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INTRODUCTION

IN the present survey we treat the properties of metals
in thermodynamic equilibrium at low temperatures.
Mainly we consider those phenomena and properties
which are sensitive to the dispersion law of the con-
duction electrons.

The presentation is made mainly on the basis of the
"gas model," i.e., almost everywhere it is assumed
that the conduction electrons form a gas of charged
quasiparticles. Aside from its simplicity, such a pre-
sentation is justified by the fact that, in most cases,
results obtained from the model of a Fermi liquid ^
coincide with those found in the "gas approximation."
In all cases where this is a discrepancy between the
two models, this is pointed out. One should of course
remember that the concept of a "conduction electron"
as an elementary excitation with a definite quasi -
momentum and energy is meaningful only for excita-
tions with energies of the order of the Fermi energy.'-2-'
Strictly speaking, by an elementary excitation of the
electron system of a metal one should mean the ele-
mentary excitation (with a definite quasimomentum p)
above the ground state of the metal, which is described
by a Fermi step function.

In the course of our discussion we shall frequently
also use the term "conduction electron" for excita-

*The first part of this paper was published in UFN 69, 419
(1959), Soviet Phys. Uspekhi 2, 831 (1960).

tions whose energies are not close to the Fermi en-
ergy. But the overwhelming majority of the final r e -
sults contained in this summary are determined by
electrons with energies of the order of the Fermi
energy, which makes these results reliable.

The authors have not tried to cover all the recent
work, so the literature references do not constitute a
bibliography.

During the three years since the appearance of the
first part of this survey, many papers have appeared
on the mechanics (classical and quantum) of elec-
trons with a complicated dispersion law. These r e -
sults are discussed in the Appendix.

1. FERMI ENERGY. FERMI SURFACE. NUMBER
OF ELECTRONS

The study of the thermodynamics of the electron
gas should start from its properties in the ground
state, i.e., at absolute zero.

The band picture of the electron energy spectrum
is very important for the understanding of the proper-
ties of solids in general and metals in particular: in a
solid the regions of admissible values of the electron
energy (the energy bands or zones) are separated by
regions of forbidden values. The state of an electron
in a band (which we shall number by the symbol s)
is characterized by the projection of its spin on some
axis (σ = ±V2) and its quasimomentum p; states dif-
fering in quasimomentum by an amount 2тгКЬ, where b
is a vector of the reciprocal lattice, are physically
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equivalent. Consequently the electron energy depends

on discrete parameters: the band number s and the

spin projection σ, as well as a continuous vector

parameter—the quasimomentum p:

ε=ε°(ρ). (1.1)

The band character of the energy spectrum is a conse-

quence of the periodic dependence of the energy on the

quasimomentum p: for fixed s and σ, when ρ ranges

over one period (i.e., over the region of a cell in the

reciprocal space, multiplied by 27гК), the energy runs
through all values corresponding to the s-th band*).
The energy bands may overlap, but the individuality
of the bands is maintained, since each band has its
own dispersion law (1.1).

The presence of bands, partially filled with elec-
trons at absolute zero, is characteristic of metals
(conductors). For dielectrics (insulators) the bands
are either completely filled or are empty.

Complete filling of an energy band corresponds to
a uniform filling of the quasimomentum space (p-
space). Since no more than two electrons (with oppo-
site spin directions) can be in each cell in phase space,
it is clear that each band can contain no more than 2sJt
electrons, where У1 is the number of unit cells in the
crystal. If energy bands never overlapped, all crystals
with an even number of electrons in the unit cell would
be dielectrics, and those with an odd number would be
metals. The overlapping of the bands makes such a
classification completely incorrect and explains the
fact that most elements are metals in their ground
state.

As a rule, in metals there are several partially
filled bands. These are called conduction bands. They
are the bands which are responsible for the "metallic"
properties of metals, and in particular for electrical
conductivity. The electrons which uniformly fill the
p-space and belong to the deeper-lying bands, prac-
tically do not participate in the thermal motion, t since
to excite them (i.e., to make a transition into the con-
duction band) requires an energy of the order of a few
eV. Thus one of the most important characteristics of
a metal is the number N of electrons in partially filled
bands. This number should, as we have seen, vary very
little with temperature. Also the total number of elec-
trons in unfilled bands should be equal to an integer
times the number of atoms in the crystal.

The whole electron system has a single chemical
potential f, which at absolute zero determines the
level of occupation of the energy bands by electrons
(Fig. 1). Often the chemical potential is measured
from the bottom of the corresponding band. Naturally

*Here, and practically everywhere in this paper, we do not
take account of the dependence of the electron energy on the spin
projection σ, but assume that each electron state is doubly de-
generate.

tMore precisely, they move together with the lattice.

FIG. 1. Overlapping of energy bands.
The shaded regions are the allowed en-
ergy values.

V///////////.

then each band has its own chemical potential £j = £

- eOi» where eOi is the energy corresponding to the

bottom of the band. The energy below which all the

electronic states are occupied at Τ = 0 is called the

limiting Fermi energy ep, and the corresponding

constant-energy surface is called the Fermi surface.

For a gas of free electrons the Fermi surface is a

sphere whose radius pp is determined by the elec-

tron density:

3n
(1.2)

In the case of a dielectric the limiting Fermi energy

coincides with the boundary of one of the energy bands.

The Fermi surface then degenerates to a point.

In a metal the limiting Fermi energy is located with-

in one of the energy bands. The Fermi surface is a

complicated periodic surface which, in most metals,

runs continuously through the whole reciprocal lattice

(an open surface, in the terminology of ^ ) .

If the Fermi surface is closed, it obviously is re-

peated periodically in each cell in p-space. Since the

electrons occupy only those parts of p-space where

e < ep, the number η of conduction electrons per unit

cell* is

η = - |- AF, AF = jj Ε (ε - eF) dtp, dxt = dpx dpg dp.. (1.3)
(Д)

The integration extends over the volume Δ of the unit

cell in p-space, while

1, x<0,

О, а:>0.
(1.4)

If the Fermi surface is closed, Δρ is the volume

contained within the Fermi surface. We note that the

surface may split into several parts, all within one

unit cell.

When there are several partially filled bands in the

metal, the Fermi surface breaks up into several sur-

faces (equal in number to the number of unfilled bands)

and the nature of the overlapping of these surfaces, if

they do overlap, is strictly determined by the principle

that terms do not cross Μ (cf. below). The value of

Δ§- for each of the surfaces is determined by the num-

ber of electrons per unit cell in the corresponding band

N
•Obviously the density of electrons is γ = (2πΛ)3

2Д Р

(2π?ι)3
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2nd band 3rd band 4th band

Tetravalent

2nd band 3rd band 4th band

Monovalent metal

FIG. 2. Fermi surfaces for polyvalent
metals: a) face-centered cubic lattice;
b) body-centered cubic lattice.
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Naturally,

(1.5)

(1.6)

We see immediately that n s may depend on tempera-
ture, since an increase in temperature leads to a re-
distribution of electrons among the bands.

Theoretical computation of the shape of the Fermi
surface for all metals is a problem which is not solv-
able at present. The natural procedure is therefore
to determine the shape of the Fermi surface from ex-
perimental data (cf. Sec. 9). But such a problem can-
not be solved without introducing trial models. In con-
structing such models one most often uses either the
approximation of almost free electrons (Harrison et
a l ^ ) or the bound-electron approximation introduced
by Bloch^. The most important point in both these
models is the careful inclusion of the crystal symme-
try, which makes it possible to deduce the general
shape of the surface and to find the points where de-
generacy must occur. One can then determine the
structure of the regions of the Fermi surface which
split off (cf., for example, И ) .

The idea of the first method (almost-free elec-
trons ) is that the entire anisotropy of the Fermi sur-
face is a consequence of the crystal periodicity: in
zero approximation the Fermi surface is a set of non-
intersecting spherical surfaces drawn around equiva-
lent points in the reciprocal lattice. The inclusion of
the interaction amounts to the removal of the degener-
acy at the points of overlap (Fig. 2). It should be men-
tioned that the Fermi surfaces found in this way are in
many cases in fair agreement with the experimental
data.

The other approximation (tight binding) uses an
expansion of the energy in Fourier series, and the
model aspect of the method consists in using not the
entire series but only a few terms which satisfy all the
symmetry requirements of the crystal. The possible
types of Fermi surfaces for various metals (Ag, Au,
etc ) are treated in this way in a paper of Moliner'̂ 8-'
(cf. also ^ ) . The Fermi surfaces found in this way
do agree with the experimental results (cf., for ex-
ample, '-10-') and in many cases are very similar to
the surfaces obtained from the model of weakly bound
electrons. The similarity of the results obtained by
the different methods is explained by the fact that both
methods correctly take into account the symmetry ele-
ments of the crystal.

Let us consider in more detail those cases where
the Fermi surface is located near singular points in
p-space. First of all we should look at the case where
the Fermi surface is near the value ρ = p0 where the
energy for the particular band has a minimum e(p0)
= e0. The Fermi surface is then an ellipsoid with semi-
axes \ ' 2т 1 (ер-е 0 ) , л/2т 2(ер-е 0) , 72

where mj, m2, and m3 are the principal values of the
effective mass tensor (92e/9pi9p)j)p=Q. From formula
(1.5) we then find

3 7 V s Уз (2itft)a

2fn
(1.7)

If the Fermi surface is near the value ρ = p t where
e(p) reaches a maximum e(pj) = et, the Fermi sur-
face is again ellipsoidal. Its semiaxes are

where mj, m2, and m'3 are the negative of the princi-
pal values of the effective mass tensor. The quantity
et — eγ is often related to the number of free electron
states in the zone, Ng:

о />
2 у

(1.8)

We have considered cases where the Fermi surface
within a given band is an ellipsoid. As we have seen,
this occurs when the Fermi energy ep in the zone is
close to the minimum value e0 or the maximum value
e t in the zone.

Cases can occur where only a small part of the
Fermi surface is ellipsoidal. This can occur when
the Fermi energy eF is close to one of those critical
values e^ at which a newly split-off sheet of the sur-
face appears (Fig. 3). The portion of the Fermi sur-
face near the point Ρ = Pk where the new sheet is
formed is described well by the equation of an ellip-
soid. The number of electrons inside the ellipsoid
(if £F > ek) o r the number of empty states inside the
ellipsoid (if eF < ek) is related to £ F ~ e k by formula
(1.7) in the first case and by formula (1.8) in the second.

Another class of singular points are the conical
points (Fig. 4). They are located on those constant-
energy surfaces which separate surfaces with different
topologies (in particular they may separate open from
closed surfaces, Fig. 5). We shall also regard those
energy values at which a change in the topology of the
constant-energy occurs as critical energies, and denote
them by e^. If the Fermi energy e-p is close to e^,

FIG. 3. Appearance of a new sheet of the constant-energy
surface. Surface a corresponds to the critical energy 6]ς.

FIG. 4. Breakup of a
"bridge" on the constant -
energy surface. Surface a
corresponds to the critical
energy £fc. It contains a
conical point.
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FIG. 5. Gradual transition from an open surface
of the "crimped cylinder" type to a closed region.

this means that there is a region on the Fermi surface
where ρ « Pk (where Pk is a conical singular point,
cf. Figs. 4 and 5). Near such a point the dispersion
law is well approximated by the equation for a hyper-
boloid with two sheets.

As we shall see later (cf. Sec. 2) the reason why
singular surfaces are important is that they contain
singular points at which the electron velocity goes to
zero.

We now consider a very important case of degener-
acy, the case where at certain points in ρ-space the
equation e s (p) = e has a solution for several values
of s (intersection of constant-energy surfaces). As
a rule this situation is a consequence of the crystal
symmetry. ^11-' As we shall see, because of the rule
that terms do not cross, '-*-' the overlapping of the
constant-energy surfaces has a very special charac-
ter. Intersections at arbitrary points are altogether
forbidden. The surfaces intersect at isolated points,
and are fitted together in such a way that (especially
for studying the dynamics of electrons) it is more
convenient to treat them as a single complex self-
intersecting surface.

Near a point where there is degeneracy, the depend-
ence of the energy on quasimomentum is given by the
following expression:*

Ρ). (1.9)

For a given energy e, a point of degeneracy (point
of intersection of the surfaces pk) is determined by
the three equations

£(p) = 0, С(р) = 0, Л(р) = е, (1.10)

from which it is clear that in general the point of de-
generacy is a conical singular point of the self-inter-
secting surface.

We note that to each value of e there corresponds
a definite value Pk = Pk(e )·

The intersection of two constant-energy surfaces
along a line, or the intersection of more than two
constant-energy surfaces, is a consequence of the
special symmetry properties of the particular crystal
(for example, for some reason one of the quantities
В or С may be identically equal to zero).

Figure 6 is a sketch of the neighborhood of a point

FIG. 6. Neighborhood of degeneracy point. No-
tation: э —region of p-space where e,(p) .< e;
mi e,(p) > e; //// £,(ρ) > e.; \\\\ e2 (p) < e.

ША

of intersection, in which the regions with energy
greater and less than e are shown for each of the
branches of (1.9), i.e., for each of the zones. From
this figure, which reproduces the results of analysis
of (1.9), it is apparent that if e = ep, part of the p-
space is filled several times.*

If one regards the fact that the Fermi energy ep
coincides with the value ek at which there is a change
in the topology of the constant-energy surfaces as ac-
cidental (see, however, Sec. 4), then when there is an
intersection of constant-energy surfaces belonging to
different zones it is highly probable that the Fermi
surface is a surface of the type considered above. The
reason for this is that as a rule the intersection of
constant-energy surfaces occurs for energy values
filling a certain finite interval.

For the example in Fig. 7, we have schematically
sketched the self-intersecting constant-energy sur-
faces. Surfaces a and b are the limiting surfaces of
the family. The energies for these surfaces corre-
spond to the maximum ем or minimum e m value of
the energy in the zone. It may seem surprising that
surfaces belonging to different energies should inter-
sect. But it is easy to see that surfaces belonging to

FIG. 7. Family of constant-energy
surfaces, containing two points of de-
generacy. Notation: = e^p) = e;
= €2(p) = e; £,(?) = £ ' > £ ;

e2(p) = e' > e; e^p) = eM;
— e^p) = e» .< e; — e,(p) = e" .< e;

e
2(p) = emi eM is the maximum

value of the energy in the second zone;
6m is the minimum value of the energy
in the first zone.

•See, for example, formula (76.4) of L4J. The quasimomentum
acts as a parameter on which the energy depends.

