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INTRODUCTION

A.T the present time the study of random processes
is not only of profound physical interest ( Brownian
motion, radioactive decay, accuracy limit of meas~
uring instruments, propagation of electromagnetic
waves through the turbulent atmosphere, etc. ), but
also of appreciable practical significance. This is
explained by the fact that further improvement in
many physical devices by perfection of their construc-
tion and manufacturing technology has its own limit,
determined by purely physical factors—fluctuations,
so that it becomes necessary to search for principally
new solutions. This state has been reached, for exam-
ple, in many branches of modern radiophysics (radio
astronomy, radar, radio communication, radio spec-
troscopy, etc.).

It is therefore natural that since the first papers
by A. Einstein and M. Smoluchowski[!2] on the theory
of Brownian motion, more and more attention has been
paid to random processes, particularly during the last
20 years, owing to the large technical progress in the
field of radiophysics.

In the present article we consider among the large
group of problems in the theory of random processes
only a few special problems, which can be grouped
under the heading ‘‘Peaks of Random Processes.’’ Al-
though not all of these problems have been completely
solved analytically, the available literature and the
experimental work performed do allow us to cite some
general results, which can be useful to persons who are
not specially engaged in problems of peaks.

Before we proceed to an exposition of the factual
material, we shall present the fundamental definitions
and indicate the practical significance of the individual
problems and the main content of the article.

Figure 1 shows the realization of a stationary ran-
dom process £(t) of duration T. All physical real
random processes are continuous functions of the time.
Such a function has over a finite interval T a finite
number of maxima and minima with different values
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FIG. 1. Realization of a stationary random process.
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of H, and at the instant ty, the realization has a larg-
est maximum Hp,. We denote the differences in height
between a minimum and a neighboring maximum by h.

The realization £(t) crosses N times (in Fig. 1,
three times) a certain fixed level C in an upward di-
rection (with positive derivative) and the first such
crossing occurs at the instant 7.

We agree to call a positive peak an event in which
a random process £(t) crosses the level C in the
upward direction. We can then say that the realization
£(t) has N peaks, and the values of T and ® indicated
in the figure can be called the durations of the positive
peaks and the intervals between peaks, respectively.

Within a single realizatien, the values of T, ®, H,
and h can assume several values (depending on the
level C and the interval T), and they vary, together
with the quantities N, 7y, and Hp, in random fashion
from one realization to another.

In what follows, we shall consider the following
problems for the specific forms of stationary random
processes £(t) most frequently encountered in radio-
physics: A

1) The quantities characterizing the distribution of
the number of peaks N in an ensemble of realizations
of different durations are determined for several val-
ues of the level C;

2) The distributions of the random quantities Tos Ts
®, Hm, H, and h are given for an ensemble of reali-
zations at several values of the duration of the inter-
val T.

In addition to the fact that the quantities N, 7y, 7, ®
Hm, H, and h are of independent interest, being de-
tailed characteristics of the random process £(t),
knowledge of these quantities is also essential in the
solution of many practical problems. We cite several
specific examples from the field of radiophysics, me-
chanics, reliability theory, and biophysics, although
these examples do not cover the entire region of ap-
plicability of the results.

In various radio devices frequent use is made of
electronic relays and flipflops. They are used in digi-
tal computers and in radar and radio communication
apparatus where the information is displayed, in
dosimetric instruments for the measurement of the
intensity of radioactivity in instruments for precision
measurement of small time intervals and frequencies
of periodic oscillations, in various systems for infor-
mation coding and decoding, in pulsed synchronization
systems, and in other automation devices.

If a useful signal is accompanied by fluctuating noise,
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it becomes necessary to analyze the effect produced on
the relay by the useful pulse signals together with the
fluctuations. The influence of the latter on the opera-
tion of the relay depends on the ratio of the ‘‘threshold”’
operating voltage of the relay to the noise intensity.

