariance of the pro-
cesses under consideration. Consequently additional
special experiments are needed if we wish to know
which of the invariances, PC or PCT (or both to-
gether), is valid in reality.* These are experiments
of the same nature as experiments needed to test Τ
invariance (see Tables I and III). One must measure
perpendicular components of the polarization vectors
of decay particles. The difficulties of such experi-
ments are compounded for our purposes by the fact
that they must be performed also with negatively
charged particles, which are either depolarized or
captured by matter ( μ " or K" mesons). We note that
at the moment Τ invariance has been more or less
reliably established only for the β decay of the neu-

^6643

Let us list the experiments whose execution would
be desirable from the point of view of testing and dis-
tinguishing PC and PCT invariances. (A majority
of these experiments has been proposed in the papers
1114,15,713)

1) The measurement of the polarization of μ± in π±

K i j decays, see Sees. 2 and 3.
2) The measurement of the forward-backward

asymmetry in π" —·• μ" —• e" and K" —» μ" —» e"
cascades.

3) The measurement of the perpendicular compo-
nent of e+ and e" polarizations in the π —- μ — e
cascade (a t that one must insure that the polarization

•Strictly speaking, the existing experiments (on π and μ de-
cays, for example) cannot disprove the assertion: "PC invariance
does not hold, but PCT invariance does" (or: "PCT invariance
does not hold, but PC invariance does").
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of the μ is preserved, see Sec. 2), and also the
К μ2 e cascade.

4) The measurement of the angular distributions in
the decays K3^, K^3 and K| 3 . In the latter two it is
desirable to also measure the polarization of the μ
and e.

5) A more precise measurement of the equality of
lifetimes, and also measurements of the branching
ratios in the decays, of hyperons and antihyperons.
The measurement of angular distributions and polari-
zations of their decay products.

APPENDIX

A. RELATIVISTIC PHENOMENOLOGICAL REACTION
THEORY

1. In Sec. 4 we gave for decays of the type a — 1
+ 2 the Eq. (4.1) which follows from the conservation
law of the total angular momentum. The method of
specifying the state of a free particle, utilized in Sec.
4, by indicating its momentum and the spin projection
m onto the direction of the momentum (helicity) is
applicable to both particles with nonvanishing and
vanishing rest mass C16'17^. Therefore Eq. (4.1) may
also be applied to the decay π —• μ + ν (for a "two-
component neutrino" its projection m2, and conse-
quently the spin projection of the muon m^ can take
on only one value).

In the case of the decay a — 1 + 2 + 3 ^

<p<»p<2>m1m2m3 | U\M)

= ̂ •^27+1 Υ Di,.m(~ η, θ,, π-<ρ2),/27Τΐ,
4π

}. m

ч ( — π . „,^ηΐ^ΐ). (A.I)

The relative momenta p ( 1 ) and p ( 2 ) have here
special definitions E65^: p ( 1 ) is the total momentum of
particles 2 and 3 in the Lorentz barycentric frame
K123 of the three particles 1, 2, 3; it is equal to - p t,
i.e., it is antiparallel to the momentum of particle 1
in K123; p ( 2 ) is the momentum of particle 2 in the
Lorentz frame K23 in which the total momentum of 2
and 3 is equal to zero. The expression for p ( 2 ) in
terms of P2 and p3 of particles 2 and 3 in K123 is
given in the papers ^19^ and ^66^; ^ and φ^ denote
the spherical angles of p ( 1 ) with respect to a certain
triplet of axes Oa, with respect to which the spin state
of the decaying particle has been quantized (projec-
tion M). -fa and ψι are the spherical angles of p ( 2 >

with respect to a triplet of axes Oj defined as follows:
z i II P ( 1\ У1 II ( z a x P ( 1 )). where z a is the third axis
of Oa. The projections mt are quantized with respect
to the axes Oi, and m2 and m3 are the spin projections
onto p ( 2 >.

2. For the purposes of formulating the selection
rules due to PC, Τ and PCT invariance in terms of
the observed quantities it turns out to be convenient to

introduce the so called cyclic projections of the de-
fined in Sec. 1 polarization vector Ρ and the operator
σ = ( σ χ, ay, σ 2 ) :

Ά ) = δρ(σ_1ρ), ΡΟ = ΡΖ; (Α.2)

The density matrix ρ may now be expressed in the
form

Q=l/2/+V2 V (ajjy (A.4)
τ = - 1

(t denotes transposition). Throughout the following,
the projection P z = Po denotes the projection of the
polarization vector onto the particle momentum.