*We remind the reader that we are not considering those elec-
trons (in filled bands) which uniformly fill p-space.
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different zones intersect. Thus an electron with quasi-
momentum p' (Fig. 7) has energy equal to either e or
e' depending on which zone it belongs to [i.e., its
energy is either e s (p') = e or e s ' (p') = e' ]. As
both the theoretical treatment and the experimental
data show, the Fermi surface of graphite is a sur-
face of this type [ 1 2 ] (Fig. 8).

FIG. 9. Filling of energy
bands having a common mini-
mum; When they are filled to
the same level (e, S e F ,
e2 й e F ) , the numbers of elec-
trons in the bands are different.

Electrons

Holes
FIG. 8. General form of the Fermi

surface of graphite.

Electrons

We also note that formula (1.5), which relates the
volume contained within the Fermi surface Δρ to the
number of electrons in the band n s does not require
any generalization to the case of intersection of con-
stant-energy surfaces.

Degeneracy very often is a consequence of the crys-
tal symmetry. It usually occurs along certain definite
lines in p-space (for example, along the principal axis
in the case of graphite). These values of quasimomen-
tum are selected in such a way that usually the energy
reaches its minimum (or maximum) value at these
points.

If two bands have the same common minimum, then
though they have the same limiting energy the numbers
of electrons in the bands are not necessarily the same
(Fig. 9).

Gases can occur where the minimum for one band
coincides with the maximum for another band. If in
such a case the lower band is completely filled while
the upper band is empty, such bands should be treated
as though the Fermi surface had degenerated to a point.
In solids with such an electron spectrum one should ob-
serve many interesting properties similar to those of
semiconductors.

For most metals the number of electrons per unit
cell is close to one. Exceptions are the metals of the

fifth group of the periodic table (Sb, As, Bi) for which
the number of conduction electrons per unit cell is
~ 10~s. The crystal lattices of all these metals are
similar. They belong to the rhombohedral system with
two atoms per unit cell, and have the special feature
that they are obtained from simple cubic lattices with
one atom per cell by a slight displacement of the atoms.
Crystals with an odd number of atoms per unit cell*
should be good metals. However, a change in the trans-
lational symmetry leading to a doubling of the volume
of the unit cell markedly changes the number of elec-
trons in the conduction band and may even in principle
change the metal to a dielectric (cf. Fig. 10, in which,
as an example, we consider the doubling of the period
for the one- and two-dimensional cases).

If the Fermi surface passes sufficiently close to a
point where there must be a degeneracy (in the p-
space), A. A. Abrikosov and L. A. Fal'kovsku have
shown E13^ group-theoretically that under certain ex-
tremely general conditions it is favorable to form
small (but finite) interior deformations in a cubic
lattice, which lead to a reduction of its symmetry and
a doubling of the volume of the unit cell. It seems that
there is no need to look for some special physical rea-
sons for the fact that the Fermi surface passes near to
points where there must be a degeneracy (located at
the boundaries of the Brillouin zone), since the sur-
face of a sphere with a volume corresponding to the
number of electrons in the unit cell passes extremely
close (numerically) to the boundaries of the Brillouin
zone. Since, as Harrison^ has shown, the weak bind-
ing model gives a good approximation to the experimen-
tally determined shapes of the Fermi surfaces for poly-
valent metals, it is highly probable that the argument
based on the use of the weak binding model is convinc-
ing enough.

In treating the energy structure of the ground state
of the electrons in a metal, we have started from the
existence of single-particle excitations of the Fermi
type (conduction electrons). We know that such a
treatment is justified for electrons with energies close
to ep, since the lifetime of an excitation decreases
rapidly with increase of | Ρ - P F I. where pp is the
quasimomentum at the Fermi surface. Μ Thus ex-
pressions which contain the dispersion law for the
"deep" electrons, i.e., the electrons with energy much
less than ep\ are to some extent a matter of conven-

*Remember that As, Sb, and Bi have an odd number of electrons
per atom (fifth group!).
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FIG. 10. Change in electron energy spectrum as
a result of doubling the period, a) one-dimensional
case: as a result of doubling the period, the "metal"
with electrons filling half the band is changed to a
dielectric; b) two-dimensional case: as a result of
doubling the period along the χ axis, the number of
conduction electrons in the "metal" with an initially
half-filled band is sharply reduced. A small electron
band (shaded region) and a small hole band (cross-
hatched region) have appeared.

tion. For example, formulas (1.3) and (1.4) should be

regarded as the definition of the electron number den-

sity. The derivation of the total number of electrons

in unfilled bands is apparently independent of the na-

ture of the interaction between the electrons, since it

is based on the indeterminacy principle and on the theo-

rem that the number of elementary excitations of the

Fermi type is equal to the number of electrons

(L. Landau, Μ LuttingerIM).

2. DENSITY OF ELECTRON STATES PER UNIT
ENERGY RANGE

To develop the thermodynamics of conduction elec-

trons, one must know the density of electron states per

unit energy range, v(e). This quantity is closely re-

lated to the dispersion law.

The number of states of electrons of the s-th zone

in unit volume of momentum space is

J~ ( s > 2V ipxdpudpz. (2.1)

Since the state of an electron is characterized com-

pletely by its position on the constant-energy surface

e s(p) = e, while the element of volume dpxdpydpz is

equal to dsde/v, where ds is the element of area on

the constant-energy surface e s (p) = e, and v s

= | Vpes(p)| is the absolute value of the electron

velocity,* by integrating (2.1) over the surface of con-

stant energy, we find that the number of electron states

d n ^ in the energy interval de is equal to (e s (p) = e)

where

2V ds

(2.2)

(2.3)

is the density of states in the s-th zone per unit energy

*|Vpe s(p)|"1 is the Jacobian of the transformation from the
variables p x , p y , p z to the variables ξ, η, e, where ξ, η are
any orthogonal coordinate system on the surface es(p) = £(ds
= άξάη).

range. Independent of whether the constant-energy sur-

face is closed or open, the integration in (2.3) is taken

over the unit cell in the reciprocal lattice; in those

cases where the surface e s (p) = e> splits into several

sheets, Уд(е) is naturally the sum of the correspond-
ing integrals.

We note that vs(e) is a unique characteristic of the
electron energy spectrum, which in the "gas" approxi-
mation (omitting interaction of the electrons) is nec-
essary for constructing a statistical thermodynamics
of the conduction electron electron gas in the quasi-
classical approximation.

Since dsde/v is the volume element, (2.3) can be
rewritten as follows:

2V

2Kh)' ~~de~

where

The function E(x) is defined by (1.4).
If the surface e s

 (

ume contained within this surface.
2V

(p) = e is closed, A(

e

s)

(2.4)

(2.5)

is the vol-

The quantity determines the number of
. 3

electron states in the s-th zone with energy less than
e. We denote this quantity by N s (e). Then

dN, (e)
de.

(2.6)

In general the density of electron states u(e) is a
complicated function of its argument. Its explicit form
can be found only under special assumptions about the
dispersion law for the conduction electrons.

In the case of a free electron gas, v( e ) is propor-
tional to v T :

v(e)=_jQ-V-m*W. (2.7)

A similar dependence of the density of electron
states per unit energy range occurs for energies near
to the minimum or maximum values in the zone. Since
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the corresponding constant-energy surfaces are ellip-
soids, near a minimum (e £ e0)

while near a maximum (e & e<)

(2.8)

Thus near the extremal points (e = e0 and e = €j),
the density of electron states has a singularity of the
type (e — ek) . A singularity of this type is charac-
teristic for all those energy values at which the topol-
ogy of the constant-energy surfaces changes. From
this point of view, a minimum is a point at which a
new sheet of the constant-energy surface appears,
while a maximum is a point at which a sheet disap-
pears. The appearance or disappearance of a sheet
can also occur in the middle of the zone for certain
"cr i t ica l" values of the energy e = ek (cf. Fig. 3).
Then for energies close to ek, the density of electron
states v(e) can be represented as follows:

ν(ε) = νο(ε) + 6ν(ε), (2.9)

where ^о(е) is a smooth function of the energy, while
бе(е) differs from zero on the side of the critical
value where the number of sheets has increased by
one. Suppose for concreteness that the number of
sheets increases with increasing energy. Then

0 ( e < 8 h ) ,

(e>ek).
(2-Ю)

As we stated in the preceding section, an increase
in the number of sheets of the constant-energy surface
can occur not only by the " b i r t h " of new sheets (cf.
Fig. 3), but also by the "breaking" of bridges* (cf.
Figs. 4—5). Let us consider this case of a change in
the topology in somewhat more detail. We shall as-
sume that the constant-energy surface e(p) = efc con-
tains a conical singular point ρ = p^. For energies
less than e^, the surface near the point ρ = Pk is well
approximated by the equation of a hyperboloid with two
sheets, and for e > e^ by the equation of a paraboloid.
With a suitable choice of coordinate axes, the equation
of the constant-energy surface near ρ = р^(е ~ е^)
is written as follows:

ε = ЕЬЧ- 2m,
pi

2m, urn.
т„, т3>0). (2.11)

Calculating the volume bounded by the surface (2.11)
and the plane p 3 = const (the p 3 axis is along the axis
of the bridge), we find

*A change in the topology of the constant-energy surfaces
can also occur without a change in the number of sheets (for
example, breaking of a bridge on a toroidal surface). In such
cases the connectivity of the surface changes at the point e =
and 8u(e) ^ 0 in the region where the connectivity is lower.

2np%
+ 4π

(ε > e k),

8π_
3

(8k-8)'/2 (E<Rh).

(2.12)

It is clear that in this case also the density of electron
states v(e) ~ dA/de can be written as a sum of two
terms: a smooth function vo(e) and an irregular term
δν(ς), which has a " r o o t " singularity and differs from
zero for those energies where the number of sheets is
the larger value (cf. also the last footnote).

Expression (2.10) remains valid [the significance
of m t , m 2, and m 3 is evident from (2.11)].

We have considered typical singular points associ-
ated with a change in the topology of the constant-
energy surfaces. It may happen that the singular point
ρ = Pk is also a point of degeneracy. Then the equa-
tions for the constant-energy surfaces near this point
have a more complicated form than we have assumed:

where <p(n) is a function of the unit vector η
= (Ρ ~Pk)/l Ρ - P k l> appropriate to the symmetry at
the point ρ = Рк- The conclusion about the nature of
the singularity for e = e^ remains exactly the same.'^50-'

In the preceding section we considered the case of
intersection of constant-energy surfaces. We note that
for energies at which intersection occurs, the density
of electron states has, of course, no singularities. In
this case too those energies are singular or critical
for which the topology of the constant-energy surfaces
changes. For example, surfaces a and b in Fig. 7 are
singular in this sense. It is easy to show that in these
cases also 6v{e) is ~| e — e^l and is different from
zero only on one side of ek-

The singular cases considered here (formation of
new sheets at a point and breaking of a bridge at a
point) exhaust all the types of singular points in p -
space.

But cases are possible where in certain approxima-
tions an extremum is reached not at isolated points but
along a whole curve (belt of extrema). For example,
in crystals of the wurtzite type the band of extrema is
a circle with its center on the symmetry axis. A simi-
lar situation also occurs in other crystals (CdS, InSb
etc).

Let us see what the density of electron states v(e)
looks like for energies near the extremal values.

To be specific we consider crystals of the wurtzite
type. According to C16^, the dispersion law for elec-
trons with energies close to the extremal values has
the form

(2.13)

Here pj_ = λ/ρχ + Py , while the ζ axis coincides with
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the crystal axis. The constant-energy surfaces corre-
sponding to the first branch [the plus sign in (2.13)]
are spheroids with their centers at the origin, while
those corresponding to the second branch [the minus
sign in (2.13)] are toruses with elliptical cross sec-
tions in planes passing through the symmetry axis
(Fig. 11). Calculating the volume and differentiating
with respect to the energy, we find the density of elec-
tron states:
for the first branch

N

о,
8>0,

e<0;

for the second branch

BA3/*

0, e<eh.

We note that the first branch starts at zero energy,
and the second at e = e^ = a2/4A. Thus in this case at
e = €fc the density of electron states has a finite jump.
The size of the jump is determined by the parameter
a, which is related to the spin interaction of the elec-
trons.

/h-

FIG. 11. Constant-energy surface for crystals with a belt of
extreme, according to (2.13).

3. THERMODYNAMICS OF CONDUCTION ELECTRONS

Knowledge of the density of electron states enables
us to construct a thermodynamics of the conduction
electrons.

As we said earlier, the structure of the electron
energy spectrum of a metal in the non-superconducting
state is such that the charged elementary excitations,
which we call conduction electrons, are a gas of quasi-
particles subject to Fermi-Dirac statistics. This
means that the equilibrium distribution function for the
electrons np(e) is the Fermi function

M e ) = e«_JT ; l , (3.1)

where Τ is the temperature, measured in ergs, and £
is the chemical potential, defined by the normalization
condition

Σ Γ ν , (ε) d
) „β-ζ/Τ_

(3.2)

The integration can be taken over all energies, since
vs(e) * 0 only within the s-th energy zone.

It is convenient to start developing the thermody-
namics from the thermodynamic potential

Ω=-2'2

or, after integration by parts,

(3.3)

(3.4)

On the other hand, the total energy of the electron

gas is

E =Σ С evs

3 e*-
(e)rfe (3.5)

A comparison of formulas (3.4) and (3.5) shows that
the relation PV = 2/3E, where Ρ is the pressure
(remember that Ω = — PV), holds only for free elec-
trons, for which u(e) =dN/de ~ e1/2 [ cf. (2.7)].

Since Ω = -PV, Eqs. (3.2) and (3.4) can be re-
garded as the parametric form of the equation of state
of a gas of conduction electrons, where the parameter
is the chemical potential f. As we see from these for-
mulas, the equation of state depends essentially on the
density of states v(e), i.e., on the dispersion law.

Now we shall consider the most important case of
low temperatures, i.e., we shall assume that in all
zones (for any s) the electron gas is highly degen-
erate.

The degeneracy condition is formulated very simply
in the case of the free electron gas (Τ « ер). In the
case of conduction electrons, which have a complicated
dispersion law, the condition for degeneracy means
that

T€iaia\eF-e^\, (3.6)

where the eis ) are singular (critical, extremal) val-
ues of the energy.

