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THE main reason for my choice of this topic for my
report is that an experimental search for fine struc-
ture in the scattering of light was the first collabora-
tive research done by G. S. Landsberg and L. I. Man-
del’shtam; it was begun in 1925, and has now developed
into a fruitful field of molecular optics and acoustics.

The idea that there must exist a fine structure of
the Rayleigh line was put forward by Mandel’shtam as
early as 1918.[12] This idea of his is one of the major
sources of experimental and theoretical researches on
the problem of the molecular scattering of light.

Here we must make some historical remarks bear-
ing on the subject of this report.

First of all it must be noted that after Mandel’-
shtam (3 pointed out (1907) that the mechanism which
Rayleigh [ took as the basis for his theory of light
scattering should actually not lead to any scattering,
Smoluchowski [¥*J found (1908) the correct cause of
the scattering of light. This cause is fluctuations of
density, which reach such magnitudes at the critical
temperature that critical opalescence is the result.

Einstein L8] (1910) made use of this idea of fluctua-
tions and developed a theory of the scattering of light
in pure liquids and solutions, which gave a formula
expressing the intensity of the scattered light as a
function of the wavelength and parameters character-
istic of the scattering medium. To calculate the in~
tensity of the scattered light Einsteinl¢] used the
method of expansion of the density fluctuations in a
series of spatial plane waves. If must be emphasized
that this expansion of the density fluctuations in terms
of plane waves was a purely formal step in Einstein’s
theory. In his work this expansion was simply a com~
putational device. Einstein’s ‘‘formal’’ waves were
static in time.

Debye 7] (1912) perfected the Einstein theory of
specific heats of solids and expressed the energy of
thermal motions in terms of the energies of elastic
plane waves. In this paper Debye says nothing about
the molecular scattering of light, just as in his paper
on the scattering of light Einstein gave no attention to
the problem of specific heats. Six years after Debye’s
work Mandel’shtam (1918) came to the conclusion that
Einstein’s ‘“‘formal’’ waves and Debye’s thermal waves
are really the same thing [%J; thus dynamics was

*Report at session of the Scientific Council, Physics Institute
of the Academy of Sciences of the U.S.S.R., held February 12, 1962,
in memory of G. S. Landsberg.

brought into the ‘“formal’’ waves, and they were
changed from a computational device to a physical
phenomenon. This was an important forward step,
which has led to major advances in molecular optics.

From this new point of view the scattering of light
can now be regarded as the diffraction of the light by
the elastic thermal waves.[®11) The great diversity
of frequencies and directions of propagation of the
elastic thermal waves leads to scattering of light in
all directions.

At first glance it seems difficult to pick out one
particular elastic wave and study the diffraction of
light by it. One can, however, realize such an experi-
ment in practice. In fact, if one directs a parallel
beam of monochromatic light at the scattering volume,
the light diffracted (scattered) in a direction k’ at an
angle 6 with the direction of propagation k of the orig-
inal beam will have maximum intensity when the rela-
tion (Fig. 1)

K —k—q=0 (o))

holds between the wave vectors k, k’, and q of the ex-
citing light, the scattered light, and the elastic wave.

Equation (1) is the well known Bragg condition,
which can also be written (when the small difference
of the absolute values |k’| and |k| is neglected) in
the form

2nA sin%——_}», 2)

where n is the index of refraction of the scattering
medium, A is the wavelength of the elastic wave, and
A is the wavelength in vacuum of the exciting light.
1t is not hard to see that the frequencies of the

elastic waves responsible for the scattering in vari-
ous directions are given by the formula

. .8

2nV sin -

fz-‘T‘—'. (3)

If as a concrete example we consider a crystal of
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FIG. 1. Illustrating
the diffraction of light by
an elastic thermal wave.
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quartz and scattering excited by the mercury reso-
nance line A2537A at angle 6 = 180°, and assume

V =6 x 10° cm/sec and n = 1.6, we get from Eq. (3)
f ~ 7 x 10!° cps. Under the chosen conditions all the
other waves will play no part in the observed molec-
ular scattering of the light in the quartz. The elastic
waves propagated in various directions in a crystal
of finite dimensions form standing waves, and the
variation with time of the density in these waves leads
to a modulation of the scattered light. 111 Thus at
the angle 6 (in the direction k’) one will observe a
doublet

v+,

where v is the frequency of the exciting light waves;
the fractional frequency change in this modulation is

/ Av v . 0
=+ —Zn?sm . (4)

Thus the maximum fractional frequency for quartz

(at 6 =180°) is Av/v =~ 6 x 107°. For scattering
angle 6 = 90° the value is even smaller. Equation (4)
was obtained by Mandel’shtam [9]; the same result was
also found by Brillouin. (123 The fine-structure com-
ponents of a scattered-light line are now called Man-
del’shtam-Brillouin components.