If the noise level is low compared with the ‘‘thresh-
old’’ voltage, the low-probability false operations of
the relay can be neglected. The noise will cause fluc-
tuations in both the instant of operation of the relay and
the instant when operation terminates; the duration of
the pulse generated by the electronic relay will be sub-
ject to certain fluctuations [33,

When the noise level is comparable with or exceeds
the threshold voltage, false operations will occur,
causing errors in the operation of the corresponding
apparatus [477,

If it is permissible to regard the relay as a prac-
tically inertialess device, then the number of false
operations will be determined by the number N of
the peaks of fluctuation noise that exceed the operat-
ing threshold of the relay. To determine the number
of false operations when the inertial properties of the
relay are taken into account, it is necessary to know
not only N but also the probability densities for 7 and
® [8], Besides, the operation of an inertial relay is it-
self a problem highly typical of the theory of queuing.[sj

The quantities N, ®, and H are under certain con-
ditions important characteristics of fading of radio
transmission[19-12], For short-wave radio communi-
cation lines shorter than 200 km the electromagnetic
field at the point of reception is made up by the atmos-
pheric wave, reflected principally from the ionized F,
layer. The ionization density of this layer is inhomo-
geneous and varies randomly with time. A harmonic
wave incident on such an inhomogeneous medium splits
after reflection into a series of elementary beams,
which arrive at the point of reception with different in-
tensities and phases. The received oscillation repre-
sents a narrow-band random process. In such a proc-
ess N characterizes the frequency of the fading, @
characterizes the length of the fadings below a definite
threshold, and H represents the depth of the fading.

The probability density for the largest values of Hyy
in the realization of a random process of specified du-
ration must be known in order to determine the region
of applicability of one of the most important statistical
estimating criteria, namely the maximum likelihood
method [137,

In estimating the unknown parameters of a signal
received together with fluctuation noise, the maximum
likelihood method is frequently used (7). The true value
is assumed to be that value of the parameter, at which
the likelihood function has the largest maximum over
a specified time interval. However, at small signal/
noise ratios this largest maximum can be due to peaks
of noise and may be located a considerable distance
away from the true value of the parameter. For such
signal/noise ratios the maximum likelihood method
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results in unacceptable errors and becomes of no
value.

Thus, a determination of the region of applicability
of the maximum likelihood method is connected with a
determination of the value of that signal/noise ratio at
which a relatively small fraction of a sufficiently
large number of realizations of fluctuation noise of
fixed duration T contain peaks comparable in height
with the peaks due to the signal. A complete solution
of this problem includes as an essential stage the cal-
culation of the probability density for the quantity Hy,.

Knowledge of the distributions of H and Hy, is nec-
essary in radar detection of marine targets against the
background of reflections from the billowing surface of
the sea [“], in the analysis of the interference immu-
nity of extremal regulation systems, (153 and in other
problems. We note incidentally that when an extremal
regulation system operates in the presence of fluctua-
tion noise, it is necessary to know the probability den-
sity of the quantity h in order to determine the optimal
step for the trial motions. [15:16]

A point of view recently adopted in mechanics is that
if some material is under the influence of random loads,
its rated strength must be based on the average number
of times that the load exceeds a specified value (num-
ber of peaks) per unit time. It was established at the
same time that a random load with the same average
number of peaks as a harmonic one is the more dan-
gerous one. Therefore, for example in calculating the
strength of the wings of an airplane subject to random
atmospheric turbulence, it is necessary to know the
number of times that the bending and torsion moments
exceed a specified level per unit time (1", An analogous
remark can be made with respect to the design of dams
subject to random wave loads.

The peak parameters indicated above can be used
in practice for a quantitative estimate of the micro-
roughness of a finished surface. Individual param-
eters characterize the micro-unevennesses of the
profile of the surface on different sides. In practice,
of course, the tendency is to obtain as much informa-
tion as possible with the aid of a minimum number of
parameters.

It was established [18] that for certain types of finish
(for example, grinding) it is possible to consider the
curve of the surface profile, representing the depend-
ence of the height of the irregularities on the abscissa
of the profile, as a stationary normal random process.
In this case a sufficiently complete description of the
profile is obtained with the aid of three parameters:
the average number that the profile curve crosses two
levels C; and C,, and the number of the maxima in
the section under consideration.