If condition (3.6) holds, in computing integrals which
contain the Fermi function nF(e) one can use the fa-
miliar expansion in powers of the temperature

From expressions (3.4), (3.7), and (2.6), we have

= Ω 0 — £ (3.8)

where the summation in the last expression is to be
taken over overlapping, partially filled bands. The
quantity Ω ο is the value of the thermodynamic poten-
tial Ω at Τ = 0:
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(3.8')

Treating the second term in (3.8) as a small cor-
rection to Ω ο and expressing £ in terms of the elec-
tron density, using the zeroth approximation [i.e.,
stated simply, replacing the chemical potential ζ by
the limiting energy ep, which is related to the elec-
tron density by formula (1.3)], we can write for the
free energy F

(3.9)

We then find the entropy Se and specific heat C e

of the conduction electron gas*

(3.10)

Thus the electronic specific heat C e at low temper-
atures [cf. condition (3.6)] depends linearly on tem-
perature. This conclusion is independent of the dis-
persion law for the conduction electrons. Moreover,
formula (3.10) remains valid even if we include the
interaction between electrons in the spirit of the Lan-
dau theory of the Fermi liquid. ^

From formulas (3.8), (3.9), and (3.10), it is easy to
find approximate expressions for the energy Ε and the
thermodynamic potential Φ of the conduction electron
gas:

~ E 0 + -?-v(eF)r2, E o = εν (Β) άε, (3.11)

Φ0 = ΝεΡ. (3.12)

The last expression enables us to determine the
thermal expansion coefficient a, equal to
-(l/V)(8V/8T)p:

a ~ — F"1-^-v(eF)r. (3.13)

We note that formula (3.13) is no less general than
(3.10). In particular, formula (3.13) holds even when
the electron interactions are included. In fact, a
~ Э2Ф/ЭТ ЭР = 92Ф/9Р ЭТ = 9S/9P, while the entropy
of the electrons, being a quantity with a combinatorial
significance, is determined by the systematics of the
states, and these do not change when we go from the
Fermi gas to the Fermi liquid.

For most metals the condition for degeneracy is
satisfied at practically all temperatures. Thus the
conduction electrons make an extremely small con-
tribution to the thermodynamic quantities for the metal
(specific heat, internal energy, etc). However, at low
temperatures, when the internal energy of the vibra-
tional degrees of freedom tends rapidly to zero (~T*),

the role of the conduction electrons grows rapidly in
importance. At temperatures* Τ « #V θ/ep , where
θ is the Debye temperature, the conduction electrons
determine the thermodynamic properties of metals.
In particular, this means that the specific heat of a
metal and its thermal expansion coefficient depend lin-
early on temperature if the temperatures are suffi-
ciently low. This is well known from both experimen-
tal and theoretical investigations.

The constant у in the Griineisen "law" (i.e., the
temperature-independent ratio of the thermal expan-
sion coefficient a. to the specific heat С) for metals
in this temperature range is determined by the de-
pendence of the density of electron states on pressure t

(3.14)

As we see from formula (3.10), the measurement of
the specific heat of metals at low temperatures permits
the determination of a very important characteristic of
the electron energy spectrum, the density of electron
states at the Fermi energy.

Now we study the temperature dependence of vari-
ous thermodynamic characteristics of metals when
the Fermi surface is close to singular points in p-
space.

If the Fermi surface is close to the minimum (or
maximum) point of one of the overlapping zones, this
means that in this zone the number of occupied states
—the number of electrons (or the number of free
states—the number of holes) is small. Although the
chemical potential f, which is common to all the zones,
depends very little on temperature, the number of elec-
trons (or "holes") in the anomalously filled band con-
sidered here depends strongly on the temperature. In
fact, from (3.2), noting that N is independent of tem-
perature, we have

(3.15)b — " · " 6 v(eF)

The number of electrons in the s-th band is

v s (ε) de

ee-t(T)/T_|_j
(3.16)

We use the symbol e s 0 for the minimum value of
the energy in the s-th band if the band is almost empty,
or for the maximum value if the band is almost full.
The anomaly consists in having | ep - e s 01
« u(eF)/v'(eF).t

From (3.16), (3.15), and (3.7), we have

•For the temperature as defined here (in ergs) the specific
heat is a dimensionless quantity.

*We assume for an estimate that ^(e F ) - N/%, while Ν ~ 31.

tAt temperatures Θ1/ — < Τ < θ, the Griineisen constant,

naturally, is determined by the pressure dependence of the Debye
temperature.

tThe quantity i/(eF)/i/(eF) characterizes the distance (in
energy) between the Fermi surface and the singular constant-
energy surfaces of the principal (non-anomalous) bands.
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(3.17)

In obtaining the last formula we have used the fact
that, according to (2.8) and (2.8'), ^s( e ) ~ l e ~ e sol 1 / 2 ·

Knowledge of the temperature dependence of the
number of electrons in the anomalous band is important
in those cases where the properties of the metal are
determined by the electrons in the anomalous bands
(for example, the diamagnetism of various metals E17^).

In the first section we spoke of hypothetical solids
in which the Fermi surface was a point (in such bodies
there is no energy gap between the filled and empty
bands). The thermodynamic properties of the electrons
in such bodies are determined by the dispersion law
near the point of contact of the bands. For example, if
the dependence of the energy on quasimomentum near
the boundary of the zones is quasilinear (e ~ p), the
contribution of the electrons to the specific heat of the
metal is proportional to T3, but if the dependence is
quadratic (e ~ p2), C e ~ Ί3^2. However, one should
remember that interaction of the electrons, as a rule,
removes such a degeneracy, so that an energy gap ap-
pears between the bands, which makes such bodies
ordinary semiconductors.

4. ANOMALIES OF ELECTRONIC PROPERTIES OF
A METAL AT HIGH PRESSURES D 8 ]

As we have already said (Sec. 2) a change in the
topology of the constant-energy surfaces results in a
singularity of the density of states v(e). Generally
speaking the values e^ are located quite far from the
limiting Fermi energy ep, and the presence of the
singular points e^ can be discovered only from x-ray
spectra. But if there is some continuously varying pa-
rameter, in the course of whose variation ep — e^
passes through zero, i.e., if one can change the topol-
ogy of the Fermi surface, the singularities of the spec-
tral density c(e) and the dynamics of the electrons
near the "critical" surface lead to peculiar anomalies
in the thermodynamic and kinetic characteristics of the
electron gas in a metal.

Such a continuous parameter may be deformation of
the lattice, in particular, uniform compression at high
pressures. It is known that at high pressures the aniso-
tropy of most properties decreases, so one may antici-
pate for example that a Fermi surface of the "crimped
cylinder" gype, which is characteristic of layered
structures, should, as it deforms, gradually go over
into a closed surface, even when the total number of
electrons in the conduction band is constant (Fig. 12).
Naturally, other changes in the topology of the Fermi
surface are also possible. It should be emphasized

FIG. 12. Gradual transition of an open
Fermi surface (indicated by the heavy lines
in the figure) into a closed surface. It
should be noted that with increasing pres-
sure the cells of the reciprocal lattice be-
come somewhat larger.

that a change in the topology of the Fermi surface is
not accompanied by a change in the symmetry of the
lattice and so does not give rise to a second-order
phase transition.

On the other hand, the initial lattice may cease to
be thermodynamically stable even before arriving at
the "critical" Fermi surface, so that a first-order
phase transition occurs before the appearance of the
anomalies associated with a change of the topology.*
But because the time for "readjustment" of the
electrons during deformation of a metal is short com-
pared to the time for rearrangement of the lattice
during a phase transition, such anomalies can also be
observed in the short-lived metastable state; for this
reason we need not be concerned with the question
whether the state is stable or metastable near the
point where the topology of the Fermi surface changes.

Another parameter, the concentration of impurities
or of the components of an alloy, might seem to have
a stronger effect on the chemical potential ζ and the
Fermi surface; for a disordered lattice the very con-
cept of the Fermi surface ceases to have any precise
meaning, so the singularities of v( e) are smeared out
and actually do not exist.

*In particular this case occurs in so-called isomorphic trans-
itions, in which the lattice parameters change abruptly while the
type of structure remains unchanged.
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In the following we shall investigate the p r o p e r t i e s

of a metal in the vicinity of an " e l e c t r o n i c t r a n s i t i o n "

caused by a change in the topology of the F e r m i s u r -

face.

If the chemical potential ζ i s close to e^, then in

accordance with formulas (3.4) and (2.9) the t h e r m o -

dynamic potential Ω will have the following form:

Ω (ζ,

where

and
(ε < ε*

(4.1)

(4.2)

(4.3)

The significance of the parameter a is clear from

formulas (2.10) and (2.6). To be specific we assume

that the new sheet appears for e > e^. Setting e - e^

= χ and f - efc = z, we find that at low temperatures

(Τ « z ) near the point z = 0 the variation in the ther-

modynamic potential can be represented as follows:

I -&*№- \Z\V°;

(I)

(Π)
(4.4)

15 ' " ' 6

The transition from region (I) to region (II) corre-

sponds to the appearance of a new sheet on the surface

e(p) = ζ (or a reduction of its connectivity).

The formulas (4.4) are valid for Τ « | z | . At ab-

solute zero

6Ω 4 0 > (I)

z I-Vs
(4.5)

This means that the second derivatives of Ω at the

point z = 0, which is the point at which the "electronic

transition" occurs, have a vertical kink, while the third

derivatives go to infinity like z" 1 ' 2.

Since the number of electrons in the conduction band

is constant, to determine the anomalies in thermody-

namic quantities it is convenient to use instead of the

potential Ω the free energy F = F(T, V, N). The vol-

ume V is then the parameter associated with the ap-

plied pressure; the critical energy e^ is a function

of the volume e^ = e^V), while the chemical poten-

tial £ is also a function of V because of the constancy

of the number of particles*:

TV (ζ, V) = N. (4.6)

We shall use V^ to denote the volume at which the
change in the topology of the Fermi surface occurs,
i.e.,

*In the case where there are several overlapping bands,
Ν (ζ, V) is the total number of particles in all the bands.

Ч(Уь)- (4·7>

According to (4.6) and (4.7), the modulus of z, which
appears in formulas (4.4) and (4.5), can be expressed
in t e r m s of | V - Vk I:

( 4 · 8 >
where we have used the fact that 9N/8£ = ν (ζ).

Writing the free energy F in the form

where Fo is the smoothly varying part of the free en-

ergy, constructed using the density У0(е), it is easy
to show that 6F is equal to the irregular correction
δΩ, expressed in terms of the variables V and T,

i.e., 6F is given by formulas (4.4) and (4.5), with | z |

replaced by its value from (4.8):

.J -аТъ'ч- Z'T, (I)

6F =

l-i·.
•(IX \ = y\V-Vk\).

(II)

When the temperature tends to absolute zero, we

get

o,

ΘΡ f 0,

дР

α | ζ |Vi

Ζ | 2 ,

o,
τταΥΐ

(I)

. (Π)

(I)

(И).

ζ -Vs.

(I)

(Π)

(4.9)

(4.10)

(4.11)

Expression (4.9) describes the anomaly in the elec-

tronic specific heat; (4.10) gives the anomaly in the

electronic compressibility.

The total pressure in a metal is made up of the

electron pressure and the partially compensating

pressure of the lattice "skeleton" of the metal. Since,

however, the lattice part of the compressibility 9Pj/8V

is generally continuous at the point ζ = 0*, the singu-

larity in the total compressibility is given by the same

equation.

Finally, as one sees from (4.11), the sharpest sin-

gularity occurs for the temperature coefficient of the

pressure, 9Р/ЭТ. Since at low temperatures the elec-
tronic part of this coefficient is the most important,
we have for the smoothly varying part

ОТ
dv
bV

Thus in the region of the anomaly

*It may happen that the part of the "lattice" binding energy
which is due to the conduction electrons has a singularity at the
point ζ = 0 of the same character as Oe; this would give a
negligible correction to дР/dV, and would not change our re-
sults qualitatively.
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(4.12)

where the plus sign holds when V - Vk > 0 in region
(II), and the minus sign when Vk~ V > 0 in (II). The
thermal expansion coefficient (9V/9T)p = -(9P/9T)y/
(9P/9V)T has the same singularity:

/ dV Л л2Т I dv 1 ι 1-1

\.~дт JP

 = ~ШГ ι ~5ν ± ~z ay I z I

We note in particular that if a new sheet appears
for Ρ = Pk, as the pressure is increased, the thermal
expansion coefficient in the neighborhood of Ρ = Pk
(V = Vk) is negative on the high pressure side and in-
creases to infinity in absolute value for Ρ —• Pk
(Fig. 13).

V dT

FIG. 13. Behavior of the thermal expansion coefficient (for
Τ = 0) in the neighborhood of the critical pressure p^, if the num-
ber of sheets of the Fermi surface increases at ρ = p^.

Ы order to treat all the formulas (4.9)—(4.11) as
anomalies in the pressure scale, we simply use the
fact that Ρ - Pk = - κο( V - Vk), and consequently

Ι«Ι = | γ | | ^ - ^ Ι = -ΐ-Ι^—P*l· (4.14)

It is convenient to estimate the coefficients γ, γ/κ0

and the critical pressure Pk by expressing them in

terms of the initial energy difference z0 = (£— ek)p = 0

(at zero pressure) and the critical deformation

(V — Vk)/V0, at which the transition occurs,

I P -
Y

W0-vh\
(4.15)

It is understood that (4.15) is only an estimate,
since over a large range of deformations the linear
relation between Ρ and V - Vo breaks down. If we
assume for the critical deformation (Vo — Vk )/VQ
~ 0.05—0.1, P k ~ 5 x 104—105 kg/cm2.*

Strictly speaking, formulas (4.9)—(4.11) are valid

*It might seem that less symmetric deformations (such as
uniaxial compression or tension) change the geometry of the
Fermi surface more strongly and require lower stresses. In par-
ticular, violation of the initial symmetry of the crystal at arbi-
trarily small deformations may lead to the splitting off of the
surface at points where it must intersect itself.

at absolute zero. At finite temperatures the singular-
ities of all thermodynamic quantities are smeared out.
The width of the temperature smearing of the anomaly
is Δζ ~ Τ; on the pressure scale this gives

ΔΡ

Ι ζ — S
(4.16)

From formula (4.10) it follows that in the region of
the anomaly a positive correction ~ z1 '2 is added to the
negative quantity (9P/9V)0 = -κ ο · И as a result P(V)
ceases to be a monotonic function and 9P/9V becomes
positive over some region, an isomorphic phase tran-
sition of the first kind takes place with a jump in the
volume. Writing the expansion of 9P/9V for small
positive ζ and temperature approaching absolute zero:

_

we see that a region of instability (9P/9V > 0) can
occur if αγ2 > 2 VKOKI 5 it lies t o t n e right of the point
ζ = 0 in the interval

αν2 - /(αϊ 2) 2 - 4κ0κ1 < 2κοζ < αγ2 4- /(αγ2)2 - 4κ0κ1.

The point ζ = 0 where the electronic transition occurs
lies in the region of metastability or stability.

