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1. INTRODUCTION

boa)ME years ago the assertion was made in a paper
by Aharonov and Bohm ^ that the potentials of the
electromagnetic field play a special role in quantum
mechanics, which they do not have in classical me-
chanics; that, unlike the potentials in classical elec-
trodynamics, they must here be regarded as "pri-
mary" physical quantities, and the field strengths
must be regarded as "secondary" quantities, in the
sense of derived concepts; that owing to this "special"
role of the potentials, "contrary to the conclusions
of classical mechanics, there exist effects of poten-
tials on charged particles, even in the region where
all the fields (and therefore the forces on the parti-
cles) vanish" (abstract of'-1-', page 485); that owing to
this "some further development of the theory is
needed. Two possible directions are clear," write the
authors. "First, we may try to formulate a nonlocal
theory in which, for example, the electron could in-
teract with a field that was at a finite distance away.
. . . Secondly, we may retain the present local
theory" if we "regard Αμ(χ) as a physical variable.
This means that we must be able to define the physi-
cal difference between two quantum states which dif-
fer only by gauge transformation" ( Ш, pp. 490—491).
It is true that the authors are evidently not inclined to
insist on this latter extreme possibility (the state-
ments on this point in their second paper '2-' are more
cautious). Nevertheless it is clear that fundamental
propositions of quantum mechanics are at stake. If
the question as to which is more important, field or
potential, can still be regarded as a matter of taste,
there are other assertions which have a concrete
meaning and are based on the analysis of two possible
experiments proposed by the authors. (The second of
these experiments had actually been indicated long
before by Ehrenberg and Siday ^ in connection with
an analysis of problems of electron microscopy; but
although these authors indeed came to the conclusion
that a source influences an electron even when it is
in a part of space where the field strength vanishes
and only the potential is different from zero, they did
not draw such far-reaching conclusions about the
foundations of quantum electrodynamics.) In addition,
in their second paper ^ Aharonov and Bohm analyze
a third physical example—the stationary states of an
electron in the field of a solenoid.

These assertions gave rise to a theoretical dis-
cussion Й>5.",16] (partly in private letters, cf. И ) .
New experiments were arranged and old ones were
reexamined, '-6"9^ and experimental authors believe
that their data confirm the conclusions of Aharonov
and Bohm (although Aharonov and Bohm themselves
admit that none of the experiments is as yet a com-
pletely clean case ^ ) . A sympathetic reference to
this point of view can be found in a paper devoted to
the analysis of other problems. '-10-'

Thus the question already "has a literature." It is
worth examination, since after all there are no finally
decisive statements in the theoretical papers either
for or against the point of view of Aharonov and
Bohm.*

We shall analyze all three physical examples and
try to obtain the answers to two questions.

1. Is there really an experimental possibility of
finding a physical effect when an electron (its wave
function) is entirely in a region where the field
strength of the source vanishes but the potential is
different from zero?

2. Is there a special effect of the potential in
quantum mechanics, different from its effect in clas-
sical physics, which would allow one to regard the
potential as a more fundamental quantity than the
field strength, and would require a reformulation of
the foundations of the theory?

We shall see that these two questions do not re-
duce to a single one, as it might seem at first glance.

*After this article had been written, there appeared a paper by
De Wittt"] and an answer to it by Aharonov and Bohm.Μ De Witt
did not agree with the idea that it is necessary to reexamine the
concept of the potential in quantum mechanics, and pointed out
that the potential can be replaced in the Schrodinger equation and
in all other uses by a line integral of the field strength. Thus the
theory can be formulated with the field strengths alone, but at the
expense of introducing nonlocality: the effect of the field at a
given point is determined by its values at other points, and in gen»
eral at other times. This criticism essentially fails to refute the
thesis that in some sense of the word there is a special role of the
potentials in quantum mechanics. In their reply Aharonov and Bohm
regard the replacement as a trivial step. A formulation of quantum ,
electrodynamics without potentials has been given V. I. Ogievetskn
and I. V. Polubarinov (Joint Institute for Nuclear Research Preprint
E-975, 1962).
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2. THE EFFECT OF THE SCALAR POTENTIAL

The first suggested experiment is as follows. '1>4-^

A plane electron wave, which in the direction of motion

is a packet of length L, is separated in a transverse

direction into two parts (for example, as the result of

passing through a screen Sj with two slits, Fig. l,a).

