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1. INTRODUCTION

1. Preliminary remarks. Nuclear magnetic resonance
(n.m.r.), discovered in 1945 simultaneously and in-
dependently '-1'2-' by two groups of American physicists,
immediately attracted considerable attention since it
is a powerful method for the study of the internal
microscopic structure of various objects. In particu-
lar, a large number of papers was devoted to the
study of n.m.r. in metals and alloys. Such investiga-
tions are first of all of interest because they enable
us to obtain information on the electronic structure of
metals. Indeed, owing to the interaction between the
electrons and the nuclear spins the nuclear resonance
absorption line becomes sensitive to quantities char-
acteristic of electrons in a metal. This circumstance
makes it possible to study their behavior by means of
nuclear magnetic resonance.

In the present review we wish to give an idea of
the nature of the papers devoted to the study of the
electronic structure of metals with the aid of n.m.r.,
and of the results obtained in these papers. In order
not to lengthen this article excessively we shall not
touch upon the numerous papers devoted to the study
of alloys which are of interest in themselves.

2. The phenomenon of nuclear magnetic resonance
consists, as is well known, of the following. A sample
containing nuclei of magnetic moment different from
zero is placed in a fairly high magnetic field Η
which we take in our subsequent discussion to be
along the ζ axis. This gives rise to a system of
equidistant Zeeman energy levels separated by ΔΕ
= ΚγΗ where у is the nuclear gyromagnetic ratio. A
weak alternating field Hj of frequency ω is then ap-
plied in a direction perpendicular to the direction of
the field H. We shall in subsequent discussion take
this field to define the χ axis. This field induces
transitions between the Zeeman levels accompanied
by absorption and emission of energy; the phenomenon
of resonance consists of the fact that the probability
of such transitions increases sharply when the condi-
tion ω = ω0 = 7H is satisfied. For the majority of
nuclei subjected to the usual fields in the kilogauss
range this resonance frequency lies in the very con-
venient radio-frequency band.

The resonance manifests itself in two physical
phenomena which are used for recording it. First, as
we have already noted, energy will be emitted in the
form of electromagnetic radiation of frequency a; as
a result of a transition from a higher to a lower en-

ergy level. The magnetic vector of this radiation will
be circularly polarized in the xy plane, and this leads
to the appearance in this plane of an alternating mag-
netic field in directions in which no field existed
previously, for example along the у axis. This phe-
nomenon is sometimes called nuclear induction.
Second, if the variable field Hj is not very large,
then the number of transitions per unit time corre-
sponding to absorption of energy will always be
greater than the number of transitions corresponding
to emission of energy, and the sample will absorb en-
ergy from the electric field. This occurs because the
system of nuclear spins interacts with its surround-
ings, for example with the crystalline lattice, and
sooner or later attains thermal equilibrium with the
lattice. As a result of this, the lower Zeeman levels
become more heavily populated than the higher ones,
and if the variable field Hj does not lead to an ap-
preciable change in these equilibrium populations,
then the number of transitions from the lower levels
into higher ones will exceed the number of inverse
transitions, since the probability of the direct and the
inverse transitions are the same. This phenomenon
is sometimes called magnetic resonance absorption.

3. Relaxation times. If the nuclear spins did not
interact with one another nor with their surroundings,
then the resonance condition would be determined
only by the external field Η and would be satisfied
only in an infinitely narrow frequency interval. The
existence of various kinds of interactions leads to the
fact that the resonance condition ceases to be so rigid;
instead of one resonance frequency a range of fre-
quencies appears, i.e., a resonance line is produced
whose shape and position is determined by such in-
teractions. Since the energy difference between the
Zeeman levels of nuclear spins corresponding to the
usual intensities of the magnetic field Η is very
small, even very weak interactions existing between
the nuclei and their surroundings in solids produce an
appreciable effect on the appearance and position of a
resonance line. This circumstance makes nuclear
resonance, as we have already mentioned, a powerful
method for the investigation of microscopic local
fields and of interactions existing in the sample under
investigation.

It is clear that any local magnetic field H; which
is constant in time will simply be added to the con-
stant external field Η and will lead to a shift of the
resonance frequency. If this local field is different at
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different points of the sample then it will also lead to
a corresponding broadening of the line. Magnetic
fields of this kind may be due, for example, to the
orientation of electron spins along the field in metals
and in paramagnetic substances, or due to the spon-
taneous magnetization in ferro- and antiferromagnetic
substances. In an equally simple manner we can take
into account the interaction of the nuclear quadrupole
moment with a local electric field produced by the
crystalline lattice. That part of the interaction which
is independent of the time leads to a displacement of
the Zeeman levels and as a result splits the reso-
nance line.

It is considerably more difficult to determine the
manner in which the shape and the position of the line
will be affected by interactions which cannot be de-
scribed by means of static local fields. In his funda-
mental paper' J Bloch proposed to characterize such
interactions by means of two relaxation times: Tj and
T2. The relaxation time Tj describes the interaction
of the spin system with its surroundings, for example
with lattice vibrations, with paramagnetic impurities,
with conduction electrons in a metal etc. This relaxa-
tion time essentially describes the rate of establish-
ment of thermal equilibrium between the spin system
and its surroundings. It is called the spin-lattice re-
laxation time. The relaxation time T2 describes in-
teractions existing within the spin system. It charac-
terizes the widths of the Zeeman energy levels, i.e.,
in the final analysis the widths of the resonance line.
It is often called the spin-spin relaxation time.

Bloch showed the manner in which the phenomenon
of nuclear magnetic resonance can be described with
the aid of these two parameters in agreement with ex-
perimental facts. His approach is based on the analy-
sis of the behavior of the macroscopic nuclear mag-
netization < Μ > in the presence of external fields Η
and Hi and of random internal interactions charac-
terized by the relaxation times Tj and T2. Classical
equations of motion are introduced for the vector
< M> which are related in the usual manner to the
quantum mechanical picture of the phenomenon which
was introduced above. They show that under the ac-
tion of the variable field Hj a rotating magnetic mo-
ment appears in the xy plane whose magnitude takes
on its maximum value when the resonance condition
ω = ωο is satisfied. On solving these equations we
can obtain an expression for the dynamic nuclear
complex susceptibility χ (ω) = χ' — ίχ", which charac-
terizes the magnetic moment appearing in the xy
plane. In the practically important case of slow pas-
sage through resonance

Χ = Τ Χθωθ^2 ^
(ωη—to)

1 +(ωο-ω)2 Π + τ ψΗ\

t, 1

Χ = γ Χ θ ω

1 + (ω0 —ω)* ΤΙ

1 ί
ϊ .

(1)

where χ0 is the static nuclear susceptibility. The
real part of the dynamic nuclear susceptibility χ'
determines the component of the magnetization ro-
tating in the xy plane in phase with the oscillating
field Hj. The imaginary part of the susceptibility χ"
determines the component of the magnetization ro-
tating in the xy plane with a phase shift of 90° with
respect to the field H^ This component describes the
effect of resonance absorption.

The Bloch approach also enables us to obtain a
very graphic picture of the behavior of a spin system
under nonstationary conditions, for example under the
action of short radio frequency pulses, or in the case
of a rapid change in the constant magnetic field. If
the variable field Hj of resonance frequency acts on
a spin system placed in a constant field H, for a time
Δί « Tj, T2, it simply deflects the macroscopic
nuclear magnetization from the direction of the ζ
axis by an angle θ = lyHjAt, and, after the end of the
pulse, free precession of the macroscopic nuclear
magnetic moment occurs about the direction of the
constant external field. This precession will be
damped: the ζ component of the nuclear magnetic
moment will grow towards its equilibrium value ex-
ponentially with a characteristic time Tj, while the
transverse rotating component of the magnetic mo-
ment will diminish exponentially with a characteristic
time T2. If the duration of the pulse Δί is such that
i-yHjAt = π/2, then such a pulse is called a 90-degree
pulse, and it gives rise to the greatest nuclear induc-
tion signal; if lyHjAt = π, then this is a 180-degree
pulse which gives rise to a reversal of the magnetic
moment. A similar reversal of the magnetic moment
is obtained as a result of a rapid variation of the
constant magnetic field, when the resonance region is
traversed during a time At « Tj, T2.