Since at finite temperatures the singularity at ζ = 0
is smeared out, the electronic transition at ζ = 0
should not be called a phase transition; we shall there-
fore always speak of "anomalies" at the point ζ = 0,
although according to Ehrenfest's terminology one
could provisionally call such anomalies at Τ = 0
"2У2 -order transitions," since the second derivatives
of the thermodynamic potentials have a singularity
~ z1/<2, and the third derivatives a singularity ~ z~1/2.

In the second section we stated that cases are pos-
sible where the density of electron states jumps
abruptly at some energy e = ek· If, because of com-
pression (or some other deformation of the lattice)
the limiting Fermi energy coincides with ek, this
should manifest itself in a jump in the electronic spe-
cific heat and the other second derivatives of the ther-
modynamic potential. In this admittedly very special
case, the electronic anomaly would look very much like
a second-order phase transition.

Electronic anomalies due to a change in the topology
of the Fermi surface should affect the magnetic proper-
ties of a metal and should appear particularly clearly in
the behavior of the galvanomagnetic characteristics.^18^

5. PARA- AND DIAMAGNETISM (WEAK MAGNETIC
FIELDS)

If a metal is placed in a magnetic field, many of its
properties are drastically changed. For example, the
resistance of pure metals increases by a factor of ten
and sometimes even by a factor of 100 or 1000 at low
temperatures in a magnetic field of a few kOe. As a
rule the kinetic coefficients (resistivity, thermal con-
ductivity etc ) of metals suffer large changes. But the
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thermodynamic equilibrium values of metal character-
istics also change under the action of a magnetic field.
In particular, all metals in a magnetic field have a
magnetic moment, which at low temperatures in large
fields depends in a complicated way on the magnitude
and direction of the magnetic field.

The dependence of thermodynamic quantities on
magnetic field is due'̂ 19-' to the quantization of the en-
ergies of electrons and nuclei. With respect to elec-
trons, this remark applies both to conduction electrons
and to electrons with a complex dispersion law. In fact
in a classical treatment the inclusion of the magnetic
field corresponds to changing to the kinetic momentum
ρ = Ρ —e/cA (the notation is the same as in M). in
computing the thermodynamic potentials, the integra-
tion is extended over all of P-space. Changing the
variables (from Ρ to ρ), we see that the thermody-
namic potentials are independent of the magnetic field.

In the quantum treatment, a dependence on mag-
netic field appears for two reasons. First, the elec-
trons and nuclei have intrinsic (spin) magnetic mo-
ments* and, second, the orbital (spatial) motion of the
charged particles in the magnetic field is quantized.
The presence of intrinsic magnetic moments is the
origin of paramagnetism and related phenomena, while
the quantization of the orbital motion gives rise to dia-
magnetism.

The main quantity which is to be examined in this
section is the magnetic moment of the metal. The
magnetic moment of the metal does not arise simply
from the contribution of the conduction electrons
(i.e., the electrons in partially filled bands). Even
if we disregard the nuclei, whose contribution is very
small because the nuclear magnetic moments are
small, there are still the filled bands which partici-
pate in the formation of the diamagnetic moment, t
The diamagnetic susceptibility of the electrons in a
metal can be expressed in terms of the dispersion
law, '-20-' but the resulting expression is complicated
and hard to visualize. Besides, as we said in the
Introduction, the very concept of a dispersion law is
applicable only near the Fermi surface. So it is obvi-
ous that there is no justification for attributing great
significance to expressions which depend on the prop-
erties of electrons whose energies are much less than
the Fermi energy.

Electrons in filled shells have compensated spins.I

*We remind the reader that the presence of an intrinsic mag-
netic moment is a quantum effect. Its magnitude contains the
Planck constant: μ0 = eB/2moc (where μ^ is the Bohr magneton
and m0 is the free electron mass).

tThe separation of the moment into paramagnetic and diamag-
netic parts is possible only in weak fields, when the moment de-
pends linearly on the magnetic field.

tSuch a band structure is typical for diamagnetic materials.
In paramagnetic materials there are electrons with uncompensated
spins in the filled bands (just as there are inner electrons with
uncompensated spins in paramagnetic atoms). The exchange

The absence of empty states near the occupied ones
results in an exponential dependence on temperature
for the magnetic moment due to the electrons in the
filled shells. Thus the main contribution to the para-
magnetism of a metal comes from the conduction elec-
trons (Pauli paramagnetism).

It is known E21] that the magnetic susceptibility (κρ)
depends weakly on temperature, and at low tempera-
tures (T « ep) is determined by the density of elec-
trons per unit energy range at the Fermi energy:

κρ=μίν(εί·). (5.1)

This formula is derived on the "gas model" for the
metal, i.e., omitting interaction of the electrons. In-
cluding the electronic interaction changes the formula
(5.1) in the sense that the coefficient of v(e-p) cannot
be taken to be μ\. It therefore seems natural not to
attribute any significance to the comparison of (5.1)
with experimental data on the paramagnetic suscepti-
bility of metals.*

The problem of comparing the theoretical results
with experimental data is complicated still further by
the fact that the diamagnetic and paramagnetic suscep-
tibilities of metals are of the same order. For exam-
ple, for a gas of free electrons the diamagnetic sus-
ceptibility is one third the paramagnetic. The fact that
the two susceptibilities have the same order of magni-
tude is a direct consequence of the degeneracy of the
electron gas (T « ep).

As we see from (5.1), the paramagnetic susceptibil-
ity of a metal is proportional to the density of electron
states per unit energy interval (at the energy e = ep).
This means that the spin paramagnetism suffers an
anomaly when the topology of the Fermi surface
changes under the influence of the pressure (cf. Sec. 4
and also Ε18^). Let us examine the nature of this
anomaly.

In an external magnetic field, the spin magnetic
moment is

where N( e) is the number of electrons with energies
less than e (cf. Sec. 2). Then the paramagnetic sus-
ceptibility /Cp in the vicinity of the anomaly has the
form

?= κ(ρ0) + γ μζ( (δν (ζ -г μΗ) + δν (ζ - μΗ)},

where

interaction between the spins, as a rule, leads to their ordering,
i.e., to the appearance at sufficiently low temperatures of either
ferromagnetism or antiferromagnetism.

*Furthermore, one should remember that for crystals with
strong spin-orbit coupling, the structure of the paramagnetic
levels may be significantly different from the structure of the
levels of the free electron.^22] In particular, in this case the
state of the electron in the magnetic field is not characterized
by a definite projection of the spin along the magnetic field.
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Г 0 (z<0),

The significance of the parameter a is clear from
formula (2.8). Thus the irregular part of the paramag-
netic susceptibility όκρ is:

r 0, + μ#<0, z-μЯ<0;

)ν., ζ + μΗ > 0, ζ - μ#< 0;

1αμ%{(ζ— μ # ) ' -', ζ + μΗ < 0, ζ — μΗ > 0;δ κ ρ = .>

Ι ζ + μΗ > 0, ζ — μΗ > 0.

Although the actual picture of the anomaly in the
magnetic susceptibility of the metal is somewhat com-
plicated by the presence of the diamagnetism, the qual-
itative picture is naturally the same. In particular one
should note the sharp irregular dependence of the mag-
netic susceptibility on magnetic field in the vicinity of
the critical pressure. True, this irregularity must be
observed in an extremely narrow pressure interval
Δρ ~ (дН/е;р)рк.

The dependence of <5/Cp on ζ and magnetic field is
shown in Fig. 14.

The presence of singularities of the magnetic sus-
ceptibility at high pressures is not the only manifesta-
tion of the peculiar features of the electron energy
spectrum in the behavior of metals in weak fields.

The temperature dependence of the magnetic sus-
ceptibility of various metals (Bi, Sb, etc) can be
treated only on the assumption that there are bands
in the metal with anomalously small numbers of con-
duction electrons t17^ (cf. also the end of Sec. 3).

6. THE DE HAAS-VAN ALPHEN EFFECT (STRONG
MAGNETIC FIELDS)

In the preceding section it was shown that one can-
not describe the magnetic properties of metals using
only noninteracting conduction electrons. However,
as we have already said, most metals have specific
oscillational properties in high fields (μΗ Ζ Τ). As
we shall see, the electrons with energies of the order
of the Fermi energy (e ~ €γ) are responsible for
these oscillational properties.

The best-investigated of the oscillational effects is
the de Haas—van Alphen effect, i.e., the complicated
dependence of magnetic moment on magnetic field
which is observed at low temperatures in strong
fields (μΗ > Τ).

This effect has been seen in a large number of met-
als and apparently is a specific metallic property, i.e.,
a property belonging to all metals.

Most of the oscillational properties (the Shubnikov-
de Haas effect, et al) have the same nature as the
de Haas-van Alphen effect (cf. Sec. 5 in ^).

FIG. 14. Anomaly in the paramag-

netic susceptibility near the point

Ρ =Pk·

-μΗ

All the characteristics of a body in equilibrium can
be computed if we know its thermodynamic potential.
Thus the main problem of this section will be the cal-
culation of the oscillational part of the thermodynamic
potential Ω of the conduction electrons. The computa-
tion will be done in the "gas" approximation. C23] Later
(in Sec. 7) we shall show that including interactions
does not change the picture of the effect.

According to the general formulas of statistical
thermodynamics

Ω = -:
(S)

(6.1)

The summation extends over all states of the electron, *
over the quantum number η [cf. Eq. (5.6) of №], over
the two spin projections σ (σ = ± 1), over all values of
the ζ component of the quasimomentum p z and over
the indices of the partially filled bands. Since p z

varies continuously, the summation over p z can be
replaced by an integration.

The number of states dnpz in the interval (p z,
Pz +dPz) f° r fixed values of the other parameters
(s, η, σ) is easily computed if we note that

where the integration is to be taken over all values of
p x and Dy lying between neighboring classical trajec-
tories of the electron in momentum space, i.e., be-
tween trajectories for which the values of η differ
by unity. According to formula (5.6) of Ш, this area
is equal to — eHh/c.

Thus

ellV (6.3)

*We are not considering the integration over coordinates,
which reduces to multiplying by the volume V of the metal.
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The use of the formula for quasiclassical quantiza-
tion does not mean that (6.3) is valid only in the quasi-
classical approximation. According to (6.2), the den-
sity of states dnpz/dpz is determined by the "cell
area" in p x , py-space ( J J dpxdpy = ДрхДру), which
depends only on the commutation relations for the op-
erators p x and p y . Using formula (6.19) of ^ , we
again arrive at formula (6.3).

Using the value of the density dnpz/dpz, we can
rewrite (6.1) in the following form:

Ω= 2
n=0

where

VeHT 2, η)

(6.4)

dp2. (6.5)
σ, s —со

It will be convenient to use the Poisson formula ^

(6.5a)

In this formula, χ(η) is an arbitrary function, a is a
number between n0 — 1 and n0. For our conditions,
n0 = 0, and it is convenient to set a = — Vi-

We then have from (6.4) and (6.5)
со со со

Ω = V φ (re) dn + 2 Re ^ \ <f (n) e2*ihn. (6.6)
-1/2 fc=l -1/2

Further computations can be done only if one knows
the dependence of the electron energy on the quantum
numbers. We shall assume thatt

га(р:, η) = εη( ( σ = ± 1 ) , (6.7)

where £n(Pz) * s defined by the quasiclassical quanti-
zation conditionsi (cf. (5.6) in M)

(6.8)

For simplicity, we have dropped the subscript s.
The use of the quasiclassical energy levels (6.7) is

justified by the fact that the main contribution to the
oscillating part of the thermodynamic potential comes
from electrons with large quantum numbers n, if the
magnetic field is not too large:

*The Poisson formula is easily obtained if we use the rela-
tion со m

У\ Ь(х-п)= 2 e2ltikx.
n — - c o l l = - c o

This is simply the expansion of the periodic function Σ δ(χ-η)
in Fourier series.

tin the case of strong spin-orbit coupling, μ0 may not be
equal to the Bohr magneton. In this case the spin projection
along the magnetic field is not a good quantum number.

tAs we shall see later, the main oscillational terms can be
computed even neglecting the l/2 in formula (6.8). However, we
note that condition (6.8), including the l/i, remains valid for the
case of an arbitrary dispersion law, and breaks down only near
trajectories with self-intersections (cf. the footnote on p. 844
of L1 J, and also Sec. 3 of the Appendix).

7Ш»1- <6·9)

We shall assume that this condition is always sat-
isfied.

The first term in (6.6) describes the monotonic de-
pendence of the thermodynamic potential on the mag-
netic field. The oscillatory dependence is contained in
the other terms, which we shall study. In doing this
we shall drop all the monotonic terms. We use the
notation Ω for the oscillatory part of Ω .

According to (6.5) and (6.6)

(6.10)

(6.11)

(6.12)

ΟΩ CO

where

T VeHT (• , ι· , .

Ih = — s — \ an \ dp. In

and
Expression (6.11) can be transformed if, using (6.8),

we first change to an integration over the energy (in
place of the integration over n), and then replace the
integration over p z by an integration over n, again
using (6.8). The result is

nmax

\
m* (ε', η)

"min
dn e2ni(tn dn.

(6.12')

The summation sign here denotes a summation over
the intervals of monotonic variation of the function
n ( e . P z ) for fixed e.

The idea in the calculation to separate out the oscil-
latory dependence is to make use of the fact that all the
quantities in the integral (6.12'), except for
(ee-£ff/T + i)-i a n d e27rikn> y a r y s i o w i y w ith e and n.

For e ~ ζσ, the quantities n m m and n m a x as a rule
are considerably larger than unity,* i.e., S e x tfc/ehH
» 1. As shown in ^ , this corresponds to the fact that
an electron with energy close to the Fermi energy de-
scribes an area which is much greater than the square
of the interatomic distance. This last condition corre-
sponds to the condition for applicability of the quasi-
classical approximation.

Since η » 1, one can use the saddle point method
and show that the main contribution to the first integral
comes from the vicinity of the extremal points n m ( e ' ) .
After performing these computations, we get

VeH,-Mi_ye±in/i

2nc (2π/ι)21;3 /-

„2л1(1п т (ε) de.

/-Co/'

Spi "ΐ.η

. (6.13)

*At each energy value one has п„цп = 0 (for that value of
p z at which the plane p z = const is tangent to the constant-
energy surface. These points are of no interest, since the inte-
gration in their vicinity gives no contribution to the oscillating
part of the potential.Μ
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The summation is over all the extremal points of the
cS(e,pz)

function n(e,p~) = — — for fixed e. The points
a ehH

at which n m = 0 are omitted. The plus sign in the ex-
pression e±i7r^4 occurs when the extremal point is a
minimum, and the minus sign when the extremal point
is a maximum.

Now we make use of the fact that the main contribu-
tion to the oscillating part 1̂  comes from integration
near the point of most rapid variation of the Fermi
function, the point e = ζσ. This enables us to write
the last expression in the form:

VeHe-*'2 v, .-2 (ζσ) ± ίπ/4

2лс (2nh

да„ .)