We point out that most seismic instruments and
medical instruments for the registration of biocurrents
of the heart and the brain are based on the measure-
ment of the height and duration of peaks and the inter-
vals between them (1%,
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It is apparently possible to reduce to an investiga-
tion of peaks of random processes also certain prob-
lems in the theory of reliability of operation of com-
plicated apparatus (in particular, radio apparatus)
containing a large number of elements. In this case N
can characterize the number of failures of the elements
(apparatus ) during the time T, 7, is the instant of oc-
currence of the first failure, T is the time allotted to
the elimination of the corresponding fault or the time
allotted to the activation of a spare element which is
turned on ‘‘cold,”” and @ is the‘time of fault-free op-
eration after the elimination of the last fault in the
sequence. In practice one is usually interested in av-
erage values of these quantities[%], The question of
which random process £(t) should be specified in this
case must be solved on the basis of a statistical anal-
ysis of extensive experimental material pertaining to
the specific apparatus.

From the examples given above we can gain an idea
of the exhaustive scientific and applied significance of
research on peaks of random processes. This research
was initiated with a basic theoretical paper by S. O.
Rice [ in 1945, in which formulas were derived for
certain types of random processes for the average
number of peaks and the distribution of the maxima,
and one approximate method of determining the prob-
ability density for the peak durations was also pointed
out (see Sec. 3).

In subsequent years, peaks of random processes
were considered in many theoretical and experimental
investigations, the main contents of which will be in-
dicated during the discussion of particular problems.

We note that some particular problems on peaks
have received no analytic solution to this very day

S(f)=S,exp [ —0.7 (1’72‘] : k(;) = S,Afexp [ — 14.1(TAf)?],
f=14.6 ke,

S(H=S5, [1+0.41 (ALJ’]Z , k('t;: 11(,350Af(1 +10Af] %) e-10a7kl
Af= 1. Cy

So

0<f<Af,
sth={, !

F<0.7>Af,

Here S, is the spectral density at zero frequency and
Af is the width of the spectral density at the level
0.58,.

Such noise was obtained from the outputs of low-
frequency amplifiers with suitable amplitude-phase
characteristics, with inputs in the form of broadband
fluctuation noise from a thyratron placed in a magnetic
field.

It must be noted that in practice it is impossible to
obtain noise with spectral densities that can be suffi-
ciently well approximated by curves (2)—(4). The real
spectral densities, especially outside the band Af, dif-
fered noticeably from the approximation curves. This

k(%) =S,Af
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(for example, the distributions for the quantities 7,
and h), while solutions of other problems suitable for
practical use are quite approximate (the probability
density for the quantities Hy,, 7, and ®). In view of
this, we are paying proper attention in this paper to
the experimental results.

The aim of the present article is to describe in an
understandable form the main theoretical and experi-
mental results on peaks of random processes. Inas-
much as the experimental results have been obtained
for particular forms of noise, we present below their
main characteristics.

1. MAIN CHARACTERISTICS OF THE INVESTIGATED
FLUCTUATION NOISE

A very laborious experimental investigation, in
which the statistical characteristics of the random
quantities N, 7y, 7, ®, Hp, H, and h were determined,
was carried out on several particular forms of sta-
tionary fluctuating processes, which must most fre-
quently be taken into account because they interfere
with the operation of radio systems and automation
devices.*

1. Normal stationary fluctuation noise ¢(t), whose
one-dimensional probability density is determined by
the formula

EZ
! e_ 202 .

V 2ne

w(f)= )

Three types of normal noise were used here, having
approximately the following spectral density and the
corresponding correlation functions

} (2)
] (3)

4)

sin 2rAfT

W, Af=15 ke.

circumstance is one of the essential reasons for the
discrepancy between the theoretical and experimental
results.

Normal random processes are encountered most
frequently in practice and therefore occupy a special
position among other random processes.

The majority of random processes encountered in
practice, such as shot noise in vacuum tubes, thermal
fluctuations, the internal noise of a typical radio re-

*We shall henceforth use as synonyms for the term ‘‘random
process’’ also “‘fluctuation process,’” *‘fluctuation noise,’’ or
simply ‘“‘noise.’’
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ceiver ahead of the detector, atmospheric interference,
atmospheric turbulence, noise of cosmic origin, and
others are essentially a resultant effect (sum) of a
large number of relatively small independent (or
weakly dependent) elementary pulses which arise at
random instants of time.

