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3. CRYSTAL OPTICS WITH ALLOWANCE FOR
SPATIAL DISPERSION

CRYSTAL optics with allowance for spatial disper-
sion deals with the propagation, reflection, and refrac-
tion of various normal waves in crystals, using the
tensor eij(w,k).

Formally speaking, the scope is broader here than
in the case of classical crystal optics, inasmuch as
many new problems and questions arise (for example,
it becomes necessary to investigate the optical aniso-
tropy of cubic crystals). Actually, however, the situ-
ation is different, primarily because of the smallness
of the spatial dispersion. Because of the latter, as
was already emphasized above, it becomes necessary
to consider only problems in which the spatial disper-
sion leads to qualitatively new effects or, at any rate,
does not give rise to only negligible corrections to the
formulas of classical crystal optics.

In connection with the foregoing, the following dis-
cussion of several crystal-optical problems is frag-
mentary in character and reduces essentially to a dis-
cussion of several phenomena. It is necessary to bear
in mind here also the following circumstances. First,
the study of the natural optical activity (gyrotropy),

*Part I of the article, containing the introduction and Sections
1 and 2, was published in UFN 76, 643 (1962), Soviet Phys. Us-
pekhi 5, 323 (1962).
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although pertaining to crystal optics with allowance

for spatial dispersion, has been carried out long ago
and discussed in detail in the corresponding mono-
graphs (see, in particular, [2%2831]) " Consequently,
with respect to gyrotropic crystals, we shall dwell
only on one question of the new waves, a question
which as far as we know arose only recently. (5
Second, even if we disregard spatial dispersion (in-
cluding gyrotropy), the analysis of the propagation

of light in absorbing crystals, particularly in the case
of low symmetry, is rather cumbersome 22281, Fyr-
thermore, there are special cases. These include the
propagation of light along singular optical axes [28:32,322]
when we can no longer confine ourselves to the consid-
eration of plane waves of the type (1.13). The role of
spatial dispersion in the case of absorbing crystals,
and in the case of complex k in general, was not in-
vestigated in any degree of detail.

Third and last, it must be emphasized that only rela-
tively few investigations have been devoted to an ac-
count of spatial dispersion in a nongyrotropic medium
[or, more accurately, to the account of second-order
effects proportional to (a/A)%] as applied to the optics
of crystals, even for a transparent or almost transpar-
ent medium. In other words, although the question of
the effects that are proportional to (a/A)? cannot by
any means be regarded as being new (see the Intro-
duction), it has for various reasons remained until
recently in limbo. It can thus be assumed that not all
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the interesting aspects of crystal optics with account

of spatial dispersion have already been noted and dis-
cussed. Consequently, the relatively narrow framework
within which we discuss crystal optics with account of
spatial dispersion is due not only to the smallness of
this dispersion, but also to the present status of re-
search in this field.

a) New Wave Near the Absorption Line in a Gyro-
tropic Crystal. As already indicated, in gyrotropic
crystals the spatial dispersion manifests itself in
terms of first order of smallness in a/A. Therefore
we can omit in expansion (2.13) the last term in the
right half of the equation. Using relations (1.6) and
(1.20) and choosing the direction of the wave vector as
the z axis, we obtain the following expressions, which
are satisfied by the components of the transverse in-
duction vector D’ (see also [1J, Section 82):

2 eil(w) >D ez} (@) Dy = ind,5 2 D,
n2

— k(o) D,;+K s,,,,(w))py_ iy 2D (3.1)

(We can, of course, replace here 8555 by f33 = f338% or,
if invariant notation is used, by fjjsisj.) The direction
of the x and y axes is chosen along the principal
axes of the two dimensional tensor ¢ a1 , @ =x,y and
we denote the principal values of this tensorby 1/n}; and
1/n02 (we leave out the caret above the n and assume
in most cases, unless otherwise stipulated, that n is
real, i.e., we are dealing with the transparency re-
gion). Then Eqs. (3.1) assume the following form:

\,D 85,0 2Dy =0,

7) D}, =0.

The condition that the determinant of this system van-
ish gives a third-order equation in n?

_,Tz‘ ——”01 /< n? —”32) = 6223@2 .
The roots of this equation determine, for a specified
direction of s, three values of the refractive index
ny, ny, and n; (we always put n =vn?, since the root
n = —vVn? merely denotes the reversal of the sign of
8).

In the investigation of Eg. (3.3) we shall distinguish
between frequency regions away from and close to reso-
nance. At frequencies sufficiently far away from the
resonances, the right half of (3.3) is small. Conse-
quently one of the roots, (for example ny), will be
very large,

"01

;16123"“;‘1)3,:“}'/&;;5-‘ (3.2)

(3.3)

> 1.

2 c?
s ©20Fa3ndings
Indeed, inasmuch as 8355 ~ a ~ 10732, the order of ng
is 103, and the corresponding wavelength in the medium
is A =A¢/ng~ 1077—107"% cm. This means that in the
optical frequency band waves with refractive indices
ny for crystals can usually not be considered in the
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investigation of the tensor eij(w, k), and no real sig-
nificance need be attached to the corresponding solu-
tions. As regards the roots n; and n,, they can be
determined by replacing n? in the right half of (3.3) by
the product ngyng,. It then follows from (3.2) that in a
wave with refractive index n; we have

Dy =ioDs, (3.4a)
while in a wave with refractive index n,
V= —=Di (3.4b)
where
= v |7 ()
+ l/% ("01 n02> + nmrLM(‘S123 (3.4c)

Since, generally speaking, ny # ny,, both waves turn
out to be polarized along ellipses whose principal axes
coincide with x and y. These ellipses are thus turned
90° relative to each other, and their rotations are op-
positely directed. If the vector s is directed along the
optical axis, when ny =ng, =n and p =1, then the el-
lipses degenerate into circles. Furthermore

nho=ny 4 2850 (3.52)
and the angle of rotation of the plane of polarization ¢

following traversal of a path 1 is

=%(n —n)l=5 ném (3.5b)

We note that in the case under consideration each of
the two refractive indices corresponds to its own cir-
cular (left- or right-hand) polarization of the wave,
since when p =1 we have

Dy= +iDy.

The results pertaining to this case in which only the
two roots ny and n, of Eq. (3.3) need be taken into
account, are well known and we touched upon them

here only to emphasize the limits of applicability of
these results, and also to compare them with the more
complicated situation which may occur near resonances.
In this case the values of nf; and n}, (or of only one of
them) are large in a certain region of frequencies, and
all three roots of (3.3) correspond to relatively long
wavelengths, so that all three solutions (as was noted
in [51) can be regarded within the framework of the
macroscopic approach. Depending on the frequency,
Eq. (3.3) has in the absence of absorption either three
real roots, or one real and two complex roots (Fig. 3).*
To be specific, we shall assume that 3,53 > 0 and that
the wave propagates along the optical axis, i.e., ny

*Fig. 3 is taken from [5], where it was assumed that (for w =~ w})

— Opp3=1 2 =nd— 2 ? —_
=1078, ni(w)=n, Q .
c 128 ;o) 00 0% —of o?— o}

2
2w}
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=1y, = ny. In this case the values of n? on the upper
branch satisfy the inequality n® > nﬁ. Therefore, as
follows from (3.2) and (3.3), for the upper branch the
following relations are satisfied

. ®
, ibyo3— 1
123 ¢

Thus, the upper branch of the solutions n® corresponds

to the right-hand circular polarization, and the lower
branch corresponds to left-hand polarization. If 653 < 0,
the polarizations of the solutions corresponding to the
upper and lower branches must be reversed. As indi-
cated, the dispersion curves shown in Fig. 3 have been
obtained in an approximation in which the absorption is
disregarded. The quantities nd (or n; and n},) and
8453 in Eq. (3.3) can then be regarded as real, i.e., this
equation has real coefficients. Consequently in the fre-
quency region where only one of the solutions is real,
the two others are complex-conjugate, and in the case
of a half-space they form a standing wave correspond-
ing to a zero Poynting vector (see Section lc). Absorp-
tion can be allowed for by considering nj and 6,3 com-
plex. As a result the pattern of the dispersion curve
changes, particularly in the case when the turning point
(see Fig. 3) falls in the region of appreciable absorp-
tion. In this connection we note that multiple roots

(i.e., a turning point) correspond to values of the fre-
quency wy, satisfying the equation

2 2
2 3
ng (@) =2°/3 (5123 icm> .

In this case we have a degenerate root

2
2 \3
2
nm =1 s ’
7 6123

and a smaller root n? =n% /4. Consequently when

0.2
w — wj

nj(w) =~ | | wj and wbyg3/c ~ 1073 we obtain*

*The quantity wd,,,/c can be estimated directly from experi-
mental data by using the frequency dependence of the rotation of
the plane of polarization and the refractive index of light far from

the absorption band under consideration. It follows from Egs. (7),
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|wm —wjl/wj~ 4 x 1073, which corresponds when
wj~3x10*em™ to |wym - wjl ~ 100 cm™!. mas-
much as the widths of the exciton absorption lines in
many, say, molecular crystals (%3] at helium tempera-
tures amount to several times 10 reciprocal centi-
meters, there are all grounds for assuming that the
‘‘three-wave effect’’ in such crystals should be quite
clearly pronounced at low temperatures.

We now stop to discuss the character of the solu-
tions of the field equations when the dispersion equa-
tion has multiple roots. The well-known and fairly
frequent case of multiple roots corresponds to degen-
eracy, namely to equality of the refractive indices
f(w,s) for waves having different polarization (for
specified w and s). This takes place for transverse
waves in an isotropic medium, and also in some direc-
tions for waves in an anisotropic medium. In such
cases we can choose two linearly independent solu-
tions of the type Ej = Ey 7 exp[—iw(t—(n/c)s-r)],
which differ in the vectors E; j, i.e., in the polariza-
tion. Other cases occur, however, when the multiple
root n(w,s) corresponds to only one solution {we
refer to a double root). This is the situation in the
case when waves propagate along the ‘‘singular optical
axis’’ in absorbing crystals of the trielinic and mono-
clinic systems [28:32,328] (in order for a multiple root
to appear, it is important that the principal axes of
the tensors e{j(w) and e{'j(w) do not coincide, some-
thing that occurs only for triclinic and monoclinic
crystals). For singular axes to arise, there is no
need for involving spatial dispersion (such axes arise
already in classical crystal optics, and in the case of
gyrotropic crystals without account of the new waves).
In the presence of spatial dispersion the multiple roots
appear even if there is no absorption. This is immedi-
ately clear from Fig. 3 for a gyrotropic crystal, and
say from Figs. 4b and 5b for nongyrotropic crystals.
Indeed, as indicated above, the polarization of the wave
field is the same for all solutions corresponding to the
upper branch of Fig. 3. Consequently, on approaching
the ‘“‘turning point’”’ w = wy, 0 = fiy,, the two solutions

(8), (10), and (11) of [**] that for light propagating along the optical
axis we have in this frequency region n3(A) = 1 + K,\2/(X2 ~ A}),
and the rotation per unit length of ray path is ((\)/1 = K,AZ/
(A3-A1)*, where A, is the wavelength of light in vacuum. A} is the
wavelength corresponding to resonance, and K, = 27°K?8,,,. Thus,
©8,,5/¢ =K,/mA K2 According to (7] in cinnabar crystals the ab-
sorption band at A) = 4930 A corresponds to K, = 0.56 and

K, = 1.067 x 10™ cm™, from which we get (0 /c)d,,, = (27/A1)8,,,
~ 0.8 x 107, For the organic crystal of benzyl the band A; =~ 2400 A
corresponds to K, = 0.4 and K, =~ 0.35 x 10™ cm™. Therefore
(wy/€)8,, = 107, According to the same data, in the cubic sodium
chlorate crystal the band at A) = 900 A corresponds to K, = 1.18
and K, = 0.067 x 10™ cm™, and consequently (w,/c)8,,, ~ 4 x 107,
while the band at A; = 1850 A corresponds to K, =0.08 and

K, = =0.077 x 10™ cm™, so that (w; /c)d,;, ~ =0.5 x 10*. We know
that for quartz away from the absorption bands (at A = 5893 A) we
have ¢/l =217 deg/cm, n, = 1.54, and according to (3.5b) (w/c)8,,,
= 1.3 x 107,
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corresponding to this branch, E; = Ey ; exp[—-iw(t—-
(iy/c)s+r)] and E, = E y exp[—iw(t—(ii/c)s.r)]
tend to a single solution Efy = Ef'} exp[—iwm(t-
(dm/c)s-r)l.

Under such conditions, as is well known from the
theory of linear differential equations with constant
coefficients, the second linearly independent solution

has the form

EQ = E@,(st)e " (“nTm o)

[ we make allowance for the fact that the polarization

is the same along the entire considered branch of the

function n(w,8); in the more general case the second

AGRANOVICH and V. L.

GINZBURG

2
iy

-go

— A=01, =0, g0
- A=01, J-ﬁ'—[f

FIG. 5a

g

2
S

\
/Y
nf ‘W;LK

4005 ~006 -2 0 00T G0 GG @

z

=01

a5 -000 ~G00 § Q00T 053
— A=Q], 9-0, p=-107°
)

FIG. 5b

2005 7]
é

] Qs Qi3 001 0 o0
&=, p-19%, a=ai

FIG. 5c

4003 a?w dg/




CRYSTAL OPTICS WITH ALLOWANCE FOR SPATIAL DISPERSION

_={g_ﬁ
20! -0005 -0003 ~000T 0 000! 0005 4005 a0
S, p=107, 4-01 <

FIG. 5d

solution will be more complicated but also proportional
to the coordinates x, y, and z*]. The foregoing per-
tains, of course, also to the singular optical axes (see
(32,32a1y [ the latter case, a non-exponential wave
can actually propagate in the crystal. For multiple
roots corresponding to the ‘‘turning points,’’ for ex-
ample on Fig. 4b, the situation is different, since al-
lowance for absorption eliminates the multiple root fi
(Fig. 5d). One might think that for more complicated
cases in crystal optics with allowance for spatial dis-
persion (and possibly also in acoustics) one also en-
counters multiple roots of the dispersion equation
which exist in the presence of absorption (we refer

to multiple roots with identical polarization and yet
different from the roots corresponding to the singular
axes, which appear even without account of spatial dis-
persion). We shall not deal in what follows with the
propagation of waves when the dispersion equation has
multiple roots. We therefore make only one other re-
mark. It is usually assumed that in a homogeneous
medium it is sufficient to consider solutions of the
type Ejexp[—iw(t-(fi/c)s.r)] or Ejexpli(k.r
—wt)]. From this point of view, independently of the
question of whether waves can be observed for mul-
tiple roots and identical polarization, the very need
for considering in such cases, generally speaking, also
the solutions of the type

—i0m, (t~n—c"—"— sr).

E® =EP,, (sr)e

*In the case when the polarization is constant, i.e., E, is inde-
pendent of « for a given s, we arrive at the indicated second solu-
tion by considering the following solution near the turning point:

n sr

—e ! ).

s @ oA :
E i — n,8r 1
—4 S}
E———'“ﬂ 0,\ e w)l(e ¢

flg — Ny

(6]
c

In the limit as ?12 > 1, we obtain from this a solution of the type

4 g
A m

r Eg,zl) =const (sr) E{),
n
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is quite curious and somewhat unexpected. *

b) New waves in nongyrotropic crystalsth%]. m
nongyrotropic crystals, the effects of spatial disper-
sion are due to the properties of the tensor Bijim,
inasmuch as in such crystals [see (2.13)] we have

e’ (0, k)= “3i‘jl (@) 4 Bijim (@) Kyl

Using this relation, and also (1.57) and (1.58), we ob-
tain

(3.6)

e1tii (0, k) =y 8im (©) s+ NiBraim (@) Ky

If, as in the preceding section, we align the z axis with

the direction of the wave vector 8, the expression for
€I}ij simplifies:

1 —_
€] ,4j ((!), k) =My elm1 ((D) 1flm;i + nirﬁrsaa ((1)) nsj K2

! ) + kzﬁij:w (@), i, ]+3,

=e5'(

elia=elyu=0 i=1,23. (3.7
One must not forget here, of course that in (3.7) the
components of the tensors e” !(w) and Bijim(w) de-
pend on the direction of 8 = k/k by virtue of the choice
of the coordinate system.

Inasmuch as the vector D’ is transverse, we obtain

a system of equations similar to the system (3.1):
(e () — 5 Beass (@) 2* ) DS

— (e5(@)+ 2 Beyas (0) ) D =0,
— (54 0) + 25 Byas (0)77) D

"‘( — By () — cz ﬁyuaa w)n >Dy =0. (3.8)
If we choose furthermore the x and y axes along the
principal axes of the two-dimensional tensor e&lﬁ , Q,

B =X, y, then the equation for the determination of fi2
will assume the form

©2 o 1
—n =
\ n2 "m) < nd; GEENGE
w? 1 i
e n26yyzz <7‘— —nz
c® n? Moy

4 A
= (ﬁxxzzﬁyy zz ﬁxyzzﬁuxzz) =0.

AN
ngs )

(3.9)

*Incidentally, one case of multiple roots for specified polariza~
tion is encountered even in the simplest problem of propagation of
transverse waves in an isotropic medium. The corresponding wave
equation is (here E = E; or E = Ey, for more details see for exam~
ple 2l @*E/dz* + w?€E/c? = 0, and if n® = €= 0 then

E§1)+ E(z)z Here, however, the roots coalesce for waves propa-
gating in different directions (with n £ 0) and, in addition, if ac-
count of absorption is taken we already have €= €’ +i€” =n? £ 0.
We note also that in a magnetoactive plasma in the presence of ab-
sorption (but even without account of spatial dispersion) we know
of one interesting ease of the appearance of multiple roots with
identical polarization (see [2], Sections 11 and 28).
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We consider first the simplest case of an isotropic
medium [see (2.33)]. In this case, independently of
the direction of 8, we have ny =ng =ny, Bxyzz =0,
Bxxzz = Byyzz = B. Equation (3.9) then breaks up into
two identical equations each of the form

(3.10)
From this we obtain immediately
~ . —1 ~ 1 2 1
n?,2=(n+lu)%,2=wi l/(m) +F N (3.11)
where
2
e (0)=n2, B =22 p,

Bearing in mind the region of frequencies close to
some single absorption line, we obtain the following
expression for e:

4e2N o fm A oAb
ff.
gy (®) =8+ ? —m:—imv A= 8gp By 62+ t Bt

(0 —y) v

,0=5-", A=

202N g
©; Z(JJ]' '

2
m(!)]-

£= (3.12)
Here e and m are the charge and mass of the elec-
tron, v is the ‘“‘effective’” frequency of the collisions
that cause the attenuation of the waves in the medium,
Neff/N is the oscillator strength, with N the total
number of electrons per unit volume and Nggs the
fraction of these electrons which “‘effectively’’ de-
termines the optical properties of the medium in the
region of the spectrum under consideration.

In the absence of absorption, when § = 0, we get

e',o((o)=nf,=s00——‘§i , (3.13)
where n} is the refractive index neglecting not only
absorption but also spatial dispersion. Ii is clear from
(3.11) that if 6 =0 and

eip <1 (3.14)

we can put

nia gy (1—elp 4 ...), nin—1/ef —egg+ ... (3.15)

When B’ ~ 1078, condition (3.14) assumes the form

n} « 10% or else it reduces when €g~ 1 and A ~ 0.1
[see (3.13)] to the inequality |£]| =|w - wj | /wj > 1074,
In the optical (visible) region of the spectrum, where
wj ~ 10 sec™! ~ 2 x 10* cm™!, this means that expres-
sions (3.15) become valid even at a distance Aw
=lw—wj| »10™wj~ 2 cm~! from the center of the
absorption line. If we assume even A ~ 1, which ap-~
parently is not realistic, we arrive at the inequality
Aw> 20 em™1,

In this frequency range, obviously, fif ~ n}. On the
other hand, the root ﬁ% is very large and when ¢y~ 1,
as is the case far away from the line, |8} ~ 1/|8’]|
~ 108, In addition A =Ay/ny, ~ 5 x 108 cm and expres-
sion (2.13) is no longer valid. The new root §i, of the
dispersion equation has therefore real significance only
near the line, in the region where A =X;/ny »a ~ 3

V. M. AGRANOVICH and V. L. GINZBURG

x 1078 ¢m, i.e., so long as n, < Ay/a. We shall hence-
forth assume this condition satisfied.

