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THE SCATTERING OF LIGHT NEAR POINTS OF PHASE TRANSITION IN SOLIDSU

V. L. GINZBURG

Usp. Fiz. Nauk 77, 621-638 (August, 1962)

is well known, the study of the scattering of light
was one of G. S. Landsberg's central interests. His
works were devoted to the study of the scattering in
gases, in liquids, and in solids. His most important
results, however, were those for crystals, and in par-
ticular for crystalline quartz. In 1927 Landsberg was
the first to distinguish the molecular scattering of light
in a solid from the scattering by foreign inhomogenei-
ties, by measuring the intensity of the scattering in
quartz at different temperatures. In 1928, using crys-
tals of quartz, G. S. Landsberg and L. I. Mandel'shtam
discovered combination scattering of light. It was also
by the use of quartz that they obtained the first results
on the fine structure of the Rayleigh scattering line
(for details see the report by I. L. Fabelinskii on
page 667). Finally, in 1929 a brief note by G. S.
Landsberg and L. I. Mandel'shtam M reported a
change of intensity and shape of the lines of combina-
tion (Raman) scattering in quartz when it was heated
above the point of the a =* /3 transition.

In this phase transition, which occurs at 846°K, the
"low-temperature" rhombohedral a-quartz goes over
into the hexagonal "high-temperature" phase called
/3-quartz. In the spectrum of the combination scatter-
ing of a-quartz there are present, among other lines,
lines (satellites) with frequencies Vi = ui/2wc of
207 cm" 1 and 466 cm" 1 ; these lines are the ones that
were studied, at temperatures up to 900°K. It was
found that with increasing temperature the line 1J\
= 466 cm" 1 becomes somewhat broader and more dif-
fuse, but remains clearly marked in the /3-quartz. On
the other hand the line U{ = 207 cm" 1 becomes rapidly
more diffuse with increase of the temperature, and at
800°K one can detect only intensity maxima at places
where at room temperature there were quite distinct
satellites (red and violet). At 900°K, i.e., in /3-quartz,
no trace of the 207 cm" 1 line remains.

The cited paper by Landsberg and Mandel'shtam M
essentially raised the question of studying the peculi-
arities of the scattering of light near phase transitions
in solids. For many years, however, this problem r e -
ceived no attention, or at any rate was not solved. It
may be supposed that there are two reasons for this.
First, for a long time the only object accessible to
study was crystalline quartz, in which the transition
occurs at an extremely high temperature. Therefore
there were great difficulties in the way of experimen-

''Report at session of the Scientific Council, Physical Institute
of the Academy of Sciences of the U.S.S.R., held February 12, 1962,
in memory of G. S. Landsberg.

tal studies. Second, so far as is known to the author
of this report, up until the time of his paper in 1955 ^
no attention was given to the possibility of observing
the interesting phenomenon of critical opalescence at
certain phase transitions in solids. Namely, this sort
of opalescence must occur near the Curie critical point,
at which the line of second-order phase transitions on
a pT diagram goes over into the line of first-order
transitions. ^

It is rather strange that this fact did not attract at-
tention much earlier. In fact, the existence of the
Curie critical point for transitions in solids has been
known for a comparatively long time. Attention had
also been called to the appearance of an additional
scattering of x-rays near a point of second-order
phase transition. ^ Even earlier it had been known
that there is opalescence near other critical points—
the critical point in a liquid-vapor system ^ and the
critical point for the mixing of two liquids. ^6>7^ It must
be pointed out, by the way, that the experimental study
'-8-' of the scattering of light near the a ^ /3 transition
point in quartz was not undertaken through the influ-
ence of C2-!, but from independent considerations.

A comparison of the experimental data '-8-' with the
results of calculations^2 '9^ shows that there is good
agreement between theory and experiment, and leaves
no doubt that near the point of the а П ( 3 transition
in quartz there is a sort of critical opalescence. Anal-
ogous effects must also exist in other cases, in partic-
ular for certain ferroelectric transitions. Е2>10^

In the work mentioned [2,8-10] attention was given
only to the problem of the intensity and the polariza-
tion of the scattered light. The same is true of the
review article ^ u ^ . It is also interesting to find out
the spectral composition of the light scattered near
phase-transition points. ^12^ Furthermore, precisely
this problem is closely connected with the combination
scattering of light in crystals, and in particular with
the work of G. S. Landsberg and L. I. Mandel'shtam M
to which we have already referred. Therefore we
would like here to give special attention to the prob-
lem of the spectral composition of the scattered light.
It is, however, desirable also to give attention to other
aspects of the subject, in order to elucidate the char-
acter of the scattering of light at phase transitions in
solids in a rather broad way, but without getting buried
in some of the details of the calculations.

1. At an "ordinary" first-order phase transition,
a transition far from the Curie critical point, a crystal
undergoes a sharp change, for example from cubic to
tetragonal structure. In that case the cell length с
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along the fourfold axis differs considerably from the
cell length a of the cubic phase, even right at the
transition point (Fig. 1, a). At the point of an equilib-
rium first-order transition (at T = в) the thermody-
namical potentials of the two phases are equal, and in
a certain range of temperatures near в both phases
can exist as metastable phases (the states in question,
corresponding to superheating or undercooling, are in-
dicated by dashed lines in Fig. 1). For example, in the
neighborhood of the transition from a cubic to a tetrag-
onal crystal the indices of refraction (or, more exactly,
their squares, n2 = e) behave in the way shown in Fig.
l ,b (all the diagrams except Figs. 7 and 9, are sche-
matic only). In a first-order transition a latent heat
of transition is evolved (or absorbed), and also there
is a change of the specific volume of the crystal. For
the latter reason the crystal will as a rule crack dur-
ing the transition. Even if we ignore this fact, which
hinders the study of a single-crystal specimen on both
sides of the transition point, the study of the scatter-
ing of light at an "ordinary" first-order transition is
of no particular interest. In fact, the scattering is
different in the two phases, but it is about the same as
in these phases at some distance from the transition
point. Therefore there is no reason to try to get as
close as possible to the transition point, unless of
course one is interested in some such question as
that of the kinetics of the phase transition.