In accordance with the central limit theorem of
probability theory, the probability density of a sum
approaches without limit the normal density with in-
creasing number of components, regardless of what
the probability densities of the individual components
may be.

Normal processes have the property of ‘‘stability”’
with respect to linear transformations, i.e., if a nor-
mal random process acts at the input of a linear sys-
tem, a normal process is obtained also at the output
of the system. Moreover, if a non-normal broadband
random process acts on an inertial (narrow-band)
system, then the process of the output of such a sys-
tem approaches a normal one.

Let us indicate briefly the procedure for obtaining
other types of fluctuation noise. It is known[21724] that
if a normal stationary noise has a spectral density
S(f) which is symmetrical with respect to a certain
frequency f;, and the width of the spectral density Af
(say, at the 0.5 level relative to the value at the fre-
quency fy) is much less than f;, then the noise recalls
a quasi-harmonic oscillation in form. Corresponding
to this, such a quasi-harmonic noise £(t) can be rep-
resented in the form of a harmonic signal which is
randomly modulated in amplitude and in phase

§(2) = A (2) cos [2ntfot + o (1)], (6)

where A(t) and p(t) are slowly varying functions
compared with cos wgt. The random function A(t)
can be called the envelope (amplitude) of the fluctu-
ations, and the function ¢(t) the random phase of the
fluctuations.

The correlation function of the quasi-harmonic
noise (5) has the form

k ()= 0% (T) cos 0,1,

where o%—the variance of the noise £(t) and p(7)

is a slowly varying function compared with cos w,T.
The sum of the noise (5) and a harmonic signal s(t)

= Am cos [27ft + @41

n(t)=E(t)+s(t)
can be represented in analogous form

N (t) =E (t) cos [2nft +¢ (¢)]. (6)

If certain conditions are satisfied, we can separate
the envelopes A(t) and E(t) with a linear amplitude
detector, the random frequencies ¢(t) and $(t) with
a frequency detector, and cos ¢(t) and cos ¥(t) with
a phase detector.
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Several practical examples can be mentioned, in
which the random processes indicated here are en-
countered. Thus, in radio communication equipment
intended for the reception of amplitude, frequency,
and phase modulated signals the random processes
separated at the output, in the absence of a signal but
with account of the internal noise of the receiver and
the external fluctuation noise, are A(t), ¢(t) and
cos ¢(t) respectively, while in the presence of a
signal the outputs are the random processes E(t),
J(t), and cos ¥(t).

In pulsed radar, owing to the choppy nature of the
reflection pattern of the target, the reflected signal
is frequently approximated in the form (5), while in
the case of long-range radio communication, owing
to the turbulent character of the ionization of the re-
flecting layer, it is approximated in the form (6).

2. The fluctuation processes A(t), and E(t), hav-
ing the following respective probability densities

Wd)=sep( =57 ) 430, @)
E E2{ A3, EApN
W(E) =cexp( =S (B, E>0, (@)

were investigated. Here Iy(z) is the Bessel function
of zero order of imaginary argument. In the absence
of a signal (Am = 0) formula (8) goes over into (7).

In both cases, the spectral density of the noise £(t)
had the form of a Gaussian curve

—_ 2"
S(f):Soexp[—Z.S ~———/A//°> J , (9)
with f; =12 Mc and Af =100 kec. According to Khin-
chin’s formula, the correlation function of such a noise

18

k (1) = S,Af exp [ — 3.5 (TAf)?] cos 2nf,T. (10)

For the fluctuation process E(t), several signal/noise
ratios were chosen, namely:

a=4m_ 15, 3.0; 50.
a

3. The statistical characteristics of the values of
the peaks indicated above, for several values of signal/
noise ratio and of other parameters, were also deter-
mined for the random processes ¢(t), J(t), cos @(t),
and cos y(t). However, for lack of space these results
are not presented here. One~dimensional probability
densities of these processes and other characteristics
are given in [22],

In the investigation of the random frequencies ¢(t)
and zﬁ(t), the initial normal fluctuation process £(t)
had a spectral density of the type (9) with parameters
fy = 140 ke and Af = 1.5 ke.