^ (ε-ζ σ )

•de.

+ 1

Introducing the new integration variable χ = e - £σ/Τ
and using the fact that Τ « ζσ, we extend the integra-
tion from — » to + °° . After integrating and substi-
tuting the resulting expression into (6.10), we get

2 π 3

еЬН d*S (ε, ρ.) -1/2

(6.14)

where

In obtaining formula (6.14) we have used the fact that,
in summing over the two spin directions [cf. (6.10)],
everywhere except in the argument of the cosine one
can replace ζσ by ξ, since μ0Η « f. In the argument
of the cosine one must expand Smi ζσ) in powers of
μοΗ and stop at the first power of μ0Η. The inclusion
of the small change in &m is necessary here because,
according to the condition cS/ehH » 1, even a small
change in £3щ causes a large change of the argument.

Formula (6.14) describes the main contribution to
the oscillating part of the thermodynamic potential,
i.e., it describes the oscillations with the largest am-
plitude. Analysis of (6.12) shows that oscillatory cor-
rections appear because of singularities of S(e,pz)
or its derivatives. But for any nonconvex Fermi sur-
face, over a large range of directions of the magnetic
field there are singular sections of the figure-8 type,
for which S( ζ, ρ ζ ) has a singularity of the type
Δρζ In Δρζ, Δρζ = ρ ζ -p z k. where pzk is the value
of p z corresponding to the singular section (cf. Sec. 3
of M, and Sees. 2 and 3 of the Appendix). The inte-
gration near such a section gives a finite contribution
to the oscillating part of the potential; according to '-25-',
the amplitude of the oscillating terms due to "figure-

8's" is a factor of cS/ehH less than the amplitude of
oscillations due to extremal sections.

Since ψ(ζ) is a monotonically decreasing function
which is of the order of or less than unity [ ψ(ζ) = 1
for ζ = 0, and ψ(ζ) « 2ze"z for ζ » 1], while
92S/9pz ~ 1, at not too high temperatures the order
of magnitude of Ω is determined by the factor V/K3

(ehH/c)5^2· 1/m. For fields which are not too large
(μΗ « ер), the monotonic part of the thermodynamic
potential is of the order of its classical value, ^23^ i.e.,

£
of order (V/Й)3 JV(e)de (cf. formula (3.8')). If the

о
Fermi surface does not have an anomalously large
anisotropy, the last expression is ~ V/fi3 S5/Vm. Thus
the oscillating part of the potential is a small addition
~ (eRH/cS)5'2 to its regular (essentially classical)
value. It follows therefore that the oscillatory part of
the free energy F is numerically equal to Ω, if we
express the chemical potential ζ in (6.14) in terms of
the total number of electrons N and the volume V,
i.e., if we replace ζ by the Fermi energy ej\ There
is of course a dependence of the chemical potential on
magnetic field. It should lead to an oscillatory depend-
ence of the thermionic emission current^26^ (cf. also
Sec. 8).

Thus formula (6.14) can be used directly to compute
the observable quantities of interest. The oscillating
part of the ζ component of the moment* is Mz

= - 3Ω/9Η, while the corresponding part of the spe-
cific heat is С = - Τ 92Ω/3Τ2.

Formula (6.16) is valid for any arbitrary ratio of
KWJJ = efiH/m*c and the temperature T. In deriving
it we assumed only that Τ and Йа>н к< ^ F -

At absolute zero (T « Йа>н), we have

ehH

k-*l*cos ik(

J

Г cS

•̂ J m* | dp\

ehH T } C O S ( π/c - . (6.15)

At comparatively high temperatures (λ = 2π2 χ
(Τ/ΚωΗ) » 1), only one of the terms in the summa-
tion over к is kept:

(л~ У
Because of the factor 2π2 in the condition for valid-

ity of formula (6.16), it is valid even at comparatively
low temperatures! (T » ROJH/20).

*In computing the χ and у projections of the magnetic moment
one must remember in the differentiation of il, that m* and Sm de-
pend on the direction of the magnetic field.

tin making numerical estimates, one should remember that the
effective mass m* may differ substantially from the mass of a free
electron.
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According to formulas (6.14)—(6.16), Ω is a com-

plicated oscillatory function of the magnetic field, and

the distance between zeros of this function (its "pe-

riod") is determined by the extremal sections of the

Fermi surface:

ι
cSm

(6.17)

It should be noted that if the dependence on the re-

ciprocal of the field 1/H is taken out of Ω, the peri-

ods do not depend on the magnetic field. In addition

δ( 1/Η) is independent of the temperature.

If δΗ « Η,

Ρ, (6.18)

i.e., at high fields the period is proportional to the

square of the magnetic field.

The temperature dependence of Ω is determined by

the value of the effective mass m*(ep, р 2щ)· But o n e

should remember that interactions of the electrons with
impurities, with lattice vibrations and with other dis-
turbances in the periodicity of the crystal lead to a
reduction in the amplitude of oscillation.* Inclusion
of the scattering on impurities (Bychkov^2^) shows
that the effect of reduction of the oscillation amplitude
can be taken into account by replacing the temperature
by an effective temperature Τ + fi/τ, where τ is of

the order of the mean free time for the electron (quali-

tatively this result had been obtained by Dingle'^28-').

The formulas of Dingle and Bychkov, which were de-

rived assuming a quadratic dispersion law for the

conduction electrons, are convenient for estimates

of the amplitude, t

We shall now find the expression for the component

of the magnetic moment along the magnetic field. Since

cSm/eRH » 1, we need only differentiate the cosine,

and not the slowly varying amplitude:

ы, * . --^—h= (4YVF2
т*

ι (ε*·)

7

m

к '-
(6.19)

In relatively large fields at low temperatures, i.e.,
for ψ и 1, the oscillating part of the moment is con-
siderably greater than its monotonic part. In fact one
can show that M~ (V/R3)(eK/c)2(S1/2H/m*), i.e.,
M/M ~ (cS/eRH)1/2 » 1.

For the estimate, we started from the expression
for Μ given in the paper of Lifshitz and Kosevich

[cf. formula (A.2) of ™

*The next section discusses the electronic interaction.
tWe should mention that the qualitative treatment (DingleM)

does not enable one to include the influence of collisions on the
oscillational effects. In particular, the value of <5Mz/dH com-
puted by Bychkovt27] differs considerably from that given by
Dingle's formulas.i'*i

The fact that the oscillating part of the moment

turned out to be considerably larger than its monotonic

part should not be surprising, since the whole moment

(including the monotonic part) is of quantum mechan-

ical origin.

The relatively large values of Μ makes the obser-

vation of the oscillatory effects easier.

Figure 15 shows typical curves for the magnetic

moment as a function of magnetic field. In most met-

als the dependence of the magnetic moment on mag-

netic field is not limited to a single harmonic, but is

a superposition of several harmonics which, as a rule,

have markedly different periods (Fig. 16). This means

that for most metals the Fermi surface is very com-

plicated, and the numerical estimates show that for all

FIG. 15. Typical curve of dependence of magnetic suscepti-
bility on inverse magnetic field (Zn, Τ = 4.2° K M ) ·

5.3 Г/Н-Г0'О*Г2

-D.OS
I Л I I I I 1 I I

0.5! 0.52 0.53

FIG. 16. Fine structure of the de Haas—van Alphen effect in
a Zn crystal (T = 4.2° K). Curve a is an enlargement along both
axes of the portion of the main curve A which is contained in
the rectangle in the upper figure.
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metals except those of the first group there are rela-
tively small sections, whose size is considerably
smaller than (h/a)2, where a is the lattice constant
(So = 4тг(3/87г)2//3(27гЙ)2/а2 is the maximum cross sec-
tion of the Fermi sphere for a free electron gas with
density equal to I/a3). Usually in deciphering the ex-
perimental data one assumes that small sections cor-
respond to the existence of isolated small sheets of the
Fermi surface.* An estimate of the volume of such
sheets show that they may contain ~ 10 " 5 electrons
(or "holes") per atom. An estimate of the amplitude,
i.e., the factor in front of the cosine, leads to extremely
small values of the effective masses of the electrons
located on the small sections (m* ~ (10~3—10"2)m0,
where m0 is the free electron mass).

The large number of extremal sections, i.e., the
large number of harmonics in the dependence of the
magnetic moment on magnetic field, makes it very
difficult to decipher the experimental curves. But the
use of different ranges of fields and the careful meas-
urement of the angular dependence of the periods (cf.,
for example, Fig. 17) has made it possible not only to
unravel the Μ (Η) curves but to determine the shape
of the Fermi surface of several metals from measure-
ments of the periods (cf. Sec. 9).

Let us consider still another phenomenon, which
has been called "magnetic breakdown." E29^ During
the motion of an electron along the quasiclassical tra-
jectory, there is usually a very small probability for
it to make a transition to a neighboring trajectory.
But if the trajectories are close, in sufficiently high
fields the electron, which doesn't "notice" the low
potential barriers between the trajectories, will move
along a "trajectory" which consists of pieces of sev-
eral different trajectories (Fig. 18). In this case
there may be periods among the harmonics of the

I
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FIG. 17. Dependence of
period of oscillation on di-
rection of magnetic field.

0 W 20 JO 40 50 60 70 80 30

FIG. 18. "Magnetic breakdown."
The solid arrows show the trajectory
of an electron when the field is not
too large; the dashed arrows show
the path in a high field; the dashed
lines are the boundary of the Bril-
louin zone.

•According to Μ the existence of small sections is related
not only to the sheets that split off, but also to small bumps and
dimples on the Fermi surface.

de Haas—van Alphen effect to which there correspond
areas exceeding the size of the section of the Brillouin
zone even for metals with a closed Fermi surface.
This apparently has been seen by Priestley in mag-
nesium. ^

The distances between classical trajectories are
very small if these trajectories pass near a point
where the degeneracy is lifted by any small interac-
tion (for example, by spin-orbit interaction). It is
easy to estimate the fields at which one should ob-
serve magnetic breakdown: the distance between lev-
els should be considerably larger than the energy of
the interaction which lifts the degeneracy.

7. THE DE HAAS-VAN ALPHEN EFFECT AND THE

THEORY OF THE FERMI LIQUID

As we have already stated, most of the results
found in the preceding sections are "stable" to a
change from the Fermi gas to a Fermi liquid. But
the dispersion law for the elementary excitations,
which we shall be considering, naturally includes the
interaction between electrons. This is in the spirit
of the Landau theory of the Fermi liquid. According
to E2 ,̂ the basis for the construction of the spectrum
of the Fermi liquid type is the assumption that as the
interaction between electrons is gradually "switched
on," i.e., as we go from the gas to the liquid, the
classification of the levels remains unchanged—the
state of the "electron" can still be described by
giving the zone number s and the quasimomentum p,
provided the metal does not go over into the supercon-
ducting state. In this classification, the role of the
gas particles is taken over by the elementary excita-
tions (quasiparticles), each of which has a definite
momentum. They obey Fermi statistics, and their
number is always equal to the number of particles
in the liquid. In a certain sense the quasiparticle can
be regarded as a particle which is in the self-consist-
ent field of the surrounding particles. Naturally then
the energy of the particle depends on the state of the
surrounding particles, and the energy of the system
is not the sum of the individual energies of the par-
ticles of the system but is a functional of the distribu-
tion function. This last statement is the basic idea of
the theory of the Fermi liquid.
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The possibility of introducing quasiparticles with a
definite momentum (or quasimomentum) is supported
by the fact that the probability of collision for a par-
ticle which is within the region of smearing of the
Fermi surface is proportional not only to the interac-
tion strength but also to the square of the temperature.
Thus the small parameter with which the theory of the
Fermi liquid is built up is not the interaction between
electrons, but rather any quantity characterizing the
deviation of the distribution function from the Fermi
step function, for example, the temperature (or, to be
more precise, Т/ер).

If we consider only small deviations from the Fermi
step function, the energy of the system can be written
as an expansion in powers of the deviation u(p) of the
distribution from no(e):

εν(p)dtp+ 4- \ \ /(P. p')v(p')v(p)dtp<Ztp,

ατ,, = dpxapj)dp,. (<.!)

Here Eo is the ground state energy (for δη = 0), e
= δ Ε/δ и is the change in energy of the system when
the number of particles in the system changes by unity,
i.e., the energy of a quasiparticle, while f(p, p')
= δ2Ε/δν(ρ) δν(ρ') is the correlation function, the
main quantity characterizing the interaction between
particles in Landau's theory of the Fermi liquid. Μ
For simplicity we shall not take account of the elec-
tron spin.

The formulas derived in the preceding section were
obtained neglecting interaction. Including collisions of
electrons with impurities and with phonons shows that
making the electron mean free path finite does not
change the oscillation periods but reduces the oscilla-
tion amplitudes. The interactions of electrons among
themselves have a more complicated effect. First of
all, electron collisions, which are responsible for the
electronic part of the resistance, reduce somewhat the
amplitude of the oscillations. Second, as we have stated,
the interaction between electrons in the spirit of the
theory of the Fermi liquid enters into the dispersion
law for the quasiparticles (which we have been call-
ing conduction electrons). It is just this dispersion
law, which includes the interaction between electrons,
which enters in the quantization condition (6.8) and,
consequently, determines the periods of oscillation.
We should point out that the interaction between elec-
trons enters in the periods only through the dispersion
law. To prove this last statement, we show that the
distance between interacting conduction electrons in
a magnetic field (in the quasiclassical approximation)
is determined as before by the familiar formula*

*In order for the results of the "gas" and "liquid" treatments
to coincide, not only must their spectra be the same but also the
density of states. The fact that the density of states for a Fermi
liquid is the same as for a Fermi gas will be proved at the same
time as formula (7.2).

г = т^г. т * = 4г4т-· (7.2)

We emphasize once more: the proof of formula (7.2)
does not mean that the interaction between electrons
"drops out" of the quantization condition. It means
that the interaction appears in the quantization condi-
tion only through the dispersion law e = e(p) which,
as we have said, includes the interaction.

To prove (7.2) we use the fact that, in the quasi-
classical approximation,

εηί1 — гп = Δε = %ω, (7.3)

where ω is the frequency of the classical motion. Thus

we must find the frequency of the classical motion of

the electron in a magnetic field. To do this we con-

sider the vibrations of the electron liquid in a mag-

netic field.

The state of the electrons is described by a distr i-

bution function n ( r , p ; t ) , which satisfies the kinetic

equation

dn dn dn (7.4)

Here ν is the particle velocity

p')v(p')dV.