4. The moments of an absorption line. The shape
of an absorption line described by expression (1) is
called the Lorentz shape. It has been shown that the
description of the resonance by formula (1) repro-
duces quite well the situation existing in liquids. It
has turned out to be possible to develop a microscopic
theory for the evaluation of Tt and T2 which has
turned out to be in very good agreement with the ex-
perimental facts M.

In solids, as a rule, the shape of an absorption
line differs considerably from the Lorentz shape. It
does not appear to be possible to calculate the line
shape in general form since the corresponding calcu-
lations are very complex. Van Vleck ra, therefore,
proposed to characterize the line shape in this case
by means of its moments. If the line is described by

oo

the normalized function g(a>), i.e. f g(oi)dw = 1,
о

then its n-th moment with respect to some point ω'
is given by

Δω" = (ω — ω ' ) " = \ ( ω — υ>')η g (ω) du>.

ο
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Van Vleck has shown how the moments of an absorp-
tion line can be calculated if the complete Hamilton-
ian of the spin system is known. His calculations are
based on the so-called adiabatic approximation in
which all the terms in the spin Hamiltonian are ne-
glected which do not commute with the ζ component
Mz of the total magnetic moment of the system. Such
terms lead to the appearance of small satellite ab-
sorption lines at frequencies different from the Lar-
mor frequency. The physical meaning of neglecting
such nonsecular terms amounts to assuming that the
satellite lines to which these terms give rise are
sufficiently far removed from the main line and can
be well resolved experimentally. In this approxima-
tion all the odd moments vanish, and Van Vleck has
calculated the second and the fourth moments for
spin systems coupled by dipole-dipole and exchange
interactions.

The dipole-dipole interaction between the spin Ij
and the spin 1̂  is described by the operator

£e'ih = я Vt f (Μ* - ЗгЙ (I tru) (Ikrtfc)},

where r ^ is the distance between the spins. The ex-
change interaction may have different origins and is
characterized by the constant

It turns out that the second moment of the absorp-
tion line is determined only by the dipole-dipole in-
teraction and that its value with respect to the fre-
quency ω0 is given by the expression

(2)

Here N is the total number of nuclei in the system,
Yik is the cosine of the angle between the vector r ^
and the direction of the field H. The exchange inter-
action in this case determines only the finer features
of the absorption line, since it enters only into higher-
order moments.

Van Vleck also discussed the case when the sample
contains spins of two different kinds*. In order for
the adiabatic approximation to be valid in this case it
is necessary for the difference between the energies
of the Zeeman levels of the spins of different kinds
to be much larger compared to the energy of the ex-
change interaction between them. In this case terms
due to the dipole-dipole and exchange interactions be-
tween spins of different kinds appear in the expres-
sion for the second moment, and it becomes equal to

3 /(/ + 1)
4 Σ- (3γ« -

1 / ' (/'-!-!)

(3)
i, ft'

*We have in mind that spins of different kinds differ from one
another by the value of their gyromagnetic ratio.

The primed quantities in this expression refer to
spins of the second kind; N denotes the number of
unprimed spins.

Van Vleck's expression for the second moment (2)
and the corresponding formula for the fourth moment
were subjected to special experimental check ^6'7-' in
the case of the F 1 9 resonance in CaF2. These ex-
pressions turned out to be in excellent agreement
with experimental results thus providing evidence
that the adiabatic approxirtiation describes sufficiently
well the system of nuclear spins in a rigid lattice.

The next step in the theory of the line shape of
magnetic resonance absorption was taken by Kubo and
Tomita'-8-'. They have developed a perturbation theory
which, in principle, enables us to obtain in any speci-
fic case an expression for the shape of the resonance
line with any desired degree of accuracy. However,
due to the complexity of the resultant expressions
practical calculations, if they are at all possible, are
very difficult. Therefore, the authors introduce a
series of simplifying assumptions which lead to the
final expressions for the line shapes being of a rather
qualitative character. However, it is important that
the method developed by them makes it possible to
calculate moments taking into account nonsecular
terms in the Hamiltonian which are neglected in Van
Vleck's theory and which in a number of cases play
an important role.

2. SPECIFIC FEATURES OF NUCLEAR MAGNETIC
RESONANCE IN METALS

1. The experimental difficulties which arise in the
study of n.m.r. in metals are basically associated
with the fact that the variable field Hj penetrates into
the sample only to a depth of the order of the skin-
layer. If the dimensions of the sample are large in
comparison to the skin depth, this leads to two un-
pleasant effects. First, the working volume occupied
by the substance is reduced; secondly, the resonance
absorption will be determined not only by the imag-
inary part χ" of the dynamic nuclear susceptibility,
but also by its real part χ'. Indeed, the quantity χ'
determines the thickness of the skin-depth; as χ' in-
creases the thickness of the skin-depth is reduced and,
everything else remaining equal, the absorption of
energy in the sample is diminished. Experimentally
the effect of finite skin depth is manifest by the shape
of the absorption line becoming distorted. The paper
of Chapman, Rhodes and Seymour ^9- is devoted to a
detailed theoretical and experimental analysis of this
problem.

In order to get around these difficulties one ordi-
narily uses samples either in the form of fine metallic
powders with particle size smaller than the skin-
depth, or, less frequently, in the form of thin foils in-
sulated from one another. In this way one succeeds
in avoiding an appreciable reduction of the working
volume of the sample and in obtaining absorption
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which is proportional only to the value of χ".
However, the use of finely dispersed samples is

unsatisfactory from other points of view. Firstly, it
turns out to be impossible to study n.m.r. in single
crystals*; secondly, it is never clear to what extent
such finely dispersed samples are free of impurities
and of distortions of the crystalline lattice. In par-
ticular, the fact that the influence of the value of χ'
on the shape of the absorption line is often observed
to be smaller than might be expected from the esti-
mates made in C9"11^ i s probably basically related to
the fact that the thickness of the skin-depth in the
samples utilized differs from the thickness of the
skin-depth in a large sample of the pure metal.

Investigation of large samples of metal with the
aid of n.m.r. may turn out to be possible if we suc-
ceed in using other methods of inducing transitions
between nuclear Zeeman levels which will make it
unnecessary to place the sample in an alternating
magnetic field. One such method was proposed by
Al'tshuler D2>13^ who pointed out the possibility of
resonance absorption of ultrasound by a system of
nuclear spins. Here the transitions between the nu-
clear Zeeman levels are induced by the interactions
of the quadrupole moment of the nucleus with the
varying electric field gradients which arise due to
the oscillations of the crystalline lattice.

This method was utilized *-1^ for the observation of
n.m.r. in single crystals of KI and KBr. It is, gener-
ally speaking, suitable only for nuclei of spin I > \;
however, Kaner has pointed out't that in the case
1=5 transitions can be induced by magnetic fields
which will themselves arise due to the presence of
variable electric fields.

2. The interaction between the spins of nuclei and
of conduction electrons manifests itself in nuclear
magnetic resonance in metals in three ways. Firstly,
it gives the basic contribution to the value of the spin-
lattice relaxation time Tj; secondly, it alters the ef-
fective magnetic field acting on the nucleus giving
rise to the so-called Knight shift; thirdly, it deter-
mines the indirect interaction between nuclei.

