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THE first part of the review contained an analysis of
the main experimental facts pertaining to the proper-
ties of the electron system of transition metals, and
it was shown that the entire specific character of
their physical and chemical properties is connected
with the presence of unfilled electron shells (d or f)
with uncompensated spin in these atoms. Experiment
has shown that in spite of certain changes that can
occur in the closed electron shells of the atoms that
combine in the crystal, the individuality of these
shells is retained in the metal to a considerable de-
gree, meaning a large degree of localization of the
spin density near the lattice sites. This pertains in
particular to the deep lying 4f-shells of the rare-
earth metals.

*Part I was published in UFN 77, 377 (1962), Soviet Phys.
Uspekhi 5, 547 (1963).

The exchange interaction between the electrons of
the unfilled shells in transition metals frequently
leads to the establishment of a ferromagnetic or anti-
ferromagnetic state, while their metallic properties
are connected primarily with the former valence
electrons, which form in the crystal a collectivized
system of conduction electrons.

To study the connection between the electric and
magnetic properties of the transition metals, the so-
called s-d exchange model was proposed И, an ele-
mentary and phenomenological treatment of which
was given in Sec. 5. The second part of the review
is devoted to a more rigorous exposition of both the
principles of the s-d model and its various applica-
tions to the theoretical treatment of ferromagnetic
and antiferromagnetic metals, with Chapter III de-
voted to the properties of the spin system of a metal
from the point of view of the influence exerted on it
by the conduction electrons, while Chapter IV is a
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study of the reaction of the spin system on the con-
duction electrons.

Ш. PROPERTIES OF THE SPIN SYSTEM OF A
TRANSITION METAL

6. Hamiltonian of the Electron System of a Transition
Metal

In accordance with the model assumed (see Sec. 5)
we segregate in the transition metal two groups of
electrons, those of the unfilled shells (dor f)* and
the conduction electrons (s), the former being de-
scribed by the atomic localized functions (2.11) and
the latter by the Bloch functions

=—b2i

J <kk')
kk'n

(r, s) = yj eikri/k (r) ca (s) ·= yk (r) cc (s), (6.1)

where ca( s) is the so-called spin function of the
electron (see '-73-', Sec. 60).

According to the Dirac vector model, we can write
for the s-d exchange interaction operator, accurate
to a constant factor,

is η XI τ / о We S ^ (R 9\

i, ii

where si, i"i and SQ, Rn are respectively the spin
operators and radius vectors of the conduction elec-
tron and of the summary spin of the ferromagnetic
ion in the n-th site. The spin Sn is made up of the
spins ζ of the unpaired electrons of the unfilled shell,
so that the maximum projection of the site spin is
s = z/2, and J( r j — Rn) is the exchange integral.

In the second-quantization representation for the
conduction electrons, the Hamiltonian (6.2) has the
form

# S d = - 2 S 2 Sn(k0|/(r-RJs|kV)aiGak.a.. (6.3)
h kk'aa-

In formula (6.3), akff and ak a are the Fermi opera-
tors for the creation and annihilation of electrons in
the state ka. Using the multiplicative spin and co-
ordinate parts of the function (6.1), and also transla-
tion invariance Uk(r) = Uk(r - RJJ), (where B^ is
any vector of the crystal lattice), the matrix element
in (6.3) can be written in the form

(k0|/(r-R n)s |kV) = 4-e i ( k '-k ) R«/(kk')(a|S |0'). (6.4)

where J(kk') is the s-d exchange integral И. The
quantities (σ | sa | σ') are Pauli matrices (see '-73-',
Sees. 59, 60). Thus, the Hamiltonian (6.3) can be

represented in the form [2]

*Unless there is danger of misunderstanding, we shall use
the subscript d throughout to denote both unfilled shells, 3d and
4f. In this case the words "s-d exchange interaction" denote the
interaction between the conduction electrons and the electrons
of either the 3d or the 4f unfilled shell.

(6.5)

where S* = S* ± iS^. In (6.5), as well as from now on,
we shall write merely + and — for the indices σ = V̂
and -V 2.

The operator (6.5) describes the exchange interac-
tion between the collectivized s-electrons and the
localized "magnetic" electrons. The total Hamilton-
ian of the electron system of a transition metal con-
sists of three parts: Η = Hs + Ή^ + Hs(j, where H s is
the Hamiltonian of the conduction electrons, which in
the second-quantization representation can be written
in the form

(6.6)

Ek is the energy of the conduction electron in the
metal without allowance for the s-d interaction. The
additional term -sJ(kk) is due to the spin-independ-
ent term of the exchange Hamiltonian, which leads to
an equal energy shift of the conduction electrons with
both spin projections.

We shall henceforth choose for the Hamiltonian
H(j of the "magnetic" electrons the exchange opera-
tor of the interaction between the d electrons of
neighboring ions.

A Hamiltonian in the form (6.5) was first obtained
by Vonsovskii and Turov ^ and then, independently,
in B " e . In the derivation of (6.5) from the overall
Hamiltonian of the system of interacting s and d
electrons, the homopolarity condition, i.e., the con-
stancy of the number of d electrons near the sites,
was used in addition. This condition corresponds in
the scheme adopted here to writing the exchange en-
ergy in the form (6.2).

The following expression was obtained in ^ for the
s-d exchange integral:

/ (kk') = $ § ΨΪ (r) φ * (г') Φ (τ -- г') фк, (г') φ (г) rfr dr', (6.7)

where φ( г) is the atomic function of the d electron,
and Ф(г - r ') is the Coulomb interaction potential of
the s and d electrons. It is difficult to conclude from
such a general formulation anything specific regard-
ing the dependence of J (kk') on the quasi-momenta
к and k', but this is not very important. It will be
shown below that in the expressions for the different
physical quantities, J(kk') enters for values of к
and k' that are close to the limiting Fermi momen-
tum k0, inasmuch as the electrons in the metal are
strongly degenerate. If we assume that J(kk') varies
slowly in the metal when к ~ k°, we can put every-
where J(kk') « J(k o,k o) = Jo. According to various
estimates И , the absolute value of Jo is ~10"14—10"13

erg, which is one or two orders of magnitude below
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the Fermi energy ξ ~ 10 l z erg. Under these condi-
tions there appears a small parameter Jo/£ « 1 , in
which the thermodynamic and kinetic quantities are
expanded if the s-d interaction is regarded as a per-
turbation. The smallness of this parameter enables
us to confine ourselves in many cases to the first two
perturbation-theory approximations. Within the
framework of perturbation theory, we shall consider
in Sees. 7 and 8 the distribution of the spin density of
the s electrons in a transition metal and the indirect
interaction of the d electrons via the conduction
electrons.

7. Spin Polarization of the Conduction Electrons

We consider the crystal of a transition metal or of
the alloy of some simple metal with diamagnetic ionic
cores and a transition metal, say an alloy such as
Cu-Mn. Assume that a ferromagnetic or antiferro-
magnetic spin order has been established in the tran-
sition metal atoms of such crystals as a result of the
exchange coupling. Let us determine the influence of
this order on the conduction electrons with account of
the s-d exchange coupling.

The Hamiltonian of the system of s electrons in a
magnetic field Η parallel to the quantization axis ζ
has the form

IIs = Σ ['-'к - sJ (kk) - μ,Η] αίΐ-^κ-)
к

+ Σ [/-'к - KJ ( k k ) + μο^ I «£н-)"к(- ) -i • //„,, (7.1)
к

where Hs(j is determined by expression (6.5), and the
index η numbers in this case the sites occupied by the
ferromagnetic ions.

We regard the s-d interaction as a small pertur-
bation; we must then take into account in the first
order of perturbation theory only the diagonal part of
Hsd. equal to

where

- _v /(kk) („ (7.2)

and we then obtain in lieu of the exact Hamiltonian
(7.1)

where

= Σ
к

4: = ek-i/(kk):i.

(7.3)

(7.4)

We see that if the summary spin of the crystal dif-
fers from zero, a term due to the s-d exchange ap-
pears in the expression for the conduction-electron
energy, having the meaning of the internal molecular
field and leading to spontaneous magnetization of
these electrons. In fact, let us calculate the average
values of the numbers n_ and n+ of the s electrons
with left-hand and right-hand spins:

" i -" Σ "k
к (7.5)

— ( a k ( ± ) a k ( ± ) ) — " 1 = _ L (7.6)
k'V

are the distribution functions for electrons with dif-
ferent spin orientations. Expressions (7.5) are calcu-
lated by means of the usual transition from summa-
tion over к to integration. Assuming a quadratic dis-
persion law for the s electrons and using the approx-
imation J (kk') for Jo, we obtain

Κ ^ ) <7·7>

/J
1.2
И1.2 / ДΝ, Λ '/» (7.8)

where V is the volume of the crystal and Ns is the
total number of s electrons in it.

The magnetic moment of the conduction-electron
gas, neglecting its weak diamagnetism, is equal to

.νβ = μ0^(η.-^)-=-|ΛΓ.μ0ϋ^+4ΛΓίμ04^^5Ι

η. (7.9)
П

The first term in (7.9) gives the Pauli paramagnetic
magnetization [see also (4.8) and below], while the
second, which does not depend on the magnetic field,
gives the spontaneous magnetic moment of the s
electrons. The latter is due to the s-d exchange
coupling and has an order of magnitude of JQ/J times
the magnetic moment of the d electrons. In an anti-

ferromagnetic metal, where = 0, there is no

spontaneous magnetization of the conduction electrons.
In ferromagnets it reaches a maximum value at 0°K,
and vanishes above the Curie point.*

The foregoing deduction concerning the s-d ex-
change polarization of the conduction electrons has a
statistical character. Let us ascertain now, following
the paper of Yosida'-6-', how the density of electrons
with different spin projections varies from point to
point.

The density of s electrons with spin of given ori-
entation p±(r) can be expressed in term of their
wave functions (6.1):

V
к (7.10)

where k0 are the limiting Fermi momenta of the
right- and left-hand spin projections, respectively,
while Σ denotes summation over the spin variables,s
The wave functions <Pk(±) c a n be determined from
perturbation theory. We assume as the zeroth ap-
proximation for these functions the plane waves

*These results were first obtained by Vonsovskii in 1946.
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(7.11)

Under the influence of the s-d exchange we have in
first-order perturbation theory

(ко k'a')

e - ε ,
φ ΐ ί ' σ ' (7.12)

After calculating the matrix elements (ka | HS(j | k'a')
with the aid of the functions (7.11) and substituting
them in (7.12) we obtain

m » 1

фк(±) = <Pk(±) - дГ
• / < k k ' )

The prime on the summation sign denotes that the
term with к' = к is excluded. Substituting (7.13) in
(7.10) and summing over s, we obtain

' J<kk<>

11"* + e
- i ( k - k ' ) ( r - R n»n » } ^ . (7.14)

It is obvious that at ordinary temperatures

so that we can use expression (7.7) for the case
Η = 0. In the second term of (7.14) we change the
summation variables to к — к' = q. As a result we
can rewrite (7.14) in the form

1 - 2 С ν ) ± 4 С V ) ζ Ν Σ 5"
η

{elq(r~R") + e"J(k, k - q )
ε., _-e, .

Ч к (7.15)

Further calculation of (7.15) calls for knowledge of
the dependence of J(kk') on the momenta. In the
approximation J ( k k ' ) = Jo, the summation over к in
(7.15) can be carried through to conclusion. Assuming
a quadratic dispersion law, we obtain

(7.16)

2К + Ч (7.17)

Taking these relations into account, (7.15) assumes
the form

(7.18)

(7.13) where

Inasmuch as f (0) = 2, the second term in the right
half of (7.18) is exactly equal to the missing term in
the sum over q when q = 0, so that it can be com-
bined with this sum, after which (7.18) is written in
the form

(7.19)

(7.20)

(7.21)

Jq(r-Rn)

It is easy to show that B]

Λ

F(x) = x cos a: — s i n χ

Using (7.20), we can rewrite (7.19) in final form:

(7.22)

The first term in the right half of (7.22) gives the
homogeneous spin density of the conduction electrons
without account of the s-d interaction. The second
term describes the inhomogeneous density variation,
due to the s-d exchange coupling, the absolute value
of which at the given point depends essentially on the
distance from it to the paramagnetic sites. It has a
maximum near the paramagnetic site and decreases
as the cube of the distance from it, and oscillates at
the same time. Near the site itself each term of the
sum over η in (7.22) becomes infinite. This is ap-
parently connected with the fact that in calculating the
wave functions only the first perturbation-theory ap-
proximation was taken into account. It can be as-
sumed that the spin density changes from point to
point with amplitude proportional to (Jo/f) (N s/V).

It is seen from expression (7.22) that the inhomo-
geneous component of the density has a different sign
for electrons with different spin projections. There-
fore in the general case the result is inhomogeneous
polarization of the conduction electrons, Δρ = p_ — p + .
In a dilute solution of a transition element in a dia-
magnetic metal, the spin polarization of the electrons
will increase appreciably near the paramagnetic
sites. In some sense this is equivalent to a Friedel
screening of the charged impurities in the metal.'-9-'

The result obtained is also fully equivalent to the
result obtained in the theory of nuclear resonance in
metals by Ruderman and Kittel ^ , inasmuch as the
hyperfine interaction between the nucleus and the
conduction electrons is described by the same Hamil-
tonian as the s-d exchange coupling.



ELECTRON THEORY OF TRANSITION METALS, II. 727

Indirect Exchange Interaction of the Electrons of

Spin-unsaturated Shells Via the Conduction

Electrons

If there exists a system of particles which do not

interact directly with one another, but are weakly

coupled to another system, then it is sometimes pos-

sible within the framework of perturbation theory to

eliminate this interaction from the Hamiltonian and

to replace it by a certain effective coupling between

the particles of the first system. Thus, the coupling

between the particle system and the other system

leads to an indirect interaction between the particles.

Let us ascertain the character possessed by the in-

direct interaction between the spins of unfilled shells

under the influence of their exchange coupling with

the s-electrons.