Mandel’shtam further showed[?J that the scattering
by isobaric density fluctuations, which are not included
in the Debye treatment, leads to the appearance of an
undisplaced line in the scattered light. Consequently,
if the excitation is by a monochromatic line, a triplet
must appear in the scattered light.*

The pattern of the phenomenon in question was thus
determined, and one could go on to the experimental

study of the spectral composition of the scattered light.

Landsberg and Mandel’shtam chose to work with a
crystal, since in a crystal the damping of the elastic
waves is smaller than in a liquid, and Av/» is much
larger. The best results were to be expected with a
quartz crystal, since there are large natural speci-
mens of quartz and the optical purity is greater than
that of other crystals. The natural source of quartz
in our country in 1925 was the antique shops where it
existed in the form of seals belonging to formerly
prominent Russian families. Landsberg became a
frequenter of antique shops and a buyer of quartz
seals. As a rule the quartz crystals in the seals were
not of good enough quality. They abounded in foreign
inclusions and other inhomogeneities, which led to the
appearance of a large amount of parasitic light which
had nothing in common with the light from molecular
scattering.

*In a crystal, owing to the anisotropy of the velocity of the
elastic waves, the existence of a longitudinal and two quasi-
transverse waves, and effects of various states of polarization
of the light, there must be 25 components in the general case.[1214]
In a liquid there must be only three components, and in an amor-
phous solid, five components,
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Only after Landsberg (2] had established an objec-
tive criterion for distinguishing the molecular-scat-
tering light from the parasitic light was it possible to
select the best of the quartz crystals and make a quan-
titative study of the total molecular scattering of a
quartz crystal. Landsberg and his pupils (%1% suc-
ceeded in studying the scattering of light in quartz in
detail and finding the main laws of the phenomenon.
These researches on the total molecular scattering in
quartz and other crystals, begun by Landsberg, are
still continuing and constantly giving interesting new
results.*

After the main laws of the total molecular scatter-
ing in quartz had been established, one could turn to
the original problem of the spectral study of the fine
structure of the scattered line. It must be remarked
that in the Physics Department of the Moscow State
University, where this work was done, the best spec-
tral apparatus at that time was a Fuess quartz spec-
trograph with a Lummer-Gehrcke plate, which was
scarcely adequate for the problem; but there was no
choice, and the work began.

In the very first experiments lines of altered fre-
quencies were found in the spectrum of the scattered
light, but the changes of frequency were so large, and
the number and locations of the lines so different from
expectations that these observed lines could not be
lines of the fine structure. Soon, however, everything
was explained and understood. In this way the combi-
nation (Raman) scattering of light was discovered.

The study of the new phenomenon took Landsberg
and Mandel’shtam away from the original problem for
almost two years. When they resumed it, they had the
same apparatus, from which it was hard to expect com-
pletely good results, but nevertheless the work was con-
tinued. The wish to get results with spectrosopic instru-
ments really suitable for the problem obliged Lands-
berg and Mandel’shtam to turn to D. S. Rozhdestven-
skii in Leningrad, who had available spectroscopes of
high resolving power. Rozhdestvenskii at once under-
stood the importance of the problem and provided for
the joint research a spectroscope of high resolving
power (a Michelson echelon) and a collaborator, E. F.
Gross. The work continued in the two places. In 1930
the phenomenon was observed both in Moscow and in
Leningrad.

The fine structure of the Rayleigh line in quartz
was found by Landsberg and Mandel’shtam (2] and by
Gross ['¢] in crystalline quartz; Gross "] also ob-
served the fine structure of the scattered line in
liquids. The main laws of the phenomenon as pre-
dicted by Mandel’shtam were confirmed experimen-
tally.