Estimates show that the principal contribution to
the interaction between the nuclear and the electronic
spins is given by the Fermi contact term proportional
to the scalar product of the spins. As is well known,
it is this contact interaction that leads to the hyper-
fine splitting of s-terms in atoms. In fact, one can
visualize the situation in the following manner: an
electron in an s-state, i.e., having a wave function
whose value differs from zero in the neighborhood of
the nucleus, produces in the neighborhood of the nu-

Translator's Note. Such studies have been recently reported
by Jones and Williamst106] and by P. L. Sagalyn and J. A. Hof-
mann, Phys. Rev. 127, 68 (1962).

tin a report at the conference on the radiospectroscopy of pure
metals and alloys, Moscow, 1961.

cleus a magnetization m = 4/30 | #k (0) | S, where /30

is the Bohr magneton, i/>k( 0) is the value of the elec-
tron wave function at the point where the nucleus is
situated, к is the propagation vector characterizing
the electron state in the metal. The origin of this
formula is obvious: 2/30 S is the magnetic moment of
the electron, while 2 | ifai 0) |2dv is the probability
of finding it in the element of volume dv near the
nucleus. The field corresponding to this magnetiza-
tion is ΔΗ= 4irm/3 = (16тг/3)/30 | гр^(О) | 2 S, and the
energy of interaction with the nuclear magnetic mo-
ment is

V =
16rt

, (0) |2 IS = (4)

If the state of the electron is not a pure s-state, then
in addition to this isotropic part of the interaction
there can also exist an anisotropic dipole-dipole part.
This leads to an anisotropy of the Knight shift and to
the so-called pseudodipolar interaction between the
nuclei.

Cohen, Goodings, and Heine '-15-' have shown that
conduction electrons can interact with nuclei not only
directly, but also indirectly by giving rise to a polari-
zation of the spins of the electrons situated in inner
filled atomic shells. Generally speaking, a pair of
electrons in a filled s-shell has identical wave func-
tions and oppositely directed spins, and, therefore,
the total energy of their contact interaction with the
nucleus is equal to zero. However, if the sample con-
tains a certain excess of conduction electrons with
spins oriented in one direction, then due to the fact
that the exchange interaction between the inner elec-
trons and the conduction electrons depends on the
relative orientation of their spins, the wave functions
of the electrons of the filled s-shell will begin to dif-
fer from one another slightly, and an additional field
arises at the nucleus.

This effect, apparently, plays no essential role in
nontransition metals. However, transition metals
show a number of anomalies which, at least partially,
are probably related to this additional interaction.
Therefore, we shall consider these two cases sepa-
rately.

3. NUCLEAR MAGNETIC RESONANCE IN
NONTRANSITION METALS

1. The relaxation time Tj. A systematic investi-
gation of n.m.r. in metals began approximately in
1948 when Rollin and Hutton '-16-' measured for the first
time the spin-lattice relaxation times for a number of
metals. They have used the so-called direct method
for the measurement of Tj. It consists of first ap-
plying to the sample a strong alternating field Щ
which completely equalizes the populations of the
Zeeman levels and thus suppresses resonance ab-
sorption. After this the field Hj is rapidly decreased,
and the exponential growth of the nuclear resonance
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signal is observed which is described just by the re-

laxation time Tj.

The theoretical formula for the relaxation time de-

termined by the interaction between nuclei and con-

duction electrons was obtained by Heitler and Teller'- -

as far back as 1936. A more rigorous derivation of
ΓΪΗΊ

this formula was later given by Korringa L J . The re-

laxation time is evaluated simply as the reciprocal of

the total transition probability of a nuclear spin from

one level to another under the influence of the interac-

tion with the electrons of the form (4). Korringa car-

ried out the calculations in the Bloch approximation

and showed that if the sample is situated in a magnetic

field which is sufficiently strong in comparison with

the spin-spin interactions, then the relaxation time is

determined by the expression
1 _ГпкТ\ (5)

Here к is the Boltzmann constant, Τ is the absolute

temperature, < ak > F denotes the value of the hyper-

fine interaction constant averaged over the Fermi

surface, v0 is the atomic volume, p( Ep) is the num-

ber of states per unit energy interval and per unit

volume for an electron with a given value of the spin

situated on the Fermi surface. For monovalent

metals vop ( Εχτ) = 3/4 Ep and the expression for Tj

assumes the form

1 9якТ (а11>гр tz.'\
fi AaL i?2 * ^ '

The hyperfine interaction constant can be calculated
if we know the value of the electron wave function at
the nuclear site. In order of magnitude ak ~ 0.1°,
E F ~ 104°, and this yields Tj ~ 10~4—10~5 sec at
room temperature.

Rollin and Hutton have shown that the values of Tt

obtained by them for aluminum and copper agree in
order of magnitude with the theoretical values. Later
the methods of measuring the spin-lattice relaxation
time were considerably improved. Thus, Bloember-
gen '-19-' studied the dependence of Tj on the tempera-
ture in metallic copper utilizing the so-called satura-
tion method. This method consists of measuring the
dependence of the magnitude of the resonance absorp-
tion signal on the amplitude of the alternating field
Ht. Since the magnitude of the signal is proportional
to χ", then by using the Bloch expressions for the

dynamic nuclear susceptibility (1) it is possible from

these measurements to determine the value of the

product TjT2. The value of Τ 2 is in turn determined

from the width of the absorption line.

By the same method the relaxation times have been

measured in aluminum, in lithium^20- and in cadmium

. Such measurements apparently yield more or

less accurate data on the temperature dependence of

the relaxation time Tj, but the absolute values of Tj

are not obtained very reliably by this method.

Holcomb and Norberg B 2 ^ have made measurements

of Tj in alkali metals by means of the pulse technique.

Later similar measurements were carried out for

aluminum ^ and copper ^ . The method of measure-

ment in this case consists of subjecting the sample to

the action of two radio frequency pulses of resonance

frequency separated by a time interval т. The first
pulse, a 180-degree pulse (sometimes a 90-degree
pulse is utilized here instead), serves for inverting
the macroscopic nuclear magnetization, while a
second 90-degree pulse enables us from the magni-
tude of the resultant nuclear induction signal to meas-
ure the value of the magnetic moment which is pro-
duced at the time т. As a result of spin-lattice re-
laxation the magnitude of the magnetic moment which
is directed immediately after the 180-degree pulse
oppositely to the field decreases exponentially with
increasing time and the index of the exponent deter-
mines the quantity Tj.

Redfield '-10- has measured the relaxation times in
copper and in aluminum in the helium temperature
region by using the method proposed by Chiarotti et
al'-2-. In this method the constant magnetic field is
modulated near the resonance value in such a way
that in each passage through resonance the magnetic
moment is reversed due to the rapid passage. If the
time between two successive passages, which, in the
final analysis, is determined by the frequency of the
modulating field, is comparable with the value of Tj,
then the equilibrium value of the nuclear polarization
does not have time to become established, and the
magnitude of the nuclear resonance signal diminishes.
By observing the dependence of the value of the signal
on the frequency of modulation it is possible to de-
termine the spin-lattice relaxation time Tj.

All these measurements have confirmed the theo-
retically predicted dependence of the spin-lattice re-
laxation time on the temperature over a wide temper-
ature range. Moreover, the theoretical values of the
relaxation times,* as may be seen from Table I, are
very nearly equal to the experimentally obtained
values. It is noteworthy that the theoretical relaxa-
tion times are always lower than the experimental
ones. This convincingly demonstrates that the inter-
action with the conduction electrons indeed gives the
principal contribution to the spin-lattice relaxation in
metals, since the presence of other relaxation mech-
anisms would lead to the result that the experimentally
observed relaxation times would be smaller than the
theoretical ones. Pines '-28-' has shown that taking into
account the correlation between the conduction elec-
trons increases the theoretical relaxation times and
improves the agreement between theory and experiment.

*The theoretical values of T t are usually calculated not
directly in accordance with formula (5), but from the measured
Knight shift and formula (8); cf. below.