4. If the wave function Φ' of the decay products is
expressed in the form * ' = U*o, then their density
matrix can be expressed in terms of the density matrix
p0 of the initial state and U as follows (see ^20^, Chap.
4): p' = UPoU

+.
Let us introduce into this expression in place of the

density matrix of each particle the quantities Sp ρ and
Ρ ( τ = - 1, 0, + 1). The result of the computations
(see '-20-', Chap. 4) will be given in terms of one for-
mula containing both the expression F = Sp UU+/2 for
the angular distribution of the decay products of an
unpolarized particle, as well as the more complicated
expressions for their polarizations in the decay of a
polarized particle:

Φι.
2, φ 2 ...; ? 2 τ 2 . . . )

• • · ) Ι ? α Τ ο ) Qo

"<· τ° (А.5)

2 1 τ 2 Я

For the expanded version of Eq. (A.6) see Appendix B.
σ^ for a particle of spin 1/2 denotes (QJ) for q = 0
= τ and σ\ = σ τ, τ = - 1,0, + 1; for a particle of spin
0 σ^ = 0 for q * 0 and ajj = 1. In place of the U
matrix we have introduced the transition matrix R,
see Sec. 1.

Remaining notation: Po(0, 0) =1 denotes the num-
ber of decaying particles and po( 1, τ) = Ρ the cyclic
projections of their polarization vector.
Ρ1 (ι?ι, ψ\, Ρ ( 1 ); -Sypi · • •', 00; 00) denotes the angular
distribution F (^t, φ^, ρ'1'; $<i<pi...) of the reaction
products ( and also their distribution in the magnitude
of th« relative momenta ̂ 65^ ). p' (,>), φ^, p ( 1 ) ; д^Рг • · >
I T ; 00 . .. )/F (^1; φ χ , ρ(1>; ^ φ 2 . . . ) denotes the cyclic
projection of the polarization vector of the decay pro-
duce 1, emitted in the direction d-\, ψ\ (with momen-
tum p ( 1 ) ) . while the other decay products were emitted
in the directions characterized by the angles ^ , φ 2 ,
etc. These projections are referred to the triplet of
axes 0t, defined above in item 1.
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В. SELECTION RULES ARISING FROM PC, T, PCT
INVARIANCES

1. PC inversion. If the process a — 1 + 2 + 3

is invariant under PC then (see Sec. 1, item 3)

RPC \ ), R\paM)).
(B.I)

Under spatial inversion spin projections are unchanged,
however our ζ quantization axis for m is parallel to

the direction of the momentum which becomes re-

versed under spatial inversion. The у quantization
axis for m remains unchanged under spatial inver-
sion. Indeed, for the initial state the only possible
preferred direction, in addition to that of the direction
z a of the momentum of a in the laboratory frame,
could be the direction of polarization; but the polari-
zation is a pseudovector and it does not change under
spatial inversion. The axis yt (see Sec. 1) also re-
mains unchanged: yt II ( p a x p ( 1 ) ) II ( — p a χ — p ( 1 ) ) .

Analogously y£ II У2 (for the quantization of ni2 and
m 3). Let us denote respectively by Oa, O{, OJ the
"inverted" triplets of axes that have the ζ axis in-

verted, but not the у axis. On the left side of Eq. (B.I)
we must refer the spin projections to these axes in
order to preserve also after inversion their definition
as projections onto the momentum direction. We note
that the O' differ from the О only by a rotation by a
180° about the у axis. The wave function Ф т of a
state with definite projection m onto the old ζ axis

is given in terms of the spin functions Φ^' with de-

finite projections m' onto the new ζ axis by

Therefore

PC | ρ<»ρ<21'"ι"ί2'«3>. RPC j ραΛ/>) = ( — 1

X | ( | - P ( 1 > . - P ( 2 \ - » » i , - » ' , . - m - P o . —

(В.2)

(Β.3)

The sign ~ over R means that the matrix element on

the right side describes the process involving the cor-

responding antiparticles. К is an inessential to the
following discussion product of phase factors exp ϊη

and ( - l ) s .