In a careful analysis of the problem of the fine
structure of the scattering of light in liquids M. A.
Leontovich [18:19] and Mandel’shtam (18] called atten-

*See also the report by V. L. Ginzburg on page 649.
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tion to a difficulty in principle: as has already been
said, the displaced Mandel’shtam-Brillouin lines are
shifted from the undisplaced line by the amount Av
given by Eq. (4). If the medium absorbs sound, then

it is clear that the Mandel’shtam-Brillouin components
will be characterized by a finite width. [2%21] The half-
width of each component will be given by

av
6’\’ = —R' y (5)

where « is the amplitude absorption coefficient per
unit length, which according to the hydrodynamical
theory* is given by

2
a=an+0«r=2§—g—é{§n+n’}- (6)

Here @ = 27f, n and 1’ are the shear and bulk viscos-~
ities, respectively, and p is the density of the liquid.
If we set 6v = Ay, it is clear that in this case the dis-
crete lines of the fine structure cannot be observed.
When we compare the corresponding values for Av

and 6v from Eqs. (4) and (5) and use Eq. (2), we eas-
ily find that the condition for the absence of discrete
fine structure is

cA=n~1,

and that the structure is also absent if

aA > 1. (6"

Consequently, to observe the discrete lines of the
structure we must have

aA < 1. (7)

If we take a from ultrasonic measurements at a def-
inite frequency and extrapolate with a quadratic law,
in accordance with the hydrodynamical formula (6),

to the frequency which gives the scattering of light at
a prescribed angle 9, we get values of « from which
[using also Eq. (2)] we can calculate the quantity a«A.
For carbon tetrachloride, benzol, and carbon disulfide,
for example, the respective values of @A are 5, 11,
and 70. Consequently, for these liquids the hydrody-
namical theory forbids a fine structure of the scat-
tered line.

Nevertheless quite distinct fine-structure lines are
observed with these liquids. This is the difficulty in
principle encountered by the hydrodynamical theory
of sound absorption.

We must call attention to the fact that roughly
speaking one can divide liquids into those for which
the shear viscosity is small and the bulk viscosity is
large (these include the liquids mentioned above), and
those for which the shear viscosity is large, or even
extremely large, and the bulk viscosity is relatively
small.

*In this formula we have neglected a term which depends on the
thermal conductivity. In the cases considered it is of no practical
importance.
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So far we have been speaking of liquids for which
7’ > 7. In considering the difficulty with the conclu-
sions of the hydrodynamical theory, which forbids fine
structure for liquids for which n’ > 7, Mandel’shtam
and Leontovich concluded that within the framework of
the hydrodynamical theory there is no escape from the
contradiction.

Mandel’shtam and Leontovich found a way out of
this difficulty in the relaxation theory of the propaga-
tion of sound in liquids, which they developed. [1%]

In this theory it is assumed that there is relaxation
only of the bulk viscosity; the expressions found for the
absorption and the speed of sound V, caused by relaxa-
tion of the bulk viscosity, are

oG]

v =%y, 01 oy
VN2 :
22 | [ 2\
Y_O__1,__1_QT[KV0 1J ®)
v =773 11 Qre d

where 7 is the relaxation time V_ and V, are the
speeds of sound at frequencies @ — « and Q — 0
The formulas (8) of the relaxation theory clearly show
that the quadratic frequency dependence of oy holds
only at low frequencies, for which Qr <« 1, whereas
when the frequency is so high that Q7 > 1, there is no
frequency dependence of @, and V at all. Thus it is
quite understandable that at a frequency ~ 101 cps aA
can be much smaller than unity, although the hydrody-
namical theory gives «aA > 1; consequently the relax-
ation theory easily disposes of the contradiction. A
glance at the relaxation-theory formula (8) is enough
to see that this theory assumes the existence of a dis-
persion of the speed of sound, i.e., a difference between
Ve and Vj, and that it is supposed that Ve > V. Iit
should turn out that V,, = V,, this would mean that the
mechanism is not that assumed by the relaxation the-
ory, and the theory can give nothing; in particular, it
also cannot explain the contradiction whose solution
gave rise to it.

The dispersion of the speed of sound is an impor-
tant physical phenomenon, which had also been of in-
terest independently of the relaxation theory. But all
attempts to detect a dispersion of the speed of sound
in the sonic and ultrasonic ranges had been unsuccess-
ful.