The picture is different for second-order transi-
tions and for first-order transitions close to the Curie
critical point. The qualitative character of such tran-
sitions is clear from Figs. 2 and 3. Figure 4 provides
a reminder of the behavior of the phase-transition
lines in the pT diagram; the Curie critical point cor-
responds to the values Pc, 9c- Physically it is rather
obvious that a first-order transition sufficiently close
to the Curie critical point (this means at values of p

a)

FIG. 1. First-order transition.
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FIG. 2. Second order trans-
ition far from the Curie critical
point.

b)

Second order

FIG. 3. Transitions near the
Curie critical point.
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First order

FIG. 4. Position of
the Curie critical point
(P - Pc, T = 0C).

b)
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and 9 c l o s e to p c , 0 C ) w i l l di f fer only s l i ght ly f rom a

s e c o n d - o r d e r t r a n s i t i o n wh ich a l s o o c c u r s n e a r the

c r i t i c a l point ( m o r e e x a c t l y , the d i f f e r e n c e s c a n c e l

out when c o n s i d e r e d at s m a l l d i s t a n c e s f rom the t r a n -

s i t i o n p o i n t ) . T h e r e f o r e for s i m p l i c i t y w e shal l h e r e -

after d i s c u s s only s e c o n d - o r d e r p h a s e t r a n s i t i o n s ,
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which we divide into " o r d i n a r y " t r a n s i t i o n s far from
the c r i t i c a l point and t r a n s i t i o n s n e a r this point.

The problem of second-order phase t r a n s i t i o n s ,
which o c c u r mainly in sol ids, cannot as yet be r e -
garded as solved, even if we cons ider only quest ions
of pr inc ip le . T h e r e i s no doubt that s ince the n a t u r e
of superconductivity was finally c l e a r e d up in 1957
the theory of second-order phase t rans i t ions i s the
main unsolved problem of the physics of m a c r o s c o p i c
s y s t e m s . This problem i s p r i m a r i l y that of d e t e r m i n -
ing the dependence of the thermodynamic potential of
a sys tem (for example, a c r y s t a l ) on var ious v a r i -
a b l e s — t h e t e m p e r a t u r e , the p r e s s u r e , the degree of
o r d e r , and so on. For example, in the c a s e of the
s e c o n d - o r d e r phase t rans i t ion mentioned above, in
which a cubic c r y s t a l goes over into a tetragonal
c r y s t a l , one must d e t e r m i n e the t e m p e r a t u r e depend-
ence of the p a r a m e t e r r) = с/a - 1 n e a r the t rans i t ion
point.

The a s s e r t i o n that the dependence rj(T) i s unknown
may a r o u s e some s u r p r i s e , s ince t h e r e a r e available
many exper imenta l s tudies of phase t rans i t ions , and
in addition t h e r e i s a c e r t a i n body of theory, to which
we have indeed made r e f e r e n c e . ^ This theory, how-
ever , i s of l imited applicability and can be r e g a r d e d
only as a c e r t a i n kind of approximation. The point is
that in the exist ing theory of second-order t r a n s i t i o n s
it is a s s u m e d that the thermodynamic potential has no
s ingular i t ies in the neighborhood of the t r a n s i t i o n point
and t h e r e f o r e can be expanded in a s e r i e s in the p a r a m -
e t e r т):

F a r from the Curie c r i t i c a l point the coefficient /3 can
be r e g a r d e d as constant in the t r a n s i t i o n reg ion and
equal to /3g ; m o r e o v e r , in the t rans i t ion reg ion у « уд.
In other words , for an " o r d i n a r y " s e c o n d - o r d e r t r a n -
sit ion only the coefficient a i s smal l , and n e a r the
t r a n s i t i o n point [cf. Eqs . (2) and (3)]

Ф(р, Т, T)) = (1)

H e r e F , a, /3, y, a n d 6 c a n d e p e n d o n p a n d T , a n d

t h e q u a n t i t y TJ i s t h e d i f f e r e n c e c / a - 1, t h e s p o n t a -

n e o u s p o l a r i z a t i o n ( i n t h e c a s e of a f e r r o e l e c t r i c

t r a n s i t i o n ) , o r s o m e o t h e r q u a n t i t y c h a r a c t e r i z i n g

t h e d i f f e r e n c e b e t w e e n o n e p h a s e of t h e c r y s t a l ( " t h e

o r d e r e d p h a s e " ) a n d t h e o t h e r ( " t h e d i s o r d e r e d p h a s e " )

general ly speaking, t h e r e a r e s e v e r a l p a r a m e t e r s щ,
but in Eq. (1) we a r e confining ourse lves to the c a s e
of one p a r a m e t e r , par t icu la r ly s ince this is indeed
the c a s e for the a ^ ( 3 t rans i t ion in quar tz .

The s i tuation which c o r r e s p o n d s to a second-order
t r a n s i t i o n i s that the coefficient a in Eq. (1) becomes
z e r o at a c e r t a i n t e m p e r a t u r e 0, where a > 0 for
T > в, and in a smal l t e m p e r a t u r e range we can set

= a'6(T-Q), a'e = const > 0. (2)

The potential (1) is the thermodynamic potential of a
nonequil ibrium s tate for which r) has the given value
[ we a r e speaking h e r e of a spatial ly homogeneous
problem, for which the la s t t e r m in Eq. (1) is z e r o ] .
In equi l ibr ium ЭФ/Эт; = 0, Э2Ф/Зт)2 > 0, and c o n s e -
quently in equi l ibr ium rj = rj0, with the values

At the Curie c r i t i c a l point fig = Pgc = 0, and n e a r this
point /3g is s m a l l ; f u r t h e r m o r e for second-order t r a n -
si t ions PQ > 0 ( m o r e o v e r , yg > 0 ) .

Thus the expansion (1) leads to a quite definite t e m -
p e r a t u r e dependence of TJ0; for an " o r d i n a r y " second-
o r d e r t r a n s i t i o n we have s imply Tjjj ~ (6 - T ) , and
t h e r e i s a finite discontinuity of the specific heat . '-3-'
Moreover, above the t rans i t ion point (for T > в) we
have TJO = 0, and t h e r e i s no additional specific heat
associated with the t rans i t ion. Meanwhile it is known
from the m e a s u r e m e n t s that for a number of second-
o r d e r t r a n s i t i o n s (for example, those corresponding
to o r d e r i n g t r a n s i t i o n s in al loys, to the \ point in
liquid hel ium, and so on) an anomaly of the specific
heat i s observed a l so for T > 6, while the jump of the
specific heat i s l a r g e r than the theoret ica l value, and
evidently infinite. E13^

The lack of a g r e e m e n t between the theory based on
the expansion (1) and the exper imenta l data indicates
that it i s not p e r m i s s i b l e to expand the potential Ф in
a power s e r i e s in TJ near the t rans i t ion point; i .e. , it
indicates that the t rans i t ion point i s a s ingular point
of the thermodynamic potential . This i s a lso indicated
by the unbounded i n c r e a s e of the fluctuations of the
p a r a m e t e r 17 as the t rans i t ion point is approached, as
follows from the expres s ion (1) itself. In fact, the fluc-
tuat ions of any thermodynamic quantity (in p a r t i c u l a r ,
the p a r a m e t e r TJ ) a r e de termined by the value of the
second derivat ive of the potential Ф with r e s p e c t to
the quantity. In a c o n c r e t e case , we have for the
fluctuations Дт) = ту — щ, '-3'9-'