To derive the effective spin Hamiltonian we aver-

age the Hamiltonian of the electron system of the

transition metal (or alloy) over the statistical states

of the conduction electrons. The expression obtained

in this manner will contain spin operators of para-

magnetic ions and should describe the effective inter-

action between them.

Thus, let us calculate the quantity

Heii = ' (8.1)

where the trace is taken only over the states of the
conduction electrons. The operator Η = Ho + Hsd
consists of the Hamiltonian of the system of conduc-
tion electrons (6.6) and the Hamiltonian of the s-d
exchange (6.5). With the aid of the well known expan-
sion of the exponential operator

Ρ—β(Ηο-Ι-Η') о-ВНц I <| V d\ If l\ \

η_ Η' (λ,) Η' ( λ 2 ) + · . . } , (8.2)

we can represent (8.1), accurate to within terms of

second order of smallness in H', in the form

'(λ.)>. (8.3)

where < . . . > e = Spe( exp [-/3H0] . . .)/Spexp [-|3H0]
denotes averaging over the conduction-electron state
only. In such an averaging the terms linear in H'
drop out of Heff. In expression (8.3) we have Η'(λ)
= exp [λΗ0]Η' exp [ —λΗ0]. These quantities can be
readily calculated if account is taken of the following
relations that hold for a Hamiltonian of the type (6.6)

After averaging over the variables of the conduction

electrons in (8.3) we obtain in lieu of (8.3), in explicit

form,

ι ν, JMkk') i(k-k')R m , +,. _. c - o +Η „ -Λ. V V J 2 < k

"eif - m ZJ Δ E,._

(8.5)

where n^ is the electron distribution function (7.6)

with quasi-momentum к and spin σ = ± V2. In the ab-

sence of an external magnetic field n£ = nĵ  = nĵ ., so

that (8.5) can be written in the form

where

(8.6)

(8.7)

and the function f (q) is determined by expression
(7.17). In deriving (8.6) and (8.7) we assumed the ap-
proximation J(kk') = Jo.

Expression (8.6) means that the exchange interac-
tion between the d and s electrons causes an indirect
exchange between the former. The value of the cor-
responding effective exchange integral is ~δ\/ξ. An
essential feature of this interaction is its long-range
character.* Indeed, taking (7.20) into account, we can
rewrite (8.7) in the form

" ?(2M?nm), (8.8)

from which it is clear that I(Rnm) decreases as the

third power of the distance between the paramagnetic

ions. We note that the spatial distribution of the spin

polarization of the conduction electrons near the

paramagnetic sites (7.22) is described by the same

distance function as the indirect exchange between the

sites.

In view of the long-range character of the indirect

coupling (8.7), we cannot confine ourselves in (8.6) to

the nearest-neighbor approximation, as is done for

the direct short-range exchange, since the possibility

of ferromagnetic or antiferromagnetic ordering under

the influence of the indirect exchange only calls for

an additional investigation which we shall carry out in

Sec. 9. However, the principal possibility of such an

ordering is already clear. It is evident that the long-

range character of the indirect exchange is particu-

larly important for an explanation of the ferromag-

aka (λ) = e kaka, (8.4)

*The first to advance the idea of indirect exchange between
unclosed shells via their exchange interaction with the conduc-
tion electrons was Zener,[l0J to whom the phenomenological
theory of exchange interaction in metals is due (see Sec. 5).
The calculation presented here, which is a variant of Kasuya's
calculation,L4J is a microscopic development of Zener's idea,
but it is more meaningful than Zener's theory, since it leads to
a clear-cut proof of the long-range character of the indirect
exchange.
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netic and antiferromagnetic ordering in dilute alloys
of transition elements, and also for rare-earth metals
(see Sec. 3).

9. Spin-wave Theory of a Ferromagnetic Metal

The theory developed in Sees. 7—8 for a ferromag-
netic metal has several shortcomings. First, it does
not take into account the possibility of direct exchange
between the "magnetic" electrons, something partic-
ularly important for d-metals; in addition, it is not
fully consistent from the mathematical point of view:
a perturbation theory is constructed only for the con-
duction-electron states, the operators of the d-elec-
tron spin are regarded as c-numbers. These short-
comings can be eliminated in a more rigorous theory,
which, however, is suitable only for low temperatures
near the magnetic-saturation states.

We consider first a ferromagnetic metal described
by a Hamiltonian in which is included, in addition to
the s-d exchange operator, also an operator that de-
scribes the direct exchange between the d-electrons,
and we shall attempt to determine the spectrum of the
elementary excitations. Inasmuch as we are unable to
obtain the eigenvalues of the Hamiltonians expressed
in terms of the spin operator, we change over, follow-
ing Holstein and Primakoff '-11-', to other dynamic
variables Ьд and b^:

(9.1)

The operators bjj and b^ obey the commutation re-
lations '-12-'

bnbn. - bn.bn = 0,

(9.2)

(9.2')(2s)!

Relations (9.2) have a Bose character, while (9.2') is
more complicated and depends essentially on the
value of the spin s. In the particular case s = V2,
(9.2) has the character of the Fermi commutation re-
lation

(s=> (9.2")

Relations (9.2) and (9.2") describe the Pauli opera-
tors. In the second limiting case s — °°, the last
term of (9.2') can be neglected, so that (9.2') acquires
a Bose character

bnbn — bZbn=i (s = co). (9.2'")

In the intermediate case the commutation relations
are complicated, and it can be shown'-12-' that the
eigenvalues of the operator ή η = b^bn are the inte-
gers 0, 1, 2, . . . , 2s. The operator nn describes the
deviation from the maximum spin projection at the

site n. In the ground state of the ferromagnet, all the
spins of the d-shells have the same direction, that is,
they have a maximum projection s on the quantiza-
tion axis Oz. At small deviations of the system from
the ground state, the number of sites in which the
spin deviates from its maximum value is not large,
so that the mean value of the operator n n in the case
of weak excitations is small:

(«n>av« 2s.

In this case fs(n) » 1 and (9.2) becomes

(9.3)

With the same degree of accuracy we can neglect the
last term in (9.2'). Thus, the operators bn and Ьд
are approximately Bose operators if condition (9.3) is
satisfied. This approximation is called the spin-wave
approximation.

Let us consider the total Hamiltonian of the ferro-
magnet in this approximation. If we take the Fourier
expansion of the operators Ьд and b^,

4 q

then the Hamiltonian can be represented in the form

И = Η -J- И' /Q Ч\

//'= - I

Η„ =

' 2 /(kk')fl(k'-k + q)
kk'q

(9.6)

•ι-Φ,•)υ4

eZ = Ek - 2sJ (kk) όσ, _1/

-^ 2J /(kk')6(k'-k + q'-q)
kkqq'

(9.7)

where

(9.8)

(9.9)

are respectively the energies of the s-electrons with
spin σ = ±Уг and of the spin waves with quasi momen-
tum q, arising in the d-electron system as a result
of the direct exchange; I is the integral of the direct
exchange for the nearest-neighbor sites, h"u>s

= gsMoH, Κω^ = gdMoH, and g s, gd are respectively
the Zeeman energies and the Lande factors of the s
and d electrons.

The part of the Hamiltonian Η which is diagonal
in the occupation numbers represents the energy of
the elementary excitations of the spin-wave system
and the conduction electrons, the latter turning out to
be magnetized by the exchange interaction with the d
electrons, which are magnetized to saturation. Thus,
the spectrum of the elementary excitations of the
electron system of a ferromagnetic metal contains
two branches, a Fermi branch (conduction electrons)
and a Bose branch (spin waves).
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The operator H' in (9.7) describes the interaction
of these two types of excitations. Consequently, the
coupling between the s and d electrons leads in this
approximation to two effects: 1) change in the energy
of the s electrons [the term with J(kk) in (9.8)],
and 2) their interaction with the spin waves, causing
transitions between the zero energy levels of the
system. The operator H' contains two types of
terms: "ternary" and "quaternary," depending on
the number of creation and annhilation operators.
The quaternary terms describe the elastic scattering
of the spin waves by the conduction electrons, while
the ternary ones describe inelastic scattering proc-
esses, in which spin waves can be created and anni-
hilated. In these processes, however, the total spin of
the colliding particles is conserved, so that the oper-
ator H' does not change the summary spin of the
electron system of the metal. The delta-functions
under the summation sign in (9.7) take into account
the conservation of the quasi momentum upon collision
of the elementary excitations.

Using ordinary perturbation theory it would be
possible to find the corrections to the elementary-
excitation energies, brought about by the interaction
described by the operator H'. On the other hand, as
already mentioned, the perturbation (9.7) gives rise
to transitions between the zero energy levels, that is,
leads to the damping of the elementary excitations,
the lifetimes of which can be determined within the
framework of perturbation theory with the aid of the
kinetic-equation technique '-13-'. However, we shall not
solve these two problems separately, and approach
the damping problem from more general positions.

For different applications it is not essential to
know the energy spectrum of the system, and it is
sufficient to be able to calculate some correlation
functions and distribution functions, which are sta-
tistical means of the dynamic variables of the system.
We therefore consider the statistical properties of
elementary excitations of the electron system of a
ferromagnetic metal.

We first calculate the equilibrium distribution
functions for the conduction electrons and the spin
waves, defined as the statistical means of the corre-
sponding occupation numbers:

'ik^(akoiika), nq={b4bq). (9.10)

Here and throughout the symbol < . . . > denotes av-
eraging over the Gibbs ensemble with the total Hamil-
tonian H', namely

(...) =Sp(e-liH. . .)/Spr-f>«.

To calculate the functions (9.10) it is convenient to
use the statistical Green's function method* developed

by Bogolyubov and Tyablikov ^ . We note first that
the distribution function (9.10) represents especially
the correlation functions when the arguments coincide,
t = t '. In the general case, to calculate such functions

(B(t')A(t)),

where
_1_ jt, —Tit

e* Ae "

(9.11)

(9.12)

are arbitrary operators, taken in the Heisenberg ap-
proximation, Bobolyubov and Tyablikov proposed to
consider retarded and advanced Green's function

| B(t')))Tet and

defined by the relations

({A(t) | В (O»ret = θ (f-t')([A (t), В ((')]„>,
<(4 ( ί ) |Β («')»»„* = - θ ( t ' - i ) < M С). B(t')}4), (9.13)

in which the following equation is introduced

θ ( ' ·- ' ' ) = { 0 ί < ί ' ' И
(η=±1).

(9.14)

Both functions satisfy one and the same equation

B(t')))--=M(t-t'){\A(t), B(t')]n)

(9.15)

which contains the more complicated Green's functions

<C ili d/dt A (t) | В (t') > . Setting up an equation for
these functions, we can verify that it gives rise to
even more complicated Green's functions. The chain
of equations obtained in this manner should be ter-
minated with the aid of some sort of approximation.

The Green's function (9.13) enables us to find the
correlation functions (9.11) with the aid of the spec-
tral representation

ί (f) -4(0) = \ J(E)e~

{A(t)B(t'))= ^

(9.16)

(9.17)

*A detailed exposition of the Green's function method in
quantum statistics can be found in the reviews.11SJ

The spectral density J( E) is determined by the

Fourier components <CA | B^>g of the functions

(9.13) on the basis of the limiting relation (spectral

theorem)

/ / 1 I H\ \i-1 • — Ι ί Λ I И\ \r< • — (?№ n*i I t F\ ρ - . 0 /Q 1 ^
y \ - i n Л Ь - ^ Ι Ϊ \\*\*-'//L·—ie — V — I/ \ / ' — • \& * xo)

With an aim toward calculating the distribution

functions (9.10) for the quasi particles of a ferromag-

netic metal, we introduce into consideration the boson

and fermion Green's functions corresponding to them

{{bq(t)\bq{t'))), {{aka(t) | o J o ( < ' ) > ) , (9.19)

with the former preferably used when η = 1 and the

latter when η = —1. It is easy to write for these func-

tions the equations (9.15), using the Hamiltonian (9.5).
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These equations will include, in addition to (9.19),
also mixed Green's functions such as

((^к(-(-)Як—q(—) ^ q ) ) > ( 9 . 2 0 )

{(bq b q a k ( + ) a k _ q ( _ ) I bq)), ({akaakabq\bq)). ( 9 . 2 1 )

Let us terminate the resultant chain of equa-
tions, by expressing the complex Green's functions
(9.21) in terms of the simpler ones (9.19) and (9.20)
with the aid of the approximations

(9.22)

The quantities nq and nil, defined in accord with
(9.10), must be regarded for the time being as un-
known distribution functions. The meaning of the ap-
proximation (9.22) becomes clear if the definition
(9.13) is used for the Green's functions. As will be
shown below, it corresponds to second order pertur-
bation theory.

With the aid of (9.22), the chain of equations for
the Green's functions turns into a closed system of
three equations*:

where

{ Ε ; (kk) (n* -

V is (9.23)

k"_q) {(

Л "/2

~

where

I а+ш)) = ih6 ( ί - ί')

{(ЬЧ\Ь+)).

ε ί - ζ) ((ак ( ±

(9.24)

(9.25)

(9.26)

and μ is the relative magnetization of the d elec-
trons :

μ - 1 — -Fly 2 J "ί- .27)

We obtain the solution of the system of equations
with the aid of the Fourier transformation. For the
Fourier transforms of the Green's functions we obtain

(9.28)

(9.29)

*The parameter ζ can be formally introduced by replacing
in the zeroth approximation Hamiltonian (9.6) £f by e£ - ζ or
by means of an equivalent averaging in (9.11) over the Gibbs
grand ensemble.

(9.30)

(9.31)

With the aid of the symbolic identity
1 J" ^ίλδ(χ),

χ ± ie χ

where & is the principal-value symbol, we readily
can show that

(9.32)

with

(9.33)

(9.34)

On the basis of (9.16) with t = t', using the spectral
theorem (9.18) and also relations (9.32)—(9.34), we
obtain the distribution functions (9.10):

(И-еч-А-1

(9.35)

(9.36)

In the approximation considered, (9.35) is the
Fermi distribution function for the s electrons, the
energy of which, (9.26), is modified by the s-d inter-
action. The latter corresponds fully to formula (7.4),
which is obtained with the aid of perturbation theory.