The Mandel’shtam-Leontovich relaxation theory ap-
peared before any dispersion of the speed of sound had
been found. The search for dispersion of the speed of
sound continued after the development of the relaxation
theory. Finally it was found by Shpakovskii (22 in
acetic acid, amounting to ~ 1 percent in the ultrasonic
frequency range. No dispersion was found in other
liquids, as long as ultrasonic technique was incapable
of significantly increasing the range of working fre-
quencies. It was already clear at that time, however,
that the study of the fine structure can give valuable
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information about the speed of sound at extremely high
frequencies of ~ 10!% cps, which were then inaccessible
to ultrasonic technique. Even now such frequencies of
artificially generated sound are not studied in liquids
because of the large absorption. R. Rao[#] was the
first to use the fine structure to determine the speed
of hypersound (sound at frequencies above 10° ¢ps).
Rao concluded from his experiments that in carbon
tetrachloride there is a positive dispersion of sound

of ~ 20 percent, and in acetone there is a negative dis~
persion of roughly the same size.

The explanation of the negative dispersion given by
Rao (cf.[#]) is clearly unsatisfactory, although gener-
ally speaking a negative dispersion is possible. [24:25]
After Rao’s work his compatriot Venkateswaran [26]
made thorough experiments to determine the speed
of hypersound from the fine structure for a broad
class of liquids and concluded that there is no disper-
sion of the speed of sound for any of the seventeen
substances he studied, including acetone, carbon tetra-
chloride, benzol, and chloroform. Venkateswaran as-
cribes Rao’s results to experimental errors, and in-
dicates that the error of his own measurements was
at worst +25 m/sec (less than 2 percent). Conse-
quently if we suppose that Venkateswaran’s experi-
ments are correct, we have the definite conclusion
that the relaxation theory of the propagation of sound
in liquids is erroneous.

In fact, the relaxation theory enables us to get a
criterion for estimating the amount of dispersion of
the speed of sound. This criterion is as follows:

V(:—n—1>

4y ’

AV w %
V T 2Vt T f

9

where AV = Vo=V, V=Y (Ve+V,), « is the ex-
perimentally measured value of the absorption coeffi-
cient, and ay) is the absorption coefficient caused by
the shear viscosity and calculated from Eq. (6) when
we set 1’ = 0. Equation (9) makes it possible to esti-
mate the expected dispersion, or more exactly, the
total fractional change of the speed. If a fine structure
is observed in cases for which according to the classi-
cal theory aA =~ 10, then we can say that the corre-
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sponding speed of the elastic waves which modulate
the scattered light actually lies beyond the relaxation
region, and consequently AV is practically determined
by the total change of speed.

Using Eq. (9) and data on «, an, and assuming that
T < 1/27f" (where f’ is the frequency up to which the
frequency dependence of the absorption is quadratic),
one can estimate the quantity AV/V for various liquids.

This estimate shows that in benzol AV/V should
exceed 5 percent, and that it is 9 percent for carbon
disulfide; the situation is similar for carbon tetra-
chloride, chloroform, and a number of other liquids.
Consequently the question arises, are the relaxation
theory and the absorption measurements on which this
estimate is based erroneous, or is the error in the ex-
periments on the determination of the speed of sound
from the fine structure of the Rayleigh line ?

To settle this question the author of the present re-
port and his collaborators O. A. Shustin, V. A. Molcha-
nov, and M. S. Pesin, working in Landsberg’s labora~
tory, undertook [2%:30,28] 5 new determination of the
speed of hypersound from the Mandel’shtam-Brillouin
components, primarily for the liquids for which Eq. (9)
predicted the existence of an appreciable dispersion of
the speed of sound.

We were able to construct an interference apparatus
of comparatively large effective aperture, which ena~
bled us to study the phenomenon for various states of
polarization and over a broad range of temperatures.

The speed of hypersound was determined from the
relation

V=cAAv, (10)

where ¢ is the speed of light, A is determined from
Eq. (2) and is expressed in cm, and Av is the displace-~
ment of the maximum of the Mandel’shtam-Brillouin
component from that of the undisplaced line and is ex-~
pressed in cm~!, The speeds of hypersound determined
in this way are shown in Table I.

