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INTRODUCTION

A,uLTHOUGH electronic processes are finding in-
creasing use in modern electrical engineering, it is
easy to see that there is nevertheless a field where
electronics has barely penetrated. To be sure, elec-
tronic processes are used most extensively at present
in measurements (cathode ray oscillographs, photo-
cells, high frequency measurements, amplifiers, etc.),
in cybernetics (automation, computers, stabilizers,
etc.), and in communication (radio, television, radar,
etc .) . But the application of microwave electronics to
the solution of power problems is still in its initial
stage.

I have named this branch "high-power electronics."
This name, of course, is arbitrary, since it is impos-
sible to delineate the boundary at which "high power"
begins. It therefore seems to me that the term "high-
power electronics" should be used to describe that
branch of electrical engineering in which microwave
electronics is used for direct power generation, i.e.,
to produce electromagnetic oscillations which are
transformed not only into electromagnetic waves but
also into heat, into the energy of accelerated corpus-
cular beams, and into other forms of energy.

It seems to me that large-scale power generation
at microwave frequencies is one of the most promising
trends in modern electrical engineering. The main
advantages of microwave power are by now quite
clearly manifest, and consist in the possibility of con-
centrating a large amount of electromagnetic energy in
small volumes, and also in the exceeding flexibility
with which the high-frequency energy is transformed
into other types of energy (concentrated heat supply;
acceleration of elementary particles; production, heat-

ing, and containment of plasma, e tc . ) . The reason why
electronics is not extensively used in power applica-
tions is that there is at present no effective and rel i-
able method for generating microwave energy and for
converting it into other forms of energy.

In order to develop high-power electronics it is
necessary to start with scientifically sound solutions
of these problems.

My co-workers and I have engaged in these ques-
tions during the last few years, and accumulated much
scientific material which we are now able to publish.
Inasmuch as most of the work was done several years
ago, we have decided to print the material in the form
in which it was recorded at that time, without reference
to the literature.

Our work began with a theoretical investigation of
the processes involved in the generation of high-power
microwave oscillations. We started from the premise
that high power oscillations can be produced effectively
only by electronic processes which occur in constant
(crossed) magnetic and electric fields, and developed
a method for a theoretical analysis of such processes.
This method, as will be shown below, is sufficiently
general and complete; it can be successfully used, in
particular, to develop a lucid quantitative theory of the
processes that occur in magnetron oscillators.

This method and the most important results are
contained in our large paper "High-power Electronics,"
which was completed in April 1952 and after which the
entire topic was named. Following that work, our r e -
search on high-power electronics expanded in scope.
Our next theoretical paper "Natural Oscillations of
Cavity Resonators with Latticed Partition," completed
in 1955, is contained in a collection separately pub-
lished by the press of the U.S.S.R. Academy of Sciences.
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Later reports of our laboratory will be published in the
subsequent collections.

The initial stage of this work ( both experimental
and theoretical) was carried out by myself in closest
collaboration with S. I. Filimonov and S. P. Kapitza.
Unflagging interest in the theoretical problems was
shown by V. A. Fock, who offered many valuable sug-
gestions. I am grateful to my friends and co-workers
for participating in my scientific work, in spite of the
difficult conditions under which it was carried out in
1946-1952.

I wish to note also that much of the editorial work
was undertaken by L. A. Vamshtem, to whom all the
authors are deeply grateful.

PROBLEMS OF HIGH-POWER ELECTRONICS

Electronics deals with many physical phenomena
connected with the flow of electric current through
gases. Noteworthy among the physical properties of
an electric current flowing through a gas are two im-
portant and interesting attributes which uncover en-
tirely new possibilities for electrical engineering and
are therefore extensively used in practice.

The first property of electrical processes accom-
panying the flow of current through a gas is that their
inertia is exceedingly small and that they can there-
fore be readily controlled. The physical reason for
this property has been understood ever since the dis-
covery of electrons: the charge is transported by elec-
trons, the mass of which is several thousand times
smaller than the mass of the ions.. When electric cur-
rent flows through a gas (in contrast to a metal), it is
possible to control the motion of the electrons rapidly
and effectively.

The second important physical property of electric
currents in gases is that if the gas is sufficiently rare-
fied, the motion of the electron in the gas occurs with
very low "friction," and therefore with low losses;
this makes it possible to impart very high velocities to
the electrons that produce the current. In a metal,
large current with low ohmic losses is produced by a
large number of slowly moving electrons. In the gas,
to the contrary, a current with the same amount of loss
can be produced by a small number of fast electrons,
owing to the fact that the losses practically disappear
at sufficiently low pressures.

The freedom of motion of the electrons in a gas and
their inertia had been long made use of in vacuum tubes,
which made possible the successful development of
modern radio (particularly at microwave frequencies);
but electronic processes are as yet not efficient enough
for use in power. The capabilities afforded by the flow
of current through gases are employed in power engi-
neering only to solve secondary problems.*

One might think that the reason for it is that there
is no need for fast processes in power. Such a thought

*This was written in 1952.

must be rejected, for many very important problems
in electrical engineering are still unsolved and cannot
be solved without electronics. We need merely men-
tion among these problems the transmission of large
amounts of power over waveguides through long dis-
tances at low losses, the production of intense highly-
directional beams of electromagnetic waves and cor-
puscular beams, the direct utilization of atomic en-
ergy, and effective methods of isotope separation.
Even this far from complete list is sufficient to show
the prospects latent in the development of high-power
electronics.
any principal reasons preventing the development of
high-power electronics ? I believe that this question
must be answered in the affirmative: such reasons do
exist; although at first glance they seem to be insigni-
ficant, they have in effect been the decisive obstacles
so far. Only by overcoming these obstacles can elec-
tronic processes at high powers be made feasible.

If electrons move in vacuum (in the absence of ions),
they form a negatively charged cloud. Because the
charges are of like sign, they repel one another, so
that their motion cannot be regular. If the cloud has
low density, the repulsion due to the space charge will
hardly distort the motion, but with increasing power
the cloud density increases and with it the repulsive
forces. These forces can become so large as to
completely disturb the character of the electron
motion as the power is increased. In ordinary
electronic devices, say vacuum tubes, this phenomenon
occurs at relatively low powers. Not much can be done
to raise the permissible power by increasing the di-
mensions of the apparatus, for it can be shown that the
linear dimensions must increase as the square of the
power, so that at sufficiently high power all dimensions
become unattainably large.

The disturbing action of the space charge is the
principal factor limiting the use of electronic processes
at high powers.

What are the means of combatting the limiting action
of space charge? There are two such means, which are
frequently very effective.

The first has already been extensively used: this is
neutralization of space charge by positive ions in the
gas. It is well known that at low vacuum, the negatively
charged electron cloud contains positive ions, which
have too high an inertia to participate in the dynamics of
the process, but neutralize the mutual repulsion of the
electrons. This makes feasible electronic processes
of appreciable power. This is done, for example, in
mercury arc rectifiers, in thyratrons, and in other
gas-filled tubes.

This measure, however, has two essential and un-
avoidable shortcomings, which offset to a considerable
degree the main advantages of the electronic processes.
The first shortcoming is the additional loss due to the
presence in the working space of gas molecules with
which the rapidly moving electrons collide. The sec-
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ond and principal shortcoming is that the possibility of
effective electric control of the electron motion is
greatly limited in the presence of extraneous ions.

The second means of combatting space charge is
more effective: the space charge is neutralized by
forces due to motion of the electrons in a constant
magnetic field. By way of an example illustrating the
mechanism of this process, let us analyze one of the
simplest and best known cases of neutralization of the
harmful action of space charge by means of a magnetic
field, wherein the electron cloud moves parallel to the
force lines of the magnetic field. Under the influence
of the space charge, the electrons acquire transverse
velocities perpendicular to the magnetic field. The
resultant Lorentz force twists the electron trajectories
in a plane perpendicular to the principal motion, and
returns the electrons to the cloud. As a result, the
cloud does not spread out as it moves and maintains a
constant transverse cross section.

The focusing action of the constant magnetic field is
well known and is extensively used in practice to com-
pensate for the repulsion of the space charges. This
remarkable property of magnetic fields is manifest also
in other more complicated cases, when it frequently
escapes attention in spite of the fact that the physical
mechanism is analogous to that just analyzed. The
magnetron is the clearest example of an instrument in
which the focusing action of the magnetic field on the
electronic process is realized in masked form.

As is well known, the magnetron generates micro-
wave oscillations, which are excited by the uniform
motion of an electron cloud with periodic charge-den-
sity distribution. A beam with clearly outlined bound-
aries and with high charge density is feasible only if
the repulsion forces between the electrons are neutral-
ized by a constant magnetic field. This is attained by a
process, called phase focusing, which will be investi-
gated in detail in the present paper. This process ex-
plains why such exceedingly high power can be realized
in modern magnetrons in pulsed modes, reaching hun-
dreds of kilowatts per cm2 of working surface of the
cathode around which the electron cloud moves. To be
sure, this power is produced in pulses of not more than
several microseconds, but this does not change the
principal aspect of the problem, since the time neces-
sary to establish the electronic processes is a negli-
gible fraction of the pulse duration.

The production of such power shows that the limi-
tations imposed by space charge on the high-power
electronic processes can be eliminated if the electrons
move in a permanent magnetic field.

It is appropriate to raise here the question: why
have electronic processes in a magnetic field not been
used hitherto for high-power microwave electrical
engineering? I believe that there are three reasons
for it.

The first reason is that the great possibilities of-
fered by electronics for the development of high-power

electrical engineering have not yet been fully recog-
nized.

Second: no sufficient scientific foundation has yet
been developed for the problems that can be solved by
high-power electronics.

Third: the physical theory of the phenomena occur-
ring in the corresponding electronic devices is not
sufficiently understood; the difficulties connected with
the calculations for such phenomena and devices have
not yet been overcome.

Our investigations have been aimed at solving these
three problems, both theoretically and experimentally.

Before proceeding to a detailed exposition, I wish to
present a general description of the path followed in
the research.

I believed that the most important was to find a
clear and readily realizable method for the theoretical
analysis of the electronic processes that occur in a
constant magnetic field. The unsatisfactory status of
the existing theoretical level can be illustrated by the
calculation method usually employed in the design of
magnetrons: after many years of (essentially empiri-
cal ) work, a large number of various magnetrons are
produced, from which the specimens with the best
characteristics are chosen; mathematical formulas ob-
tained by similarity theory are then used to recalculate
the performance of these magnetrons under other op-
erating conditions, in which case they retain the same
basic characteristics. The magnetrons obtained in
such an empirical way are satisfactory devices, with
efficiencies reaching 60—70%. This method enables
the design engineers to satisfy current demands, but of
course cannot lead to an understanding or utilization of
all the possibilities latent in the electronics of the
magnetron.

In our researches we attempted first of all to dis-
cover the mechanism of the electronic processes oc-
curring in the presence of a magnetic field, and then
developed methods for their calculation.

This problem reduces to solving equations of motion
which, although well formulated, are rather complicated.
So far they were amenable only to numerical integration,
so that it was difficult to elucidate the physical picture of
the studied phenomena. The method of solving these
equations, described in Chapter I, is based on the peri-
odicity of the developing processes, which are due both
to the permanent magnetic field and to the high fre-
quency oscillations. When this periodicity is eliminated
by the mathematical averaging operation, a simple and
sufficiently accurate solution is obtained, which makes
possible an understanding of the physical picture of the
phenomena and which leads to mathematical equations
that are suitable for practical calculations. The elec-
tron trajectories, which were hitherto determined by
numerical integration, are obtained by this method in
explicit form in terms of elementary functions.

In the subsequent chapters it is shown how this
method is used to solve various specific electronic
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problems and how the results obtained are experimen-
tally confirmed. We have investigated in detail the pro-
cesses that occur in the planotron and in the magnetron.
The planotron is similar to the magnetron, except that
the magnetron closes on itself, as it were, while the
planotron is a magnetron which is cut open and unrolled
in a plane, hence its name (a detailed description is
found in Chapter VII). In Chapters II—IV we give a de-
tailed theoretical investigation of the planotron. In
Chapter VI we apply our method to ordinary multicavity
magnetrons and compare the obtained theoretical re-
sults with the published experimental data.

In Chapter VIII we investigate the resonant action of
a high frequency field on the circular ( Larmor) motion
of charged particles and consider theoretically in this
connection an isotope-separation process which makes
use of this action. The calculation is by the averaging
method and leads to a quantitative description of the
process, which has other applications, too.

Chapter EX is devoted to a general analysis of other
problems of high-power electronics, which for the time
being are rather problematic, and which may be solved
by using a planotron. It is shown that power transmis-
sion over large distances is possible in principle. The
point is that the theory implies the reversibility of the
electronic processes in the planotron and in the mag-
netron, so that they can be used not only to convert
direct current into high frequency oscillations, as at
present, but also change high frequency oscillations
into direct current. This makes feasible transmission
of electricity over waveguides in the form of high-
frequency waves. We then describe a possible device
in which high-power beams of fast electrons or ions
can be obtained with the aid of a planotron.

The arguments advanced in Chapter IX are still
moot and merely illustrate the premise that the de-
velopment of high power electronics is of great im-
portance to science and technology.

In conclusion, I wish to recall that before electri-
cal engineering turned to power, it engaged extensively
in the past century only in problems of electric com-
munication (telegraph, signalization, etc.). It is quite
probable that history will repeat: now electronics is
principally used for radio communication, but its future
lies in the solution of the most important problems of
power engineering.

I. SOLUTION OF THE FUNDAMENTAL EQUATION
OF MOTION OF CHARGED PARTICLES BY THE
TIME-AVERAGING METHOD

As was indicated in the introduction, an important
factor in the high-power electronic problems of inter-
est to us is the motion of charged particles under the
simultaneous influence of electric and magnetic fields.*

*We consider essentially the motion of electrons, and only in
Chapter VIII will the averaging method developed below be applied
to the motion of ions.

Since we can confine ourselves in most cases to a con-
sideration of the two-dimensional problem, the classi-
cal equations for a charge e with mass m have the
form

mx Ну = eEx
(1.01)

The electric field projections E x and Ey along the χ
and у axes can depend both on χ and on y, and also on
the time t. As to the magnetic field, in the problems of
interest to us we can regard it as constant in time and
in space, with only one component Η perpendicular to
the x, у plane.

Inasmuch as Eqs. (1.01) contain the accelerations
χ and у and the velocities χ and y, we have a fourth-
order system of differential equations, which has been
solved in final form only for very simple motions. For
the cases of practical significance, for example for the
motion of electrons in a magnetron, numerical integra-
tion is customarily used, but the results obtained in
this way are of little help in the understanding of the
mechanism of the electronic processes and do not per-
mit the calculation of the main characteristics of elec-
tron devices of this type. The method which we devel-
oped for solving (1.01), by averaging over the time, is
effective for the study of electronic processes in which
so-called resonance phenomena take place. Although
this method is approximate, it does cast light on the
physical nature of the processes and turns out to be
convenient for quantitative interpretation of the experi-
mental material.

To abbreviate the notation we introduce the follow-
ing symbols:

eH

тс
= ^-, (1.02)

where fx and fy obviously have the dimension of ac-
celeration and Ω has the dimension of angular velocity
( Larmor frequency), and we rewrite (1.01) in the form

-Щ = fx, (1.03)

The next simplification consists of changing over to
the complex quantities

: = x-\-iy, ζ* = x — iy,

/=/*+*/„.
(1.04)

The asterisk denotes the conjugate. By virtue of the
relations

z + г" ζ—ζ'

2 ' 2i
(1.05)

we obtain in lieu of the system (1.03) the single com-
plex equation

iQz = f(z, z*, t). (1.06)

This equation has an especially simple solution in
the following three cases, which we shall call the fun-
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damental cases. We denote by a and β the constant

complex quantities determined by the initial conditions,

and by z0 the solution of (1.06) in the fundamental

cases.

The first fundamental case of motion occurs when

there is no acceleration

ζο = α + ββ- { Ω ί (/ = /0 = 0). (1.07)

This is the case of free motion of the electrons in a

magnetic field, when the motion has angular velocity

Ω along a circular orbit with radius [ β | and with

center at the point with complex coordinate a.

The second fundamental case of motion corresponds

to constant acceleration f = f0; then

z0 = α - ^ t + (/ = /о = const) (1.08)

and the motion is along a circular orbit with angular

velocity — Ω, the center of the circular orbit moving

with uniform velocity — ΐίο/Ω in a direction perpendi-

cular to the acceleration f0. This is the classical

motion of an electron along a cycloid or trochoid ( when

β = 0 the trochoid degenerates into a straight line); it

is particularly significant in the theory of the planotron

(planar magnetron). It is obvious that the first funda-

mental case of motion can be treated as a particular

case of the second fundamental case of motion by put-

ting f0 = 0.

The third fundamental case of motion is obtained

when the acceleration f depends linearly on z; then

= a e - i s J i ' + ββ-ί
(/ = /0 = С ζ). (1.09)

Substituting z0 in (1.05) we obtain Ωχ and Ω2 as the

roots of a quadratic equation; they are

(1.10)

The solution (1.09) represents an epitrochoid, which

can be regarded as a superposition of two circular

motions: the electrons move along a circle of radius

I /3 I with angular velocity - Ω 2 , and the center of this

circle moves about the origin with angular velocity

-Ωί along a circle of radius | a | . This case is im-

portant for magnetron theory (see Chapter VI).

In all these three fundamental cases we can regard

the motion of the electron as consisting of two parts,

motion along a circular orbit and the motion of the

center of this circular orbit. In the first fundamental

case the center of the circular orbit is stationary, in

the second case it moves uniformly on a straight line,

and in the third case it moves uniformly along a circle.

Our approximate method is based on the fact that

in the majority of cases of interest to us the character

of motion of the particle does not change much even in

the presence of an additional acceleration (apart from

the acceleration f0) which depends in more complicated

fashion on the coordinates χ and у and on the time t.

Let us assume that this additional acceleration,

which we shall denote by F, is produced by an electric

field Ε = E x + iEy. Then the total acceleration of the

particles has in complex notation the form

= fo + F(z, z*,t), (1.11)

where f0 is the acceleration in one of the three funda-

mental cases.

In those cases when the additional acceleration F

does not distort the character of the particle motion,

we obtain an approximate solution of Eq. (1.06) by using

the following averaging method. In most problems of

practical interest, the value of the constant magnetic

field is large, and this makes the term iflz in (1.06)

large compared with z. Therefore at large values of

Ω the displacement of the center of the orbit during

the time of a complete period of revolution of the par-

ticle is small and the influence of the orbital motion

of the charged particles on the motion of the center of

their orbit can be regarded with sufficient accuracy as

an "average" over a short period of time.*

Mathematically this method is formulated in the

following manner. We introduce the acceleration (1.12)

into Eq. (1.06) and the coordinates of the particle,

which moves in accordance with the resultant equation

z + iQz = fo + F (1.12)

will be denoted by z, to distinguish them from the par-

ticle coordinates z0 in the fundamental cases of motion,

when there is no acceleration F.

Let us consider particle motion which can be re-

garded as a perturbation of the first or second funda-

mental case of motion. We seek a solution in the same

form as given in (1.08) for z0, but we now assume that

the quantities a and β are no longer constant. We

then obtain the following values for ζ and its time de-

rivatives:

ζ = α + ββ-1 ϋ ί + z0, (1.13)

J
According to these formulas, the motion can be re-

garded for a certain short time interval, for certain

definite values of a and β and their derivatives, as a

somewhat distorted first or second fundamental case

of motion. Inasmuch as we have two variables a and

β, we can, without violating (1.13), impose additional

•When high-frequency oscillations are superimposed on smooth
motion of a material point, it is possible to obtain an approximate
solution of certain problems of mechanics by an averaging method
similar to that described in the present paper. Thus, the method
described has enabled the author to obtain a simple and lucid solu-
tion of the problem of a pendulum with vibrating support (the solu-
tion of this problem was hitherto very complicated). See the article
"Dynamic Stability of a Pendulum with Oscillating Point of Sus-
pension" [JETP 21 (5), 588 (1951)] or "Pendulum with Vibrating
Suspension" [UFN 44 (1), 7 (1951)].
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conditions on a and β. As will be seen from the sub-
sequent averaging, it is important that the values of
ζ and z0 be as close to each other as possible during
the averaging time T. This condition can be satisfied
by choosing a and β in such a way that at each in-
stant of time we have agreement not only between ζ
and z0 but also between their first derivatives ζ and
z0. For this purpose it is necessary to impose on
a and β the following condition:

ά + ββ- ίΩ! = Ο. (1.14)

By virtue of this condition the expressions in (1.13) as-
sume the form

(1.15)

Substituting these values into the fundamental equation
(1.12) and using (1.14) we obtain

i=-±F(z, *·, t),

= ±F(z, z*
(1.16)

In the problem of interest to us F will be a rapidly os-
cillating function of the time, so that a and β will also
contain rapidly oscillating terms. In order for the
sought-for motion to acquire the simple and clear an-
alytic form necessary for practical use, we must
smooth out these rapid small oscillations; for this
purpose we replace ά and β by their averages

a and β over the time interval T:

t+T/2

t-T/2
t+T/2

(1.17)

Ω Τ
z· ζ*' t)eiQtdt.

t-T/2

It is clear that along with smoothing of the derivatives
it is necessary to smooth the values of a and β them-
selves. This is done in the following fashion: in order
to carry out the averaging, it is necessary to know the
time dependence of ζ and z* under the integral sign;
since this is not known, we can replace them by the
known values z0 and zj (with constant a and β). As
can be seen from (1.15) we can, in view of the condition
(1.14), replace ζ by z0 with a high degree of approxi-
mation (discarding only a and β). The averaging time
Τ is chosen in accordance with the periodicity of the
integrand such that after averaging the integrand does
not depend on the time, but only on a and β, which we
identify with the average values a and β (we assume

here a = a and β = β). Thus we obtain ultimately

) |
(1.18)

We reason analogously in the case when the motion
of the particle can be conveniently regarded as a per-
turbation to the third fundamental case. The fundamen-
tal'equation is written

t) (1.19)

and we seek its solution in the form

ζ = ae~ i ! 2 i ! -f ββ-*Ω2',

where, unlike (1.09), a and β depend on t. For a more
effective agreement between the perturbed motion ζ
and the fundamental motion z0 we introduce the con-
dition

ae-*ai< + p e-'Qa'= 0, (1.20)

which is analogous to (1.14). We then obtain the fol-
lowing values for ζ and its derivatives:

= z0,

— ae- i Qi ' - pV-iQs' + z0

z0. J

(1.21)

Substituting these quantities into the fundamental equa-
tion (1.19), using (1.10) and condition (1.20), and rea-
soning as in the preceding case, we obtain for the
averaged (slowly varying) quantities a and β the fol-
lowing equations:

2 — iC
F(z0, z*. «)ei£2

(1.22)

The average time Τ is again determined from the
periodicity of the various terms of the averaged func-
tion.*

The variables in (1.22) can be written in the form

)

β = (a + iaif) e{f. J
(1.23)

Equating real and imaginary parts in each equation of
(1.22), we obtain four equations, from which we deter-
mine the radial velocities R and a and the angular
velocities θ and ψ associated with them. By deter-
mining the time dependence of a and β we can find the
sought motion of the particles. We obtain here sep-
arately the trajectory of the center of the circular or-

*The derivation of (1.13) and (1.22) has been modified some-
what compared with the derivation contained in the original manu-
script (1952). The conditions of slow variation were imposed on
the quantities α and β over the averaging period Τ from the very
beginning, in place of the conditions (1.14) and (1.20). Both meth-
ods lead to the same equations and to the same error estimates.
The possibility of using conditions (1.14) and (1.20) and that this
simplifies the derivation was graciously pointed out by L. A.
Vajnshtein.
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bit and the variation of the radius and phase of the
orbital motion.