Account of spatial dispersion near the absorption
line introduces even qualitative changes in the n%(w)
curves, as is clear from Figs. 4a and b. Both figures
correspond to the case A =1 and 6 = 0, but the values
chosen for Figs. 4a and 4b are g’ = 107° and g’
= —1075, prespectively. The limiting curve (3.13) with
A =1 is shown dashed in both cases (inasmuch as
usually €49 ~ 1, and we are interested in the region
| €5 > 1, we put for the sake of simplicity €y = 0
everywhere in Figs. 4a and b). We know that in the
absence of absorption and when #? is real it is obvious
that the medium is transparent when 12 > 0 and total
reflection of the wave by the medium occurs when n?
=—-k%2< 0. When g8’ =0 and 8’ >0, one of these cases
occurs, since #i% is real. But if B’ < 0, then the values
of 2 are complex in the region | ¢y} > 1/2V|g’| (82
= (n + ik )2 even in the absence of absorption]. In the
case of an exciton absorption line, the sign of B’ is
determined by the sign of the ‘‘effective mass’’ of the
mechanical exciton. In order to verify this, it is suf-
ficient to consider in place of (3.12) the more general
expression for €, in which both temporal and spatial
dispersion are taken into account:

4ne N
e (@, k)= ep+ —pr ete/ (3.16)

It is precisely this expression (3.16) which is obtained
under simpler assumptions by starting from the micro-
scopic theory (see Sec. 4). By expanding the energy
of the ‘‘mechanical exciton’’ ﬁwj(k) in powers of the
wave vector we have in the case of an isotropic and
nongyrotropic medium

heke
2Mexc

ho; (k) =ho, (0) 4 co (8.17)

where mgxc is the ‘‘effective mass’’ of the mechanical
exciton. Therefore for small |w - wj(0)| we have

1 1 ho; (0) g

@B T 5@ T T g e (.18)
and in accordance with (3.6)
h(-')j ©) m
= TNy Texs - (3.19)

Thus, the sign of 8 and B8’ [see (3.11)] actually coin-
cides in the approximation of (3.16) with the sign of
the ‘‘effective mass’’ of the mechanical exciton.

The possibility of observing the new wave near reso-
onance depends to a considerable degree on the extent
of absorption. In the absence of absorption the influ-
ence of the spatial dispersion is large even in the re-
gion where 4€3|p’| ~ 1, i.e., when |£| ~ &g = 2AV[B'T.
Further, if

5=2Lmj<<gh=2A1fm, (3.20)
the absorption is small for frequencies with | £ |
=|w - wj l/wj 2§, i.e., it changes little the magni-
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tude of Re€,, and at the same time |Im ¢;| <« |Re € ].

Assume by way of an example that condition (3.20)
is satisfied and that we are considering a frequency
for which 4e§|pg’ | =1. For £<0 we then have n

~V1+ \/'—(B’)'1 Yand k = 1/6(6/§k)ﬁ"1 4 which yields
n~50 and k ~ 5 x 10™* for £ ~ 107%, g’ ~ 1075, and
8 ~ 107", Inasmuch as the intensity of an individual
wave attenuates as I=1Iyexpl—2wkz/c ] =]jexp[-
this means that the absorption coefficient is u
= (2w/c)k ~ 150 cm™! (for Ay~ 40004). For the
same values of the parameters, but for g’ = - 1078,
we get n =1/V2¢,[8' [ = |8 |14 ~ 30, k ~ (8/£)1Y/
2|8 |M* ~ 0.15, and u = 2wk/c ~ 4 x 10* cm~1. In this
example the intensity decreases by a factor e over a
path equal approximately to 3 x 107% cm ~ Mg, whereas
A=2%y/n~ 1078 cm. Thus, when 6 ~ 1077 the attenua-
tion in a wavelength in the medium is not so large even
in the second case.

Actually, however, for dipole lines the value of 6
for erystals is much greater than 10~7. In particular,
in all the investigated molecular crystals, where the
dipole exciton lines are particularly clearly pro-
nounced (%], the value of 6 tends as T — 0 to a value
21073, This causes the inverse inequality

a?ngZAVi_ﬁ?l_

to be satisfied in place of (3.20), and all the deductions
of the dispersion theory constructed without account of
absorption must be reviewed.

Using (3.11) and (3.12), we obtain*

3.21)

ni =2 AV URR, = — e LV TR UEF
(3. 22)
where
5 S
zizg—zﬁf, 1§=_z§f;v, M+iN =V (E+0) +4p 4%
M=[(82— 8-+-4p'A%)*+-48%2] /4 cos @,

=[(E*— 8%+ 4P’ A2)2+40%2) M sin g

In relation (3.22) it is necessary to take the arithmetic
value of the root, while the angle ¢ must be deter-
mined in accordance with the signs of (£2— 6% + 487A%)
and 26&; here

(B2 — 82+ 4P’ 42) 4 2i8E = geio,

where

0= [(E2— 824 4B’ A2)2 4 462§2]1/’.
The calculated values of n{(w) and k(w) for different
values of B/, A, and & are clearly illustrated in Fig. 5.
It follows from the curves given there that at suffi-
ciently large values of 6 the anomalous wave corre-
sponds to very large damping. On the other hand, the
dependence of the coefficient of absorption of the waves

*We put here €,(w) =
vicinity of a resonance.

—A/(£ + 18), which is true only in the

pzl,
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on the frequency with account of spatial dispersion does
not have a Lorentz form, just as the dependence of
n?(w) no longer follows the Drude-Sellmeier formula.
However, at small values of 8’ and 6 = 0, the func-
tions n%(w) and k(w) resume their usual form. We
note in this connection that whereas A is, in accord
with (3.12), directly proportional to the transition os-
cillator strength, g is practically independent of the
transition oscillator strength [see (3.19)], inasmuch
as the “‘effective mass’’ of the mechanical exciton is
roughly speaking inversely proportional to the transi-
tion oscillator strength (we have in mind ‘“mechanical
excitons’’ which can be excited in a dipole transition;
see [34]),

According to (3.19), putting for the indicated reason

NeffMeye /m ~ N, we have
Lot ho,0) e

Pr=cb="ggn o
where w, = V4me?N/m is the ‘plasma’’ frequency. In
molecular crystals N ~ 3 x 102 —3 x 102 and wf ~ 8
x 103 — 8 x 103 sec™?, so that when wj ~ 3 X 101% gec-!
we have B’ ~ 1075— 1077, At such small values of g’,
absorption assumes a much more important role com-
pared with the case p’ = 1075 considered above, so
that to observe spatial dispersion effects near dipole
absorption lines it is necessary to produce very spe-
cial and favorable conditions. We note that the obser-
vation of the effects of spatial dispersion near quadru-
pole lines is appreciably facilitated by the fact that the
width of these lines turns out to be at sufficiently low
temperatures several orders of magnitude lower than
the width of the dipole absorption lines.

In the analysis of the question of the new waves near
quadrupole absorption lines 41 we must use within the
framework of the phenomenological approach expansions
of the type (2.14)—(2.15). We shall return to this ques-
tion in Sec. 3c.

c) Optical Anisotropy of Cubic Crystals. Quadrupole
Absorption Lines. We have already stated in the Intro-
duction that optical anisotropy of cubic crystals*, which
was considered theoretically in (3540411 hag been ob-
served experimentally [el ¢ Cu,0 crystal at low temper-
atures near the quadrupole transition A = 6125 A).

The theory of quadrupole transitions in cubic crys-
tals was recently developed, on the basis of the exciton
concept, in articles [36'39], where the question of the
influence of stresses and external fields was also con-
sidered. Inasmuch as the exciton wave functions are
generally speaking unknown, it was possible to cast
light in [36-391 op only a few aspects of the phenomenon.

*We do not consider here the so-called ‘‘latent optical aniso-
tropy’’ of cubic crystals, arising because of the possible presence
in the crystal of anisotropic centers connected with local lattice
defects (for example, various types of color centers, etc.). If
spatial dispersion is neglected and there are no directional ex-
ternal influences, cubic crystals with anisotropic centers (impuri-
ties) remain optically isotropic (for more details see [”]).
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In particular, the polarization of quadrupole transitions
as a function of the direction of light propagation was
established, along with the character of the angular de-
pendence of the absorption intensity.

Under the influence of external electric and mag-
netic fields and mechanical stresses, the crystal sym-
metry is generally speaking lowered and the degenerate
exciton levels may split. The character of this splitting
varies with the exciton state and depends on the symme-
try of the disturbance. This circumstance may be em-
ployed quite effectively to establish the symmetry of
quadrupole excited states of a system on the basis of
experimental data.

Optical anisotropy in cubic crystals may, of course,
manifest itself not only in the region of quadrupole tran-
sitions, but also in the region of dipole transitions. The
theory of this question was considered phenomenologi-
cally in (%] and then, within the framework of exciton
theory*, in [49), For the same reason as above (the
exciton wave functions are unknown) only a few as-
pects could be explained in this manner in [4%] as well
as in 5], namely the polarization and the number of
independent waves as a function of the direction of light
propagation; it was also possible to determine the
course of the dispersion near the exciton absorption
bands with accuracy to the unknown oscillator strengths,
the “‘effective mass’’ of the exciton, etc.

We shall show below that an account of the spatial
dispersion by expanding the dielectric tensor in powers
of the wave vector (see Sec. 2b) makes it possible to
obtain in much simpler fashion all the results indicated
in [43640]  The same method makes it possible to re-
gard the influence of the external perturbations and, in
particular, to obtain all the results contained in the
articles [362-39] 1 addition, we shall obtain below a
series of new results.

Let us consider first the region of frequencies close
to the frequency at which the dielectric constant €y(w)
becomes infinite if spatial dispersion is not taken into
account (the dipole line). In this frequency region it
is necessary to use an expansion of the type (2.13) to
estimate the role of spatial dispersion

et (0, k)= d;;6; (@) + Bijim (©) n2si5m

[the tensor used in (2.13) is Bijim = (c%/w?)Bijim].

As was already indicated in Section 2b, the tensor
B{jlm becomes simpler if the x, y, z frame is aligned
with the four-fold axes. In this case, for the crystal
classes Tg, O, and O, the tensor Bijim is determined
by the three numbers

*We note that in the article[*®], as well as in all the earlier
papers in this direction (see ["“]), the effective transverse elec-
tromagnetic field is assumed to be equal to the average macroscopic
field. Such an assumption can be particularly critical in the inves-
tigation of quadrupole transitions. The question of the effective
transverse field is discussed in the book[?] (see p. 385), but there
is likewise no solution to this problem there. We shall touch upon
this question again in Sec. 4.

3; = ﬁa'cxxx = ﬁ;/yyy = Przzz ﬁ; = ﬁ;xuy = qu = ﬁ!’/ylﬂ
5; = ﬁa’cyxy = %ux: = ﬁ;ﬂ!ﬂ'

This leads to the following system of equations for the
components of the vector D’ [see (1.20)]:

’ 1 A P P e B
;f—,Dl =(o+ Bin®) D; + rosiD] — Brts,Dist (3.23)

etc, where account is taken of the condition s{Dj = 0
and

B=;—B;— 26, (3.232)

It follows from (3.23), naturally, that D’'.8 = 0. Let us
consider several particular cases.

a) We assume that the vector s is directed along
one of the cube edges, for example along the z axis.
Then the equation for the components of the vector D’
simplifies to

1 ., 1 ,a A 1 2 . .

;L—le = (};'{’ an2> D;, ';:{Dz = (5_0“{“ le) D;, Dy=0,
from which it follows that in the case under considera-
tion fi? is independent of the polarization of the vector
D’ and is determined by the equation

1 1 .

e TR
An equation of this type was already considered earlier
(see Sec. 3b).

b) We now assume that the vector s is directed
along some principal diagonal of the cube: |s;| = |s,|
=|s3| = 1/V3. We then obtain from (3.23)

1., 1 A .

=Di= <6—0+ﬁ2n2+5%-> D, i=1,2, 3.
Consequently, in this case fi® is independent of the po-
larization, and to each polarization there correspond
two values of i%, determined from the equation

Loy (g D)
The seven considered directions (the 3 four-fold axes
and the 4 body diagonals) are thus optical axes of the
crystal.
c) Assume now that the vector s is directed along
the diagonal of the face. For example, let s, = s,

=1/V2, s3 = 0. Thenthe equationsfor Djf, i =1,2,3,
assume the following form
1~ /1 2 15 ; . '
mDi= (5 v Bt g Bat ) D, D= — D,
1 ' "1 2 ,
D= (o B ) Dy
Thus, in the direction considered, the values of fi¥ de-
pend essentially on the polarization of the electromag-
netic field.  If D; = 0 and Df = Dj = 0, then

1 1 oA
T TR
This equation remains unchanged for a wave with Dj
= 0 and, in the more general case, when s; = 0, but
84 = Sy;. On the other hand, if D =0, and D{ = —Dj
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# 0, then the equation for i is
11 CL RN A
A=t (B+gF)R

For each polarization there are two values of the re-
fractive index. We note that when D; = 0 the index

fi for case ¢) coincides with the index for case a). We
note also that the equations obtained for fiZ show
clearly that the role of the spatial dispersion differs
with the direction 8 and with the polarization. Thus,
the phenomenological analysis £s] is, as in other cases,
not only fully adequate for a consideration of the optical
isotropy in cubic crystals of classes Tq, O, and Op,
but also appreciably simpler than the corresponding
microscopic theory [0 or, more accurately, calcula-
tions using exciton wave functions. This, of course,
pertains also to crystals of other classes.

In the direct vicinity of a resonance (pole), €yp(w)
must be regarded as complex and, as follows from the
foregoing, the absorption coefficient x = Im n, like n
= Re fi, depends on the direction 8 and the polarization
of the light. Thus, in cubic crystals we can have near
the poles of the function €y(w) not only anisotropy of
dispersion, but also of absorption. The poles of €y(w)
correspond to lines in the absorption spectrum which
we shall call dipole absorption lines (since they cor-
respond to nonvanishing matrix elements of the crystal
dipole-moment operator, made up of wave functions of
the ground and excited states of the crystal; see below
for details).

As is clear from the foregoing, account of spatial dis-
persion near dipole lines in cubic crystals leads to a
strong change in the variation of the dispersion curves,
and in this respect the spatial dispersion effect is far
from small.

We proceed now to consider the anisotropy of dis-
persion and absorption near the quadrupole absorption
lines, in the vicinity of which ¢y(w) varies smoothly,
but at least one of the components of the tensor
aijlm(w) has a resonance (pole). To this end we use
an expansion of the tensor eij(w, k) [see (2.12) and
(2.33)1:

gy (0, k) =20,;8,(®)+ 0y, (®) n2ss,. (2.33a)

The tensor ojjym differs here from the tensor des1g—
nated by the same letter in (2.12) by a factor c / w

Let us assume that the principal absorption of hght
in the crystal is connected with the quadrupole absorp-
tion lines, by virtue of which the tensor €y(w)djj will
be assumed real and the tensor al]lm(‘”) complex:
@jjim(w) = al]lm(w) + al]lm(w)

I.nasmuch as in cubic crystals both tensors oz1 Im
and al]lm simplify simultaneously, provided the coor-
dinate axes are chosen along the four-fold axes, the
presence of absorption (ajjym * 0) does not compli-
cate the analysis. We use in such a coordinate system
the notation oy = axxxx = Qyyyy = @zzzz, @3 = Uxxyy
= Oxxzz = Qyyzz, 3= Oxyxy = Uxzxz = Qyzyz. We
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then obtain for the components of the vector E, in ac-
cordance with (1.16) or (1.20), the following system of
equations [see also (2.34) with a, = o4]:

ME, = (g, + a,n?) E, -+ an?s’E, + 2a (Es) n2s, + (Es) n2s, (3.24)

etc, where

.
a=a, — o, — 20,

(3.24a)

We consider here, too, several particular cases, when
the vector 8 is directed along the symmetry axes of
the cube:

a) s parallel to the z axis, s3=1, s; =s,=0. In
this case the system (3.24) has the following form:

ME, = (g, + a2 By, n2E,= (e, 4 ayn?) E,,
(Bq 4+ @12} By = 0.

Thus, in this case there is a transverse wave (E; =0),
for which, independently of the polarization,

(3.25)

€o
1—ag—iag

n?=(n+ix)?= , (3.26)

and a longitudinal wave (E; = E, = 0) with

e
a+iay

b) We assume now that the vector 8 is directed
along a principal diagonal of the cube: sy = 5,5 = 54
=1/¥3 . In this case we have in place of (3.25)

RE, = (g + g+ % Efﬁ) i+ (14 205) 72 (Ey + Ey + Ey)

(i=1,2,3). (3.27)

When E = Es (longitudinal wave) fi2 = ~3¢,/
(ay +2ay + 4a3), whereas for transverse waves
E.s =0 independently of the polarization

€

n=(n+ix)?= (3.28)

1—aly—ay

c) Let the vector s be now directed along the diago-
nal of the face of the cube. For example, let s; = s,
=12, s3 = 0. In this case we have on the basis of
(3.24)

“ . % -
n2E; = (g, +~a,n?) E; + - n?E;

+ (agtoy ) (By+ B for i=1, 2

and

ME, = (g, + an?) K. (3.29)

It follows from (3.29) that:
1) E;=0, E<s = 0—longitudinal wave:
ﬁz . €
/2 ta,t-2a,
2) E3 =0, E.s = 0 —transverse wave polarized in
the plane of the face:

P
1—ay— /2

(3.30)
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Tahle IV. Characters of irreducible representations
of the O group

Fy -""xl{z"' Toyy, TyZab| 3 —1
- 2921, Y1221 Y221

Ay (pseusoscalar) 1 1
Al 1 1
E: 2 2
Fy z,Y, z (vector) 3 | —
Fy 3 | —

Irreduc- Symmetry operations
ible rep- - - @ o
resenta- a - & * O O &) Q
tions ] & 3 3 2 '~ 3 3 @ >
Ay 12+ Y1Ys 2122 1 1 1 1 1 1 1 1 1 1
(scalar)
Ay i 1] 171 1 1 1] —1)—1 1
E Ty To—Y1Yg, 22125 —| 2 2 0 0| —1 2 2 0 0] —1
— I T —Y1Ye
Fy (pseudovector) 3 | —1 1] —1 0 3| —1 1|1 0

—1 1 0 31 —11—1 1 0

—1 | —1 1] —1) -1 1 11 —1

—1 1 0] —3 1 1j—1 0

1] 1| 1] =] =] 1| —1]—

0 of—1|—2|—2| o| of 1
11—t} o|—=3| 1{—1{ 1{'0

3) E;3 # 0, E-8 = 0 —transverse wave polarized
perpendicular to the plane of the face:
S (3.31)

ng
n® =
1—a,

We note that in the case when s; # 8,, 83 =0, the
equation for Ej, as in (3.29), separates and relation
(3.31) remains in force.