(.
V

AV
(5)

where the b a r indicates s ta t i s t ica l averaging, к is
Bol tzmann's constant, and AV i s the volume e lement
for which the value of
ing to Eqs . (1) and (3)

) 2 i s d e t e r m i n e d . Accord-

= 2a,

T > 6 : ло = 0, r f i=- (3)

(6)

It i s c l e a r from Eqs . (5) and (6) that at the t rans i t ion
point (Д77)2 —- °°, s ince a —- 0. For a t r a n s i t i o n n e a r
the Cur ie c r i t i c a l point, for T < в the i n c r e a s e of the
fluctuations is especial ly l a rge , s ince for T —* в we
not only have a — 0, TJ0 — 0, but a lso the p a r a m e t e r
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PQ is small, and is equal to zero right at the Curie
critical point (for в = 0 C ) .

The increase of the fluctuations of the parameter rj
corresponds as it were to a "smearing out" of the reg-
ular picture of the transition which follows from Eq.
(1). Therefore the results (3) and (4) are incorrect in
a certain region, which contains the transition point
itself. It is also not possible at present to determine
the dependence TJO(T) in this neighborhood from the
experimental data, both because of technical difficul-
ties and for reasons of a more general nature: from
experimental data relating to macroscopic bodies it
is in general very difficult to find limiting forms of
laws, for example the value of the derivative dT)0 /dT
for T — в. It may be supposed that only the creation
of a consistent theory of second-order transitions will
bring clarity into questions of the nature of the singu-
larity of the potential Ф at TJ = 0, and also of the tem-
perature dependences of rj0, (Дг))2, and other quanti-
ties.

What is the role of the theory based on the expan-
sion (1), and in what sense can its results be regarded
as an approximation to reality? An unambiguous
answer to this question will also be obtained only after
the construction of an exact theory, but it seems to Us
that the situation is already rather clear. The pres-
ence of a singular point of the potential Ф at TJ = 0
does not prevent the expansion of Ф in series near
values of TJ which though small are different from
zero. Moreover, for щ * 0 the fluctuations (Д?))2

are finite. From this it is clear that the expansion
(1) and the results obtained from it may be valid in
a certain region near the transition point but exclud-
ing this point itself and its immediate neighborhood.
The whole question is only whether there exists an in-
terval, and if so, how wide an interval, of values of rj
in which we may use the expansion (1) and keep only
the terms arj2 + (/3/2 )т;4, or in extreme cases also
the term (у/6)т)6. It is natural to suppose ^ that the
smaller the fluctuations, the closer to the transition
point one can use the expansion (1), and the wider the
region where the parameter TJ is relatively small and
it is permissible to stop at terms of the order TJ4 or
7}6 (when higher powers of r\ are included the expan-
sion (1) contains so many unknown coefficients that in
general one cannot get any concrete results from i t) .
We cannot discuss this interesting question in detail
here, and shall confine ourselves to a few remarks. ^143
According to what we have said, to find the region of
applicability of the expansion (1) we must compare the
values of rjjj and (Дт; ) 2 . It can be supposed that the
expansion is surely legitimate when (Дт;)2 « т\\. Here
we cannot use the expression (5) for (Дт;)2, since it
contains the arbitrary volume ДУ and applies only to
the spatially homogeneous case. A calculation of the
fluctuations (Д17)2 free from these limitations gives
as the criterion for the validity of the expansion (1)
the inequality E14^

(7)

Here ДТ = (в — T) is the distance (in the temperature
scale) from the transition point at which the theory
based on the expansion (1) is already valid. We see
that the value of ДТ will be smaller for large values
of the coefficient б which characterizes the so-called
correlation energy [cf. Eq. (1)]. An extremely curious
fact is that the values of б are altogether different in
different cases. A more convenient and consistent pro-
cedure, however, is to compare not the values of 6,
but the actual characteristic parameters £7 for var i -
ous transitions [cf. Eq. (7)]. For superconductors
£T ~ 3 x 10~16, in liquid helium £т ~ °-3. and in
solids ordinarily £т ~ 0.03, but sometimes it is
much smaller [e.g., in ferroelectrics £j ~ (1—3)
x 10~3]. Owing to this the expansion (1) and all of the
corresponding theory of second-order transitions
can be applied practically without any restrictions for
superconducting transitions. Also for some other tran-
sitions in solids, though there are limitations they are
sometimes of little practical importance. For exam-
ple, in the case of ferroelectric transitions we have
to do with an incorrectness of Eq. (4) in a region with
a width of one degree or a few degrees near the tran-
sition point. In the case of the a ^ /3 transition in
quartz the situation is still not clear, since this tran-
sition is close to the Curie critical point. For quartz
the expansion (1) is evidently already good at a dis-
tance of several degrees from the transition point.2'
It must also be kept in mind that as a rule the applica-
bility of any particular theory is not universal, in the
sense that it depends strongly on the physical quantity
under consideration. In this connection it is very im-
portant for our thesis here that the intensity of scat-
tering of light is one of the quantities for which the
theory of Eq. (1) gives particularly good results
(cf. m and footnote 7). Thus not only for lack of a
more exact theory, but also with some justification
in the nature of the case considered, we can discuss
the scattering of light near points of second-order
phase transition on the basis of the expansion (1).

2. As is well known, light is scattered by the fluc-
tuations of the dielectric constant, Де (we are of
course speaking of a homogeneous medium, for ex-
ample a single crystal without foreign inclusions).
More exactly, even in an isotropic medium the fluc-
tuations are of a tensor nature, i.e., we must consider

^ h e temperature variation of the specific heat in the transition
region takes very different forms, depending on the value of the
parameter £x (when one uses a single scale on the axis of abscis-
sas, on which the ratio ДТ/0 is measured off). In our opinion pre-
cisely this is the explanation of the quite different shapes of the
specific-heat curves (and curves of other quantities) for various
transitions.!14] From this point of view all second order transitions
are essentially of the same type, with the same dependence of any
physical quantity on the ratio
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a tensor Дец. For simplicity, however, we shall con-
fine ourselves here to the case in which we can, with
sufficient accuracy, set Дец = Де<5ц. Besides this, of
course, the values of e and Де must be taken for the
frequency of the light being scattered, w0 = 27rc/Xo.
and we must write e = n2 and Де = 2пДп, where n is
the index of refraction. In a medium whose state is
characterized by the density p, the temperature T,
and the parameter TJ, we have

At
f de "\ л . { дг

Here we have used the fact that e depends only on TJ2,
since replacement of TJ by — TJ corresponds to twinning
and cannot affect the value of e (for example, in the
case of a ferroelectric crystal, if TJ = P z is the com-
ponent of the polarization along the z axis, the states
P z and — P z differ in the direction of the polarization
parallel or antiparallel to the z axis). We note that
in Eq. (8) it is more correct to write Дг?2 - Дт/2 in-
stead of ДТ72 in the last term, but in the region below
the transition point in which we are interested this is
unimportant, and the term Дт;2 is omitted for sim-
plicity (for details see ^ ) .