Expression (9.36) is a superposition of elementary
Bose excitations with resonant intensity and damping
•yq( Ε). In the case of small damping, the resonant
function under the integral sign in (9.36) has a sharp
peak at the point Ε = Sq, determined from the equa-
tion

ε, - Pq (ε,) - Δ = 0 , (9.37)

and can be replaced approximately by the function
б ( Ε - £q). Thus, neglecting damping we obtain in
place of (9.36) the ordinary Bose distribution function

^=Τ4ΖΓ·
 (9-38)

Consequently, the quantities £q and εί have the
meanings of elementary-excitation energies at a speci-
fied temperature. In the approximation employed
here for the Fermi Green's function, the Fermi exci-
tations are not damped, and damping appears when
higher-order Green's functions are taken into consid-
eration. The energy and the damping of the Bose ex-
citations will be considered below.

The distribution functions obtained enable us to
calculate the equilibrium thermodynamic quantities of
the metal, for example the magnetization. The opera-
tor of the magnetic moment in the direction of the Oz
axis can be written in the form
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-j ?μ0 2 - ) » ' <-) - а М + ) а к (4-)). (9.39)

Averaging (9.39) over the statistical ensemble, we
express the magnetization in terms of the distribution
functions

_-i- 2 "<>} +\ №. Σ № - ηί)·
4 k (9.40)

The first term yields the magnetization of the d-
electrons of a ferromagnet of the Heisenberg type in
the spin-wave approximation. The second term yields
the contribution to the magnetization due to the con-
duction electrons. It coincides with the previously
obtained expression (7.9). Calculating the last sum in
(9.40) and using (9.27), we can write the magnetization
in the form

м = 4 Ν
λ (9.41)

where M^ = gμosNμ is the d-electron magnetization.
We shall show below that, with account of s-d ex-
change, the dispersion law for the spin waves remains
quadratic, so that we have the ordinary T3^2 temper-
ature law for the magnetization of a ferromagnetic
metal.

Let us determine now the explicit form of ε̂ ; for
this purpose we write (9.37) in the expanded form

N f
We first find the solution of (9.42) for q = 0. Taking it
into account that according to (9.9) and (9.26) we have

ε0 = ha>d, Et — 8|T = %(us + 2sJ ( k k ) μ,

and taking also the approximation J (kk) = J o into
account, we can reduce (9.42) to a quadratic equation,
with two solutions

~ε0 = 1 {П (ω, + Ш„) + 2sJa (1 + μ.) ± ([* (ω, + ωά) + 2sJ0 (1 + μ5)]2

- 4 [h*a>sa>d + 2sJ0% (ω, + ω,,)])1/ (9.43)

where μβ is the relative magnetization of the conduc-
tion electrons

μ8

 = -^ (9.44)

In the particular case when g s = g(j and ω8 =
= ω0, we therefore obtain from (9.42)

In the absence of a magnetic field, ω0 = 0 and ε0

(9.45)

ε

= 0. Thus, the ferromagnetic metal has one branch of
spin waves which are not separated from the ground
state by a gap. From the mathematical point of view
this result is quite interesting. Expression (9.42) is
the first-approximation correction due to the quater-
nary terms of the perturbation operator (9.7). Its
ternary terms yield zero in first approximation,
since they do not contain diagonal matrix elements.
The third term in (9.42) is the second-approximation
correction due to the ternary terms. For the case
q = 0 it is equal to the first-approximation correction
with the sign reversed. Thus, the first-approximation
correction in the s-d interaction, which leads to the
appearance of a gap in the spin-wave spectrum, is
compensated by the second-approximation correction.
This is the consequence of the special structure of
the perturbation operator as an exchange operator.
This circumstance was noted already in ^ .

The occurrence of a second spin-wave branch is
connected with the magnetization of the conduction
electrons by the s-d exchange interaction, as a result
of which the latter have their own spontaneous mag-
netic moments, so that the metal as a whole becomes
equivalent to a ferrite with two magnetic sublattices.
A ferrite is characterized by the presence in the ex-
citation spectrum of a high-energy branch with energy
on the order of the exchange interaction of the differ-
ent sublattices.

Let us find now the solutions of (9.42) for q * 0.
Inasmuch as Eq is an even function of q, tq is also
an even function of q, so that the solution of (9.42),
which branches away from ε̂  = Ήω0, will be sought
in the form

(9.46)

where I* is the effective exchange-interaction para-
meter.

In the case of a quadratic dispersion law for the s
electrons ( Ck = Ak2), neglecting the difference in the
g-factors, we obtain for the sums in (9.42), after
changing over in them from summation to integration,

Δ =

Ρ* (Ε) =
S J Ο

2ζ Λ? "^ 2ζ Ν

1)_ (С_, 9)-ψ+
Mq

where

t.i) = 2 Л ? 4 Л У

+ 2Ak±
C±-2Ak±

with
Л? 2 .

(9.47)

(9.48)

(9.49)

(9.50)

Expanding (9.48) in powers of q2, using (7.8) for
f 0, and putting I « ζ, we obtain

(e q ) = - Δ -
24π2 (9.51)
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Substituting (9.51) in (9.42), we see that the quantities
Δ cancel each other and we obtain for the effective
exchange integral I* in (9.46)

j * - г | V я ) Д (9.52)
"•" 2 4 л а ζ •

Such an expression was obtained in'-16"18-'. The second
term in (9.52) represents the indirect exchange in-
tegral.* Inasmuch as the indirect exchange integral
is always positive, it is not necessary for the exist-
ence of ferromagnetism that the direct-exchange in-
tegral be of necessity positive. Ferromagnetism can
exist also when 1=0, which apparently occurs in the
case of crystals such as of dilute alloys of manganese
and copper, and also when I < 0. A criterion of
ferromagnetism is now the more general requirement
I* > 0.

Let us calculate now the values of the damping yq

for spin waves with momentum q. Changing over in
(9.34) from summation to integration, we obtain

q<q0,

where

1
• * . ,

(9.54)

(9.55)

k0 is a certain "average" (&Щ » k£) Fermi mo-
mentum. For spin waves with energy Cq « 2sJo we
have q0 « sloko/f.

•It can also be obtained from the expression (8.6), if we go
over from the spin operator to the Bose operator and diagonalize
the resultant quadratic form. We then obtain for the energy of the
spin wave the expression

= 2s2 / (Rn) ( l -« l q R n ) . (9.53)

where the summation is over all the signs. Taking formula (8.7)
for I(Rn) into account, we obtain

еч-ТТ?Ц£мо)-К<1П, (9-530

where f(q) is determined by (7.17). Inasmuch as we have
f(q) = 2 - q2/6kj when q is small, we get e q = I*(aq)2, where
I* is exactly equal to the second term in (9.52).

The character of the dispersion law of the spin waves is de-
termined by the behavior of the function f(q) in (9.530· In par-
ticular, Woll and NettelM noticed recently that the derivative
of f(q) has a logarithmic divergence at the point q = 2k0. If we
recognize that in place of the expression (9.530 it is more cor-
rect to write

3 NK sJ% s ? rjl^ ( ,_ , „ „ (9.53")

where Τ is the reciprocal lattice vector, then this fact causes
the function £„ to become sharply non-monotonic at values of q
satisfying the condition |τ + q[ = 2k0. Numerical calculations
carried out in Μ have shown that the magnitude of such "breaks"
on the e q curve amounts to several per cent. Although this effect
is difficult to observe, it is very interesting since it demon-
strates the influence of the form of the Fermi surface (which is
spherical in this case) on the spectrum of the spin waves.

It follows thus, from (9.54) that spin waves with
small quasi-momenta are not damped by the s-d in-
teraction. This is connected with the fact that at
small quasi-momenta the energy of the spin wave
cannot satisfy the energy conservation law in colli-
sions between the wave and the conduction electron.
In such a collision the electron spin should flip, and
for this purpose it is necessary to change its energy
by an amount equal to the magnetization energy, that
is, by an amount ~2sJ. As soon as the energy of the
spin wave becomes sufficient for this purpose, it will
become damped. The damping energy has an order of
magnitude ~JoEq/f. that is, it is small compared with
the self-energy. This justifies the applicability of
perturbation theory.*

In conclusion we note that the Green's function
method makes it possible to separate more consist-
entlyt the elementary excitations in the electron
system of a ferromagnetic metal, to determine their
damping, and to determine the influence of the spin
system on the conduction electrons (the magnetization
effect) and the reaction of the conduction electrons on
the spin system (the effective indirect exchange).t

*It must be noted that expression (9.34) for yq, obtained with
the aid of the Green's function method, coincides with that pre-
viously obtained by Turov,[*°] and also by MitchellM and Abra-
hamsN with the aid of the kinetic-equation technique. However,
the last two authors did not take into account the magnetization
of the conduction electrons, so that their result coincides formal-
ly with (9.54), where one must put q,, = 0. For spin waves with
qj their results are incorrect.

tin particular, it is easy to see that no g-factor shift due to
the s-d exchange appears for the d electrons, in spite of the de-
duction of Yosidaf6] and of [2°·21] according to which for a ferro-
magnetic metal g = g ( l + — -ΓΪ-42-)· T n i s occurs because

\ 4 Ν ζ I
the corrections in (9.42), which depend on the magnetic field,
cancel each other. If we neglect the dependence of P q (E) on
the magnetic field, then the term remaining in (9.47) leads pre-
cisely to the g-factor shift indicated above. Thus, the fictitious-
ness of this result is due to the fact that in the second-approxi-
mation correction to the spin-wave energy the term that depends
on the magnetic field was neglected without justification. No
"shift" was likewise observed in experiment.

We note that the qualitative agreement obtained in [*51 be-
tween the experimental values of the g-factors for several rare-
earth metals and those calculated from the above formula for g
is illusory, inasmuch as it is assumed in this case that the sign
of the s-d exchange integral for rare-earth metals (in particular
for Gd) is opposite the sign that is obtained from other experi-
ments (see, for example, M ) , whereas the values are close to
each other in absolute magnitude, with Jo - 2 x 10"" erg for

Gd[«6,7«] T h e ( j e v i a t i o n of t n e values of the g-factor for these
metals from two should apparently be attributed to other factors.

tThe method of retarded and advanced Green's function was
recently used in the theory of ferromagnetic metals also by Potap-
kov and Tyablikov.t22] who obtained results which essentially
coincided with those given above. However, for the spin-wave
spectrum they obtained a gap proportional to the third power of
the s-d exchange integral. This result seems inaccurate to us.
To obtain the corrections to the energy of the spin wave in the



ELECTRON THEORY OF TRANSITION METALS, II. 733

On the basis of the results obtained here, we con-
sider in Sees. 11 and 12 ferromagnetic resonance and
the scattering of slow neutrons in metals.

10. Spin-wave Theory of an Antiferromagnetic Metal

Let us consider now a metal with antiferromag-
netic spin ordering. We assume that it is possible to
separate in it two collinear magnetic sublattices.
This very simple model describes satisfactorily the
properties of an antiferromagnet. An important role
is played for the antiferromagnetic state by magnetic
anisotropy'-23-'. It is therefore necessary to take into
account along with the exchange also the anisotropic
interaction between the atomic spins, which in the
simplest case of an anisotropic crystal which is uni-
axial and has a symmetry axis Oz leads to an addi-
tional term in the spin Hamiltonian of the type (9.5)

where К is the anisotropy constant, while η and m
are the numbers of the sites of the different sublat-
tices. Then, in the spin-wave approximation, the
Hamiltonian of the antiferromagnetic metal has the
form B4"»0

H= к) 4-σίιθλ.] ata<ii.a+ 2
ч

kk'q

t)!+ at'X {а£(+)ак. (_) (ξι, + hq)'+ at- (-)«k (+)

+ \ ^ 7/1 1 W -f-

—TT /j J (ΚΚ) (ak (—)ak (—) —
kq

+

h4)}

where

E 2 q = szl - Г * - hu>d

{n)

(10.1)

(10.2)

7 2 ·. (10.3)

Here £jq, sjq and C2q, C2

+q are the creation and anni-
hilation operators of the antiferromagnet spin waves
with energies ε14 and e2q. The summation in the ex-
pression for Г„ is carried out only over the values
of ζ of the nearest lattice sites.

Thus, two spin-wave systems with energies (10.2)
exist in the antiferromagnet and split in a magnetic
field. For small values of the quasi-momentum q we
get Tq « 1 — q2/z. In this case we can write two

third approximation of the s-d exchange it would be necessary
to take into account Green's functions of higher order than those
used by these authors, and then the terms that appear in the en-
ergy should cancel out the "gap."

limiting forms for the spin-wave dispersion law
<У= 1, 2) :

(10.4)

e v q
= szl Va (a + 2) ^ ±

(10.5)

In the case of small anisotropy with respect to the
exchange interaction, the dispersion law for the spin
waves is approximately linear, while in the case of
large anisotropy it is quadratic, with a gap ~VKI.
Thus, the dispersion law is quadratic near the energy
gap and linear away from it.

The influence of the s-d exchange on the spectrum
of the spin waves (10.2) can be investigated with the
aid of the Green's function method ®®, as in the case
of a ferromagnet. It turns out here that the spin-wave
distribution functions (neglecting damping) have the
usual Bose character, and we have for the energies of
the spin waves in lieu of (10.2)

= ( szl ~̂
3s

= ( szl -

N,

3s Ns Jl
8(2 + a) iV ζ

where

-~U
° \

2 (szl)» J

(Ю.6)

(10.7)

We see that the effective exchange integral*, as
well as (9.52) for the ferromagnetic metal, consists
of two terms corresponding to the direct and indirect
exchanges, only in this case the indirect exchange re-
duces the antiferromagnetic coupling.t

For the damping energy of the spin waves we have
the expressions

(10.8)

χ (nk + q — ni) б (ev + e k + q ) ,

which are analogous to (9.34), except for the factor
g 2 (q) which depends on the anisotropy.