Equation (A.I) means that the elements of U or R

do not depend on the directions z a, p ( 1 ) and p ( 2 ) in-

dividually, but only on their relative orientation. More

precisely, they depend on the Euler angles

{ — τ. i?i, τ —Ψι\ and { — π, ^2, π — ψι } which specify

the orientation of Oj with respect to O a and of O2

with respect to Oj (see Sec. 4, item 1; details in the

paper ^673 ). It is easy to show (for example by making

a spatial model) that if that orientation was originally

given by the angles ύ\, <pt; £%, φ2, then the orientation

of O{ with respect to O a and of O'2 with respect to

Oj is given by the angles d\, — <p\\ -fa, — <Рг respec-
tively.

And so from Eqs. (B.3) and (B.I) we obtain the re-
lation

т,пг, | Л (*!, 4l,p"'; д „ φ 2 ) | Μ) =Κ(- 1

Χ < — т ь — т „ -т3 \Η (d l t — φ , , р ш : - ф 2 ) | - Μ ) . (Β.4)

Let us obtain the resultant selection rule in terms of

the coefficients W; see Eq. (A.6).

We write out Eq. (A.6) in detail:

. . . I R (Ο,, φι .. .) | Μ) (ιη'^ηί

. . . ) | Μ')* (σ^) Λ ί _ Μ.; (Β.5)

2} denotes summation over all repeated indices. Let

us substitute in place of the elements R in Eq. (B.5)

the right hand sides of Eq. (B.4), which are equal to

them:

='/. 2 ( — т „ —

(-1)

(B.6)

Starting from the definitions of the matrices σ% (see

Appendix A) and the expressions (A.3) for σ_\, σ0, σ+1,

one can show that the σ^ have the property

(al)m, m = (—i)q (a'l_x)_m, _m. (B.7)

We introduce into Eq. (B.6) in place of ( a ^ ) m ' m

the right side of Eq. (B.7) and relabel the summation

indices by setting m equal to - m. The sum is not

affected by this: since m runs through the values

- 1/2 and +1/2, this simply corresponds to a re-

arrangement of the terms in the sum. Noting also

that ( - l ) m " m ' = ( - 1) T for the nonvanishing ele-

ments of σT we may extend Eq. (B.6) to:

. . . ( m i i , — φ ι , ...)\M)(m[

Comparing the resultant expression with the defini-

tion of the W coefficient, Eq. (B.5), we see that it is

equal to

- φ ι . . · ) Ι ? ο - Τ α ) .

i.e., that we obtain the relation

| W ((θ,, cpu pm; ϋ2, φ 2 ) | ?ατο)

x ( ? i — T i ? 2 — Т 2 ? з — r3\W (*ΐ, — φ , , ριν; θ 2 , — φ 2 ) | ? ο — τα).

' (Β.8)

It differs from the obtained in f-68-' selection rule due

to Ρ invariance only in the fact that on the right side

of Eq. (B.8) stand the W coefficients for the charge

conjugate process.
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The corresponding to Eq. (B.8) relation for the de-
cay a — 1 + 2 is obtained by removing from Eq. (B.8)
the indices q3, τ3 and p ( 1 ) , -fa, ψζ·

The simplest consequence of Eq. (B.8) is obtained
when all q and τ are equal to zero: the angular dis-
tributions in the decays of unpolarized particle and
antiparticle are equal. Since the integral of the angu-
lar distribution over all angles is independent of the
particle polarization, * the simplest consequence of
Eq. (B.8) also leads to the equality of particle and anti-
particle lifetimes and weights of corresponding (mu-
tually charge conjugate) decay channels.

2. Wigner time reversal. Analogously to the p r e -
ceding we obtain from the relations (1.6), (1.7) and
(B.2) (as before, the m projections have to be reex-
pressed in terms of the " inverted" triplets of axes)
the following expression for the decay a — 1 + 2 + . . .

| R ( d , , <fx...)\M) = E — φ ι . \m1mi . . . ) .

(B.9)

Ξ is defined analogously to К in Eqs. (B.3) and (B.4).
It can be shown with the help of Eqs. (4.1) and (A.I)

that in the n^n^JM representation Eq. (B.9) becomes
the relation

j . . . \RJ (B.10)

If the phase factors are chosen in such a way that
Ho = 1 (So is n ° t equal to E), then Eq. (B.10) means
that the matrix R^ is symmetric as a consequence of
Τ invariance.