The complexity of the mathematical calculations
depends on the integration connected with the time
averaging. The form of the integrand determines the
method of calculating the right halves of the equation;
sometimes they can be reduced to certain forms of
definite integrals, and then the integration limits are
determined by the averaging period T. The averaging
greatly simplifies if the integrand can be expanded in
powers of the frequencies. Then the constant time-
independent term of the expansion gives the averaged
value, and terms with the lowest frequencies deter-
mine the period Τ of the values of a and β necessary
for the "smoothing." An example of such an averag-
ing will be given in the next chapter.

The accuracy with which the motion is calculated is
determined by the following factors. The first and
principal error reduces to the difference that arises as
a result of replacing a and β by the smoothed quanti-
ties a and β. This difference can be estimated only
for specific functions F. But it is easy to see that
for any function the uncertainty in the coordinates of
the particle for any time cannot exceed

Δα=|α |Γ and Δβ = |β|7\ (1.24)

where Τ is the necessary averaging time. Usually

r —
Ω '

HI
Ω

Therefore

Δα -
2n\F\

Ω 2 (1.25)

Thus, the uncertainty in the position of the particles
at a given instant of time decreases with the square of
the magnetic field, increases in proportion to the addi-
tional acceleration F, and does not depend on the con-
stant acceleration f0.

Another factor which limits the accuracy of averag-
ing is the substitution of z0 for ζ in the integrand. As
was already mentioned, the difference between ζ and
z0 is small, owing to the conditions (1.14) and (1.20)
superimposed on a and β; it depends only on the sec-
ond derivatives. We shall not consider it here. The
actual degree of approximation can be determined
reliably only on the basis of an analysis of specific
examples ( see Chapter III). We merely note here
that both the feasibility of averaging itself, and the
possibility of replacing ζ by z0 during the averaging
are determined by the fact that the quantity (1.25) must
be small compared with the characteristic geometrical
dimensions which determine the path of the particle
(for example, the distance between the cathode and the
anode) or the spatial variation of the field (for example,
the periodicity of the resonant structure or the wave-
length).

Further development of the method makes it possi-
ble to study, without special difficulties, the distortion

and, in final analysis, the stability of the obtained tra-
jectories under the influence of perturbing factors.
Such factors, which influence the motion under real
conditions, are: the field produced by the space charge,
the inhomogeneity of the magnetic field, the inaccuracy
in the manufacture or adjustment of the device, etc.
A general method for taking these disturbing factors
into account reduces to the following calculations.

As can be seen from (1.18) and (1.22), in order for

ά and β not to vanish it is necessary that the averaged
function have a constant term. For this purpose it is
necessary that F have a periodicity which is matched
both in time and in space. The mode under which such
matching is produced accurately will be called the
"resonant" mode. To solve the electronics problems
of interest to us, only such "resonant modes" are of
interest, for only in such modes does even a small
additional acceleration F change appreciably the
motion of the charged particles.

In practice, great interest attaches to the stability
of such resonant modes. Usually the problem is for-
mulated as follows. Let us assume that the motion oc-
curs in accord with Eq. (1.12) and a resonant mode sets
in for certain values of accelerations f0 and of the
Larmor frequency Ω . Then the velocity is determined
by the first equation of (1.18). Let us assume that such
a disturbing factor has changed the acceleration f0 by
a small amount Δί0; the question is how this affects the

velocity a. We write Eq. (1.12) in the form

F (1.26)

and consider Δίο + F as a supplementary acceleration.
Using the same arguments as before, we can replace
(1.18) immediately by the following equation for the

perturbed acceleration a'

(1.27)

Inasmuch as Afj is constant and F remains the same
as before, we obtain by substituting the value of

a from (1.18)

(1.28)

We thus obtain a simple result: the velocity a. has
changed by an amount - i Δίο/Ω. Expanding the real

and imaginary parts of Δί0, α, and α'we obtain each veloc-
ity component. In this way we can determine the distortion
of the initial trajectory, and also the stability of the

process. It is usually disturbed when a and Δίο/Ω
become comparable in absolute magnitude.

As another example, let us consider the account of
the disturbing factors in the third fundamental case of
motion. We assume that in (1.20) the acceleration Cz,
produced by the constant electric field, changes by an
amount ACz. Then the equation of motion can be
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(1.29)

Let us determine a' in the same way as a before; we
then obtain

ΥΩ'-iC ч

Carrying out the averaging, substituting z0 from (1.09),
we obtain

/ Ω 2 - 4C
ACa. (1.31)

Substituting the values of a and a' from (1.23) and
comparing real and imaginary parts we obtain

θ' = θ -
/ Ω 2 — iC ' (1.32)

Using these relations, we can calculate the trajectory

of the perturbed motion. In this case F, F
and the other right halves depend on the new variables

a' and a in the same way as they depended on the old

variables a and β in the case of unperturbed motion
(for Δί0 = 0 ) .

In conclusion we note that in the calculation of the
trajectories the following well known properties of a
two-dimensional function satisfying the Laplace equa-
tion are useful. We present them here, since we need
them later on.

If Φ is an electric potential, it can always be repre-
sented in the form

φ =
W(z) + W*(z) (1.33)

where W(z) is a corresponding analytic function of
the complex variable z; the extreme function corres-
ponding to this potential is

Ψ =
W (z) — W* (z)

2Ϊ
(1.34)

The complex intensity Ε of the electric field E=grad3>
corresponding to the potential (1.33) is

dW* (г)
: dz

(1.35)

Cathode

FIG. 1

characteristics of microwave generators of this type.
Figure 1 shows schematically the working space of
the planotron and the notation employed: the width of
the working space D, the pitch of the resonant struc-
ture I, and the gaps between resonator plates h.

The constant electric field Ш of the working space
has a fundamental component along the у axis and we
assume in our initial calculations that this component
is constant. The acceleration corresponding to the
inhomogeneous field £ o v will be denoted by

/оу=^£ои- (2.01)

The components of the electric field Ε produced by
the oscillations in the resonators will be denoted by
E x and Ey, the angular frequency of the natural oscil-
lations of the resonator system will be denoted by ω,
and the corresponding wavelength by λ . The wave
number k, and the quantity g are defined by

(2.02)

where c is the velocity of light. The magnetic field
Η is perpendicular to the plane of the figure and is
constant in time and in space.

The complex amplitude of the scalar potential Φ
in the interaction space will obviously satisfy the wave
equation

a2
 Φ

дхг

4-
ду*

• А 2 Ф = 0 . (2.03)

The overall form of the periodic solution of this equa-
tion will be ( assuming that the electric field in the
neighboring resonators is of opposite sign)

= V (2.04)

II. MOTION OF ELECTRONS IN A PLANOTRON

In this chapter we shall show how to apply the
method developed in Chapter I to the planotron (planar
magnetron).* It turns out that in this case we obtain
a simple and illustrative expression for the motion of
the electron, from which we can derive the principal

*A more detailed description of the planotron will be given in
Chapter VII.

Substituting this expression in (2.03) we have

(2· 0 5 )

In practice λ is always appreciably larger than the
pitch I , so that we can put with sufficient accuracy

for λ (2.06)

This condition is equivalent to stating that in the work-
ing space we can replace with sufficient accuracy Eq.
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(2.03) for the potential Φ by the Laplace equation

ду*
= 0. (2.07)

We can simultaneously neglect the vector potential in
calculating the electric field. We determine the co-
efficients Mn from the following simplified boundary
conditions: Φ = 0 when у = 0 (on the plane of the
cathode); the derivative ЭФ/Эх vanishes everywhere
on the upper limit of the interaction space, where
у = D, except in the gap h between the sides of the
resonator, where we assume that it has a constant
value Ej. This simplification is fully justified by the
degree of approximation of the solution which we
need. We then obtain by the usual method employed to
calculate the Fourier-series coefficients the following
expression for the amplitude of the scalar potential:

. (Zn-i)gh
2

(2n — l) 2sh(2n — \)gD

x cos (2re — 1) gx sh (2re — 1) gy. (2.08)*

We confine ourselves henceforth to the first term
only (n = 1). This is perfectly permissible in view of
the presence of the term sinh( 2n — 1) gD in the de-
nominator. Thus, the periodic electric field acting on
the electron in the interaction space has components

! Φ

8 ΐ η ω > ) ( 2 · 0 9 )

and we retain only the first term in the series
ЭФ/Эх and ЭФ/Эу. If we introduce the notation

. ah, I*
(2.10)m я sh gD

and change over from forces to accelerations, we ob-
tain

Fx = — Ex= — U sh gy sin gx sin ωί, )
7 ) (

Fy ——Ευ = U ch gy cos gx sin at. J

In order to find the motion of the electrons in the
interaction space, it is necessary to solve the funda-
mental equation of motion (1.03) at a constant accele-
ration ifOy and a variable acceleration F. For this
purpose we use the second fundamental case, when
the solution of (1.06) has the form (1.08). This solution
is now conveniently written in the form

where

(2.12)

(2.13)
^ 1

= — we-i(P, β = — (id + αφ) е~Ъ, J

*sh = sinh.
tch = cosh.

a is the radius of the orbit and φ is the phase angle;
positive values of Ω + φ correspond to clockwise rota-
tion of the electrons along a circular orbit.

The motion of the electron under the influence of
the acceleration F is determined from Eqs. (1.18),
which now assume the form

a — iaw = — ^ j

t),

t) е*<01+ч>>,

where

(2.14)

(2.15)

The complex acceleration F(z, z*, t) is determined
with the aid of expressions (2.11) in the form

= FX+ iFy = iU cosgz* sinЫ. (2.16)

We are interested in motions for which the averaged

quantities a and β do not vanish. This occurs if the
angular frequency of the electron Si, the natural fre-
quency of the resonators ω, and the drift velocity
fOy/fi are connected by a definite relation which we
shall call the "resonance condition." This condition
can be determined by substituting the value of z*
from (2.15) into the right halves of (2.14). Inasmuch
as cos gz* can be represented in the form

cos gz - У С+

m=0

\mO+-
Σ

m=0

where

m\

and C m and C m decrease rapidly with increasing m
and do not depend explicitly on t, the terms appearing
under the averaging sign are proportional to
exp [ i ( mQ ± gfOy/ft ± ω) t ], and the result of the
averaging of the individual terms of the series differs
from zero under one of the following conditions (then
the corresponding term will not depend on the time ):

τη1Ω = £^- + ω (1st condition ), j

™2Ω = ^ - ω (2d condition), J· (2.17)

m3il= — Ц^ + ω (3d condition), I

where ml, m2, and m3 are arbitrary positive integers,
including zero.

Of greatest interest to us is the resonant condition
in the form

^- = ω and mfi φ 2ω, т, = т3 = 0. (2.18)

The averaging (under the condition m2 = 0) yields

F ———Usinga*, I

j
(2.19)

Feial = 0.

We need to determine the averaging time T.
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Inasmuch as a/Z (the ratio of the radius of the orbit
to the pitch of the resonant system) is small, it is
necessary to include in the expansion of cos gz* only
the terms proportional to C*. When m2 = 0 one of
these terms will not depend explicitly on the time,
while the other will oscillate with frequency 2ω. We
therefore choose an averaging time Τ = π/ω.

Substituting these expressions into (2.14) and sep-
arating imaginary and real parts, we obtain

4 = — ν gBsingA,

B= -^ sh gli cos gA,

<i=0,

φ = 0.

(2.20)

These expressions describe the motion of the elec-
trons in the planotron in the fundamental working pro-
cess; we note that in this case a = 0 so that conse-
quently, the radii a of the circular orbits of the
electrons remain constant in time as they move in the
interaction space. This is not always the case; if the
electron revolution frequency Ω is a rational multiple
of the frequency 2w, and consequently

gfoy
= ω, (2.21)

then a and φ become different from zero. Let us con-
sider by way of an example (see also Chapter V) the
motion under the condition mj = 2, i.e., when the
angular velocity Ω of the electron revolution is equal
to the angular frequency ω of the resonators. In order
to take into account the influence of the terms C* and
C2the averaging must be carried out in this case over
the time Τ = 2π/ω; the averaging yields

F = - 4r U sin ga* - 4- U ( e4 Υ е -
Δ Δ \_ Δ у

Β , 1
(2.22)

Substituting these expressions into (2.14) and separat-
ing imaginary and real parts, we obtain

= ^ [sh gB cos

ο g/nv

(2.23)

It is seen from these equations that the orbits of the
electrons can either increase or decrease, depending
on the values of the phase 2φ for a given gA. The
influence of this phenomenon on the efficiency will be
considered in detail below. For the time being we
point out only that the efficiency will deteriorate as a
net result of the variation of the orbit radius a, so that

the operation of the planotron in the Ω = ω mode is
undesirable. Usually the operating mode is chosen in
accordance with conditions (2.18). Converting from
acceleration to field values, we can write these condi-
tions in a form suitable for practical use:

~7ϊΓ = ~Γ' ^ ^ Τ Ί Γ · (2 24)

In considering the mechanism of the electronic pro-
cesses in the planotron, we confine ourselves hence-
forth, unless specially stipulated, to the modes deter-
mined by these resonant conditions, when the radius of
the orbit a remains constant. The velocities A and В
of the centers of the electron orbits are given in this
case by (2.20). We call them the phase velocities. In
order to explain their physical meaning, we introduce
an observer who moves at the drift velocity foy/Ω . It
is then seen from (2.15) that such an observer sees
only the velocities A and В of the orbit centers, and
in addition, a file of resonators moving past him with
velocity - foy/Ω. In order to make the electron motion
pattern as seen by the observer more definite, the ob-
server must refer the velocity to a definite phase ut,
we choose it to be a multiple of 2π and refer the posi-
tion and velocity of the electrons to the location of the
resonators at that instant. This is why we call the
velocities A and В the phase velocities and call the
corresponding trajectory of the electron-orbit centers
the phase trajectory. All the phase trajectories fill
the three-dimensional phase space, of which the (A, B)
plane is a section.

We eliminate the time from the equations in (2.20)
by integration and obtain an equation for the trajec-
tories of the electron-orbit centers in phase space

shgBsingA = R. (2.25)

By varying the constant R, we obtain the entire family
of trajectories. They are plotted in Fig. 2 for
R = 1.0, 0.5, 0.25, and 0.1; the arrows indicate the
directions of the velocities A and B.

To visualize the motion of a large number of elec-
tron-orbit centers, we assume that the orbits emerge
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constantly from a uniform layer in the plane у = d,
parallel to the cathode and located a distance d away
from it. We call this plane the supply plane. Then, if
we draw the corresponding trajectory for each electron
(as in Fig. 2), we obtain the flow pattern of the centers,
as shown in Fig. 3. Thus, all the electron centers
gather in tongues at the phase gA = 0 (and also
gA = ± 2π, gA = ± 47Г etc.). The boundaries of these
tongues are determined by the equation

sh gB sin gA = sh gd. (2.26)

We have arrived at a mechanism called in the case
of the magnetron, "phase focusing." We see from
Fig. 3 directly the principal feature of the electron
motion: one half of all the electrons (generated with
phase gA between -π/2 and π/2) is directed straight

into the tongues and reaches the anode, while the other

half must first approach the cathode. Inasmuch as we

are considering not the motion of the electrons them-

selves but the motion of the centers of their orbits, it

is obvious that the electrons cannot come closer to

the cathode than a distance equal to the radius of the

orbit. Therefore the electrons generated, for example,

with π/2 < gA < 3π/2 or - Зтг/2 < gA < 3π/2, may re-

turn to the cathode rather than go into the tongues with

excess energy drawn from the oscillating system. This

is the well known phenomenon of backward current,

which is used in the magnetron to keep the cathode hot.

We shall deal in greater detail with these phenomena

and the losses associated with them in Chapter IV. For

the time being we indicate only two limiting cases. If

the orbit radius a is equal to the height of the supply

plane d, then obviously half the electrons will return to

the cathode and half will go to the anode; thus, the max-

imum backward current due to this mechanism can be

equal to the forward current to the anode. On the other

hand, if the orbit radius a is equal to zero, then all

the electrons can enter the tongues and there will be

no backward current.

The center of the electron orbit entering into one of

the tongues will move towards the anode in the tongue

and, because this motion is synchronized with the os-

cillations of the electric field in the interaction space,

it will give up the potential energy acquired in the trans-

verse electric field gov, to the oscillations of the reso-

nant system.

An examination of the obtained pattern of electron

motion in the interaction space discloses clearly the

physical nature of the "phase focusing" mechanism.

Under the influence of the high-frequency electric field,

the centers of the electron orbits acquire as they move

in phase space a velocity A along the χ axis, under

the influence of which the phase difference between the

passage of the electrons under the resonator gaps and

the electric field changes. It is seen from Fig. 3 that

no matter what the phase gA of the center of the elec-

tron orbit is in the supply plane В = d, its velocity
A will always be directed such as to guide the electron

sinh gB sin gA = sinh gd

FIG. 3

to the tongue, in which it will move towards the anode.
Thus, were it not for the interference of the orbit
radius a, sooner or later all the electrons on the sup-
ply plane В = d would enter the tongues. The velocity
A will be called from now on the "phasing velocity."
It has a maximum when the phase gA is equal to ± π/2.

In this case the velocity В is equal to zero.

When the electron moves with velocity A parallel
to the plane of the cathode and perpendicular to the
constant electric field SOy, no energy is exchanged be-
tween the electrons and the oscillating system. On the
other hand, when the electrons move along the у axis
with a velocity B, energy is exchanged with the oscil-
lating system. Obviously, the power transferred to
the system by one electron is

Ρ — ef В (2 27)

When the velocity В is positive and the electron moves
towards the anode, the power is transferred to the os-
cillating system; to the contrary, when В is negative,
power is drawn from the oscillating system. It is seen
from (2.20) that В will have a maximum positive value
when gA = 0, and a maximum negative value when
gA = ± π. The direction of the phasing velocity A is

always such as to lead the electron to a phase gA = 0,

at which В has a maximum positive value and the os-
cillations are generated in the system most effectively.
It is important to note that the electrons are phased to
correspond to the generation condition near the cath-
ode in a space bounded by the plane В = d. If d is
small, then even when part of the electrons return to
the cathode no appreciable energy losses are needed
and thus the entire phase-focusing process is "cheaply
obtained." This is the major advantage of this gen-
eration process.

The picture considered discloses the mechanism
that guarantees stability of generation in the planotron.
As will be shown below, the expressions obtained also
make it possible to investigate quantitatively the
stability of the process and to calculate those basic
indices, which determine the efficiency of such systems.

Before we proceed to these questions, let us dwell
on one very important consequence of the analysis of
the motion of the electron-orbit centers. We refer
here to the reversibility of the generation process and
to the possible existence of processes in which the
planotron transforms the oscillation energy into direct-
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current energy. For this purpose we examine the mo-
tion of electrons in a constant electric field 4, O v of
opposite sign. Then (unlike Fig. 1) the lower plate
у = 0 will be the anode, and the lower resonator sur-
face у = D will be the cathode. We see that upon r e -
versal of the sign of έ!Ον, the acceleration fov also
reverses sign. Inasmuch as expression (2.12) and all
the following expressions contain the acceleration fOy
in the form of the ratio fOy/fi reversal of the sign of
fOy and simultaneous reversal of the sign of the angu-
lar velocity Ω (i.e., reversal of the direction of the
magnetic field H) leaves all further relations (2.20)
for A and В and the resonance condition (2.18) un-
changed. Thus we obtain the same trajectories (see
Figs. 2 and 3) for the electron-orbit centers in phase
space. The phase-focusing pattern, and consequently
the stability mechanism also remain the same; how-
ever owing to the reversal of the sign of gfly, when the
electron moves in the working space with positive
velocity В it moves from the anode to the cathode,
i.e., against the electric field, and such motion can be
effected only by drawing energy from the oscillating
system. Thus, the power generated (2.27) reverses
sign and the system will operate as a dc generator
with a potential difference

The stability and many other characteristics which
we derive below for the planotron will be valid inde-
pendently of the mode in which the instrument oper-
ates—as a generator of electromagnetic oscillations of
high frequency or as a dc generator. The slight dif-
ference in the mechanism of the process arises only
when the direction of rotation of the electron in its
circular orbit comes into play. In the two foregoing
generation processes the sign of this rotation will be
different, since the direction of the magnetic field was
reversed. Consequently in the case of a planotron
operating as a high-frequency generator the electrons
move from the cathode to the resonators along cycloids
whose convex parts face the anode (the resonators),
while in the generation of direct current the electrons
move along cycloids whose convex parts face away
from the resonators, which act as the cathode in this
case (for more details see Chapter IV, Fig. 7). This
difference is essential in the consideration of the ef-
ficiencies of the two modes: owing to the reversed
position of the cycloid in the planotron operating as a
dc generator, the losses will be distributed among the
anode and the cathode, in different fashion than in the
case of a high-frequency generator.