*In the absence of anisotropy (a = 0) and for small q formu-
las (10.6) go over into the corresponding formulas of Berdyshev
and KarpenkoL24], where they were first derived with the aid of
ordinary perturbation theory. Kasuya,L4J however, arrived at the
conclusion that the indirect interaction in terms of the conduction
electrons contributes in an antiferromagnetic metal to the estab-
lishment of antiferromagnetic order. This conclusion of his is in
error.

tin this connection, a difficulty arises in the explanation of
the antiferromagnetism of certain dilute alloys of transition ele-
ments in diamagnetic metals.L27J Indirect exchange via the con-
duction electrons cannot lead, as was indicated here, to anti-
ferromagnetism. Several authors have advanced the ideat21'29]
of an indirect exchange coupling in such alloys via excited and
localized electron states.
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Calculation of the sum in (10.8) leads to the ap-
proximate expression

The " 1 " is used if q satisfies the inequality

(10.10)

and in the opposite case yq is equal to zero. In the
case of small anisotropy [see (10.4)] condition (10.10)
is always satisfied, inasmuch as (ak0) ~ 1, J°/f « 1,
and expression (10.9) reduces in this case to

ITϋ±_ s I 1±- \ k) (10.11)

Thus, at sufficiently large q (in the region of the
linear dispersion law) the damping is proportional to
the spin-wave energy, their ratio being equal to

°2
/ f ) .
In the case (10.5), that is, near the gap, the spin

waves with quasi-momentum

" ·ο = <7o
(10.12)

are not damped at all. For a spin wave with q = q0,
for which damping begins, we have

3ns Ns

8 N f · (".is,

This quantity depends appreciably on the anisotropy
constant. If we assume the usual estimates К ~ 10"1 7

erg, I ~ 10"1 4 erg, J o ~ 10"1 4 erg, and ζ ~ 10"1 2 erg
then we get ущ0 ~ 10"1 6 erg. Thus, the damping ущ
is a complicated function of the quasi-momentum q.
When q < q0 the spin waves do not attentuate. When
q = q0 the attenuation is given by formula (10.13).
When q2 » a (in the region of the linear dispersion
law), the damping is determined by formula (10.11)
and begins to increase with increasing q. In this re-
gion it does not depend on the anisotropy constants
and amounts to ~10"4 Bq for the estimates made. In
a ferromagnetic metal (see Sec. 9) the value of the
damping varies qualitatively with increasing q in
the same manner, but q0 is much larger there
(q 0 ~ J o k o /f), owing to the exchange magnetization of
the conduction electrons.

The results obtained here will be used in Sec. 11 in
a discussion of magnetic resonance in transition
metals.

11. Magnetic Relaxation and Resonance in Ferromag-
netic and Antiferromagnetic Metals

1. The s-d exchange leads to a dynamic interac-
tion between the spin waves of the ferromagnet and
the conduction electrons, so that this interaction,
being the strongest of all interactions between these
two systems of quasi-particles, determines the r e -
laxation processes between them.

With the aid of the kinetic-equation technique В Я it
is possible to determine the relaxation time Tq of a
spin wave with quasi-momentum q resulting from its
interaction with the s electrons. The value of Tq is
determined from the relation

nq (i) — nq = (11.1)

where η ( t) is the number of spin waves with mo-
mentum q at the instant of time t, nq is their equili-
brium number [see (9.38)], and Anq is the deviation
of the number of spin waves at t = 0 from the equili-
brium value.

For the mechanism under consideration ( s-d ex-
change ) the relaxation time Tq was calculated
in C5>18'19^. it turned out here that T q is connected

with the damping y
the simple relation

of the spin wave [see (9.34)] by

(11.2)

which is characteristic not only of s-d exchange, but
of any other spin-wave interaction which can be de-
scribed with the aid of perturbation theory.

To describe the s-d exchange relaxation process
it is useful to calculate the average relaxation time
T S ( J (the average probability of disappearance of the
spin wave), defined by the expression

q_

Σ»,
(11.3)

This quantity was calculated by several authors L19.30-!;
in particular, Bar'yakhtar and Peletminskii'-30^ have
found

τ
— Ι^ί~-Ύ'2ψ (e"^"), (11.4)

("KV

••4(4)
where θ κ is the Curie temperature, To = 0K(ak o) 2x

2 %(J(/f)2>2 !
a r e t h e Riemann ~ξ functions, and

dt. (11.5)

In the customary estimates To amounts to several
degrees Kelvin. Neglecting magnetic interactions,
we can consider the region of not too low tempera-
tures, so that (11.4) is actually meaningful when
Τ » To. For this case we obtain ^

for Τ ~ 10°K we obtain from (11.6) T s d ~ Ю"10 sec.
Investigations have shown '-31-' that the s-d exchange

relaxation time is much shorter than all the other
times due to other interactions between the spin waves
and s electrons, particularly the interaction between
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the latter and the magnetic field produced by the spin
waves ( т т ~ 10~8 sec).

At the same time it turns out ^ that this magnetic
interaction is responsible for the establishment of
the equilibrium value of the magnetic-moment pro-
jection on the easiest magnetization axis with a re-
laxation time τ ~ 10~8—10~9 sec, and the latter is
independent of the temperature. In view of the fact
that TS (J « T m and τ, we can draw the following
conclusion: in a ferromagnetic metal, owing to the
s-d exchange, the first to be established is a quasi-
equilibrium distribution of the spin waves and of the
conduction electrons with specified nonequilibrium
value of the magnetic-moment projection on the easi-
est magnetization axis. The equilibrium value of the
magnetic-moment projections is then established by
the magnetic interaction between these quasi-parti-
cles.

2. The smallness of the relaxation time TS (J
makes it probable that the s-d exchange plays an
important role in ferromagnetic resonance in a metal.
As is well known, absorption of microwave radiation
in ferromagnets has a resonant character, and during
the absorption definite spin waves are excited. The
presence of conduction electrons in a ferromagnetic
metal does not change the character of the resonant
absorption, but greatly modifies the conditions for its
observation. This is connected with the fact that the
presence of conduction electrons in the metal gives
rise to skin effect, by virtue of which the magnetiza-
tion component due to the alternating field is not
homogeneous over the depth of the metal. This
changes the selection rules for transitions under the
influence of the interaction between the magnetic
material and the field, in other words, the electro-
magnetic field excites in the metal other spin waves
as compared, for example, with a ferromagnetic
semiconductor, where the inhomogeneity of the alter-
nating field can be neglected.

The exact solution of ferromagnetic resonance in
metals presupposes a simultaneous solution of Max-
well 's equations and the equation for the spin-system
density matrix. There is still no consistent solution
of this problem, so that we shall therefore confine
ourselves to crude estimates only. However, in the
case when the dimensions of the specimen are much
smaller than the depth of the skin layer, the inhomo-
geneity of the alternating field can be neglected.

In weak homogeneous magnetic fields of frequency
ω, the behavior of the magnet is described by a mag-
netic susceptibility tensor Χα,β(ω), defined with the
aid of the relation

Ma(t), (еф =

where M a ( t ) is the magnetization of the instant of
time t, MQ. is the equilibrium magnetization of the
ferromagnet, and h^ft) is the component of the

alternating magnetic field vector. The tensor of the
magnetic susceptibility, after Kubo and T o m i t a ^ ,
can be expressed in terms of the magnetic-moment
operator and the Hamiltonian H:

о
« Μ- A dr. (11.8)

Here M a ( t ) is the operator Ma in the Heisenberg
representation. It is seen from (11.8) ^ that χαβ(οή
is the Fourier component of the retarded branch
function <CM Q : ( t )M / 3(t ' )> [see (9.13)]

Χαβ (ω) = ^ - Μβ»Ε=Λω+ίε- (11.9)

In order to use relation (11.9) it is necessary to ex-
press the operator M a in terms of the same dynamic
variables as the Hamiltonian (9.5). It is obvious that

bg,nA. (11.10)

where S(j and S s are the summary-spin operators of
the d and s electrons.

Let resonance be observed under the following
conditions: the constant magnetic field Η is directed
along the ζ axis, and the alternating field perpendic-
ular to it is linearly polarized along the χ axis. It is
not sufficient to calculate only one component of the
tensor χχχ(ω). In the spin-wave approximation,
using (9.4), we obtain

This means that in homogeneous resonance the elec-
tromagnetic field excites spin waves only with q = 0.
The summary spin projections of the s electrons are
expressed on the other hand in terms of the Fermi
operators ^ :

cx 1 χ ι г + . + ι
"a = ~o" 7j Lak (+)Ok (+) + ak (+)ak (+)]>

t f l k < + ) O k (~> ~~ пк (

(11.12)

The total magnetic moment operator (11.10) does
not commute with the Hamiltonian (9.5) in view of the
presence in it of non-diagonal terms with к / к ' , de-
scribing the s-d exchange processes which can
change the momentum of the conduction electron.
This gives rise to the possibility of energy transfer
from the spin system of the d electrons to increase
the kinetic energy of the s electrons. In view of this
we can expect the s-d exchange to broaden the ferro-
magnetic resonance absorption line.

By virtue of (11.10) we have

((Mx | Mx)) = ({Si I Sx

d)) + gsgi {(Sx I Sx

d})

) + & «si I si»}· (11.13)
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Each of the four Green's functions in (11.13) is ex-
pressed by virtue of (11.11) and (11.12) in terms of
the second-quantization operators

((Sx

d\Sx

d))~±sN{(b0\b;))+c.c,

((Sx\Sx

d)) * \ + o. c,

с ,

J
(11.14)

The symbol с.с. denotes the addition to the corre-
sponding expression of the Green's function made up
of the conjugate operators, for example <C bj" | b o ^
is added to <C b0 | Ъ+

о ~^>. We note that expressions

(11.14) are approximate, since we discard in them
the Green's functions of the form <C bo I b o ^ etc,
which turn out to be of higher order, as can be readily
verified by setting up the corresponding equations of
motion.

Thus, to calculate χχχ it is necessary to find four
Green's functions, and the four others (c.c.) do not
have to be found, since a relation exists between their
Fourier components:

{(А+\В+))Е=-({А\В)Г-Е.

The first two functions in (11.14) are readily ob-
tained from (9.29) and (9.24), in which one must put
q = 0. For the two other functions it is necessary to
set up the equations of motion. Approximating the
higher Green's functions in analogy with (9.22), we
can readily write down the system of equations

>] а к ( _)в к ( + )

t

+ 2 ( 8 " - <

к

-(•ж) 1 / г

У «к- «к
к'

к
( 2 s Υ

2J ак'(+)ак'(-)-
k'

ΐ ) «ai (_,ak ( + )

2^(kk)(n k-
k

/2 2 J ( k k ) < a

— ί ) / 1 (Λΐ£ — Tlir)

к

к'

η£)<δο
к'

i )J < &о /1 «k'(+)ak'(—) ^

к'

i<-)«k(+)

(11.15)

In the approximation employed, this chain turns
into a closed system which can be readily solved. The
Green's functions determined by (11.15) have only
real poles. In view of the fact that, according to (9.54),
y q = 0 when q = 0, the Green's functions <C b0 | b j ^
and <̂T ^ ak(-) ak(+) I bj^> have also only real poles.

К

It is easy to see that all the functions from (11.14)
have two real poles each, which are the same for all
of these functions and are defined by (9.45)—the en-
ergies of the spin waves with zero quasi-momentum.

Substituting the obtained values of the Green's
functions in (11.9), we obtain the value of the real
part of the magnetic susceptibility

;(ω) =
(ω 2 — ω ϊ ) ( ω 2 -

+ 2sJ0 (gd

Here a>i = ε0 /Κ

(g, - gdy)

(11.16)

εi 0 and ω-ι = ε0 /Κ are the resonant
frequencies. Inasmuch as there is no damping in this
case, the imaginary part of the magnetic susceptibility
can be formally expressed in terms of а б (ω ± ε0 ' )
function. Expression (11.16) coincides exactly with

the corresponding expression for the susceptibility of
a ferrite with two sublattices and magnetizations μ8

and 1. Thus, there should exist in a ferromagnetic
metal two resonant frequencies. As can be seen from
(9.45), one of them is close to the Larmor frequency
ω0, and the other is shifted over from it into the in-
frared region by an amount ~2sJ0A. When the g-
factors are equal, expression (11.16) becomes much
simpler*:

У (ω) = Ύ ω 2 (11 17\

where χο is the static susceptibility of the metal

Xo = g = — Η • (11.18)

The second frequency

ω. = ωο + - ^ 4 1 + μ,) (11.19)

drops out in this case entirely from the expression
for the susceptibility, as is the situation in ferrites,

*A microscopic derivation of formula (11.17) was given by
Izyumov and PolyakL3sJ using a variant of the Kubo and Tomita
method, based on perturbation theory.



ELECTRON THEORY OF TRANSITION METALS, II. 737

so that resonance can be observed in the infrared

region of the spectrum (s-d exchange resonance)

only when the d and s electrons have different g-

factors.

It is useful to note that the part of the susceptibility

proportional to the magnetization μ8 of the s elec-

trons is due to a Green's function of the mixed type,

and also to functions which pertain only to conduction

electrons [see the last three lines in (11.14)]. The

other part, proportional to the magnetization of the

d electrons, is due to the functions <C bo | bj ^>.

Therefore, in neglecting the first three Green's func-

tions, we neglect the magnetization of the s electrons

compared with the magnetization of the d electrons.

The latter is always appreciably larger, as can be

seen from (9.41). At small values of the ratio Jo/f,

the magnetization of the s electrons can be neglected.