Table I shows that in six liquids a positive disper-
sion of the speed of sound is reliably observed, namely
in the cases for which the relaxation theory [the cri-
terion (9)] predicts that an appreciable dispersion is

Table 1. Speeds of hypersound and ultrasound, and dispersion
of sound, in various liquids

Speed of Speed of | Dispersion
Temperature | hypersound, | ultrasound, of the speed,
Substance t,°C v, m/sec V, m/sec %‘_/_ 102
Benzene 20 14704-20 1324 10
Carbon disulfide 20 1265422 1158 9
Carbon tetrachloride 20 10404-27 920 12
Toluene 20 1314434 1324 0
Acetone 20 11904-40 1190 0
Methylene chloride 20 12454-36 1092 13
Methylene bromide 24 1099430 971 12
Acetic acid 20 11404-35 1144 0
Chloroform 20 1241443 1005 17
Water 20 1480+20 1490 0
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to be expected. In the cases for which the relaxation

theory offers no hope for a large dispersion, we indeed

did not find it. Obviously this cannot all be regarded
as accidental.

Zeros have bheen entered in the last column of
Table I for these latter cases, but it must be empha-
sized that we do not assert that there is no dispersion
at all in these cases; we only state that the accuracy
of our method is not enough to detect it, and conse-
quently in these cases the dispersion does not exceed
2 or 3 percent; it may be much smaller.

On the basis of the relaxation-theory formula (8),
measurements of the absorption at low sound frequen-
cies, and our measurements of the dispersion, we can
determine T, and thus calculate ozn'/f2 as a function
of the frequency. The results of such a calculation
are shown by the solid curve in Fig. 2. At the time
when we had some of the data presented above there
appeared a paper by Lamb and Andreae, (3] who found
a strong relaxation change of ozn// 2 as function of f
in carbon disulfide up to frequencies f = 2 x 103 cps.
Their data are shown in Fig. 2 as black circles.
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FIG. 2. Dependence of a/f* on f for carbon disulfide. A is
the acoustical and x the hypersonic value of a/f?, from which the

solid curve was constructed; points @ are the experimental data
of [1],

There is very good agreement between the ultra-
sonic data and the hypersonic data and the relaxation
theory with a single relaxation time.

In the case of methylene chloride, which has been
studied in the ultrasonic region, (321 the agreement is
not so good (Fig. 3). Evidently, as we have already
pointed out, (28] this is explained by the fact that the
type of relaxation theory with a single relaxation time
does not give a quantitative description of the phenom-
enon. For the other liquids in which we have found a
dispersion of the speed of sound the comparison can-
not yet be made, since the necessary ultrasonic meas-
urements are not available.

Recently there has been much attention given to the
interpretation of absorption and dispersion of sound
from the point of view of simplified molecular ideas.
In particular it is supposed that there exists a whole
group of liquids (the so-called Kneser liquids) in
which absorption and dispersion of sound are caused
by thermal relaxation with the same mechanism as in
vapors and gases.
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FIG. 3. Dependence of a/f* on f for methylene chloride. A is
the acoustical and X the hypersonic value of a/f? from which the

solid]curve was constructed; points ® are the experimental data
of [32],

These liquids also include those in which we found
dispersion of the speed of sound. From the stated as-
sumption it is a natural conclusion that the volume
viscosity is due only to exchange of energy between
internal and external degrees of freedom. In this
case one gets from the general relaxation theory of
Mandel’shtam and Leontovich formulas [33] which have
also been obtained by Herzfeld [(34] in a different way.
In particular, the theory gives

AV 1 Z ¢i (ep—ev)
Vo 2 o (ev—Det)

1

an

where ¢, and cy are the specific heats at constant
pressure and at constant volume, and c{ is the spe-
cific heat of the i-th vibrational degree of freedom:

' Ra?
Ci=gim .

(12)

Here x = hvj /RT and gj is the degree of degener-
acy of the frequency vj. The summation in Eq. (11) is
taken over all characteristic frequencies of the mole-
cule.

For carbon disulfide the dispersion calculated from
Eqgs. (11) and (12) is in good agreement with the hyper-
sonic and ultrasonic data. Recently Pesin (33 has found
that roughly speaking the other liquids that show dis-
persion (Table I) fall into two groups. Methylene
chloride, chloroform, and methylene bromide have
about twice as much dispersion as indicated by Eq.
(11). Benzol and carbon tetrachloride have about half
as much dispersion as predicted by Eq. (11).

In calculating the dispersion for the second group
of liquids one can use not all of the vibrational fre-
quencies, but only particular groups, basing the choice
on symmetry arguments or on the Fermi resonance.