The foregoing conclusion concerning the complete
reversibility of the electronic processes in planotrons
apply also to magnetrons. Consequently both plano-
trons and magnetrons can be used not only to transform
dc into high-frequency electromagnetic oscillations,
but can be used, with equal stability and with the same

characteristics, for the conversion of high-frequency
electromagnetic energy into dc. This conclusion is
important for the future development of electronic
high-power processes, for this uncovers the possibility
of transforming high frequency energy, and conse-
quently transmission of large power over long distances
both in free space and through waveguides.

We shall return to this question in Chapter IX.

III. PRINCIPAL CHARACTERISTICS OF THE
PLANOTRON

In this chapter we investigate the operating stability
of the planotron and find its power limit. The simple
formulas obtained in the preceding chapter for the t ra-
jectories of electrons moving in the working space of
the planotron yield all the data necessary for the cal-
culation of the stability of the electronic processes
against disturbing factors produced by the inhomoge-
neity of the fields, by space charge, etc.

Let us establish first the connection between the
current and the space charge it produces. From (2.20)
we find that the components of the phase velocities A
and В satisfy the solenoidal condition

ев
а А (3.01)

Consequently, the motion of the centers of the orbits in
phase space is like the flow of an incompressible liq-
uid. The velocities A and В have a velocity potential.
The corresponding stream function is

ngA. (3.02)

It is easy to check that A and В satisfy the following
relations:

i=--||-, ·Β = |^·· (3.03)

Let us denote the number of the centers of the elec-
tron orbits per unit volume by μ and regard μ as a
density. Along any current line, both the function *
and the density μ remain constant [ in accord with
Eq. (3.01)]. If the density μ has a specified distribu-
tion in the supply plane В = d (see Fig. 3), where the
formation of the tongues begins, then this distribution
will remain the same in any other plane В = const.
If the initial distribution in the supply plane is homoge-
neous, the density μ remains constant over the entire
tongue. We confine ourselves henceforth to an exami-
nation of motion for a homogeneous density μ. As can
be seen, a homogeneous density is obtained in two
cases. The first case occurs when d = a (where a
is the radius of the electron orbits) under the condition
that the centers of the electron orbits are uniformly
generated in the supply plane itself; then they can
enter into the tongue only from the interval — π/2
< gA < π/2, i.e., from half the total length of the cath-
ode, and continue to move with constant density along
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the tongues. The second case will occur when a = 0,
when electrons enter into the tongue from the entire
supply: half of the electrons goes directly into the
tongue, the other half travels under the supply plane.
Then the density in the tongues is again uniform, but
it is twice as large as in the preceding case. In the
intermediate cases, when 0 < a < d, bands (bounded by
the current lines) are produced along the edges of the
tongue, with double density, while the density has its
usual value in the center of the tongue.

Revolving around each center is an electron with
charge e, and inasmuch as the orbit is small and its
radius is smaller than d, we can assume with suf-
ficient accuracy that the space charge density in
the cluster is ρ = βμ. Therefore when μ is constant
the charge density ρ is also constant. If we denote by
J the average current density (the current per unit
electrode surface), then the current strength per pair
of resonators will be

2U =•- \ QBdA, (3.04)

where At and A2 are the values of A at the extreme
points of the tongue (see Fig. 3). Substituting the value
of В from (3.03) and assuming ρ to be constant, we
have

/ = Α ( ψ 2 _ ψ ^ = _j£_Sh gd. (3.05)

Thus, a connection is established between the current
and the space-charge density in the tongues. In all the
modes the space charge of the electron cloud is con-
tained within definite limits, specified by the form of
the tongues; the charge density in the tongues can
usually be regarded as constant, and the value of the
space charge can be assumed proportional to the cur-
rent.

From the value and distribution of the space charges
we can calculate their disturbing action on the motion
of the electrons and determine both the stability of the
process and the limiting generation power. In addition
to the space charges, there are other factors which
disturb the electronic process in the planotron. P r i n -
cipal among them in practice are the lack of complete
homogeneity of the magnetic field, the variability of
the static field £Оу, and inaccuracy in the manufacture
of the device. It will be shown below that the stability
of the electronic processes depends on the intensity of
the oscillations in the resonator; for a planotron and
magnetron under operating conditions, this stability,
as will be shown below, is quite high.

Let us consider first the simplest case, when along
with the electric field g o y , satisfying the resonance
condition, there exists also a small perturbing field,
directed along the у axis, the intensity of which will
be denoted by АШоу', the acceleration corresponding to
it is

Δ/ = —— Ag (3.06

The additional acceleration Afoy increases the drift
velocity by an amount Afoy/fi and disturbs the reso-
nance condition (2.18).

At the end of Chapter I we described a method for
calculating the perturbed motion. In the present simple
case it is likewise easy to carry out the calculations
anew, namely, on going over from formula (2.16) to
formula (2.19) it is necessary to take into account in
the expression for gz* the additional term gAfOyt/S2,
which (for sufficiently small Δί ο ν) can be regarded
constant over the averaging time. Then

F= - y

Introducing a new complex quantity

we obtain the equation

и (3.07)

The same relations are obtained directly from (1.28) by
putting Δί0 = iAfOy. Separating the real and imaginary
parts, we obtain

A' = — -gjj- ch gB' sin gA' •

B' ="2Q-shgB' cos gA',
(3.08)

which are analogous to (2.20) and differ from them only
in the presence of a term Δΐογ/Ω, which changes the
phase velocity A. It is easy to see that the perturbed
motion remains potential in character and the com-
ponents A' and B' satisfy as before the solenoidal
condition (3.01). Consequently, all the kinematic p r o -
perties of the unperturbed motion (the existence of a
velocity potential and a stream function, homogeneous
density of the space charge, etc.) remain in force for
the perturbed motion. The stream function of the p e r -
turbed motion will be

Ψ'^ щвЪ gB'singA'- (3.09)

Our problem consists of finding those limiting values
of Δί ο ν /Ω, at which the stream lines Φ' = const retain
a tongue-like character and the electrons produced in
the supply plane reach the anode.

For convenience in analysis we introduce the nota-
tion

(3.10)z = gA', y = yB\ а-=Щ™.

Then the trajectory equation assumes the form

a(y — y0). (3.11)

Figure 4b shows the stream lines Φ' = const (trajec-
tories ) for σ = 4. It is seen from Fig. 4b that the
centers of the orbits situated above or on the horizon-
tal line у = У1 all enter into the tongues and reach the
anode. The centers of the orbits situated below the
horizontal line у = У2 will move along curves similar
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to sin χ without entering the tongues. The centers of
the orbits lying in the band y2 < у < yt will only partly
enter into the tongues. The values of yi and y2 are
determined in the following manner.

Let us consider two points on one and the same
phase trajectory. At the point with the coordinates
χ = — π/2, у = у2 this trajectory is closest to the plane
of the cathode у = 0. The point with the coordinates
χ = π/2, у = yi on Fig. 4b is denoted by Q. The main
distinguishing property of this point is as follows: on
the vertical χ = π/2 this is the only point at which the
approaching trajectories have a vertical tangent.
Therefore the point Q is determined by the condition

dx

Differentiating (3.11) we obtain

ch yt = σ.

(3.12)

(3.13)

Eliminating y0 and σ from (3.11) we obtain a connec-
tion between yt and y2 in the form

sh Ϊ/J -|- sh уг = (y1 — Уг)^У1- (3.14)

In order to maintain the character of the motion
completely unchanged, it is necessary that the supply
plane be higher than the plane у = у4, i.e., it is neces-

sary to have gd 2: yj and consequently cosh gd
г cosh yt. Returning to the previous notation, we ob-
tain the following stability condition for the tongue

;-£chgd. (3.15)

If Afoy does not satisfy this condition, then the forma-
tion of the tongues is disturbed and the anode current
decreases or even drops to zero.

The boundaries of the tongue corresponding to the
perturbed current lines are shown in Fig. 4a. The
perturbed tongues can be imagined by visualizing a
wind blowing through the unperturbed tongues (Fig.3)
in the direction of ΔίΟν/Ω. From the expression from
the extreme lines we see that the width of the tongues
A2 — Aj is the same at a given altitude in the unper-
turbed and perturbed motion [ subject to condition
(3.15) ], so that the areas of the tongues and the space
charge density in the perturbed motion remain un-
changed.

The meaning of condition (3.15) becomes physically
clear if one determines from (2.11) the amplitude of
the acceleration along the у axis, produced by an al-
ternating electric field in the supply plane. This ampli-
tude is equal to

= 0, B = (3.16)
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Substituting this value into the condition (3.15), we can
rewrite it in the form

Changing from acceleration to fields we get

1м
2

(A = 0, B =

(3.17)

(3.18)

Thus, the motion remains stable if the constant per-
turbing field is directed along the у axis and does not
exceed half the amplitude of the alternating field in the
supply plane. The special role of the component E y

can be seen from the first equation of (3.08): it deter-
mines the phasing velocity, which under condition (3.15)
or (3.18) neutralizes the action of the "dephasing"
velocity AfOy/fl.

A similar stability analysis of the electronic pro-
cess can be carried out in those cases when the dis-
turbing factor upsets the resonance condition. It is
seen from formula (3.18) that the resonance can be in-
fluenced by three factors: change in the electric field
gOy, change in the magnetic field H, and change in the
period (pitch) of the structure I .

Let us denote the relative perturbations by γ . In
the case of a perturbation of the electric field

v = Ai«L. ( з . 1 9 )

If an inhomogeneity equal to ΔΗ arises in the mag-
netic field, then the relative perturbation is

y = - •

AH

Η
(3.20)

If the manufacturing inaccuracy causes the pitch of
the resonators to change by Al, then

Μ
y=- — . (3.21)

Employing in all these three cases (3.08) and the
equations that follow, we can show that the perturba-
tions do not disturb the electronic process if

I -v I - (3.22)

In this case γ can be any of the foregoing quantities.
Under ordinary generation conditions, the ratio of

the fields Ey and <f0 is not a small quantity, so that
the system displays good stability against perturba-
tions. The relative perturbation γ can amount to many
per cent and still not upset the generation, so that there
is no need for very precise manufacture of the system
or for great homogeneity of the magnetic field in the
operation of the planotron.

However, exact satisfaction of the resonance condi-
tion may be important for self-excitation. The initial
oscillations in the system are excited as a result of
fluctuations occurring in the cloud of electrons drift-
ing around the cathode. Therefore the initial oscilla-
tions in the system cannot be large and the field Ei,

corresponding to them in the supply plane will be
weak; it follows therefore that in the case of self-
excitation the ratio (3.22) imposes more stringent
conditions on γ.*

Exact satisfaction of the resonance conditions is
necessary only at the instant of self-excitation: the
more precise the manufacture of the device and the
more homogeneous the electric and magnetic fields,
the easier it is to produce self-excitation.

Were the initial value of Ει, known, one could es-
tablish with assurance the necessary tolerances for
the values of γ in the case of self-excitation. It is
apparently difficult to calculate the initial oscillation
intensity, but it is quite feasible to measure it; this is
an interesting experiment which should be performed.

The most appreciable influences on the operation of
all electronic devices are the disturbances due to
space charges which occur during the flow of the cur-
rent. Their action determines essentially the energy
characteristics of the planotron as well as of the mag-
netron, klystron, and other electronic devices. The
physical picture of the disturbing action of the space
charge in the planotron is very simple: the electrons
filling the tongues are repelled and thus oppose the
phasing action of the velocity A. It is obvious that the
field produced by the space charge will affect most
strongly the electrons whose orbit centers lie on the
boundaries of the tongue, for it is there that the re-
pulsion is a maximum. The strongest perturbation
will be introduced in the electron motion by the com-
ponent gy of the electric field due to the space charges:
this follows from the fact that in a magnetic field the
velocity acquired by the electrons under the influence
of the electric field is directed towards that field, at
a right angle, precisely in the direction of the A axis
in which the phasing velocity A acts.

The largest value of the component Щ due to the
space charges will be at the root of the tongue, at the
point with coordinates A = 0 and В = d (the point O'
on Fig. 5). Knowing the density of the homogeneous
space charge ρ and the form of the tongue it is possi-
ble to calculate the field at the point O'; these calcula-
tions lead to complicated integrals. The problem can
be simplified by replacing the tongue with a triangle
of the same area, which obviously produces (for the
same density ρ ) at the point O' approximately the
same field. Such a triangle is shown in Fig. 5. We
make the base of the triangle equal to vl, where ν is

*In the study of self-excitation it is necessary to take account
of the fact that it is guaranteed by the excitation of a chain of
resonators, so that it is necessary to introduce into consideration
the summary perturbation factor Sy. In addition, it is necessary
to recognize that in the unexcited state the electron cloud will
diffuse in the working space from the cathode to the anode and
consequently the height d of the supply plane seemingly increases.
This brings the electrons into a region with larger values of Ey,
which makes the onset of oscillations easier.
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FIG. 5

obviously less than unity; this quantity can be esti-

mated in simple fashion by means of a planimeter.

Regarding the problem as a two-dimensional one, we

calculate the space-charge field at the point O' in the

method usually employed in such problems, namely by

integration of the fields produced by each area ele-

ment. As a result of the calculation we obtain for the

component I y of the space-charge field at the point

O' the following expression:

\l(D —

(D-c )

[ i . 2(D-d)
vl < 3 · 2 3 >

Inasmuch as d is small compared with D and ν is

less than unity, we can approximately put

If we put

we obtain ultimately

The corresponding acceleration will be

(3.24)

(3.25)

(3.26)

(3.27)

More detailed calculations show that the coefficient
differs little from unity; it is little sensitive to a vari-
ation of the parameters D, d, and I. This is confirmed
by the fact that expression (3.26) can be obtained in
simple fashion by assuming the entire charge concen-
trated at the centroid of the triangle.

The field g y moves together with the tongues, so
that it will exert the same influence on the electrons
as if the field were constant. We can therefore use
the stability condition (3.15), which we introduce for a
constant perturbing field, and the maximum possible
charge density in the tongue (which we denote by p c )
is obtained from the relation

— QC%1 = -γ- ch gd. (3.28)

Substituting the value of p c in expression (3.05) for
the current density, we obtain its critical value

(3.29)

The specific power, i.e., the power removed from
a unit cathode surface and converted into oscillating
energy of the system, will obviously consist of the
work carried out by all the electrons, so that we ob-
tain for the specific power the expression

P = T)eJ$i,yD, (3.30)

which is analogous to (2.27); here ηβ is the efficiency
of the electronic process. From this expression we
obtain the critical specific power if we substitute in it
the critical current (3.29). Making this substitution
and using the resonance condition (2.24) we obtain

m У aDU*
(3.31)

We obtained two important characteristics of the
generation process: the critical (limiting) current J c

and the critical power P c , determined by the perturb-
ing action of the space charges. These quantities, as
can be seen from (3.29) and (3.31), are proportional to
U2, which according to (2.10) is in turn proportional to
the energy of the alternating electric field in the reso-
nators. Thus, the specific power generated in the in-
teraction space is proportional to the energy of the
oscillating system, which is also maintained by the
generated power. Obviously, the power drawn from
the resonators and the Joule power loss should be
chosen such that the generated power does not exceed
the critical value P c . This choice determines the de-
gree of stability of the generator.

Let us consider the electromagnetic oscillations in
the resonators. The energy in the resonators, as is
well known, is concentrated alternately in the electric
and the magnetic fields. For generation of the oscil-
lations, only the electric field is important, and fur-
thermore that part of the field which acts in the work-
ing space. All the other electric fields (except for the
small field corresponding to the power drawn) do not
participate usefully in the process. The presence of
these fields in the resonators is not only useless but
harmful, since they are maintained at the expense of
current flowing in the resonator walls, which involves
additional Joule losses. Therefore an important char-
acteristic of the resonator system is a quantity which
we designate φ and call the coefficient of utilization of

the electric field in the resonators. If the total electric

energy per unit area of the interaction space is W in

the resonators and in the working space, and Wo in

the interaction space only, then

Ψ = - ^ - · (3.32)

The better the construction of the resonant system, the
higher the utilization coefficient ψ. But even in the
best resonator systems ψ does not exceed one-third;
usually this quantity is much smaller.

A second quantity characterizing the operation of
the resonators is their total Q, which includes the
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loaded Qj and the loss Qj, determined by the Joule
losses. For Q, Q; , and Qj we have the usual relation

ι
Qi

(3.33)

From the definition of Q we have the following relation
between the power Ρ delivered to the system and the
energy W stored in it:

<? = - ^ = Ψ ^ · (3.34)

The electric energy of the alternating field per unit
length in the interaction space can be determined by
integration. It is equal to

D I
2 I dydx. (3.35)

16it/

дФ

Substituting expression (2.08) for the potential Φ and
confining ourselves to the first term of the series, we
obtain after integration

(3.36)

Substituting this value in (3.34), and also substituting
in place of P c the critical power (3.31), we obtain the
critical Q of the system

& τ,β-ψ
πχί sh 2gfl (3.37)

This very important expression gives the smallest
value of the total Q for which a stable electronic pro-
cess is still possible. This is fundamental for the
establishment of the dimension of the working space
in the planotron and the magnetron. The three coef-
ficients in this expression are determined in the fol-
lowing fashion. The first is the efficiency Tje of the
electronic process, which will be calculated in the next
chapter. The second is the utilization coefficient ψ and
is calculated from the distribution of the electric field
in the resonator, and is determined even more easily
by experiment.* The coefficient χ is determined by
the form of the tongue and, as was already pointed out,
its value varies little and is close to unity.

The importance of (3.37) lies in the fact that it
establishes, together with the expression for the ef-
ficiency which will be given in the next chapter, those
relationships between the parameters D, I, and d of
the working space, which are necessary to obtain the
most stable and most effective operating mode. We
note that the values of Qc, calculated from (3.37) are
close to those obtained in experiment (of order 102).

In practice it is also important to know the limiting
power which can be obtained in the planotron per unit

*We have used the following simple method of measuring φ in
cold tests of the generator: the interaction space is filled with an
insulator (usually Plexiglas) and the shift Δω of the resonant fre-
quency of the system is measured. The coefficient of utilization
is calculated from the formula φ = 2Δω/εω, where e is the di-
electric constant of the insulator.

cathode area. Expression (3.37) yields Pc—the maxi-
mum specific power for a given value of U2, which is
proportional to the energy of the alternating electric
field in the resonators. Thus, the power is limited by
the same factor which limits the intensity of oscilla-
tion in the resonators. In practice this factor is
usually simply electric breakdown, but there is also
another principal limitation on the power. It is ob-
vious that with increasing U the phase velocities A
and В will increase in accordance with (2.20), and
theoretically they can reach values at which the gen-
eration mechanism becomes disturbed. Thus, for
example, at large values of В the electrons will reach
the anode within the averaging time (during which the
electrons have time to shift from one resonator to the
other in the operation mode); this is not realistic, for
they cannot have time to gather into tongues.

We can derive the conditions that limit A and B;
they are mathematically identical to the conditions
under which our approximate method of solving the
fundamental equation of motion can be employed.

In Chapter I it was pointed out in the description
of the method [see formula (1.24)] that the uncertainty
in the position of the electron on the trajectory does

not exceed Δα = I a | T. It is obvious that phase focus-
ing can be realized only when ΔΑ is much less than
the value of I—the pitch of the resonant system. In
the case considered by us, in the derivation of Eqs.
(2.20), we chose an averaging time Τ = π/ω. The
condition necessary for realization of phase focusing
will have the form

AA = \A\g

Ι ω

Using (2.18) and (2.20) we get

€ 1. (3.38)

(3.39)

These inequalities should be realized first of all in
the plane В = d, where the main phasing of the elec-
trons takes place. Taking the largest value on the
right side, we obtain

и chgd (3.40)

Substituting this value into (3.31) and changing from
acceleration to field values, we obtain an inequality
for the limiting power P c per unit surface:

^ d . (3.41)

We can obtain a similar relation by considering *

•More accurately, this condition can be written in the form
ΔΒ/D' <K 1, where D' is the shortest path covered by the center
of the electron orbit in the working space (D' = D - d - a, where
d is the distance from the supply plane to the cathode and a is
the radius of the orbit). Usually D' ~ I and ΔΑ ~ ΔΒ, so that
the condition does not yield anything new. However, if the mag-
netic field is only slightly larger than critical, then D' is small
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the condition ΔΒ/D « 1 for vertical motion of the

electrons (D is the distance between the cathode and

anode).

From this we can derive the dependence of the gen-

erated power on the wavelength and on the other para-

meters of the generator. If we substitute into this

expression the parameters of the experimental piano-

tron, then we find that the limiting power which can be

drawn from a unit surface reaches exceedingly high

values—tens and hundreds of kilowatts per square

centimeter of cathode area. Such large values, as is

well known, have already been realized in magnetrons

operating in pulsed modes. In the case of continuous

generation, it is necessary to draw much less power.

The main limitation on the continuous mode is the diffi-

culty in cooling the resonators and the cathode; neither

the space charge nor the violation of the character of

motion will be limiting factors hindering the produc-

tion of large continuous power with the aid of a plano-

tron and a magnetron designed for continuous operation.

We note in conclusion that the method we have em-

ployed for an approximate calculation of the space

charge yields an exaggerated value of the perturbations

due to them. In fact, the electric field produced by the

space charges has a complicated distribution in space,

and we confine ourselves to the calculation of the field

only at the point O' (see Fig. 5), where it has a maxi-

mum value. Further, we have assumed that the per-

turbation carried out by the space charges is equal to

the perturbation caused by the field (3.26), as if this

field were to have a constant value over the entire

interaction space. This method of reasoning leads,

of course, to too high an estimate of the perturbation,

but the error associated with this is apparently not

very large, since the electrons most sensitive to the

perturbations are located near the supply plane. We

have thus obtained the critical current J c and the

limiting power P c as a function of the parameters of

the interaction space and the wavelength; this depen-

dence can serve as the basis of the similarity theory

necessary for the construction of generators with

various parameters.