832 I. F . SHCHEGOLEV

Table I. Theoretical and experimental relaxation

times

Iso-
tope

Lie

Li'

Na 2 3

Al"

T,T.
sec·deg

290

44.6
44,2

4.77
5.1
1.6
1.8

Ref-

c e s

22

22

27

22

26

27

sec'deg

195
27

3.1

1.5

Iso-
tope

Cu 9 3

R b "
Rb«'

S n » 8

TiT,
sec·deg

1.27
1.28
0.81
0.08
0.054

Ref-
eren-
ces

27

24

22

22

23

T i T t h ,
sec·deg

0.7

0,65
0,06
0.038

Expression (5) for the spin-lattice relaxation time

in metals was obtained by Korringa, as has been noted

already, on the assumption that the external magnetic

field in which the sample is situated is large, so that

the Zeeman energy is much larger than the energy of

the dipole-dipole interaction between the spins. The

theory for the spin-lattice relaxation in metals in

arbitrary fields has been given by Hebel and Slichter1-26-1

and by Anderson and Redfield M . Their calculations

are based on the assumption that the spin system can

always be described by a certain temperature which

is either equal to, or not equal to, the lattice temper-

ature. From this point of view the process of relaxa-

tion of nuclear spins is the process of the spin system

and the lattice attaining a common temperature. In

such an approach it is not necessary to know the en-

ergy spectrum of the spin system in order to calcu-

late the spin-lattice relaxation time, and the calcula-

tions can be carried out to the end. It turns out that

the relaxation time Tt depends on the field in the

following manner

(6)

where ΔΗ2 is the value of the second moment of the
absorption line determined by Van Vleck's expression
(2), and δ « 2.

The same authors have also measured the depend-

ence of the relaxation time Tt on the field in Li, Na,

Al, Cu. For the measurement of Tt in weak fields

they have utilized the following experimental method.

The n.m.r. signal was observed twice in the strong

magnetic field, while in the interval between these

observations the magnetic field was rapidly reduced

to the desired value and during a certain time interval

τ relaxation of nuclear spins took place in a given

weak field. The magnitude of the signal in the second

measurement, made after the magnetic field had been

increased once again, diminished exponentially with

increasing time τ; thus, it was possible to determine

the relaxation time T t. It was demonstrated that the

observed field dependence T{( H) is satisfactorily

described by expression (6), and the relaxation time

in zero field is indeed about half the relaxation time

in strong fields.

The same method of measurement was also utilized
by Hebel and Slichter^26- and by Masuda and Redfield

Γ29Τ
J to measure the spin-lattice relaxation time in

aluminum in the superconducting state. As is well

known, the small penetration depth of the magnetic

field introduces great difficulties into the study of

n.m.r. in superconductors. The measurement of the

relaxation time in zero field enables us to avoid this

difficulty, because in this case the measurements

themselves are made on the metal in the normal

state which arises due to the presence of the higher

magnetic field. But the relaxation occurs in the

superconducting state in zero field. It was found that

the spin-lattice relaxation time at first diminishes

considerably on going over to the superconducting

state and then increases again as 1/T.* It was possi-

ble to describe this behavior quantitatively with the

aid of the Bardeen, Cooper and Schrieffer theory.

2. Knight shift. In the early papers on n.m.r. in

metals the investigators overlooked the fundamental

fact that the resonance frequency in a metallic sample

always differs from the resonance frequency of the

same nucleus in a nonmetallic compound. This effect

was discovered by KnightDl^ in 1949 and has received

the name of the Knight shift. Knight investigated

n.m.r. in metallic lithium, sodium, aluminum, copper

and gallium and established that the resonance line in

the metal is always shifted in the direction of higher

frequencies (in a given field) and that this displace-

ment is proportional to the external field, increases

with increasing atomic number and is practically in-

dependent of the temperature. In Fig. 1, reproduced

from Knight's paper, we can see the manner in which

the resonance frequency of Cu63 in metallic copper

is displaced with respect to the resonance frequency

in CuCl.

The relative change in frequency amounts to ap-

proximately 0.1% in light metals and attains the value

FIG. 1. Record of the
derivatives of the absorp-
tion lines of Cu" demon-
strating the shift of the
resonance frequency in
the metal.

10.1 kc
5 min.

*Similar results were also obtained by Hammond and Knightt30]
who measured T t in superconducting Ga by means of nuclear
quadrupole resonance.
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of 1—2% in heavier metals. Such large shifts cannot
be explained simply as being due to the paramagnet-
ism of the conduction electrons, sirice in such a case
the shift should be of the order of 10~4%. Townes et
al '-32-' have given the correct explanation of this effect
by taking into account the fact that the electrons are
distributed in the metal not uniformly, but have a
greater probability of being found near a nucleus.
This is taken into account in formula (4) by the fact
that the quantity | фк(0) | 2 occurs in it. This locali-
zation leads to the fact that the local field in the
neighborhood of the nucleus is greatly increased, and
this gives rise to the observed line shift. In the
Bloch approximation the formula for the Knight shift
has the form

Table Π. Knight shifts in nontransition metals

where χρ = 2β\ρ( Ejr) is the electronic paramagnetic

susceptibility. If we again use the approximate rela-

tion vop( Ер) = 3/4 Ep which is valid for monovalent
metals, we obtain

This yields K ~

τ.

1% for

3
4

ai

Po
yh EF

0.Γ

(7')

and E 104

A comparison of formulas (5) and (7) shows that a

universal relation exists between the relaxation time

and the Knight shift:

(8)Τ RTS _ Ji_ ( j o .
I l A ~nkT\yh

Γ18Ί

This relation was obtained by Korringa and, as we

have already stated, it is this relation which is or-

dinarily used for the theoretical evaluation of the

spin-lattice relaxation time.

A very large number of papers has been devoted

to the measurement of the Knight shift. In Table II

we have given the values of the Knight shift in non-

transition metals that have been measured up to the

present time. Such measurements are of interest

because, as can be seen from formula (7), the value

of the shift contains such characteristic properties

of the electrons as the density of states at the Fermi

surface and, through aĵ , the value of the electron

wave function at the nucleus. Since the density of

electron states at the Fermi surface can be obtained

from data on electron specific heat or on susceptibil-

ity, the Knight shift, therefore, enables us to meas-

ure directly the hyperfine interaction constant, and,

consequently, the value of the electron wave function

in a metal.* It can, therefore, serve as a sensitive

criterion of the correctness of calculations devoted

*It can be seen from formula (5) that the same information
about a metal can also be obtained from measurements of the re-
laxation time Tj. However, it is possible to measure the relative
displacement Δω/ω to five decimal places, while it is possible
to measure T\ only with comparatively limited accuracy, and,
therefore, measurements of the Knight shift naturally yield more
reliable data.

Isotope

Li»
Li '
Be 8

IS'a2 3

A l "
K 3 9

C u 6 3

Cu 6 6

Ga 6 9

G a ' 1

R b 8 5

R b "

A g t o ,
Agios

*Nuclea
liquid state

К

0.0263
0.0261

<0,001
0.112
0.161
0.248
0.232
0.235
0.449*
0.449*
0.650
0.653
0.520
0.524

r resonance

Refer-
ence

3 3

Isotope

Cd"i
33 C d 1 1 3
3 4

3 3

3 3

3 5

3 3

3 3

3 3

3 3

3 3

3 3

35

3 6

In"6

Sn1 1 '
Sn"»
Os'3 3

Ba"5
Ba«'
Hgi"
^ 2 0 3

^}205
pjj207
BJ209

К

0.43
0.43
0.80*
0.701
0.709
1.49
0.403
0.403
2.46
1.55
1.55
1.24
1.40*

has been observed only in the

Refer-
ence

2 1

2 1

3 7

3 8

3 8

3 3

3 0

3 9

4 0

4 1

4 1

4 1

3 7

to the evaluation of the electron wave function in a
metal.

Until now such calculations have been carried out
only for the alkali metals and for beryllium. In Table
III the experimental values of the quantity Pp
= <T | г/)к( 0) | 2 > p obtained from measurements of
the Knight shift in these metals are compared with
theoretical values obtained by various authors. In
this table are also given experimental and theoretical
values of the quantity ξ = < | $k( 0) | 2 > F / | ipa{ 0) | 2 ,

where ψΆ is the wave function of the electron in a

free atom. It is assumed that the inaccuracies in the

calculations associated with leaving certain features

out of account will equally affect the values of both

>fc{ 0), and фа( 0), and that,therefore, the comparison
of measured and calculated values of this ratio may
turn out to be in a certain sense more instructive than
a direct comparison of the wave functions.