In the case which we are treating, the force acting

on the electron is the Lorentz force

F=y[v, H]. (7.5):

Linearizing Eq. (7.3) and making use of the spatial
homogeneity of the problem, we easily find

t-A.1. rv HI —
at ! с L °' J ση

( 7 · 6 )

where v0 = Эе/Эр is the velocity of the particle for
v=Q (v(v) =n(p) -n o (e)) .

If we introduce a new function χ (v = —(дщ/де )χ)
and change from the variables p x , py, p z to the vari-
ables e, τ, p z , where r is the time for traversing the
quasiclassical trajectory, the kinetic equation (7.6) can
easily be written in the following form:t

(7.7)

The expression for the function F(p z , τ; p z , τ') is de-
termined by comparing with the integral part of Eq.
(7.6). The integration in (7.6) goes over the Fermi
surface, since Эпо/Эе = -δ(€ - е р ) . The solution of
Eq. (7.6) is assumed to have the following form:

*[v,H] = v x H .
TThe reason why the left side of the kinetic equation is so

simple when one uses the variables p z , € and τ is that p z and
e are conserved in a constant, homogeneous magnetic field, and
τ is canonically conjugate to e.
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X(P, t; Ο = ί«-«ΣΧη^)« ί η ω Η ( Ρ ί ) τ . (7-8)
П

which is justified because of the periodic dependence
of the distribution function on т (we are, of course,
considering closed sections on the Fermi surface).

Substituting the expansion (7.8) in Eq. (7.7), we get

[(ο-ηωΗ(ρζ)]χη(ρ1) = ^ Fm>.(pt, p'z)Xn-(Pz)dp'z (7.9)
n'

(we shall not give the relation between F and F ^ ) .

For simplicity we shall suppose that the operator F^Q'

is degenerate, i.e., we shall assume that

Fnn. = bnn-gn (pz) gl (p'z). (7.10)

From the rest of the derivation it will be clear that

this simplifying assumption does not spoil the main

result. From (7.10) and (7.9) we get

and Μ. I. KAGANOV

where

(Xn> 8n)=

„, gn). (7.11)

(7.12)

is the scalar product of the functions gn(Pz) and

Xn(pz). Since we are interested in the distance be-

tween neighboring levels, we consider the case of

n= 1:

From the last equation we have (xi.gi)

= / ω _ ω Η ( Ζ

ρ ζ ) <Χι.8ι>. s o t n a t t h e dispersion

equation for determining the vibration frequencies ω

is written as follows:

= I _ L £ L J
J ω—ω

dpz (7.13)

To analyze this equation it is convenient to change

from continuous to discrete values of the momentum,

for example, by introducing a quantization of the mo-

mentum due to the boundaries of the metal. Then

Eq. (7.13) takes the form

1 = V I g i (7.14)

in which p z takes on a discrete set of values ρζ*\

Figure 19 shows the graphical solution of (7.14), and

we see that the roots are located between the values
ωΗ(Ρζ )· Furthermore there is one root which has

been sloughed off (Fig. 19). When we "go back" to

the continuous spectrum (say, by letting the dimen-

sions of the sample go to infinity), the vibration fre-

quencies tend toward the values ωυ(ρ ζ )· In addition

there is one frequency which is pushed out and corre-

sponds to zero sound in the Fermi liquid. ^303 Since

the frequencies are rigorously required to be between

the values a>H(p z

k )). it is clear that the spectral den-

sity (the number frequencies in the range (p z , p z +dp z)

for a Fermi liquid is the same as for a Fermi gas.

ψΐω) m |
i.i,!.! s ^ ^

Υ '
FIG. 19. Graphical solution of the dispersion equation (7.14).

XT I Si Ι 2 Δ ρ .
φ(ω) = 1, Φ(«)= 2 ΐ '

We note that for a quadratic dispersion law, шц is
independent of p z . The vibration frequency is of course
equal to eH/mc.

Thus formula (7.1) determines the quasiclassical
quantization of the energy levels of a Fermi liquid in
a magnetic field. We have thus shown that the for-
mulas of the preceding section (the oscillation periods)
are valid not only for a Fermi gas but also for a Fermi
liquid, if we understand e(p) to be the dispersion law
including the interaction between electrons in the
ground state.*

8. THE DE HAAS-VAN ALPHEN EFFECT (SPECIAL
PROBLEMS)

We shall discuss some special problems concerning
the theory of the de Haas —van Alphen effect.

In '-31-', the de Haas—van Alphen effect in thin metal-
lic layers was treated. The starting assumption of this
work was the picture of the metal as a potential well.
Using this assumption, the quasiclassical energy lev-
els of the conduction electron were calculated [ cf.
(5.16)—(5.22) in M] and the dependence of the oscil-
lating part of the magnetic moment on the magnetic
field and the film dimensions were studied. In particu-
lar it was shown that the period of oscillations in the
film parallel to the magnetic field is the same as the
period of the bulk metal if the electron orbit corre-
sponding to the extremal area of section of the Fermi
surface lies within the film (first curve of Fig. 11
in M)_ If the "extremal" orbit is not located inside
the film (second curve of Fig. 11), the period of Ω

(and M) is determined by the area bounded by the

trajectory of the electron in momentum space and the

straight lines P x = p x + eH/cd, where d is the half-

thickness of the film, the ζ axis is as always along

the magnetic field, and the у axis is perpendicular to
the surface of the film. In this case the period depends
on the dimensions of the film and on the magnetic field.

The picture given here of the dependence of the os-
cillatory effects on film dimensions is valid, as we have

*The proof given here was first found by I. M. Lifshitz (1957).
Recently this result has been confirmed by direct calculation in
a paper of Bychkov and Gor'kov.l1*]
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said, only if the walls of the metal can be regarded as

an infinitely high potential barrier. In other words, it

is assumed in ^31-' that there is specular reflection of

electrons from the boundary. Actually the scattering

of electrons seems to be almost diffuse. This means

that when it collides with the boundary an electron

"forgets" its motion before the collision. In particu-

lar, the reflection condition is formulated not for an

individual electron but for the electron distribution

function. C323

If there is diffuse scattering of the electrons from

the metal boundary, the nature of the dependence of the

oscillatory part of the magnetic moment on magnetic

field and on film dimensions is different. If the ex-

tremal orbit is located within the film, the oscillation

period in the film is again the same as for the bulk

metal. But if the trajectory is not located within the

film, the corresponding harmonic in the oscillatory

dependence of the magnetic moment on magnetic field

has a much smaller amplitude (M. Azbel'^33^). This

fact provides another possibility for determining the

shape of the Fermi surface from the experimental

data (Sec. 9).

As we have already pointed out, the experimentally

observed dependence of the magnetic moment on mag-

netic field is very complicated, and in many metals

the Μ = M( H) curves contain harmonics correspond-

ing to very small periods. To "resolve" them one

uses high magnetic fields (~105Oe), since accord-

ing to (6.18) the period is proportional to the square

of the magnetic field. High magnetic fields are ob-

tained most often at present by using pulse techniques.

Because of the skin effect, the electrons are then lo-

cated in an inhomogeneous magnetic field. An analy-

sis of the effect of inhomogeneity (A. Kosevich[34'35^)

shows that in order to interpret the experimental data,

i.e., to relate the observed periods to extremal sec-

tions of the Fermi surface, requires that several con-

ditions be satisfied.*

Let L be the characteristic dimension of the sam-

ple (film thickness, for example), To the character-

istic time of variation of the magnetic field, δ the skin

depth (δ ~ Vc2T0p , where ρ is the resistivity of the

sample in the maximum magnetic field H m ) . Then

the conditions mentioned can be written as follows: ̂ 343

either

» - > — > - ^ , (8.1)

o r

L > δ » rm, and ωΗίΓ0 > - . (8.1')

*The oscillation amplitude when one applies a pulsed field
is naturally less than for a steady field. But the use of experi-
mental techniques in which one measures not M(H), but dM/dH,
makes it easier to observe the effect, since differentiation is
equivalent to multiplying by the factor cSm/e1iH, which is con-
siderably greater than unity.

Here a is the interatomic spacing and r m is the

radius of the electron orbit in the field H m . We note

that in C36»37], which used pulse methods to detect and

study oscillations of the magnetic susceptibility of

many metals of the first group of the periodic table,

condition (8.1) was satisfied.

We have stated repeatedly that oscillation effects

which owe their origin to oscillations of the density

of electron states may manifest themselves not only

in an oscillatory dependence of the magnetic moment

on magnetic field but also in a dependence of thermo-

dynamic and kinetic quantities on the magnetic field.

In fact oscillations of resistivity, Hall field, thermal

conductivity and thermomagnetic characteristics of

various metals have been seen experimentally. The

theory of the kinetic properties of metals in a mag-

netic field will be presented in the third part of this

survey.

Here we shall only point out some possibilities for

observing oscillations of the contact potential differ-

ence I-26-! and the tunnel current. '-38-'

The contact difference of potential δφ between two

samples, of which one is in a magnetic field, aside

from a term related to the difference in state of the

surface of the samples, is given by the difference in

their chemical potentials

(8.2)

According to C263 th i s difference i s equal to

Γ, /' cS,., \ n~\

{k №~Ό± τ)
cos { nk—

V. m0

(8.3)

(the notation is the same as in Sec. 6). Numerical es-

timates show that the amplitude of the oscillations of

the contact potential difference is of the order of, or

somewhat greater than, 10"6V [provided, of course,

that the temperature is sufficiently low (ΚωΗ £ Τ)].

A tunnel diode consists of two metals separated by

a thin (~ 10~7—10"6 cm) dielectric layer; it has been

used successfully to determine the size of the energy

gap in superconductors. V. Bar'yakhtar and V. Maka-

rovE38H have suggested using such equipment for simul-

taneous measurement of the extremal sections and the

corresponding effective masses.

A calculation of the tunnel current j , for a differ-

ence of potential φ, in a magnetic field perpendicular

to the separating film, gives the following result:

ΔΙ

(8.4)

The summation in (8.4) extends over all extremal

sections of the Fermi surface for which v z >: 0:
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dS dvz

~дг дрг •ψ(Α-λ)
1 Pz = Рг„

and
(8.5)

(8.6)

The plus sign in (8.6) is used if the extremal section
is a minimum, and the minus sign if it is a maximum.

We see from (8.4) that the tunnel current oscillates
not only when a magnetic field is applied (the periods
of these oscillations are the same as for the de Haas-
van Alphen effect, but the number of harmonics is less,
since the harmonics with v z < 0 drop out), but also
when the applied voltage φ is changed; the period of
the φ oscillations is determined by the effective
masses associated with the extremal sections. Ac-
cording to the numerical estimates, the amplitude of
oscillations of the tunnel current is j £10~6jo, where
j 0 is the monotonic part of the current passing through
the tunnel diode.

9. DETERMINATION OF THE ELECTRON ENERGY
SPECTRUM FROM EXPERIMENTAL DATA*

A great variety of methods are used at present for
determining the energy spectrum of condensed sys-
tems (ultrasonic absorption, galvanomagnetic phe-
nomena, anomalous skin effect, de Haas—van Alphen
effect, inelastic scattering of neutrons, characteristic
energy losses of electrons, etc).

If we are dealing with the determination of Bose
branches of the spectrum, the methods which are most
promising and which give the most complete informa-
tion are those based on the interaction of penetrating
particles with a known energy spectrum (neutrons,
relatively energetic electrons, photons) with the ele-
mentary excitations which are being studied. When
conditions analogous to those for Cerenkov radiation
are satisfied, the penetrating particle excites a single
elementary excitation (it "creates" a boson and with
energy e quasimomentum, or momentum, p). Thus
a study of the inelastic scattering of the particles
(neutrons, etc) can completely determine the disper-
sion law e(p) for the elementary excitations. This
method has been used successfully to determine ex-
perimentally the phonon-roton spectrum in He II, the
phonon spectra of many solids (from inelastic scatter-
ing of neutrons), the plasma oscillations of electrons
in a metal (from the spectrum of characteristic energy
losses of electrons passing through thin films) etc.

To compute the thermodynamic characteristics, it
is sufficient to know the level density v(e), which in
the case of Bose branches of the spectrum can be de-
termined in principle from the temperature dependence

of the specific heat and other thermodynamic quanti-
ties. ^ But this method is not very stable and there-
fore requires tremendous accuracy of the experimental
data.

Now let us look at the Fermi branches of the spec-
trum. As we have often said, one can speak of a one-
electron spectrum (in the fermion sense) only when
the "electron" or "hole" is near the Fermi surface.
Thus the problem of establishing the electron energy
spectrum (or the electronic dynamic structure of the
metal) is very much restricted in scope—one must
determine the shape of constant-energy surfaces lo-
cated near the Fermi surface. Since the electron
velocity is ν = Эе/Эр, it is sufficient to determine the
shape of the Fermi surface and the distribution of ve-
locities on it. As for the energies which are far from
the limiting surface ep, here one can apparently only
pose the question of determining the density of electron
states per unit energy range v(e). The latter quantity
can be gotten from x-ray absorption spectra. Further-
more, the suggestion has been made ̂ 41-' to use the γ
quanta from positron absorption in metals to probe the
deep electron energy levels.

As investigations in recent years have shown, there
are a large number of phenomena which are sensitive
to anisotropy of the dispersion law for conduction elec-
trons (the anomalous skin effect, the de Haas-van
Alphen effect, cyclotron resonance, ultrasonic absorp-
tion in a magnetic field, etc). They all give some in-
formation about the electron energy spectrum. One
can achieve a complete unravelling of the electron
dynamic structure only by using many different meth-
ods. The best developed methods are those for deter-
mining the electron spectrum using measurements in
relatively high magnetic fields* (the de Haas-van
Alphen effect, cyclotron resonance, absorption of ultra-
sound in a magnetic field, galvanomagnetic phenomena).

In this section we discuss the possibility of deter-
mining the electron energy spectrum from observations
of the de Haas-van Alphen effect. We start from the
main oscillatory terms in the magnetic moment, i.e.,
from those terms which are due to the extremal sec-
tions of the Fermi surface (cf. Sec. 6). The starting
expression is (6.19), which shows that the dependence
of the period of each harmonic Δ(1/Η) on the direc-
tion of the magnetic field determines the dependence
on angle of the area of the extremal sections Sm.
Measurement of the amplitude of harmonics and their
temperature dependence makes it possible to deter-
mine the derivative 9Sm/3J = 2ππι*(£,Pzm)· How-
ever, for the determination of the effective mass one
must bear in mind the remarks in Sees. 6 and 7 about
the effect of interaction on the amplitude of oscillation.