So far we have not made specific the character of
those excited states in the crystal, the presence of
which leads to a resonant behavior of the functions
€o(w) or ajjm(w). Inasmuch as we are interested
here primarily in exciton states, let us stop, before
we proceed to a further exposition of the theory of
optical anisotropy of cubic crystals, to discuss the
classification of these states.*

It is well known that stationary states in g crystal,
and particularly exciton states (see, for example,
[42-4])  can be classified in terms of the irreducible
representations of the crystal space group. Each
space group contains a subgroup of parallel transla-
tions, including all the possible parallel translations
of the lattice into itself. The complete space group
is obtained from this subgroup by adding to it H ele-
ments (‘‘rotation’’ elements), which contain rotations
or reflections, with H equal to the number of elements
of the group of the corresponding crystal class. Any
space group element can be regarded as a product of
one of the elements of the translational subgroup by
one of the ‘‘rotation’’ elements. If the space group

*Transitions whose probability is proportional to k* can, of
course, also be classified without resorting to the notion of ex-
citons and their wave functions. Actually, these transitions cor-
tespond to radiation of a scalar source [in this case only longitu-
dinal waves can be obtained; see (3.35)—(3.35a) below], and to
radiation from a quadrupole and a magnetic dipole. In other words
as in the case of dipole radiation, there is no special need to re-
sort here to quantum language. The latter, however, will be done
with an aim towards application to exciton lines.

does not contain essential screw axes and glide planes,
the aggregate of ‘‘rotational’’ elements forms a point
group, namely the group of the corresponding crystal
class[?), Imasmuch as we are considering in the
present article weak spatial dispersion, which corre-
sponds to the method of expanding in powers of the
wave vector, the tensors €oij( w ), aijlm(w) etc, con-
tained in an expansion of the type (2.19), are deter-
mined by the properties of the exciton states as k —0.
The wave functions of exciton states with k = 0 are
invariant under the elements of the translation sub-
group [see expression (3) in the Introduction]. There-
fore the corresponding exciton states can be classified
in accordance with the irreducible representations of
the point group of the crystal class*, which character-
izes the symmetry of the directions in the crystal. This
is precisely the classification of the exciton states
which we shall use below.

Let us consider in greater detail crystals of the
type of Cu,O, which belong to the most symmetrical
class Op of the cubic system. The characters of the
irreducible representations of the group Op are indi-
cated in Table IV (using the notation of [4%]), The sec-
ond column of this table shows how the corresponding
wave functions are transformed under the symmetry
operations from Op. Thus, for example, it follows
from Table IV that three wave functions corresponding
to the triply degenerate (when k = 0) exciton term and
having the symmetry of the irreducible representation
F,, are transformed like symmetrized products of un-
like components of two polar vectors (xy, yy, z4) and
(Xz, Yz, Zz).

As in the case of the lowest electron terms of poly-
atomic molecules (see [‘5], Sec. 98), it is customary

*The latter is connected with the fact that the point group of
the crystal class is isomorphic to the factor group relative to the
translation subgroup. More details on this subject can be found, for
example, in [*],
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to use for crystals an empirical rule, according to
which the wave function of the ground state of the crys-
tal has complete symmetry with respect to the crystal
symmetry transformations. In the case under consid-
eration, for example, this means that the ground state
has the symmetry of the irreducible representation A,
which will be assumed. Then, taking account of the fact
that the dipole moment operator transforms like a polar
vector, the matrix element of the dipole moment oper-
ator will differ from zero only on going from the ground
state into such exciton states, whose wave functions are
transformed when k = 0 in accordance with the irre-
ducible representation F; (see Table IV). Nonvanish-
ing matrix elements of the dipole moment operator cor-
respond to nonvanishing transition oscillator strengths,
meaning that at the transition frequency the dielectric
constant €y(w) becomes infinite if absorption and spa-
tial dispersion are not taken into account. Thus, the
results obtained in Item 3b by using for the tensor ei_jl
an expansion of the type (2.13) make it possible to take
into account the spatial dispersion connected with the
contribution of those exciton bands, whose wave func-
tions are transformed when k = 0 in accordance with
the irreducible representation Fi. As regards those
exciton bands, whose wave functions are transformed
when k = 0 in accordance with irreducible representa-
tions other than Fji, these bands manifest themselves
only if spatial dispersion is taken into account. Thus,
for example, as is the case for atoms and molecules
(see, for example, [42]), the contribution to quadru-
pole absorption and emission of light is obtained only
from those exciton bands, whose wave functions trans-
form when k = 0 as products of the components of two
polar vectors. The aggregate of these products in the
Op group generates the reducible representation V2,
which breaks up into a sum of irreducible representa-
tions* (Table IV and [42]);

Vi=A 4+ E+F, +F, (3.32)

Here the scalar product of the two polar vectors I

= XXy + ¥1¥y + 2124 reduces in accordance with the
representation A, the two independent linear combi-
nations II = X4Xy — 242, and III = 2y,yy — X4Xy — Z4Z,
transform in accordance with the doubly degenerate
representation E, the three components of the vector
product of two polar vectors IV =y;y, ~ 924, V = 242,
- z23%4, and VI = xyy; —%yy; transform in accordance
with the triply degenerate representation F;, while the
three symmetrical linear combinations VII = yyz,

+ Y92y, VIII= 24Xy + X424, and IX = x4y, + y4X, trans-

*The representations A,, A], E’; and F} (see Table IV) corres-
pond to higher multipoles, which are apparently of no interest. We
note also that we classify here as quadrupole absorption all the
absorption whose probability is proportional to k*. Therefore, in
addition to the true quadrupole absorption (the representations E
and F,), this includes also the magnetic~dipole (representation F,)
and scalar (representation A,) absorptions.
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form in accordance with the triply degenerate repre-
sentation F,.

Each of these quadrupole exciton states can, gener-
ally speaking, make a contribution to the quadrupole
absorption of light by the crystal. However, near a
given resonance one can usually confine oneself to an
examination of one transition, i.e., one excited exciton
state. Here, as will be shown in Sec. 4, for the transi-
tion from the ground state zero to the excited states of
the L-th band (for k =0) we have

1 ' A Y
i (@) ~ 5 SO, Lo| T4y 10)(0| 75,10, Lo
Q

(0, Lo | T4 030|751 0, L)} (3.33a)
Here the operator
N
Ty= 2 (PS5 +15pt), (3.33b)
a==1

p is the number of degenerate excited states (for k
=0) in the L-th band, and r% and p%® are the coordi~
nate and momentum of the «-th electron in the crystal.
The fact that the Tjj transform like products of the
components of two polar vectors causes indeed the
tensor aijlm(w) to be determined by the contribution
of the exciton states, whose wave functions are trans-
formed in accordance with one of the irreducible rep-
resentations A,, E, Fy, or F,.

In the case of a degenerate exciton term we shall
choose the wave functions such that they transform,
apart from a coefficient, as the corresponding linear
combinations of the products of the components of a
polar vector. Thus, for example, in the case of a
doubly degenerate term the wave functions \If% and \I/EI
will be chosen such that in cubic-symmetry transforma-
tions they transform* as V3 1I = V3 (x;x, - z4z,) and
III = 2yqyy — XXy — 242y. It is clear that the scalar

product f \I/E\Ifgldr of such functions ¥l and ]I
vanishes. (When k = 0 all the functions can be re-

garded as real, a fact which has been taken into ac-
count above when writing out the scalar product; when
the coordinate system is rotated through an angle n/2
about the y axis, the function \PE reverses sign, and
the function ¥UI remains unchanged; thus the invari-
ant quantity —the scalar product--should reverse sign
under such a coordinate transformation and conse-
quently vanish.) We can prove analogously the mutual
orthogonality of the functions \If{;v, \I/\FI s \If%l, etc. We
shall henceforth use the following identities:

1 1 1 i 1
rgy=g Ut M4 o1, pyy=5 4+ 1, \I
1 1 1 1Y2 1 1
sp= -y l—gll+gl 2 }:7 IX 5 VI, | (3.34)
Y122 1 | G Pa | 1 1
-~ —-?VIIiE'IV, $1Z2}——2—VIII+?V j

*The factor /3 follows from the normalization requirement for
the basis functions.
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Let us stop to discuss some particular cases.

1) We assume that when k = 0 the exciton state L
transforms in accordance with the nondegenerate rep-
resentation A,, by which the ground state of the sys-
tem is likewise transformed. Then, taking (3.34) into
account, we obtain

N
<0, Ll S e p (3.35)
a=1

_N /0 LIS e
=<0, 'Eirp

N
J 0.

From this we obtain immediately with the aid of (3.33)
[see also (2.31) and (2.32)]

o,=a+0, a,=0, a3=-g—, o =a,—a,—2a;=0. (3.35a)

Since in this case we have in accord with (3.24)

(n* &) E

it is clear that the considered excited state manifests
itself only for longitudinal waves (independently of the
direction s, we have for this wave #i? = —¢,/a, where
as for transverse waves fi’ = ¢;).

2) We now consider the case of the doubly degener-
ate term E. Then

=(1+ a) n2(Es)s,

i

S vy (2?122 - fll - Taa) ¥, dr= g vE (Tn - Tss) W,dr=0.

Therefore in accordance with (3.34) we have
(Vi | T3 | Yo) = 8,;,M 55, (3.36a)

where ij is the diagonal element and not the trace,
and

Mu(H)EU‘F lTulWo)—”2‘<W |T11—733|]¥o>= Ml»

M22(II)=0, Mss (H)= ‘_‘_Ml’

4”11 (HI) - (WHI l Tu [ Wo) = 7% IH I 2T22 - Tu - Tsal 111'0)

=—F My, M22(111)=§M2, My ()= —+ M,
(3.36b)

Here we used also the relation
K ‘F}EL i (Tu + Tzz + fsa) ¥,dr=0,

which holds true by virtue of the fact that the functions
¥E and the operator (Tn + ng + T33) transform in
accordance with different irreducible representations
of the Oy group.

It is easy to verify that

 M,=V3M,. (3.37)

Indeed, by carrying out under the integral sign
My=(YE | T~ 151 %)

the operation g (rotation through /2 about the z
axis ), taking into account the invariance of the inte-
gral, and also the relation
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g¥, =Y,
g (Tu" Tss) = (Tzz - 7'33)
1

1 5 2 # 2 I
a5 (Tu‘ Tsa) + '2‘(2T22 _]11_ T33),

il

g‘P};I= % II,11
we find that
M= (M, +V3M,), i.e. M,=V3M,.

Using now (3.33) and also (3.36) and (3.37), we get

1
——a,

o,=a+0, a,=0, a3= 7

g, 2a, =2 q, (3.38)

a = ay 2

For this case, the system (3.24) still remains cumber-
some:

%&: BB+ (1 —_> (Es)s, ete. (3.38a)
Consequently, the expression for fi? for arbitrary s
will be derived below by perturbation methods. We now
note one consequence of (3.26), (3.28), (3.30), and (3.31).
Namely, the presence in the crystal of a quadrupole ex-
citon state of the type considered here manifests itself
neither in the dispersion nor in the absorption if the
light propagates along the edges of the cube, and to the
contrary, does manifest itself for any polarization, when
the light is propagated along the principal diagonals of
the cube. In the case, however, when the vector 8 is
directed along the diagonal of the face of the cube, the
exciton state of type E manifests itself only when the
electric vector lies in the plane of the face.*

3) Let us discuss the case of the triply degenerate
term F,, whose wave functions transform as the com-
ponents of a pseudovector. In this case, in accord with
the chosen basis, and also by virtue of (3.34), we have

(Yp |7 (3.39)

where, of course, no summation is carried out over i
and j, and

My (1V) =

o) = (1 - aii)/}[ij’

|7‘23|‘P0)_—2—(1P11|T23 Toy| ¥o)
= — M, (IV),

M,IV)=M4u(AV)=M,;(IV)=
= (WY, | Tua | Wo) = — o (WF, | Ty — g | W) = — My (V),

My (VY= My (V)= Moy (V) = My, (V) =0,

My (VD) = (U | T3y | W) = 5 (T | Ty — T | W)
= — My (VI), My (VI)= Mg, (VI)= M5 (VI)
=M, (VI)=0.

My (IV) =0, M1(V)

(3.40;

*These deductions, as applied to absorption, coincide with
those made in **1. The question of the anisotropy of the disper-
sion, i.e., of the dependence of n on s, was not considered in [3¢],
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In addition, it is easy to verify that
My (IV)=Mg (V=M (VL) = M (F)).

Using now (3.33), and also (3.39), (3.40), and (3.41), we
find that

(3.41)

a  ~
Og= —5, O=0—0—2a=0.

(3.41a)

a;=0, a,=a=+0,

Since we have here, in accord with (3.24),

(R —&,) E; =an®E, +n?(Es)s, (1—a), i=1, 2, 3,

we reached the conclusion that the absorption and dis-
persion are completely isotropic. For transverse
waves we have

~ g0
n2=—f-,,— .
1—a’ —io

(3.42)

4) Let us consider, finally, the situation that arises
when the exciton term for k = 0 is triply degenerate
and corresponds to the representation ¥, (see
Table IV).

In this case, in analogy with (3.39),

<1FF2|T1'J'11P0>=(1”‘6“) j‘[ijy (343)
where as a result of (3.34) we get

a 1 A A
Mo (VIT) = (W33 o | Wo) =5 (Ui | T+ Ty | W)

= Mg, (VII),
My, (VIT) = M, (VII) = M, (VIT) = My, (VII) =0,
A 1 A A
My (VID) = (WET 5, | Wo) = 5 (¥l ™| Ty + Ts | W)

= M, (VIID), ¢

My (VIIT) = My (VIIT) = My (VIIT) = M, (VIIT) = 0,
My (IX) = (W 70 [ W) = (U5 | Tpa - T | W)
= M,y (IX), Mog(IX) = M3, (IX)
= My (IX) = My, (IX) =0.

(3.443

In addition, as in the case of (3.41), the following rela-
tion is satisfied

Moy (VII) = My, (VII) = My, (IX) = M (F,).  (3.45)

Hence, and also on the basis of (3.33), we find that

a,=0, a,=a=*0, a3=—g—, =0 — 0y — 205 = — 2a.
(3.46)

Therefore, as follows from (3.26), (3.28), (3.30), and

(3.31), the quadrupole transition under consideration

leads to a noticeable anisotropy in the dispersion and
absorption of light. If the vector s is directed along
an edge of the cube, then, independently of the polari-
zation,

~

g

n2=+_”_ .
i1—a'—ia

(3.47)

For the vector s, which is directed along the principal
diagonal of the cube, independently of the polarization,

687

we get

~ o
n = .
1—(a’+-ia")/3

(3.48)

On the other hand, if the vector s is directed along the
diagonal of the face of the cube, then for the wave po-
larized in the plane of the face we have

-~

n?=g,,

(3.49)
and for the wave polarized perpendicular to the plane

of the face

~ 2
n2= /0 Fee -
1—a’ —io

(3.50)

In the general case of arbitrary 8, one has to use
the system (3.24) to determine fi%2. In the case of (3.46)
considered here, this system assumes the form

n—eg, 2
— Y =0k, —2uEs;4+(1+a)(Es)s, etc.

n2

(3.51)

Exact calculation of fi* by means of (3.51), with ac-
count of the terms (a’)%, (a”)?% etc, is quite cumber-
some and generally speaking would correspond to an
exaggeration in accuracy, for in our approximation (for
non-longitudinal waves) it is meaningful to determine
only the corrections for fi* which are linear in «. For
this purpose it is sufficient to use perturbation theory.
Indeed, let us introduce the notation

Lg?) =ad;; + (14 ) s;s5, L(i}) = — 20510,

and rewrite the system (3.51) in the form

n?—eg
(L(O)—{—L(i))E:QE, 0= =~ 0
In the zeroth approximation (L® —p)E =0 and com-
plete isotropy occurs, the waves can be either strictly
transverse (in which case py = o) or strictly longi-
tudinal (p!,I =1+2q).
The first-approximation correction is

1
a=TEF (Eq, Ly E,) = — 20 (sl + slel + sked),

where the wave polarization vector is e = E/|E|.
Thus, for transverse waves we have, accurate to small
quantities of first order of smallness in «,

A
n2—eg,
0 = 0 — 2asie;,
n?

or
W =g — ag, (1 — 2s%). (3.52)
For longitudinal waves (e =+8)

~
n2—e,

= =120 —2a (s} + 55+ 53),

or
g €0

T T

It is sometimes convenient to consider the optical
properties of a medium in spherical coordinates (Fig. 6)
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for two mutually perpendicular polarization directions
eP and e®, where eP corresponds to polarization in
the meridional plane containing the z axis and the light
propagation direction.*

The components of the vectors eP and e® are de-
termined by the relations

& =sing, e= —cos ¢, eg=",

(3.53)

At the same time, the components of the vectors s
=8/k are obviously

eP= —cosfcosq, ef= —cosOsing, ¢l =sinb,

s;=sinBcos @, s,=sinOsing, s;=cosH.

Substituting (3.53) in (3.52) for the s- and p-polari-
zations, we obtain
ny =g, — agy (1 — sin? 6 sin? 2¢),
a

ﬁ: =gy — ——e‘i’(sin2 20 sin? 2¢ 4--cos? 20).

7 (3.54)

Recognizing now that fi = n + ik, we obtain in first
order of o (we recall that these formulas pertain to
the level which transforms in accord with representa-
tion Fy):

n; =g, — a'gg (1 — sin? 0 sin? 2¢),

xy = —%a" V ey (1 — sin® 0 sin? 2¢),

(3.55)
ni =g, —a—.,f—" (sin® 20 sin® 2¢ 4 cos? 20), (
&’ Ve (oo in2 2
Xy = -——8—(sm 20 sin? 29 + cos220).

7

We can obtain quite analogously, accurate to the
first power of @, expressions for the complex refrac-
tive index fi in the previously considered case of a
doubly degenerate exciton term (E representation).
Using (3.38a), we find that for quasi-transverse waves
(i.e., for waves that are transverse when « =0) we
get

72 = g+ 2020 (e - stel 4 s2ed), (3.56)
or
ni= g+ 328" 5in?0 sin? 2¢,
np=8gy+ 3;168" sin® 20 (3 + cos? 2¢). (3.57)

*The superscript s corresponding to the polarization es has
no relation here and below to the vector s = k/k,
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Hence
n}=e,+ 38 sin® @ sin? 29, )
Hg = 3‘1”;/8" sin? 0 sin? 2¢, I
a $ (3.58)
nk =g+ 1680 sin? 20 (3 4 cos®2¢), |

%y, = 3(1”3‘2/8" sin? 20 (3 + cos? 2¢). J

d) Influence of mechanical stresses and external
electric and magnetic fields. The need for a theoret-
ical study of the influence of external action on the
form of the tensor ejj(w,k) and on the exciton states
in crystals becomes particularly clear, if one recog-
nizes that a large number of experimental papers are
devoted to this subject [37,46-48,50-823  Ag gpplied to
cubic crystals, the subject of the investigation is the
artificial anisotropy of the optical properties of the
crystal near the exciton absorption lines, as a function
of the character of the deformation, the direction of the
magnetic or electric field, etc. As applied to crystals
of the Cu,0 type, many of the aforementioned problems
were considered in [380-39] within the framework of ex-
citon theory.

From the point of view of the phenomenological
crystal optics with spatial dispersion developed here,
the influence of the external action can be considered
in the account of the dependence of the tensors con-
tained in (2.12) and (2.13) on the external fields and
stresses.

In the presence of external actions, the symmetry
of the crystal is generally speaking lowered, and as a
result the limitations imposed on the components of the
tensors e€jj(w, EOH®, 0'221’1 )y rijilw, E®, HO o),
ajjim(w, E®, O, 0}1012), etc are different from those
prevailing when

EY—g® _ 0(1‘(}) =0

[E® and H® are the intensities of the external elec-
tric and magnetic fields, 0{‘-’) is the stress tensor; the
medium is assumed nonmagnetic, by virtue of which we
do not distinguish between H®’ and B@].