If the decay products interact weakly then R+ = R
(see Sec. 1, item 4); in that case Eq. (B.9) may be r e -
written in the form

— Z (.m1m2 . . . | R ( d i , — <ft ...)\M)*,(m^n, . . . | Α'(θι9ι ...

from which follows the selection rule:

(r/,η . . . \W{f>lt φ ! / / " ; {h, φ 2 . . . ) l ? a T a ) l = ( - l ) T l + ' " " b T a ( ? i , - t i

. . . | W ( « i . -<Pi. р ш ; О г . - φ 2 · · · ) Ι ? α — r 0 ) . ( B . 1 2

Its proof is analogous to that given above in the der i-
vation of Eq. (B.8). The differences: after having
used Eq. (B.ll) one must take instead of Eq. (B.7) the
relation

In addition, the replacement m —» — m is not needed.
Let us analyze the case when the, decay products

interact strongly. It was shown in Sec. 1, item 4, that
by the states η in Eq. (1.9) one understands only those
states ( into which the particle a can decay) that can
go over into the states f as a result of strong inter-
actions .

Since < f | R + | a > = < a | R I f > * , it follows that

•Starting from Eqs. (A.6), (A.I) and (D.2) one can show that

J I d cos di <ίφ, J I d cos θ 2 d4% (000000 | W ( 0 ъ ^ ...) | ? α τ ο ) ~ δ? ι οδ τ 0 .

Eq. (1.9) connects matrix elements of the direct
a — η (including a — f) and inverse reactions, just
like the relations (B.9) or (B.10). According to Eq.
(B.10) (if Ξο = 1) we have < f | R + | a > = < f | R | а > "
which together with Eq. (1.9) gives rise in the general
case to the following equation for the matrix elements
of the processes a — η (cf. '-63^ ):

| R | a > * = *\ л>(в | R \a). (B.14)

Of course, all the corresponding elements of the
strong processes (phase shifts) must be known.

We want to emphasize that they can be obtained by
studying separately scattering processes and other
strong interactions. For example, for the decay
Σ~ — π" + η it is sufficient to know the phase shifts
of TC + η — π~ + η scattering (see, for example,'-62^).
Indeed, since U + (t , 0) = U ' ^ t , 0) = U ( 0 , t) it fol-
lows that Eq. (1.9) is in fact of the form R + ( t , 0)
= U(0, t ) R ( t , 0). U(0, t) accomplishes the back-
ward evolution of the decay products from the instant
of time t to the instant t = 0. They first converge
( as free particles, if the radius r 0 of their strong in-
teraction is finite); at the instant of decay τ they are
confined in a small volume and interact; by the time
t = 0 they have diverged again and may be considered
free if the radius r 0 is finite and their relative veloc-
ity ν is not very small, so that r o /v « т. Numeri-
cally the elements U( 0, t) are equal to the elements
U + ( t, 0), which can be considered equal to the ele-
ments U + ( t , - t) [or even U + (°°, - «)] , since in both
cases the initial and final states are free particle
states, and the reaction probabilities per unit time
calculated with the help of U(t, 0) or U (t, - t) prac-
tically coincide if r o /v « т.

3. The selection rule that follows from PCT in-
variance in the case of weak interacting decay products
can be obtained by combining Eqs. (B.8) and (B.12):

Φι, Pa
< Ρ ί · . · ) | ? α ΐ α ) · (Β.15)

As from Eq. (B.8), for all q and т equal to zero
one obtains from here the equality of the angular dis-
tributions of the decay products of a and a, equality
of their lifetimes £27,28] a n ( j e q U a i i ty of the weights of
the corresponding decay channels L 1 * ^ L e t us show
that the equality of the total decay probabilities (life-
times ) also follows in the case of strongly interacting
decay products.

For the total decay probability λ total °* t n e anti-
particle we have the expression

- Σ Σ (f\Ui*\n')(n'\R*\a){a\R*':\n")(n''\U*\f), ( B . 1 6 )
/ η'. η"

where Tr or Σ denotes the summation over all chan-
f
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nels (and in each channel integration over all momen-

tum variables and summation over all spin variables).