All that can be expected from a more complete cal-

culation method is merely more precise values for

some of the coefficients. It would be interesting to

obtain more exact expressions for the limiting values

of the power and the current, to investigate the defor-

mation of the tongues due to the space charges, and to

compare the obtained results with the experimental

research.

and the condition ΔΒ/D' <K 1 greatly limits the amplitude of the
high-frequency field. This example shows once more that the
averaging method is applicable when effective generation takes
place.

IV. ANODE AND CATHODE LOSSES IN THE
PLANOTRON

The electronic efficiency of the planotron, which we

have designated η 6 , is the ratio of the power fed into

the resonators from the electron cloud, to the power

received from the dc source. In addition to the losses

occurring in the electronic process, it is necessary to

take into account also the Joule losses in the resonators.

The calculation of the efficiency from the Q of the

resonators is well known and will not be discussed here.

If we denote the resonator efficiency by ηΓ, then the

over-all resonator efficiency is

η=ηβηΓ. (4.01)

On the basis of the results obtained above for the

electronic processes in the planotron, we now consider

the electronic losses in this device. There are three

principal types of losses. The first and unavoidable

losses are connected with the fact that at the instant

when the electron completes its working path from the

cathode to the anode and transfers energy to the oscil-

lations, it arrives at the anode with a certain velocity,

the loss of which heats the anode. These will be called

"anode losses" and the efficiency corresponding to

them will be designated ηΆ. The second form of

losses—losses on the cathode—were already mentioned

in Chapter II (see p. 787). They are caused by the ex-

cess energy with which the electron with improper

phase gA returns to the cathode. The efficiency cor-

responding to these losses will be designated η^. The

third type of losses will be called the "edge losses,"

since they are connected with phenomena occurring on

the edges of the cathode and the anode and consist in

the fact that in the absence of oscillations in the gen-

erator the current is not completely blocked and has

sometimes an appreciable value J n (the residual cur-

rent). In Chapter V we shall analyze the possible

cause of this current and the losses associated with

it. Inasmuch as this current is concentrated closer

to the edge of the anode, we call it the edge current,

and the losses associated with it are called the edge

losses. The corresponding efficiency will be denoted

η η . If 77a> rjjj, and η η differ little from unity, then the

electronic efficiency rje can be assumed equal to their

product.

To determine the anode losses we must know the

kinetic energy with which the electrons strike it. The

electron velocity has two components, z0 due to mo-

tion in the static fields and a due to the oscillations.

But it is obvious from (3.38) that we are free to neg-

lect the phase velocity A + iB due to the alternating

field.

If the planotron operates under the resonance con-

ditions (2.18), then according to (2.20) the radius a

of the orbits is constant and therefore the average

kinetic energy with which the electron started its path
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FIG. 6

towards the anode from the supply plane В = d will
remain constant over the entire path. Thus, the ki-
netic energy of the electron is determined by the con-

stant acceleration
tions (1.03)

fOy in accord with the usual equa-

(4.02)

T h e v e l o c i t y c o m p o n e n t s w i l l b e ( i f φ = 0 w h e n t = 0 )

-ΩαβίηΩί,x=bL
Ω

y = \i

(4.03)

The trajectories of this motion will be cycloids or
trochoids (Fig. 6). The electron moves along the
circle a with angular velocity Ω , and the center of the
circle moves parallel to the χ axis with velocity
foy/Ω. The radius a of the circular orbit and the po-
sition of the center of the orbit in the working space
are determined by the initial conditions, which can be
derived in the following fashion. The condition of en-
ergy conservation at any point of the trajectory has
the form

^ - ( . τ 2 ! ?/2)=- /„,,?/. (4.04)

Let the electron emitter be located at a distance b
from the cathode and let it have the same potential as
the cathode, and in addition, assume that the influence
of the electric field component parallel to the χ axis
on the motion of the electron can be neglected on the
segment of path near the emitter. Then, integrating
the first equation of (4.02) and assuming that the
initial velocity of the electron on the emitter is zero,
we obtain

x = Q(y-b) (x = Q when у — b). (4.05)

Let us find under what values у = dt and у = d2 the
velocity у vanishes. For this purpose we substitute
χ from formula (4.05) into (4.04). For the sought
values of у we obtain the quadratic equation

Introducing for the sake of brevity the symbol

6 = fay

(4.06)

(4.07)

and solving (4.06), we obtain two roots

26

from which we obtain the radius of the orbit

= δ
2

26

(4.08)

(4.09)

and the ordinate of the plane in which the centers of
the orbits move (supply plane),

di + dt _ A , ;, (4.10)
7

d =

= δ + b.

From these expressions we see that the trajectory
depends on the position of the emitter relative to the
cathode. If b is positive (the emitter is above the
cathode, Fig. 7a), we obtain an elongated cycloid.
When b = 0, when, as is customary, the emitter is on
the surface of the cathode, we obtain a normal cycloid
(Fig. 7b). If b is negative, then the emitter is located
below the surface of the cathode and a foreshortened
cycloid is obtained (Fig. 7c), and finally, in the limit-
ing case when

b *_ = -
2

2Ω2 (4.11)

we obtain in place of a trochoid a straight trajectory
(Fig. 7d), since a = 0 and the electron moves parallel
to the χ axis with the drift velocity fOy/fi. Thus, the
form of the trajectory is very sensitive to the position
of the emitter relative to the cathode.

The kinetic energy of the electron moving along
the trajectory will have a maximum at the point у = df

farthest from the cathode plane. From relation (4.04)
it follows that the kinetic energy of the electron at the
point у = dj is equal to mfoydj; this is precisely the
energy with which it arrives at the anode during the
generation mode. The energy which the electron ob-
tains from the constant field along the entire path
from the cathode to the anode is equal to mfOyD. It
follows therefore that the relative anode losses are

D (4.12)

For small values of b (compared with δ) we obtain
from (4.07) the approximate formulas

= 2(6 + 6).

(4.13)
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Substituting the value of dj into (4.12) we obtain an
expression for the relative anode losses at small
values of b:

1-ηα =
δ+b

D (4.14)

Under practical conditions dj is equal to several
tenths of a millimeter, therefore even a small rise of
the electron-emitter surface above the cathode sur-
face greatly decreases the efficiency of the process.

If the emitter is located in the plane of the cathode,
as is the case in ordinary magnetrons with oxide
cathodes, then b = 0 and the trajectory will be a
normal cycloid (Fig. 7b). In this case the losses are
equal to

1-П. = 2~- (4.15)

b>O
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When the emitter is located deeper (b < 0), the
losses will decrease according to (4.14) (Fig. 7c).
The limiting value for the negative values of b is
—δ/2; when b = —δ/2 the motion of the electrons will
follow a line parallel to the cathode plane (Fig. 7d).
In this case the electron velocity will be minimal and
the anode losses will also be minimal

2 D
- ЁЛ
~ г ) -

(4.16)

Comparing the last two expressions, we see that in
the second case the losses are one quarter as large
as in the first, and the efficiencies differ greatly from
each other.

The reason for this difference is obviously that
when the electrons move from an emitter which is
recessed in the cathode, the trajectories of motion
are linear and there is no orbital kinetic energy con-
nected with the circular motion of the electron, so that

its entire kinetic energy is determined by the square
of the drift velocity. Consequently the anode losses
given by (4.16) are the smallest possible.

The velocity of electrons moving along a normal
cycloid at a point farthest away from the cathode is
twice as large and the kinetic energy is four times as
large as in "pure drift." It follows from (4.14) that
any rise of the emitter above the cathode surface in-
creases the losses. By locating the emitter below the
surface of the cathode the rotational motion of the
electrons is decreased, which not only increases the
anode efficiency but also other losses, which will be
referred to later.

Let us introduce in (4.07) the field in place of the
acceleration and let us use the resonance condition
(2.24); we then obtain

2cl

and the optimal efficiency will be

m
e XDH

(4.17)

(4.18)

This relation makes it possible to estimate the maxi-
mum efficiency of the planotron in a given mode. We
note that the anode efficiency of the planotron in-
creases with increasing magnetic field at which the
electronic process takes place.

The optimal depth of the emitter is, in accordance
with (4.11),

It must be pointed out that this value is inaccurate,
for in the derivation of expression (4.05) for χ we as-
sumed that there is no x-component of the electric
field along the electron path. Actually this condition
is not realizable exactly, and therefore expression
(4.19) must be regarded as an approximation. Exper-
iment shows that for a successful choice of the form
of the recess for the emitter the experimental value
of bo agrees closely with the calculated one. It is
easy to establish experimentally the optimal conditions,
since this is simply effected by choosing the magnetic
field.

It would be interesting to investigate the influence
of the form of the recess on the trajectory of the
electrons, and particularly find forms at which the
electrons move in the working space without orbital
motion if possible. Apparently the most effective will
be an investigation of the electron trajectories, since
the difficulties in the mathematical analysis are aggra-
vated here by the influence of space charge, which has
a high density near the cathode.

The orbital motion of the electrons can also affect
the anode losses in the following manner. It was
shown in Chapter II that in double resonance (2.21),
when Ω = ω, the radius of the electron orbit does not
remain constant. It is seen from (2.23) that, depend-
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ing on the value of the phase gA + 2ψ, the rate of
change of the orbit a can be either positive or nega-
tive. Therefore part of the electrons will strike the
anode with an increased radius and consequently with
an increased kinetic energy, which will give rise to
additional losses. The other part, which will arrive
with decreased radius, will bring less kinetic energy
and decrease the losses. It is easy to show that in the
final analysis this will lead to an increase in the
losses, since the derivative a, as can be well seen
from the third equation of (2.23) is proportional to a
and therefore the kinetic energy of the electrons in-
creases on the average. Consequently, when the angu-
lar frequencies Ω and ω coincide, a certain decrease
in generator efficiency is observed in experiment.

Resonances of the type (2.21) manifest themselves
relatively weakly because the electrons cover the
distance from the cathode to the anode in a small num-
ber of cycles and the radius of the orbit does not have
a chance to increase noticeably. The principal means
of decreasing the losses connected with resonances of
the type (2.21) is to use a recessed emitter, which re-
duces the electron orbital motion to a minimum.

It must be noted that the conditions (2.17) do not
exhaust all the possibilities, since it can be shown
that the higher spatial harmonics in the expansion of
the potential (2.04), can also resonate. But such ef-
fects can be regarded as small and I believe that at
the present stage of the study of the planotron they
can be disregarded.

The reason for the cathode losses follows also from
the previously considered (Chapter II, p. 787) mech-
anism of phase focusing of the electron orbits near the
cathode. These losses are due to the kinetic energy
brought by the electrons returning to the cathode.

The electrons returning to the cathode are those
whose phase gA lies in the range from π/2 to 3π/2
(Fig. 8) and "there is not enough space" for the
orbits to pass into the tongues. The center of the
electron orbit, which lies in the supply plane В = d
with phase coordinate gA0 should go over into a
tongue along the stream line shown dashed in Fig. 8.
At the point gA = ir/2 this trajectory will be closest
to the cathode. If the distance from this point to the
cathode is smaller than the radius a of the orbit,
then there is enough room in the orbit and the elec-
tron will reach the cathode. Thus, the limiting t ra-
jectory for the electron entering into the tongue will
be determined, in accordance with (2.26), by the ex-
pression

sh gB sin gA =.· sh ga. (4.20)

The point with coordinates A = Ao and В = d (on the
supply plane) will lie on this trajectory, and therefore

sin gA0 = shga (4.21)0 shgd •

In view of the smallness of the quantities ga and gd,

-я дА„

FIG. 8

we obtain for the limiting phase the expression

gA0 = π — arcsin — , (4.22)

where the arcsine is taken in the first quadrant.
It is seen from Fig. 8 that if we put the total num-

ber of electrons starting from the cathode in the right
half of the tongue proportional to π, then gA0 elec-
trons will enter the tongue, and τ — gA0 return to the
cathode. Thus, we find that the ratio of the cathode
current Jk to the working (anode) current J will be

J_h_
j

л—arcsin-

(4.23)

Each electron returning to the cathode absorbs from
the oscillations an energy proportional to the path
d - a, and each electron striking the anode will give
up an energy proportional to B. It follows therefore
that the relative losses due to the return of the elec-
trons to the cathode are

d — a

j
(4.24)

Substituting the value of Jk/J from (4.23) we obtain
ultimately

1_η _ " 1 __ (4.25)
π — arcsin - d

From this expression and from (4.23) we see that
the losses due to the reverse current are wholly de-
pendent on the type of the trajectory along which the
electrons move. The cathode losses are zero (т/к = 1)
in two cases:

1) a = d, Jh = J,
2) a = 0, (4.26)

In the first ease the trajectory is a normal cycloid,
and in the second the radius of the orbit is a = 0.
Only in the second case is there no backward current.

Figure 9 shows the dependence of Jk/J on 1 — a/d,
calculated from formula (4.23). Figure 10 shows the
function

0--5-)-
π—arcsin

(4.27)

which is contained in formula (4.25) for the cathode
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losses. It is seen from Fig. 10 that the losses have a
maximum when a « 0.4d.

The cathode losses are always smaller than the
anode losses. Indeed, from (4.12) and (4.25) we obtain

a
j arcsin --г-

£ — - (4.28)
ι— η—arcsin-

and inasmuch as the ratio d2/dj is always less than
unity (Fig. 6), the cathode losses are smaller than the
anode losses. As is well known, the harmful influence
of these losses is connected with additional heating of
the emitter, which may be harmful at high power.

It follows from the foregoing that the cathode
losses are always connected with the orbital motion of
the electrons, and if there is no orbital motion (a = 0),
these losses are likewise missing. All the factors
which influence the orbit radius a also influence the
losses. If the motion is strictly cycloidal (a = d),
there are no cathode losses, but even small deviations
from the equality a = d immediately give rise to
cathode losses, as can be seen from Fig. 10.

The main factor influencing the orbit radius a is
the edge effect, which will be discussed in the next
chapter. An increase in the radii of the orbits, oc-
curring as a result of resonance phenomema on the
edges of the cathode, can greatly increase the cathode
losses just calculated. For the time being it is still
difficult to take quantitative account of this factor.

5. EDGE EFFECT AND ASSOCIATED LOSSES

Ever since the study of the cutoff action of a mag-
netic field on a radial electron beam started in 1921,
the phenomenon of residual or null current was ob-
served even in the prototypes of the modern magne-
tron. This phenomenon consists in the fact that for a
fixed potential difference between two coaxial cylin-
ders or between two planes, there is a definite value
of the magnetic field, directed perpendicular to the
static electric field, which twists the electron trajec-
tories in such a way, that the anode current stops
flowing. The magnetic field at which the electrons
cannot reach the cathode is called the "cutoff mag-
netic field." Experiment shows that this cutoff is
never complete: between the cathode and the anode a
certain current always flows, which is called either
the null or the residual current.

This phenomenon is of great theoretical interest;
it appears quite paradoxical, since it is contrary to
the fundamental laws of electron motion. To derive
the conditions for current cutoff in crossed electric
and magnetic fields it is not necessary to know either
the distribution of the space charges or the electron
trajectories, since this condition is obtained only
from the fundamental laws of dynamics, namely the
conservation of the momentum (or angular momen-
tum) and the conservation of energy. Naturally, this
problem has been the subject of many papers, but so
far there is not only no quantitative theory of this
phenomenon, but there are not even convincing quali-
tative explanations.*

It is also important to understand the nature of the
residual current because it has great practical sig-
nificance both in magnetrons and in the planotron, in-
asmuch as the residual current can reach consider-
able magnitudes and greatly reduce the efficiency. The
reason for it is that the value of the residual current
apparently depends little on the generated power;
some power is always lost in the maintenance of this
current, and does not participate in the generation of
the oscillations, thus reducing the generator efficiency.
This phenomenon is particularly harmful in the gen-
eration of small amounts of power; it is quite possible
that this phenomenon has so far been the principal
factor interfering with the realization of magnetrons
that generate continuously small power with good ef-
ficiency. In the study of the planotron it has been con-
firmed that this phenomenon harmfully influences the
efficiency here, too.

An experimental investigation of the residual cur-
rent has shown that it is concentrated on the outer
edges of the cathode and its magnitude greatly in-
creases with the radius of the electron orbits. This
fact leads to the hypothesis that the residual current

*See, for example, R. L. Jepsen and M. W. Mueller, J. Appl.
Phys. 22 (9), 1196-1207 (1951) and the literature cited therein.
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is brought about by the interaction between the orbital
motion of the electrons and the electrostatic field.
Indeed, a theoretical study, by our method, of the
electron motion in the absence of oscillations in res-
onators shows that the residual current can be ex-
plained quite simple and naturally. As experimental
material is accumulated, this point of view continues
to develop and its correctness becomes more probable.
As will be seen from what follows, we still do not have
(owing to the complexity of the mathematical problem)
the ability of accurately calculating the value of the
residual current, but there is already a possibility of
explaining the mechanism of this phenomenon and of
disclosing those factors on which the residual current
depends and which essentially influence its magnitude.

Let us find, by the method developed in Chapter I,
the trajectories of the electrons in an electrostatic
field Ш, taking into account the fact that this field has
periodic irregularities due, for example, to the reso-
nator slots in the planotron or in the magnetron. It
turns out that the inhomogeneous field can influence
the orbital motion of the electrons, and that the radii
of the electron orbits grow and consequently the elec-
trons can reach the anode; this indeed produces the
residual current.

Let us show how the electron trajectories are cal-
culated in this case by the averaging method. We
first find the periodic electrostatic field produced by
the resonator slots in the working space of the plano-
tron. Figure 11 shows the distribution of the elec-
trostatic force lines in the working space. In the ab-
sence of oscillations in the resonators this is the
only electric field in the work space.

FIG. 11

We retain the previous notation which is marked on
Fig. 11. The periodic electrostatic field which satis-
fies the two-dimensional Laplace equation can be
written in the following general form:

Έ·χ = 2 Μη s h 2nSl/ Sln %п8х'
π=1

(5.01)

= Щ ~ ίη ch 2ngy cos 2ngx.

We employ here the previous notation of (2.02)

(5.02)

The coefficients M n, as usual, are determined from
the boundary conditions. Inasmuch as in our problem
it is not necessary to know the exact values of M n , it
is sufficient to assume the following simplified bound-
ary conditions: in the plane у = D, over the entire
width h of the resonator apertures, we have ify = 0,
and on the metal teeth of the resonators Sy has a
constant value '6i. In the plane у = D we have, as al-
ways, ί χ = 0. We do not give the ordinary calculations
and present immediately the coefficients obtained
from these boundary conditions

Μ —I i\n2!i I sin ngh

I—h η sh 2ngD
(5.03)

In order to change over from fields to accelerations,
we use the following notation:

, = 4rMa
(5.04)

The acceleration components corresponding to the
n-th spatial harmonic of the electrostatic field are

FniJ = — Hn ch 2ngy cos 2ngx.

Changing over to complex quantities F n = F n x + i F n y

we obtain

(5.05)

Fn= -Hncos2ngz*,

where z* is the conjugate of z, and

(5.06)

(5.07)

We use here formulas (2.12) and (2.13); a is the
radius of the orbit and fy = (e/m) %y is the constant
acceleration along the у axis. Substituting these
quantities into (1.20) we obtain the following equations

(5.08)

a — ΐαφ = — У, Hncos2ngz$e™. (5.09)

Let us calculate the average value of cos 2ngzjf,
for which purpose we rewrite it in complex form:

( acos 2ngz* = ±- exp hing ( a* + -i-1) — 2ngaei<a<+<« j

+ (5.10)

We expand the exponentials in series and retain only
those terms that do not vanish after averaging:

cos Zngz* = -^ e

(2nSaY <,ιτη(Ω1+Ψ) (5-11)
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The averaging is carried out over the time interval
Τ = 2тг/П.

The resonance condition, i.e., the condition, under
which terms which do not depend explicitly on the
time exist, has the form

When this relation is satisfied we obtain

(5.12)

( 5 Л З )

The right half of (5.09) is calculated analogously, and
under the same resonance condition (5.12) we have

~ ^ (5.14)

Substituting these expressions into (5.08) and (5.09)
we obtain

e ~ 2 " g B е-'<2"гл-

a - iay = i

from which we see that

(5.15)

(5 1

(5.17)

Separating in the latter relation the imaginary and
the real parts, we obtain

4 = -

(5.18)

(5.19)

It follows from (5.18) that the average motion of the
electron satisfies the energy conservation law. To
demonstrate this, we integrate (5.18):

(5.20)

Substituting the value of the coefficient at g from the
resonance condition (5.12) and changing from accelera-
tion to the field values, we obtain

(5.21)

where mo denotes the mass of the electron (so as not
to confuse it with the index m). On the left is the
average potential energy of the electron during one
period of revolution; it is equal to the coordinate В
of the orbit center, multiplied by the charge e and by
the intensity of the homogeneous field gy. The second
term is the average kinetic energy of orbital motion.
Consequently, Eq. (5.18) yields the energy conserva-
tion law: this shows that when the electron moves its
energy does not go over into any oscillating process.
Equation (5.19) relates the angular momentum тоа.2ф
with the velocity A; it replaces the angular-momen-

turn conservation law, which in the absence of edge
resonances prevents the electrons from reaching the
anode.

We have thus conservative motion. Its physical
picture is as follows.

If condition (5.12) is satisfied, then a resonance
sets in between the period with which the electron
moves past the slots of the resonator and the period
of its natural orbital revolution. Because of the reso-
nance, the trajectory along which the electron moves
begins to change and becomes either larger or smaller
than the elongated cycloid. The result is a family of
trochoids, in which the radius a of the orbit and the
coordinate В of its center are related by Eq. (5.20),
which results from the energy conservation condition.
An analogous family was already obtained by us in the
preceding chapter (see Fig. 7). Expression (5.20) is
obtained from the previous expression (4.04) by sub-
stituting in the latter the values of the velocities χ
and у from (4.03) and further averaging over the
time. In the preceding case, however, the trochoid
was determined by the initial conditions of motion (by
the value of b) and remained the same, but here the
trochoid varies continuously.