Table Ш. Experimental and theoretical values of the
quantities Pp and ξ

( a0 - Bohr radius )

Metal

Li

Na

К

Rb

Cs

Be

Experiment

I, -1

<•'' ° u

0.10+0.05

0.53+0.05

0.95

2.32

4.39

0,1

0.43+11.02

0.705+0.07

0.855
0.905

0.993

1.13

—

•Calculations of Brooks quoted

Refer-
ence

12

4 2

411

4 2

4 2

3 1

i n [ « ] .

Theory

o.ll
0. Ц

0.604
0.555
0.500

0.91

0,862

1.70

2.W.)

0.43
коз

ς

0.49
ι). 455

0.79
0.81
O.S25

0.82
I.Hi

0.81
i . l o

П.Н.Ч2
1.1

l l . l )

Refer-
ence

l:t

424 :

•1J

4!»

4 2 *

4 8

.il)
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Calculations in the case of alkali metals have been
carried out by different authors who have utilized for
this purpose one or another modification of the Wigner-
Seitz cell method'-51-'. In the case of Li and Na for
which sufficiently reliable experimental data on elec-
tronic susceptibility are available '-53-' the calculated
values of Pp- agree with the measured ones within
approximately 10%. In the case of K, Rb, and Cs
one has to use the theoretical values of the electronic
susceptibility calculated by Pines'-'8-' since no reliable
experimental data are available. For К the agree-
ment between the value of P F "measured" by this
method and the theoretical value is still very good,
but in the case of Rb and Cs it is much worse, and
this may be explained both by the inaccuracies in the
calculations of the wave function, and by the inaccura-
cies in the calculation of the electronic susceptibility.
Calculations for beryllium D4>5(0 were carried out by
the method of orthogonalized plane waves '-53-'. These
calculations disagree strongly with experiment.

As we have noted already, Cohen et al ̂  have
shown that conduction electrons will contribute to the
Knight shift not only directly, but also indirectly by
giving rise to the polarization of the spins of the elec-
trons situated in the inner s-shells of the atom. Tak-
ing this circumstance into account leads to a reduc-
tion of the experimental value of Pp by approximately
20% in Li, by 5% in Na [ 1 Q and by approximately 10%
in к'-35-', which makes the agreement with the theoret-
ical values of the wave function somewhat worse in
the case of these metals. It is of interest to note that
if the correction due to the inner electrons has the
same sign both for Rb and Cs then in this case the
agreement between theory and experiment will be
slightly improved.

Some authors have utilized data on the Knight
shift in order to obtain more detailed information on
the nature of the electron states at the Fermi surface.
Thus, Jones and Schiff ^ have concluded that the
electron wave function at the Fermi surface in sodium
is predominantly an s-type function while in lithium it
is basically a p-type function. An analysis of the same
kind has been carried out for cadmium by Masuda'^1-'.
However, it is clear that such calculations should be
regarded rather as an illustration of the possibilities
that exist in this direction, since the very great sim-
pliciations in the calculations make the quantitative
results obtained unreliable.

Benedeck and Kushida '-42-1 undertook careful meas-
urements of the dependence of the Knight shift in
alkali metals on the pressure. This effect is very
small: as the pressure is varied from 0 to 104 kg/cm2

the Na resonance line characterized by a frequency
of the order of 7 Me is displaced by 135 cps, while
the Li resonance frequency of the order of 10 Me is
displaced by only 35 cps; nevertheless, it was possi-
ble to measure this effect. Since the compressibili-

ties of these metals are well known, such measure-
ments enable us to obtain information on the depend-
ence of the product XpPp on the volume. On the other
hand, there are theoretical data for the quantities
8xp/8V[28] and 8PF/8V [ 4 2 4 4 ] , which turn out to be in
sensible agreement with experiment.

Moreover, these measurements enabled us to de-
termine that the previously observed also very small
temperature dependence of the Knight shift in alkali
metals ^ cannot be explained only by the changes in
volume due to thermal expansion. This effect by it-
self turns out to be insufficient, and from this it fol-
lows that there exists an explicit dependence of the
Knight shift on the temperature. Benedeck and
Kushida assume that such a dependence is due to the
fact that the quantity Pp depends on the volume
nonlinearly, and, that therefore, random fluctuations
of volume due to the thermal vibrations of the lattice
give a non vanishing contribution ( 92Pp/9V2) Δν2 to

the quantity Pp calculated for a rigid lattice.

A number of papers was devoted to the investiga-

tion of the Knight shift in liquid metals C31>37-30. of

interest here also is the circumstance that in passing

from the solid to the liquid state the Knight shift

practically does not change. It might appear that this

provides evidence for the fact that in a liquid metal

a considerable degree of short range order is pre-

served, and that the electronic structure is almost

unaltered. But, on the other hand, there exists a

number of metals-In, Ga and Bi,-in which no n.m.r.

is observed at all in the solid state,* since the reso-

nance line is very greatly broadened by the interac-

tion of the quadrupole moment of the nucleus with the

electric field gradient of the lattice. But in the liquid

state it is possible to observe the resonance line in

these metals, and this apparently provides evidence

for the fact that the short range order is essentially

altered. No satisfactory explanation of these effects

has been given so far.

Interesting work has been carried out on the meas-

urement of the Knight shift in superconductors. As

we have noted previously, a serious difficulty here is

the fact that the magnetic field penetrates into the

sample only to a distance of ~ 10~6 cm, and, there-

fore, very finely dispersed samples are needed for

such work. Reif'-40-' has used for this purpose samples

of colloidal mercury. Androes and Knight '-55-' pre-

pared a sample by sputtering onto a cold backing thin

films of tin interspersed with insulating material. As

should be expected, the magnitude of the Knight shift

is reduced as the metal goes over into the supercon-

ducting state, since the number of normal electrons

is diminished. In accordance with the theory of'-56'57-'

the shift ought to tend to zero as Τ —* 0. But instead

•Translator's note. Recently observations were made in In by
Barnes et al, Phys. Rev. Letters 9, 255 (1962).
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of this, the experimentally observed limiting ( as

Τ —* 0) value of the Knight shift amounts to approxi-

mately 0.6—0.7 of the magnitude of the shift in the

normal state. Moreover, in a recently published

brief note ̂  Noer and Knight report that within ex-

perimental error (~ 10%) the Knight shift in vanadium

does not change at all either in the course of a

transition into the superconducting state (the transi-

tion temperature is 5.1% K), or in the course of a

further reduction of temperature down to 1.5°K. A

number of authors [ 5 9 > 6 0 ~ B 4 > 1 0 5 : i have attempted to ex-

plain this disagreement by taking into account in one

form or another the specific properties of samples

of very small size. But apparently this problem has

not yet received its final solution.

As we have mentioned already, admixing of states

with nonvanishing orbital angular momentum leads to

the appearance of a dipole part of the hyperfine in-

teraction and this makes the Knight shift anisotropic.

This question was examined by Bloembergen '-41-' who

showed that in the case of axial symmetry the aniso-

tropic part of the Knight shift ΑωΆ/ω depends on the

angle $• between the external field Η and the axis of

symmetry in the following manner:

^ c o s ^ - l ) = 6a(3cos2d-l). (9)

И = 5750 Oe

Here < q > p denotes the average over the Fermi
surface of the quantity

Г , * 3 c o s 2

= ) Ψ* μ
— 1

where θ is the angle between the radius vector г and
the axis of symmetry, ip^ is the wave function for the
electron of momentum fik, and the integration is car-
ried out over the whole volume. The quantity < q > p
characterizes the anisotropy in the distribution of the
electronic charge around the nucleus.