An account of this fact enables us to determine,
similar to what was done in Sec. ¢), the polarization
of the normal electromagnetic waves, and also the
anisotropy of the dispersion and absorption in the re-
gion of the exciton absorption lines. We are unable to
consider this problem in detail for crystals of different
classes, for lack of space. We therefore confine our-
selves only to a few pertinent problems.

Let us consider, for example, the influence of a
constant electric field on the exciton lines in the Cu,O
crystal. We also assume, for the sake of simplicity,
that the electric field is directed along the four-fold
symmetry axis. If the z axis is directed along the
field, then the operator for the perturbation of the
crystal by the field has in the first order in the field
the form H’ = - E‘WP,, where P is the crystal dipole
moment operator. From the form of the operator H’
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Table V. Characters of irreducible represen-
tations of the Cyy group

Irreduc- Symmetry operation

ible rep-

resen- E | €2 | 2co |21k | 21c,

tations
Ay 2z, 229, L1259+ 1 1 1 1 1

+%y:

Ay Ty — ZaY1 1 1 1 ] —1 |
By 1T —Y1Ye 1 1 —1 1 —i
B, T3y Ty 1 1§ —1 [—
B ny 2 | —2 0 0 0

it follows immediately that in the presence of a field
the crystal symmetry is reduced and characterized by
the C4y group, for which the characters of the irre-
ducible representations are indicated in Table V.
Comparing the characters of the C;y group with the
characters of the Oy group (Table IV), it is easy to
establish in the usual manner that under the influence
of the electric field there should arise not a single di-
pole absorption line but a doublet (the representation
F{, which is irreducible in the Oy group, breaks up in
the C,y group, so that F{ = A; + E).

In accordance with Table V, one of the components
of-the doublet should be polarized along the field and
the other perpendicular to the field, so that the crystal
becomes anisotropic (uniaxial) even if the spatial dis-
persion is neglected, and in this case the nonzero com-
ponents of the ¢jj tensor are €;y = €55, and €g;.

The quadrupole exciton states also undergo interest-
ing transformations.* In particular, the nondegenerate
exciton state which has the symmetry of representation
A, of group Op, has in the presence of an electric field
along the z axis the symmetry of representation A; of
group C,y; as a result the transitions to this state from
the ground state of symmetry A; become allowed in the
dipole approximation (see Table V).i Independently of
the spatial dispersion, the intensity of lines of this kind
should increase with increasing electric field. It is
clear that in the vicinity of these exciton lines, when
the crystal behaves like a uniaxial crystal, we have

€45 (o, E(O)) =gy (0, E(O)) éi]‘ + Agy, (o, E(O)) ;3 6]’3'

The equations for the components of the electric
field in the light wave assume in accord with (3.24) the
form

NE, =&, F; + Aegyd;3Eg+ 12 (Es) s;.

It follows therefore directly that in any direction 8 two
types of waves can propagate. For one of these waves
the electric vector E is perpendicular to the plane
passing through the z axis and the vector s, with n?

*Many problems connected with the influence of a constant
electric field on the quadrupole exciton lines in Cu,0 were con-
sidered in [*®]

tThe possibility of ‘‘flare-up’’ of exciton lines in Cu,O in the
presence of an electric field was first pointed out in [*].

=n} = €); and k = kg = 0. For the second wave

Pt &1 Aggg/eyy

nE=np=en 1--Aegg cos? /ey,

where ¢ is the angle between the vector 8 and the z
axis. For weak fields Ae€gg/€y << 1 and

Np =8, + Aggy sin? 6,
Consequently, introducing the notation A€y = Aejg
+ iAeéIa H
ny =g, 4+ Ae, sin?0,

Aeg
Ap = —33::
2 1/311

where account is taken of the fact that «§ < np. In
these formulas there is no factor kz, from which it is
also clear that one is dealing with dipole transitions.

An analogous situation (‘‘flare-up’’) occurs also
for quadrupole lines, whose wave functions in the ab-
sence of a field have the symmetry of representations
E, Fy, and F,. Inasmuch as these terms split under
the influence of the electric field

sin? 0,

E—4A+B, Fi—E+A, F,—E+B,,

and at the same time the transitions to the exciton

states, having the symmetry of the representations
A, and E, according to Table V, are allowed in the
dipole approximation.

As regards the transitions to the exciton states with
the symmetry of representations By, B,, and A, of
group C4y, these transitions remain quadrupole, and
for an analysis of the corresponding anisoti'opy of the
refractive index A it is sufficient to make use of the
method developed in the preceding section. In the
group Cuy the quantities transformed in accord with
the representations A, are of the type xyy, — x3y4, in
accord with B; —of the type x;x, — y;¥5, and in accord
with B, —of the type x;y, +yyx;. Therefore, as can be
readily verified, in the vicinity of the exciton line A,
the only nonvanishing components of the tensor @ijlm
are the components oy = Qg1 = @, Q999 = Qgqq9

= Qlgyp1 = Oy9y1 = — @/2, and in the vicinity of the exciton
line By we have oyyy; = agppp = &5 Qg3 = Qgyp = Qypy
= 0143 = — @/2, while in the vicinity of the B, line—the

components Qyypy = Glgp1y = &, Qypqp = Qpy1p = Ugpy
= 099) = @/2. The knowledge of these nonvanishing
components of the tensor «jjzm makes it possible to
make a complete analysis of the anisotropy of the op-
tical properties of the crystal in the vicinity of lines
of the type A,, By, and B,. Inasmuch as the corre-
sponding calculations are analogous to those in Sec. 2,
we give here only the results obtained by the perturba-
tion theory method.

For transverse waves the following holds true (see
Fig. 6):

iR = e+ 4 (A,) [es]?

for the type A, transition,
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@

n? = g, 4 800 (By) (€18 — €35,)" —
for the type B, transition, and
n? =g, +2,0(By) (615,48 —

for the type B, transition.
From this it follows, in particular, that
for the type A, transition:

n; =gy + g’ (4,)sin%0, x%,= ]/eoa” 2)8in? 0,

2
nd =g, MP_O,

for the type By transition:

n; = g4+ g0’ (B;) sin® B sin’® 2¢,

Ny = % V &q0” (B,) sin? 6 sin? 2g,
np=-¢gy+ i g,0” (B,) sin® 20 sin® 2¢,
— _ Vaoau

for the type B, transition:

1) sin? 20 sin? 2¢;

“nd =g, - gy0’ (B,) sin® 6 cos? 2¢,
1 —_—
Ko =3 Vea"
2
np =gy e,,

1
%e=1g Ve (

In the foregoing expressions « = a’ +ia”, and the
argument of a (for example a(A,)] indicates the state
corresponding to the value of a. The choice of the
angles and polarization directions is clear from Fig. 6.

We can investigate quite analogously the effects pro-
duced by a constant magnetic field or by mechanical
stresses, and to determine the resulting new symmetry
group of the crystal it is necessary to use the following
general principle: a crystal under the influence of an
external action will have only those symmetry elements,
which are common to the Hamiltonian of the crystal in
the absence of the action and the part of the Hamiltonian
dependent on the action (of the magnetic field, stresses,
ete).

So far we have not considered the question of the ex-
plicit dependence of the magnitude of the effects on the
magnitude of the applied external actions. In the case
when the external actions are sufficiently weak, the
explicit dependence on the intensity of the external ac-
tion can be established by expanding the tensors in
(2.11)—(2.15) in powers of E®, H®, and 0'(;”, in full
accord with what is done in ordinary crystal optics
(see, for example, [(%6]), Inasmuch as the account of
spatial dispersion introduces in this case singularities,
we shall discuss some of them, confining ourselves to
the influence of an external electric or magnetic field,
or of the two simultaneously.

In the presence of weak external electric and mag-
netic fields we use in lieu of (2.11) the expansion

(B,)sin?6 cos® 29,

(BZ) sin® 20 sin? 2¢,

B,) sin® 20 sin® 2¢.

V. M. AGRANOVICH and V. L. GINZBURG

((0 k E(O) H(O)) - 5017 ((D) + lYt]l ((1)) kl + at]lm
+ 4450 (0) EP + Aij (0) HY + Al (0) Hk,
+ A (@) HOED + AQin (0) Bk + Alfh (0) HOH

+ A8 (@) EPED + A,y (0) EOHQE + -

((1)) klkm

(3.59)

Inasmuch as here H is an axial vector while k and
Ezg’ are polar, the quantities Ajjj, Aljlm’ A{ﬁm, (aémd
Af ]im are ordinary tensors, while A{j, Alﬁm' Alﬁ
and Ajjimn are pseudotensors.

The principle of the symmetry of the kinetic coeffi-
cients requires [see (1.10)] that the tensor (3.59) sat-
isfy the relation (as was already pointed out, we do
not distinguish here between B‘® and H®), assuming

the medium to be nonmagnetic )

e, (0, k, E9, H") =g, (0, —k, E?,—H®). (3.59a)
From this it follows directly that
Yijt = — Yijits Alﬂ = - A;H: 1Jlm = - A;?im, A:]lm = - A]zlmy
A%Zm = Anlmr z;:lm = A_(ﬁ‘t)m’ i?l’m - Amm,
At]lmn A;nlmn
(3.60)

The condition that there be no absorption calls for the
dielectric tensor to be Hermitian, ¢jj = €J*1 In this
case, the tensors that are antisymmetrical in ij, con-
tained in (3.35), are pure imaginary We note also that
the pseudotensor Al]l [and also Bl]l in (3.61)] produce
magneto-optical effects in crystals (see (1l ) with

Aijl = eiijmly B’;]'l = eiijmlv (3-603)

Here Am7 and Bm are second-rank tensors, which
generally speaking are asymmetrical.

The symmetry of the crystal greatly reduces the
number of independent components of the tensors con-
tained in (3.59). The components of these tensors
should be invariant under a change in reference frame
corresponding to any of the crystal symmetry opera-
tions. It follows, in particular, that in crystals with an
inversion center the third-rank tensors are vijji
= Ajj; = 0. Analogously, we reach the conclusion that
in such crystals the fourth-rank pseudotensors A{iim
and A(Z}m vanish, inasmuch as these quantities re-
verse sign upon inversion. A relation analogous to
(3.59) can also be written for the inverse dielectric
tensor e MNw, k, E® HD),

gt (0, k, E9, H?) = eg}; (@) + i8;;; (0)+ Bisimbike
+ By (0) Ef” 4 Biji (0) H{” + Bijim (0) H K,
+ Bim (0) HPER + Bijin (0) E"k,, + Bijln (0) H"H
+ B (0) EOESD + By (0) ECHOK, + .

Here, of course, all the considerations advanced above
regarding the limitations connected with the principle
of symmetry of kinetic coefficients and crystal sym-
metry remain in force. At the same time, the follow-
ing very important remark must be made. Expansions
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of the type (3.59) or (3.61) are valid only if the coeffi-
cients Ajj  (w) and Bjj, (w) are sufficiently small.
Otherwise, we can no longer confine ourselves to terms
with the lowest powers of the field E®). This is pre-
cisely the situation that arises, for example, for cubic
crystals in the vicinity of a degenerate level, for which
a linear Stark effect takes place.* It is assumed be-
low, naturally, that the expansions employed are valid.
Under the conditions when the tensors eij( w, k,
E® ..) or e!(w, k, E...) cannot be simply ex-
panded in powers of the corresponding variable, we
can in all the cases known to us represent these ten-
sors as ratios of polynomials [in the case of expansion
in k, see, for example (2.14)]. For the example given
above it is obviously necessary to make use of the re-
lation
(02— 030)*— 20 (02— 0jo) —p2 | BV 2
(ool = [ E7

&(0, E®) = (3.61)

As was already indicated in Sec. 1b, knowledge of
the dielectric tensor and its inverse enables us to de-
termine the dispersion of the natural frequencies of
the Coulomb problem, the “‘fictitious’’ longitudinal
waves, and the ‘‘polarization waves,’’ which corre-
spond to poles of n¥(w) if spatial dispersion is dis-
regarded, and which consequently determine the line
positions in the absorption spectrum. If spatial dis-
persion is taken into account, the determination of the
absorption line positions is generally speaking more
complicated, but for the case of weak dipole and also
quadrupole absorption lines, when the ‘‘mixing’’ of the
transverse photon and exciton states of the Coulomb
problem can be neglected, the line position in the ab-
sorption spectrum is determined by the value of the
natural frequency of the Coulomb problem, taken for
a wave vector value equal to the light wave vector in
vacuum @ = 2m8/Ay (for more details see |:‘53]). T In
the presence of the external actions considered here,
the dependence of the frequencies of the ‘“fictitious’’
longitudinal waves and ‘‘polarization wave’’ frequen-
cies on the wave vector is determined, in accord with
(1.35) and (1.36), from the equations

e (0, k, E®, H®)5;5,=0, D’ £ 0 (3.62a)

and

*In order to explain this, let us consider a medium for which
€=1-2a/(0? - wl) when E® =0, and
— r
©;= ;o + Tore E @y
in the presence of the field. “Then in first approximation
a a

e (EO)y=1 —

@ —jo+p|EO T o'—ofo—p|EO|
Hence . P— "
a a
£”! (, EOy~ 14+ 5 2” l 7 -
0?—wj0—2a (0*—;0-—2a)? (02— j0)

Obviously, the term with IE(O)I ? increases without limit in this
expansion as  » ®j, -

tFor the sake of simplicity we disregard here the influence of
other resonances.
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lei} (0, k, E¥, H”)|=0, (kD')=0, D'%0 (3.62b)

respectively.

If only an external magnetic field is present ( HO
=0, E® = 0), then we have in crystals with an inver-
sion center Ai(}%m = Bﬁ}m =0, and the spatial disper-
sion, as follows from (3.59) and (3.61), manifests itself
only in the second order in k, while in crystals without
an inversion center the expansions (3.59) and (3.61) con-
tain also terms that are linear in k. This circumstance
leads to the ‘“‘magnetic field reversal effect’’: in this
case, generally speaking, eij(w, k, H®) = eij(w, k,
—H®), so that the frequencies of the Coulomb prob-
lem, and consequently also the position of the absorp-
tion lines in the spectrum, change upon reversal of the
magnetic field.

For the analysis that follows it is convenient to rep-
resent the tensors A{}im, and also Bi(}l)m’ in the form
of sums:

(3.63a)

)
Alflm = A+ AL,
(1) )
Bijim = Bijiy. + B, (3.63b)
where

e __ Ve ma __ 1
Afmi = Alinl,  Afjla= — AQy. ete.

With respect to their symmetry properties under rota-
tions and permutation of the indices, the pseudotensors
1(}%?11 and Bl(}%lcn are perfectly analogous to the tensor
@ijim (see Section 2b, Table III, for noncentrosP/mmet—
ric classes). As regards the pseudotensors A{j}fh

and Bi‘}i?‘n, they can be represented in the form

wa __

Aljlm = elmnc (3.643.)

(3.64b)

nijr

Va __
Bijim = €10 Dy

Inasmuch as the completely antisymmetrical unit ma-
trix eymn is a pseudotensor, Cpjj and Dnijj are ordi-
nary third-rank tensors, with Cpjj = Cpjj and Dpjj

= Dnji. Consequently, the symmetry properties of the
tensors Cpjj and Dpjj fully coincide with those of the
tensor which determines the piezoelectric effect (see
(28], Chapter VII). In view of the fact that [26] indi-
cates the nonvanishing components of this tensor for
different crystal classes, we shall not dwell on this in
detail here. Using (3.63) and (3.64) we find that

(3.65a)
(3.65b)

A H ki = oy [HOKL, + AR H PR,
B&H Ok, = D,y [HOK), + BREHOk, .

nij

Let us consider first the influence of an external mag-
netic field on the dispersion of the frequencies of the
‘“fictitious’’ longitudinal waves. To this end, substi-
tuting in (3.62a) the expression (3.59) with E® = o,
we conclude that the sought frequencies satisfy the
equation

88035 (©) 85+ 85,0 ke ke, 4 (C [H k)

-+ sisjA‘i}{,f,Hi‘”km + sisjA%ImH}"’Hiﬁ’ =0, (3.66)
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where the components of the vector C are

C,=C n=1,2,3. (3.66a)

nw i ]’
Confining ourselves to the vicinity of one of the reso-
nances, we set

8ij
ey (3.67)

8413 (©) = 0+
where hwp (0) is the exciton energy in the L-th band
for k = 0. Substituting now (3.67) in (3.66) and con-
fining ourselves to terms linear in H‘®’, we find that
the sought frequency of the ‘‘fictitious’’ longitudinal
wave is determined by the relation

1
ok, H" =0, (0) - —————
(H) =01.(0)= g

ik, — AGlis; s, HVk,, ),

{gi;8:8;,— (C[HOk])

(3.68)*

1Jlm 107

and thus w (k, H®) = w (k, -H®).

Let us consider in greater detail the influence of the
reversal of the magnetic field on the frequencies of the
“fictitious’’ longitudinal waves in crystals of the CdS
type (space group Cév). The characters of the group
Cgy are listed in Table VI (in the notation of (43J).

It follows from this table that the states of the
mechanical excitons at k = 0, which can be excited by
light in the dipole approximation, have the symmetry
of representations A; and E, of group Cqy. If the
wave functions of the exciton in the L-th band trans-
form at k = 0 in accordance with representation A,
then gjj = gA,0i30j3, and if they transform in accord
with E,, then 8ij = gEz(6i16j1 + 6i26j2)°

For crystals belonging to class Cgy, the nonvan-

ishing components of the tensor Cpjj are
Cassr Cags= Caga= Crs=Cra1r Con = Cypo. (3.69)

Using further Table III, we find the nonvanishing com-

ponents of the pseudotensor A{;;‘fm in crystals of the
Cgv class:T
AR = ADg= — A= — AR,
A(l)a ~_.11(1)5 (3.70);

2918 1£28°

It follows from (3.66a) and (3.69) that

 Co=2C,048,85, Cy=Capy (s + 53) + CyasSy-
(3.71)

Cy = 2C1155:53,
Thus, the vector C, being, like the gyration vector, a

*C[H®k]) = C-[H? x k].

tWe assume in (3.70) that the x and y axes lie in mutually
perpendicular planes of symmetry o, and o7. In order to-estab-
lish the nonvanishing of the component of the pseudotensor AU s
we can proceed as follows. We first use the limitations imposed
on the pseudotensor Ag ¢ by the presence of a sixfold axis. These
limitations cause the nonvanishing components of A{}s in class
Cgy to correspond to those non-vanishing components of the ten-
sor Qyjy in the crystal class Cg, which reverse sign upon reflec-
tion in the symmetry planes oy and o%: of the group Cgy. The
latter is connected with the fact that the components of the pseudo-
tensor Ag),f, remain unchanged in this case.

V. M. AGRANOVICH and V. L. GINZBURG

Table VI. Characters of irreducible repre-
sentations of the Cg, group

Symmetry
operations
Irre- E c: | 205 | 2¢e | 3% | 30,
ducible
| representations

Ay z 1 1 1 1 1 1
Ay 1 1 1 1 — —1
B, 1 —1 —1 —t b —
B, 1 ~1 —1 —1 —1 1
E, 2 2 —1 —1 0 0
Ey 2y 2 |2 1 1 1 0

function of the direction of the vector 8, is generally
speaking not directed along the optical axis. The latter
occurs when the wave vector k is either perpendicular
to the optical axis or parallel to it.