Let us consider in greater detail the resonance
condition (5.12). By virtue of the fact that according
to (5.03) and (5.04) we have

и 1
η ch 2ngD ' (5.22)

the coefficients Hn decrease very rapidly with in-
creasing n, and therefore we can confine ourselves
only to an examination of the first harmonic of the ac-
celeration, since it exerts the decisive influence. For
this harmonic the resonance condition (5.12) assumes
the form

(5.23)

Let us show that under real operating conditions, re-
gions where condition (5.23) is satisfied must exist
both in the planotron and in the magnetron along the
edges of the working space. On approaching the edges
of the cathode (Fig. 12) the vertical component of the
electrostatic field gy and the acceleration corre-
sponding to it gradually decrease. The electrons
drifting along the cathode form a plane cloud, in which
an exchange force is effective and repels the elec-
trons to the edges of the working space. Because of
this force, the charge density in the cloud is redistri-
buted over the plane of the cathode in such a way,
that the forces brought about by the space charges
are compensated for over the entire surface of the
cathode by the horizontal component S?x of the ex-
ternal electrostatic field. It follows therefore that the
electron cloud has a density that drops off along the
edges; this is shown in Fig. 12, which shows sche-
matically the transverse cross section of the working
space.
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FIG. 12

The electrostatic field Щ and the corresponding
acceleration fy will have in the center of the working
space, on the large part of the transverse cross sec-
tion, practically constant values SOy a n < i hy· which
are determined by the resonance conditions (2.18),
which guarantee the most effective generation of the
oscillations. Towards the edges, the acceleration f Η
decreases and at the very edge, where the barriers
are located, the acceleration f у dropped to zero (Fig.
12). Thus, the acceleration fy varies between the
limits

0 < / S < / 0 | r (5-24)

Eliminating the value of g from expressions (5.23)
and (2.18), we obtain the condition of edge resonance
in the form

ω
(5.25)

Formulas (5.24) and (5.25) show that subject to the
condition

ω < Ω < - | ω (5.26)

there are on the edges of the cathode, on each side,
two regions where the edge resonances take place
(for m = 1 and m = 2). With increasing Larmor fre-
quency Ω , the number of edge resonances will in-
crease. Under the condition

1

-2ω· Ω (5.27)

only one edge resonance is possible. If the magnetic
field is so small that Ω < ω/2 there will be no reso-
nance. This case has no practical significance, for at
small magnetic fields corresponding to such a mode
the anode efficiency, as shown in the preceding chap-
ter, becomes small.

In practice, planotrons and magnetrons usually op-
erate in modes with Ω > ω, i.e., in the presence of at
least two edge resonances. Therefore under the op-
erating conditions there exist at each edge of the
cathode regions in the electron cloud, where the ra-
dius of the electron orbits changes as a result of the
edge resonance, and the trochoidal trajectories are
gradually deformed.

In order to investigate this deformation in greater
detail, let us consider the electron trajectories under

resonance conditions. We separate the real and
imaginary parts in Eqs. (5.15) and (5.16), and thus
obtain four equations [confining ourselves to the case
η = 1, i.e., taking into account only the first term in
the series of (5.03)]:

(5.28)

(5.29)

( 5 · 3 0 )

(5.31)

Sm(2gA-m<f),

Let us find the trajectory of the center of the electron
orbit; we are essentially interested in the quantity B,
the distance from the center of the orbit to the sur-
face of the cathode. Its minimum value is b0 = f °/2Ω 2,
determined by an expression analogous to (4.19) and
valid for all motions under which the kinetic energy
is accumulated only at the expense of the electric-
field potential in the working space. From the value
of В we determine, using (5.20) and (5.23), the radius
of the orbit

a = — (В — 6„) = - (5.32)

The critical value Be at which the electron strikes
the anode is given by the condition

Bc = D-a. (5.33)

The last two expressions enable us to calculate the
critical value of B c . From (5.28)—(5.31) we see that
if an electron appears in the supply plane В = d, then
its subsequent fate depends not only on the value of
the phase coordinate gA at the initial instant of mo-
tion, but also on the phase φ on the circular orbit.
In order to include the motion of electrons with all
possible initial phases, it is sufficient to introduce
the summary phase

= 2gA — mq> (5.34)

and consider μ within the limits - 3π/2 ^ μ — π/2.
We also introduce the function

v^2gB-m\na. (5.35)

We obtain

то—1 (m — 2)!

v = 2gB - m A = Щ*ь α Ω '»! m — i (in —

from which follow the simple relations

sin μ,

v= -μtgμ,
ν = In cos μ -\- const.

Using (5.32), we obtain an expression for the sought
trajectory

= e-2g CB-B0)

(5.36)

(5.37)
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where Bo and μ0 are the initial values of В and μ.

Figure 13 shows two families of these trajectories,

calculated for values m = 1 and m = 2; we see that

they have a closed character. Differentiating the pre-

ceding expression, we can show that the point which

is encompassed by all the closed trajectories has co-

ordinates

μ = 0, ± π , +2π, . . . B = Bm = J L + b 0 = _L(_L + # n ) .

(5.38)

On the horizontal line passing through these points lie

the points of inflection of all the curves. All the

curves are bounded from below by the horizontal

В = b0 and are not bounded at all from above, so that
when Bo —* b0 the curve becomes more and more
stretched in the direction of the В axis. We see that
we have here also a phenomenon analogous to phase
focusing, since the centers of the electron orbits
gather into tongues, but above the horizontal line
В = B m the tongues diverge (Fig. 13). These tongues
of course pertain to the phase space (μ, Β) which is

connected in a complicated fashion with the actual

space. In the actual space there will be no periodic

concentration of electrons along the A axis. The only

electrons whose orbits will increase and which move

towards the anode will be those whose initial phase is

in the interval 0 < μ0 < -тт. The closer this initial
phase is to -π/2 (see Fig. 13), the more stably does

the electron move to the anode. Another part of the

electrons will move towards the cathode, and the

radii of their orbits will decrease.

The results obtained explain the appearance of the

residual current. Inasmuch as the acceleration f у on
the edge where the resonance causing the residual
current occurs is not connected with the acceleration
fOy in the center of the working space, which is de-
termined by the resonance conditions that ensure
generation of oscillations, the two resonant processes
can occur independently of each other. The residual
current is produced along the edges of the working
space, in strips where conditions (5.12) are satisfied,
and since it does not participate in the generation
process it only decreases the generator efficiency.
To calculate the residual current it is necessary to
know both the width of the strip of the electron cloud
along the edge of the cathode, from which the electron
can be drawn into the tongues, and the density of the
electron charge in the cloud. These quantities are
unknown and at the present time we do not know how
to calculate them.

The phenomena in the electron cloud should also
become more complicated because of the transverse
motion of the electrons, because of which the elec-
trons will continuously enter into the resonant bands
and leave them. In spite of the fact that the change in
the electron-orbit radii occurs in narrow strips along
the edges of the working space, owing to the trans-
verse motion of the electrons it will extend over the
entire space. Thus, a variety of orbit radii will be
produced in all of the working space and the kinetic
energy of the orbital motion will increase on the av-
erage. It was shown in the preceding chapter that
this leads to a deterioration of the anode efficiency
and increases the inverse current to the cathode.

Experiments which we carried out with the plano-
tron have shown that the cathode can become strongly
heated even in the absence of oscillations in the reso-
nators. In some such cases our calorimetric meas-
urements have shown the power delivered to the
anode to be comparable with the power delivered to
the cathode. This shows that the electrons return to
the cathode with increased energy, which in some of
our experiments amounted to approximately 10%, on
the average, of the voltage between the cathode and
the anode (for example, with 4900 V applied the aver-
age energy of an electron returning to the cathode was
460 eV). Consequently, the motion of the electrons in
the working space is not conservative, for in con-
servative motion relation (5.21) holds true and the
electron cannot return to the cathode with an excess
kinetic energy. In the absence of oscillations in the
system, the cathode can be heated only in the case
when energy exchange can occur between the circular
motions of the electrons, an exchange which can be
compared with the ordinary temperature equalization
which occurs as a result of exchange of kinetic energy
between molecules.

Thus, the primary cause of the residual current
lies in the resonance on the edges of the working
space. Because of this resonance, the motion of the



HIGH POWER ELECTRONICS 803

electrons is along deformed trochoids, belonging to
one family, but having different kinetic energies.
Therefore the summary kinetic energy of the electron
cloud increases. Because of the interaction between
the electrons moving in the cloud with different
kinetic energies, the summary kinetic energy becomes
equalized and therefore the trochoids no longer belong
to the previous families. This enables the electrons
to return to the cathode with an excess of kinetic en-
ergy and to heat the latter.

The explanation offered above for the residual
current discloses a perfectly definite path for further
both theoretical and experimental study of this in-
teresting and important phenomenon, and at the same
time permits an explanation of many known phenomena,
particularly the phenomenon wherein an increase in
the residual current is always accompanied by an in-
crease in the reverse current (the current from the
emitters to the cathode).

A reduction in the residual current is important to
the effective operation of planotrons and magnetrons.
The means for combatting the residual current fol-
lows directly from an analysis of factors which de-
termine the value of В in accordance with Eq. (5.29).
At a given width of the electron cloud and for a given
density of the space charge, the value of the edge ef-
fect, and consequently of the residual current, will be
proportional to B. We denote the proportionality co-
efficient by K, and then the residual current will be

Jn = KB (5.39)

and the corresponding relative edge losses will be

1_ηη = £η . = -^_ , (5.40)

where J is the anode current.

In some of our experimental planotrons the losses

due to the edge effect reached such a magnitude, that

self-excitation of the generator stopped. To avoid

this, it is necessary to choose correctly the parame-

ters of the working space of the planotron. It follows

from Eq. (5.39) for В and from expression (5.03) for
Щ that the value of the zero current is greatly in-
fluenced by the ratio Ό/l (D is the width of the work-

ing space and I the period of the structure). The

larger this ratio, the smaller the residual current.

However, it is impossible to increase this ratio above

a certain limit, for this entails a sharp increase in

the critical Qc, which according to formula (3.37) is

proportional to sinh 2gD.

The value of В decreases also with the ratio a/I,
so that the smaller the initial orbit of the electrons
entering into the working space, the smaller the re-
sidual current. Thus, the reverse current (like the
anode and cathode losses) should decrease when the
electron emitter is placed below the cathode level
(see Chapter IV). This conclusion was confirmed in
our experiments with the planotron. The reverse

current should also decrease if one chooses a working
space of such form, that the coefficient Hj, which de-
termines the amplitude of the first harmonic of the
acceleration in accord with (5.04), decreases. The
value of Hj depends on the shape of the outer edges
of the anode, which must be made as even as possible
so as not to increase the periodic inhomogeneities of
the electrostatic field.

Finally, the last and most obvious and real method
of combatting edge losses (something impossible in
the case of low power) is to use as wide a working
space as possible, for which the ratio of the peri-
meter to the area is smaller. This leads to a de-
crease in the relative losses due to the residual cur-
rent. It is obvious that the fraction of residual-cur-
rent losses decreases with increasing generated
power, and thus the overall efficiency is improved.

One can point to still another cause of the residual
current. It is well known that when the magnetic field
cuts off the current, the electron cloud at the cathode
reaches a density such that the space-charge field
near the electron emitter compensates for the ex-
ternal electric field. It is easy to calculate the cloud
density and to show that even at noticeable values of
the residual current the electrons must execute a
large number of revolutions about the cathode. Many
manufacturing irregularities occur on the surface of
the cathode and the anode, or else the working gap
boundaries are not perfectly parallel; all this influ-
ences the inhomogeneity of the electric field. The in-
homogeneity of the field caused by these factors can
always be expanded into a Fourier series, and under
certain conditions resonance arises with the orbital
motion of the electrons. Because the electrons exe-
cute a large number of revolutions about the cathode
even in the presence of small perturbing irregularities,
the radii of the orbits will unavoidably grow and this
will lead to the appearance of at least a small resid-
ual current. This apparently explains why it is im-
possible in practice to produce sufficiently homogen-
eous conditions for the electron motion, such that the
magnetic field be capable of completely cutting off
the electron current in accordance with the laws
governing the motion of electrons in crossed fields.

In multicavity magnetrons as well as planotrons,
the cavities necessary for the generation produce a
strong periodic inhomogeneity of the electrostatic
field, so that the residual current and the phenomena
associated with it are large. From (5.29) and (5.30) it
is seen that owing to the factor exp( —2gB) the deriv-
atives В and a have the largest value at small values
of B, i.e., near the cathode. This means that the
initial changes in the radii of the electron orbits are
easiest to produce. Therefore even small periodic
irregularities in the working space, not sufficient to
produce a large residual current by themselves, can
strongly influence the initial spread in the electron-
orbit radii. In the same manner, all irregularities in
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the electric field, even very small ones, once they re-
sult in a small but well concentrated variation in the
field at a distance comparable with the pitch of the
trochoids, cause the orbit radii to increase and this,
as shown earlier, influences adversely the quality of
the device. It is therefore necessary to watch the
surface finish of the cathode, which must be as per-
fect as possible.

VI. THEORY OF THE MAGNETRON

There is an extensive literature devoted to the
magnetron, and its characteristics are known for a
wide range of wavelengths. We therefore consider it
of interest to compare where possible the theoretical
characteristics, obtained with the aid of our method,
with the experimental data.

The calculation of the electron trajectories in a
magnetron is a more complicated problem than that
in the planotron, for in the magnetron we deal with
motion of electrons not in a plane-parallel electro-
static field, but in an annular gap with a radial elec-
trostatic field. As will be shown below, there is no
simple solution to the problem of the motion in the
static fields of a magnetron, and the problem must be
solved from the very outset by perturbation theory,
which makes the analysis of the processes in the
magnetron more complicated than in the planotron.

The electronic mechanism in the magnetron and in
the planotron is the same, but the curvature of the
working space can modify somewhat this mechanism
and introduce new features, particularly in the ratio
of the influence of the space charges. If the number
of magnetron cells is increased and the gap between
the anode and the cathode is made small compared
with the radius of the cathode, then, as will be shown
at the end of the chapter, its characteristics will ap-
proach more and more the characteristics of the
planotron.

The principal symbols are indicated in Fig. 14.
The inside and outside radii of the working space are
denoted by rt and r2 respectively, the gap between
the anode and cathode is denoted by D, the mean
radius by r, and the number of resonator cavity pairs
by ρ (the total number of cavities is frequently de-
noted in the literature by N). These quantities are
related by the following simple expressions:

Ν = 2ρ, ·θο = — . ί

An investigation of the trajectories in the magne-
tron is carried out in the same way as in Chapter II
for the planotron. We start with the determination of
the analytic expression for the alternating electric
field E, produced by the resonators, and the accelera-
tion corresponding to it

F = ^E.

FIG. 14

The angular frequency of the oscillations in the reso-
nator will as before be ω = 2ττο/λ. In view of the fact
that the wavelength λ is much larger than the distance
r z^p between cavities (this condition is satisfied for
the planotron, too) we use in place of the wave equa-
tion (2.03) simply the Laplace equation. In cylindrical
coordinates this equation has the form

• • ^ • = 0, (6.03)

where Φ is the scalar potential. The general solution
of this equation in cylindrical coordinates, with period
,?D in the angle £, has the form

Ф =

where

г = rev 2* = re-1*.

(6.04)

(6.05)

The calculation of the expansion coefficients M m ,
and also further derivations, become much simpler if
we introduce the following elementary functions,
which we designate by s ir and cor (radial sine and
cosine):

sir (xn) = - cor (ж71) =x Xх . (6.06)

The use of these functions greatly simplifes the calcu-
lations in cylindrical coordinates, inasmuch as sir
and cor are natural generalizations of the hyperbolic
functions sinh and cosh which are suitable for the
case of rectangular coordinates. As will be shown
below, many expressions for the motion of the elec-

(6.01) tron in the cylindrical case can be directly obtained
from the planar case by replacing sinh and cosh by
sir and cor. At the end of the chapter we shall show
that in the limiting case of a magnetron with a large
number of cavities these expressions become equiva-
lent. Inasmuch as the functions sir and cor are spe-
cially adapted for the solution of cylindrical problems,
I designated them with letter combinations which show
their similarity to the hyperbolic functions, and with

(6.02) the letter r to indicate their relationship to the
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Table I

805

cor (χ) = у f х+

cor ( — ) = с о г (χ),
Ч х у

cos x = cor (e ix)
chx = cor (ex),

—г— c o r ( x n ) = — su(xn), -

. . . if 1 \
sir W = -j ( *~~^ ] '

. /" 1 Λ
sir ι — ) = — s i r x,

V x У

sin χ — — i sir {e'x),

- sir ( * « ) = - c o r (x"),

cor (xy) = cor (x) cor (y) -^sir (x) sir (y),

cor f — J ^=cor (x) cor (y) — sir (x) sir (y),

sir (xy) = sir (x) cor (y) + cor (x) sir (y),

sir f — J=sir(x)cor(i/) — cor (x) sir (y),

sir (x) cor (у) = у [̂  sir (xi/) -f sir Γ -Ϊ- J Ί ,

cor (x) cor (г/) = —- Γ cor (xy) -j- cor Γ — J

sir (ж) sir (з/) = γ | cor (xt/) — cor ( ~ ) J ,

cor2 (x) -j- sir2 (x) = cor (x2), cor2 (x) — sir2 (x) = 1,
2 cor (x) sir (x) = sir (x2), cor (x) -|- sir (x) = x.

Equation satisfied by the cor and sir functions:

'- dx
Г дв \ j 6 = cor(x"),
ι χ — — η2ΰ = 0, {
V. dx J Ι θ = sir (ж").

radius vector. Formal operations with sir and cor are
very similar to operations with the trigonometric
functions, and are therefore very easy to remember.
The operations most frequently employed are listed in
Table I. The conversion from trigonometric functions
to sir and cor is given by the following simple formu-
las

sin nx = — i sir (einx), cos nx = cor (einx). (6.07)

Plots of sir (x) and cor (x) is given in Fig. 15.
The functions sir (x11) and cor (x11) are solutions

of the well known differential equation

y = n°-py. (6.08)

These functions greatly abbreviate and simplify the
derivations.

The solution of the Laplace equation in a form

-5 --4

\

-3

"4,
\ \

\

г

h
s

4
V

VV
-J

v -v
/
I

h

-corfcj

//

/
/

<'?
/
2

-sir(x)

>

3

suitable for our boundary conditions will have the
form

ф = У MmsiT( — ) cosтрв.
—' V ri J

(6.09)

To determine the coefficients M m we introduce
boundary conditions with the same simplifications as
in the planar case when solving the Laplace equation
(2.07). With allowance for Fig. 14, these can be
written in the form

'• = ' • 1 .

г = г„

Ε® -— Ex = const

(6.10)

etc., recognizing that the neighboring resonators os-
cillate in phase opposition (π mode). We denote by
^p the period of the anode structure with respect to
the angle •&, i.e., the angle subtended by one period
of the anode block at the center of the magnetron; ,%
denotes the angle subtended by the cavity slot.

Employing the ordinary method, we obtain the fol-
lowing expression for the potential

np

x si r f — j sin (2n — 1) ρϋ . (6.11)

FIG. 15
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This expression goes over into (2.08) if sir and cor
are replaced by sinh and cosh.

We further confine ourselves to inclusion of the
first spatial harmonic (n = 1) in formula (6.11). We
introduce the notation

, „ sin „ h

(6.12)

Then the first harmonic can be written in the form

Ur,
• ( ) Sin ρ ί

The acceleration components will be

F« = — и — Φ ) sm ω/,r air \ m J

(6.13)

(6.14)

According to Table I, formula (6.13) can be rewritten

in complex form

— Φ = -~ sir — ) + sir ( — . (6.15)
m 2/> I. V r1 у V ' i / J

Comparing this expression with (1.34) we obtain the
complex acceleration F, due to the variable electric
field in the working space of the magnetron,

Ur, / i * V •
—r-cor( — ) sincoi.

Z* V. Г! J
(6.16)

The electrostatic field between two coaxial cylin-
ders has a radial direction and a value

g = 7hTi ' ( 6 - 1 7 )

where V is the potential difference and rj and r2 the
radii of the cylinders. The complex acceleration due
to this field in the working space of the magnetron is
equal to

where

(6.18)

(6.19)

Under the influence of the acceleration f, the
center of the circular orbit of the electron will drift
around the cathode and the drift velocity will decrease
with increasing radius. If we substitute the accelera-
tion f into the fundamental equation of motion (1.06),
it turns out that it has no exact solution in a suffi-
ciently simple form which permits subsequent ac-
count of the high frequency field. Therefore, in order
to find the motion in the electrostatic field we employ
our approximate method, where we use the third
fundamental case (1.09). In this case we resolve the
acceleration (6.12) into two components

(6.20)

and

(6.21)

(6.22)

while the fundamental equation of motion (1.06) has
the form

(6.23)

Thus, the acceleration Cz determines the motion in
accordance with formula (1.09), while the additional
acceleration Δί changes only the parameters a and

β. Thus, in first approximation, the motion of the

electrons follows the epitrochoid

Ί' + ββ-тл

where

(6.24)

(6.25)

The motion when a = const and β = const consists in

the center of the circular orbit moving around the

cathode with angular velocity -ilt along a circle with

radius R = | a \. The electrons revolve around this

center with angular velocity — Ω 2 along a circle of

radius a = | β | . The perturbation of this motion un-

der the influence of the additional acceleration Ai

will be calculated from Eq. (1.22), where we put Δί

for F. We then obtain

- i f к „ \ i a (6.26)

Averaging and separating the imaginary and real parts
we obtain

(6.27)

= 0, а=Леш.

Analogously, we obtain an equation for β, from which

we find

' " ° (6.28)

Let us determine now the constant С in the ex-
pression (6.21) for the acceleration f0. In order to
obtain the best approximation, it is necessary to
choose the value of С such that the average value of
the difference Δί over the extent of the working space
rj < r < Г2 be as small as possible. Using (6.22), we
set the average value equal to zero

hence

2V
(6.29)

where the acceleration f0 is equal to Indeed, the average value of Δί is zero when the po-
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tential difference V in (6.29) is equal to the potential
difference in (6.19). A definite connection is then es-
tablished between К and C. If we denote by r0 the
value of the radius vector at which Μ = 0, i.e., f = f0,

then

Replacing К by C, we transform (6.27) into

Θ
 c ( rl

θ

(6.30)

(6.31)

The angular velocity at which the center of the

circular orbit of the electron revolves under the in-

influence of the acceleration f will be — S2j + Θ, and

depends therefore on R; it has a maximum value at

the cathode and decreases as it approaches the anode.