In a polycrystalline sample, owing to the different
orientation of individual crystallites with respect to
the external field, the anisotropic Knight shift leads
to an additional spread in the resonance frequencies,
i.e., it broadens the line. On the other hand, if for the
sake of simplicity we imagine the case of an axially
symmetric Knight shift, then it is clear that the num-
ber of crystallites whose axis of symmetry coincides
with the direction of the external field will be smaller
than the number of crystallites whose axes are per-
pendicular to the direction of the external field, since
it is possible to realize this second possibility in a
much larger number of ways. This leads to an asym-
metry in the absorption line.

An anisotropy in the Knight shift was found in tin
^ , cadmium ^2i- and thallium ^ . For example, in
Fig. 2 we have shown the shape of the absorption line
in metallic tin in a strong field.

It is possible to measure the magnitude of the
anisotropy of the Knight shift (Δω|| — Δωχ)/ω0 = Зба

either by analyzing the shape of the absorption line

FIG. 2. Shape of the reso-
nance line of Sn119 in metallic
tin in a strong field. Above —
record of the derivative of the
absorption line; below-inte-
grated line shape.

I

3110 3100 3090 kc

^ , or by observing the dependence of the magnitude
of the second moment of the absorption line on the
intensity of the applied field 01.6Я (Cf _ t n e ftrst n o t e

added in proof at the end of the article). It can be
easily shown that the contribution made by the aniso-
tropy of the Knight shift to the second moment is
given in the case of axial symmetry by

and by measuring the dependence of Δω2 on H2 we

can obtain the value of 6a· A measurement of the

anisotropy of the Knight shift enables us to obtain

more detailed information on the nature of the distri-

bution of the electronic charge in the neighborhood of

the nucleus. Thus, in tin and in cadmium the quantity

< q > F turns out to be positive, and this tells us that

the density of the electronic charge along the с axis
is greater than in the plane perpendicular to this axis.
In thallium, apparently, the opposite situation exists.

In conclusion we would like to note a recent paper
by Blumberg, Eisinger, and Klein '-66-' the aim of which
was to find out the extent to which the magnitude of
the isotropic Knight shift is actually determined only
by the contact interaction between the nucleus and the
conduction electron in the s-state. These authors
measured with a great degree of accuracy the magni-
tudes of the Knight shift for the two rubidium isotopes
Rb85 and Rb87, and compared the quantity Δ = K85/K87

— 1 obtained in this manner with the value of the

anomaly in the hyperfine interaction Δ( Si) = "jlV^f

— 1 obtained from measurements of the hyperfine

splitting in the ground state 5sSi of the Rb85 and

Rb87 atoms. It is clear that if the hyperfine interac-

tion responsible for the appearance of the Knght shift

in a metal is determined only by electrons in an s-

state, then these two quantities must agree. Measure-
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ments have shown that this actually occurs with a high

degree of accuracy.

3. Indirect interaction between nuclear spins. In

1954 Ruderman and KittelCeQ drew attention to the fact

that the width of nuclear magnetic resonance lines in a

number of metals is observed to be greater than it

ought to be if it were entirely due to the dipole-dipole

interaction between nuclei. In order to explain this

anomalous broadening they proposed a mechanism of

indirect interaction between nuclei due to the conduc-

tion electrons. This interaction arises because an

electron on the Fermi surface interacts with a pair

of nuclear magnetic moments and thereby establishes

between them an indirect coupling that depends on the

mutual orientation of the nuclear spins. Ruderman

and Kittel have shown that if in the hyperfine interac-

tion only the contact term (4) is taken into account,

then in the Bloch approximation the interaction be-

tween the nuclear spins Ij and 1̂  has the form

&bik — Aihlilk' (10)

i.e., it is an interaction of exchange type. Therefore,

if several kinds of spins with non-vanishing magnetic

moments are present in the sample this interaction

will broaden the line producing a contribution to the

second moment described by the last term of formula

(3).

The value of the constant Aik depends on the spe-

cific properties of electrons in a metal. Ruderman

and Kittel have calculated its form for the case when

the electron energy is a quadratic function of its

momentum: Ε = K2k2/2m*, where m* is the effective

mass. In this case we have

! (EF) vl

16.-U·Frik
[2kFrik cos 2ktrik — sin 2kFrill]. (11)

The method of averaging the constant ak over the

Fermi surface in this expression may, generally

speaking, not coincide with the method of averaging

utilized in (7), and, therefore, these averaged values

may differ somewhat from each other.

The fact that the value of the interaction between

nuclei in a metal can be considerable has been con-

vincingly shown by Bloembergen and Rowland ^ .

These authors measured the width of the nuclear

magnetic resonance line in metallic thallium which

has two stable isotopes possessing magnetic moments.

They carried out measurements utilizing samples of

different isotopic composition and have shown that the

line width for one isotope increases greatly as the

concentration of the other isotope is increased. The

existence of an appreciable indirect interaction was

also found in metallic Ag t e i l, CdBl^ and S n M .

In a metal in which there are two kinds of nuclear

spins an interaction of the form (10) must in addition

to broadening the lines also lead to another curious

effect. Since this interaction conserves the total spin

angular momentum it must bring together the reso-

nance lines of individual isotopes and must lead to

their total coalescence in weak fields, when the differ-

ence between the Zeeman energies of the different

isotopes become smaller than the energy of the in-

direct exchange interaction. This occurs because in

weak fields the nuclear spins of the different isotopes

coupled by a relatively strong interaction of the form

(10) behave as a single entity and must give one com-

mon resonance line. In strong fields the coupling be-

tween the spins is broken and each isotope gives rise

to its own resonance line. It turns out to be possible

to observe this effect, analogous to a certain extent

to the Paschen-Back effect, in metallic thallium [ 6 8 ] .

In Fig. 3 it is shown how the lines of the two thallium

isotopes, Tl203 and Tl205 coalesce as the magnetic

field is reduced.

As can be seen from formula (11), a measurement

of the constant A gives, in principle, information

about the magnitude of the hyperfine interaction in a

metal and about the density of electron states at the

Fermi surface. Since the quantities a^ and p( Ep)

appear in (11) in a different combination than in the

expression for the Knight shift, then by combining

data on the Knight shift with those on the constant A

it ought to be possible to determine these two quanti-

ties simultaneously. However, the very great simpli-

fying approximations made in deriving formula (11)

do not permit us to regard too seriously the results

obtained in this manner. As a matter of fact, this

remark can be taken to refer to almost all the mate-

rial presented in this section. At the present time the

microscopic electron theory of metals lags far behind

in comparison with the experimental possibilities that

are available in this direction.

If the distribution of the conduction electrons about

FIG. 3. Coalescence of the
absorption lines of Tl203 and
Tl2 0 s in metallic thallium with
decreasing magnetic field un-
der the influence of the indirect
exchange interaction between
nuclear spins.
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the nucleus is not spherically symmetric, and the
electronic wave function contains an admixture of p-,
d- etc., states, then the dipole part arising in the
hyperfine interaction will also lead to an indirect in-
teraction between the nuclei. This question has been
considered by Bloembergen '-65-' who has shown that
such an interaction, which he calls pseudodipole, can
be represented in the form

M'ih = В&{1г\- 3ri?(1,г1к) (Ikrtk)}.

In principle, expressions can be obtained for the con-
stant В of the same type as for the constant A, but
explicit calculations are extremely complicated. The
pseudodipolar interaction also leads to additional line
broadening, and its contribution to the second moment
is noticeable in metallic thallium C65>68^. Knowledge of
the constant В enables us to estimate the extent to
which the wave function of the electron at the Fermi
surface deviates from a function of the s-type.