In each individual case one can arrange the calculation
so as to agree with experiment, but there is no general
method, and it is as yet impossible to say beforehand
what sort of dispersion is to be expected in any new
case.

The situation is no better for the first group of
liquids; here one cannot explain the observed disper-
sion at all with the complete vibrational specific heat.
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The point is evidently that the assumption that in re-
gard to the absorption and dispersion of sound liquids
can behave like gases or vapors has no physical basis,
and this moreover follows rather clearly from f193,

It is a matter of great interest to study the fine
structure of a line of the scattered light in viscous
liquids (with increasing viscosity) right up to the
glassy state.

The relaxation theory of the propagation of sound
in liquids developed by Mandel’shtam and Leonto-
vich (18] referred to the bulk viscosity coefficient.

On the basis of the Maxwell scheme of viscosity
M. A. Isakovich[3%] extended the theory also to cases
in which there is relaxation of both the volume and
the shear viscosities.

In accordance with this theory we would be correct
in thinking that at very high viscosities and in glasses
we should expect a distinct fine structure, since at
frequencies ~ 1010 ¢ps the large shear viscosity should
be much diminished or even disappear; because of the
relaxation the phengmenon should be mainly determined
by the elastic constants of the amorphous medium.

In the initial period of the study of the fine struc-
ture in viscous liquids and glasses the situation was
in a certain sense the reverse of that which arose in
the initial period of the study of liquids of small vis-
cosity. In fact, in liquids with small n and with large
bulk viscosity 7’ there was a distinct fine structure,
although the hydrodynamical theory forbade it. The
relaxation theory had to be developed to explain the
presence of the fine structure.

In the study of liquids with large shear viscosities
and of glasses the already existing relaxation theory
allowed one to expect a fine structure, but it could not
be observed in the experiments.

Many attempts were made to find a fine structure in
viscous liquids and glasses (we refer for example only
to some of them, [16:37]) but they invariably gave nega-
tive results. This unanimity led some authors (373 to
the idea that there should in general be no fine struc-
ture in extremely viscous liquids and in glasses.

Their arguments were about as follows: the half-
widths of the Mandel’shtam-Brillouin lines are given
by the relations (5) and (6). Glasses are media at the
high-viscosity limit, and therefore in such media 6»

> Av; consequently, there can be no discrete structure.

In 371 this point of view was supported with experi-
ments which, as has been shown, £38) actually could not
serve as any confirmation of that opinion.

Landsberg repeatedly pointed out the untenability of
this point of view, which fails completely to take at-
count of the relaxation theory and the conclusions which
follow from it. In a paper by Krishnan[%®] which then
appeared it was stated that a fine structure of the Ray-
leigh line had been observed in fused quartz; it seemed
that the question of the fine structure in amorphous
substances was settled.

L. FABELINSKII

Soon, however, there appeared a note [4%] by com-
patriots of Krishnan, which pointed out the fallacy in
the method used in (3%, where a resonance filter was
used. According to the view expressed in C40] it was
not the fine structure that was observed, but an en-
tirely different phenomenon associated with the pas-
sage of light through the resonance filter. Thus the
question was again an open one.

Numerous attempts to find a fine structure in highly
viscous media which were undertaken in Landsberg’s
laboratory remained unsuccessful for a rather long
time. A very intense central component was observed
in highly viscous liquids, but there were no fine-
structure components.

As has been indicated, it was not at once understood
what the reason was for this experimental result. One
of the reasons for the absence of fine structure in this
case could be the following: on the basis of the ideas of
the relaxation theory one might suppose that in cases
in which there is relaxation of a large quantity 7 it is
quite possible that AV/V is also large, i.e., for high
frequencies the liquid will behave like a solid. Let us
now suppose that AV/V = 1; this means that as we go
from small to large viscosities the speed of hypersound
is doubled. If this were so, it would lead to extremely
important consequences, mainly of an experimental na-
ture. In fact, for observation at the angle 6 = 90° the
integrated scattering coefficient for both Mandel’shtam-
Brillouin components [21:27] is given by

2 de\ 2
Row=giw (@ ), BT,

where, as is well known, the adiabatic compressibility
is
1
ﬁs = W .