*The problems of determining the electron energy spectrum
of metals from experimental data are discussed in a detailed
survey by A. Pippard.L3']

*For all these methods it is necessary that the condition
ω-цТ » 1 be satisfied; this condition means that the electrons
go through a sufficient number of revolutions in the magnetic
field in the time between collisions (τ is the mean free time).
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Since even when the interaction is taken into account
the amplitude of the oscillations is expressed in terms
of the dispersion law (cf. Sec. 7 ), while the amplitude
is not, it is obvious that the de Haas-van Alphen effect
is extremely convenient for determining the shape of
the Fermi surface, but gives considerably less satis-
factory data regarding the distribution of velocities
on the Fermi surface (for the relation between the
effective mass and the velocity ν = Зе/Эр, cf. below).

Let | be a unit vector along the magnetic field,
and σ(ξ ) = [ Sm( ί)]ξ be the extremal area of the sec-
tion of the Fermi surface c(p) = £ by a plane perpen-
dicular to ξ. Then, according to (6.19),

where Δξ is the period (in units of the reciprocal
field) of the corresponding harmonic of the oscillation.

It is assumed that the Fermi surface has a center
of symmetry and that every ray drawn from the center
meets the surface at only one point. If the Fermi sur-
face breaks up into several closed surfaces, the fol-
lowing considerations apply to each of them.

For surfaces having this property, the extremal
section is central. We denote the length of the radius
vector drawn from the center of the surface in the
direction e by p(e). Then

(9.2)

where δ(χ) is the Dirac δ-function, dSle is the ele-
ment of area of the unit sphere. In other words,

Going to the limit λ — 0, we get

(9.3)

i.e., σ( | ) is the mean square of the radius vector
p(e) on the equator which is defined by (e>£ ) = 0.

Thus construction of the surface reduces to deter-
mining the function πρ2(β) (where p( —e) = p(e)) from
its average values on the equator θ · ξ = 0 for arbi-
trary ξ.

The solution of this problem can be gotten from the
following relations, which can be easily shown by direct
computation to be valid for an arbitrary function φ ( ξ )
= Ψ( — ξ )> given on the unit sphere:

z = (el), λ 2 < 1 . (9.4)

Here ψ(ξ ) denotes the average value of the function
ψ(β) on the equator e- ξ = 0; the region of integration
on the surface of the unit sphere is determined by the
inequalities.

Setting ψ(ξ ) = πρ2(ξ ), ψ (ξ ) = σ(ξ ), we have for
sufficiently small λ,

If in each case we choose the direction of e as the
polar axis of our coordinate system and introduce the
angle through the equation cos θ = ξ · β, and also use
the polar angle φ in the plane perpendicular to e, we
can, writing σ(ξ) as a e ( c o s θ, φ ) , integrate by parts
and write the expression in the form

Заe (cos θ, φ)
(9.6a)д cos θ cos θ

0 0

Formula (9.6) solves our problem; for numerical
computations it is apparently more convenient to use
formula (9.5) with some value of λ « 1.

As we see from (9.6), the solution is stable; the
mean error in determining the shape of the surface
is related to the error in determining the area σ( ξ )
[i.e., the period δ(1/Η)]. In order of magnitude,
δρ2 ~ δσ.

In reproducing the shape of the surface, we get at
the same time the value of 92S( ζ, ρ ζ )9p|, which is thus
not an independent parameter. An additional parameter
is the quantity 9Sm/9£, which can be determined from
measuring the oscillation amplitudes or their temper-
ature dependence. Knowing the value of ЭБщ/Э^ as a
function of the magnetic field direction ξ, we can de-
termine the velocity of the electrons on the limiting
surface.

The velocity ν is given by ν = Эе/Эр. If in addition
to the surface e(p) = f, we consider the neighboring
surface e(p) = ζ + df, then

where δη denotes the distance between the surfaces
along the normal. On the other hand, the neighboring
surface will have an extremal section area equal to

For the surfaces we are considering, the extremal
section coincides with the central section (p z = 0).
Thus the derivative with respect to the chemical po-
tential is taken at constant p z , i.e., 9Sm/8f = 2πΐη*,
or in the notation used before,

According to (9.6), this enables one to determine
δρ2(θ) and consequently δη = δρ(β·η). This solves
our problem:

(9.5) J_=i£ul(m* (e) Lf
o(e) Q(e) I. x ' 2π .1

am'(cos8>lf) d c o s 9 l
a (cos Θ) cos θ J

(9.7)
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Knowing the shape of the surface p(e), we can find
the volume contained within it and thus determine the
number of electrons in the corresponding zone.

The observation of the de Haas—van Alphen effect
in thin single crystal films opens up new possibilities
for determining the shape of the Fermi surface, t33^
According to Sec. 8, for this purpose we can use the
fact that the contribution of those electrons whose
orbit size exceeds the transverse dimensions of the
film is much less than that of electrons whose orbits
are contained within the film. Since the orbit size is
inversely proportional to the magnetic field strength,
a change in the magnetic field will lead to a marked
increase (for Η = He) of the quantum oscillations
with a definite period, which is determined by those
electrons whose orbits "got into" the film. If the
magnetic field is parallel to the film surface, the
critical field Hc (the field at which one observes
an abrupt change in the oscillation amplitude) deter-
mines the diameter D of the section of the Fermi
surface in the direction perpendicular to the magnetic
field and normal to the surface of the film:

eHcd
с '

where d is the film thickness. By changing the field
direction and using different orientations of the film,
one can in principle construct the Fermi surface di-
rectly from the diameters D. The advantage of this
method of determining the shape of the Fermi surface
is that the film itself produces something resembling
a Fourier analysis. Since the curves of the depend-
ence of magnetic moment on magnetic field are ex-
tremely complicated (as a rule the oscillations con-
tain a large number of harmonics), unscrambling the
experimental is a problem which is very difficult and
sometimes cannot be solved unambiguously. The use
of thin films might help solve the problem. But the
final deciphering of the electronic structure is pos-
sible only by using the results of many different kinds
of experiments.

In concluding this section we note that observation
of the de Haas—van Alphen effect has made it possible
to unravel the structure of many metals.

10. GENERAL THEORY OF OSCILLATORY PHE-
NOMENA C"3

The treatment of oscillations of thermodynamic
quantities in a magnetic field (Sees. 6—9) shows that
their origin is the oscillation of the density of states,
and that the effect of the magnetic field is simply to
quantize the energy levels. Obviously similar effects
should occur whenever conditions are present which
cause a quantization of the energy. One should then
observe an oscillatory dependence on the parameters
which determine the position of the energy levels of
the electron, provided the distance between levels is

the order of or larger than the temperature, but much
less than the Fermi energy.

One can develop a general theory of oscillation
phenomena by using the equations for quasiclassical
quantization, according to which the adiabatic invari-
ants Ιχ of a system which carries out a finite motion
are equated to half-integral multiples of Planck's
constant:

(10.1)

If the "classical" problem of the motion of an elec-
tron with an arbitrary dispersion law has been solved,
its energy can be expressed in terms of the adiabatic
invariants

e = β (Λ,/,,/,).

so that, by using (10.1), one can get a quantization of
the energy levels:

. (10.2)

The vector η stands for the three integers щ, n2,
and n3.

The use of quasiclassical energy levels makes the
whole theory applicable only to the case where the dis-
tance between levels is much less than the limiting en-
ergy ep. This approximation is sufficient since (as
we have said repeatedly) oscillations appear only in
this limiting case.

The quantization condition (6.7), which was applied
earlier is, of course, a special case of (10.2). In the
case of an electron moving in a magnetic field, the
adiabatic invariant is the quantity cS/eH.

Knowing the quantum energy levels (10.2) enables
one to compute the oscillatory part of the thermody-
namic potential

t-E(n)

Using the three-dimensional analog of the Poisson
formula, we have

t-e(n)
Ω = - 5 Τ \ ΐ η [ 1 + β τ } d n - j 2 H e ] > ] £ < k - i - . . , ( Ю . З )

к

where

Lk = - - Τ

while the vector к stands for the set of three integral
subscripts k lt k2, and k3. The summation is over all
positive values of kj (i = 1, 2, 3) except kj = 0.

Since the integration over η is only over the first
octant (0 < щ < °° , i = 1, 2, 3 ), because of the dis-
continuity of the integrand at the boundary of the re-
gion of integration, in addition to the three-dimensional
integrals there are also two-dimensional and one-di-
mensional integrals, whose explicit form we shall not
give.
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Carrying out computations similar to those in Sec.
6, we find that the oscillating part of Lfc has the fol-
lowing form:

ψ (Xk) e
2Jiikn

v
(k,;)+iq>

v

. (10.4)

it is convenient to use the concept of an "inverse effec-
tive mass tensor."

The classical equation of motion of the electron has
the form Μ

dPi de

Here п„ = Пу(к, f) denotes the radius vector in the η
space to those points of the surface e(n) = £ at which
the direction of the normal to the surface is parallel
to the vector k; Kv( ζ) is the Gauss curvature of the
surface at these points, λ^ = 2тг2(к· 9nv/9f )T, φν

- ±тг/2 if щ is an elliptical point; the minus sign
applies to the case where the convexity of the surface
at the given point is toward к while the plus sign is
used in the opposite case. In the case of a hyperbolic
point, ψν = 0. Again we shall not write the two-dimen-
sional and one-dimensional terms.

Substituting the asymptotic expressions for Lfc
(10.4) and the two-dimensional and one-dimensional
terms which we have omitted in formula (10.3), we get
the oscillatory part of the potential Ω. To compute the
period of oscillation we must know the dependence of
the n^, i.e., of the adiabatic invariants Ij, on the pa-
rameters which determine the position of the quantized
energy levels; from formula (10.4) we see that the pe-
riods of oscillation are given by the condition

AIi = h,

where the symbol ΔΙϊ denotes the change in the i-th
adiabatic invariant because of a change in the param-
eters determining the finite motion of the electron. It
should be remembered that Ω is the sum of a large
number of terms, all of the same order, each of which
has its own period. Since in general the ratios of these
periods are arbitrary, the oscillations can take on very
complicated forms.

APPENDIX

1. THE DEFINITION OF THE EFFECTIVE MASS OF
A CONDUCTION ELECTRON

The dynamical properties of a free electron are de-
termined completely by its mass. As was shown in M,
the dynamics of a conduction electron depend essen-
tially on its dispersion law. In this connection the in-
troduction of an "effective mass" is not a unique pro-
cedure. In Μ the effective mass m* was introduced
using the expression for the period of the motion in a
magnetic field. Such a definition is convenient since
m* retains its value when the electron moves in the
magnetic field. For motion in weak fields (electric
and magnetic), where, in the linear approximation in
the force acting on the electron, one can neglect the
change in the quasimomentum of the electron during
a free path (if we are interested in its spatial motion),

Since Vi = dxj /dt, we then get

d*Xi (A.I)

If we omit nonlinear terms in the force, the tensor
92e/3pj Эрк can be assumed to be a constant. It is
called the inverse effective mass tensor, and is de-
noted by (1/m )ik:

\m Jik , (A.2)

We should mention that at an arbitrary point of p-
space, the three principal values of the inverse effec-
tive mass tensor do not all have the same magnitude
or the same sign (1/mj * l/m2 * l/m3). Near en-
ergy minima and maxima, the principal values 1/mi
of the effective mass tensor have the same sign (1/mi
< 0 near a minimum, 1/mj > 0 near a maximum).

2. MOTION IN A TIME-VARYING, INHOMOGENEOUS
ELECTROMAGNETIC FIELD

In a constant magnetic field of intensity H, an elec-
tron which is on a closed constant-energy surface
moves along a trajectory which is given by the equa-
tions (cf. Sec. 3 in M)

= const, ε(ρχ, py, Pg) = const. (A.3)

In this case the moving electron is similar to a cur-
rent loop.

As the treatment in ^ shows, the motion in a
slowly varying, weakly inhomogeneous magnetic field
can be pictured as a drift, rotation and deformation of
the "current loop," where the nature of this slow mo-
tion is easily established from the fact that the ratio
of the area of the section of the constant-energy sur-
face S to the magnetic field Η is an adiabatic invari-
ant.* We also note that in this case the velocity of the
center of the current loop coincides at each point with
the direction of the magnetic field.

If Eq. (A.3) describes an open trajectory, we must
distinguish two cases:

a) Curve (A.3) is periodic, i.e., the direction in
which it is open is parallel to some vector of the re-
ciprocal lattice. The principal difference from the

*If the magnetic field is a slowly varying function of the
time, the statement that S/H is an adiabatic invariant is clear
from the quantization condition [cf. formula (6.8)]. If H(r) is a
slowly varying function of the coordinates, the equations of
motion of the electron have an extremely simple form:

S(e, pH)

Я(г)
- = const, ε = const, r = — .

dp
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case of closed sections is that the velocity is not di-
rected along the magnetic force line, as a result of
which S/H is not an adiabatic invariant. However,
the general nature of the motion is very similar to
the motion in a closed trajectory. Thus the role of
the period is taken by the time during which the elec-
tron passes through a unit cell of the reciprocal lattice.

b) Curve (A.3) is not periodic, i.e., the direction in
which it is open is not parallel to any vector of the re-
ciprocal lattice.

In averaging over an aperiodic trajectory, the in-
tegration along the open trajectory passing through
an infinite set of unit cells* can be replaced by a
sum of integrals over equivalent segments within one
cell (Fig. 20). In the case of an aperiodic trajectory,
these segments are everywhere dense in the unit cell.

/г / /,//
I

1/
/ / /

FIG. 20. One of the crystal planes of the reciprocal lattice,
cut by the plane рн = const. The same number is used to mark
equivalent points.

It then follows that the averaged quantities describing
the slow motion cannot depend on рн, the projection
of the momentum along the magnetic field. Naturally
the dependence of the averages on рн can also be neg-
lected for periodic trajectories if their period is much
greater than fi/a (a is the average spacing between
atoms). This fact (that the averages are independent
of рн) causes a fundamental change in the character
of the slow motion.

The most interesting situation occurs when, during
the motion in a field which is slowly varying in space
and time, a transition occurs from one type of motion
to another. When this occurs we get a phenomenon
which is very similar to the scattering by a center of
force.

The regions in p-space with different types of mo-
tion are separated from one another by the segments

•Actually, the derivation of the equations describing the
slow motion (drift, etc.) involves averaging over a time interval
Τ which satisfies the inequality To « Τ « τ , where To is the
time for the electron to traverse a unit cell and τ is the mean
free time. But in averaging bounded quantities, the integration
can be extended over the entire trajectory, since the difference

Τ t+T

lim -—r \ f(t')dt' =- \ l(t')dt
-Τ t

is a rapidly oscillating function of order fT0/T.

of the self-intersecting trajectories which are formed
on the section of the surface e = const by the plane
tangent at the hyperbolic points of the constant-energy
surface. These points are the classical stagnation
points for motion in a homogeneous constant magnetic
field. The period of motion of the particle diverges
logarithmically as p H — p ^ (where pj | is the vector
in p-space drawn at the singular point).