Thus, for this case the resonant properties of the

system are described essentially by the Green's func-

tion <C b0 | bj ^>. By leaving only this function in

expression (11.13), we take into account only the con-

tribution made by the d electrons to the magnetic

susceptibility of the metal.

After substituting (9.29) with q = 0 in (11.9) we ob-

tain

[(ω) = -

+ i
Ύο/ί'

Y§/;,J·
(11.20)

Thus, the magnetic susceptibility would be described

by the classical Lorentz function were the damping to

be 7o * 0. The line width in this case is Δω = 2γο/Κ.

Although for the s-d interaction we have in accord

with (9.54) y0 = 0 and therefore the line does not

broaden in homogeneous resonance, we use expres-

sion (11.20) to estimate the line width when taking the

skin effect into account.

When the specimen dimensions are smaller than

the depth of the skin layer, the alternating field ex-

cites spin waves with quasi-momenta that lie near the

value of the reciprocal of the skin depth δ, that is,

μ., (ωη) (11.21)

where σ is the electric conductivity of the metal, and

μ2 (ω0) is the imaginary part of the magnetic suscep-

tibility at the resonant frequency. Using (9.54) we can

calculate the value of the damping corresponding to

this spin wave, and, in analogy with formula (11.20)

for homogeneous resonance, assume that the line

width due to the s-d exchange is

Δω = (11.22)

It must be borne in mind here that μ2 is itself de-
pendent on the line width, and therefore (11.12) is es-
sentially a certain equation that defines implicitly the

line width Δω. This was first pointed out by Akhiezer,

Kaganov, and Bar'yakhtar ^ .

We now substitute the expression for q in formula

(9.44), assuming that q > q0. This assumption sets

the upper limit of the s-d exchange integral, at which

the s-d exchange interaction can be called the line

broadening. In the opposite case the line width

vanishes. Thus, solving (11.12), we obtain Μ

ib*· (И-23)~t<»k0

Here Ω ο is the resonant frequency. An exact quanti-

tative estimate of Δω in accordance with (11.23) is

quite difficult, since the order of magnitude of Jo, on

which Δω depends very strongly (Δω ~ Jo), is not

known. However, from condition (9.55), which is the

only one for which formula (11.23) is valid, we find

that Jo must not exceed 10~14 erg. This means that

the maximum value of Δω due to the relaxation

mechanism under consideration at σ ~ 1017 sec"1

(room temperatures) and ω = Ω ο ~ 104 sec"1 amounts

to 109 sec"1.

According to (11.23), Δω should decrease with de-

creasing temperature in direct proportion to the

electric resistivity. However, at low temperatures

the skin effect becomes anomalous and formula (11.23)

no longer applies. The condition of applicability of

the theory of normal skin effect in a ferromagnetic

metal at resonant frequency has the form

К »/ν*. (11.24)

where δο is the skin depth at μ = 1, and I is the

mean free path of the electrons. Inasmuch as μ2 » 1

at resonance, the condition (11.24) can be easily

violated. For the extremely anomalous skin effect

(δο « 12μι), as is well known, we can use formally

the expressions which are valid in the case of normal

skin effect, replacing in them the electric conductivity

σ by aeff. which is determined from the condition

Λ (Oeff) (11.25)

Correcting in this manner the expression (11.23), we

obtain the line width in the region of anomalous skin

effect [ 3 1 ]

-ык,
сЧ

4πσΩ 2 (11.26)

is independent of the temperature, since σ/Ι is

independent of the temperature. Assuming that σ/1

~ 1022 sec"1 cm"1, and taking all other estimates as

before, we obtain again Дша ~ 10а sec \ whereas at
lower temperatures ( σ ~ 1018 sec"1) formula (11.23)

yields Δω ~ 108 sec"1.

Turov '-31-' considered the contribution made to the

resonant line width by the interaction of the s-elec-

trons with the magnetic fields due to the spin waves.

He showed that these processes make a much smaller

contribution to the line width. Thus, s-d exchange
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relaxation predominates among all the spin-electron

relaxation processes in a ferromagnetic metal.

3. Let us consider now resonance in an antiferro-

magnetic metal. The summary spin operators of the

s electrons are expressed by the same formulas

(11.12). It is easy to show that for the summary spin

of the d electrons in the spin-wave approximation

the following relations hold true (see Sec. 10):

= -§- W / 2 g (0) Ho + 620). '

(11.27)

J

With the aid of (11.27) it is possible, as in the case

of a ferromagnetic metal, to calculate the magnetic

susceptibility as a function of the frequency. In the

particular case when the s-d interaction is missing,

we obtain for the real part of the susceptibility the

expression

2ft (εο/ί. 2 - ω 2 ^ (ε0/Ji- ω 0 ) 2

(11.28)

in this case there is no absorption, and therefore

Im Χχχ( ω) = 0.

The first term in (11.28) corresponds to spin res-

onance on the s-electrons, and χ8 is the static sus-

ceptibility of the electron gas. The second term de-

scribes resonance in the d-electron system. It

breaks up into two terms, each of which describes

resonance due to excitation of spin waves with ener-

gies ε0 ± Κω0. When ω = 0, Η — 0, and a —* 0 this

term goes over into the expression for the static sus-

ceptibility of an antiferromagnet

(11.29)
л ^ 2zl -

Thus, in the weak s-d exchange coupling one
should observe in the antiferromagnet three resonant
frequencies, ω^ and EQ/R ± щ.

Near the frequencies of spin electron resonance
( ω ~ ω0) the contribution from the s-electrons to

Χχχ(ω) predominates; near the antiferromagnetic

frequencies (ω ~ Ед/й ± o>o), the contribution from
the d electrons predominates. However, in view of
the fact that

JCs
/ ЛТ У N^ J 'I

(11.30)

the intensity of the spin electron resonance is smaller
than that of the antiferromagnetic resonance.

The s-d exchange does not change essentially the
intensity of the resonance lines, but influences their
form '-26-'. As in the case of the ferromagnet, in an

antiferromagnetic metal the s-d exchange coupling
does not lead to a broadening of the resonance lines
in a homogeneous field. However, in a ferromagnet
the reason for it was the exchange magnetization of
the s electrons, while in an antiferromagnet it is the
presence of the gap in the spectrum of the spin waves,
resulting from the action of the anisotropic field [see
(10.9)].

When account is taken of the skin effect, the s-d
exchange leads to a line broadening of the type (11.22).
In the case of anti-ferromagnetic resonance the s-d
exchange is closely intertwined with the action of the
anisotropy. Thus, the intensity and the width of the
antiferromagnetic resonance lines turn out to be pro-
portional to certain powers of the anisotropic con-
stant. However, the anisotropy enters into these
quantities by virtue of different causes. The intensity
depends on the anisotropy because the expressions
for the transverse magnetization components of the
d electrons are determined in terms of the function
g(0) [see (11.27)], containing the anisotropic con-
stant. On the other hand, the expression for the at-
tenuation of the spin waves, meaning also for the line
width, is connected with the anisotropy principally
through the s-d exchange mechanism [see (10.1) and
(10.9)].

12. Magnetic Scattering of Slow Neutrons in a
Ferromagnetic Metal

As was already noted in Sec. 2, important informa-
tion concerning the state of the electron system of a
ferromagnetic metal can be obtained by a study of the
magnetic scattering of slow neutrons. In those cases
when the neutron wavelength is of the order of the in-
teratomic distances, coherent scattering of the neu-
trons arises in the ferromagnet, owing to their inter-
action with the spontaneously ordered atomic mag-
netic moments. The conduction electrons will also
make a contribution to the scattering, both directly
and by changing the scattering from the inner shells.
We consider here the influence of the conduction elec-
trons on the scattering of neutrons by a ferromagnet.

The effective scattering cross section d2a/dftdEp/
per unit solid angle and per unit energy interval of
the unpolarized neutron beam can be calculated with
the aid of the temporal formalism technique in the
scattering theory, which leads to the following general
formula m^:

dQ. ' (2π)3 ifi
ρ
ρ

Here Μ is the neutron mass, (p, Ep) and (p', Ep')

are the initial and final momenta and energies of the

neutron, Vp'p is the matrix element of the operator

of interaction between the neutron and the scatterer,

taken over the states of the neutron in the initial and

final beams, and Vp'p(t) is the same operator in the
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Heisenberg representation with the Hamiltonian of
the scatterer. The bar above the operator product
denotes averaging over the spin states in the neutron
beam.

The interaction between a slow neutron and the
electron system of the crystal must be regarded as
an interaction between the electron current j ; and
the field generated by the magnetic moment of the
neutron, so that the interaction operator can be
written in the form

F - V — r) 1

— ·>"
(12.2)

where s n is the neutron spin operator, д п и с is the
Bohr nuclear magneton, у = 1.93 is the gyromagnetic
ratio for the neutron, and r; and r are the coordi-
nates of the l-th electron and neutron. Summation in
(12.2) is over all unpaired electrons of the crystal.

The current j / has in the general case orbital and
spin parts, and the matrix element between the elec-
tron states ψη and г^т has the form ^

Here s is the electron spin operator.
Πι the case of a transition metal, the neutrons will

be scattered by the unfilled atomic shells and by the
conduction electrons. Halpern and Johnson'-39-' have
shown that the matrix element Vp/p of the interaction
between a neutron and the spins Sj of the unfilled
shells, situated at the lattice sites, is

V —
Μ

F (q) S;, (sne) e - s j . (12.4)

Here q = ρ - p' is the scattering vector, e = q/q, Rj
is the coordinate of the j-th atom, r0 = е г/тс 2 is the
possible radius of the electron, and

f(q) = (12.5)

is the magnetic atomic form factor. Here φ is the
wave function of the atom, and s,, and rv are the
spin and coordinate of the v-ih electron of the atom.
The summation is over all ζ electrons which form
the uncompensated shell of the atom with spin s = z/2.

The matrix element V /̂p of the operator of inter-
action between the neutron and the conduction electrons

[40]i s

where

= Σ (kV]a.p|ka)ai-a.akc, (12.6)

(kV i y p
ka) = — v<i>^o'S(fka dx, (sne) e - s j ,

v (12.7)

are the wave functions of the s electron.
With the aid of (12.4), (12.6), and (12.7) it is now

easy to write the correlator

Μ ) -ζ-

+^(ч) Σ«
у

+ Σ (\

kk-σσ- V

' i r l r < P k ' 0 ' S a q > k a dx (Sfai'a· (t) aka (t))

ν

(12.8)

It is therefore clear that the scattering cross sec-
tion (12.1) is expressed in terms of the correlators
of the dynamic variables of the system: the spin op-
erators of the unfilled shells of the atoms and the
second-quantization operators for the conduction
electrons. At low temperatures we use the spin-wave
approximation and change over from the spin opera-
tors to the Bose operators for the creation and annil-
hilation of the spin waves, by means of formulas (9.4).
Of all the correlation functions arising in (12.8), we
shall consider only < bgbg (t) >, < b g b | (t) >,
< а£стак(Т (t) >, and < a ^ a j ^ (t) >. Functions for

example of the form < bgbg (t) > or
< bgaj^ t) a ^ i t ) > make a small contribution to the
scattering either by virtue of the small number of
spin waves or because of the assumed smallness of
the s-d interaction.

The correlation functions pertaining to the conduc-
tion electrons can be readily calculated with the aid
of the single-fermion Green's functions (9.28) on the
basis of the spectral theorem (9.18). We have

(^ka^kc (^)) ~ (^—'^k) e · ^IZ-У)

As the wave functions φ^σ entering into expression
(12.7), we should take the Bloch functions (6.1), cor-
rected for the s-d exchange interaction. They are
calculated in (7.13). After these remarks we can
write the expression for the scattering cross section
in the form

σίηβΓ ' inel
dil dQ dEn

dQ t
(12.10)

where

- ή) I F (

r)} dt |2 6 (Ep - £„.), (12.11)
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Jinel

(2π)» V У
X \ / z_ ZJ {6 (g - q - 2nx)Q'g(Ef. - Et)

(12.12)

(Ш d£ p , ρ 4

kk'ao'

ε σ σ ' = j л ,

In expression (12.10) we put for brevity

+ CO i

(12.13)

« = 2 ^ - 5 «" {bgb
+

u(t))dt,

Qi-

3 7VS

+OO i

ι с ή
= -—— \ e

Ann ,)
— CO

Jo 1

(0> rfi,

2 ( r

(12.14)

(12.15)

u2 ( r ) is a certain value (averaged over the quasi-
momenta near the Fermi surface) | uk ( r ) |2, and
f(g) is given by (7.17).

In the derivation of (12.10) we used the following
relation M :

(2π)3

(12.16)

where τ is the vector of the reciprocal lattice.
Expression (12.11) describes the elastic scattering

of neutrons on the spins of the d and s electrons of
the metal; (12.13) describes the incoherent scattering
of the neutrons on the conduction electrons, and (12.12)
yields the inelastic scattering of the neutrons with
emission and absorption of one spin wave.

Let us consider first the elastic scattering. Sub-
stituting (12.15) in (12.11) and integrating the latter
over the energies of the scattered neutrons, we obtain
the scattering cross section per unit solid angle

du

,« ' < 5 } > I 2 . (12.17)

is the electron form factor of the elementary cell,
and Vo is its volume. Summation over s is carried
out over all elementary cells.

In the particular case of weak coupling between the
s electron and the lattice, when the electron density
in the metal can be assumed constant, that is, when
u2 ( r) « 1, we have φ (q) ~ δ (q), so that in place of
(12.17) we have

iqR,
e 3ι e (12.19)

The quantity in the square bracket describes the ef-
fective magnetic form factor of the ferromagnetic ion
clothed by the polarized conduction electrons. The
angular dependence of the scattering of the neutrons
by the polarized cloud itself is determined by the
function f (q). The more general expression (12.17)
takes into account the influence of the periodic struc-
ture of the electron density of the crystal on the form
factor of the polarization cloud. The phase factor in
(12.19) yields in the case of a pure metal, on the basis
of (12.16), the conditions for the regular coherent re-
flections. Expressions (12.19) is suitable also for a
description of scattering in an alloy of a transition
metal with a simple metal, and in this case the sum-
mation over j denotes summation over all sites oc-
cupied by the atoms of the transition metal. In the
case of random distribution of these sites in the alloy,
the phase sum can be readily calculated:

iqR,
e ' (12.20)

where С is the concentration of the impurity element.
The latter expression yields in the case of an alloy
the resolution of the elastic scattering into coherent
and incoherent components. We see thus that a study
of the (elastic) scattering in ferromagnetic metals or
alloys makes it possible to determine the distribution
of the spin density of the conduction electrons near
the paramagnetic ions.