For this reason, the resonance between the oscilla-

tions of the cavities and the motion of the electrons

is possible only for electrons which run around the

cathode at some single value of R. Therefore the

generation of oscillations in the magnetron is possible

only because of phase focusing. Phase focusing in the

high-frequency field maintains the correct phase of the

centers of the electron orbits (which have different

radii), around the cathode, resulting in a phasing

velocity that changes the angular velocity of the rev-

olution of the electrons around the cathode in the re-

quired direction.

It follows from these considerations that the tra-

jectories of the electrons must be calculated in two

stages. We first calculate the trajectories of the

electrons under the influence of the acceleration f0
+ F, where f0 is given by (6.21) and F by (6.16), the

latter being due to the alternating electric field of the

cavities. We then investigate the effect of the pertur-

bation Μ on the motion obtained in this manner and

obtain the trajectories of interest to us by the method

given at the end of Chapter I.

Let us find the motions of the centers of the elec-

tron orbits under the influence of the acceleration f0
+ F. Using Eqs. (1.22) we obtain

iUr,
2 — 4С

-_i-corf-^- (6.32)

In the averaging we express sin ωί in terms of sir,

using Table I, and obtain under the averaging sign the

following expression:

4 * ζ* V

In order for the expression

to contain a term that does not depend on the time, it
is necessary to satisfy the equality

(6.33)

where m = 0, 1, 2, . . .

This is the resonance condition, and it interests us
when m = 0, inasmuch as we have then /3 = 0, as in
the planotron, and consequently the radii of the elec-
tron orbits remain constant. Substituting the value of
пх from (6.25) into the resonance condition, we ob-
tain for m = 0

г
1 -

iC
(6.34)

In this case after averaging Eq. (6.32) assumes the
form

Ur,

: y Q ! —46' α*
(6.35)

Using the rules for the differentiation of the cor func-

tion we can also write

d
-^— cor

2p у Ω 2 — AC da*
(6.36)

Comparing the right half of this equation with (1.35),
we obtain the stream function for the velocity ~a.

After simple transformation we obtain

Vr. , 7 i V

2p У Ω 2 —46'
(6.37)

The trajectories are determined by the equation Φ

= const; when sir is replaced by sinh they go over into

the trajectories (2.25), previously obtained for the

planar case. The values of the phase velocities are

obtained by differentiating the stream function

1 ΘΨ Ur,

R =

Я дЯ
1 ΘΨ __ Ur, I . Г R \P „

= —π- sir ( ) cospu.
46' ·" V Γι у

(6.38)

Let us proceed now to the second part of the prob-
lem—the calculation of the perturbation due to the ac-
celeration Δί. For this purpose, in accordance with

Eq. (1.32), we introduce in place of £C/Vu2 - 4C the

quantity θ from (6.27); we then obtain

R'=R.
(6.39)

The phase velocity R remains the same as before. It
is easy to see that the perturbed phase velocities de-
termine as before potential flows. The stream func-
tion of this flow is

Ψ' =
Ur,

— r Ί

2 у fi!-4C I P
sir ( ) si

V ri J
in »θ

(6.40)

Putting Φ' = const, we obtain the sought-for tra-
jectory of the center of the electron orbit. If the mo-
tion is subject to condition (6.34), then a = 0 and the
radius of the circular orbit remains unchanged. The
angular orbital velocity of the electron will be Ω£
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FIG. 16

= - f t 2 + φ where φ is determined by (6.28) and (6.30);
therefore

a 2 У Й2-4С

As can be seen, Щ is independent of R and therefore
the phase φ and the radius a can have arbitrary
values specified by the initial conditions. Consequently,
the motion of the center of the electron orbit follows
the trajectory Φ' = const, which rotates in phase
space with angular velocity — ui around the origin.
The center of the electron orbits move in this phase
space with velocities Θ' and R', determined by Eqs.
(6.39). The electrons revolve around the centers with
angular velocity п{.

We have thus obtained a complete analytic solution
for the motion of the electron in the working space of
the magnetron. We do not investigate the entire elec-
tronic process in detail, as we did for the planotron.
From expression (6.40) we can readily calculate all
the electron trajectories; this problem is somewhat
more complicated (compared with the planotron) but
perfectly feasible. We merely point out that the mag-
netron has certain singularities compared with the
planotron, as follows from the expressions obtained
for the trajectories. In the case of oscillations of
large intensity, when U is large and the second term
in the right half of (6.40) is small compared with the
first, the trajectories will approach those of the un-
perturbed motion, determined by the equation Φ
= const, where Φ is given by (6.37). The correspond-
ing family of trajectories in the ρθ, R phase plane is
shown in Fig. 16. The individual trajectories of this
family are characterized by different values of the
radius R when ρθ = ±π/2.

If we assume that the cylindrical surface R = r,j
is the supply surface (see Chapter II), then we can
readily obtain the distribution of the electrons in the
interaction space of the magnetron. As can be seen
from Fig. 16, the motion of the centers of the electron
orbits has the same tongue-like character as in the

planotron (see Fig. 2), and consequently the results
pertaining to the stability of the process, obtained in
Chapter ΠΙ for the planotron, are applicable also to
the magnetron. The difference between the two de-
vices arises when it is necessary to take into account
the second term in the expression for Φ'. Indeed, the
trajectories Φ' = const are no longer symmetrical
but curved, owing to the acceleration Δί due to the
inhomogeneity of the electrostatic field. These tra-
jectories have a character reminiscent of the previ-
ously obtained perturbed trajectories in the plantron
(see Fig. 4). They can be investigated in the same
manner, so that we confine ourselves here only to
mentioning the final results of interest to us.

It is seen from (6.40) that for specified magnetron
dimensions the difference between the trajectories
Φ' = const and the trajectories Φ = const depends
only on the ratio U/C, i.e., on the ratio of the alter-
nating electric field to the static field. When U < Uc

the trajectory Φ' = const loses its tongue-like char-
acter and becomes a wavy line which runs around the
cathode; then oscillation becomes impossible.

The critical value of Uc can be determined di-
rectly from the first equation of (6.39). Let us as-
sume that the centers of the circular electronic or-
bits are generated on the supply surface R = rd, and
then the most important is phase focusing on this
surface, which is realized by the first term in the
expression for Θ', proportional to U; the second
term, proportional to C, counteracts the phase focus-
ing. When U = Uc, R = r^, and ρθ = -π/2, these
terms should add up to zero (see Chapter III), and
then the motion loses its tongue-like character when
U < Uc. We thus obtain a critical value

(6.42)

from which it is seen that the closer the radius of the
supply surface гд is to the radius r0 given by i6.30),
the smaller Uc-
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The existence of a critical oscillation intensity in
the magnetron, below which generation is impossible,
is of interest primarily from the point of view of
self-excitation of oscillations. Indeed, for generation
it is essential that the intensity of the oscillations ex-
ceed the critical intensity. The initial oscillations, as
is well known, are due to fluctuations in the electron
cloud blanketing the cathode. Tentative calculations
have shown that in this way one can hardly excite any
oscillations with intensity above critical. It seems to
us that a way out of this contradiction must be sought
in the influence of the space charge on the self-exci-
tation process. There is no doubt that because of the
edge effect and the interaction between the circular
orbits of the electrons, described in the preceding
chapter, the interaction space becomes filled with
electrons drifting on orbits of different radii. It can
be shown that the space charges produced by the
presence of the electron orbits in the working space
will modify the electrostatic field in such a way, that
its inhomogeneity along the radius will contribute to
the motion of the centers of the electron orbits
around the cathode with constant angular velocity.
This will make the self-excitation of the oscillations
easier.*

It is seen from (6.42) that the dimensions of the
working space influence the value of Uc- With de-
creasing gap D of the working space ( D/rj —- 0), r0

tends to rj, in accordance with (6.30), and Uc de-
creases. The smaller Uc, the easier it is for the
magnetron to become self-excited. Inasmuch as the
oscillating process occurs when U > Uc, the trajec-
tories in the generation mode always have a tongue-
like character. As follows from the foregoing analysis,
under all conditions the phase velocities Θ' and R'
are potential and solenoidal, so that all the conclusions
concerning the uniform filling of the tongues with or-
bit centers, the mechanism of phase stability, the
possibility of inverting the generation process to ob-
tain direct current, etc., which were drawn from the
analysis of the electronic processes in the planotron,
remain wholly in force also for the magnetron.

In order to obtain the pattern of the motion of the
electrons in the working space of the magnetron, we
have calculated the trajectories of the orbit centers
for rj = 1 , r2 = 3, rd = 1.2, ρ = 4, and for the critical
intensity of oscillations (6.42). The corresponding
tongues are shown in Fig. 17 in cylindrical coordinates;
the tongues proper, i.e., the regions where the centers
of the electron orbits move, are shown shaded. If the
electrons are emitted from the cathode surface, then
the radius of the electron orbits will be a = r^ — rj.
For these initial conditions thinner lines, which indi-
cate the boundaries within which electron motion oc-
curs, are shown alongside the tongues. Inasmuch as
we know the values of R', θ', Ω{ and Ω£ we can

FIG. 17

readily plot the trajectories of the individual electrons.
Such trajectories are of no particular interest,

since to calculate the characteristics of an electronic
device it is necessary to know only the limits of all
possible electron trajectories. In order to obtain
these limits, at one time a calculation was undertaken
of the individual electron trajectories by numerical
integration, as described in an American paper
"Magnetrons,"* and the boundaries of the tongues
were obtained from them (see Fig. 15 of this paper).
Comparing these numerical results with ours we see
that they are in good agreement. A shortcoming of
this numerical method is not that it calls for calcula-
tions which can be performed only with electronic
digital computers, but that the trajectories obtained
in this way do not make it possible to derive the re-
quired magnetron characteristics, for example to de-
termine the space charge density, the critical Uc,
the critical Qc, the critical power P c , etc.

Let us determine now the wavelength given by the
condition (6.34). Inasmuch as the quantity 4Ο/Ω2 un-
der the square root is usually small, we obtain from
(6.25) by expansion

Q i - 4 b (6.43)

(6.44)

The quantity С is given by expression (6.29); chang-
ing over to wavelengths, we obtain

PV
, where r = - (6.45)

The cited paper gives the characteristics of
several American magnetrons, in the wavelength
range from 40 to 1.25 cm. The data which we need on
these magnetrons are listed in Table II. The wave-

*See also the footnote on p. 791.
*Fisk, Hagstrum, and Hartman, Magnetrons, Bell Sys. Tech. J.

25 (2), 167-348 (1948).
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Table Π

, 4лЯг£> 2mc2 V
л — — Ш — · 1~1!\а — —-

Type

λ (exptl), cm . .
Я (theoret), cm *
1—ηε (exptl), %
1—ηα (theoret), %
P/Sa.kW/cm2 • ·

Type

λ (exptl), cm . .
λ (theoret), cm
1 — T)e (exptl), %
1 - η ο (theoret), %
p/Sa, kW/cm2 . .

Type

λ (exptl), cm . .
λ (theoret), cm
1 — η β (exptl), %
1—ηα (theoret), %
P/Sa, kW/cm1 . .

4j42

43
47
68
21
0.75

718AyEy

10.7
12.6
47
24
13,6

2J4850

3.3
3.57

48
28
17

4j51

32.1
29
35
19
0.7

7i4Ay

9.1
11.2
47
25
14.5

2J5560

3.2
3.30

50
48
40

728A1

32.1
32
35
18
5,5

706AyGy

9.8
9.2

45
24
15.5

4j52

3.2
3.56

31
38
45

5J23

28.6
31
42
21

3,7

720AE

10.7
11,2
32
23
44.0

4J50

3.3
3,44

34
29

110

4J2630

24
21
54
20

9.4

4J4547

10.7
9.4

32
17
61.1

4J2125

22.8
24
47
20

9.6

3J21

1.25
1,47

63
40

100

5J22

23.4
26
42
25
11.2

lengths calculated from formula (6.45) are also given
in Table II; they agree sufficiently well with the ex-
perimental data. The existing discrepancies must ap-
parently be attributed to the inaccuracy in the data
pertaining to the dimensions of the working space of
the magnetron. The principal source of this inaccur-
acy is the fact that temperature deformations occur
during the course of operation both in individual parts
of the device and in the fastenings connecting them.
Calculations show that this inaccuracy alone is in-
sufficient to explain the discrepancy between the
theoretical and experimental data.

Let us calculate the anode losses. These, as is
well known, are due to the kinetic energy with which
the electron arrives at the anode. Inasmuch as both
angular velocities with which the electron arrived at
the anode are known, this kinetic energy will be, neg-
lecting the velocities R' and Θ',

V2 (6.46)

(6.48)

If the electrons are emitted from the surface of the
cathode, then the radius of the orbit of the electron is
determined from the initial conditions on the cathode.
When r = r t the velocity of the electron is equal to
zero and inasmuch as the angular velocities fij and
Ω2 remain constant during the course of motion, we
have at the surface of the cathode

and formula (6.46) assumes the form

(6.47)

Substituting the values of fit and С from (6.43)
and (6.29) we obtain after simple transformations

W=- (6.49)

The total potential energy acquired by the electron
on passing through the working space is

= eV, (6.50)

from which we obtain an expression for the relative
anode losses:

, _ Wa __
1 - lo - "ЙГ -

(6.51)

The quantities calculated from this expression are
also given in Table II. The difference between the
total losses obtained from experiment and the calcu-
lated anode losses can be attributed to the edge losses.
As can be seen, this difference is always positive,
and its value depends on the type of magnetron.

It was shown in the preceding chapter that the edge
losses depend little on the power drawn, so that the
larger the generator power the smaller their share
in the total losses. Therefore they manifest them-
selves more in magnetrons, which operate with
smaller load per unit surface. In the last row of
Table II are listed the powers drawn per unit magne-
tron surface; it is seen from these data that the
larger this power, the smaller the difference between
the calculated anode losses and the total losses de-
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termined from experiment. In short-wave magnetrons,
where the power drawn is up to 100 kW/cm2, this dif-
ference is small.

We could continue our investigations along the
same path as for the planotron, and consider the in-
fluence of space charges in the magnetron, determine
its maximum power, critical Q, etc. However, the
results obtained above illustrate sufficiently well the
effectiveness of the method developed above for the
study of electronic processes in the magnetron. Fur-
ther study of the magnetron characteristics must be
based on material well verified by experiment, spe-
cially obtained to check the theoretical conclusions.

The power magnetron for continuous operation is
of interest in high-power electronics. Such a genera-
tor is quite feasible, but in order to dissipate the heat
due to the losses it must have large dimensions. This
will cause it to contain a large number of cavities,
and the cylindrical working gap with large radius of
curvature will be narrow. The characteristics of such
a device can be calculated, with accuracy fully adequate
for practical purposes, using the simple formulas de-
rived in the preceding chapters for planotrons. The
expressions obtained for a magnetron of large dimen-
sions should in the limit go over into the expressions
derived for the planotron.

Let us show, in particular, that the magnetron
stream function (6.40) goes over into the planotron
stream function (3.02) when the number of cavities in
the magnetron is increased. Indeed, then

R

(6.52)

The period of the planotron structure is I = π/g,
therefore

(6.53)

Using the connection between the functions sir and
sinh (see Table I) we have

We also obtain

sinp9—i> sin gA.

(6.54)

(6.55)

(6.56)

The additional term in (6.40) will tend to a constant
value as R/r0 — 1, so that formulas (6.54), (6.56),
and (6.40) will yield in the limit as R/rt — 1 the
same functional dependence of the stream function on
gA and gB as formulas (3.02) and (3.09) for the
planotron.

Therefore the expressions which we obtain for the
critical values of the current, power, and Q, and
also for other characteristics of the planotron, should

yield (upon making the indicated substitutions) the
correct order of magnitude even for small magnetrons.
We have performed such calculations; their results
also agree perfectly satisfactorily with the experi-
mental data which were used above. Thus, even with
this crude comparison we obtain agreement between
the theoretical deductions and experiments.

VII. EXPERIMENTAL INVESTIGATION OF THE
ELECTRONIC PROCESSES IN THE PLANOTRON

The initial task of our experiments was a study of
the mechanism of the electronic processes which oc-
cur in the constant magnetic field, so as to use them
in high-power electronics.

We chose to investigate the planotron. The theory
of the phenomena occurring in the planotron, which
was described in the preceding chapters, was devel-
oped in close connection with our experimental re-
search, so that if we were to treat the problem
chronologically, it would be necessary to describe the
theory and the experiment in parallel, and not separ-
ately as we are doing it.

We started our experimental work with a planotron
which we manufactured by the very simple means
corresponding to the technical capabilities at our dis-
posal. To obtain a homogeneous magnetic field we
used a solenoid with inside diameter of 10 cm, in
which a magnetic field up to 1,000 Oe could be ob-
tained, and the dimensions of our first planotrons
were chosen with this in mind.

A schematic diagram of the planotron with which
we began our experiments is shown in Fig. 18, which
also shows the principal electric circuit, while Fig.
19 shows a photograph of this device, already mounted
in its holder. The resonant system (1), as can be seen
from Fig. 18, is made up of 14 U-shaped resonators,

О Ю 2O 3O 40 SOram
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FIG. 19

made of bent copper foil 0.35 mm thick and held to-
gether by crimps on the ends. Their dimensions are
indicated in the figure. The height of the working
space was 0.6 cm; on the edges and on the side oppo-
site the apertures of the resonators the height was
limited by a solid wall (2) made of the same bent
copper foil. The cathode was a copper plate (3) 2 mm
thick, with protective shields (4) on its sides to pre-
vent the electrons from leaving the interaction space
laterally under the influence of their space charge.
The electron emitter was a thoriated tungsten wire
0.12 mm in diameter with working length of about
1.5 cm; the emitter was mounted on a plate (5) which
could be moved out from the cathode side. This plate
was insulated from the cathode by a layer of mica on
each side. This made it possible to measure the cur-
rent from the emitter and the current to the cathode
plate separately. The emitter was heated by a storage
battery (6) the current from which was controlled with
a rheostat. The insulation of the cathode (not shown
in the figure) was by means of braces made of mica
strips, on which the cathode plate was hung like a
suspension bridge. The tube was placed in a container
made of brass tubing. A vacuum was produced by an
ordinary diffusion pump. To supply the direct current
a small rectifier unit was used (7) with voltage up to
4 kV at 100 W. The voltage was regulated with a
Variac (8).

The presence of electromagnetic oscillations in the
system was detected and their intensity measured

with a thermocouple of simple construction; it proved
to be very convenient at the very start and we are
still using it. Such a thermocouple is shown in Fig.
20 and consists of two identical plates (4) made of
copper foil 3—4 mm wide and 0.15 mm thick. Each of
the plates is cut in such a way that a very narrow
strip (0.5—0.7 mm wide) is formed on the end. One
plate is placed on the other in such a way that the
narrow ends form a fork (2) and the ends of a copper-
constantan or chromel-alumel thermocouple (TC) are
clamped in the bent ends of the fork. The thickness
of the thermocouple wires ranged from 10 to 30
microns with a total length of 4—5 mm. Both copper
plates are clamped in a holder (3), made of beryllium-
bronze foil (0.3 mm thick); the thermocouple holder
is secured to the body of the planotron (1). The insu-
lation between the holder and both copper plates was
provided by a thin bent sheet of mica. The thermo-
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couple is placed near the resonator in such a way that
the magnetic field produced by the oscillations pene-
trates through the area of the fork (2).

The operating principle of such a thermocouple is
obvious. The fork and the thermocouple together
form the inductive part of the resonant circuit, the
capacitive part being produced by the copper plates
with the copper liners, clamped by the holder (3).
This results in a tank circuit of relatively short oscil-
lations period and large damping, so that the heating
of the thermocouple can be regarded as proportional
to the magnetic-field energy at constant frequency.
Inasmuch as the area formed by the fork amounts to
only a few square millimeters, this device operates
more like a probe, since it influences the field little
and does not affect the oscillation in the resonator.
The ends of the thermocouple (4) are connected to a
low-resistance short-period galvanometer (period
0.3 sec). The magnetic field of the galvanometer is
chosen such that the entire system is critically damped.
The resonant frequencies can be readily determined
with the aid of such a thermocouple. By placing such
thermocouples in various parts of the device we could
determine the distribution of the oscillation energy in
various locations of the planotron.

When we started these experiments, as was al-
ready indicated in Chapter III (see p. 791), it was not
quite clear from general theoretical considerations
whether a self-excited oscillating system could be
produced in such a device. Our first task was there-
fore to ascertain whether self-excitation of such
systems is possible.

The first experiments with the model planotron
started in April of 1950, and immediately gave af-
firmative results. It turned out that the planotron, in
spite of its simple construction, is readily self-ex-
cited; at an emitter current of 6 milliamperes and
1.04 kV a clear-cut resonance was observed and the
galvanometer deflection indicated the presence of
strong oscillations in the resonators. In subsequent
experiments we measured the frequency by piping the
oscillations to the outside with a waveguide and found
the wavelength to be approximately 20 cm. To check
whether these oscillations were actually produced by
the resonators, metallic plates were inserted in the
resonators; these should have decreased the wave-
length and experiment confirmed this fact.

It was observed in the very first experiments that
the onset of oscillations is very sensitive to the posi-
tion of the electron emitter relative to the cathode
plane. It turned out that even a small rise (several
tenths of a millimeter) of the emitter above the
cathode plane made self-excitation of the planotron
impossible. Further observations have shown that the
planotron operates best when the emitter is somewhat
below the cathode plane. These observations served as
the starting point for the development of the theory
which takes into account the initial emission conditions

and their influence on the electronic processes in the
planotron. Further experiments and theoretical stud-
ies have led to the anode-loss theory which we have
developed in Chapter IV (see p. 795), and following).