Each part passes through its own cylindrical metal

tube (Faraday cage) of length I » L. When the

packets have completely entered the tubes, a potential

difference φ is applied to the tubes and kept constant

for the time t (Fig. l,b). For simplicity we can sup-

pose that one of the tubes is grounded and is at poten-

tial zero. Then, before the packets begin to emerge

from the tubes, the potential is removed. After they

come out the packets are deflected by the prisms Ρ

and interfere, giving bands on a screen S2 (Fig. l,c).

The essential point of the experiment is that the

packet which has been subjected to the action of the

potential φ acquires an additional phase (e/fi) φί

(where e is the charge of the electron), which must

produce a shift of the interference pattern which in-

creases with increase of φ. At the same time, inside

the cylinder the potential φ does not depend on the

coordinates and therefore the field strength is zero.

Thus there must be an observable effect although the

electron has not been acted on by a field strength.

This is the basis for the fundamental assertions which

have been mentioned above.

The argument as given does not seem open to any

doubt. In fact, '-1-' we can write for the function ψ the

equation

where S6a is the unperturbed Hamiltonian. In the ab-

sence of the potential the solution ψ = фа is of the
form ipQ = ψ? + ψ"» where ψΐ is different from zero in

the first tube, and ty\, in the second.

When there is a potential φ = φ^ + φ2, with φ^ and

φι different from zero only in the first or in the sec-

ond tube, respectively, then as is easily verified by

substitution, the solution is

where

t

= \ e<f2(t)dt.

The presence of the phase difference St — S2 causes
the effect. The quantum character of the effect is
shown by the fact that it depends on the quantity K.

One might doubt the effect because at the moments
when the field is switched on and off a redistribution
of charges occurs and therefore the field might tem-
porarily penetrate into the tubes. It is clear, however,
that this effect is limited to the on and off switching

DO

0

b)

S, с) S2

FIG. 1

time intervals at = Atj + Δί2. Meanwhile the phase

shift Sj — S2 is proportional to the time t and can be

made arbitrarily large, so that the phase shift in the

time Δί can be neglected.

It also follows from this that the experiment could

be done under less restrictive conditions: one could

impose a constant field over all space from the be-

ginning, so that before going into the tubes and after

coming out of them the electron would be acted on by

the field. But the scheme described in '-1-' and ^ re-

lieves us of any need to discuss this point further.

Furry and Ramsey showed ^ that if we take into

account the reaction of the electron's charge on the

charge distribution on the tube it is possible (from

the change of potential of the tube) to determine

through which of the two tubes the electron has gone.

But if we arrange the experiment so that such a de-

termination can be made the interference pattern dis-

appears. This indeed must be the case: if it is known

that the electron is in one tube, then its φ function in

the other tube must be zero and there is nothing to

interfere with. Therefore Furry and Ramsey come to

the convincing conclusion that the predicted result of

the experiment must without doubt occur according to

the fundamental propositions of quantum mechanics.

We shall try, however, to make sure whether we

really have here a manifestation of a property of the

potential unknown in classical physics.

The basis of the argument is the assertion that the

electron in the tube has an additional energy etp.
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There is nothing specifically quantum-mechanical

about this fact. If we were working with a classical

electron, its energy would also be increased by the

amount e<p when the field was turned on. The in-

crease of energy is quite real. If we want to get the

electron out of the tube before the potential is switched

off, we have to collect this energy from it. Conse-

quently there is a quite perceptible "effect of the po-

tential on the charged particle" in a region where

"all the fields (and therefore the forces on the parti-

cle) vanish" also in classical electrodynamics. There

is nothing nonclassical in the fact that the electron

acquires an additional energy. We can even show

where this energy comes from: in giving the tube the

constant potential φ we have placed an additional

charge on it. In flowing onto the tube it had, depending

on the sign, either to overcome the repulsive force of

the electron in the tube, or else to be attracted by it

(see the calculation in ^ ). In fine, e<p is the purely

classical energy of the interaction of the electron

with the charges of the source.

Whence therefore an effect which has no classical

analog? The answer is obvious: the electron wave

function has a particular frequency which depends on

the total energy of the electron. Furthermore,

whereas the only quantities important for the motion

of a classical particle are the derivatives of the ac-

tion function at a given point and a given time, the

energy Ε = — 0S/9t and the momentum ρ = 9S/9q, in

quantum mechanics the frequency and the resulting

phase determine the absolute magnitude of the action

S. If we know that the electron goes through only one

tube, then the change of its frequency causes the con-

stant phase shift Sj/fi = (e/h) f φ1(-ί)άί. This shift

has no effect at all (just as changing the action by a

constant has no effect for the classical electron). If,

however, the electron is described by a wave function

which has different parts in which there are different

integrated phase shifts, so that the difference of the

shifts is ( Si — S2)/K, then there is an interference

effect.