Let us discuss now the scattering of neutrons with
emission or absorption of one spin wave. In the ab-
sence of interaction between the spin waves and the
conduction electrons, the correlation functions in
(12.14) have the same structure as in (12.9), so that
after integration with respect to time delta functions
arise in (12.14) and account for the conservation of
energy in the emission or absorption of a spin wave
by the neutron. When account is taken of the s-d in-
teraction, the values of (12.14) can be readily calcu-
lated with the aid of the boson Green's function (9.29).
As a result we have

where

φ (q) = \( e 4 ^ 1

Vo

(12.18)
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Υ, (--Ε)

(12.21)

where Δ, P g ( E ) and y g ( E ) are determined by ex-
pressions (9.30), (9.31), and (9.34), while N( E) is
the Bose distribution function. As was shown above,
at small yg the quantities (12.21) have sharp maxima
at the points Ε = ± Eg. Inasmuch as Ν ( Ε) are
smoothly varying functions of Ε in Ε intervals on
the order of yg, it is possible to make the following
approximate substitutions in (12.21): in the first ex-
pression N(E) can be replaced by N(8g) = ng and
in the second N(—E) can be replaced by N(Cg). The
expression (12.12) then assumes the form (qi = q

2πτ) [42]

Yqi

V - α (12.22)

Thus, owing to the finite lifetime of the spin waves in
the metal, due to their interaction with the conduction
electrons, the energy distribution of the neutrons
scattered in a given direction has a finite width pro-
portional to the damping energy of the corresponding
spin wave. It must be borne in mind that actually
there are many causes in a ferromagnet leading to a
finite lifetime of the spin waves. The most important
of these are the spin-spin and spin-phonon interac-
tions, and therefore the real width of the neutron line
(just as in ferromagnetic resonance) is due to a whole
series of interactions. However, the s-d exchange
interaction considered here is specific only for
metals, and moreover it is apparently the decisive
factor in the overall line broadening in the case of
metals.

Experimentally this broadening can be readily
separated from others by virtue of the specific de-
pendence of the damping у„ on the quasi-momentum
of the spin wave. Inasmuch as the spin waves are not
damped by the s-d interaction in the case of momenta
that are smaller than a certain value of q0 [see
(9.55)], the line width in the metal should change suf-
ficiently sharply near the corresponding scattering
vector. An investigation of inelastic scattering of
neutrons in ferromagnets aimed at a study of their
energy spectrum has many advantages compared with
the magnetic-resonance method, inasmuch as the
neutrons can exite the entire spin-wave spectrum,
whereas resonance makes it possible to investigate
only a limited number of points of the spectrum.

IV. CONDUCTION-ELECTRON SYSTEM IN A
TRANSITION METAL

13. Energy of Conduction Electrons in a Ferro-
magnetic Transition Metal

In Sec. 5 and in Chapter III it was shown that the
exchange interaction between the conduction electrons
and the uncompensated spin momenta of the metal
ions leads to a lifting of the degeneracy in the con-
duction-electron energy with respect to the spin
quantum number σ. The energies of electrons with
different spin orientations but with the same quasi-
momenta к differ by an amount of the order of the
s-d exchange integral.

In Sec. 9 we calculated with the aid of the statisti-
cal Green's functions the equilibrium distribution
functions for the conduction electrons in the approxi-
mation equivalent to the first order of perturbation
theory in the s-d interaction. We now use the same
method to calculate the next approximation. Using
the decoupling of the complicated Green's functions of
the type (9.22), we can readily obtain a closed system
of equations for the Green's functions <C a ^ | a£ a ^>:

·(-)> = ihb (t - I') + (e k - ζ) « e k H ]

ih -^-<ia k ( 4 . ) | a i ( + )> = ίΛδ(ί —ί') + (εί — ζ) < α υ ( + ) | α ί ( + ) »

J ( k ' k ~

W« =(fk-q+ «q)

J(k, к-,-

ϊ'^'1 1 1"'
ak(-) » = ( 8k+q — 4q ) < «k - bJ|ai(-)>

(13.1)

where Ί^ and εΐ are given by formulas (9.26) and
(9.42). For the Fourier components of the Green's
functions we obtain from (13.1) the following expres-
sion:

where

q

n i 2s -«η

q, к)(и

- • £ ) - , +

(13.2)

(13.3)

are the mass operators.
To obtain the distribution functions it is necessary
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to use the spectral theorem (9.18), after first sepa-

rating the real and imaginary parts in the expression

(13.4)

Then on the basis of (9.16) we obtain the distribution
functions

dE 1 Γ±(£)
(13.5)

Γ ^ describes the damping of the s electrons under
the influence of their collisions with the spin waves.
If we neglect attenuation and the values of SK̂  ( Ε),
expression (13.5) goes over into the Fermi distribu-
tion function (9.35).

Thus, the s-d interaction leads not only to mag-
netization of the s electrons but also to their damp-
ing. The first effect appears in first-order perturba-
tion theory, and the second in the next order. In other
words, the energy shift of the conduction electrons is
proportional to Ko, while the damping is proportional
to Jo/f. On the other hand, the conduction electrons
act on the spin waves in such a way that their actual
energy shift (in the presence of a magnetic field) and
their damping are proportional to 3%/ζ.

14. Effective Interaction of Conduction Electrons Via
Spin Waves and Its Influence on the Supercon-
ducting State

As was shown in Sec. 8, the interaction between
the electrons of the unfilled shells with the conduc-
tion electrons in a ferromagnetic metal leads to an
indirect exchange coupling between the former. On
the other hand the s-d exchange should lead to an ef-
fective interaction between the s electrons. Let us
determine the effective Hamiltonian of this interaction
within the framework of the spin-wave approximation.
We start from the fundamental Hamiltonian (9.5) and
subject it to the unitary transformation

tf τ = e-* ; [//, §\ 4 ~ [[H, S], S] + ..., (14.1)

where the Hermitian operation S is chosen such as to
eliminate the triple terms in H, namely:

S= Σ 6(k' — k + q) { к̂к-<,а (̂+)ак. (_)oq

(14.2)

are chosen from theThe unknown coefficients
condition

(14.3)

where Щ is the part of the operator (9.7) with the
triple terms. From (14.3) we get

E k e

Accurate to the second approximation in the interac
tion constant Jo we have

kk'q

k'-q Dq k-q °q

X ok-q(_)ak-_q(_)ak

+ ΊΓ Σ J ( k k ) (aM-

2s v, J*(k, k~q)

kq ^ К-Ч t

)b+bq

a£_4 (_,ak_q ^} (14.4)

We see that in the new representation there appear in
the Hamiltonian terms that describe the effective in-
teraction of the s electrons.

We shall show first that it is possible to obtain
from (14.4) the energies of the elementary excitations
of the spin waves and s electrons, modified with ac-
count of the s-d interaction. For this purpose we
average the Hamiltonian (14.4) over the conduction-
electron states, using (7.6). Then (14.4) assumes the
form of a diagonal quadratic Bose-operator form:

Further, averaging over the spin-wave states, using
(9.10), and averaging over the s electrons with any
one spin projection, we obtain the diagonal quadratic
forms of the Fermi operators:

E k-q— Eq
(14.6)

= U, +• 2 { s k + ~ J (kk)2nq

(14.7)

In formulas (14.5)—(14.7) Uj, U2, and U3 are dif-
ferent constants which depend on the distribution
functions of the spin waves and the conduction elec-
trons. The expressions in the curly brackets of
(14.5)—(14.7) have the meanings of elementary-exci-
tation energies of the spin waves and of the conduc-
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tion electrons—with account of the s-d interaction.
These expressions coincide with the corresponding
expressions (9.42) and (9.26) [see (13.2)], which de-
termine the poles of the boson and fermion single-
particle Green's functions. This demonstrates the
equivalence of the perturbation-theory approxima-
tions made in decoupling the Green chains. This re-
sult explains the physical meaning of the poles of the
statistical Green's function (9.19). Each of these
functions gives a description of elementary excitations
of spin waves or conduction-electrons, according to
which all the other excitations, except the one con-
sidered, are averaged and make a constant contribu-
tion to the Hamiltonian. In such an analysis, the sys-
tem energy cannot be equated to the energy of the
sum of independent quasi particles. The Green's-
function method, however, is more convenient not
only because it makes it possible to take into account
the damping of the excitations, but because it also
shows how the thermodynamic functions of the system
are expressed in terms of the elementary-excitation
energies.

Let us turn now to (14.4). The third term in this
expression describes the effective interaction be-
tween the conduction electrons via the spin waves.
An analogous expression can be obtained also for an
antiferromagnetic metal, described by Hamiltonian
(10.1), after eliminating from it the triple terms. In
this case

kk'q

1

4-
X eta

' i q

\ 1
ej" —ε,. . 4-ε,_ Jek-q + !

' (+)ак ( (14.8)

It is easy to see that in both cases the energy of
the effective interaction of the electrons near the
Fermi surface is proportional to JJ)/f · The expres-
sions obtained for the effective interaction of the
electrons enable us to investigate the role of the
scattering of the conduction electrons by spin waves
and the appearance of the superconducting state.

It is known £43>4Ό that superconductivity arises in a
metal because of the mutual attraction between the
conduction electrons which have opposite momenta
and spins near the Fermi surface. This attraction is
brought about by the electron-phonon interaction. The
operator for the effective interaction (via the phonons)
of electrons with opposite momenta and spins has the
form

#ph _

N

(q=k-lO

(-)в-к (-)Я-к' (+)ak (+).

(14.9)

where a)q is the energy of a phonon with quasi-mo-
mentum q, and g' is the electron-phonon coupling
constant. It is known that the interaction between the

electrons near the Fermi surface, described by such
an operator, has the character of an attraction. We
now separate from (14.4) and (14.8) the parts corre-
sponding to the interaction of electrons with opposite
momenta, for which purpose we put q = к + к'. In ad-
dition, we take into account the fact that in the ab-
sence of a magnetic field in an antiferromagnet we
have Сщ = Z·^ = Cq and Ck = &k· In the case of a
ferromagnet we put approximately ε£ » ε£ = ε^, i.e.,
we neglect the shift of the Fermi spheres for elec-
trons with different spin projections, inasmuch as an
account of this difference in the formula for Hjnt
exceeds the accuracy of the approximation, and the
effect of the shift of the Fermi surface will be in-
vestigated separately in Sec. 15. Taking all the fore-
going into account, we obtain in lieu of the corre-
sponding parts of (14.4) and (14.8)

f 2s vi ^2(kk')e , ,

(q=k-k') (14.10)

2s (кк')

kk-
(q=k-k')

for ferromagnetic and antiferromagnetic metals re-
spectively.

The structure of the last expressions is completely
identical with (14.9), the main difference being in the
signs. Inasmuch as the electron-phonon interaction
leads to the attraction of electrons with opposite
momenta and spins and to the formation of stable
Cooper pairs, the interaction between the conduction
electrons and the spin waves in ferromagnetic and
antiferromagnetic metals leads to the inverse process.
It contributes to the destruction of the pairs, i.e., to
the destruction of the superconducting state. Com-
parison of expressions (14.10) and (14.11) for the ef-
fective interaction in ferromagnetic and antiferromag-
netic metals shows that there is no principal differ-
ence in the character of the influence of the electron-
magnon interaction on the superconductivity of these
metals, although the dispersion laws for spin waves
are different in ferromagnetic and antiferromagnetic
substances.

It is clear that such a qualitative equivalence of
the results is due to the identical dynamics of the
electron-magnon scattering: in either case the inter-
action is such that emission or absorption of a spin
wave causes the electron to change not only its mo-
mentum but of necessity also the spin direction. In
this lies the specific nature of the scattering of elec-
trons by spin waves, as compared with their scattering
by phonons, which does not lead to spin flip.

To explain why the spin flip of the electron in
electron-magnon interaction hinders the occurrence
of the superconductive state in ferromagnetic and
antiferromagnetic metals, let us consider in succes-
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sion the interaction of electrons with phonons and
spin waves. Electron-phonon interaction leads to the
formation of a bound pair of electrons with opposite
momenta and spins. If in addition there is also elec-
tron-magnon interaction, the following can occur: one
of the electrons of the pair can absorb a spin wave
and thereby reverse its spin direction. We then have
in place of a pair two electrons with like spins, but
such a system is not stable. Thus, electron-magnon
interaction can lead to destruction of the Cooper pairs.
These arguments, however, hold true only in the
analysis of processes of second order in perturbation
theory, to which we confined ourselves above. It is
obvious that other processes are also possible, in
which both electrons forming the bound pair simul-
taneously absorb (or emit) spin waves, and then the
pair is not destroyed. Processes are also possible
which occur without any change in spin whatever. A
detailed analysis shows ^ , however, that processes
of this type are of higher order than the scattering of
only one of the pair electrons by a spin wave. Second-
order perturbation theory must lead to a spin flip of
one of the pair electrons.

The thermodynamics of superconducting ferromag-
nets and antiferromagnets was considered in '-46-'. In
particular, an expression was derived for the gap of
the single-fermion excitations at zero temperature
(under the assumption that the regions of k-space are
near the Fermi surface, where the effective spin-
electron and electron-phonon interactions are of the
same order of magnitude)

Δ = 2ftcoe (14.12)

where ρ = p p n - p m is the difference between the
corresponding quantities for the electron-phonon and
electron-magnon interactions.