Near a point of second-order transition the fluctua-
tions of the quantity TJ increase, whereas there are no
important changes in the fluctuations of density and
temperature. Therefore near the transition point we
can set

Де = = 2ат)0Дт], О)

where a = (Эе/Эг}2)р>т and we have used the facts that
2 2 ( 2

Дт) = TJ — щ a n d Д т ? 2 = T J 2 — O == 2770Д7? + (Дт?) 2 . M o r e -

over, the term (Д77)2 in Eq. (9), like the term Д172

in Eq. (8), has been dropped; it is important only
above the transition point, where щ = 0. The inten-
sity I of the scattered light is proportional to (Де) 2

and, as is clear from Eqs. (5), (6), and (9),

ЦТ) 0

R i g h t a t t h e t r a n s i t i o n p o i n t OIQ = 0 a n d

'(в)~4^-.

(10)

(11)

It i s c l e a r f r o m t h i s t h a t f o r " o r d i n a r y " s e c o n d - o r d e r

t r a n s i t i o n s , i . e . , t r a n s i t i o n s f a r f r o m t h e C u r i e c r i t i c a l

p o i n t , t h e s c a t t e r i n g b e l o w t h e t r a n s i t i o n p o i n t h a s a

w e a k d e p e n d e n c e o n t h e t e m p e r a t u r e ( F i g . 5, a ) . T h i s

result may be surprising at first glance, since for or-
dinary second-order transitions the fluctuations (Д17)2

— °° for T — 0. The point is, however, that the in-
tensity of the scattering is proportional to (Д772) and
is therefore determined by the product T7(J(ATJ)2 [cf.
Eq. (9)]. As for this product, it does not increase, be-
cause r\l — 0 for T —- в. The situation changes near
the Curie critical point, at which /3g = 0. It is obvi-
ously for this last reason that for transitions close to

FIG. 5. Intensity of the scat-
tering for an "ordinary" second-
order transition (a) and for a
second-order transition close to
the Curie critical point (b). Be-
sides the scattering by fluctua-
tions of 77, in both cases the
scattering by density fluctuations
has also been taken into account.

a)

b)

the critical case the intensity I(T) is temperature de-
pendent (Fig. 5,b) and increases sharply as /3g de-
creases, i.e., as the transition approaches the critical
case. It is precisely in this region that critical opales-
cence should be observable in a solid.

If we use the expressions (9)—(11) we find that at
T = в the intensity I falls discontinuously from the
value (11) for T < в to the value 1 = 0 for T > в (by
I we of course mean only the intensity of the scatter-
ing by the fluctuations At]). It is true that inclusion
of the omitted terms of the order of (Д17)2 leads to
the appearance of some weak scattering in second
order even for T > в, but this does not invalidate the
conclusion that there is a jump in the first-order scat-
tering [ scattering by the fluctuations (9)]. ,

At the same time it is clear from physical consid-
erations that the temperature variation of the scattered
intensity cannot have any " j u m p " (this has already
been taken into account in Fig. 5). Moreover, the
limitations of the formula (11) are also obvious owing
to the fact that according to this formula I —• °° at
the Curie critical point itself. In fact, of course, the
intensity of the scattering is always finite. In order
to obtain expressions free from these shortcomings,
it is necessary to take into account the correlation
between the fluctuations in adjacent volumes. This
conclusion has been known for a long time in the case
of fluctuations near the critical point in a liquid-vapor
system. '-5-' Under the conditions of second-order t ran-
sitions the inclusion of the correlations can be accom-
plished automatically, if we do not drop from the ex-
pression (1) the gradient term б (grad r?)2: by its very
meaning this term leads to a connection between the
changes of TJ in adjacent regions. We shall not concern
ourselves here with the calculations, ^ and only recall
the approach which is used in making them and is im-
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portant for what follows; this goes back to the classic
work of A. Einstein on the scattering of light by den-
sity fluctuations. C1S3

It follows from the calculation that the scattering of
light of frequency co0 in a given direction involves only
a definite Fourier component of the fluctuation Де(г);
namely the intensity of the scattered light is given by

2л
Л

4nn е
Г" ] (12)

Here V is the volume of the scattering medium with
index of refraction n(w 0 ); \ 0 = 27гс/шо; ср is the angle
between the electric vector of the incident wave and the
direction of observation, and в is the scattering angle
(Fig. 6). Thus the scattering through the angle 9 is
due only to the Fourier component of the function
Де(г) that corresponds to the wave vector q = k0 - к
(and also to the vector - q , since Де_п = ( A e q ) * ow-
ing to the fact that Де is a real function). In other
words, the scattering is produced only by the "inhomo-
geneity wave" of the dielectric constant with length Л
= 27r/q = A.o /[ 2n sin( 0/2)]; this corresponds to the well
known interference condition

According to Eq. (9) the component Де^ is propor-
tional to the component Ar)q. The value of | Arjq | 2 it-
self can be calculated by the method usual in statistical
physics, by using the expression (1) for the thermody-
namic potential and including the gradient term. The
result is ^

аЧТ sin* q>
(13)

F o r 6 = 0, i . e . , w h e n the " c o r r e l a t i o n e n e r g y " i s not

inc luded in Eq. (1), the e x p r e s s i o n (13) g o e s o v e r into

(10), w h e r e a t e m p e r a t u r e - d e p e n d e n t fac tor w h i c h i s

c l e a r f rom c o m p a r i s o n wi th Eq. (13) w a s o m i t t e d . F o r

6 * 0 the in tens i ty i s a l w a y s f inite, and at the t r a n s i -

t ion point ( w h e r e a = ag = 0 ) , and in p a r t i c u l a r at

the C u r i e c r i t i c a l point ( w i t h a g = 0 , /3g = 0 ) the

iin tens i ty 1 ( 6 ) = 0 . Above the t r a n s i t i o n point ( i n the

r e g i o n T > 9) t h i s f i r s t - o r d e r s c a t t e r i n g i s a l s o a b -

sent , and thus the cont inuity of the function I( T ) i s

p r e s e r v e d , a s i t m u s t b e . The width of t h e r e g i o n in

wh ich the i n t e n s i t y f a l l s i s d e t e r m i n e d ( a w a y f rom

the Cur ie c r i t i c a l point i t s e l f ) f rom the cond i t ion

•1. ( 1 4 )