The essence of the scattering phenomenon is most
easily explained on the example of motion in a weakly
inhomogeneous magnetic field which is constant in
time and has straight lines of force. Let F be a sad-
dle point of the constant-energy surface e = e0 such
that the normal to the surface at this point is parallel
to Ho. The section e = e0, p H = pj | is a figure-8,
whose crossing point is at F. If the current loop dur-
ing its motion in p-space, touches the surface at the
saddle point, it will later split into two current loops,
corresponding to the regions I and II, separated by
the singular point (Fig. 21). The types of motion in
these two regions are essentially different. Depend-
ing on the exact "microscopic" initial conditions, the
particle falls either into region I or into region II.

FIG. 21. Motion of an
electron in an inhomogen-
eous magnetic field near
a saddle point of the con-
stant-energy surface
(splitting off of a current
loop).

The "microscopic" initial conditions alternate so
that in each microscopic element of the energy sur-
face, determined by the averaged values of the "co-
ordinates," there are points from which the particle
goes into region I and points from which it goes into
region II. From this point of view one can regard the
falling of the particle into the two regions as a random
process and speak of a "scattering" of the particles
near the singular point; the probabilities for scattering
into I and II (wj and w2 ) have well-defined values.

To determine the scattering probabilities wt and
w2, we consider a classical ensemble of particles dis-
tributed according to some impact parameter, whose
choice will be made later. Each particle, during its
last turn before falling into region I and II, intersects
the principal line of curvature, passing through the
point F (point p2 = 0 in Fig. 20) for some value of
pjj(O). After making one complete turn around one
of the loops of the figure-8, the particle is again in
the neighborhood of the crossing point. Depending on
the sign of the difference PH(t) - fH a t t h a t t i m e · t h e

particle enters region I or region II; the quantity
PH(t) - fΗ i s uniquely determined by the value of
pjj(O) at the start of the revolution. From this we
see that рц(0) serves as a convenient impact param-
eter. To the regions I and II there correspond ele-
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Types of transition from one type of motion to another.
O — motion in a closed trajectory; J —motion in an open
trajectory (the symbols are explained in the text).

We then find that

Τι . Τ2

&1 — \" Ρα dt', 6 2 ^ \ Ρα dt' • (A.4)

(Here Tj is the time for traversing the first loop of
the figure-8, and T2 is the time for going around the
whole figure-8.

The main contribution to the change in рд during
the time of traversal of the figure-8 comes from the
part of the trajectory which is far from the singular
point. The reason for this is that рд = 0 at the singu-
lar point.

Using the equation of motion of a current loop, one
can show that (A.4) leads to^45-'

w.
(A.5)

where St and S2 are the areas of the loops of the
figure-8. From (A.5) we have

wl =

In the general case there are several types of tran-
sition from one regime to the other. The possible
types of transitions are shown schematically in Figs.
22—24. On the right of each diagram are the symbols
corresponding to the two regions where the scattering
occurs. The circles represent the closed trajectory;
the arrow corresponds to an open periodic trajectory,

Θ— Θ*Θ t — ©*l 0 — Ι · Ί
a) " a ) a)

0 _ 0 + © | — Θ+! Θ —
b)

FIG. 22
b)

FIG. 23

b) +

FIG. 24

Types of constant-energy surfaces corresponding to the
transitions shown in Figs. 22-24.

ments δι and δ2 of the values of pjj(O), determining
whether the particle enters the particular region. The
scattering probabilities Wj and w2, i.e., the relative
numbers of particles entering I and II, respectively,
are proportional to the flux of particles through 6t and
62. For a sufficiently smooth distribution function, in
first approximation in the inhomogeneity, these fluxes
are given for a sufficiently smooth distribution function
by the sizes of the elements themselves.

The intervals δι and δ2 are determined using the
relation

FIG. 25 FIG. 26 FIG. 27

the direction of the arrow giving the direction of mo-
tion along the periodic trajectory. The types of con-
stant-energy surfaces corresponding to these transi-
tions are shown in Figs. 25—27, where the lines pjj
= const are drawn. The point of self-intersection is
labelled F. The thick line is the self-intersecting
curve. The arrows show the direction of motion along
the trajectory. Figure 25 corresponds to diagrams
22a and b; Figure 26 to diagrams 23a and 24a; Fig-
ure 27 to diagrams 23b and 24b. The signs in Figs.
22—24 are the same as the sign of the difference
PH ~ Ĥ m the regions with different types of motion. *

For motion in an arbitrarily weak inhomogeneous
electromagnetic field which varies slowly with time,
the derivation of the probabilities of different types of
motion is somewhat more complicated than the special
case treated above. In ^453 compact expressions for
the probabilities in the most interesting special cases
were obtained from the general formula. For exam-
ple, for motion in a weak electric field parallel to a
constant, homogeneous magnetic field:

щ
w.

d

*ΡΖ βκρ(ΡΗ»

3. QUASICLASSICAL QUANTIZATION NEAR SINGU-
LAR CLASSICAL TRAJECTORIES

As was shown in the first part of this survey (cf.
Sec. 3), the period of motion of the electron along the
self-intersecting trajectory is logarithmically infinite,
since the point where the curve intersects itself is a
stagnation point.

If one disregards overlapping of zones (cf. Sec. 1),
the figure-8 trajectories are the most general type of
singular trajectory. In Fig. 28 we show typical tra-

*Six other types of transition, which do not differ basically
from those shown in Figs. 22-24, are obtained by reversing the
sign.
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FIG. 28. Typical singular trajectories in a magnetic field

near a point of self-intersection, a) constant-energy surface has

a bridge; b) constant-energy surface has a dimple.

jectories in a magnetic field. To the different trajec-
tories there correspond different values of p z . Fig-
ure 28a shows a section of the constant-energy surface
near a bridge, and Fig. 28b near a dimple. The singu-
lar trajectory corresponds to p z = p z k·

To sufficient accuracy (i.e., to the accuracy neces-
sary for computing the oscillating parts of the thermo-
dynamic potential, cf. Sec. 6), the quasiclassical en-
ergy levels can be gotten from the usual condition for
"quantization of a r e a " (Sec. 5 of '-1-'). However, in
finding the energy levels one must take into account
that at p z = p z k the area S has a singularity of the
type Δρ ζ In Δρ ζ , where Δρ ζ = ρ - p z k · On one side
of Pz = Pzk there are two systems of quasiequidistant
levels* given by the equations

St (ε, рг) = ?—— nu 8г (ε, ρζ) =
ehH

(A.6)

On the other side there is one system, given by the
equation

ρ / \ ehH t A n\

1?(ε,ρ-)= η. (Α. ι)
с

"Readjustment" of the levels occurs near p z = p z k
and is described by the system of equations

А Яг

Po

Po

Po

ehH

ehH

ehH

H
— —— η, ύ * =

(A.8)

where Po = 2V z (p z k) Vmtm2 . Introducing the notation

ehH lh' ehH 2 f t ' ekH~ h'

we have from Eqs. (A.8),

eHh Ή — "\k

eHh «2 — «2k
, ehH ,
In (n2 — пг

ι e h t l , s

eHh n -
~ c p a . e h H

(A.9)

*To be specific, we have assumed that the energy is fixed,

so that p z is quantized (pzk is a function of the energy).

Naturally, if p z is fixed the energy e is quantized. The singu-

lar trajectory corresponds to a definite critical value of the

energy e k = £ k(p z).

It is interesting to note that near p z = p z k the dis-
tances between levels are not at all equivalent; we have
seen that this result is a consequence of the quasiclas-
sical quantization conditions. Equations (A.8) are ap-
plicable for njk, n2k, and n[j » 1, while the solutions
(A.9) hold only for n tk, n2k, nk » | η - n tk |, | η - n2k I,
| η — nk I » 1. A rigorous quantum mechanical treat-
ment in the quasiclassical approximation for the motion
of electrons along figure-8 trajectories, given by Zil '-
berman^4 6^ and much more completely by AzbeP,'^47-'
leads to similar results.

We also mention that more accurate quasiclassical
trajectories (including the У2 in the Bohr quantization
conditions) show that there is a peculiar oscillatory
dependence of the level separation on magnetic field
(AzbeP [ 4 7 : i ).

*I. M. Lifshitz and M. I. Kaganov, UFN 69, 419
(1959), Soviet Phys. Uspekhi 2, 831 (1960).

2 L . D. Landau, JETP 30, 1058 (1956), Soviet Phys.
JETP 3, 920 (1956).

3V. Galitskn and A. B. Migdal, JETP 34, 139
(1958), Soviet Phys. JETP 7, 96 (1958).

4 L . D. Landau and Ε. Μ. Lifshitz, Quantum
Mechanics, Sec. 76, Pergamon Press, 1958.

5W. A. Harrison, Phys. Rev. 118, 1182, 1190 (1960).
6 F . Bloch, Z. Physik 52, 555 (1928); 57, 545 (1929).
7W. A. Harrison, Phys. Rev. 118, 1182 (1960).
8 F . G. Moliner, Phil. Mag. 3, 207 (1958).
9 G. E. ZiPberman and Ya. E. Aizenberg, FMM 4,

216 (1957), translation 4, No. 2, 18 (1957).
1 0 Alekseevsku, Gaidukov, Lifshitz, and Peschanskii,

JETP 39, 1201 (1960), Soviet Phys. JETP 12, 837
(1961).

1 1 G. Ya. Lyubarskii, Teoriya grupp i ее primenenie
ν fizike (Group Theory and Its Application to Physics),
Moscow, Gostekhizdat, 1957, translation, Pergamon
Press, 1960.

1 2 J. W. McClure, Phys. Rev. 108, 612 (1957); Ph.
Nozieres, Phys. Rev. 109, 1510 (1958).

1 3 A. A. Abrikosov and L. A. FaPkovskn, JETP 43,
1089 (1962), Soviet Phys. JETP 16, 769 (1963).

1 4 J. M. Luttinger, Phys. Rev. 119, 1153 (1960).
1 5 Yu. A. Bychkov and L. P. Gor'kov, JETP 41, 1592

(1962), Soviet Phys. JETP 12, 971 (1961).
1 6 Ё. I. Rashba and V. I. Sheka, FTT, Collection II,

162 (1959).
1 7 E. W. Elcock, Proc. Roy. Soc. (London) A222, 239

(1954); G. E. ZiPberman and F. Itskovich, JETP 32,
158 (1957), Soviet Phys. JETP 5, 119 (1957).

1 8 1 . M. Lifshitz, JETP 38, 1569 (1960), Soviet Phys.
JETP 11, 1130 (1960).

19Cf., for example, F. Bloch, Molecular Theory of
Magnetism, in Marx, Handbuch der Radiologie.

2 0 E. N. Adams, Phys. Rev. 89, 633 (1953); M. V.
Nitsovich, FMM 7, 641 (1959).

2 1 R. E. Peierls, Quantum Theory of Solids, Oxford,
Clarendon Press, 1955.

2 2 J. Phys. Chem. Solids 23, 433 (1962).



SOME PROBLEMS OF THE ELECTRON THEORY OF METALS 907

2 31. M. Lifshitz and A. M. Kosevich, DAN SSSR 96,
963 (1954); I. M. Lifshitz and A. M. Kosevich, JETP
29, 730 (1955), Soviet Phys. JETP 2, 636 (1956).

24 R. Courant and D. Hilbert, Methods of Mathemati-
cal Physics, vol. 1, Interscience, 1953.

25M. Ya. Azbel', 39, 878 (1960), Soviet Phys. JETP
12, 608 (1961).

26Kaganov, Lifshitz, and SinePnikov, JETP 32, 605
(1957), Soviet Phys. JETP 5, 500 (1957).

27 Yu. A. Bychkov, JETP 39, 1401 (1960), Soviet
Phys. JETP 12, 977 (1961).

28R. B. Dingle, Proc. Roy. Soc. (London) A211, 517
(1952).

29M. H. Cohen and L. M. Falicov, Phys. Rev. Letters
7, 231 (1961).

30 L. D. Landau, JETP 32, 59 (1957), Soviet Phys.
JETP 5, 101 (1957).

3 1 1. M. Lifshitz and A. M. Kosevich, DAN SSSR 91,
795 (1953); A. M. Kosevich and I. M. Lifshitz, JETP
29, 743 (1955), Soviet Phys. JETP 2, 646 (1956).

32K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938).
33M. Ya. Azbel', JETP 34, 754 (1958), Soviet Phys.

JETP 7, 518 (1958).
34 A. M. Kosevich, JETP 33, 735 (1957), Soviet Phys.

JETP 6, 564 (1958).
35 A. M. Kosevich, JETP 35, 738 (1958), Soviet Phys.

JETP 8, 512 (1959).
36 D. Schoenberg, Physica 19, 791 (1953).
37D. Schoenberg, Proc. Phys. Soc. (London) 79, 1

(1962).

38 V. G. Baryakhtar and V. I. Makarov, DAN SSSR
149, 64 (1962), Soviet Phys. Doklady, in press.

39 A. B. Pippard, Repts. Progr. Phys. 23, 176 (1960).
40I. M. Lifshitz, JETP 26, 551 (1954).
41M. A. Krivoglaz and A. A. Smirnov, FMM 7, 151

(1959), translation 7, No. 1, 144 (1959).
4 2 1 . M. Lifshitz and A. V. Pogorelov, DAN SSSR 96,

1143 (1954).
43 A. V. Gold, Phil. Trans. Roy. Soc. (London) A251,

85 (1958); A. V. Gold and M. G. Priestley, Phil. Mag.
5, 1089 (1960); E. M. Gunnersen, Phil. Trans. Roy.
Soc. (London) A249, 299 (1957).

4 4 1. M. Lifshitz and A. M. Kosevich, Izv. AN SSSR,
ser. fiz. 19, 395 (1955), Columbia Tech. Translation,
p. 353.

45Lifshitz, Slutskin, and Nabutovsku, JETP 41, 939
(1961), Soviet Phys. JETP 14, 669 (1962).

46M. Ya. Azbel', JETP 34, 969 (1958), Soviet Phys.
JETP 7, 669 (1958).

47M. Ya. Azbel', JETP 39, 1276 (1960), Soviet Phys.
JETP 12, 891 (1961).

48 B. I. Verkin and I. M. Dmitrenko, Izv. AN SSSR
ser. fiz. 19, 409 (1955), Columbia Tech. Translation
p. 365.

49R. G. Chambers, Proc. Phys. Soc. (London) 78,
941 (1961).

50 L. Van Hove, Physica 25, 849 (1959).

Translated by M. Hamermesh