Thus, the electron-magnon interaction in ferro-
magnetic and antiferromagnetic metals counteracts
the formation of the superconducting state.* For anti-
ferromagnetic metals this is apparently the main
reason why they do not include superconductors. On
the other hand, in the case of ferromagnetic metals
this cause is not the only one. It turns out that the
magnetization of the conduction electrons by the s-d
interaction also creates conditions that hinder pair
production as a result of electron-phonon interaction.
This effect will be considered in Sec. 15 below.

*The question of the influence of the electron-magnon inter-
action on the superconducting state in ferromagnetic metals was
considered first by KasuyaL47J who established the repulsion
character of the interaction between electrons with opposite
momenta and spins. This deduction agrees with the subsequent
calculations of Karpenko,L4SJ and also of Vonsovsku and Svir-
skn, L4'J who used the Bogolyubov-method scheme. In L4'J, which
is devoted to the same problem, no account was taken of the sign
of the matrix element of the electron-electron interaction, and
this led to the wrong deduction that this coupling is an attraction.

15. Condition for the Existence of a Superconducting
State in a Ferromagnetic Metal

Until recently there was not a single ferromagnet
among the many superconducting metals and alloys.
Only in 1958 was the existence of a superconducting
ferromagnet established apparently by Matthias et
al '-50-' in the (Ce, Ge) Ru2 system. This means that
conditions that do not favor superconductivity, but do
not exclude it in principle exist in ferromagnetic
metals.

Vonsovskii and Svirskii ^ advanced the hypothesis
that such an unfavorable condition may be the exchange
magnetization of the conduction electrons. Indeed, by
virtue of such a magnetization, the electrons lying on
the Fermi sphere with different spin orientation have
energies that differ by an amount 2sJ^ ( meaning that
they have also different momenta kjf and k0

+. Inasmuch
as the superconducting state is connected with the
formation (under the influence of the electron-phonon
interaction) of electron pairs with opposite spins and
momenta near the Fermi surface, it is clear that the
magnetization of the electrons acts unfavorably on the
superconducting state, because it decreases the num-
ber of electrons which have opposite momenta and
spins near the Fermi surface. In the case when the
"magnetic" gap 2sJ^ exceeds twice the average
phonon energy ϊϊω, at zero temperature, near the
Fermi sphere, there will be no electron pairs having
opposite momenta with different spin orientations. In
this case the superconducting state is impossible. It
actually turns out impossible even when the magneti-
zation is lower.

Let us investigate in detail now the role of the ex-
change magnetization on the condition for the existence
of the superconducting state. The electron system of
the superconductor in the Bardeen-Cooper-Schrieffer
[43]

(BCS) model is described by a Hamiltonian

Η = — -γ ^ Λ (kk') ai(+)atk (->а̂ к ч_)
кк' (15.1)

The second term describes here the effective interac-
tion of the Cooper pairs due to the electron-phonon
interaction: Tg= ε£ - f. The BCS theory corresponds
to the case when ε£ is independent of the electron
spin σ. In a ferromagnetic metal ε£ is given by ex-
pression (9.26). The role that the dynamic part of the
s-d interaction (interaction of the s-electrons with
the spin waves) plays in the superconducting state has
already been investigated in Sec. 14.

Following the Bogolyubov-Tyablikov method Γ ι^,
we set up an equation for the Green's functions

ata)), (15.2)

with the aid of which we can calculate the distribution
function for the s electrons with account of the pair
interaction. It is easy to see that this equation con-
tains a Green's function made up of four Fermi oper-
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ators, resulting from an account of the second term

in the Hamiltonian (15.1), which we uncouple with the

aid of the following approximation:

<(atk, -аа-к о) ( < i l k , -σ I

(15.3)

This approximation corresponds to an account of the

correlation of the electron pairs with opposite mo-

menta and spins. It is easy to see that the second

term in the right half of (15.3) leads in the equation

for GjJ to an asymptotically small term, which tends

to zero as V — °°, so that it can be left out. Thus,

the decoupling consists of replacing the complicated

Green's function in (15.3) by

Ti(t-t') = {{atk,_a\at0)). (15.4)

The equation for this Green's function includes in

the analogous approximation only the functions G£.

Thus, we obtain two pairs of closed equations

TkGk

' * * < * = - LkTt,

ih — F t = — Tk Гк — LkGk ,
~dt

where we introduce for brevity the notation

Lk = ψ- ̂  A (kk') (a_k- (_,ak. (+)>.

(15.5)

(15.6)

(15.7)

Solving Eqs. (15.5) for the Fourier components
Gk(E) and Гк(Е) of the Green's functions Gk<t—t')
and Fk(t — t ') we obtain the expressions

n-<vs_ i h Е + Т*ь

Γ- (E) = i !

(Ε —Tk) (E + Ti) —Li'

Lb

(15.8)

(15.9)

Analogous expressions can also be obtained for the

other pair of functions. On the basis of the spectral

theorem (9.16)—(9.18) we can readily obtain now an

expression for the average number of electrons in

the state (ka):

where

with

(15.10)

(15.11)

(15.12)

The quantities о% ± Δ^, which are poles of the
Green's functions (15.2) and (15.4), represent the
energies of the elementary excitations, separated by a

gap Lk from the Fermi level. When Lfc = 0 they go
over into the expressions for Tj£ and T^, while the
formulas (15.10) and (15.11) go over into the ordinary
Fermi distribution functions for the conduction elec-
trons of a ferromagnetic metal in the normal state.

The size of the gap Lĵ , as can be seen from (15.7),
is due to the correlation of the electrons with opposite
momenta and spins. So far the quantity
< a_k(-)ak(+) > remains indeterminate. Inasmuch as

(a^k (-)Clk (+)) = (lk (+)«-k(-))t

the sought quantity can be expressed in terms of the

Green's function Γ^( Ε) on the basis of the spectral

representation

In \ С r k (g+ie)-ri( iE-ie) (15.13)

Calculating the integral in (15.13) and substituting the
result in (15.7) we obtain an integral equation for Lk:

T ι уЛСк.к')^ ,_ к,)£к.
(ok,2V

(15.14)

An analysis of the solution of Eq. (15.14) deter-
mines the conditions for the existence of the super-
conducting state of a ferromagnetic metal. Let the
size of the gap in the energy of the elementary Fermi
excitations of the superconductor, due to the electron-
phonon interaction, be

A p h t= Ьше~1^, (15.15)

where Κω is the average phonon energy. Berdyshev

and Alievskii'-74-' in an analysis of Eq. (15.14), have

reached the conclusion that so long as the energy gap

of the exchange magnetization

ΔΘΧ= ίμ/ (kk) (15.16)

is smaller than the size of the gap (15.15), the s-d

exchange magnetization does not influence altogether

the size of the "superconducting" gap (15.15). How-

ever, if Δ θ χ 5: the "superconducting" gap

becomes immediately equal to zero and the super-
conductivity thus disappears.

This conclusion of the authors of "Ό is in some
contradiction with the earlier work of Vonsovskii and
Svirskii ^52-') according to which a decrease in the
superconducting gap (15.15) sets in at the occurrence
of as small an s-d exchange interaction as desired.
However, even in that paper the authors reached the
conclusion that when ДеХ 2: Δρη the superconduc-
tivity disappears. The incomplete agreement in the

results of
ppe

(see also the note indicates that
there is not yet full clarity in this question. This is
connected with the great mathematical difficulties of
the problem, on which we shall not dwell here, refer-
ring the reader to the original literature.

By way of a summary of the foregoing analysis of
the influence of the s-d exchange interaction on the
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superconducting state, we can state the following.
In ferromagnets the s-d exchange interaction

prevents the establishment of a superconducting state,
and this influence is effected by two mechanisms.
One is connected with the fact that the electron-ferro-
magnon interaction leads to an effective repulsion of
the electrons in the Cooper pairs. The other mecha-
nism is due to the exchange magnetization of the con-
duction electrons. In antiferromagnetic metals the
second effect is missing, so that from this point of
view they are under more favorable conditions for
simultaneous realization of the superconducting state
than in ferromagnetic metals. It is possible that this
is precisely what is realized in vanadium (see Sec. 2,
item a) of the first part of the review, footnote on
p. 553).

16. Anomalous Electric Resistivity of Ferromagnetic
Metals

As was already indicated in the first part of the
review (see Sees. 2 and 5), the electric resistivity of
ferromagnetic metals is characterized by a larger
value compared with the non-transition metals. In
addition, they display an anomalous temperature vari-
ation both at low temperatures and near the Curie
point. The latter is connected also with the singulari-
ties of the law governing the dispersion of the car-
riers in ferromagnetic transition metals and also with
the manifestation in these crystals of "magnetic"
(spin-electronic) mechanisms for the scattering of
these carriers. We shall consider here a more rigor-
ous calculation of the electric resistivity of ferro-
magnets, due to the mechanism of the s-d exchange*.

Let us divide the Hamiltonian of a ferromagnetic
metal into two parts

!, He= -

#'=_-!-'
kk'j

O. (16.1)

(16.2)

In this representation we average the part of the s-d

exchange operator that includes the ζ component of

the spin over the states of the spin system, ascribing

the addition obtained in this manner to the conduction

electrons, so that in (16.1) the energy of the s-elec-

tron is

ъ£ = Ек — (s±(S2j))J(kk). (16.3)

Formula (16.3) reflects the known fact of exchange
magnetization of the conduction electrons of a ferro-
magnet. In what follows we shall regard H' as a
perturbation. This means that we choose as the
zeroth approximation the state of the magnetized con-

*In connection with this question, we call the reader's atten-
tion to the reviewt76! and also to the original papersj5 8 '7 7 '7 8]

duction electrons and the electrons of the unfilled
shells, with allowance for their exchange interaction.

To calculate the electric conductivity we use the
method of Kubo '-53-', according to which the electric
conductivity σ is connected with the current correla-
tion function by

ОЭ

σ=β$</α/α(τ))<ίτ
ό

(16.4)

Here j Q is the current operator in the metal and
j a (τ) is the current operator in the Heisenberg rep-
resentation with total Hamiltonian H. The current
correlator can be expanded in powers of the perturba-
tion H'. In the second perturbation-theory approxima-
tion we obtain the following expression for the electric
resistivity '-54-':

Here

t. (16.5)

(16.6)

The Heisenberg representation of the operator H'

with Hamiltonian Ho and the averaging in formula

(16.5) are also carried out over the statistical ensem-

ble with zero-order Hamiltonian. It is easy to see that

in the case of Hamiltonian (16.1)—(16.2)

Я ( τ ) = - — 2 J /(kk' e " «iT+
«iT(-)Ok'(+)

xS](r)+ c.c,

where

(16.7)

(16.8)

The current operator has in the second-quantization
representation the form

(16.9)

W i t h t h e a i d o f ( 1 6 > 7 ) a n d ( 1 6_ 9) w e r e a ( j i iy obtain

$ ; (τ)S4>e»<eil

^ (τ) Sj2) e~ ϊ <βϊ·

and also

(16.10)

("-и)

where n£ are the Fermi distribution functions.

The main difficulty in the further calculations is the
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determination of the quantities Ŝ  (τ) and the aver-

aging of their products. This has not been possible to

do so far in general form, but two limiting cases can

be considered.

a) Low temperatures. In this region a spin-wave

approximation, by which it is possible to calculate

these quantities, is feasible and calculation of the

averages of the spin operators leads to a Bose distri-

bution function for the spin waves. Recognizing that

the spin operators can be expressed in terms of Bose

operators for the creation and annihilation of spin

waves bq and bq by means of formulas (9.4), and

that in the Heisenberg representation with the Hamil-

tonian (16.1) we have

4 ( ) q q « ,

where Eq is the spin-wave energy, we obtain in place

of (16.10)

- n'k)

w h e r e

kq

nq) n~k (1 - wi_q

8 q ) .

(16.12)

We now substitute (16.12) into (16.5) and use the

identity

(16.13)

obtaining

якТ

kq

(l+nq)nk (1—rai. f-q —ek + eq). (16.14)

In the isotropic case ρ will not depend on a. The

sums over the quasi-momenta contained in these

equations can be replaced by integrals. After all the

calculations, which follow the standard procedure, we

arrive at the following temperature dependence of the

electric resistivity R ^ :

To/T

(16.15)*

The temperature-independent coefficients Cj and

C2 represent in the general case very cumbersome

expressions, which depend on the functions ε£ and

J(kk') and their derivatives on the Fermi boundary.

We shall not write out these expressions, but note

only a characteristic feature of the coefficient Cj.

The value of Cj differs from zero if the dispersion

law for ε£ is not quadratic. In the case of a quadratic

dispersion law we have Cj * 0 only if [dJ(kk)/dk]k0

= 0.

The parameter To [see (11.4)] is some critical

temperature, characterized by the fact that scattering

processes of this type become ineffective below this

temperature (as a result of the impossibility of satis-

fying simultaneously the conservation and momentum

laws in collisions between electrons and spin waves)

and the corresponding part of the electric conductiv-

ity vanishes exponentially when Τ « To.

For temperatures Τ » To the integral in (16.15)

can be readily expanded in powers of the small para-

meter

χ dx

Το/Γ

*cth = coth, sh = sinh.

Expanding coth (T0/2T), too, we obtain for the tem-

perature dependence of the electric resistivity

-C2T0T + ^CJ*. (16.16)

ρ decreases exponentially with the temperature when

Τ » To so that ρ ~ exp [-To/T]. In the intermediate

temperature region it is necessary to use the general

formula (16.15).

The case of greatest interest is Τ » To. If the

coefficients Cj and C2 have the same order of mag-

nitude, then the s-d exchange interaction when

Τ » To will yield essentially a quadratic dependence

of ρ on T. The linear term is comparable with the

quadratic only when the ratio C1/C2 is sufficiently

large. The latter can occur only when the dispersion

law for είς deviates quite strongly from a quadratic

one. In the case of a quadratic dispersion law Cj

should not exceed Cj in value.