For the random processes cos ¢(t) and cos ¥(t),
the spectral density of the normal noise £(t) was de-
termined by the square of the resonance curve of a
single resonant circuit with resonant frequency f;
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= 50 ke and a bandwidth Af = 3.8 ke (at the 0.5 power
level).

An experimental determination of the statistical
characteristics of the random quantities N, 74, 7, O,
Hm, H, and h was made by statistical processing of
a large number of photographs (realizations) of the
corresponding random processes. The correspond-
ence of the fluctuation processes with the character-
istics indicated above was verified essentially by
measuring the spectral density and comparing the
theoretical and experimental probability densities,
the latter being determined photometrically. [2%:26]

2. NUMBER OF PEAKS

We obtain formulas for the average number FI( T)
of the peaks of a stationary random process £(t) on
the interval T, in excess of a certain level C, and
also for the variance 012\1( t) of the number of peaks.

Formulas for the average number of peaks of nor-
mal random processes, and also for the envelopes
A(t) and E(t), were first obtained by S. O. Rice[21:22]
and were then discussed in greater detail in [27:23],
The relations for the variance of the number of peaks
were first obtained in [28:2%] and then by S. O. Rice [39],

We shall assume the random function £(t) and its
derivative é( t) to be continuous. We also assume that
we know the joint probability density W,(£(t), & (t)).

1t follows from the continuity that on a small inter-
val At, i.e., within the interval t <t’ <t + At, the
function £(t) is close to a straight line

E(t)=E(1)+E@) (¥ —1).

Therefore the level C can be crossed not more than
once within a sufficiently small At.

Thus, there are two possibilities: there will be
either no peak or only one peak in the interval At. We
denote by P, the probability of the occurrence of one
peak, and by P, the probability that there will be not
even one peak. Obviously, the average number of
peaks in the interval At is

N(At)=1-P, +0-Py=P,,

i.e., it coincides with the probability P;.
To calculate P; we note that the expression

dp =W, (E (£).E (£)) AEAE, E(t)=C,

determines the probability that the function £(t), which
is close to a straight line, crosses the vertical segment
AB = A¢ (Fig. 2), and that at the same time the deriva-
tive is contained in the interval between £(t) and £(t)
+ Ag'.

Let us consider the probability of crossing not the
vertical segment AB = Af, but the horizontal segment
AC = At, assuming the derivative £(t) to be fixed.
Obviously, when the derivative £(t) is fixed the cross-
ing of a horizontal segment of length At is equivalent
to crossing a vertical :segment of length A¢ = £(t) At.
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culation of the average number ¢ "‘; R
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Therefore the probability of crossing thg seg'ment.AC
= At with a derivative ranging between £(t) and £(t)
+ Aé is

dp=W,EMENE@DAEA,  E(1)=C.

The peaks of interest to us (crossings of the level
C in the upward direction) will occur for all possible
values of the derivative, i.e., when 0 =< £(t) < =,
Therefore the total probability Py of crossing the
level C in the interval [t, t+At] is
P =at (W, (c, Hak (11)
]
But the probability P; coincides with the average num-
ber of peaks occurring over the entire interval
[t, t +At]. Dividing both parts of this equation by At,
we obtain the average number of peaks per unit time
within this interval
¥, =, (C, & dL.
0
The average number of peaks on the interval [0, T]
is obtained by integrating the right half of formula (11)

(12)

T co
N )= a(iw,c. Hai
0 0
For stationary processes, the integrand is independent
of the time and consequently

(13)

N(T)=N,T. (14)

The formula for the variance of the number of peaks
can be obtained in the following manner 3*1, We break
up the total time interval [0, T] into m equal elemen-
tary subintervals of small duration At; = Aty =. ..
=Atj =...= Aty = T/m. By virtue of the proposed
continuity of the random function £(t) and of its de-
rivative £(t) the function £(t) can have not more than
one peak in each elementary subinterval. Let us relate
to the i-th subinterval a random quantity 6j, which as-
sumes two values: 8 = 1 if the realization £(t) has
one peak and 6; = 0 if there is no peak.

Then the number of peaks of the specific realization
£(t) on the interval [0, T] is

Ne(D) = 2, 9.