Thus the quantum peculiarity of the effect has its

hiding place in two circumstances. First, in the fact

that the energy of the particle (in the present case

the energy of interaction with the charges on the tube)

has any effect on the frequency of the wave function

(in classical electrodynamics, although this energy is

present and real, it does not affect the character of

the motion, as long as there is no dependence of the

potential energy on the coordinates); second, in the

fact that the position of the electron is in principle

undetermined, it "is in both tubes simultaneously"

and is under the influence of different potentials in

different parts of its packet. Both of these facts make

the process very different from the corresponding

classical case. In both of them, however, it is diffi-

cult to perceive any new and special role of the po-

tential (in particular, even in the simple passage of a

particle through a screen with two slits a difference

of an external influence on two parts of the same wave

packet will produce an effect).

It must be noted that various actions of the poten-

tial which are not inherent in Newtonian physics can

be encountered elsewhere than in quantum mechanics.

For example, in the general theory of relativity the

rate of a clock depends just on the (gravitational) po-

tential at the given point, and not on the potential

gradient. An atom in the field of a constant potential

has an altered frequency of radiation. This, however,

gives us no reason to suppose that in the theory of

gravitation the potential has special features which

could, say, require us to look for a nonlocal formula-

tion of the theory.

We note that a stationary sphere in a gravitational

field, held in equilibrium by two equal forces acting

in opposite directions, has potential energy, and the

frequency of its wave function (which it has in princi-

ple, like the electron in the experiment described

above) also depends on this energy.

Thus from the example of the first of the experi-

ments suggested in И we can already see what an-
swers there may be to the questions posed at the end
of Section 1: a positive answer to the first question
and a negative answer to the second. We still have to
verify that the same conclusion follows from the
other two physical examples.

3. SCATTERING OF AN ELECTRON IN THE FIELD
OF A VECTOR POTENTIAL

The second experiment which has been proposed
(and actually carried out ^ ) , and which was first
analyzed in detail in ^ , is as follows.

Let a plane electron wave, which as before has
been separated into two packets by a screen with two
slits, as in Fig. 1, or else by a biprism BP and two
deflecting prisms, as in Fig. 2, pass on both sides of
an infinitely long solenoid or magnetized rod S (Fig.
2) perpendicular to the plane of the drawing. Then the
two packets are brought together by other prisms and
give interference bands on a screen S2.

Outside the solenoid the magnetic field is zero,
and therefore no forces act on the electron. The vec-
tor potential, however, cannot be zero here: accord-
ing to Stokes' theorem, the integral along a curve Σ

passing around the solenoid must give the flux of in-

duction through the curve
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=1\ TOtn\dS = : = iw2tf = Φ, (1)

where a is the radius of the solenoid, Η is the mag-
netic field strength in it, and Φ is the flux of induc-
tion in the solenoid. In particular, we can pick the
gauge for the potentials so that A = A# = Φ/2πτ,
where θ is the polar angle measured in the plane of
the drawing and r is the distance from the axis of
the solenoid (Fig. 3). This vector potential appears in
the Schrodinger equation for the electron and can
cause an effect on the electron even in cases in which
the wave function of the electron does not penetrate
into the solenoid anywhere.

FIG. 3

To prove this, Aharonov and Bohm treat the scat-
tering of a plane wave by a solenoid whose radius a
goes to zero while the field strength Η increases so
that the flux is finite. One must deal with the Schro-
dinger equation separately outside and inside the
solenoid and join the results at the surface r = a.
Outside we have

ι
2m Р-^г (2)

or in cylindrical coordinates r, Θ, z, on the assump-
tion that under the conditions of the experiment
nothing depends on z,

32ψ ι 3ψ ι s ,
dr2 r or г2 \ с

where the parameter a, which is of fundamental im-
portance for what follows, is given by the relations

еф
~ch Ф=шгН. (4)

We shall verify later that we do not need to consider
the interior region of the solenoid, and can simply
take Eq. (3) to hold for all space.