We have

if the states f exhaust all states that ean be reached

from the states n', n", i.e., in the final analysis from

the state a. It therefore follows from Eq. (B.16) that

ρ ο is the density matrix describing an arbitrary pure

state a of the unstable particle.

In the same manner we obtain the equality of the

weights of the channels a —• f0 and a — f0, if the

states f0 of the selected channel cannot go into the r e -

maining states f via strong interactions. In that case

the sum £} < 4 I u + I n' > < n" | U | f0 > is nearly zero

fo

if n' and n" do not coincide with any of the states f0.

Further

Σ </°!u' Ι /ό> </; I u\ /o> = Σ {f Iu ' I /»> <f"« I u I f> = δ/;, ra <

since < f'o | U I f > ss 0, if f does not coincide with fj.

C. PC AND PCT INVARIANCE IN THE π — μ — e

CASCADE

We have seen that in simple special cases Eqs.

(B.8) and (B.15) gave rise directly to consequences of

PC and PCT invariance on experimentally observable

quantities. It is also easy to see that when qt = 1,

Tt = 0, while all remaining q and τ vanish, then from

Eq. (B.8) as well as from Eq. (B.15) follows the result

obtained in Sec. 2: the longitudinal components of the

μ+ and μ" polarizations from the decay of pions at

rest have opposite signs.

We shall now illustrate on the example of the

π — μ — e cascade how all the remaining conse-

quences follow from the selection rules (B.8) and (B.15),

i.e., the relations between the angular distributions and

polarizations of particles produced in mutually charge

conjugate processes.

As was established in Sec. 2, the relative spin

states of μ+ and μ" are known if these muons come

from the decays of π+ and π" mesons. It is only nec-

essary to take into account the fact that in the labora-

tory frame the polarization vector of the muon will

also possess a nonlongitudinal component (see Sec. 2,

item 1). We choose the following triplet of axes for

the decay μ —- e + ν + ν: axis z a II Ρμΐ&ΐ3> and axis

Уа П ( Ρ π ^ Χ Ρ μ ^ ) ·
Then the nonlongitudinal component will be directed

along the axis xa, and the projections of the polari-

zation vectors of μ+ and μ" emitted at the same

angle with respect to the direction P -̂iab will be re-

lated as follows:

p+ p- p+ — _p-
i ? * Ζ ' Λ X * X

Py =Py = (C.I)

It will be convenient to have the relations corres -

ponding to Eq. (C.I) for the cyclic projections of P.

Since Р„ = О we have two equivalent expressions

p+=-p-, v = - i , o, + i , (C.2)

P+ = (-i)i+vPZv, v = - l , 0, +1. (C.2')

The general formula for the angular distribution

and polarization of the electrons from the decay

μ+ —• e+ + ν + ν is obtained from Eq. (A.5) by inte-

gration over the angles of emission of the neutrino

(i.e., over the angles ύ-2, ψι\ see Appendix A):

Q' (ft, φ ; qx 0000) = (qx 0000 | W (d, φ) I 00) Qo (0, 0)

(C.3)

The four zeros represent summation over the neutrino

polarizations; in the following they will be omitted.

& is the angle between Рд1аь and the momentum p ( 1 )

of the electron in the barycentric frame of the muon.

Let us note that the first term on the right side of Eq.

(B.3) is independent of £, φ and does not vanish only

if τ = 0.

If the μ decay is invariant under PC then in view

of Eqs. (B.8) and (C.2') the equality (C.3) gives rise

to the relation:

e'(0, φ; gx) = {-i)q+x(q-x\W\0O)-l

, - q > ) | l , - v ) ( - l

= ( - ΐ ) « + τ ρ ' ( Φ , - φ ; я, - т ) ; (С.4)

and for PCT invariance there follows with the help of

Eq. (C.2)

) ! l v ) ( - l ) i ( - P - ) = = ( - l ) r < e ' ( O , tf; ,JX).

(C.5)

Particular consequences of Eqs. (C.4) and (C.5)

were enumerated in items 1, 2 and 3 of Sec. 2:

1) For unpolarized muons it follows from either

PC or PCT invariance that the longitudinal polariza-

tion components of e+ and e" have opposite signs:

Pjl = — Pjj. The fact that in this case Рц is indepen-

dent of the angles and that the remaining polarization

components vanish has already been noted above.