The average number of peaks for the ensemble of re-
alizations £(t) of fixed duration T is obtained by
statistical averaging
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N(D=N(T)=2 8

But for each fixed subinterval At; we have
8, =1.P,+0-Py=N,At,.
Consequently
N({T)= ﬁ‘ NAt,.
Going over now to the limit as Atj — 0, we obtain
formula (13).

The square of the number of peaks, averaged over
the ensemble, is

PN =-Mm0=[3s=3 5+ 3 53,
i= i= 1, J=
(i£])

As before, for each fixed subinterval Atj we have
87=0-0-P,+1-1.P, = N|At,.

Analogously, we can write for the cross terms at fixed
iandj, i=]j,

8:5,=0.0-P (8, =0, 8;=
+1.0-P(8;=1,8;=0)+1-1-P (8, =1, 8;=1)

0)+0-1-P (8, =0, 8,=1)

=P, =1, 8,=1),

where P denotes the probability of the corresponding
event. For example, P (6 =1, 6j = 1) denotes the
probability that each of the two different subintervals
Atj and Atj has one peak. By analogy with formula
(11), this probability is equal to
P(3,=1, 8,=1) =AtAt S Rg

%

E(t)W

X (& (8, § (1), B (1) JE (1)) dE (8;) dE (4;)

where we must put £(t;) = g(tj) =C.
We can thus write

N (T) = 21 N At + i;—l P, =1, 8;=1).
B i+

Going over to the limit as At — 0, we obtain
. T T o o . .
N (1) =N (1) + § atyd, § (£ Ee) W,

[ (1)

X (C, E(t)s € E(25)) dE (1) dE (2)- (14"

Using the well known relation
ok (1) =N(T)— (N (D)},

we obtain the final formula for the variance of the
number of peaks at the level C:
_ Lree
(=@ N Dpr+{§{{iewiew
dodod .
E(ty)) dt, dty dE(t,) dE (2,).

X W, (C, §(ty), C, (15)
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As applied to processes that are stationary in the
narrow sense, this formula can be simplified some-
what. We introduce the notation

Ft )= (E@E@ WL (€, E(t), C, E(t) dé () dE (1),

00 (16)

For processes that are stationary in the narrow sense,
usually the following condition is satisfied

F(vy=F a7

Under this condition formula (15), with account of (14),
is reduced to the form

F(t, )= (—7), 1= —1.

T
& (T =N — (N,Ty+2 S (T — ) F (v) dr.
0

18)

Whereas the average number of peaks ﬁ( T) can be
relatively easily calculated for many random processes,
0%(P) cannot be calculated analytically as a rule [28,30]
and it becomes necessary to resort to numerical inte-
gration or to use the experimental results. In particu-
lar, it is shown in (28] with the aid of numerical inte-
gration that for a normal quasi-harmonic noise with
Gaussian spectral density (9) at Af = 0.18f;, the vari-
ance of the number of positive peaks at the zero level
(C =0) is determined by the formula

o% (T) = 0.067,T,

while the variance of the total number of zeroes (up-
ward and downward crossings of the zero level) is

o3n (T) = 4ok (T) = 0.268f,T.

We present without proof the final formulas for the
average number of peaks per unit time ﬁi of certain
stationary random processes.

The average number of positive peaks at the level
v = C/o of a normal stationary process is determined
by the formula

1
— = y2
3

M=o VR0 2" 19

where R”(0) is a certain derivative of the correlation
function at zero, connected with the spectral density by
the relation

rO=-(5) {rsoyar.
0

Let the random process 7(t) represent the sum
n(@)=§()+s (),
where £(t) is a normal stationary noise and
s(t)=A,,cos (0, + @)
is a determinate harmonic signal. For the average

number of peaks ﬁi of such a process 7n(t) the fol-
lowing formulas are obtained:

Ny= 5 V=R {e-=ly ()

bsing

+2bS(p(y—acosG)sm9[ S q)(x)dz]de}, 19"
]
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or

e

b2

MW e\ 1, .
XZ Taml \Z2) 1F1<—§'1n+1: ‘—'—2“> . {(197)
Here
__ams___ =Yg 2), . =_1_ 2__p2
‘/ R"(U) - 4(0' +b)1ﬁ 4(61 b),
g
9(2)= ‘V——-e -3 ¢‘2“’(Z)=dz-—m(p(z),