This equation can be solved by separation of vari-
ables; the equation for the radial function has solu-
tions in terms of Bessel functions, for example

^n~e±iniJn+a{kr). (5)

From the periodicity condition when θ changes by 2π
it follows that η must be an integer. A plane electron
wave incident from the left (it gives ψ for r — «
and θ —- ж) can be expanded in terms of Bessel func-
tions ( όρο is the Kronecker symbol)

ψ0 = eihx =
p = 0

- δρ0) i" cos pQJp (to·). (6)

If α is an integer, η + a = p, it is seen that this func-
tion is made up of exact solutions (5) even in the
presence of the potential AQ. Consequently, it is the
solution of the Schrodinger equation and there is no
scattering. It is only in rare cases, however, that the
magnetic flux Φ is quantized. This occurs, for ex-
ample, in superconductors '-11-' (here the "quantum of
flux" is the quantity ch/2e = 2 ·10~7 Μχ). If indeed
a is not an integer, than ψ must be the sum of φ0

and a scattered wave !/>j. In ^0 J/JJ is found as an ex-
pansion in terms of the particular solutions ipn. It
allows the authors to determine the scattering cross
section И :

sin2 πα dd

2nk (7)

We can also use a simpler approach, if we confine
ourselves to the case of a value of a close to an in-
teger. We can then regard the difference from an
integer as a perturbation,

α η = α — η, (8)

where η is the nearest integer, and apply the Born
approximation of perturbation theory. It is clear that
this is enough to settle the question in principle as to
whether or not a scattering exists. Then, setting
ψ = ψο + Φι and keeping only terms of first order in
a n , we have in the three-dimensional formulation

(V2-4-fc21*b, = _1ί?™-Ε$» (9)

By the usual method, integrating over ζ from —
+ °°, we get for r — °°

у 2nkr

(9a)

to

(10)

The angle χ between q = k0 — к and r ' (Fig. 4) can
be expressed in terms of Θ' and the scattering angle
θ, χ = π/2 + θ' - θ/2, so that after integrating over
Θ' from 0 to 2π and over r ' from a to °° we get

-J0{ka), (11)*

and the scattering cross section (calculated as the
ratio of the flux of the scattered wave fa to the inci-
dent flux) is, when we set ka — 0

da = ~\A(Q)fdQ= л а " „ α?θ. (12)
2k tg 2 ^

This expression is somewhat different from the re-

*tg = tan.
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FIG. 4

suit of taking α « 1 in the result (7) which was given

in ю (there is an extra factor cos2 0/2 ). In fact, the
solution found in ^ is, strictly speaking, incorrect:
the total function changes when θ is changed by 2π

(this can be seen particularly clearly from Eqs. (21)

and (23) of И ) . This does not change the essential
point, however: there is scattering when a is not an
integer. Moreover, the total cross section is infinite
(on account of the small values of Θ, i.e., distant

passages).

In our treatment here we have supposed that a = 0.

This is actually permissible, since the probability of

finding the particle inside the solenoid can be made

vanishingly small. As was pointed out in M, we could

surround the solenoid with an impenetrable barrier

and this would not change the result. In fact, for

ka « 1 such a barrier would mean that as the wave

unperturbed by the potential A we would have to take

instead of the expression [12]

= ^ - * Σ (2 -

cos ρθ

ρ (ka)

AT)

2 In ku
(13)

(where 6p(ka) is the scattering phase shift), and

make corresponding changes in the application of

perturbation theory. In effect we would have to pro-

ceed as before and integrate only over the region

r > a, which is what we have done.

Thus there must be a scattering, although the field

strength is zero in the region where the electron is.

We note that this is also a quantum effect, since σ is

proportional to 1/k = fi/p.

This conclusion has been subjected to experimental

test. Chambers ^ has observed the scattering in the

field of a magnetized iron "whisker" С (of diameter
about 1μ) for electrons emitted by a source S (Fig. 5,

not drawn to scale). The electrons passed through the

biprism efe and gave an interference pattern at 0.

The magnetic whisker was in the shadow of the

aluminized quartz fiber f of diameter about 1.5μ. The

magnetic flux was about 400 hc/e and varied some-

what along the length of the whisker, by about one

unit hc/e (one "fluxon") per micron. It was found

that along the coordinate ζ perpendicular to the

drawing the interference bands have a slope which is

in good agreement with that to be expected from the

theory of Aharonov and Bohm: the shift amounted to

one band for a displacement along the ζ axis of 1μ—

that is, for a change of a by unity.

Unfortunately, as was shown by Pryce (see ^ ) ,

the nonuniformity of the magnetization produces a

stray magnetic field which by itself can cause a simi-

lar displacement of the bands. Besides this, the

diameter of the magnet is comparable with the width

of a band at 0. Therefore ka cannot be regarded as

small. Consequently the experiment cannot be ac-

cepted as conclusive. It is hard to doubt, however,

that the result must be positive.