4. NUCLEAR MAGNETIC RESONANCE IN
TRANSITION METALS

1. The study of nonferromagnetic transition metals
by the n.m.r. method began quite a long time ago;
nevertheless, up to the present time they have not yet
been studied very well. The first measurements were
made by Knight'-69-' in the case of vanadium and niobium
soon after the discovery of the Knight shift. Several
years later the Knight shifts for the two isotopes of
molybdenum '-70-' were measured. Since the Knight
shifts turned out to be of the expected magnitude, they
did not attract close attention, and an exhaustive study
of these metals was not undertaken.

Unexpected results began to be obtained in 1958
when Rowland '-71-' measured the Knight shift in plati-
num and found that it, firstly, depends fairly strongly
on the temperature, and, secondly, most unexpectedly
has a negative sign. This latter circumstance ap-
peared to be so unlikely that Rowland himself tended
to ascribe this result to an anomalously large positive
chemical shift of the resonance frequency in that

platinum compound with respect to which the Knight
shift was measured. However, subsequent work in
transition metals showed that such an anomalous be-
havior of platinum is not exceptional. Thus, it became
clear that the simple theory, due to Korringa, which
took into account only the contact interaction between
the conduction electrons and the nuclei, described
fairly well a number of phenomena in nontransition
metals, but was insufficient for describing the behav-
ior of the transition metals.

Nuclear magnetic resonance has been observed so
far in a total of ten transition metals, data with r e -
spect to which are collected in Table IV (cf. the sec-
ond note at the end of the article). Of these, only five
have been studied more or less in detail: scandium,
vanadium, manganese, lanthanum and platinum.

Blumberg et al '-72^, who studied n.m.r. in metallic
scandium and lanthanum, noted two facts which ap-
peared to them to be anomalous. The first is the ap-
preciable temperature dependence of the Knight shift:
as the temperature varies from 295 to 1.7°K the
Knight shift in both metals increases by approxi-
mately 15%; the second is the anomalously great in-
crease in the Knight shift as the number of electrons
in the unfilled d-shell increases from one to three.
Thus, on going from 2i^c45 with one electron in the
3d-shell to 23V51 with three electrons in the 3d-shell
the Knight shift increases from 0.24 to 0.55%. In
going from 5 7La 1 3 9 with one electron in the 5d-shell
to 7 3Ta 1 8 1 with three electrons in the 5d-shell the
Knight shift increases from 0.63 to 1.1%. The authors
consider that such an increase in the Knight shift is
due to the increase in the polarization of the s-elec-
trons due to the s—d-exchange interaction. The re-
cently obtained information on the magnitude of the
Knight shift in yttrium shows that a similar anomalous
increase in the Knight shift is obtained in going over
from 39Y

59 with one electron in the 4d-shell to 4iNb61

with four electrons in the 4d-shell.

Butterworth ^ has arrived at an analogous con-
clusion with respect to the important role played by
the exchange interaction between the conduction elec-
trons in transition metals by studying the spin-lattice

Table IV. Transition metals in which nuclear magnetic resonance
has been observed

Isotope

2 1 S c «
03V 5 1

! s M u s s

4j AD

4 , M o s i

, . M u "
5-1.a 1 3 3

,.,Ta 1 8 1

" \\1n3

„Ft'"

Structure
of d-shell

lid3

3 d 5

Ad1

Ad*
Ad'·
Ad-
ad1

5r/;i

5(/4

5rf»

К (70
at 295° К

О.'Ч
0.55

—0.13
0.337
0.85
0.584
0.584
О.ВЗ
1.1
1.U6

—3.52

Temperature
dependence

Observed

»

Not studied

»

Observed
Not studied

;>
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Refer.
ence
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relaxation in vanadium. He noted that if from the re-

laxation time Tj measured by him he calculated the

value of the Knight shift by utilizing Korringa's rela-

tion (8), then for Κ γ he obtained the value 0.22%,

while the measured value of this quantity lies in the

range 0.55—0.58%. The author notes that this is just

the behavior that should be expected due to the s-d

exchange interaction between electrons which will

increase the polarization of the s-electrons practic-

ally without altering the value of the relaxation time.

However, it should be noted that Butterworth's

arguments are not very compelling. Firstly, as we

have noted earlier, Korringa's relation by itself al-

ways gives too low values for the product TtTK2. On

the other hand, while in the case of vanadium the

value of the Knight shift calculated from the relaxa-

tion time Tj is smaller by a factor 2.5 compared to

the actual value, yet in the case of scandium this cal-

culated value (0.27%) practically coincides with the

measured value, and in the case of lanthanum the cal-

culated Knight shift (0.81%) is even greater than the

measured value.

It is possible that the s-d exchange interaction in

fact does play an important role in transition metals,

but the most curious fact observed here - the possi-

bility of a negative Knight shift - requires for its ex-

planation the introduction of other mechanisms for

the interaction of the nucleus with the conduction

electrons. At present it appears to be fairly evident

[78,79,109] t h a t t h e e f f e c t responsible for this phenom-

enon is the polarization of the spins of the electrons

in the inner s-shell induced by the exchange interac-

tion between these electrons and the conduction elec-

trons .

Interesting measurements have been carried out

by Blumberg et al [8(° on a series of intermetallic

compounds of the type V3X, where X = As, Au, Co,

Ga, Ge, Ir, Sb, Si, Pt, which all have the structure of

/3-tungsten. These authors measured the Knight shifts

of both components in the temperature range from 20

to 300°K and have established that 1) in those com-

pounds which are superconducting with a high transi-

tion temperature ( > 1°K) the Knight shifts depend

noticeably on the temperature, and 2) in these com-

pounds Ky is always positive and decreases as the

temperature is reduced, while Κχ is always negative

and increases in absolute value as the temperature is

reduced.

Clogston and Jaccarino '-81-' have proposed a simple

explanation of the observed behavior of the Knight

shifts. They assume that one contribution to the

Knight shift in vanadium, a positive one, is given by

the 4s-electrons, while a second contribution, a nega-

tive one, is made by the 3d-electrons which give rise

to the exchange polarization of electrons situated in

the inner s-shell. Further, the measurements of

Williams and Sherwood ^ show that the susceptibility

of those compounds of the V3X type for which an ap-

preciable temperature dependence of the Knight shifts-

is observed also depends on the temperature, in-

creasing as the temperature is lowered. Clogston and

Jaccarino assume that since the susceptibility of the

s-electrons does not depend on the temperature, this

means that as the temperature is reduced the suscep-

tibility of the d-electrons increases. This leads to

the fact that the negative contribution of the d-elec-

trons to the Knight shift in vanadium increases as the

temperature is reduced, and the total Knight shift

diminishes. On the other hand, an assumption is made

that the 4s-electrons of the X-component form a

narrow filled band which lies considerably below the

Fermi surface and, therefore, give no contribution to

the Knight shift. Thus, the only contribution to the

Knight shift of the second component is obtained as a

result of the exchange polarization of the inner elec-

trons of the X-component. This contribution is nega-

tive, and increases in absolute value as the tempera-

ture is reduced, since the corresponding susceptibility

increases.

Similar measurements were made ^ for a series

of intermetallic compounds of the type A12X, where

X is a rare earth metal. The Knight shift of aluminum

in these compounds also depends appreciably on the

temperature, in such a way that if the f-shell of the

rare earth element is less than half-full, then Кд1 > 0
in such compounds and Кд1 < 0 in the remaining
cases.

Jaccarino ^ explained the observed effects by
assuming that in the intermetallic compounds under
consideration a strong exchange interaction exists
between the spins of the electrons of the f-shell and
the spins of the conduction electrons. This leads to
the result that the conduction electrons begin to ex-
perience an additional magnetic field which gives rise
to additional magnetization of the conduction electrons
and thus gives a contribution to the Knight shift. The
magnitude of this field is proportional to the suscepti-
bility of the f-electrons, and since it is known that
this susceptibility depends on the temperature, then
the temperature dependence of the Knight shift can be
understood. Further, it is known that in shells which
are less than half-full the average total spin angular
momentum is oriented antiparallel to the total angular
momentum of the shell, i.e., against the external field,
while in shells which are more than half-full the av-
erage total spin angular momentum is oriented par-
allel to the conserved total angular momentum, i.e.,
along the field. Therefore, the additional field acting
on the conduction electrons will have opposite signs
in these two cases, and this explains the opposite
signs in the Knight shifts.