T h e v a l u e o f 6 i s u n k n o w n f o r t h e m a j o r i t y o f t r a n s i -

t i o n s , b u t u s u a l l y i n s o l i d s ( e x c e p t i n t h e c a s e o f

s u p e r c o n d u c t i n g t r a n s i t i o n s ) t h e c h a r a c t e r i s t i c l e n g t h

I ~ (6/а'вв ) 1 / 2 ~ Ю"7 - 1 0 " 8 cm. Under such condi-
tions the width of the region in which the intensity falls
is ДТ = (9 - T) ~ 10"4 - 1 0 " 1 deg. Thus the fall of in-
tensity of the scattered light occurs practically right
at the transition "point," which in fact is always some-
what smeared out owing to stresses, nonuniformity of
the temperature, and so on. Therefore in first approx-
imation we can compare theory with experiment by
using the formula (13) with 6 = 0. Here it is conven-
ient to use not the absolute value of the intensity, but
the ratio of the intensity of the scattering by the fluc-
tuations of X) to the intensity \ of the scattering far
from the transition point. For an isotropic body, tak-
ing into account only the scattering by density fluctua-
tions, we must use for Io Einstein's formula C15^1

w h e r e b x = p " 1 ( 3 p / 9 p ) x i s t h e i s o t h e r m a l c o m p r e s s i -
b i l i ty .

A c c o r d i n g t o E q s . (13) and (15), w i th 6 = 0,

I (T%) аП\ / (9) _ а2в
• M ^ i ) , / o 5 — о Г Г . i

where the values of a, /3, a, and у must be taken at
the temperature T2 =* 9, and the values of bx and
(p Эе/Эр)х at the temperature T t . The quantities bx
and (p 8e/9p) T can be measured directly or can be
connected with other measureable quantities. Away
from the Curie critical point, but close to it as well
as far from it, the jump of the specific heat at the
transition is

Дс =-g-(аё)2. (17)
Pe

The value of a = (Эе/Эт;2)р)х can be determined from
measurements of e = n2 near the transition point. In
fact, near the transition point the dependence e(T) is
practically the dependence e(rjo(T)), where TJO(T) is
the equilibrium value of 77, which near the transition
is given by Eq. (4). The changes of e owing to fluctu-
ations of r\ and owing to the change of the equilibrium
value ?] = rjo with the temperature are of entirely the
same character, and therefore near the transition
point (in the region T < 9 ) we have in accordance
with Eq. (9)

(18)

FIG. 6. Scattering of ligjit through angle ft
From this it follows that [see Eqs. (17) and (18), with
Дп = п(Т) - n(0)]
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Ara)2 8
(19)

For the a ^ /3 transition in quartz:

e = 846°K, л =1.56,

Дл = 1.2-lO"3 in the range ( 6 - T) = 0.1°,

ДС = О . 4 — ^ — = 4 . 2 - 1 0 ' - ^ 1 - 5 - ( e = 2.51-V).
g d e g deg cm3 V cm3 у

dyne
(20)

All of t h e s e values a r e taken from the s o u r c e s indi-
cated in ^ and '-11^, and h e r e we shall confine o u r -
se lves to present ing a curve of n ( T ) for quartz in the
t rans i t ion region, taken from t 1 1 ^ (Fig. 7). Besides
th i s we emphas ize that in all probabil i ty the a ^ /3
t r a n s i t i o n in quartz is a second-order t rans i t ion (and
not a f i r s t - o r d e r t rans i t ion c lose to the Cur ie c r i t -
ical p o i n t ) . It cannot be doubted that th i s t r a n s i t i o n is
c lose to the Curie c r i t i c a l point, as is c l e a r from the
s teepness of the function n ( T ) in Fig. 7 and from other
data. E11^ This is m o s t c lear ly evidenced by the c r i t i -
cal opalescence which is also observed in the reg ion
of the а s= /3 t rans i t ion . [ 8 > и ^

Using the values (20) and the express ion (19), we
can find the ra t io of intens i t ies (16). The r e s u l t i s

/(6) 1.1-104, (21)
/0(20° C)

w h e r e a s exper imental ly I(0)/Io(2O o C) « 1.4 x 10*.
As T. S. Velichkina has kindly informed the w r i t e r ,
the accuracy of th is exper imenta l value is 20 to 30
p e r c e n t ( the intensity 1(9) was exper imental ly d e -
t e r m i n e d as the average intensity in a range of 0.1°
n e a r the t r a n s i t i o n point ) . In view of the s ize of the
e r r o r and the known i n a c c u r a c i e s of the value (21),
caused by neglect of anisotropy and the lack of p r e -
cis ion of the values (20), we m u s t for the p r e s e n t r e -
gard the a g r e e m e n t between theory and exper iment
as complete . A m o r e detai led c o m p a r i s o n will p r i -
m a r i l y r e q u i r e the secur ing of m o r e a c c u r a t e values
of all the p a r a m e t e r s and new m e a s u r e m e n t s of the
intensity of the sca t ter ing in the region of the a s=t /3
t rans i t ion in quar tz . It would also be v e r y interes t ing
to observe the s c a t t e r i n g n e a r other second-order
t r a n s i t i o n s . M e a s u r e m e n t s in the neighborhood of
c e r t a i n f e r r o e l e c t r i c t rans i t ions a r e evidently e s p e -
cial ly p r o m i s i n g in this connection.

n
/.S5BS

tiS60

1.5555

IJ550

US*!

FIG. 7. Temperature de-
pendence of the index of re-
fraction of quartz (Ao = 4057 A).

3. The intensity of the s c a t t e r e d light i s a physical
quantity whose m e a s u r e m e n t i s undoubtedly of i n t e r e s t .
But the de terminat ion of the s p e c t r a l composit ion of
the s c a t t e r e d light m a k e s it poss ib le to get much m o r e
information about the p r o p e r t i e s of the sca t te r ing m e -
dium.

The s p e c t r u m of the s c a t t e r e d light depends on the
kinet ics of t h e fluctuations Д с ; that is , in our c a s e of
the region n e a r second-order t rans i t ion points, on the
kinet ics of the fluctuations of the p a r a m e t e r r;. Since
the sca t te r ing through angle в involves the wave [ cf.
Eq. (12)]

Де=Дече*ч г = 2ат1оДт|„е<ч' with 9 = - ^ l s i n i

the s p e c t r a l composit ion of the light depends on the
form of the function A7)q(t) — o n the var ia t ion with
t ime of the amplitude of the wave of Д17 with the wave
vector q [ th i s fact, which is a lso the b a s i s for the
analys is of the s p e c t r u m of the Rayleigh sca t ter ing,
is a lso elucidated in the r e p o r t by I. L. Fabelinskii
( s e e page 667)]. Concretely, the field in the s c a t t e r e d
light wave i s proport ional to A e q e ^ o * = 2ат7ОДт^е*шо*,
and i t s s p e c t r a l composit ion is de termined by the
F o u r i e r components

(22)

where п = ш - шй; ш i s the frequency of the s c a t t e r e d
light, and c<j0 i s that of the incident light.