Even this simple planotron has shown that oscilla-
tions were produced at magnetic field values below
critical when the emitter is recessed in the cathode.
As is well known, at an above-critical magnetic field
the height dt of the cycloidal electron trajectories
should be lower than the height D of the working
space (see Fig. 7), and then the anode efficiency is
positive in accord with (4.12). The condition

(7.01)

yields in accordance with (4.15) and (4.17) for the
critical field a value

# , = • XD (7.02)

if the emitter is on the cathode plane. From the
theory presented in Chapter IV it follows that when
the emitter is recessed below the cathode plane the
critical field can be reduced to Hc/4. All this indi-
cates the significance of careful mounting of the
emitter relative to the cathode plane. In later plano-
tron constructions, provision was made for a special
tension device for the emitter to keep it from bending
as a result of the electrostatic and electrodynamic
forces, and also to compensate for its thermal ex-
pansion. In subsequent planotron models it was pos-
sible to reduce appreciably both the operating mag-
netic field and the electronic losses.

The next observations made with this simple device
have shown that the residual current is connected
with processes that occur on the edges of the cathode.
The copper or brass parts became partially covered
after the experiment by dark spots due to a light
deposit of copper oxide. These spots were observed
following the flow of electric current, and their ori-
gin is easy to explain. The vacuum always contains
some oxygen molecules which become ionized by
electron impact. These ions diffuse to or are at-
tracted by the copper surfaces and inasmuch as they
are in a chemically active state, they form surface
oxides. The spots therefore gave an idea of the elec-
tron distribution in the planotron. Upon disassembling
the planotron we invariably observed, regardless of
whether or not oscillations were produced, that on
each side of the copper plate of the cathode there is
formed a colored strip with a blurred edge facing the
center. It followed therefore that the residual current
flows along the edges of the working space. This
pointed the way towards its theoretical explanation,
which we developed in Chapter V.

During the study of this simple device the features
of the electronic processes in the planotron were
clearly disclosed: first—the possibility of self-exci-
tation of such a system; second—the exceedingly
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strong influence of the position of the supply plane
(relative to the cathode plane) on the efficiency of the
electronic process; third—the connection between the
residual current and edge effects on the cathode and
the high energy of the electrons returning to the
cathode. However, such a device is of course not
suited to determine the power characteristics. In
particular, this planotron had the shortcoming that it
overheated after 10 or 15 minutes, and it was neces-
sary to wait about an hour before the experiments
could be resumed. We had placed thermocouples on
the body and on the cathode in order to follow their
heat r ise . It was observed that the cathode heating
varied from experiment to experiment; this was
principally connected with the recession of the emitter,
which again pointed out the connection between all
these phenomena and the character of the cycloid
along which the electrons moved, and served as the
starting point for the development of the loss theory
developed in Chapters IV and V.

For further verification and development of the
theory, we constructed a few other simple types of
planotrons, which we describe briefly, mentioning
only the problems solved by these devices.

It was of interest to ascertain the number of reso-
nators of which the planotron could consist. For this
purpose it was necessary to lengthen the planotron,
so that the solenoid had to be replaced by an electron
magnet. It was specially constructed and had the
following main characteristics: number of turns—
5,892, resistance—27.5 ohms; more than 50,000 am-
pere turns could be obtained at a power of 3 kW. The
space between the poles was rectangular in form,
25 cm long and either 3, 5, or 8 cm high (as desired).
The distance between poles was 4, 5, or 6 cm: ac-
cordingly, the maximum magnetic field was 4.5, 3.75,
or 3.50 kOe. The homogeneity of the field without
shims was ±(1—2)%. With shims it was possible to
improve the homogeneity by a factor of three or four,
which was sufficient. The magnet is shown on the
photograph (Fig. 21), which shows also the entire ex-
perimental setup.

A photograph of the next planotron which we con-
structed is shown in Fig. 22. This planotron has
precisely the same construction as the first, and is
made up of simple U-shaped resonators, also made

FIG. 21

of copper foil, except of smaller dimensions, and the
number is increased from 14 to 97. The resonators
are 12.6 mm high and 19.6 mm wide, with the total
length of all resonators being 202 mm at a pitch
I = 2.08 mm. The height of the working gap varied
from 1.5 to 3.0 mm. The cathode was made as before
of a copper plate. The emitter was again a thoriated
tungsten wire with the same dimensions as in the pre-
ceding device. The emitter was installed on the
cathode opposite the sixth resonator. Thermocouples
were placed over the entire length of the instrument
(the 10th, 24th, 55th and 82nd resonators) to deter-
mine the intensity of oscillation at these points.

The planotron was constructed with as high a pre-
cision as possible, although all the resonators were
bent by hand on patterns. All the parts were outgassed
in a vacuum furnace. The mountings and reinforce-
ments were made of beryllium bronze. Experiment
has shown that this planotron also generated success-
fully, and was even easier to self-excite than the pre-
ceding one, and furthermore over a wider range of
voltages (from 2 to 5 kV at a suitable magnetic field).

FIG. 22
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The wavelength was not specially measured, but cal-
culations showed it to be about 7 cm.

The experiments with this device have also con-
firmed that its operation is influenced by the height
of the emitter above the surface of the cathode. If it
was placed slightly outside the cathode or was re-
cessed to a depth much larger than b0 [Chapter IV,
formula (4.19)], the self-excitation of the device be-
came very difficult, large losses appeared, and the
cathode overheated. All these phenomena were in
agreement with the theory of losses in the planotron
which we developed. The edge losses and the residual
current were large in this tube; this caused it to be-
come rapidly heated and thus greatly hindered the
experiments.

In addition to solving the self-excitation problem
for such a long planotron, we also investigated with
the same tube the degree of coupling between the
oscillations of the resonator system, namely whether
the entire system of resonators oscillated as a whole.
This was verified using four thermocouples arranged
along the resonator system in the following manner.
One thermocouple was connected to one galvanometer
and any one of the remaining three could be connected
at will to a second galvanometer. Both galvanometers
had identical characteristics. The light beams of both
galvanometers were projected along-side on a single
scale. By varying the planotron mode we checked to
see whether one beam followed the other. These ex-
periments have shown quite definitely that even the
beams from the extreme thermocouples followed each
other and the oscillation energy was evenly distributed
over the entire system of the resonators. We could
therefore conclude the presence of a sufficiently
strong electromagnetic coupling between the resona-
tors. The supply conditions in this planotron were in-
convenient, since only one emitter was placed on the
cathode.

The subsequent work was connected with a study
of the resonant system of the planotron. It constituted
a system made up of a large number (say, n) reso-
nators, which could oscillate relative to one another
at different phases. This system thus has η degrees
of freedom and a spectrum of η frequencies. The
lowest frequency usually corresponds to an oscilla-
tion such that any two neighboring resonators oscil-
late in phase opposition; as in a multi-cavity magne-
tron, we have called these π oscillations. Obviously,
depending on the intensity of the electric field €Oy in
the working gap, it is necessary to choose for a fixed
magnetic field Η such an electron drift velocity, at
which any of the η modes will be excited. This can
actually be observed in the experiment.

The theory of excitation of any one of these modes
can be simply developed in analogy with the theory
described for the π mode in Chapter II. For this
purpose it is merely necessary to obtain for the

scalar potential Φ an expansion corresponding to ex-
pression (2.08).

In order to decrease the number of degrees of
freedom of the resonant system, and also in order to
raise the Q of the oscillating system, the latter can
be constructed as shown in Fig. 23a. The resonator
cavity (3) and the oscillating system are enclosed in
a housing (2). The oscillations are detected through
transverse slots cut in the upper part of the housing.*
The electric oscillations of the resonators are
coupled with the working space under the cathode (5)
through a grid in which, as can be seen from the
figure, three neighboring slots oscillate in phase and
the fourth, which is at the midpoint, oscillates in
phase opposition. By suitably expanding the potential
Φ it is possible to show (by the same method as in
Chapter II) that such a system will generate effectively.

The resonator housing was cooled in this plantron
with running water (tube 4). The entire system was
placed in a quartz bulb (1). A photograph of this de-
vice is shown in Fig. 23b. Experiment has shown that
oscillations were easy to produce at a frequency that
remained stable without jumping to neighboring fre-
quencies corresponding to other modes.

The closed resonant system coupled with the work-
ing space by means of a reticular wall turned out to
be the most effective resonant system for the plano-
tron t.

It must also be pointed out that the oscillations
could be excited in the system described not only at
definite values of the electric field Say and magnetic
field H, corresponding to the principal mode (m2 = 0)
when the drift velocity of the electrons is determined
by relation (2.17), but also at other values of m2, in
agreement with the theory. Experiment has shown
that the efficiency of excitation decreases in this
case, as also follows from the theory. Thus, all the
results of the experimental study of the processes in
the planotron were in good agreement with the theory
presented above. To investigate the power character-
istics of closed oscillating systems of this type, ex-
periments must be carried out with a device in which
suitable pick-off of high frequency power is provided
and effective cooling is produced. It can be seen be-
forehand that the indices will be lower than those at-
tained in the magnetron (Chapter VI).

In conclusion, mention should also be made of a
few features of the experimental techniques. The
photograph (Fig. 21) shows the setup for the investi-
gation of the planotron operation. Like the magnetron,

*By suitably placing these slots and by making the planotron
sufficiently wide it is possible to produce through the quartz tube
an intense well-directed radiation of high frequency oscillations
from its entire length into the free space.

tThe calculation of the oscillations in such systems and the
method of placing the partitions in them is the subject of the ar-
ticle referred to in the introduction (see p. 777).
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FIG. 23

the planotron generates stably and quietly in its work-
ing mode only in good vacuum (10~6—10"7 mm Hg)
and if all the surfaces, particularly in the interaction
space, are well outgassed. Therefore, for the plano-
tron to operate stably it is necessary that all parts be
outgassed first in a vacuum furnace. In addition, even
after assembly, it is conditioned prior to the experi-
ment for several hours at 450°C, by small porcelain
heaters (with a total power of 200 watts) attached to
the planotron cathode. All metal parts of the plano-
tron are made either of copper ( M-I) or of beryllium
bronze. The insulation is porcelain or quartz. When
the planotron is heated to 450°C it is necessary that
its construction provide for free expansion of the main
parts relative to one another.

Even after thorough preliminary outgassing, an arc
may be produced in the operating space and damage
the planotron during startup. The following precau-
tions are therefore necessary. The high voltage is
first applied to the planotron through a chopper, which
operates 50 times a second with a duty ratio 1/6. We
also developed a high speed switch for turning on the
high voltage. This switch is actuated by a thyratron
ignited by the current flowing through the planotron
and acting on the thyratron grid. The accuracy with
which the limiting current flowing through the plano-
tron was adjusted was several milliamperes, and the
switching speed was one hundredth of a second.

As regards the manufacture of the planotron itself,
particular attention must be paid to good contacts in
the resonator, where the high frequency currents flow.
Practice has shown that only silver soldering in

vacuum can provide the required contact conductivity
between the metallic parts.

In the last planotron, running water was used to
cool not only the body but also the cathode. An inde-
pendent cooling system for the body and for the cathode
made it possible to separate the cathode losses from
the total losses and to determine them by measuring
the amount of heat carried away. In addition, knowing
the total power supplied, we could determine the gen-
erated power and consequently the overall efficiency
of the installation from the difference between the
heat supplied and the heat carried away by the water.
The efficiencies of various planotrons were close to
the efficiencies that can be attained in magnetrons
(see Chapter VI).

The operating efficiency of the planotron, like that
of the magnetron, depends on the precision with which
it is manufactured, particularly on the extent to which
the dimensions of the working space and of the reso-
nators can be maintained constant. The precision
which we attained in the vital places reached several
hundredths of a millimeter. Greater difficulties arose
in connection with the need of establishing accurately
the working plane of the emitter relative to the cathode
plane. Depending on the operating mode, the depth of
the emitter b0 fluctuated between 0.2 and 0.5 mm (see
Chapter V). A method for adjusting the emitter was
developed, making it possible to hold these quantities
to within several per cent. The most successfully op-
erating were emitters made of tungsten wire; their
position was fixed as accurately as possible by a
specially developed spring tension mechanism.
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Finally, a setup was developed making it possible
to rotate the entire device in vacuum between the
poles of the electromagnet so as to make the magnetic
field precisely parallel to the plane of the cathode.
This position was established by determining the
minimum reverse (residual) current.

The procedures described were developed grad-
ually, as the need arose. After all these improvements
were made, we obtained a system with good operating
stability.

Vin. LARMOR ORBIT IN HIGH-FREQUENCY FIELD

A distinguishing feature of the mechanism of gen-
eration in the planotron and in the magnetron is the
fact that the resonant process is due to uniform
"drift" of the electron cloud in the oscillating electro-
magnetic field, which has a periodic structure along
the path of the cloud. Thus, in these processes, in
order to produce the drift of the electron cloud it is
necessary to employ crossed static electric and mag-
netic fields.

As shown in the preceding chapter, the effective-
ness of the resonance is closely connected with the
process of formation of the electron tongues. It
turned out that this formation was hindered by the
motion of the electrons along the circular orbits with
Larmoi· frequency, a motion superimposed on the
drift. This not only blurs the outline of the tongue,
but in addition produces extraneous resonant effects,
which give rise to losses. The most unpleasant
resonances are those on the edges of the cathodes,
which produce the harmful residual current. There-
fore for effective generation in a planotron or a mag-
netron it is necessary that the radii of the Larmor
orbits be as small as possible.

This raises the natural question of whether there
are electronic processes in which the orbital Larmor
motion can be employed. For this purpose this motion
should be investigated in greater detail, as will be
done now.

A distinguishing property of the Larmor motion is
that the angular frequency of revolution Ω is inde-
pendent of the radius of the orbit a (this, of course,
is valid in the prerelativistic region, which is of in-
terest to us). This property of the Larmor motion
makes it possible to realize stable resonant processes
over the entire volume of the electron gas without
formation of electron clusters, something which may
find independent application in electronics.

Using the averaging method developed in Chapter I,
we investigate the effect of an alternating electro-
magnetic field on the Larmor motion of electrons,
regarding it as a perturbation of the first fundamental
case of motion given in expression (1.07). In the
simplest case it is easy to show that when the electric
field is plane and oscillating ( E x = 0, E v = Eo sin wt),
its resonant action on the motion of the electrons re-

duces merely to a change in the radius a of the
Larmor orbit. The sign and magnitude of this varia-
tion are determined by the phase difference between
the field, which oscillates with angular frequency ω,
and the circular motion, which has a Larmor fre-
quency Ω . Thus, the process is trivial and of no in-
terest to us. But when the electric field is not homo-
geneous in space, then in addition to the change in the
electron orbits there is also a displacement of the
orbit centers, and motion of this type is already of
interest in itself. To investigate such processes we
choose the simplest form of an alternating electric
field produced between coaxial cylinders; it turns out
that it displays sufficiently well the properties of the
resonant processes of this type. It is easy to see that
in the case of necessity the same method of investiga-
tion can be extended to include also more complicated
field configurations.

We assume that there is no electrostatic field, and
that the alternating electric field has only one radial
component, the value of which in the interaction space
between the cylinders is inversely proportional to the
distance r from the center. In the ordinary repre-
sentation the field is written in the form

Er
- sin ω£. (8.01)

According to (1.11), the acceleration F in the complex
representation is

where

(8.02)

•(8.03)

The interaction space and the notation are shown in
Fig. 24. The electric oscillations occur in a space
bounded by radii rj and г%, while the electron e re-
volves in an orbit with radius a, the center of which
is located at a distance R from the origin O. The
phase angles φ and θ are reckoned from the hori-
zontal axis. The angle between the radius vectors a

FIG. 24
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and R will be denoted by ,?, where

(8.04)

In the space between the coaxial cylinders two types
of electron motion are possible. In the former type of
motion a < R and the orbit does not enclose the
origin O. In the second case a > R and the orbit en-
closes the center O. We shall start with an analysis
of the first type.

Substituting in (1.18) the high frequency accelera-
tion (8.02) we obtain

(8.05)

Using the notation in (1.23), we carry out the expan-
sion

ι

- и
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where

The resonance conditions have the form

(8-07)

(8.08)

where the necessary averaging time is determined by
the smallest frequency and is equal to

γ — -л
(8.09)

We then obtain after averaging, according to formulas
(1.18)

„ ^L рП pi (0+n«)
u ~ Ω R (8.10)

Ω Λ
I

Let us replace the velocities a and β in accord-
ance with (1.23) and separate the real and imaginary
parts; we then finally obtain the fundamental equations
of electron motion in resonance

R =

θ =

α =

φ =

υ
Ω
£7

Ω
[7

υ
ο

/>"
Λ 2

Ρη

α

/,2

cos ηθ,

sin red,

cosnd, I

sin ηθ. (8.11)

In the integration of these equations we introduce the
following initial conditions

a = a0, φ = φ 0 ) R = R0, θ = θ0, d = d0 = θ0 — φ 0 when t = 0.
(8.12)

From the first and third equations of (8.11) we obtain

RR-aa = 0,

which gives the first integral of motion

(8.13)

*-a* = Rl-al = Rl = const. (8.14)

Thus, the difference in the squares of the radii always
remains constant; this means that the orbit never
crosses the center, inasmuch as the condition R > a
is satisfied all the time if it is satisfied at the initial
instant d = 0. The radius R is always larger than the
radius R+ to which the center of the orbit tends when
the orbit contracts to a point:

o->0, (8.15)

From the second and fourth equation of i8.ll) we ob-
tain

α-φ - R2Q = 0. (8.16)

This expression shows that the difference in the sec-
torial velocities of the electron on the orbit and of
the center of its orbit remains constant. This is a
kind of angular-momentum conservation law in phase
space.

By virtue of the circular symmetry of the alternat-
ing electric field, its effect on the orbital motion of
the electron is completely determined by the phase
angle i? alone (8.04). Let us calculate now the differ-
ence ^ = θ — φ. Substituting the values of θ and φ
from (8.11) and using (8.14) and (8.16), we obtain

o=_4-_g r P -s in n * . (8.17)

Combining this equation with the first equation of
(8.11) we obtain

6 ctg ηϋ = — · (8.18)*

Integrating this equation, introducing the inital condi-
tions (8.12), and using relation (8.14), we obtain

-£-)" sin n« = (-]£-)" sin «*0> (8.19)

which enables us to plot the trajectories in the phase
space ( а, п$). For this purpose we change over to
rectangular coordinates

χ = -p— cos nfl·, у = -щ— sin red,

and obtain

sin raft = - • = ! •

Putting further

sin red,, = si

(8.20)

(8.21)

the equation of the trajectory assumes the form

j,2 (-Д.2 + yy-i = (i + я* + νψ sin\nfta. (8.22)

In the simplest case when η = 1 this equation becomes

y = ± yTT^tgda, (8.23)1

*ctg = cot.
ttg = tan.
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and we obtain a simple hyperbola with asymptotes

that make angles ± t?a with the χ axis.

Figure 25 shows the families of hyperbolas for

resonance η = 1 at a fixed initial value a<), but for

different initial angles t?o> s o that all the possible

initial values of the phase angle ^ 0 lie in the initial

circle of radius a0. The trajectories break up into

two identical families, symmetrical about the hori-

zontal line у = 0. Using (8.17), we have designated
(with arrows) the direction of motion on the tra jec-
tor ies . From the directions of the arrows it is seen
that the sign of the velocity a depends on the initial
angle Jo; it is seen from Fig. 25 that all the tra jec-
tories for which π/2 < t?o < 3π/2 decrease in radius

as they move to a minimum value amin, which when

χ = 0 lies on the intersection between the vertical

axis and the trajectory. After intersecting the vertical

axis, the radius begins to increase continuously. From

(8.23) we obtain

amin = Λ* tg &a. (8.24)

The second part of the electrons with initial angles

— π/2 < $•$ < π/2 increases in radius from the very

s tar t of the motion. The increase in the orbit radius

a is actually limited by the dimensions of the working

space, so that it continues until the electron collides

with the outer cylinder of radius r 2 . The largest pos-

sible values of a m a x determined by this limitation

are obtained from the relation

г, = Л ш о + «ви. (8.25)

Using (8.14) we obtain for the largest possible values

of a m a x and R m a x

A — Rl „ ri + Rl
2r,

(8.26)

Figure 25 shows the trajectories of motion for η = 1.

It is easy to show, however, that for other values η

the trajectories plotted in phase space with polar co-

ordinates (a, n$) will be very similar to the trajec-

tories given in Fig. 25. In the polar coordinates

FIG. 25

(a, J), the trajectories for the n-th resonance fill 2n

sectors, in each of which there are identical trajec-

tory families, similar to those shown in Fig. 25, but

with the angle scale shrunk by a factor n.

Figure 25 shows an interesting singularity of the

electron motion: they are repelled, as it were,

from the internal cylinder, and in final analysis all

tend to the outer cylinder, which they strike. The

characteristic feature of the resonant action of the

alternating electric field on the orbital motion of the

electrons is that the centers of the Larmor orbits

move into a region of lower field intensity. This proc-

ess will occur even if the field has a more compli-

cated structure than the radially symmetrical field

considered above.

It is easy to see that the process will be accom-

panied by absorption of energy from the high-fre-

quency field. Neglecting small phase velocities, we

obtain for the electron kinetic energy the simple

expression

w m O2/J2 IR 91\
vv —~~2~ " a ' \o.6i)

and therefore when a > 0 the kinetic energy will in-

crease at the expense of the energy of the alternating

electric field, and when a< 0, it will be transferred

to the field. Let us assume that N electrons are

formed per unit time in the interaction space for a

specified value of initial radius a0 and for arbitrary

values of the initial angle ,?0. Then the electron criti-

cal energy will increase per unit time by an amount

P = N-^Q*(a2

mii*-al). (8.28)

This power will be supplied by the alternating electric

field and will be dissipated in the form of heat on the

walls of the outside cylinder which the electrons

strike. Thus, the presence of Larmor electron orbits

with frequencies corresponding to resonance leads to

absorption and dissipation of the field energy. The

absorption of electromagnetic energy at resonance is

a characteristic feature of Larmor orbits, so that

their presence in an inhomogeneous oscillating field

leads to losses. This property explains the reduced

efficiency of planotrons and magnetrons when the

Larmor frequency or its harmonic coincide with the

fundamental frequency of the resonator field. Then

the losses can occur not only in the working space,

but the electrons can pass through the slots in the

anode block into the cavities and there they can ab-

sorb energy by the mechanism just described.

The radius of some of the electrons with phase

angles t90 between π/2 and 3π/2, decreases at the

start of the motion to a value a m j n , and the electrons

thus transfer part of their kinetic energy to the oscil-

lation. The question arises whether this phenomenon

can be utilized.