2. Nuclear magnetic resonance in ferromagnetic
metals was first observed by Gossard and PortisTes]
in 1959. These authors observed a very strong nu-
clear absorption signal in finely powdered metallic
cobalt which has a cubic face-centered structure.
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Measurements were carried out at room temperature
in zero field at a frequency of 213.1 Me, which corre-
sponds to a field of 213.4 kilogauss acting on the
Co59 nucleus.

It turned out that the n.m.r. in ferromagnetic cobalt
exhibits a series of unexpected features to a detailed
examination of which the next paper by Portis and
Gossard '-86-' is devoted. Firstly, the nuclear reso-
nance absorption signal, as can be seen from Fig. 4,
has the form of a dispersion curve; secondly, its in-
tensity is by approximately five orders of magnitude
greater than could be expected from a knowledge of
the nuclear magnetic susceptibility and the value of
the alternating field Hj applied to the sample; thirdly,
application to the sample of a constant external field
practically produces no shift of the resonance fre-
quency, but sharply decreases the signal intensity so
that in fields of ~ 5 kilogauss resonance is no longer
observed.
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FIG. 4. The shape of the
absorption line of Co5' in
metallic cobalt with a cubic
face-centered lattice.
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In order to explain these anomalies Portis and
Gossard have advanced the hypothesis that the contri-
bution to the observed resonance line is made only by
those nuclei which are situated within domain walls,
while all the other nuclei practically take no part in
resonance. A domain wall is situated at the boundary
of two domains, so that within it in going over from
one domain to the other one the spontaneous magnetic
moment changes its direction. Under the influence of
the alternating field Hj the boundaries between the
domains begin to be displaced, and the magnetic field
which acts on the nuclei situated within domain walls
begins to vary slightly in direction since a given nu-
cleus turns out to occupy different positions in the
domain wall. This is equivalent to the situation in
which the nuclei within the domain walls begin to be
acted upon by an oscillating magnetic field perpendic-
ular to the magnetization. The magnitude of this field
turns out to be approximately 103 times greater than
the magnitude of the field Hi, and this leads to the
observed increase in the intensity of the n.m.r. signal.
Further, the principal losses in the sample are asso-
ciated with the movement of the domain walls, and the
resonance absorption of energy by the system of nu-
clear spins is not felt against this background. How-

ever, the real part of the dynamic nuclear suscepti-
bility alters the total susceptibility of the sample at
resonance, and this leads to the result that the losses
due to the movement of the domain walls are altered.
This change in the losses is recorded by the output
device which thus responds not to the imaginary but
to the real part of the dynamic nuclear susceptibility.
It is now clear that since the multidomain structure
of the sample disappears when a strong external field
is imposed, the domain walls also disappear and as a
result of this the nuclear resonance signal disappears.

Soon after the appearance of the first papers of
Portis and Gossard nuclear resonance was observed
in hexagonal cobalt'-87"89-', and also in two other ferro-
magnetic metals, iron 0 0" 9 2- and nickel [93λ The prin-
cipal quantity which is determined from the study of
n.m.r. in ferromagnetic substances is the value of
the internal field acting on the nucleus. We give in
Table V appropriate values of these fields at room
temperature.

Table V

Nucleus
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№ "
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Sign of
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-
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96 f 97
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The first calculations of the magnitude of the ef-
fective field acting on nuclei in ferromagnetic sub-
stances were carried out by Marshall '-34-' who pointed
out that there are several sources making contribu-
tions to this field. A part of the field arises as a re-
sult of the contact interaction of the nucleus with the
4s-conduction electrons, a second part is due to the
admixture of the 4s-state to the wave function of the
3d-electrons, a third part arises due to the interac-
tion of the nucleus with the incompletely quenched
orbital motion of the electrons and, finally, the last
contribution is given by the exchange polarization of
the electrons of the inner s-shells. The first three
mechanisms give an effective field directed parallel
to the total magnetization, while the last interaction
yields an effective field of opposite sign. Marshall
gave an approximate estimate of all these contribu-
tions and concluded that the effective field acting on
nuclei in hexagonal cobalt is equal to +220 kilogauss.
This value agreed well with the data which were ob-
tained from measurements of nuclear specific heat
and which were known to Marshall; however, it is now
clear that it has no relation to reality, since in actual
fact the effective field acting on nuclei in hexagonal
cobalt is equal to —220 kilogauss.
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A more thorough calculation of the effective mag-
netic fields acting on nuclei in ferromagnetic sub-
stances was carried out by Watson and Freeman ^98-'
who showed that the principal contribution to the mag-
nitude of the field is due to the exchange polarization
of the inner electrons. However, these authors did
not succeed in obtaining satisfactory agreement be-
tween calculated and measured values of the effective
internal field existing in ferromagnetic substances:
the calculated absolute values turned out to be several
times smaller than the measured ones. The authors
think that a way out of this situation can possibly be
found by taking into account the fact that the positive
contribution from the contact interaction with the con-
duction electrons, as was recently pointed out by
Anderson and Clogston'-"-', is almost completely com-
pensated by the negative contribution arising as a re-
sult of the covalent mixture of the s- and d-states.

Jaccarino Do°J and Portis and Gossard u a have
measured the dependence of the resonance frequency
in cubic cobalt on the temperature. Similar measure-
ments were also carried out for iron'-92-'. Since the
resonance frequency is proportional to the spontane-
ous magnetization, ν = AM, it was thought that such
measurements would enable us to verify the predic-
tions of the theory of ferromagnetism with respect to
the temperature dependence of the spontaneous mo-
ments. Although agreement between theory and ex-
periment with respect to this point turned out to be
quite good, these measurements hardly have much
meaning, since it is clear that the constant A itself
can depend on the temperature both implicitly (due to
the changes in volume), and explicitly (cf., the ana-
logous situation in the nontransition metals, Sec. 3,
item 2). By measuring the dependence of the reso-
nance frequency of Fe57 in iron on the pressure and
by comparing these data with the known dependence
on the pressure of the spontaneous magnetization
Benedeck and Armstrong '-101-' have shown that the con-
stant A indeed varies noticeably with the temperature.

Weger, Hahn, and Portis ^97^ undertook measure-
ments of relaxation times in ferromagnetic metals.
They carried out their measurements by means of
the pulse technique, and they showed that the reestab-
lishment of the equilibrium value of the nuclear mag-
netization does not take place according to a simple
exponential law. This signifies that, apparently, there
exists not one but several different spin-lattice re-
laxation times, Simanek and Sroubek '-102-' have ex-
plained this result by assuming that the principal
mechanism for the spin-lattice relaxation of nuclear
spins in a ferromagnetic substance is determined by
the fluctuation oscillations of the domain walls about
their equilibrium position. The random motion of the
domain walls gives rise to fluctuations of the direc-
tion of the magnetic field acting on the nuclei within
the domain walls, and this leads to relaxation transi-
tions of nuclear spins. The probabilities of such

transitions will, evidently, be determined by para-
meters which describe the random oscillations of the
domain walls, and since these parameters can be dif-
ferent at different points of the sample, the distribu-
tion of relaxation times observed experimentally can
now be understood. Numerical estimates of the re-
laxation times made by Simanek and Sroubek have
shown that their theory is in satisfactory agreement
with experiment. A similar relaxation mechanism has
also been proposed by Buishvili and Giorgadze L103J.

An attempt to give a theoretical estimate of the
relaxation time for nuclear spins in a ferromagnetic
substance was also made by Winter ^104^.

Notes added in proof. 1. Jones and Williamst106] have studied
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2. Barnes and Graham[107] have recently measured the Knight
shift in metallic chromium using the 24Cr" isotope. At a tempera-
ture of 40° С К = 0.69%
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