To interpret the magnetic field reversal effect, it
is proposed in [%2] that in the expression for the exci-
ton energy there enters an additional term (h/cmexc )X
(d-[H® x k1), corresponding to the interaction be-
tween the dipole moment of the exciton and the electric
field (H/cmexc)lk x H®], which in the opinion of the
authors of [52] (see also [5051]) occurs in the pres-
ence of an external magnetic field in the coordinate
frame connected with the moving exciton. It follows
from (3.68) that in the expression for the exciton en-
ergy fw(k, H®) a term of the type C.[H® x k] does
indeed arise but the vector C(8) is not fixed along the
optical axis even in a uniaxial crystal. It also follows
from (3.68) that the effect of the reversal of the mag-
netic field vanishes when H® |t k, for in this case
H® xk =0 and Afjlmsisjsism = 0 [see (3.70)].

The same takes place 1f the vector k is directed
along the x axis, and the magnetic field along the op-
tical axis, for in this case A“imslstlH(o’ =0 and
C.[H® x k] =o0.

We recall that the frequencies of the ‘‘fictitious’’
longitudinal waves determine the positions of the ab-
sorption lines of light propagating only in such direc-
tions, for which the light waves are not transverse.
For crystals of the CdS type this occurs if the wave
vector k is directed neither along the optical axis
nor perpendicular to it. Otherwise the position of the
absorption lines is determined by the polarization
wave frequencies. We therefore consider the influ-
ence of the external magnetic field on the frequency
dispersion of the polarization waves, confining our-
selves to one particular case of type CdS crystals and
assuming that the vectors H® and k as well as the
optical axis form a mutually orthogonal triplet. Let,
for example, in accordance with this choice, k, =k,
=0 and H(O) H(O) 0. As already indicated in Sec. 2,
the gyrotropy of crystals belonging to class Cgy leads
to second-order effects in powers of (a/A). We are
interested here in whether the expression for the po-
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larization-wave frequencies contains terms of the
order of H® and kH'®, Therefore, in investigating
the dipole lines we confine ourselves to the following
expression for the tensor ei'jiz

e (o, k, H?) = &g + BipH® + BO Hk,.  (3.72)

In crystals of class Cgy, the tensor By in (3.60a) is
diagonal, with By; = By, # Bgs. Therefore, and also by
virtue of relations (3.65b),

e (0, k, H®) = g5l + €;,,B,, H® + Dy ; H Ok + 2B3ISH.
(3.73)

Inasmuch as, in analogy with (3.69) and (3.70), Dsij
#0,onlyifi=j=1, orifi=j=2, orifi=j=3,
while B{};‘;#o onlyif i=j=1ori=j=2 and
furthermore 601) 51J€01J, Egs. (3.62b) for the trans-
verse components of the vector D’ (Dj and D3) have
the following form [see also (1.37)]:

R S

(&gt DygsH k) Dy = 0. (3.74)

It follows from (3.74) that the position of the line polar-
ized perpendicular to the optical axis is determined in
this case by the equation

et (@) + Dy HOk - 2B HOk =0,

2212

(3.74a)

whereas the position of the line polarized along the
optical axis is determined by the equation

2o (©) + Dyge HOk = 0. (3.74b)

Thus, the reversal effect can occur both for lines
that are polarized perpendicular to the optical axis
(representation E;) and for lines polarized along the
optical axis (representation A;) (see Table VI).

Let us now assume that external electrical and mag-
netic fields are present simultaneously. Let us con-
sider, as before, a crystal of the type CdS and assume
that the magnetic field is directed along the y axis, the
vector k along the x axis, and the external electric
field along the optical axis. In this case in lieu of
(3.73) we have on the basis of (3.61), accurate to terms
linear in H®,

i} (0, k, P, H) = g3l + €,;,B, H + (Dyy; + 2B15) HOk
+ BuyoE® + 2B%sHOE® + B EVk + B (EV)?

+ Byj1ysk HOE®. (3.75)

We note that the tensor Bjj; is analogous in its
symmetry properties to the tensor Clij» the tensor
Bﬁ%m is analc:g)ous to the( 5p;seudotensor A1 Im’ while
the tensors Bl Im and By, are analogous to the ten-
sor aijlm. Usmg (3.69), (3.70), Table III, and also [26]

we arrive at the conclusion that
B233 = Bsza =0, Bzas * 0, Bsaa # 0,
Bg;s Béggs =0, B;:;x B:(;géx = B;?éx =0,

Biyss = Biyss =0, By # 0, By + 0.

B(?)

2228 T

As regards the fifth-rank pseudotensor Bjjymn, it
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is necessary to take account here of the fact that when
an external electric field is applied along the hexagonal
axis, the symmetry of the CdS crystal does not change,
so that the nonzero components of the pseudotensor
Bijims correspond to nonzero components of the fourth
rank pseudotensor B{}%m On the basis of the remarks
made, we reach the conclusion that in the case under
consideration the Eqs. (3.62b) have the following form:

- (Dygs - 28855 HOk + Boop ¥+
+ B (E)? + Bygypsk HYE® = 0,
D,=D,=0, D,+-0;
033 ( ) + D333H(0)k + B333E(0) + B;:;S (EO)Z + 333123kH(0)E(0) =
D,=D,=0, D,+0.

022 ((1))
(3.76a)

0, }
(3.76Db)
Let us examine in greater detail the vicinity of the di-

pole line, polarized along the optical axis. In this case,
according to (3.67), for w =~ wy,(0), we have

;1 -~ w?— ot (0)

8o = ry

Therefore, as follows from (3.76), the position of the
absorption line is determined by the following relation:

Zmi(o) {DssaH(o’k'{“Bssa (0
+B§;;3 (Ew))z + BasnskH(O)E(m}-

o (k, H“”, E(o)) =g (0) .
(3.77)

It follows from (3.77) that for fixed values of k, H®,
and EW/E‘D but with variation of E‘’, the frequency
of the absorption line is displaced along a parabola,
whose position changes, in particular, upon reversal
of the direction of the magnetic field. An effect of this
type is indeed observed in CdS crystals (%51 Accord-
ing to (9051 the effect of the absorption frequency
shift is interpreted in the following manner. In the
presence of a magnetic field, in a coordinate system
connected with a moving exciton, an additional electric
field arises, the intensity of which is (H/cmexe)

[k x H®], Therefore, the external field acting in the
exciton on the electron and hole is equal to E®

+ (i/cmexc) [k x H®], which leads (in media where
the quadratic Stark effect occurs) with a change of
E® to a shift in the exciton energy along a parabola
similar to (3.77).

Were such an interpretation of the effect correct,
then the determination from the experimental data of
that value of E® which corresponds to the minimum
displacement of the term would enable us to determine
the “‘effective mass’’ of the Coulomb exciton, mege,
from the known H® and k. Actually, as follows from
(3.77), it is possible to determine in this manner not
the ‘‘effective mass’’ of the exciton, but merely the
relation between the coefficients contained in (3.77),
and in particular the ratio Bgsyp;/ B§§§3, which although
it does have the dimensionality of the ratio h/mexce,
does not, generally speaking, reduce to the latter. We
note also that the aforementioned parabola should shift
upon reversal of the magnetic field not only because
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(3.77) contains a term proportional to Bgsa3, but also
because of the presence of the term DggH %k, which
leads to a reversal even when E® = 0. In this connec-
tion it must be borne in mind that no reversal of the
magnetic field was observed in CdS at E® =0 in [51]
in contrast with [52J, Consequently, further research
in this field is highly desirable. In conclusion, we note
that to investigate the fine effects connected with ex-
ternal influences on absorption spectra, it is possible
to use not only crystals but also, for example, gyro-
tropic amorphous media, provided the absorption spec-
tra of these substances display at low temperatures
sufficiently narrow lines, similar to those observed

in [#] for molecules in frozen solutions.

e) The problem of boundary conditions. We have
considered above only the propagation of waves in an
unbounded medium. Yet in crystal optics one deals
always, strictly speaking, with a bounded medium, so
that the question of boundary conditions arises. If we
use the general relation (1.3), it is sufficient to take
into account the ordinary electrodynamic conditions.
On the other hand, the introduction of the tensor
eij(w, k) corresponds to relation (1.4), which is rigor-
ously valid only in an unbounded medium [the pres-
ence of a boundary leads to the dependence of the ker-
nel of £jj in (1.3) on more than just the difference
r—r’]. At the same time, it is clear from physical
considerations that the tensor eij(w, k) can actually
be employed for a bounded medium, provided the char-
acteristic dimensions of the latter are R »>a ~ 3 x 1078
cm. Such a conclusion is valid, but at the same time
there may arise the need for supplementary boundary
conditions (SBC). Indeed, this usually occurs when
using expansions of the type (2.12) and (2.13), which
are patently connected with an increase in the order
of the field equations and with the appearance of new
waves (in particular, we have in mind longitudinal
waves ).

The character of the SBC is determined by the phys-
ical properties of the medium and of its surface, and
consequently is not universal. For example, in the
case of a relation of the type (3.13) and specular re-
flection of the electrons from a semi-infinite plasma,
the SBC have the form Ep = 0, where Ep is the nor-
mal component of the field E on the internal surface
of the plasma (we have in mind the problem of a wave
with field E lying in the plane of incidence, impinging
from vacuum on the plasma boundary [313). In crystals
the form of the SBC differs with the spectral region
under consideration. Thus, in article ['J the SBC for
the vicinity of the absorption line corresponding to the
excitation of dipole excitons in nongyrotropic crystals
was found to be P = 0, where P is the part of the po-
larization due to the contribution of the considered ex-
citon band. In [#] the method of [7 was used to de-
rive the SBC in a gyrotropic crystal with the space
group D}. The case considered was that of propaga-
tion of light along the optical axis of a crystal with
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boundary planes perpendicular to the optical axis. It
turned out that the SBC depend essentially on which
molecules within the unit cell terminate the crystal,
and reduces to the vanishing of only one of the trans-
verse components of the polarization vector [for ex-
ample, Px(0) = 0, etc]. This makes the directions
x and y no longer optically equivalent. So sharp a
dependence of the SBC on the structure of the surface
layer should either not influence the measured physi-
cal quantities, or contradicts the main assumptions
on which the use of the tensor ¢jj(w,k) is based when
finite crystals are considered.

We note also the article (8], in which a conceptu-
ally correct method was proposed for considering
electromagnetic waves in finite crystals with account
of spatial dispersion. In addition, the question of the
SBC in the vicinity of dipole and guadrupole exciton
absorption bands is considered in (8], 1t is shown
there that the SBC assumed in (7] are, generally
speaking, incorrect.

Let us consider the problem of the SBC from a
point of view that is somewhat different from that in
(7,82,83]  Wwe note first of all that when account is taken
of spatial dispersion with accuracy to terms of order
k2, away from the surface of the crystal, the polariza-
tion

D'—FE

—E=Pi(r, ) = P(r) et

in the vicinity of one selected dipole exciton absorption
band satisfies the following system of equations (see
(24,867

. . oP; 92P;
— 0*P; (r) + By, P (r) + 'Yijl—a%r) +aijlma_zlé—z(:n)—

= )"ijE 5 (1),

(3.78)
where the tensors Bij, ¥iji» @ijim, and Ajj do not de-
pend in first approximation on w and are determined
by the crystal symmetries. In nongyrotropic crystals,
vijl = 0, whereas in gyrotropic crystalsin first approxi-
mation we can put @jjjm = 0. Inthe system (3.78) the
electric field intensity E(r) appears as an external
force, in which connection E(r) should be contained
in the boundary conditions for the polarization P’(r)
(these boundary conditions are, strictly speaking, in-
deed the SBC). The general form of the boundary con-
ditions which the polarization P’(r) should satisfy in
the presence of E(r) = 0 is obviously the following
(the subscript zero corresponds to the surface of the
crystal ):

ap; ,
#\ = }“iJ'EJ' (0)’

/0

(— 0% ;4 Bi;) P; (0)+ vin (3.79)
and it is very important that the tensor B{j = Bij»
Mj = Ajj, and vij; = vjj;.* Inasmuch as the SBC serve

*Thus, in media with an inversion center, where yj; = 0, the
tensor y{jl # 0. This is connected with the fact that in the pres-
ence of a boundary surface even a nongyrotropic crystal is not
invariant against inversion. The problem of boundary conditions
and the meaning of Eq. (3.68) can be understood qualitatively by
using a one-dimensional chain of coupled oscillators as an example.
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only to establish the relations between the wave ampli-
tudes, the contribution of the terms containing deriva-
tives BPj /9x] can be neglected in (3.79) (long waves).
Therefore the SBC can be rewritten in the form

Pi(0)+ Tk, (0)=0, (3.80)

where the {ensor Fij is practically independent of the
frequency in the spectral region under consideration,
by virtue of the fact that B{. # Biie For specific crys-
tals we can determine the tensor I'jj only from the
microscopic theory. The symmetry properties of this
tensor are determined by the symmetry of the finite
crystal. Thus, for example, in the case of a uniaxial
crystal, bounded by a plane perpendicular to the op-
tical axis (the z axis), the only nonvanishing compo-~
nents are Iyyx = T'yy and [zz. In the case when the
plane bounding the crystal is parallel to the optical
axis, I'xx # Fyy =T';z. Relation (3.80) goes over into
that obtained in (3 if we put T'jj = 0, which generally
speaking is not correct. In the case of gyrotropic me-
dia, the use of (3.80) does not lead to redundant condi-
tions only if the transition ajj/m — 0 is made in the
final expressions for the amplitudes.

We note that all the SBC assumed in (5] are of the
type (3.80). We have considered above dipole transi-
tions, as manifest in the fact that the tensor A;j in
(3.78) was independent of k. For quadrupole transi-
tions Ajj = pijimKiKkm and the resultant SBC are the
conditions (3.80) with Fij replaced by a certain tensor
Tjj(w, k) = QjjimKkikm, so that when terms of order k*
are neglected we have in lieu of (3.80) the conditions

P =0, i=1,2,3.

The tensor I'jj(w,k) is equivalent within the frame-
work of the phenomenonological theory to the tensor
eij(w, k) in the sense that both these tensors are spe-
cified and only their general properties and the ex-
pressions obtained when they are used in the field
equations need to be analyzed. On the other hand, the
calculation of Tjj{w,k), like the calculation of

eij(w, k), is a problem in the microscopic theory.

We note that in the absence of new waves, the re-
finement of the boundary condition may also be of in-
terest. Thus, account of the terms of order a/A in
the microscopic calculation of the reflection of light
from a cubic lattice is equivalent to introducing a cer-
tain transition layer on the surface of the crystal (and
the appearance of the transition layer leads in turn to
deviations from the Fresnel formulas ). (8%a]

In conclusion we wish to emphasize the following.
The specific form of the SBC governs only the ratios
of the amplitudes of the different waves. The latter
feature is essential (many specific results obtained
on the basis of certain particular SBC can be found in
(7,82,88]) byt is nevertheless of secondary importance
within rather wide limits—from the point of view of an
investigation of crystals, the principal role is played
by a determination of the dispersion curves nj(w, 8)
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themselves, and not of the reflection or transmission
coefficients. In this connection we note also that the
dependence ny(w, 8), i.e., the function wy(k), can be
determined not only from crystal optics. For example,
the function wy(k) can be found by studying the com-
bination (Raman) scattering of x-rays (3], In this
case the character of the boundary conditions for the
excitons generally does not play any role at all.

Finally, we note that when solving the problem of
reflection and refraction of light on a boundary, as well
as more general electrodynamic problems, it is some-
times advantageous to use the reciprocity theorem
(see, for example, 113, Sec. 69, and [23, Sec. 29). In
the presence of an external magnetic field this theorem
is not valid in its usual form, but there is a generalized
reciprocity theorem (2], When spatial dispersion is
taken into account, both the ordinary and the general-
ized reciprocity theorems remain fully in force (21,

f) Experimental investigations of effects of spatial
dispersion in crystal optics. Let us dwell on the re-
sults of the experimental investigations of spatial dis-
persion, first in gyrotropic, and then in nongyrotropic
crystals.

Gyrotropic crystals. The problem of the nature of
the gyrotropy of crystals is far from new, for it was
already pointed out in [65:88] that one is dealing in this
case with the effect of spatial dispersion of order a/A.
Nonetheless, experimental investigations of the optical
properties of gyrotropic crystals are quite scanty. In
particular, the data are most skimpy on the frequency
dependence of the angle of rotation of the plane of po-
larization in crystals near individual absorption bands.
The only results in this respect are those of [67],
where several crystals with the symmetry of quartz
were investigated (quartz, cinnabar, benzyl). It was
shown there that in the vicinity of the investigated in-
dividual bands (with the light propagating along the
optical axis), the rotation of the plane of polarization
per unit length of light beam path in the crystal (the
specific rotation) has the following dependence on the
frequency of the light*

K, 0?

(@) = o - (3.81)

When the light propagates at an angle to the optical
axis, the circularly polarized waves are replaced by
elliptically polarized ones with different signs of rota-
tion and with different orientations of the axes of the
ellipse. In this case when the waves pass through the
crystal, a phase difference is produced in them, which
is determined not only by the gyration effect, but also
by the ordinary birefringence, which naturally com-
plicates somewhat the investigation of the rotation dis-
persion. It is shown in [$7) that in quartz with light

*The theory of the rotating ability of crystals in the visible
region of the spectrum and in the ultraviolet is developed in
[24:68.69] Thig theory permits, in particular, an interpretation of
the results of [*7],
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propagating perpendicular to the optical axis the rota~
tion dispersion also obeys a relation of the type (3.81),
but with a different coefficient K; = K.

Particular interest is attached to investigations of
the effect of gyrotropy at low temperatures, the only
time when manifestation of the fine effects of spatial
dispersion, connected in particular with the structure
of the exciton bands, etc, can be expected. We know of
only one investigation of this type [”], in which circu-
lar dichroism was investigated at helium and hydrogen
temperatures near individual absorption lines in a so-
dium uranyl acetate crystal.

For molecules in solution, the magnitude of the cir-
cular dichroism is usually small, of order a/A, where
a is the dimension of the molecule and A is the wave-
length of light, so that a/A ~ 1072—10"%, In sodium
uranyl acetate, however, the circular dichroism, i.e.,
the ratio of the difference of the coefficients of ab~
sorption of light circularly polarized in the right-hand
and left-hand directions, to their sum turned out to be
close to unity for individual lines,corresponding to
strong absorption of only one of the circularly polar-
ized waves. Inasmuch as sodium uranyl acetate con-
sists of nongyrotropic molecules, the observed phe-
nomenon is only characteristic of the crystaliine state
and is the consequence of the difference between the
structure of the exciton bands, corresponding to the
right-hand and left-hand circular polarizations of the
dipole-moment vector (see L8711y Research in this
direction is of undoubted interest.

There are still no experimental investigations of
the effects connected with new waves in gyrotropic
crystals (see Sec. 3a). In this connection it should be
noted that such research at low temperatures would be
of great interest, since the presence of three waves in
a crystal, having the same frequency and different re-
fractive indices, absorption coefficients, and polariza-
tion, can lead to the manifestation of a unique oscilla-
tory dependence of the specific rotation on the thickness
of the crystal. It would be natural here to investigate
first of all gyrotropic cubic crystals or the propagation
of waves along the optical axis in crystals of lower
symmetry (in these cases normal waves are circularly
polarized).

Nongyrotropic crystals. Experimental investigations
of optical effects connected with spatial dispersion of
the dielectric tensor were carried out with the inor-
ganic crystals Cu,OF37:4-48] anq Ccds [50-52] anq also
with organic crystals (anthracene, stilbene, and oth-
ers)[2-1], We have already mentioned (see the In-
troduction and Secs. 3c and d) the investigations of
optical anisotropy in the cubic crystal Cu,O in the
vicinity of the quadrupole absorption line, and also in-
vestigations of the external influences on the optical
properties of Cu,O and CdS.