If it is assumed that V has been doubled, then 8g, and
thus also Rgpe, is diminished by a factor four. When
we take into account also the direct dependence of Ry
on T, the decrease of the intensity is even greater.
Now this means that instead of the usual exposure of
10—12h the exposure goes up to 50—60h. Such an in-
crease of the exposure puts much higher requirements
on the temperature and pressure controls of the inter-
ference apparatus. A change of pressure by 4—5 mm
Hg or of temperature by 0.5° during the exposure time
is inadmissible. Therefore one must either complicate
the apparatus or secure a great increase of the effec-
tive aperture at the expense of other optical qualities.
The author of this report and M. S. Pesin followed
the latter course. The aperture of the apparatus was
increased by almost an order of magnitude, and the
long-expected results were obtained with it.[4:42] The
fine structure was detected over the entire range of
variation of viscosity from fractions of a poise to 108
poise, right up to the glassy state, in glycerine and tri-
acetin. The speed of hypersound determined from the
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Table II. Temperature dependence of the speed
of hypersound in glycerine

t, °C 150 50 45
Y), poise 0,05 1 1.8
V, m/sec 1580 1690 2420

35 22 —27 —45 | —70
3.2 9 13.9-10%)2-108] 108
2800 | 2900 | 3290 | 3520 | 3665

Table III. Temperature dependence of the speed
of hypersound in triacetin*

1, °C 72 20 0 —15 —40 —60
1, poise 0,02 0.23 0.70 4.68 2-108 3-10¢
V. m/sec 1246 1616 2065 2386 2537 2718

*The error in the determination of the speed of hypersound at various
temperatures fluctuates from 5 percent to 8 percent, the inaccuracy in the
determination of the speed being smaller at low temperatures than at high
temperatures.
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FIG. 4. Dependence of the speed of hypersound in glycerine on
the temperature and viscosity.[*!]
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FIG. 5. Dependence of the speed of hypersound in triacetin on
the temperature and viscosity.[“]

fine-structure spectra is shown in Tables II and III
and plotted in the curves of Figs. 4 and 5. Figure 6
gives an idea of the distinctness of the fine-structure
lines.

It can be seen from Figs. 4 and 5 and Tables II
and IITI that even at comparatively moderate viscosities

FIG. 6. Microphotogram of the spec-
trum of the fine structure of the scattered
line in glycerine[**] at —27° C. Longi-
tudinal doublet. L — Mandel’shtam-Bril-
louin components; ® —background of
photographic plate in the neighborhood of
the lines.
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FIG. 7. Microphotograms of the spectrum
of the fine structure of the scattered line in
specimens A and B of fused quartz. Ob-
tained with a spectrograph with a 35-ft con-
cave diffraction grating with dispersion 0.22
A/mm. Resolving power 300,000. The scat-
tering was excited by the line A2537 A emit-
ted by a lamp containing the mercury isotope
1**Hg. L —longitudinal Mandel’shtam-Brillou-
in components; T —transverse Mandel’shtam-
Brillouin components. The spectrum of the
exciting line is shown below,
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the speed of hypersound reaches an almost doubled
value, and consequently that at frequencies ~ 10! ¢cps
such a liquid behaves like a solid.

Interesting results have recently been obtained in
a study of the fine structure of the Rayleigh line in
fused quartz.[43]

In these experiments Canadian scientists[43] have
found not only the Mandel’shtam-Brillouin lines caused
by the longitudinal wave, but also two satellites caused
by the transverse elastic wave. The results are shown
in Fig. 7. The numerical results for two specimens
are as follows: for the longitudinal wave Vi, = (5.99
+ 0.08) x 10° cm/sec and (5.84 + 0.04) x 10% cm/sec;
for the transverse wave V= (3.72 + 1.08) x 10° cm/
sec and (3.97 + 0.2) x 105 cm/sec. Quite recently con-
siderable material has been obtained from studies of
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the absorption and speed of ultrasound in viscous
liquids, 4] which is in qualitative agreement with
the results of [41] and [42],

Attempts to describe the results obtained in the
ultrasonic and hypersonic frequency ranges by means
of the relaxation theory show that one can so far count
only on a qualitative agreement. Quantitative compari-
sons give unsatisfactory results. Therefore there is
need for continuation of the experimental and particu-
larly the theoretical investigations. But the fundamen-
tal question which had previously been unsettled—the
observation of the fine structure in extremely viscous
liquids and in glasses—can now be regarded as settled.
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