Thus, the principal term in the electric resistivity

of ferromagnets at low temperature is ~T2. This

term was first derived in the 1954 paper by Turov'-56-'.

Later on Turov's calculation was confirmed in differ-

ent versions in L57>58J.

As is well known, scattering of conduction elec-

trons by phonons leads to a temperature dependence

ρ ~ T5 at low temperatures. We see therefore that in

this temperature region the contribution to the re-

sistivity from the s-d exchange should predominate

for ferromagnetic metals, and therefore such metals

should obey, in accordance with the theory developed,

a temperature law close to ~T2.

Experimental investigations of the temperature

dependence for the region of helium temperatures in

ferromagnetic metals, carried out in ^59^, are in

qualitative agreement with the theory. It must be

noted, however, that it is impossible for the time

being to separate the temperature term from the total

resistivity corresponding to the exchange scattering

of the electrons by spin waves on the basis of the ex-

perimental data, inasmuch as there exist other mech-

anisms of scattering in transition metals, which also
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lead to a quadratic temperature term in the resistiv-
ity (see Sees. 2 and 5). For a more detailed analysis
of the phenomena considered it is necessary to have
additional experimental research on the temperature
dependence of the electric resistivity, and also on
other kinetic coefficients. Therefore, naturally, it
cannot be regarded that the aforementioned compari-
son with the theory is a final confirmation of the cor-
rectness of the obtained temperature variation of the
contribution made by the electron-ferromagnon inter-
action to the electric resistivity of ferromagnets.

b) High temperatures. Let us consider the range
of temperatures close to the Curie temperature. As
is well known (see Sec. 5) in this region one can em-
ploy for a description of the spin-system states the
method of molecular field, which consists in replacing
the exchange interaction in the spin system by an ef-
fective molecular field λ acting on the given spin, so
that H; — -XSZ (the constant λ can be readily ex-
pressed in terms of the Curie temperature). In this
approximation

(16.17)

Here, for example,

>= Σ Wm(s-m)

( 1 6 Л 8 )

Wn is the probability that a given spin has a projec-
tion m on the direction of the molecular field.

Substituting the approximate relations (16.17) in
(16.10) and integrating with respect to r from zero to
infinity we obtain

oo

Re $<[/«, Η'{τ)][Η·, ja])dx
Ό

+ «k- (1 - ni) (S*S~)} δ (ε£ - εί· 4-λ).

It is easy to show that

(16.19)

(16.20)

With the aid of this relation and with account of the
δ-function under the summation sign, (16.19) simpli-
fies to

Re $ [ / () ^
0 kk'

X «i (1 - nl) 6 (8k - ε£- J- λ) ( ( s - Sz) >. (16.21)

Calculating the sums over the quasi-momenta in the
approximation of quadratic dispersion for the conduc-

tion electrons, we obtain on the basis of (16.21) and
(16.5) the following formula for the electric resistiv-
ity:

Neglecting the dispersion of the spin variable, i.e.,
assuming that < ( S z ) 2 > и < S z > 2 , we can replace
the average of the spin operators in the last formula
by

(s-(Sz))(s (16.23)

Inasmuch as λ — 0 near the Curie point, the last
factor in (16.22) is practically equal to unity, and
therefore the temperature of the resistivity is deter-
mined for this temperature interval by the factor
(16.23). It is clear therefore that near the Curie point
the resistance due to the s-d exchange increases
sharply, whereas above the Curie point, when < Sz >
= 0, it is constant and equal to

_ 3π JlmV
(16.24)

In the ferromagnetic region, away from the Curie
point, it is small because < S Z > « s and vanishes at
the temperature of absolute zero, although generally
speaking in this temperature region formula (16.22)
is not applicable. Thus, qualitatively formula (16.22)
describes correctly the anomalous course of the ad-
ditional electric resistivity in ferromagnets. The
numerical value of the resistivity is also in satisfac-
tory agreement with the experimental data. Under
ordinary estimates: m ~ 1O"27 g, £ ~ 10"12 erg, N/V
~ 1O22 cm"3, and Jo ~ 10~14 erg we have near the
Curie point and in the paramagnetic region р„ ~ 10~18

sec.
We note that formula (16.24) reflects the tendency

observed in transition metals towards an increase in
the additional electric resistivity of the metal with
increasing value of the spin s of the unfilled shell.

The question of additional electric resistivity of
ferromagnetic and antiferromagnetic metals is con-
sidered, both from the theoretical and from the ex-
perimental point of view, in a review by Coles'-76-'.

V. CONCLUSION

The foregoing review of the present status of the
experimental and theoretical study of the properties
of the transition metals enables us to state that this
branch of solid state physics is a wide field for
scientific research, since we are far from having
complete knowledge of the main features of the elec-
tronic structure of these substances. Our principal
attention was paid to the exposition of the principles
and applications of the s-d (f) exchange model of
transition metals (see Sees. 5—16), based on the as-
sumption that it is possible to divide in the crystals
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the electron system of the outer atomic shell into two

subshells: the conduction electrons and the electrons

of the former unfilled d or f 4 shells. With this we

emphasize not only the very existence of these two

subshells, but indicate the pressence of two branches

in the spectrum of the single system of electrons of

the transition-metal crystal. A favorable aspect of

this model is that it makes it possible to describe in

the most consistent and general form several most

important specific features of the electron system of

the transition-metal crystal: 1) establish the singu-

larities in the structure of the Fermi surface of the

conduction-electron system, connected with the lifting

of the spin degeneracy in ferromagnetic crystals or

with the appearance of an additional energy gap in

antiferromagnetic metals; these singularities of the

energy spectrum made it possible to understand in

principle the entire specific nature of the equilibrium

statistical properties and kinetic coefficients of these

substances; 2) take into account the active participa-

tion of the conduction electrons in the indirect ex-

change phenomenon, particularly in the case of f

metals and dilute solid solutions of transition metals

in diamagnetic solvents.

It must be noted that with the aid of new quantum-

statistical methods (the theory of the Fermi liquid'-61-',

temperature Green's functions 04·",18,22,60^ diagram

techniques '-63-' etc., and also the phenomenological

treatment of the s-d(f) exchange, see Sec. 5), it was

possible to demonstrate the correctness not only of

its general physical premises (the presence of collec-

tive motions of both types), but the most important

quantitative deductions (the displacement of the Fermi

surfaces for conduction electrons with different spin

projections, the expression for the indirect-exchange

parameters and others, see Chapter III and IV).

The weakest feature of the s-d(f) model is that it

does not take practical account of the collectivization

of the electrons of the former inner unfilled shells

and their participation in the transport of electron

charge in the crystal. This model is therefore more

applicable to the case of the f metals and their alloys,

and also to the case of ferromagnetic and antiferro-

magnetic semiconductors, in which the effect of col-

lectivization of the f or d electrons is minimal.*

The treatment considered likewise does not take

account at all of the real distribution of the electron

charge and spin densities, p(r) and c ( r ) , in the

crystal (see Sec. 5). Therefore it is impossible to take

into account within the framework of the s-d ( f) model

the actual form of the Fermi surface and consequently

impossible to treat all the effects that are typical of

Fermi systems, or to determine the x-ray and neu-

tron (magnetic) form factors. The model is perfectly

incapable of determining with any degree of accuracy

the value of the average atomic magnetic moments

(including estimates of the contribution made by the

effect of magnetization of the conduction electrons),

particularly in the case of d metals and alloys. In

exactly the same way, no account is being taken at all

of the role of the magnitude and symmetry of the in-

ternal crystalline (electric and magnetic) field in the

distribution of the electron and spin density of the d

and f electrons, and also of the inner electrons of the

ionic cores. In this connection, the question that re-

mains completely open in the theory is the relation

between the spin and orbital momenta of the d and f

shells.* At the same time, as shown by the latest

experimental researches on the internal effects of

fields in ferromagnetic and antiferromagnetic crystals

(with the aid of the Mossbauer effect, nuclear mag-

netic resonance, see Sec. 5), they are subject to a

considerable influence of the state of the outer

shells of the electronic system on the internal elec-

tronic shell of the ionic cores of the crystal.

In connection with the foregoing principal short-

comings of the s-d(f) model, we can formulate the

following principal problems in the physics of transi-

tion metals, their alloys, and components, which at

the present time need to be solved experimentally and

theoretically.

a) It is necessary to determine with very high

precision the charge and spin electron densities ρ ( r)

and σ(τ) in the crystals of the investigated sub-

stances. For this purpose it is necessary first to im-

prove the experimental methods for the determination

of the x-ray and neutron form factors, and also

develop further more accurate theoretical computation

methods for their theoretical analysis (development

of the Hartree-Fock method, calculation of scattering

cross sections of polarized neutrons, etc.). It is

simultaneously necessary to take into consideration

the influence of the symmetry and magnitude of the

crystalline field, to take into account effects of crys-

talline splitting (Stark and Zeeman) of the internal

electronic levels, etc. It must be noted that although

recently certain papers were published on this sub-

ject (see, for example, research on the calculation of

the form factor'-64-'), questions involving the accuracy

of the experimental measurements, particularly the

theoretical treatment of the experimental data, are

far from being complete (it is sufficient to mention

the "discussion" in connection with the treatment of

the results of the experiments in the paper by Weiss

and De Marco ^^). At the same time, the determina-

tion of the correct picture of the electron density in

a crystal is the most essential premise for the con-

*In connection with the problem of ferromagnetic and antiferro-
magnetic as well as paramagnetic alloys of transition metals, we
call the reader's attention to the interesting article by LomerL"-!.

*As follows from certain theoretical papersL62], even crude
model representations of the form of the function p(r) make it
possible to obtain a qualitative explanation of some physical
properties of transition metals and alloys.



750 S. V. VONSOVSKII and Yu. A. IZYUMOV

Form of the Fermi
surface in trans-
ition metals and
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Singularities of
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Electric charge
and spin densities

[p(r) and ir(r)]
in transition-metal

crystals (form
factors)

Symmetry and
magnitude of crys-
talline field in d

and f metals
(Stark and other
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Genesis of the ex-
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lic bonds in d and
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alloys

s-d(f) exchange
interaction

Diagram of principal "problems" in the theory of
transition metals.

Genesis of the
atomic magnetic
order; fractional

nature of the mag-
netic moments and

other magnetic
properties

struction of a consistent theory of transition metals
and their alloys, the only one that can disclose the
still unknown potential promises of their practical
utilization.

b) The solution of the problem of the "geometrical"
distribution of the electrons in the investigated crys-
tals must be closely related with the question of their
distribution in the quasi momentum space, i.e., with
problems in the determination of the shape of the
Fermi surface in crystals of transition metals and
alloys for a complicated dispersion law for the con-
duction electrons, determination of the anomalously
high values of the electron density near the Fermi
surface, etc.'-66'67-'. All these problems have so far
not been touched upon at all and not treated in the
s-d(f) exchange model*. At the same time, a study
of the conduction-electron subsystem in a metal and
alloy without solving these fundamental problems
cannot be regarded as anywhere near complete. This
problem (of the Fermi surface) is of particular inter-
est for d metals which have no atomic magnetic or-
dering (primarily for the start of the series of 3d
metals and the series of 4d and 5d metals).

c) The third most important problem is the solu-
tion of the problem of the nature of the exchange and
metallic bonds in transition metals, alloys, and com-
ponents. Here, likewise, very little is known as yet.
Essentially, we know only in principle what is the
general (electrostatic) nature of the exchange interac-
tion and what can be said concerning the direct and
indirect exchange interactions. So far there is no
rigorous quantitative theory of the exchange bond in
crystals. It is likewise not clear, for example, what
the genesis of this bond is in d metals (see, for ex-
ample, the calculation of Marshall and Stuart ^ and

*Vonsovskii and KobelevL*2] made the first attempt to solve
with the aid of the Green's function method the more general
problem concerning the magnetic properties of two subsystems
of interacting electrons, without making any assumptions before-
hand concerning their spatial localization or delocalization.

also the work of Freeman and Watson'-81-'). It is pre-
cisely for this reason that we still cannot answer the
question why the greater part of the d metals are
paramagnetic, and a smaller part is ferromagnetic or
antiferromagnetic, while the f metals, to the con-
trary, are all ferromagnetic or antiferromagnetic.
Naturally, this third fundamental problem concerning
the genesis and magnitude of the exchange interaction
is in close relationship with the first two, for only
when we know exactly the distribution of the charge
and spin densities can we raise the question of the
calculation of the energetic exchange parameters. In
particular, knowledge of the Fermi surfaces will r e -
solve the question of the competition between the ex-
change interaction and the kinetic energy in the sys-
tem of collectivized electrons C69~72>87 .̂ closely con-
nected with the problem of the genesis of the exchange
bond is the question of the nature of the bonding forces
in transition metals and alloys, which determine their
predominant place among many strong structural
materials. Here again the solution of all three fore-
going questions must be a necessary stage in the de-
velopment of a consistent theory.

Naturally, a solution of these fundamental problems
and all the particular specific problems that follow
from them involving the explanation of the known and
predicted properties (see the diagram) should follow
parallel paths both in experiment and in theory. In
the experimental field the leading role should be as -
sumed by purposeful model experiments, and not
merely accumulation of facts. One such important
method will be the method for studying highly dilute
solid solutions of transition elements, when the lattice
of the diamagnetic solvent contains a small number of
practically non-interacting paramagnetic d or f ions.
Detailed studies of the electron density (charge and
spin), of the average magnetic moment, of the exchange
bond, of the effective fields acting on the electron
shell and on the nucleus, etc.—all these are essential
elements without which one cannot solve the main
theoretical problems raised above. An important
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element in such model experiments is also the inves-
tigation of ordered alloys with participation of transi-
tion elements, and also the study of the influence of
various imperfections (where possible isolated ones)
in the structure (vacancies, interstitial and substitu-
tional atoms, dislocations, etc.) on various properties
of transition metals and alloys.
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