A method for proving experimentally the existence
of additional (new or anomalous) light waves was pro-
posed in [74], The method reduces to a measurement
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of the intensity of the monochromatic light passing
through a plane parallel plate of the crystal, as a func-
tion of the thickness of the plate. The indicetion of the
existence of two waves in a crystal would be their in-
terference on leaving the crystal; this interference
should lead to oscillations in the intensity as a function
of the thickness. It is assumed here that the oscilla-
tions connected with the reflection and triple passage
of one of the waves are either insignificant or can be
suitably accounted for. :

The experimental data obtained in (4] gshow that the
absorption of light in anthracene plates in the region of
the intrinsic absorption band with maximum at wj
=25,200 cm~! at T = 20°K actually oscillates as the
thickness is varied. With this, an oscillatory depend-
ence on the distance is obtained for In I/I (I is the
intensity of the transmitted light and I; that of the in-
cident light) in the thickness region 0.05—0.3 u with a
distance (difference in plate thickness) between ab-
scissas of the maxima amounting to Ad = 0.06 u. The
oscillations were most clearly pronounced at a light
frequency w = 25,108 cm™!, The authors of [™] pro-
pose that the presence of the oscillations is evidence
of the presence of two identically polarized waves with
a difference of 6.9 in the refractive indices.

It must be noted, however, that such an interpreta-
tion of the oscillations contradicts the calculations
given in Sec. 3¢ for the absorption and dispersion
curves. Indeed, according to the data of (] and also
(33 in anthracene this transition corresponds to a
value A ~ 0.1 [see (3.12)]; such a value of A at ¢
= (w~wj)/wj~4 x10 yields n’ = - A/¢ = 25, in
accordance with (2], which gives for 6 = 1073,
£ =—-4x10"% (Fig. 5d) for the anomalous wave n, ~ 35
and k, =~ 9. Consequently, the anomalous wave practi-
cally cannot ‘‘reach’’ the second surface even when d
~ 0.1y, inasmuch as the factor exp (- 2mkd/Ag) =~ 10°6
« 1 when Ay = 0.4 u. The estimates made correspond
to |A’| =1075 Actually, however, the quantity |p’ |
is apparently (see Sec. 3b) much smaller than this
value, so that the role of the absorption increases even
further.

The source of the oscillations observed in [ is not
clear. It is possible that they may be due to the inter-
ference of a ray that has passed through the plate once
and one that has passed through the plate three times.
Another possibility is apparently an effect, not con-
trolled in [™J, due to the interference of rays reflected
from the front and rear sides of the film. If it is as-
sumed that the singly and triply transmitted rays inter-
fere and absorption is neglected, then anthracene should
have a refractive index n = Ay/2Ad ~ 3.45 (see [1475]
and below). This contradicts the value n 2 5, obtained
in [72], but this discrepancy is still not convincing,
since the relation n = A\;/2Ad is incorrect in the pres-
ence of noticeable absorption.

Analogous experiments were made in (%) with a
cuprous oxide crystal (see in this connection also the
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theoretical paper ['7]). The difference between these
experiments and those reported in [74J lies in that the
oscillations were observed in the cuprous oxide in the
region of the quadrupole exciton absorption for the
quadrupole line Ay = 61258 at T = 77°K; this line is
attributed to the ‘‘yellow’’ exciton series of Cu,0, and
is ascribed a value n = 1. The measurements were
carried out at T = 93°K, and the distance between the
abscissas of the oscillation maxima was approximately
0.2 mm, which is three orders of magnitude larger than
the period of oscillations which would occur in the case
of interference of multiply reflected waves (Ad = Ay/2n
~ 10~ mm). On the other hand, if we assume that the
observed oscillations are due in this case to the mani-
festation of the anomalous wave, we must assume that
the distance between maxima* Ad =2A;/2(n; —n,),
where n; and n, are the refractive indices of the ordi-
nary and anomalous waves. Therefore, when Ad =~ 2
x 1072 ecm and Ay~ 6 x 1075 cm, we obtain ny—n,
~1073,

In the vicinity of an isolated quadrupole resonance,
in accord with (2.14), without account of absorption, the
refractive index satisfies the equation

2 = gy (0) + E:Ij:ﬁz , (3.82)
where
'v1=‘vaz—:, p1=ll96-:—, E= m;jwj ’
with

vy ~ Wy ~ (a/hy)? ~ 1076,

It follows from (3.82) that
- 1 v 1 E v\ ? £
n%.z=—g<£+so—}k_;>i'f‘/<a+eo_é _430“_1-

When £ =0 we have #? =0 and H = ¢y—»,/u;. There-
fore, if €; is approximately equal to the ratio vy /uy,
the difference fi; —fi, can be very small. Imasmuch as
both €, and v, /p, can, generally speaking, assume in-
dependently different values for different quadrupole
lines, and also in different crystals, the small value

ny —ny =~ 1073 obtained in Cu,O is probably not char-
acteristic. In this sense a study of analogous effects

in the vicinity of other quadrupole lines is of great in-
terest. In expression (3.82), v; is in fact a certain
combination of components of a fourth-rank tensor
[see (2.24)—(2.15) and (2.33a)]. It is obvious there-
fore that vy # 0 only for waves that experience quad-

¥QObviously, we are referring here to the addition of two oscilla-
tions Acos(wt ~ wn,d/c) and Bcos(wt — wn,d/c). The time aver-
age of the square of the amplitude of the resultant oscillation is

2 2
=4 j;B —[——ABcos~2xn— (ra—ny) d;
0

When the thickness of the plate d changes by an amount Ad, the
value of I changes such that Ad = A,/2(n, - n,) for the neighboring
minima or maxima. This result changes little provided only that the
absorption is sufficiently weak.
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rupole absorption. Thus, for example, for a wave
propagating along the diagonal of a face, a new wave
in the vicinity of the exciton transition, corresponding
to the representation F,, can appear only if the vector
E is perpendicular to the plane of the face of the cube
[see (3.49) and (3.50); this indeed occurs in Cu,0 [16]),

We note that in gyrotropic crystals in the region of
quadrupole absorption, when the wave vector of the
light is directed along the optical axis, we have gener-
ally speaking

£;; (0, k) = £4;; (0) + 041 (@) Ky, [02 — o} (0)
— giky + grnkenken ]t
+ 01 (0) Ky, [0 — of (0) + giky 4 gnakipkn] 1.

It follows therefore that an equation of the type (3.82)
can have in a definite frequency region not two but
three solutions. Therefore a study of the dispersion
of waves in the region of quadrupole absorption lines
in gyrotropic crystals may also turn out to be quite
promising.

In conclusion we note that an attempt to observe
oscillations in the intensity of the transmitted light
was undertaken also in ['8]. However, no phenomena
that could not be explained on the basis of ordinary
crystal optics were observed.

In order to disclose the role of spatial dispersion
under certain conditions we can use the dispersion re-
lations. Thus, for an optically isotropic medium in the
absence of spatial dispersion and of an external mag-
netic field, the dispersion relations (1.12) have the form
2 Sme (0’) do _g;gsgf?l;idm,.

0 (1.12a)

g(0)—l=F \—n—g - &(@)=

On the other hand, under the conditions discussed here
we have

gy = gy + igg = (B 4 i)

Therefore, substituting in (1.12a) the experimentally
obtained values of €; =n?—«? and €{ = 2nk, we can
verify whether these relations between €, €, and n
and k are correct or not [in the presence of spatial
dispersion the formulas €y w) = n?—«2 and eg(w)

= 2nk are of course no longer valid; see, for example,
formula (1.29) for transverse waves in an isotropic
medium]. An attempt to disclose the role of spatial
dispersion by this method was undertaken in (3], For
several crystals at low temperatures, it was observed
that relations of type (1.12a), which do not take spatial
dispersion into account, are violated, and that these
violations gradually disappeared with increasing tem-
perature. It is obvious that these investigations should
be continued.

We note also the possibility of observing anomalous
waves by exciting them with charged particles [57],
and also the possibility indicated in (803 of investigat-
ing the law of dispersion of light waves (excitons) in
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crystals by studying the angular dependence of x-rays
inelastically scattered by a crystal, and accompanying
the excitation of excitons. With this, we refer here
primarily to excitons connected with the predominant
excitation of electrons. As regards excitons with which
the lattice vibrations are essentially connected, these
can be investigated also by using neutron scattering
and a few other methods.

4. CALCULATION OF THE TENSOR ¢jj(w,k) BY
QUANTUM MECHANICAL METHODS

a) Quantum mechanical expression for eij(w, k).
Calculation of the tensor €jj(w,k) for a crystal or for
any of its models is a problem in microscopic theory.
For ionic crystals, such a theory was developed in the
infrared portion of the spectrum long ago (it is de-
scribed in detail in [2]; see also [17J). Along with it,
several important methodological factors were clari-
fied, with a bearing on crystals of arbitrary nature.

In particular, with ionic crystals as an example, the
question was considered of the dependence of the fre-
quencies of the normal oscillations (waves) on the
direction of the wave vector k as k — 0. It was shown,
for example, that when full account is taken of the Cou-
lomb interaction, but retardation is neglected, the fre-
quencies of the normal oscillations can be non-analytic
functions of k (as k — 0). In this connection it must
be noted that within the scope of a general investigation
of such problems, the consideration of the Heitler~
London model of the crystal [(%3:%] introduces nothing
new. It is sufficient to state that in the calculation of
the energy of the excitons in such a model, sums of
dipole-dipole, dipole-quadrupole, and other terms
arise (see, for example, [43]), the dependence of
which on k was already considered before (see [12],
Sec. 30, and also [%%%]) We leave alone the fact that
many factors are utterly unnecessary in the micro-
scopic analysis, since the corresponding deductions
follow directly from the field equations and from the
existence of the tensor eij(w, k). By way of an ex-
ample we can point to relation (1.35) and (1.39), from
which the dependence of the frequency of the ‘‘ficti-
tious’” longitudinal waves w|| on the direction of k

as k — 0 is obvious. We have already essentially
dwelt on all these factors in the introduction to this
article.

Let us therefore proceed directly to a derivation,
by quantum mechanical means, of a general expression
for eij(w, k). The corresponding procedure is well
known and consists of finding the density of the current
induced by an external classical electromagnetic field.
It is convenient in this case to choose a gauge for the
potentials, in which the scalar potential of the perturb-
ing field is equal to zero, and thus

1 98A
E=—7 ot

where 6A is the vector potential of the field, induced

V. M. AGRANOVICH and V. L. GINZBURG

in the medium by the external sources. The vector
potential of the total field E + E; will be denoted by
A# + 6A (E# is the microscopic field existing in the
medium even when E = 0). We denote further by
Tno(r,t) the wave functions of the medium in the ab-
sence of or disregarding the field E, and by ¥y = ¥y,
+ 8¥n the corresponding functions in the presence of a
field E. The operator of the interaction between the
charges in the external field is, in the linear approxi-
mation,

U= — 3 52 (P%A(rq, 1)+ 0A (o, 1) P,

[

where r. is the radius vector of the «-th particle
with charge ey and mass mg, while ), denotes

7]
summation over all particles of the crystal and
A ] e
Pr= —zha—r—;—Ta Ay (Tas 1),
Putting [see (1.40)]
6A — __;_(cu [Eoei(kr——mt) — E:e—i(krfmt)]’
we find that
U= Fe—iot Geiot,
where
(k)
A e,
Mk =—> s |
[v4

Therefore, using perturbation theory, we obtain in
first approximation (see [45])

V=Yoo — 2 {h(o'?:.en
where

Frn= S ‘{f:nOiﬂFno dt, ho,, =W, —W, =i (0, —a,),

=G* (k)= — o= M (K) E,

paeikra + eikrapa} . (4' 1)

Frme'®

T (Omn+w)

} \Fmo - \Fno + 61?7”

(W —eigenvalue of the energy corresponding to the
function ¥4yy). The mean value of the current density
in the state ¥, is

2m {

—i—é(r——ra)[ zhﬁ-——A(rm ]}
where

(e )= <1F*

lh—————-A(l‘a, )] d(r—rg)

n/7

¥10|¥,) = g ¥:0¥, dv, dv =dr, ... dry.
In the linear approximation the mean value of the den-
sity of the current 6j® induced by the field E has the
form

€ A
sjr =< ows o (B0 (= o) +8(r —xa) % W >
+¥% ﬁ: {978 (r — va) + 8 (r — o) PO} | 8, >
eﬁ
—{wt s 8 (r — 1) 8A (1, ) \ LAY .2)
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Before we proceed to the Fourier components of the
current density, let us indicate the selection rules for
an.

Inasmuch as the wave functions ¥,y have the sym-
metry of the irreducible representations of the crystal
space group, action on the wave function ¥y, by the
operator ’f‘a of the translation of all the electron coor-
dinates by a whole-number lattice vector a leads to
the following result:

T _ —iq_a
Ta¥, o=2e"m"W o

where the vector q,, determines the corresponding ir-
reducible representation of the translation subgroup
(see, for example, [42]),

According to (4.1)

TaM (k) = exaM (k), 4.3)

by virtue of which we reach the conclusion that the
matrix elements Mmn(k), and consequently Fmn(k)
differ from zero only if q, = q, —k + 27b; the matrix
elements Mpm(k) and Fppy(k) differ from zero if
AQm =4 + k + 27b, where b is an arbitrary whole-
number reciprocal lattice vector. Taking the fore-
going into account and using the expression

Sle—r)= B M,
=

where V is the volume of the crystal, we obtain from

4.2)

7 (ko) = X 0@ b (0, k) E; (k + 27b, o). 4.4)
b

In the derivation of (4.4) the essential factor, of course,

are the foregoing selection rules for the matrix ele-

ments of the operator M(k’), by virtue of which, for

example,

(W

N PO IUTTRS
22—”(::{1)0‘8 1kra+e ik "ocPO‘} 6‘If"> -0,
3

provided only
k' = 4+ k|- 2xb.

As a result we find that the tensor* is
kiéi]- egc i
Vo 2 my, v + g )

[o2 m¥FEn

et
/xmam‘5

ol (0, k)=

)mn

o ~i’l:ra —i’l}’ra o . .

% {(Pie +e ‘Pi)nm (P]ﬂelkl‘ﬁ + elkrﬁ P?

o T on
—ikr, —ikr, ikr ikr

(PR e TP (PR ﬁP?)m}’

-+ 0,0,

(4.4a)

where k =k + 27b, dg=1, 9=0; 63=0, q = 0.
Knowing the conductivity tensor, we can also deter-
mine the dielectric tensor, using the relation

*From this relation it follows directly that the components of
the tensor of§” b Jecrease with increasing |b| like Fourier com-
ponents of a smooth function.
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e (0, k) =8, +1 X o (0, k). (4.4b)

»

Thus, relation (4.4) is equivalent to a relation of the
type (2.4). By definition, the tensor ¢j; relates the
vector D’ with the macroscopic electric field E, which
is contained in Maxwell’s equations (1.1). Therefore,
in using expressions (4.4) and (4.4b), we should take E
to mean the macroscopic field. In this case, conse-
quently, in the calculation of the frequencies and of the
wave functions of the mechanical excitons, it is neces-
sary to take into account also that part of the interac-
tion, which is related with the difference between the
field E and the so-called effective field Eg (in the
simplest case of point-like dipoles, located at the
points of a cubic lattice we have, as is well known,

Eg =E +47P/3). On the other hand, if we take E in
expressions (4.1) and (4.4) to mean the effective field
Eg, we obtain a relation between D’ and Eg. The fre-
quencies and wave functions of the mechanical excitons
must then be calculated in a manner different from that
in the preceding case (that is, without account of the
polarization correction of the type 47P/3). It must be
emphasized that by calculating the characteristics of
the mechanical excitons with account of the polariza-
tion correction, we take into consideration by the same
token, to some extent, also a certain portion of the
long-wave field.* This circumstance, however, does
not lead to a non-analytic dependence of the mechani-
cal-exciton frequencies on k.

Above the frequencies of the mechanical excitons,
wm are assumed to be real and it is assumed that the
denominators in (4.4a) do not vanish. In other words,
no absorption was considered here (see Sec. 4c). By
virtue of the statements made in Sec. 2a, we shall take
into consideration in (4.4) only the term with b =0. In
addition, inasmuch as we are not interested here in the
infrared region of the spectrum, we disregard the con-
tribution to the tensor ojj by the direct interaction be-
tween the ions and the field of the electromagnetic wave
[this means that in expression (4.4a) the mass m,, is
assumed to be infinite for ions]. Under these assump-
tions, the tensor €M (w,k) for the ground state (n = 0)
of a non-conducting crystal assumes the form

g 4N et
iy (0 ) =0 (1 — ::;ng—hzgv
Mip (—K) Mg (k) Mg (—k) Minm (K)
XZ{ : m-m,,:no : m+ﬁ),: ’ 4.5)

where N, is the total concentration of the electrons.
We note that the second order pole at w = 0 in the ex-
pression for ¢jj(w, k) is only illusory, since by using
the sum rule it can be eliminated. (see [%J), Since the
region of small w is of no interest to us here, we shall
not eliminate the pole at w = 0.

*In this sense the difference between the real and mechanical
exciton consists precisely of an account or failure to account for
the microscopic field E in the equations of motion (see also [“],
Sec. 30).
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In the ground state of a dielectric, the quasimomen-~
tum is zero, since the wave function of this state is in-
variant under all crystal symmetry operations. On the
other hand, we note that we are interested here in the
contribution made to the dielectric tensor of the crystal
by the presence of exciton states only. These states,
as is well known, (see, for example, F57:58J) are char-
acterized by a single continuous quantum number—the
quasimomentum q, and also, generally speaking, by a
set of discrete quantum numbers s. Therefore

Wmo(rlv Tgy -« .)E‘qu(rl, Toy v -),
with [see also (3)]

TaWg=e—ia W, (4.6)

If the vector q is chosen within the fundamental recip-
rocal lattice cell, then at small |k| we can readily
verify that

Mo (k) = Mg, o (k) = Mg, 0 (k) 81,

b (k) = M§, o (k) = M§; 1o (k) g 4.7
Using (4.7) we find on the basis of (4.5) that
4reN 4c?
g;; (@, k) =10 <1 - J:rfmzo)— Thes
\ MiO; —-ks(——k) Mj.ks; (k) Mli(s; 0 (—k) M‘(i), ks.(k)
x 2 { 0—w; (—K) 0T 0 (1) }'(4 8)

In the vicinity of the isolated s-th absorption line, the
change in the tensor ¢jj(w, k) with the frequency w

is determined essentially by one of the resonant terms
in the dispersion formula (4.8). In this case we have
approximately

4nic?

&;; (0, k) =&’ (0) — 37

% {‘ME}; ~ks{—K) Miks; O(k)_ Mis; 0 (_k)M‘(i); ks (K)

oo, (1) oTa ) @8a)

where e{_‘i”(w) is a smooth function of w in the fre-
quency interval under consideration. For those exci-
ton states (q,s), the wave functions of which trans-
form when g = 0 like the components of a polar vector,
the matrix elements Mjg;o(0), i=1,2,3 (atleast
some of them ) differ from zero. I is clear that only
these exciton states (we previously called them dipole
exciton states) contribute to the dielectric tensor
without account of spatial dispersion. Inasmuch as in
this case

i s @, (0) A7 N
03;0(0)~l_c‘—‘VNDaO:0a

where Diso;o is the matrix element of the dipole mo-
ment operator of the unit cell of the crystal and N is
the number of unit cells in the fundamental volume of
the crystal, we have

4 4me2 N, 3n D:); 0s (0 D%s; 0 0
e, (0.0)= (1= 557 ) 8y “oet 2 e—eie 4O

(4.8b)
where Q is the volume of the unit cell of the crystal.
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Accordingly, in place of (4.8a) we have in this case

8n ‘D(i); 0s (0 Dgls; ¢ (0

oF prm——TO) (4.8¢c)

€ (0, 0) ==& (0) — o, (0).
Among the other exciton states, it is convenient to
separate the quadrupole exciton states, the wave func-
tions of which transform when q = 0 like the products
of the components of two polar vectors. Similar to
what was done in [34], it can be shown that for such
states, in the first approximation in k, we get
3
Migo(k)= — i D\ <0, s|(PHF+riPH) 0> k. (4.9)
=1
The difference between (4.9) and the analogous equa-
tion in [34] is that (4.9) was derived for the wave func-
tions of ‘‘mechanical’’ and not ‘‘Coulomb’’ excitons,
the wave functions of which, generally speaking, are
non-analytically dependent on the quasimomentum,
something not taken into consideration in [3], Taking
the notation (3.33b) into account, we find that*

My, _yo(—Kk) Mgy o (k)
3
> (074,05 (05 [T, 10) by,

1, m=1i
. 3
=—gom 2 {(0]T;]0s)(0s

i, m=1

€2
- 4m2c?

i) 0)

+ (0T, 10s) (0s | T}, 0)) Kk .