2) It can be shown that as a consequence of rota-

tional invariance the angular distribution of electrons

from μ decay must be an even function of φ: F (•$, φ)

- Fd?, - φ). Hence if the μ~ and μ+ were produced

in the decays of π" and ж+ respectively (and did not

become depolarized) then both PC and PCT invari-

ance lead to equality of the angular distributions of

e+ and e": F + U , φ) = F"( Λ φ). [ 1 4 ]

3) If Eqs. (C.4) and (C.5) for q = 1, τ = - 1, 0, +1

are written out for conventional Cartesian components

then one obtains respectively Eqs. (2.1) and (2.2).
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D. THE FUNCTIONS (Φ2, ©, Φ

(D.I)

For general expressions and recurrence relations for

the functions d m n ( 0 ) see the papers ^ 1 7 ^ and'-6 9^.

These papers also contain references to additional

literature, which may be supplemented by § 7 of the

b o o k ^ , which introduces the function P m n : d m n

= i n - m p ^

It should be noted that the matrix of the functions

P m n for I = 1/2, 1, 2, given on p. 95 o f ™ is incor-

rect. It disagrees with Eq. (22) of Sec. 7 and, appar-

ently, refers to the function ( — l ) m ~ n P | n n ·

1. Orthogonality relations:

5n<e)di(e)»i»ede = - J ^ . (D.2)

2<гтп1(в)<1»,(в)=в„,По. (D.3)
m "

2. Decomposition of product of two D functions:

ΰ5,α'(φ2,θ,φ1)Β^ρ.(φ2. θ, φ ι ) = 2 Η , γ , ( φ 2 , θ, Φι)6-ανΐ)β6·;;ν,|ι()..

(D.4)

Σ D'La- (<Ρ2.θ,Φι)^,β- (φ,, θ, <h)CZ,^, = Dc

y-y, (φ2, 0, q ,) (Q, ,,„.

" • Г (D.5)

The C g ^ o denote Clebsch-Gordan coefficients, see
for example ^ 6 9 ^.

3. Certain symmetry properties:

л£„(<Р*· 9.Φι) = (-ΐΓ~π^-,,,,-η((Ρ2·θ,φι), (D.6)

< n ( 9 ) = (-iy-nd'lm,n(n—») = (.-1)'+"'41ι_η(π- β), (D.8)

Di;;n('f2.9. φι) = [Ο'(φ3.θ>φ1)]^ = Ο^ (л-φ,,θ,-ΐι φ,). (D.9)

4. Relation to the not normalized Legendre poly-

nomials and the spherical harmonics (normalized):

#ό, ο (Φ2. «. Φι) = < о (f>)= ''; (cos Θ), (D.10)

< о (Фг. δ. Φι)=

5. Special values:

<_ _ n (90°)

т

'.

; ι

С „(β) =

1

V
-V*

-j- cos θ
2

sin θ

— cos θ

1 /

cos 0/2

-sine/2

sinO

y"2

cos θ

sine

+ V,

siiiB/2

cose/2

ι - ccs e

sine

l + cos6

(D.15)

Note added in proof (to Sec. 3). By now the equality of the
number of TT+ and π~ mesons produced in the decays of long-
lived K° mesons has been confirmed in a larger experimental
sample: in addition to [S41 see also D. Luers et al, Phys. Rev.
Lett. 7, 255 (1961). This is in agreement if not with PC then
with PCT invariance of these decaysM (see Sec. 3, item 5).
Since in the cited papers also the absence of two-meson decays
of the longlived K? has been established accurate to 0.3%, we
may conclude on the basis of Weinberg's theoremt"'55] that the
totality of these data is in agreement with the assumption of PC
invariance of the decays of longlived K°. So far this is the only
argument in favor of the validity of precisely PC invariance in
the decays of strange particles.

\ 2

1Ί. D. Lee and С N. Yang, Phys. Rev. 104, 254
(1956).

2 P. Matthews, "Relativistic Quantum Theory of
Elementary Particle Interactions" (Russ. Transl.
IL, M. 1959).

3A. I. Alikhanov, Slabye vzaimodeistviya. Novei-
shie issledovaniya/3-raspada. (Weak Interactions.
Newest Studies of β Decay), M., Fizmatgiz (1960).