By modulating the initial phase angles t?0 of the

electrons entering into the interaction space, and by
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extracting them at the proper time from the space, it

is possible to effect generation, but it is difficult to

visualize how to construct a simple device which will

operate effectively as a generator. One cannot exclude

the possibility that such a process (with low efficiency)

takes place under natural conditions. If the electron

orbit originates on the surface of the outer cylinder

(this may be a secondary electron), and if the elec-

trons are emitted with initial phase ^o, at which their

radius increases, they will immediately return to the

wall of the cylinder without absorbing a noticeable

energy from the field. But in the case of phase angles

that lead to a reduction in the radius a of the orbit,

the electrons will continue their motion without ob-

stacle and their energy will be transferred to the al-

ternating field. The radius will then start increasing

again and resume its initial value, the electron will

return to the outer cylinder, but if the electron moving

along the magnetic field goes out of action sooner,

striking the end boundary of the working space, then

electromagnetic oscillations will be generated (in the

final analysis). It is easy to see that the effectiveness

of such a process will be very small but apparently

fully adequate to explain the usual presence of weak

oscillations with Larmor frequency has already been

spectrum.

The intense resonant absorption of electromagnetic

energy by an electron gas, which was analyzed here,

can be used in practice in those cases when it is re-

quired to produce along the path of radio waves propa-

gating in a waveguide a strong narrow-band absorption,

corresponding to the Larmor frequency or its har-

monic. It is possible that processes connected with

Larmor motion can be utilized for isotope separation.

The idea of a method for isotope separation using

resonance with the Larmor frequency has already been

proposed (see, for example, "Atomic Energy" by

H. D. Smyth, where it is pointed out that J. Slepian

did work in this field). Our analysis permits a quan-

titative study of the mechanism of processes of this

type for the separation of isotopes and the determina-

tion of the best parameters of the equipment.

Isotopes can be separated in accordance with the

scheme shown in Fig. 26. A constant magnetic field

is produced by a solenoid (1); to make the field homog-

eneous over the major part of its length, the solenoid

has more turns and iron discs (3) on the ends (2). The

high-frequency electric field is produced in the work-

ing space between the coaxial cylinders (4) and (5).

The oscillations are produced by generator (6). The

ions of various isotopes will move along the Larmor

orbits in place of the electrons. They enter into the

working space from an emitter (8) and are accelerated

by a dc voltage source (7). The circular orbits of the

ions, which are formed at the emitter, move in the

working space parallel to the cylinder axis toward the

other end and, in the final analysis, the ions that are in

Section AA

FIG. 26

resonance with the alternating electric field will gain

kinetic energy of orbital motion along the path. Their

radii therefore increase and they strike the wall of

the outside cylinder (5), where they remain. The

orbits of ions of different mass and of different Lar-

mor frequency, for which the resonant condition is

not satisfied, will not change noticeably in radius and

will move along the magnetic field, so that they can

reach the end discs (9) on which they settle. The sep-

aration process consists in having ions with different

masses settle in different places—on the cylinder or

on the end discs.

The frequency of the electromagnetic field ω is

chosen such that only the orbits of the ions of one

isotope enter in resonance with this frequency and

only their radius increases. The separation method

has that advantage that the yield does not depend on

the degree of ionization of the atoms, for according

to (1.02) the Larmor frequency is a multiple of the

charge. Therefore if the resonance condition (8.08) is

satisfied for a singly-charged ion, it will be satisfied

also for multiply charged ions, but the resonance will

occur simultaneously at several values of n; they will

strike the same surface of the outside cylinder.

Inasmuch as the Larmor frequency of the ions in

the same magnetic fields is many thousands of times
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lower, and the radii of the orbits are many times
larger than in the case of electrons, the apparatus
for the separation of the isotopes, shown in Fig. 26,
has large dimensions. For these processes, the fre-
quency in ordinary magnetic fields, correspond to the
100-meter band. We have described only the general
scheme of the device, but actually it is necessary to
develop many details, for example, to produce an ac-
celerating electric field in the working space between
electrodes (8) and (9); it is important to develop an
emitter capable of producing ion orbits with specified
initial conditions. The construction of such an emitter
is a difficult design problem.

The analysis of this method of isotope separation
raises a few interesting problems; we merely point
the way towards their solution but do not discuss the
process in detail here. As in all electronic processes,
the decisive factor in their efficiency is stability
against perturbations. In this case we can investigate
the perturbations in the same way as for the planotron
and magnetron. The perturbing factor can be either
the inhomogeneity of the magnetic field or additional
orbit precession due to the electrostatic field of the
space charge. The perturbation can be taken into ac-
count in the same manner as in (1.32), by regarding
this perturbation as an additive action of a supple-
mentary angular velocity Δ Ω on the phase velocity
φ of the ion in the circular orbit. The inhomogeneity
of the magnetic field is determined by the value of the
relative perturbation

ΔΩ

Ω
(8.28')

Let us introduce the perturbing angular velocity Δ Ω
= γ Ω into the fourth equation of (8.11), obtaining the
equation of the perturbing motion

(8.29)

Inasmuch as to maintain the character of motion the
perturbing velocity у Ω must be smaller than φ, the
stability of motion is determined by the condition

| φ | > | γ | Ω . (8.30)

If we take in this condition the maximum amplitude

Po , we obtain

ΙΛ,Γ
__
Ω 2

>l (8.31)

On the other hand, it is necessary that the motion be
not so stable that orbits of isotopes with neighboring
Larmor frequencies be subject to the resonant action.
This action should be such that an increase in the
radius a for the isotopes be smaller than the limiting
radius a m a x , so that these ions do not settle on the
outside cylinder.

To consider the perturbed motion of the ions it is
necessary to calculate their trajectory in the phase

space ( a, $). For this we must solve the equations

(8.32)

* )

We introduce the notation

x = R2, b = R$, ?/ = sin 710·. (8.33)

We then obtain a first-order linear equation
η

dy > nby , . . „ nyQ

dx '• 2x(x — b ги l i -
(8.34)

Solving this equation by the usual method with the
previous initial conditions, we obtain after returning
to the initial variables

,-( —1) ~2jj~(a ao>- (o· · 1 · 5 )

We see from this formula that at sufficiently large
a (when a/R w 1) the term containing the perturba-
tion becomes the principal one and determines the
character of the motion. It is easy to see that in this
case the trajectory changes from a hyperbola with
branches that go to infinity into a closed curve. Thus,
the radius a will have a finite limit.

If the atomic weight of the separated isotope is M,
while Μ ± ΔΜ is the atomic weight of the neighboring
isotope, then the trajectory of the orbit of the neigh-
boring isotope is obtained from formula (8.35) by
putting

Y = y - (3.36)

It is seen from (8.35) that in order for one of the or-
bits of the next isotope not to have a > a m a x , it is
perfectly sufficient to satisfy the condition

ДЛ/ .

Hi
(8.37)

which is obtained if the absolute value of the term con-
taining the perturbation in (8.35) is set equal to 2 for
a = a m a x . This important condition, necessary for
the separation, at the same time limits the amplitude
of the alternating electric field, which reduces the
productivity of this separation method. It is impor-
tant to note that operation at higher harmonics
( η > 1) makes it possible in accordance with (8.37)
to employ larger values of U.

In order to visualize the perturbation of the tra-
jectories, let us trace them in phase space ( a, ^) as
shown in Fig. 27 for η = 1. The quantity

# = —^~ (8.38)

will be called the stability factor; we put Β/γ = 6 in
Fig. 27. As can be seen from this figure, the trajec-
tories, which are now closed, are symmetrical about
the vertical axis 3 - ±π/2. A study of these trajec-
tories makes it possible to determine more accurately
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-} (a'-a»,

FIG. 27

the stability conditions, which were approximately
given by formula (8.37).

In Fig. 27 we put ao/R^ = 2 and Ъ/у = 6, and ob-
tained ащах/R^ =3.9, whereas the estimate leading
to formula (8.37) was based on а т а х / К + = 4.

On the basis of the material presented we can if
necessary carry out a similar complete numerical
analysis of the processes which are essential in this
isotope separation method, as was done in the pre-
ceding chapters for electronic processes in plano-
trons and magnetrons.

In conclusion we consider cursorily motion of the
second type, when the electron orbits enclose the
origin. In this case we obtain in place of conditions
(8.07)

a>R, -p = ± (8.39)

Then in the averaging we employ in place of the ex-
pansion (8.07) the formula

ei(ip-Qf)

/>-"e-iBW-H»>. (8.40)

Proceeding as before, we obtain under the s a m e
resonance condition the equations

a = -x- -—cosww,Ω a '

(8.41)

Introducing the previous initial conditions (8.12), we

obtain

(8.42)

а+ is the final value of a, equal to the mini-where
mum radius.

The motion is investigated in the same way and in
final analysis it can be shown that the electrons, as
in the preceding case, will draw energy from the
field, increase their radii a, and strike the body of

the cylinder. The phase diagram is similar to that
shown in Fig. 25, but refers not to the radius a but
to the radius R of its center.

It is easy to see that this case can be obtained
from the preceding one by replacing η in all the ex-

pressions by —n.

In conclusion it can be pointed out that motion in

which the orbits enclose the center of the working

space are difficult to realize in experiment. Motion

of this type is presently encountered in practice in

cyclic accelerators.

DC. PROSPECTS OF HIGH-POWER ELECTRONICS

The theory developed by us and the experiments

described point to the promising nature of electronic

processes in high-power energetics.

The theory shows that high-efficiency high-power

generators for microwave frequencies are feasible.

Generators of the planotron and magnetron type,

which have the same excitation mechanism, appar-

ently point the way towards the development of high-

power electronics. We consider most promising the

development of such methods for the generation of

microwave power, in which the oscillations are ex-

cited directly in the waveguide. This is accomplished

by strong coupling between the oscillations in the

working gap of the planotron or the magnetron and

the oscillations in the waveguide. An example of a

generator operating on this principle is the planotron

shown in Fig. 23.

For the development of high-power electronics it

is essential to learn how to use planotrons and mag-

netrons which operate in the inverted mode, i.e.,

which transform the high-frequency power into dc.

The feasibility of such inversion was considered

theoretically in Chapter II, where it was shown that

this process will be just as stable and as effective as

the direct process, wherein microwave oscillations

are generated.

In order to outline more specifically the ways

towards realization of high power processes, which

make use of the advantages of microwave frequencies,

I present here a few characteristic examples of such

power processes and will sketch a possible scheme

for their realization. These examples, of course,

must be regarded only as tentative and possible solu-

tion schemes, but not as specific designs.

One important and interesting problem in high-

power electronics is the transmission of electric

energy over waveguides. Unlike transmission over

wires, the energy flux does not come in the waveguide

from outside the wire, but from inside the tube.

The technical advantages of power transmission by

waveguide are obvious. Modern high-voltage ac or dc

transmission lines have many known shortcomings,

due to their open character. They can be damaged by

lightning discharges, overvoltages can arise, corona
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discharge may be produced, etc. This does not occur
when power is transmitted in waveguides, since the
entire process occurs in a tube which can be buried
underground. Of course, from the point of view of
safety, transmission in tubes also offers many ad-
vantages .

It is well known that in any electric transmission
line the energy flux comes from outside the conduc-
tor. The maximum power which can be transmitted
along the line is determined by the integral of the
Poynting vector

\ [EH]Z dS, (9.01)"

where с is the velocity of light, Ε and Η the ampli-
tudes of the electric and magnetic field intensities in
the transverse cross section ( ζ = const) of the
transmission line, and dS an area element of this
cross section outside the metal. In order to transmit
large power, the field intensity must be made as
large as possible. In practice Ε is limited by the
dielectric strength of air. In an ordinary transmission
line the most dangerous breakdown location is the
surface of the wire itself, where Ε reaches its max-
imum value; transmission lines must therefore use
wires of large cross section. The same expression
(9.01) holds true for power transmission over wave-
guides, so that for large amounts of power Ε will also
have to be large. Inside a waveguide, however, the field
is distributed more uniformly over the cross section
than in the case of a cylindrical wire, so that break-
down is more difficult. This uncovers the possibility
of transmitting large power in waveguides of small
cross section.

For example, if we allow a five-fold safety factor
in the dielectric strength of air, assuming the per-
missible field intensity to be 6,000 V/cm, we obtain
from (9.01) that one square meter of waveguide can
carry as much as a million kilowatts.

Another advantage of the waveguide is that the
question of insulation is completely eliminated in
spite of the high voltage. All this makes a waveguide
a reliable means of transmission of high power.

The economy of this transmission method is less
obvious. This question is connected, first, with the
energy factors of the planotrons or magnetrons con-
nected at the terminals of the transmission line. On
the transmitting end of the transmission line the
planotron will transform direct current into high fre-
quency; on the receiving end, the planotron will trans-
form the high frequency into direct current. The
planotron operating characteristics have been dis-
cussed in the earlier chapters, and there are grounds
for predicting theoretically that with time its effi-
ciency will become sufficient for economic operation
of transmission lines.

With respect to the losses in the transmission line
itself, we are faced with great difficulties in principle.
Owing to the skin effect, current at high frequencies
flows through a thin layer on the wall of the wave-
guide. On the one hand this is an advantage, for thin
metallic coverings may be sufficient, but on the other
hand such current flow is accompanied by large ohmic
losses. By way of an example let us take a rectangu-
lar waveguide of height b and let us transmit through
it an energy in the Hj0 mode. We then find that if the
waveguide walls are copper covered, the initial
transmitted power P o will attenuate along the length
L in accordance with the formula

°" 5 ^ (9.02)

where λ is in centimeters. It follows from this ex-
pression that at λ = 100 cm and b = 2 meters, 10%
of the transmitted power will be lost over a distance
L = 32 kilometers.

In the H l o mode, the electric flux lines start and
end on the waveguide walls, so that appreciable cur-
rents are produced in it. If we use a cylindrical wave-
guide in the Ho l mode, the electric flux lines in which
are closed and form rings, there will be much less
current flowing in the waveguide walls and lower loss.
In this case we have so to speak a freely propagating
wave with axial symmetry, and the task of the currents
flowing in the waveguide walls reduces to a neutraliza-
tion of the tendency of the wave to move out in a
radial direction. As is well known, in this case the
losses in a cylindrical waveguide of radius r with
copper walls are determined by the expression

(9.03)

*[EH] = Ε χ Η.

where λ is again in centimeters. Unlike the preceding
case, the losses here decrease sharply with decreas-
ing wavelength. If we take by way of an example a
waveguide for which r = 1 meter, then the power loss
at λ = 3 cm and at a distance L = 1,000 kilometers
will be merely 10%, and the power which can be trans-
mitted over this waveguide without exceeding the
permissible field intensity will amount to 4 million kW.
From expression (9.03) we see that the losses de-
crease rapidly with increasing radius of the tube. As
is well known, however, the HOi mode has low stabil-
ity and, unlike the Hj0 mode, it can rapidly degenerate;
therefore, in spite of such favorable factors, the
question of its use is not so simple, since it involves
the known problem of stabilizing the HOi mode in a
cylindrical waveguide. It is easy to predict that the
advantages of power transmission over waveguides
will become manifest to full degree if superconduc-
tors operating at normal or near-normal temperature
are developed.

Figure 28 shows schematically a waveguide trans-
mission line and the diagram of two planotrons, one
operated by a dc generator and the other feeding a
dc line.
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FIG. 28

At the present stage we confine ourselves only to
a general description and do not stop to discuss the
solution of many important technical problems neces-
sary to realize such a transmission system, for ex-
ample the matching of the load to the generator, the
stability of the transmitted wave in the waveguide,
etc.

It is interesting to note that if a high-power wave-
guide transmission line is ever realized, it will also
be possible to tap electricity from it by smaller
waveguides. The possibility of channelling electric
energy of considerable power along uninsulated tubes
can solve many important technical problems. For
example, no particular difficulty is involved in using
this high-frequency power for direct heating; for this
purpose it needs be merely channeled through the
tubes to a metallurgical furnace, where it will be
absorbed and produce very high temperatures without
the use of special electrodes. Electricity of suffi-
ciently high frequency can be guided without insula-
tion through tubes in wells to heat the ground at large
depths, a procedure which can be useful in the ex-
traction of sulfur, heavy oils, etc.

When large values of high-frequency power are
used in closed buildings, it must be kept in mind that
the electromagnetic oscillations can readily leak out-
side through very narrow slots; this is frequently a
serious obstacle.

The effective generation of high frequency oscilla-
tions and the inversion of direct current uncovers the
possibility of transmitting electricity through free
space. The transmission scheme will of course be
analogous to that considered here, except that the
waveguide will be replaced by a directional beam
which, as is well known, diverges little only at short
wavelengths. Such a transmission system, first con-

ceived by N. Tesla many years ago, has been under
discussion for a long time. Although it is possible in
principle, it entails the solution of many complicated
technical problems and can therefore be realized only
in those special cases, when other energy transmis-
sion methods are impossible (for example, power
supply to artificial satellites).

In connection with the channelling and application
of high-power microwave oscillations it is apparently
advantageous to use the planotron for the conversion
of one frequency to another. The possible realization
of such a process is simple, and its nature is readily
seen from Fig. 29. The planotron is equipped for this
purpose with two independent resonant systems, each
with its own natural frequency. These systems are
so arranged that the interaction space of one system
is a continuation of the interaction space of the other.

Let us assume that the resonator system shown on
the top of Fig. 29 receives energy from a waveguide.
In this case the direction of the electric field in the
interaction space is such that the electrons drifting
from left to right move transversely to the interac-
tion space in a direction opposite to the constant elec-
tric field and acquire potential energy on account of
the absorbed oscillation energy. When these electrons
enter the lower part of the interaction space, the
process reverses sign and the electrons will give up
their energy to the other system of resonators, which
already oscillates at the frequency of the load. Thus,
energy received at one frequency will be delivered
with a different frequency. Such frequency converters
may assume practical significance in time, when
smaller waveguide diameters are used in the couplers
for the high frequency power channelling systems,
and when it may become necessary to increase the
frequency in order to satisfy the critical conditions
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FIG. 29

Alternating electric field

Constant magnetic field

Electron motion

imposed on the wavelength by the waveguide dimen-
sions.

The mechanism of the electronic process in the
planotron uncovers many interesting possibilities,
the most promising of which we consider to be the
use of the planotron as a linear accelerator. This
possibility becomes quite understandable if we visual-
ize a beam of charged particles moving over the gaps
of a radiating planotron. If the distance between the
gaps is reconciled with the law of motion of the par-
ticles, it is possible to choose the frequency and in-
tensity of the mode in such a way that the particles
moving over the gaps will be only under the influence
of the accelerating action of the electric fields pro-
duced by the oscillations in the cavities. By varying
the distance between the cavity gaps in the interaction
space it is also possible to vary the drift velocity of
the tongues. This can be done simply by varying
smoothly the distance D between the cathode and the
anode. In practice it is possible to realize such a
system by various means; one is shown in Fig. 30.
It is based on using two planotron resonant systems,
with the accelerated beam passing through the center.
The slots of the opposite ends of the resonators face
both working spaces. The system has a magnetic loop
in which there is no component of the magnetic field

in a direction perpendicular to the motion of the par-
ticles along the line where the acceleration of the
particle stream takes place. From a comparison of
the operating principle of such a linear accelerator
with ordinary systems we see that in this case the
oscillations of the accelerating field are made coherent
by a strongly coupled system of resonators, and that
the energy is fed continuously along the entire path
over which the acceleration takes place. Consequently,
the energy supply does not become more difficult with
increasing length of the accelerator, nor is the syn-
chronism of the oscillations disturbed.

I believe that this short summary already shows
that the planotron offers much promise for the realiza-
tion of many fundamental problems of high-power
electronics. It must be pointed out that some of the
foregoing problems can also be solved successfully
with the aid of a magnetron, but such a magnetron
must be large and its construction would have little
in common with the ordinary pulsed magnetron. The
cylindrical cathode would have to be of large radius,
separate emitters would be necessary, and the num-
ber of cavities would have to be large. From the
magnetron theory developed in Chapter VI it follows
that under such conditions the electronic process in
the magnetron is practically identical with that in the

Section A-A

Alternating electric field
Constant magnetic field
Electron (ion) current

FIG. 30
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planotron, and would have theoretically the same high
qualities. In such high-power magnetrons, the mag-
netic field will be produced by a solenoid and it is
possible to dispense with the iron.

The question of the use of resonant interaction be-
tween electromagnetic oscillations and electrons that
revolve on Larmor orbits, as applied to high-power
electronics, was already analyzed in the preceding
chapter. It was shown there that these processes are
little suitable for effective generation of high fre-
quency, but may turn out to be quite useful for selec-
tive absorption of electromagnetic oscillations. As is
well known, effective selective absorption of short
radio waves propagating in waveguides does not have
a simple solution, so that an absorbing device which
operates on a new principle can prove to be useful.
Such an absorbing device can be made in the form
similar to the isotope separator shown in Fig. 26. The
dimensions of the electron orbits are much smaller
than the dimensions of the ion orbits, so that the in-
strument will be much smaller in size than the one for
isotope separation, and will absorb short radio waves
(in the centimeter and decimeter bands). The ion
emitter (8) is now replaced by an electron emitter.
The end disc (9) will be missing, in order to permit
the instrument to be connected to a waveguide as a
terminal coaxial line.

With the aid of the averaging method developed in
Chapters I and VIII it is possible to show that if any
oscillation mode is established in the waveguide and
an electron gas is present in the magnetic field,
selective absorption of the oscillations with a fre-
quency multiple of the Larmor frequency will always
occur. The prospects of the use of resonance with
Larmor frequency for the separation of isotopes fol-
lows from an analysis made in the preceding chapter,
and we shall not return to this problem.

The electronic processes which we have considered
in the present paper have, of course, not been well
studied as yet, but as they are mastered, prospects
will be uncovered in high-power electronics which at
present cannot be predicted. During the course of
work on high-power electronics it will be necessary
to solve many interesting problems, both theoretical
and experimental. Further development of high-power
electronics will proceed with an ever increasing rate.
This will depend not only on the time necessary for
the solution of the theoretical and experimental prob-
lems, but principally on the extent to which the need
for solving the corresponding problems has arisen.

Translated by J. G. Adashko