If the frequency is w ~ wg(0), the main contribution
to the sum (4.8) is made by the s-th term, which is
proportional to [w—-w®1~!. Since the exciton term
hwg(0) may be degenerate (s = sy, 8;,...), wWe arrive
at the relation (3.43), which we have already used be-
fore.

In connection with the foregoing calculation of
€jj{w, k), we make one remark which, incidentally,
pertains to the very introduction of this quantity, and
could therefore be made even in Sec. 1. The tensor
eij(w, k), by definition, establishes the connection be-
tween the harmonic fields D and E:

Dy (rt) =D, (ko) elr-oh = ¢, (o, k) E;(r, 1)

= gy; (0, k) E; (k, o) eilkr—0D, (4.10)

But if we consider waves in a medium, then by virtue
of the field equation w = w(k), and thus w and k can-
not be regarded as independent variables. On the other
hand, if w and k are related, then the tensor eij(w,k)
depends only on w and it is not clear what constitutes
the spatial dispersion. The answer frequently given to
this question is as follows. Equations (1.17) and (1.18)

*We note that in Chapt. 5 of [*] the tensor €;;(w, k) was incor-
rectly expanded in a series in powers of k, for no account was
taken of the dependence of the wave functions of the excited states
of the crystal on the quasimomentum.
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are obtained only by starting from equations (1.1) or
(1.14) for the free field, equations which are valid if
there are no extraneous current and charge densities
jo and p;. On the other hand, in the presence of ex-
traneous current and charge, the field E(r,t) is de-
fined by the quantities jJy(r,t) and py(r,t). In partic-
ular, j, and p can be chosen such that the field has
the form

E (r,t) = E(k,0) ¢¥kr—ot
with some values of w and k which are not related at
all (by way of a simple example we point to the obvi-
ous possibility of producing a static electric field with
arbitrary k by means of a system of external charges).
The tensor eij(w, k) then defines D’(k,w) in terms of
E(k,w) and is a function of the independent variables
w and k.

b) Mechanical excitons and the tensor eij( w,k) in
molecular crystals and in the case of the classical os-
cillator model. To calculate the tensor eij(w, k) itis
obviously necessary to know the wave functions ¥y,
and the eigenvalues of the energy Wy, for mechanical
excitons. With this, in accordance with the statements
made in the Introduction and in Sec. 4a, the excited
states, called mechanical excitons, correspond to a
solution of the problem without account of the action
of the macroscopic (long-wave) field.

Let us develop here a theory for mechanical exci-
tons in the case of molecular crystals in the fixed-
molecule approximation.

We note that the Heitler-London approximation can
be used for this purpose only when the interaction be-
tween molecules is sufficiently weak. Actually, we en-
counter a whole series of molecular crystals, where
the oscillator strengths are large, and the interaction
between the molecules cannot be regarded as weak in
many spectral regions (although this interaction does
not lead to violation of the neutrality of individual mole-
cules, it does cause an intense mixing of the electron
configurations). The corresponding theory, without
use of the Heitler-London approximation, was devel -
oped in L2, For the sake of simplicity, however, we
use here the Heitler-London method, since the results
obtained below can be made more exact in a manner
similar to that used in [62J,

Let us assume that the elementary crystal cell con-
tains o molecules. The Hamiltonian of the complete
Coulomb problem is

H= ZHer— > Voo, mps
no~ mp

(4.11)

where n and m are whole—number sites of the crystal
lattice; a, 8 =1, 2, , O3 Hnoz is the Hamiltonian of
the molecule (n, oz), and Vnoz ,mp is the operator of
the Coulomb interaction between the molecules no
and mpB. In the construction of the wave functions of
the ground and excited states of the crystal, we shall
disregard the intermolecular electron exchange, since
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in the region of the lower excited states this exchange
does not play any appreciable role, We introduce func-
tions ¢ne which are normalized and antisymmetrized
over all the coordinates

i{naq’ﬁa = E(j, (P{xa 4. 12)

(here f =0 corresponds to one state of the molecule:
in the case when the molecular term is degenerate, the
index f should be regarded as compound: f — (f,r),
r=1,2,...,t, where t is the multiplicity of the de-
generacy ).

In the Heitler-London approximation the wave func-
tion of the ground state of the crystal is

@y =[] ¢ha (4.13)
no

while for the excited state we have

=3 arxir, “4.14)
na, r
where
tr=0m 1] o (4.15)
mf+ na

The energy of the ground state is Eg = é‘l’o’ H‘I’o) Min-
imizing H = (<I> fef) over the set {anr } subject to
the additional condition

n%lafllezz 1’

we find that the quantities agra satisfy the system of
equations
N Mg wothmg—al=0, ¢ =E—E,—A,, (4.16)
mp+ no

where A¢= E}-E} is the excitation energy of the iso-

lated molecule

* * A ,
Mmﬁ no = S ‘P{lrx» @mgV na, mB‘Pgm(Pgﬁ dr. (4.17)
From considerations of translational symmetry it is
clear that

fr —
na

(4.18)

1 —i
S o () e,
where N is the total number of cells in the fundamen-
tal volume. Consequently we obtain in place of (4.16)

2
BF

where the prime on the summation sign denotes that
the term n =m, « =p has been left out

b (k) af’” (k) —elaf (k) = 4.19)

TR (k) = 3 Mgy g e b0 (4.20)
1t follows from (4.19) that the values of the excitation
energy are in the complete Coulomb problem the eigen-
values of the Hermitian matrix Tjj(k), while the

numbers
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are the corresponding components of the eigenvectors.

To change over to the mechanical exciton problem,
let us separate from the interaction matrix f'(k) the
interaction due to the long-wave macroscopic field
(we are essentially interested only in the region of
small values of |k|; it is precisely for these values
of the wave vector that the Ewald procedure employed
leads to the separation of the long-wave field).

To this end, we represent the interaction operator
between molecules (na) and (mg) in the form of the
sum

f/na, mg = V,Eu, mp -+ Vo, mgs 4.21)

where the index I denotes the operator of dipole-
dipole interaction between molecules, while II denotes
the sum of the interaction operators of higher multi-
polarity. Analogously, by virtue of (4.17) and (4.20)
we have

MEE ne=Muf v+ M ne (4.22)
Thy' (k) = Tpa™ (k) + The"™ (k). (4.23)

The dipole-dipole interaction operator is
1 1

7 —
I ne, mf = Tm
P 1 o
(PP — e (P Yo = Yo) (P Y~ )
(4.24)

where ﬁna is the dipole-moment operator of the (na)
molecule. Therefore, using also (4.17), we find that

TH 7 (k) — — PO"ERd” g (K) €0, (4.25)
where
P =\ GhPaapho d, (4.26)
. , ~ik(rmﬂ4rna)
70 o e
E“a, P (k) - Z I Tna ™ Tmg 12
7 §0 Tnoe ™ Fmp r*
X {Pﬁ —_‘rnon'rmﬁ 12 (Pﬁ /Ovrnq—rmﬁ)}. (4.27)
From the form of (4.27) it is clear that E;f{)a,ﬁ(k) is

the electric field at the point r = rp,, produced by the
dipoles situated in the lattice sites of the type B, with
the magnitude of the dipoles varying from site to site
as

P (mf) = P %™ "rms, (4.28)

Inasmuch as the operation of separation of the macro-
scopic part of the field from the total field (4.27) is
described in detail in [12)] sec. 30, we give here only
‘the final result:
[Brdls (W)= By Te~*e 1 e~ 3% 0,5 ( K ) PO, (4.29)
7'/

where E}‘If is the amplitude of the macroscopic part
of the field e-1kr
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The coefficients Qjj’ ( akB) for a specified value of

the wave vector k are determined only by the struc-
ture of the cell [their form is determined by formula
(3.31) in the book [2J], What is essential is that the

coefficients Qjj’ ( akﬁ> are when k = 0 analytic func-

tions of the wave vector, so that the entire non-~analy-
ticity of the sum (4.27) is concentrated in (4.30). The

coefficients Qjj ( Olkﬁ) satisfy the following relations:

Qi (akﬁ> =0Qy;j (al;, ) ) (4.31)
Qi (;k> = Q3 (;E) . (4.32)
o ()= (55 - (4.33)

Omitting in (4.29) the first term in the right half of the
equation, we see that part of the interaction matrix
rl a(k) has in the mechanical exciton problem the
following form

T = =2 (o) PIRRS. 439

7’ :

Thus, the complete interaction matrix in the mechani-
cal exciton problem, unlike the interaction matrix in
the problem where the Coulomb interaction is fully
accounted for, is an analytic function of the wave vec-
tor, with

Tap (k) = Flp (k) + TG (K).

k is clear that in the problem of the mechanical exci-
ton the relation (4.18) also holds true, but the ampli-
tudes axo'lf(k) satisfy, unlike (4.19), the system of
equations

(4.35)

D Tod/ (k) ap” (k) —¢ 2 (k) =0. 4.36)
BFo

For each k the operator Fi(k) has ot eigenvalues
E',f, u=1,2,...,0t. The corresponding orthonormal -

ized eigenvectors will be denoted by { Mi}. Itis

clear that in the approximation considered here the
discrete quantum number is s = (f, u). In crystals
containing one molecule per unit cell, the f-th non-
degenerate molecular term corresponds to only one
exciton band. In this case

o =T, (k),
@ =1. (4.37)
In more complicated crystals, containing for example
two molecules per unit cell, the values of E‘E, n=1,2,
are determined as roots of the equation (the molecu-
lar term is assumed nondegenerate )

(T, (k) &) (T, (k) — &) = TL,T], = 0. (4.38)

Using the relations (4.25), (4.29), and (4.30), and also
taking into account the analyticity of the coefficients
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Qjj’ (akﬂ) as k — 0, we can readily verify that
f‘{l(O) = 'f‘gz(O), whereas Ffi(k)lk—»o = I‘gz(k)lk_,o.

It is precisely by virtue of this that the molecular
term f corresponds when k = 0 to the two mechani-
cal exciton states, for which

€ (0)=T7,(0)+ T, (0), &l(0)=
& (0)= a<0>~a<0>—7

Knowledge of the wave functions of the mechanical ex-
citons makes it possible to represent all the quantities
in the expression for the dielectric tensor directly in
terms of the characteristics of the individual mole-
cules. Using (4.13) and (4.14), and also (4.2), we can
readily show that

# az (0) = ——E '
(4.39)

T, (0~ T, (0),

V‘/ MO —ks (k = Z
x \ ¢la 2 (Pie™ v + oMW pY) gl dr,
vena
.l/a ]WO 7ks za

x \ o 3 (P”e;‘“°”+e~*k°wz> @, 4%, (4.40)

vENQ
where v is the number of the electron belonging to the
molecule no and p, is the radius vector of this elec-
tron relative to the lattice site rp,. As regards the
frequencies wg(k) contained in (4.8), these frequen-
cies, in accord with (4.16), are determined in the
Heitler-London approximation by the relation

o, (k)= @l () = - [Bo+ A+ (W) (@4.41)
The molecular crystal model considered above includes
as a limiting case the classical model of a crystal with
point dipoles at its sites.

In order to verify the correctness of the foregoing
remark, we must recognize that the crystal has along
with the lattice constant a also a whole set of param-
eters aj, equal to the effective dimensions of the atoms
and molecules in different states. The values of a; de-
termine the matrix elements for different multipole
(dipole, quadrupole, etc) transitions. In place of the
parameters a and aj we can therefore use a and the
values of certain effective multipole moments (more
accurately, their matrix elements), assuming these
multipoles to be point like and located at the lattice
sites. In the vicinity of the intense dipole lines we can
confine ourselves only to the dipole moments, so that
we arrive at a model of a crystal consisting of point-
like dipoles. With this, the only interaction present is
the dipole-dipole interaction, so that I‘H( k) =0 and
by virtue of (4.35)

Thg (k) = Tog (K).
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Along with this, (4.40) is replaced by the following
relations

V“ M e (— k):%M’;ks;o(k)

i 1 r/u(
“va

ar

k) o} ( —k) P,

where Paf- is the j-th component of the r-th dipole
moment, located at a type-« site. We assume, for
example, that the Bravais lattice of the crystal is
cubic and that there is one isotropic molecule per

unit cell. In such a molecule, the excited states to
which transitions are allowed in the dipole approxima-
tion are triply degenerate. We choose the correspond—
ing three wave functions such that the vectors Pr

r =1, 2,3, are directed along the cube axes. In thls
case, obviously,

1/— Mi oo (k)= — %Mé”‘“(* k)= 57g ok (0™ (19 P
But then
% st 0 ()M, ek (— k)

— el (— WP et (— k)it (— k) PYP

= 5 [oh (— )]s (— Ky ain (— k) P},

If we neglect the anisotropy of the effective mass of
mechanical excitons, then accurate to terms ~ k2
of (k) = o} (k) = of (k) = v, (k).

In this approximation, for the model under considera-
tion, the dielectric tensor

g;; (0, k)= 8,8 (0, k)
_ 4etN, 8n Plef ()
- {1 T T met T el 2’ o0 —w} (k)
7

reduces to a scalar.* A similar expression for the
dielectric tensor, but with wg = const, follows also
from (%], where an analogous model was used but
spatial dispersion was disregarded. In our model the
refractive index for the transverse waves is obviously
n = [e(w, wn/c)I'”2, The normal waves in any direc-
tion are either longitudinal or transverse. The fre-
quencies of the transverse waves, disregarding re-
tardation, that is, the frequencies of the ‘‘polariza-
tion waves’’ (see Introduction and Sec. 1), correspond
to the poles of e(w, k), whereas at the frequencies of
the longitudinal waves e(w, k) vanishes.

As was already indicated in Sec. 1c, to calculate
the refractive indices of light one can also use the

*In the derivation of this formula it must be taken into account
that

31t (k) ot (k) = ;.
m
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tensor * el,ij(w, k), with the aid of which the trans-
verse induction vector D’ is expressed in terms of
the transverse part of the electric field intensity E;.1
The tensor ¢ jj(w,k) can be obtained on the basis

of (1.66) and the expression for the tensor eij(w, k).
However, it is simpler to find an expression for this
tensor by using as the system of unperturbed functions
the functions of the complete Coulomb problem (with-
out account of retardation), and by using for the per-
turbation the transverse part of the electric field. In
this case, in complete analogy with the tensor Gij( w,k),
the tensor € L,ij(w, k) is obtained directly as an expan-
sion in terms of the poles. It must be borne in mind
here that both in the derivation presented here for
eij(w, k), and in the derivation of the expression for

€ jj (see [25]y 5 certain transverse part of the effec-
tive field is disregarded (see U121, Sec. 44). As al-
ready indicated in Sec. 4a, the difference between the
effective and the macroscopic field should be taken into
consideration in the mechanical exciton problem. The
Ewald method, which we have used earlier, enables us
to separate only the longitudinal part of this field. As
to the transverse part of the effective field, it is con-
nected with the retarded interaction in a bounded re-
gion. So long as the time necessary to cover this dis-
tance with the velocity of light ¢ is small compared
with the period of the oscillations under consideration,
the transverse part of the internal field can be neg-
lected in nonmagnetic crystals. For distances on the
order of 1078—10"7 cm, the required time is approxi-
mately 10717 sec, whereas the oscillation period in the
visible part of the spectrum is of the order of 10715
sec. Thus, it is not clear a priori whether the contri-
bution of the transverse part of the internal field can
be neglected in a theory that takes into account spatial
dispersion the magnitude of which is also connected
with the small parameter a/A = 1073, This entire
problem is not fully understood and apparently needs
special analysis. We note, however, that in the micro-

*It follows from (1.58) that the determinant of the matrix 75;;
vanishes, and consequently [see (1.57)] the determinant of the
matrix €]!;; also vanishes. It is easy to see, for example, that in
a coordinate system where the z axis is directed along the vector
k, all the components of the tensor €f’;; for which at least one of
of the indices, i or j, corresponds to the z axis, vanish. This
tensor can therefore be regarded as a tensor in two-dimensional
space, that is, as E_L"'laﬁ, a, B =x,y. The tensor € .4, introduced
in (1.61), is the inverse of the tensor €3 in the same two-dimen-
sional space: € 43 EE}II = 8q4q’, SO that the indices i and j in
(1.61) can assume only the values x and y (this was unfortunately not
emphasized in Part I). It is clear that in three-dimensional space
the tensor €, ,;; has a structure similar to that possessed by the
tensor eI}i,-, and is not the reciprocal of the tensor eI" ;; simply
because the latter does not exist at all, since [ er?y || =0.

1t is precisely for this reason that the tensor €, j; is not suit-
able for an analysis of the energy losses of a charge moving in a
medium, since the electric field of the charge acting on the crystal
does not satisfy the condition divD’ = 0.
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scopic theory[5] these difficulties do not arise. Within
the framework of this theory the dispersion of the elec-
tromagnetic waves in crystals can be developed with
any degree of accuracy.

In conclusion we present the general formula for
the refractive index of light in a crystal (%, which
could be obtained by substituting in (1.66) an expres-
sion for eij(w, k) and then representing the tensor
fJ_,ij( w, k) in the form of an expansion in terms of the
poles. Accurate to small quantities proportional to
(a/A)?%, we have in crystals with an inversion center

g1 m*‘)"‘eI {(s) sin? @ (s, s)
a0 8)=1—g X e e

8

1 o}F, (s) (cos? @, (s, k) —cos? @, (s, 9)) ) 2
if{[z o' — Q2 (k) J

o — i) (4.42)

+4 [2 @3F, (s) cos @ (s, K) cos g (s, k)]z}l/n ,
8

where w% is the square of the plasma frequency,
Qg(k) = Eg(k)/h, and Eg(k) is the energy of the
Coulomb exciton* in the s-th band with complete ac-
count of the Coulomb interaction, ¢(s,8) is the angle
between the vector 8 and the dipole moment vector
Dy;gs of the transition from the ground state (0) into
the state with the exciton (0,s); furthermore ¢j(s,k)
with i =1,2 is the angle between the vector Dy 45 and
the two unit vectors perpendicular to k. In (4.42) spa-
tial dispersion is taken into account only in the reso-
nant denominators, which is sufficient in the analysis
of spatial-dispersion effects in the vicinity of the di-
pole exciton absorption bands. Formula (4.42) enables
us to analyze the dependence of n? on the direction of
light propagation in the crystal and can be used to de~
termine the direction of the transition vector Dy, in
an experimental study of the function n?(w,s). Thus,
for example, in the vicinity of an isolated exciton tran-
sition we have
3F (s)

m(0, ) ="~ oy

sin? @ (s),

n} (o, s) =&, (4.42a)

The equations (4.42a) can, of course, be established
directly on the basis of (1.33) and (4.8a, ¢) provided

we neglect the nondiagonal elements of the tensor
eﬁ”(w) and assume that eﬁ”(w) = €(°)(w)6ij. Indeed,
in this case the approximate expression for the dielec-
tric tensor has the symmetry of this tensor in a uni-
axial crystal, with

81| Dy; o, 1?