What a r e the kinetics of the fluctuations Аг)„? In
the c a s e of quartz we can take as the p a r a m e t e r rj the
disp lacement of the posit ion of a definite Si atom in
the a quartz re la t ive to its posit ion in the /3 quar tz .
In a f e r r o e l e c t r i c such as BaTiO 3 , for example, one
of the p a r a m e t e r s is proport ional o r equal ( this d e -
pends on the normal iza t ion) to the e l e c t r i c p o l a r i z a -
tion of the c r y s t a l along the tetragonal axis . This
quantity is in t u r n proport ional to the d isplacement of
a Ba atom ( m o r e exactly, ion) re la t ive to the TiO 3

group.

Thus in t h e s e and s i m i l a r c a s e s a nonequil ibrium
change (fluctuation) c o r r e s p o n d s to the d i sp lacement
of var ious sublat t ices, and consequently will be of an
osci l la tory n a t u r e . In fact, a s is well known, it i s p r e -
cisely through the d i sp lacement of sublat t ices re la t ive
to each other that optical ( B o r n ) v ibrat ions o c c u r r i n g
at some frequency S2j(q) a r i s e in a c r y s t a l . Thus we
a r r i v e at the conclusion that the sca t te r ing of light by
fluctuations is a special c a s e of combination s c a t t e r -
ing of l ight. This conclusion i s quite obvious if we
follow the ideas developed by G. S. Landsberg and
L. I. Mandel ' shtam, who in terpre ted combination s c a t -
ter ing as the r e s u l t of modulation of a light wave by
the optical v ibrat ions of a l a t t ice . C l 6 ^ 3 ) With a differ-

ш m M5 m m m т

3)Here and in what follows we use classical ideas and classical
theory. This is completely justified for transitions occurring at
temperatures T ̂ TiQj/k, and these are basically the transitions
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ent approach to the problem, if we calculate the inten-
sity of the scattering by the fluctuations of r) without
thinking of their kinetics, the connection of this scatter-
ing with combination scattering E12^ remains obscure,
and was not noted in ^2>9^, and some other papers.

In quartz, where the phase transition is character-
ized by one parameter TJ, we must expect a connection
of only one branch of the optical vibrations with the
oscillations of TJ. At the same time there are 16 op-
tical vibrations in a quartz, 12 of which are active
in combination scattering. ^18^ Thus the need arises
to determine the optical normal vibration which corre-
sponds to fluctuations (oscillations) of the parameter

V-
A change of the quantity TJ in a quartz is not asso-

ciated with a change of the symmetry of the lattice.
There are 4 vibrations in quartz which do not change
the symmetry; their frequencies V± = fli/27rc at room
temperature are 207, 357, 466, and 1082 cm" 1 . As was
already mentioned at the beginning of this article, the
combination line 466 cm" 1 can also be seen in /3
quartz, M so that the oscillation of TJ with which we
are concerned cannot be connected with it (in /3
quartz oscillations of r\ do not give first-order scat-
tering). The behavior of the other three lines can be
traced theoretically only in the framework of calcula-
tions which use the model of a lattice with definite
force constants, etc. Such an analysis has not yet been
made completely, but some conclusions can already be
drawn.

First, and this is especially important, the fre-
quency flj associated with changes of TJ must go to
zero at the transition point of the second kind. The
basis for this conclusion is presented below, but we
emphasize here that thus it is clear that it must be
possible to find the relevant frequency О,\ from meas-
urements of the frequencies of lines at various tem-
peratures. Unfortunately, measurements of the posi-
tions of a number of combination lines in a quartz
have been made ^19-' only up to 685°K, which is still
rather far from the transition temperature в = 846°K.
Nevertheless it is clear from the measurements that
the greatest decrease of frequency with increase of
temperature is shown by the line v^ = 207 cm" 1 (i/j
= 207 cm" 1 at 300°K and ^ = 173 cm" 1 at 685°K).
At the same time the line 357 cm" 1 (at T = 300°K)
has a frequency 351 cm" 1 at T = 685°K, i.e., is dis-
placed very little (we have no data for the line 1082
c m " 1 ) . Besides this, according to ^ the line 207
cm" 1 also has the largest increase in width with rising

of interest to us here (as is shown below, the frequency flt with
which we are concerned is small near the transition point). From
the quantum point of viewll6'17J combination scattering is associ-
ated with the absorption (violet satellite) or production (red satel-
lite) of a quantum of the optical vibrations (an optical phonon) by
a photon of energy Hcu,, and momentum hû nko/koC incident on the
medium. In the scattering the momentum of the photon is changed
by the amount of the phonon momentum Hq.

temperature. ^19^ Thus the experimental data, together
with the general theoretical conclusion just stated,
point to the line 207 cm" 1 as the one whose frequency
goes to zero at the «5=^/3 transition point. Second,
the same conclusion can be drawn from a brief note
C2(|]*> which states that calculations on the basis of a
definite microscopic model indicate a great resem-
blance between the vibrations responsible for the line
207 cm" 1 and the displacements in the a ^ /3 transi-
tion.

We shall now present the arguments which indicate
that the frequency S2i corresponding to oscillations of
the parameter TJ goes to zero at T = в.

At a second-order transition point щ(в) = 0
and a = a( 9) = 0, which means that the "generalized
elastic energy"—the term ar]2 in the expansion (1)
—goes to zero. To make this interpretation of the
expression mj2 clearer, we recall that the equilibrium
v a l u e TJ = TJO i s d e t e r m i n e d f r o m t h e c o n d u t i o n ЭФ/Э77

= 0, i . e . , f r o m t h e c o n d i t i o n ar) + /3TJ3 = 0 ( w e s e t

6 = 0 a n d n e g l e c t t h e t e r m yrf/6). T h i s e q u a t i o n ,

h o w e v e r , i s a n a l o g o u s t o t h e e q u i l i b r i u m c o n d i t i o n

f o r a n a n h a r m o n i c o s c i l l a t o r w i t h t h e e q u a t i o n of

m o t i o n z + a z + b z + c z 3 = 0 ( d i f f e r e n t i a t i o n d / d t i s

i n d i c a t e d b y a d o t ) . T h i s a n a l o g y i s p a r t i c u l a r l y d e e p

b e c a u s e t h e p a r a m e t e r TJ i s p r o p o r t i o n a l t o s o m e d i s -

p l a c e m e n t i n t h e l a t t i c e ( w e a r e s p e a k i n g of q u a r t z ,

f e r r o e l e c t r i c s , a n d s o m e o t h e r c a s e s ) . T h u s t o a

c e r t a i n a p p r o x i m a t i o n w e c a n w r i t e a n e q u a t i o n of

m o t i o n f o r 17 i n t h e f o r m fir) + nvr) + ar\ + /3TJ3 = 0.