1F; is the confluent hypergeometric function.
From formula (19’) with ¥ = 0 we can obtain the
simpler relation

VRO [elo®)+o 1. (£ 0) ],
where

X
I,(k, 2)= S ety (ku) du
0
is a tabulated integral [22],
For the envelope A(t) of the quasi-harmonic noise

(5) we have
—— 1
= (0~
AE L

For the process E(t), which represents the enve-
lope of the sum of a quasi-harmonic noise and a har-
monic signal, we obtain from (4)

= 202 ] 1o (Y@> :

When Ap =0 this formula goes over into (20). We can
obtain a formula for N1 also in the case of the n-proc-
ess 921,

It can be shown[%3] that the average number per unit
time of peaks exceeding a level C = cos ¥, in a random
process cos Y(t), is determined by the formula

N=1y= Q(O)exp[ (1_02)]®(2§m), (22)

where

(20)

N,= —¢ ()yexp[ (21)

20“

2 1

- —z*

O (z) = V“ S e dz

is the tabulated probability integral. Putting in formula
(22) Ay =0, we obtain the average number of peaks of
the random process cos ¢(t)

N1=ZTV—Q (0).

The formula for the average number of peaks of the
process zﬁ(t) is in general very cumbersome. We shall
therefore point out only two particular cases., If there
is no signal (Apy = 0) the average number of peaks at
the level C = ¢, is

23)

o V ¢ (0) [4¢” (0) 42 + ™ (0)— ¢ (0)]. (24)

N, =
2n [q)’

TIKHONOV

At large signal/noise ratios (Ap, /cr > 3) the average
number of peaks at the level C = z/)o can be approxi-
mately calculated from the formula

v ]/ 2@ (0) AL
M=%V — 7o e"p[%? ¢ ©

We note, incidentally, that the character of variation
of the average number of peaks (19)—(21) with varying
level duplicates, apart from a constant factor, the
probability densities (1), (7), and (8) of the fluctuating
processes themselves. This result is normally used
in an experimental determination of the one-dimen-
sional probability densities of stationary random proc-
esses with the aid of computing circuits that determine
the average number of peaks.

As can be seen from the fundamental formula (12),
such a result is the consequence of the fact that for
stationary random processes (1), (7), and (8) there is
no statistical connection between the process itself
and its derivative at coinciding instants of time (and
the derivative of such a process has a normal proba-
bility density). It must be borne in mind, however
that this property is possessed by not all the station-
ary random processes. One can cite examples of sta-
tionary processes which do not have this property. Nor
are a process and its derivative independent at coin-
ciding instants of time in the case of nonlinear inertia-
less transformations of the process.

As applied to normal processes with spectral den-
sities (2), (3), and (4), formula (19) assumes respec-
tively the form

(25)

]_Vl=n1=Vne 20 (19a)
1

j— A —_— 2

1= 1y 0,:34f13.‘3 2", (19b)

— L

Ny=n,=2L 3" (19¢)

For a normal noise, the spectral density of which is
determined by the resonant curve of a single oscillating
circuit with resonant frequency f;, and bandwidth Af
(at the 0.5 power level ), formula (19) yields

Ni=n=V ftLape?” (19d)

A thorough experimental investigation of the peaks
of such a noise at different values of f,/Af 311 gives
good agreement between the experimental results and
the results of calculations based on formula (19d). For
a normal narrow-band noise with Gaussian spectral
density (9) we obtain

Ny=ny=) 5500 2" (19¢)
From a comparison of formulas (19a)—(19¢c), which
pertain to low frequency noise we see that for identical
Af and y the average number of peaks is larger for
noises that have a slower reduction in the spectral

density with increase in frequency beyond the limits




PEAKS OF RANDOM PROCESSES

Table 1.