—_ o(® — (0 __
g =89, g, =¢ T @ — eI () o, (0).

Hence, bearing in mind (1.31), we find directly that for

*A Coulomb exciton is one corresponding to the exact solution
of the Coulomb problem. In accordance with the terminology pre-
viously exmployed, Coulomb excitons are longitudinal and *‘ficti~
tious”’ longitudinal waves, and also ‘‘polarization waves.,”’
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a wave polarized perpendicular to the vector Dy,og we
have n® = nf = €9 whereas for a wave polarized in the
plane formed by the vectors s and D{i}g
8nl Do; 0s 12 05 (Q) sin? @ (s)

Qh (02— wi (0))

Analogously, we can obtain from (4.42) expressions
for n?(w,8) in such spectral regions where not one but
several exciton transitions appear. It should be borne
in mind here that the dependence of the frequencies
©5(q) on q for small |q| can be readily established
provided the tensor eij(w, q) is known. In the simplest
case, when it is sufficient to consider one of the me-
chanical exciton bands which are not degenerate when
q = 0 in the investigated spectral region, we find by
using (1.39) and (4.8a, c) that*

Q2 (k) = @} (k) + f, (k) cos® g,

where ¢ is the angle between the vectors Dy.,g(k)
and s, while fg(k) = (87/Ah)| D |2ws(k). If not one
but several mechanical exciton bands must be taken
into consideration in the expression for €ij, the angu-
lar dependence of Q(s) becomes more complicated.

In some cases it is interesting to know not only the
angular dependence of Q(k) when k = 0, but also the
form of the Coulomb exciton band for small |k|. In
the case of dipole exciton bands it is necessary to use
the expansion

nt=nd=ge"—

(4.43)

eif (o, q) = &i (@, 0) + By j1mT1%m: (4.44)

and then determine the frequencies Qu(q) from equa-
tion (1.60), which is obtained by equating to zero the
determinant of the tensor Hé Y w,k)7.1

¢) Absorption mechanism and calculations. The
damping of electromagnetic waves in crystals is con-
nected primarily with the possibility of irreversible
transier of energy from the waves under consideration
to other degrees of freedom. In non-metals, the ab-
sorption of electromagnetic waves in the visible portion
of the spectrum and in the ultraviolet is due essentially
to the conversion of the electron excitation energy into
vibration energy of the crystal lattice nuclei (see, for
example, [43]), The possibility of this process causes
the states of the photon in the medium (the real exci-
ton) to become quasistationary, and the tensor eij(w, k)
to become non-Hermitian even for real w and k. The
dielectric tensor in the presence of absorption has been
calculated for several particular crystal models, with
and without account of spatial dispersion, in several
papers (see, for example, (87] ). The procedure for
determining this tensor is quite analogous to that de-
veloped in Sec. 4a, and the main difference arises only

*One must not forget that as k + 0 the values of wg(k) and
f.(k) are independent of the direction s.

T We note that this procedure of determining the dependence
)(s), and also the form of the exciton band at small values of the
wave vector, holds true regardless of whether the exciton is of
the Frenkel type or of the Mott type.
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in connection with the fact that when the lattice vibra-
tions are taken into account the state of the crystal is
characterized not only by the state of the electrons,
but also by the state of the nuclear motion.

The need to take into account not only electron mo-
tion but also the motion of the crystal nuclei, generally
speaking, complicates appreciably the problem of find-
ing the stationary states of the unperturbed problem
(that is, the problem in which retardation and the
macroscopic electric field are disregarded). By far
not all aspects of the theory of absorption of light in
crystals have been studied in sufficient detail, and the
theory needs to be discussed. However, in the present
article we are unable to do so. We therefore present
only a few remarks and assume that the stationary
states of the unperturbed problem are known, at least
approximately.* Under this assumption, the calculation
of the current induced by the external electromagnetic
field enables us to obtain an expression for the dielec-
tric tensor, similar to (4.5). The corresponding expres-
sion must also be averaged over the possible initial
states of the unperturbed system, that is, in practice
over the initial phonon distribution function (for a
particular model of a molecular crystal see the de-
tailed discussion in [87J).

The picture is particularly simple in the case of
weak coupling between the excitons and the photons,
when in the initial (zeroth) approximation the trans-
verse electromagnetic field can be regarded to be the
same as in vacuum. This means that the normal waves
of the unperturbed problem are photons in vacuum, with
a dispersion lawT w = k¢ = 2mc/Ay, Coulomb excitons,
and phonons.} Under the influence of the perturbing
electromagnetic field of the photon, and also owing to
the coupling between the Coulomb excitons and the
phonons, transitions occur between the states of the
unperturbed problem, as a result of which the energy,
say of the photon, can be transformed into lattice vibra-
tion energy, etc.

An analysis of the expressions for the probability of
photon absorption or else for the anti-Hermitian part
of the tensor eij(w, k) shows that in the region of the
exciton absorption the damping of the light waves
{photons ) is connected principally with processes
corresponding to the transformation of the photon with

*A discussion of the problems related with this can be found
in [s0 43,13} .

tIn order to take into account the influence of other resonances,
we must write here and below A,/n,, in lieu of A, where the re-
fractive index n,, is determined in the considered region of fre-
quencies by the contribution of the resonances other than the one
.considered. In cubic crystals ng = /&, [see (3.12)].

¥Phonons, like Coulomb excitons, are among the solutions of
the Coulomb problem. We designate as phonons those quasiparticles,
the consideration of which is essentially connected with an account
of the motion of the nuclei (atoms). The arbitrariness in the division
of the excitations into phonons and Coulomb excitons is of no im-
portance whatever to what follows.
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energy hw = h27mc/A, into a Coulomb exciton with energy propagating in the crystal has the same frequency,

E (k) and one or several phonons.

When we can confine ourselves in the weak exciton-
phonon interaction operator to terms that are linear in
the displacements of the nuclei from the equilibrium
positions, the basic processes are those in which only
one phonon with energy hQ;(q) and momentum g par-
ticipates:

52— ho (ko) = E, (k) + 22, (q),

= (4.45)

where A, is the wavelength of the monochromatic light
incident on the crystal from the outside, and accurate
to a whole ~-number reciprocal-lattice vector

k,=k -+ q. (4.46)

The plus and minus signs in (4.45) and (4.46) corre-
spond to the emission or absorption of a phonon.

Relation (4.45) determines directly that region of
frequencies w = 2we/Ay, which corresponds in our
approximation to the exciton absorption line, but this
relation enables us to study the shape of the exciton
absorption band only approximately. Indeed, let us
assume for the sake of simplicity that the crystal is
at the temperature of absolute zero, so that the photon
decay can occur only with emission of a phonon [the
plus sign in (4.45)]. We assume, in addition, that in
the exciton band under consideration the minimum en-
ergy corresponds to a quasimomentum k = 0. In this
case, as can be readily seen, relation (4.45) can be
satisfied only for frequencies w = Eg(0)/h. This
means that the frequency Eg(0)/f is in this approxi-
mation the long-wave edge of the exciton absorption
band. But such a conclusion, as applied to not very
weak dipole absorption lines, turns out to be incorrect,
inasmuch as in the vicinity of these lines the real ex~
citon differs appreciably both from the photon and from
the Coulomb exciton. The same shortcoming, namely
the incorrect determination of the course of the absorp-
tion near the long-wave edge, is inherent in the calcu-
lations in which one first determines the tensor
eij(w, k) using for wy [see (4.5)] the frequencies of
the mechanical or Coulomb excitons (see, in particu-
lar, [87,250), ,

It is quite clear how to approach more correctly the
question of the absorption of light waves in crystals.

We first neglect the interaction with the phonons and
consider in this approximation the real excitons (pho-
tons in the medium ). This means that we are consid-
ering normal electromagnetic waves in a crystal, neg-
lecting absorption* but with full allowance for all the
remaining electromagnetic interaction. The frequency
of the real exciton wj(k) is in this case real. Of
course, in the case when light with frequency w is
incident on the crystal, the real exciton produced and

*The absorption is thus, for the sake of simplicity, assumed to
be solely connected with the energy transfer to the phonons.

that is,

o,(k) = o(ky) = ?{‘f-

In the account of the interaction between a real ex-
citon and phonons, the exciton is split into another real
exciton and phonons, that is, an apparent combination
scattering of real excitons occurs 148721 If only one
phonon is emitted, then

ho =ho; (k) = ho; (k') + 52 (q), ak=hrk"+rq.  (4.47)

The dispersion law of the real excitons—the depend-
ence wj( k) —is much different for exciton bands cor-
responding to large oscillator strengths from the dis-
persion law for Coulomb or mechanical excitons (see,
for example, Figs. 1 and 2). This circumstance leads,
in particular, to a situation wherein relation (4.47) can
also be satisfied in the region w < Eg(0)/H, as a re-
sult of which long-wave absorption appears in the fre-
quency region w < Eg(0)/h. For large oscillator
strengths (in those cases when the point k = 0 corre-
sponds to a minimum of the exciton band), this long-
wave absorption completely determines the shape of
the long-wave fall-off of the exciton absorption band
[63,64].

Thus, we can find in this manner the absorption
coefficient « in the case of sufficiently weak absorp-
tion of normal waves (real excitons) in crystals.

Calculations of eij(w, k) in the analogous approx-
imation, that is, with a more accurate account of the
interaction between the real excitons and the phonons,
particularly in the region of frequencies smaller than
the limiting frequency of the mechanical or Coulomb
excitons, have not been carried out, as far as we know.
The calculation of sij(w, k) in this and in the higher
approximations can be made by using the temperature
Green’s functions (88,897

CONCLUDING REMARKS

In the study of excitons by optical means, the pre-
vailing practice so far was to measure only the ab-
sorption and forego the analysis of the absorption line
shape. This procedure is natural so long as one deals
merely with the determination of more or less sharp
excited levels in crystals, the clarification of the cor-
responding series laws, etc. The situation here (par-
ticularly if the crystal can be assumed to be optically
isotropic) is analogous to a certain degree to that pre-
vailing in the determination of atomic levels of gases.
It is quite obvious, however, that in a detailed investi-
gation of the energy spectrum of crystals in the region
of optical frequencies, a more general formulation of
the problem is necessary. On the one hand, the ab-
sorption line shape must be analyzed; on the other
hand, in addition to absorption, it is possible and nec-
essary to study the dispersion, that is, to measure the
refractive index. One cannot be restricted here to an




CRYSTAL OPTICS WITH ALLOWANCE FOR SPATIAL DISPERSION 707

optically isotropic medium, all the more since even
cubic crystalsare optically anisotropic when spatial
dispersion is taken into account. In other words, a
study of the excitons is inseparably connected both
with classical crystal optics and with crystal optics
in which spatial dispersion is included. Some work
has already been done in this direction, both experi-
mental and theoretical, but much is still left to do. In
particular, attention should be paid to the question of
new waves in gyrotropic and non-gyrotropic crystals,
to the dispersion and absorption near the quadrupole
absorption lines in crystals, to the influence of exter-
nal electrical and magnetic fields on the optical prop-
erties, and also to the influence of stresses and strains.

For a correct analysis of the experimental data and
to extract from them definite information on crystal
properties, it is necessary to take into account and to
use the formulas and results of crystal optics. As far
as we know, these results had not yet been expounded
with sufficient detail or from a unified point of view
with account of spatial dispersion. This is precisely
the purpose of the present article, which contains rather
extensive material. At the same time, it cannot be
stated that all the problems of interest have already
been investigated within the framework of crystal op-
tics with account of spatial dispersion. Suffice it to
say that even in classical crystal optics, which has
been developing for many decades, new aspects are
still being encountered and some cases have not been
sufficiently studied (we mention, for example, singu-
lar optical axes). The number of crystal optics prob-
lems which could be solved with account of spatial dis-
persion is very large. However, the solution of many
such problems will be far from justified from the point
of view of real requirements, which are determined by
the experimental capabilities and the value of the par-
ticular information to the theory of crystals. There-
fore, it seems to us that further development of the
theory (we refer now to calculations analogous to those
of Sec. 3) must be primarily closely linked with an
analysis of the experimental data and the experimental
capabilities. Incidentally, even without a direct connec-
tion with experiment one can hardly consider an inves-
tigation of the influence of weak spatial dispersion on
the propagation of electromagnetic waves in crystals
of different classes, near the optical axes, for crystal
plates, etc superfluous.

An important point, which we have already empha-
sized in the article and mention here once more, is
that the neglect or differentiation of the macroscopic
(phenomenological ) crystal optics, which uses the
tensor eij(w, k), and the microscopic theory, is ut-
terly unfounded. At first glance it may seem that the
microscopic calculations [for example, the calculation
of eij(w, k) or of f(w,s) for some particular model ]
immediately yield more than the macroscopic theory
(in this case, crystal optics). And indeed, the results
of a correct calculation for a given reasonable model

will not only not contradict the macroscopic theory
and will not fail to contain all its consequences as ap-
plied to this model, but will make it possible to spe-
cify several relationships, such as the frequency de-
pendence of eij(w, k). It remains still unclear, how-
ever, what depends on the given model and what should
be obtained for any model (that is, what is entirely in-
dependent of the model). It is quite obvious that the
use of a model or an approximation, and a comparison
of the results of the corresponding calculations with
experiment is valuable only if one talks of conse-
quences or aspects that are specific for the given
model, and are not common and independent of the
choice of the model. Thus, the use of macroscopic
theory generally speaking is not only advantageous

but even necessary for a determination whether a
certain model or approximation is of value. In addi-
tion, under such a formulation of the problem we get
rid of the need of carrying out microscopic calcula-
tions for quantities which are essentially derivatives
of more fundamental quantities [for example, it is
advantageous to calculate eij(w, k) and not nz{w,s)l.
The foregoing, of course, is not specific to the macro-
scopic and microscopic theory of optical crystal prop-
erties, but has a general (and well known) character.
But, as was already indicated above, in the theory of
excitons for various reasons no harmonious combina-
tion of the microscopic and macroscopic approaches
has yet been reached. The purpose of the present
article will be attained to a considerable degree if
this important and simple aspect is duly recognized.
As a result of the extensive use of crystal optics with
account of spatial dispersion and of a correct combi-
nation of crystal optics with microscopic exciton the-
ory, further development of research in the field of
optical and certain other properties of crystals will
become much easier and will proceed at a much faster
rate.

Note added in proof: Following the first part of the present
article (cited below as I), a paper was published in UFN by S, I.
Pekar[°°], devoted to the same group of problems. A comparison
of that paper with ours may give rise to some misunderstanding
on the part of the reader, in connection with the different estimate
and different interpretation of several aspects. We therefore find
it necessary to point out that in the articles of the authors[®® ]
(a bibliography is given in I), many critical remarks regarding the
articles by Pekarl”» %] were already made both explicitly and
implicitly. Inasmuch as we did not encounter in the literature any
objections to these remarks, we find it unnecessary to repeat the
criticism and indicate specifically the sources of the incorrect or
inaccurate statements. The gist of the matter has been discussed
in our article with sufficient detail, and therefore we hope that the
readers will themselves be able to estimate the character of the
different works (including Pekar’s and ours), particularly if they
take the trouble to read Pekar’s articles("»**], and not only the re-
view articles[“'”], in which opinions and results obtained both by
us and by other authors are to a certain extent included.

Here we are able only to make the following specific remarks
[90]_

concerning the article
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1. Pekar’s statement that in a magnetoactive plasma with ac-
count of spatial dispersion no new waves occur is in error. In the
absence of spatial dispersion the equation for 7% in an anisotropic
medium (in particular, in @ magnetoactive plasma) is quadratic and
has two roots n? and ﬁ;', corresponding to the ordinary and extra-
ordinary waves. If we disregard the direction along the magnetic
field or the transition to an isotropic plasma in the absence of the
field, when the longitudinal (plasma) wave occurs, no third wave
exists at all. ‘On the other hand, in the presence of spatial dis-
persion the equation for n* becomes one of the third degree and a
new wave appears due to the new finite root ﬁi (for more details
see, for example[’], Sec. 12). Incidentally, the longitudinal wave
in an isotropic medium is also a new wave, for if no spatial dis-
persion is taken into account we have not a root but a single dis-
crete oscillation. In general it should be noted that the appearance
of new waves —new roots of the dispersion equation —is an obvious
and well-known consequence of the inclusion of spatial dispersion.

2. In an atticle by one of the authors[®], as in Pekar’s first
paper[7], only dipole lines were considered. In this case account
of spatial dispersion in crystal optics is included in its entirety
by expanding the tensor €,(w,k) or €5'(w, k) in powers of k;,
retaining only the first essential terms of the series. However, if
we consider quadrupole or higher multiple transitions, it may be-
come necessary to represent €;; or ei‘jl as a ratio of two polyno=
mials in k;. This was mentioned in [*] and in greater detail in L.

It is important that from our point of view the functions €;;(w, k)
and 6;1 (w, k) can be regarded in crystal optics as having no essen-
tial singularities or branch points, Yet in the articles by Pekarl” %]
and others the ‘“mechanical excitons’’ chosen were exact solutions
of the Coulomb problem (‘*Coulomb excitons’’) which in some cases
(for ““fictitious’’ longitudinal waves) have singularities at k = 0.
An impression remains therefore that the functions €;; and &g can
also have essential singularities at k = 0.

The foregoing will permit the reader to judge the extent to which
the remark made at the end of the paper[”], concerning the ‘‘contra~
diction” between the deductions of [*] and the data of [7¢] concem-
ing the new wave near the quadrupole absorption line is unfounded.
The questions of absorption or of the new wave near the quadrupole
line are discussed in Secs. 3c and 3f of the present article,

3. In Sec. 3f of the present article we pointed out that absorp-
tion near the dipole line in anthracene, investigated in ["], should
lead to attenuation of the new wave by at least a factor of 10°, even
in a film with thickness d = 0.1 p. We therefore cannot see how the
oscillations observed in ["*] can be related with the occurrence of a
new wave, unless a radical change takes place in the parameters
(we know of no grounds for this). In the article®), however, this
important item was circumvented by complete silence in the discus-
sion of the experiments of {1,

Recently S. I. Pekar published still another review articlel?]
devoted to the same problems. We cannot dwell on it here. One of
us hopes to demonstrate in an article in ‘‘Fizika tverdogo tela’’
(Solid State Physics) the incorrectness of many statements made ...

in 1],
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Corrections to Part 1 of the Review [UFN 76, 643
(1962), Soviet Phys. Uspekhi 5, 323 (1962)].

In Table II (p. 341) in the column ‘‘principal axes
of the tensor’’ it is shown which axes are fixed from
symmetry considerations. This, of course, does not
always pertain to the principal axes of the second-rank
tensor eij(w). For example, for cubic crystals this
tensor has the form ¢jj = €6j in any coordinate frame.
We hope that this does not lead to misunderstandings,
inasmuch as everything is essentially explained in the
text of the article.

On p. 327 (second line below Fig. 1) it should read
ey(wy) inlieu of ey(w).

On p. 332 [fourth line following Eq. (1.22a)]: printed
(1.23), should be (1.22a).

On p. 333 [first line following Eq. (1.32)]: printed
“‘indices €} and ...”” should be (quantities €| and
On p. 334, The fifth, sixth, and seventh lines follow-
ing Table I are superfluous.

On p. 335. Eq. (1.49). Printed
BZ

8T °

On p. 342 (last line of left column). Printed

e, 0 0 e, 0 0 e, 0 0
0 ¢ 0], shouldread |0 & O |= g, 0},
00 e 0 0 g/ \0 0 e

On p. 337. In place of €45 formula (1.66) should
contain everywhere ej;j.

2
—8% f—w’ should read

2
ot
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