F r o m t h i s w e h a v e f o r s m a l l o s c i l l a t i o n s ATJ = TJ - щ

a b o u t a n e q u i l i b r i u m v a l u e jjj®

dt

•в: т)о = О,
-8)

а (23)

The linear dependence on the difference в — T which
holds near the transition point (Fig. 8) is connected
with the expansion (1), and is probably only approxi-
mate (see above). There can scarcely be any doubt,
however, that one of the optical frequencies goes to
zero at a second-order transition point.6 '

4)The same conclusion is indicated by the detailed paper, which
appeared later and is cited in the list of literature also under M .

5)To avoid misunderstanding we make one comment regarding
the notation. The п± denote both frequencies of optical vibrations
in general, and also the frequency of the vibration of special in-
terest to us, which is connected with changes of 77. This should
not lead to confusion, since in what follows the notation flj occurs
only with the second meaning. The parameters ft and v in Eq. (23)
refer only to the vibration connected with changes of JJ, and for
simplicity carry no index.

®The scattering of light involves the frequency fii(q), whereas
in Eq. (23) we were essentially concerned with the limiting fre-
quency fii(0), i.e., with an optical vibration with wavelength
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FIG. 8. Temperature dependence of the square of the frequency
Oi associated with oscillations of JJ.

This fact was pointed out long ago '-21-' for the ferro-
electric transition (see also C14»22,23])_ in this case, if
rj = P z and a cubic crystal goes over into a tetragonal
crystal, the complex dielectric constant is of the form

Qi —

T<Q:
2Ql-W

, Q? = (24)

For T < в we have e x = e y * e z , i.e., there is a split-
ting of the characteristic frequencies (for the corre-
sponding expressions see E14-'). One easily gets the
formulas (24) from Eq. (23) by setting Д77 = P i i Z ,
where P i > z = (е-1)Е 2 /4тг » (e/47r)Ez is the polari-
zation induced by an external field E z = E z

0 > e i n t along
the axis z in the direction of the spontaneous polari-
zation P 0 ) Z (we note that when the electric field is
taken into account one must add to the expression (1)
for this case a term - P Z E Z , which leads to the ap-
pearance of a generalized force E z in the right mem-
ber of Eq. (23) for Д77 = P i ( Z ) . The frequency Щ in
Eq. (24) is the characteristic frequency of the optical
vibration in which the electric polarization oscillates
along the z axis (above the transition point the crystal
is isotropic in its dielectric properties and the z axis
is of course not singled out). Such an optical vibration
obviously is active in infrared absorption, as can indeed
be seen from Eq. (24): the presence of the frequency Q{
leads to a resonance and an absorption maximum both
for T < в and for T > в. In first-order combination
scattering the vibration with frequency п{ is active
only for T < в. This sort of ferroelectric transition
of a cubic crystal to a tetragonal crystal is close to
the case found in BaTiO3 (for which it is a matter of
vibrations of Ba relative to the TiO3 group). The
only difference is that in pure BaTiO3 the phase tran-
sition is a first-order transition close to the Curie
point [therefore п{(9) * О, although this frequency is
indeed anomalously small C14^].

In the case of quartz the parameter -q is not con-
nected with an electric polarization, and consequently

Л = 2j7-/q -» ~. For light, however, q = (4rni/A0)sin в/2 ^
< 5 x 105 « q m a x - п/й - 10* (d - 3 x 10'' is the lattice parameter).
Therefore with good accuracy Q^q) =* 1^(0) (for details see [ I 2 > 2 4];
in L24J there i s also information on the problem of the connection
between optical vibrations and "normal" electromagnetic waves
and the theory of excitons in crystals; we cannot go into this here).

the optical vibration in which we are interested is not
active in infrared absorption, but appears in the com-
bination scattering for T < 9. For T > в this vibra-
tion is inactive also in first-order combination scatter-
ing.7 ' In the experiments with quartz ^ the spectral
composition was not obtained, but besides the intensity
measurements there were measurements of the degree
of depolarization Д of the scattered light. At room
temperature Д RJ 0.12 near the transition point, but at
some distance from this point (for T < 9), Д ~ 0.18.
In the immediate region of the transition Д « 0.06. In
view of what has been said, this large decrease of Д
is quite understandable. Outside the transition region
the scattering is mainly Rayleigh scattering. In the
transition region (near the transition point), on the
other hand, the main contribution is that of combina-
tion scattering, with degree of depolarization Д = 0
for the 207 cm" 1 line (the fact that even in the transi-
tion region we see that Д = 0 does not contradict our
conclusion and calls for special analysis, since the de-
polarization of the scattered light was not calculated
in ^ and the usual calculation for combination lines
cannot be used here) .

For ferroelectrics which have a piezoelectric effect
even below the ferroelectric region (Rochelle salt,
KH2PO4, and so on) the first-order combination scat-
tering does not vanish even in the more symmetrical
(nonferroelectric) phase. The intensity of this scat-
tering is calculated in W ; it increases as the tran-
sition point is approached from either side (further-
more the corresponding frequency п[ for the second-
order transition also goes to zero for T = в).

In the foregoing we have essentially assumed that
the optical vibration associated with changes of 17 is
undamped and occurs with the frequency Щ. Then the
frequency of the combination line (more exactly, the
distance between the satellite and the unchanged line,
п = ш — w0) is also equal to flj. Actually, however,
every vibration is damped, and consequently the com-
bination lines have nonvanishing widths. This broad-
ening is ordinarily given no attention if it is not the
object of special investigation. One cannot, however,
in general neglect the width for a frequency fij which
rapidly decreases and even goes to zero for T — 9.

Thus we need to determine the spectrum of the
scattered light in more detail. This has been done
in C12^, but we would like to carry out this simple
calculation here also.