In the other experiments '-7"3-' it has only been

shown that the direct effect of the potential must also

be taken into account in cases in which the magnetic

field is different from zero; otherwise one cannot give

an exact explanation of the experimental facts. This

in itself only confirms the correctness of the Schro-

dinger equation.

Again, as in the case of the experiment with the

electric potential, the answer to the first of the

questions formulated at the end of Section 1 must be

positive.

Is it correct, however, to suppose that here there

is no physical action of the magnetic field in the

classical sense of the word? The field strength does

indeed vanish at every point where the probability for

the presence of the electron is different from zero.

We must, however take account of the fact that the

interaction of the electron with the source of the field

does not vanish. The electric current of the moving

electron produces a magnetic field which acts on the

solenoid and produces an interaction energy repre-

sented by the term — e/c A in the expression for the

total energy l/2m (p — e/c A)2. This expression it-

self is purely classical (it does not contain fi), and

therefore in this case also the action of the potential

has a classical basis.

In fact, when we make a perturbation calculation

in first order in an we have for the matrix element

FIG. 5
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for the transition of the electron in being scattered
from state ψ0 to state ipf

(14)

But A is produced by the current j in the solenoid,

On the other hand, p/m = ν is the velocity operator,
so that the expression that appears in Eq. (14),
ψ£(г') e/m ρψο(Γ') = jof ( r ' ) , is the transition current
density of the electron. Therefore Μ takes the sym-
metrical form of an interaction between currents:

м~~ (15)

Here, strictly speaking, the change of the state of the
source under the influence of the interaction has not
been taken into account. In order to do so, we must
write instead of j ( r " ) the transition current density
of the source Jof.source( r " ) · The expression (15)
explicitly is of the classical form of the energy of
interaction of currents. It is, by the way, clear even
without this that A in the Schrodinger equation ap-
pears after variation of the expression for the energy
of the system, and therefore represents the interac-
tion of the electron with the solenoid or magnet. This
energy, for example, is expended in the form of the
work of the additional electromotive force which
must be applied to the solenoid to keep the current in
it constant when the approaching electron produces an
induced current in the solenoid; it is essential that we
are always speaking here about the energetic changes
with a constant current in the source (cf. e.g., '-13-',
Section 52). The complex result of these interactions
can be expressed in the simple fact that the action
for the electron, according to classical electrody-
namics, acquires the added term Je/c As ds, where
the integral is taken along the path of the electron.
Since in a passage around the solenoid this would give
an increase of the action AS = e/c Φ, then in passing
by (without going around) from x = — °° to χ = + °°,
independent of the path, the classical electron re-
ceives a constant increase of action V2

 e/° * W it
passes on one side of the solenoid or —V2 e/c Φ if it
passes on the other side. This has no effect on its
motion (in particular, the total work done by the elec-
tron on the solenoid and the source of current is zero).
In quantum mechanics there is an increase of the
phase by ± e/2cK Φ, which is the same at all points
of the packet if the entire wave packet is on one side
of the solenoid. If, however, the packet envelops the
solenoid, then there are different phase shifts in dif-
ferent parts of it, and there is a disturbance of the
interference pattern which increases with increase of
Φ.

The complete similarity of this picture with the
case of the scalar potential (Section 2) is quite obvi-

ous. Again the interaction with the source is basically
a classical one. The quantum character of the proc-
ess is due to the facts that a) the existence of an en-
ergy of interaction with the source of the field is im-
portant for the frequency of the wave function, and
b) the position of the electron is indefinite, so that
there are different phase shifts in different parts of
the packet.

The similarity with Section 2 can be made even
more graphic if we consider the process in a system
in which the electron is at rest and the solenoid
moves. In this reference system there is an electric
potential φ' caused by the energy ecp' of the inter-
action of the electron with the electric polarization
Ρ = v/c x M, where Μ is the magnetic moment per
unit volume of the solenoid (the field E' = -grad φ'

— — — which acts on the electron is zero as before).

The question of the effect on the source has been
discussed in detail by Aharonov and Bohm. ^ The
whole purpose of their treatment, however, was to
prove that the interaction actually leads to the equa-
tion (2) for the electron. This scarcely needs proving,
however.