4Yu.M. Shirokov, JETP 38, 140 (1960), Soviet

Phys. JETP 11, 101 (1960); Nucl. Phys. 15, 13 (1960).
5 Wick, Wightman and Wigner, Phys. Rev. 88, 101

(1952), footnote9 '.
eYu.M. Shirokov, JETP 34, 717 (1958), Soviet

Phys. JETP 7, 493 (1958); Та You-Wu, Amer. J.
Phys. 26, 568 (1958); E. Lubkin, Nuovo cimento
15, 153 (1960).

r L . D. Landau, JETP 32, 405 (1957), Soviet Phys.
JETP 5, 336 (1957); Nucl. Phys. 3, 127 (1957).

8 T . D. Lee and С N. Yang, Phys. Rev. 105, 1671
(1957).

9Grawert, Liiders, and Rollnick, Fortschr. Phys.
7, 291 (1959). [Russ. Transl. Usp. Fiz. Nauk 71, 289
(I960)].

1 0 A. Pais, Phys. Rev. Lett. 3, 242 (1959).
1 1 M. I. Shirokov, JETP 40, 1387 (1961), Chap. 3;

Soviet Phys. JETP 13, 975 (1961).
1 2 G. R. Lynch, Revs. Modern Phys. 33, 395 (1961).
1 3 В. С Magli6 et al, Phys. Rev. Lett. 7, 137 (1961).
1 4 H. P. Stapp, Phys. Rev. 107, 634 (1957).
1 5 G. Liiders and B. Zumino, Phys. Rev. 106, 385

(1957).
16ChouKuang-Chao, JETP 36, 909 (1959), Soviet

Phys. JETP 9, 642 (1959).
1 7 M. Jacob and G. С Wick, Ann. Phys. 7, 404

(1959).
1 8 M. I. Shirokov, JETP 39, 633 (1960), Soviet

Phys. JETP 12, 445 (1961).
1 9 M. I. Shirokov, JETP 40, 1387 (1961), Soviet

Phys. JETP 13, 975 (1961).
2 0 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).
2 1 H. P. Stapp, Phys. Rev. 103, 425 (1956).
2 2 Baldin, Gol'danskii, and Rozental', Kinematika

yadernykh reaktsii (Kinematics of Nuclear Reactions),
M., Fizmatgiz, 1959.

2 3 Chou Kuang Chao and M. I. Shirokov, JETP 34,
1230 (1958), Soviet Phys. JETP 7, 851 (1958); Yu.M.



930 Μ. Ι. SHIROKOV

Shirokov, JETP 35, 1005 (1958), Soviet Phys. JETP 8,

703 (1959).
2 4 H. Tolhoek, Revs. Modern Phys. 28, 277 (1956),

Sec. 2.
2 5 F. Coester, Phys. Rev. 89, 619 (1953); L. С

Biedenharn and Μ. Ε. Rose, Revs. Modern Phys. 25,

729(1953).
2 6 К fizike neitrino vysokikh energii (On High Ener-

gy Neutrino Physics), Joint Inst. Nuc. Res. D-577
(1960); see, for example, D. I. Blokhintsev, pp. 50
and 54, I. V. Polubarinov, p. 67.

2 7Lee, Oehme, and Yang, Phys. Rev. 106, 340
(1957).

2 8 F. Coester, Phys. Rev. 107, 299 (1957).
2 9A. O. Vaisenberg, Usp. Fiz. Nauk 70, 429 (1960),

Soviet Phys. Uspekhi 3, 195 (1960).
3 0 T. Kinoshita and A. Sirlin, Phys. Rev. 106, 1110

(1957).
3 1 H. Uberall, Nuovo cimento 6, 376 (1957).
3 2Hori, Segawa, and Wakasa, Progr. Theor. Phys.

19, 249 (1958).
3 3 L. B. Okun and V. M. Sehter, Nuovo cimento 10,

359 (1958).
3 4 S. Hori and A. Wakasa, Nuovo cimento 6, 304

(1957).
3 5 B. Jaksic and J. Soln, Nuovo cimento 8, 497

(1958).
3 e R. T. Sharp and G. Bach, Canad. J . Phys. 35,

1199(1957).
3 7 D . J . Candlin, Nuovo cimento 6, 390 (1957).
38Macq, Crowe, and Haddock, Phys. Rev. 112, 2061

(1958).
39Culligan, Frank, and Holt, Proc. Phys. Soc. 73,

169 (1959).
4 0 H.S. Green and С A. Hurst, Nucl. Phys. 4, 589

(1957).
41Alikhanov et al, Proc. Rochester Conf. 1960, p.