Obviously what we are to find is the spectral den-
sity J(O) of the intensity of the scattered light; this
is proportional to | Gft | 2 , where Go is the Fourier

"Second-order combination scattering, which in quantum lan-
guage corresponds to the production or absorption of two optical
phonons in the scattering of a photon, has a broad spectrum and
is in general very weak (exceptions can occur in only a few sub-
stances, and in these only very near the transition pointM). To
keep the exposition from being unwieldy we shall not go into the
details of this question.
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component (22). To do this we must remember that
the fluctuations of the parameter т; are caused by the
thermal motion in the crystal. This means that the
vibrations of the quantity Arj = r\ — щ are forced, not
free vibrations, and obey the equation8 )

dt1 (25)

Here f is a random force which arises from the ther-
mal motion, or specifically from the thermal vibra-
tions of all the degrees of freedom connected with vi-
brations of r\ through weak interactions of nonlinear
character. Equation (25) differs from Eq. (23) only by
the inclusion of the force f —in Eq. (23) we were in-
terested only in the characteristic vibrations of the
crystal and did not take the force f into account [ but
in getting (24) we actually already used (25) with f
replaced by the electric field E z (see above)].

It follows from Eqs. (25) and (22) that 9 )

( 2 6 )

As has already been pointed out, we have for the spec-
tral density of the intensity of the scattering J( п)
~ I Gn l2i and thus

n |

(oS-i
/ = [ J(Q)du. (27)

Here we have introduced the factor I proportional to
| fft | 2 , and by definition of the quantity J( п), I is
equal to the total intensity of the light scattered by the
fluctuations in question. Therefore we do not need to
make a new calculation of the value of I; it has been
found earlier [see item 2, and in particular Eq. (13)].
If the red and violet satellites do not overlap, i.e., if
ui » v, then for each, satellite

(28)

Here I is obviously the total intensity of both satel-

8)The quantity appearing in Eq. (22) is A.rjq, but in Eq. (25)
we omit the index q. This is due to our neglect of the difference
between Qj(q) and Oi(0), which we have already mentioned. Along
with this we must emphasize that from other points of view it is
very important to consider the fluctuations with q 4 0, and not with
q = 0. The point is that when the term 8(grad rf)2 in Eq. (1) is in-
cluded the fluctuations with q Ф 0 do not become infinite even
right at the transition point (cf. M ) . For this reason it is legiti-
mate to use the theory based on the expansion (1) for the analysis
of the problem of the scattering of light over a much wider rangel'J
than it could be used to calculate quantities such as the specific
heat. Ой the other hand, the value of q which is important for the
scattering of light is small in comparison with q m a x ~ n/A, and
this diminishes the values of integrals of the type / q F(q)dq.

^Ary^t) and f (t) are random functions and do not go to zero
as 111 -> so. Nevertheless it i s permissible to use the usual
Fourier transformation in the present calculations.
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FIG. 9. Spectrum of scat-
tered light, X « 77vJ(y)/I, as a
function of у » iJ/v for vari-
ous values of the parameter
yi - U-Jv.
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lites taken together (in this classical approximation
the intensities of the satellites are equal).

We also note that according to Eq. (27)

—
nv

4Йi )

(29)

where the frequencies йщах = ± (fif - рг/2 )*'2 corre-
spond to maxima of the function J( П) when fli > u/21^2.
For Qi < v/21'2 the function J( Q) has only one maxi-
mum, at U = 0. The dependence of J( п) on the ratio
yi = il{/v is shown in Fig. 9, where the ordinate is the
quantity X:

nvJJQ)_ У\
y=- i = =-- (30)

A n i m p o r t a n t p o i n t i s t h a t t h e i n t e n s i t y o f t h e s c a t t e r -

i n g w i t h o u t f r e q u e n c y s h i f t , J ( 0 ) = vl/vSl\, d e p e n d s

s t r o n g l y o n t h e t e m p e r a t u r e - F o r s e c o n d - o r d e r

transitions far from the Curie critical point the in-
tensity I for T < в is approximately constant (Fig. 5,a),
but fi2 = 2ojg( в — T )/\x. In this case the temperature
dependence of J(fi) is given by the curves of Fig. 9,
since the decrease of Щ as the transition point is ap-
proached is associated with a change of the parameter
yi = Щ/v ~ (в - T ) 1 / 2 . When the Curie critical point
is approached a temperature dependence of the inten-
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sity I appears (Fig. 5,b) and the effect becomes still
sharper. As for the coefficient v which characterizes
the damping, generally speaking it must be "well-
behaved" near the transition point, i.e., must not have
any singularities. One can determine v by various
methods. '-12-' In particular, it is obvious that the basis
parameters Щ and v for the normal vibration respon-
sible for a phase transition can be found by spectral
analysis of the scattered light. In cases in which this
vibration is active in infrared absorption one can in
principle determine these same parameters by the
methods of infrared spectroscopy. It is well known,
however, that these two methods—combination scat-
tering and infrared spectroscopy—only supplement
each other. Furthermore for low frequencies the in-
frared method (which could then be more correctly
called the microwave method) encounters great diffi-
culties, especially in the submillimeter part of the
spectrum.

Summarizing, we want to point a conclusion about
the possible fruitfulness, and in any case the great in-
terest, which would be presented by spectral studies
of the scattered light near points of second-order
phase transition and first-order ones close to the
Curie critical point. Clearly ferroelectrics are of
particular importance in this connection; the combi-
nation scattering of light in ferroelectrics has already
been observed, ^26^ but not for all lines and outside the
transition region.

The main feature which determines the peculiari-
ties of the scattering of light at second-order phase
transitions and transitions closely resembling them
is essentially the sharp decrease of one of the fre-
quencies of the normal vibrations. Such an effect,
however, is also possible in liquids for macromole-
cules and polymer chains. Owing to this these sub-
stances clearly also deserve attention in work such
as that suggested here.

But why are there no experimental researches on
the spectrum of the scattered light near second-order
phase transition points? It is hard to give a completely
definite answer to this question. In our opinion there
are three facts to be mentioned in explanation. First,
there is still too little recognition of the potentialities
of measurements made along the lines we have sug-
gested. Second, these measurements are by no means
simple. Third, the study of the scattering of light is,
so to speak, an old classical problem and has "gone
out of style."

There are, however, many examples of "o ld" and
"unstylish" fields of research which have again come
to the center of attention as the result of the appear-
ance of more modern experimental resources, new
ideas, or new objects of study. It may be that this
will also be the fate of the study of the scattering of
light, especially in solids. Here there are many new
materials which have second-order phase transitions
(ferroelectrics, so-called antiferroelectrics, and

others). We hope that it is clear that the study of the
scattering of light in these substances is important.
Finally, remarkable new light sources have been de-
veloped (quantum generators—lasers), which are as
it were especially predestined for the spectral analy-
sis of scattered light.

Will all of these favorable conditions be enough to
make work on the scattering of light again lead to great
advances in the study of crystals and molecules ? We
shall of course know the answer to this question only
in the future.
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