4. THE STATIONARY STATES IN THE FIELD OF A
SOLENOID

An additional example analyzed in ^ is that of the
stationary states of an electron in the field of the
same infinitely long solenoid that was considered in
Section 3. Here also, if we assume for example that
there is available to the electron only the space in a
ring (bounded by infinitely high impenetrable potential
walls) surrounding the solenoid, the electron's energy
depends on A, although the field strength outside the
solenoid is zero. If we treat the electron as a plane
rotator of radius r, we have as the equation for its
wave function

ψ = -Εψ. (16)

A solution of this equation is the function

where it follows from the requirement of single-
valuedness that η is an integer. Therefore

(17)

(18)

To prove that this result is also of classical origin,
let us consider a current of strength I flowing in a
ring of radius r around the same solenoid. On the ζ
axis it produces the magnetic field (cf., e.g., '-13-',
Section 42)

H, (2) = • ^3/2 (19)
V 1 " t

which is added to the magnetic field Ho of the solenoid.
The energy of the system is
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7 = т М НЫ\' = 1

ш
(H\ + Hl+2H0H1) dV. (20)

Here the first term gives the proper energy of the
solenoid, the second the proper energy of the ring
current, and the last the interaction energy. If the
radius of the solenoid is infinitely small, then sub-
stituting Eq. (19) in Eq. (20) and integrating over the
volume of the solenoid, where Ho is different from
zero, we get / m

Wlt = if-. (21)
This result is of course the same as we would have
found by integrating the expression 1/c f (A · j) dV
over the volume of the ring current.

In the quantum case of a plane rotator, according
to the usual rules of quantum mechanics and Eq. (17),
the current density of the electron is given by

eh
2mi

(22)

Here again the vector potential appears, although we
are dealing with a region where by hypothesis there
is no magnetic field strength. In this too, however, it
is hard to perceive any "new" or "unclassical"
properties of the potential: in classical electrody-
namics also, if we express the current density
j = pv(p is the charge density and ν the velocity) in
terms of the generalized momentum p, we must re-
place ν by ρ — e/c A.

If dS is an element of the cross section of the ring
and dV = 27rrdS is an element of its volume, the total
current is

/ = eh n-\-a

Substituting this expression in Eq. (21), we get

I
и/ —'
" 12 —

(24)

During the process, however, of increase of Φ by dФ
and the accumulation of this energy, an emf

ε = — is induced in the ring contour and does
с at

work on the current, so that its energy is changed by
— I/c dФ. Expressing I and Φ in terms of a by
means of Eqs. (4) and (23) and integrating over a
from 0 to α (with η = const, since Pg commutes
with AQ), we get for the change of the energy of the
ring current %?•

i.e., the terms which must be added to the energy of
the electron in the absence of the field, n"2n2/2mr2, in
order to get the total energy (18).

Thus there is no change in the interaction energy,
and consequently no change from the classical mean-
ing of the potential. The quantum feature (proportion-
ality to Η) appears only because the position of the
electron in the ring is in principle indeterminate, so
that it can be treated like a current filling the entire

ring at each instant of time; the strength of the cur-
rent is proportional to fi [Eq. (23)].

5. SUMMARY

We have examined three physical examples which
display the effects of potentials which are constant in
space and time on an electrically charged particle
within the framework of nonrelativistic quantum
mechanics. In all cases the basis of the effects is the
ordinary classical energy of interaction of particle
and source, which is different from zero, in spite of
the fact that the field strength at the position of the
particle is zero (a charge at points where the electri-
cal potential is constant in space and time; an elec-
tric current surrounding a solenoid; and so on). This
actual energy of the system has been accumulated in
the process of setting up the system.

The quantum peculiarity of the behavior of the
particle under the action of such a potential arises
only because the energy of the system is directly re-
lated to the frequency of the wave function, and if the
change of the frequency is different in different parts
of the packet there can be an interference effect.
There do not appear here any new, "nonlocal" proper-
ties of the electromagnetic potential itself which would
not be present in classical electrodynamics. The
feature in which one can perceive an element of new
"nonlocality" is the diffuseness of the wave function
of the particle, which requires us to calculate the
action of the external field as if the electron itself
were diffuse and existed simultaneously at all points
of space with a probability density proportional to the
square of the absolute value of the wave function.
This, however, is due to the indeterminacy in princi-
ple (in the framework of the uncertainty relation) of
the position of the electron, and has no direct rela-
tion to the properties of the electromagnetic potential.
A reexamination or "further development" of the
theory, as spoken of in ™, (see above, Section 1) can
essentially be directed only against the concept of the
potential in classical electrodynamics or against the
uncertainty relation. There are, however, no grounds
for doing this.
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