539; JETP 38, 1918 (1960), Soviet Phys. JETP 11,
1380 (1960). V. L. Telegdi, Proc. Rochester Conf.
1960, p. 714.

4 2 Backenstoss et al, Phys. Rev. Lett. 6, 415 (1961).
Bardon et al, Phys. Rev. Lett. 7, 23 (1961); Phys.
Rev. 126, 1826 (1962).

4 3 J. Werle, Nucl. Phys. 4, 693 (1957).
4 4 E . O. Okonov, Usp. Fiz. Nauk 67, 245 (1959),

Soviet Phys. Uspekhi 2, 119 (1959).
45Coombes et al, Bull. Am. Phys. Soc 2, 379

(1957).
46McKenna et al, Nuovo cimento 10, 763 (1958).
4 7 J . Werle, Nucl. Phys. 4, 170 (1957); L. Okun,

Nucl. Phys. 5, 455 (1958).

4 8 R. Gatto, Progr. Theor. Phys. 19, 146 (1958);
J . J . Sakurai, Phys. Rev. 109, 980 (1958). S. W.
MacDowell, Nuovo cimento 9, 258 (1958).

49Bhowmik et al, Nuovo cimento 20, 857 (1961).
5 0 N. G. Ivanter, JETP 34, 1202 and 35, 111 (1958),

Soviet Phys. JETP 7, 831 (1958) and 8, 79 (1959).
5 1 R. Gatto, Phys. Rev. 106, 168 (1957); A. Pais

and S. B. Treiman, Phys. Rev. 106, 1106 (1957).
5 2 S. Okubo, Bull Am. Phys. Soc. 3, 12 (1958).
5 3 M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387

(1955).
54Neagu, Okonov et al, Proc. Rochester Conf. 1960,

p. 603. Anikina,Neagu, Okonov, et al, JETP 42, 130
(1962), Soviet Phys. JETP 15, 93 (1962).

55s. Weinberg, Phys. Rev. 110, 782 (1958).
5 6 R. H.Dalitz, Rev. Mod. Phys. 31, 823 (1959).
57Chou Kuang-Chao, JETP 36, 938 (1959), Soviet

Phys, JETP 9, 663 (1959).
58Button et al, Proc. Rochester Conf. 1960, p. 481.
5 9 M. Jacob, Nuovo cimento 9, 826 (1958).
6 0 T . D. Lee and С N. Yang, Phys. Rev. 108, 1645

(1957); Durand, III, Landovitz, and Leitner, Phys.
Rev. 112, 273 (1958).

6 1 0 . Chamberlain, Proc. Rochester Conf. 1960,
p. 656.

62Bethe and de Hoffmann, Mesons and Fields, vol.
11, Row, Peterson and Co, 1955 (Russ. Transl., IL,
M. 1957, Sec. 33).

"^Chou Kuang Chao, Nucl. Phys. 9, 652 (1958/59).
lBurgy, Krohn, Novey, Ringo, and Telegdi, Phys.

Rev. 120, 1829 (1960).
6 5 R. H. Dalitz, Phys. Rev. 94, 1046 (1954).
6 6 G . I . Kopylov, preprint Joint Inst. Nuc. Res.

E-528; JETP 39, 1091 (1960), Soviet Phys. JETP
12, 761 (1961).

6 7 M. I. Shirokov, JETP 32, 1026 (1957), Soviet
Phys. JETP 5, 835 (1957).

6 8 M. I. Shirokov, JETP 36, 1524 (1958), Soviet
Phys. JETP 9, 1081 (1959).

6 9 A. R. Edmonds, Angular Momentum in Quantum
Mechanics, Princeton University Press, 1957.

'"Gel'fand, Minlos, and Shapiro, Predstavleniya
gruppy vrashchenii i gruppy Lorentsa (Representa-
tions of the Rotation and Lorentz Groups),
Fizmatgiz, M. 1958.

7 1 R. G.Sachs and S. B. Treiman, Phys. Rev, Lett.
8, 137 (1962).

Translated by A. M. Bincer

64 ι