Peaks of normal noise
¥ ny/Af oy (T)/N(T)
0,0 0,845154 0.20
0,5 0,745846 —
1,0 0,512612 0,30
1,5 0.274381 —
2,0 0,114379 0,67
2,5 0.037133 —
3,0 0.009389 2,93
3.5 0,001849 —
4,0 0,000283 —
5,0 0,0000003 —

of the band Af. In other words, the average number of
peaks is greatly influenced by the behavior of the spec-
tral density at high frequencies. Such a result is phys-
ically due to the fact that the presence of more sharply
pronounced high-frequency spectral components causes
large fluctuations in the random process, and conse-
quently causes a large number of peaks.

The average number of peaks of a harmonic oscilla-
tion with amplitude Ay, and frequency f, at any level
C < Ay, is obviously equal to E = f;. Formulas (19d)
and (19e) show that the average number of peaks of a
quasi-harmonic noise at zero level (y =0) is always
larger than the average frequency f,, but does not ex-
ceed the value of the upward frequency of the bandwidth
fy + 0.5Af. This result can be qualitatively attributed
to the presence in the spectrum of the random process
of high frequency components which have relatively low
intensity.

The question of the variation in the average number
of peaks when the normal noise £(t) is subjected to
integration or differentiation, was considered in [32].

A qualitative idea of the average number of peaks of
normal noise is given in Table I, which lists results
of calculations based on (19a).

The third column of Table I gives the ratio of the
mean square value of the number of peaks to the av-
erage number of peaks for a normal noise (2). The
data were obtained as a result of processing 800 os-
cillograms, each with duration T = 10/Af. We see
that the ratio oN(t)/N(t) increases with increasing
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. It turns out that such a result is general; it is valid
not only for normal fluctuations, but also for fluctuat-
ing processes of other types.

If the spectral density of a quasi-harmonic noise
£(t) is constant and differs from zero only in the band
Af with central frequency f; > Af, i.e.,

Sy 11— ol <5 Af,

S(f= 2 (26)
10 17— 1ol >3 A1,
then we obtain from (20)
— 3 ._i vz
N,=n;=Af ‘/—Brye 20, (20a)

If the spectral density has the Gaussian form (9), for-
mula (20) yields
Ny=n,=Af 1/2—“3%'

1
2 (20b)

The results of calculations based on formulas (20a)
and (20b) are listed in Table II. Here, too, the regu-
larity noted above is observed: the longer the ‘‘skirts’’
of the spectral density, the larger the average number
of peaks.

Table II lists also the experimental values of the
ratio oN(T)/ N(T) at different levels for different
durations of the realizations P. The results pertain
to a fluctuating process A(t), when the spectral den-
sity of the quasi-harmonic noise £(t) has the Gauss-
ian form (9). The table indicates the number N of the
photographs (realizations) the processing of which
yields the corresponding data.

Analyzing the experimental results, we can con-
clude that the ratio aN(T)/ﬁ(T) decreases with in-
creasing duration of the realizations T. At all dura-
tions T it has a minimum value at a level C = vyo,
which is approximately equal to the most probable
value, and as the level deviates from this value, the
ratio oN(T)/N(T) increases.

According to formula (21) the average number of
peaks of the envelope E(t) of the sum of the harmonic
signal and the quasi-harmonic noise, with spectral
density (26) or (9), is respectively equal to

Table II. Peaks of random process A(t)

on (TY/N(T)
¥ ne/Af na/bf ¥ TAf=2, | Taj=3, | TAj=5, | TAf=10, | Tas=20,

M=1750 | M=503 | M=534 | M—588 | M=65
0,0 0 0 0,66 1,40 1,12 1.08 1,17 0.80
0,5 |0,319288|0.467390 1,25 0.94 0,79 0.57 0.41 0.50
1,0 {0,438886 | 0,642464 2.0 1,54 1,09 0,88 0.73 0.45
1,5 (0,3523780.515829 2,6 2,36 1,98 1.48 1.47 0,71
2,0 [0,195858 | 0,286706 3,3 3,43 3,60 2,76 2,76 1.21
2,5 10,079482 | 0,116350 4.0 5,46 — 6.26 5.30 2.14
3,0 |0,024115]0,035301
3.5 [0,005540}0,008110
4,0 [0,000971{0,001421
5,0 |0,000013|0,000020
6.0 0 0
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Fo=n=81 Y Evem [ — 2 +a) ]| L@y,  (@1a)

N,=n,=Af Y/ %v exp [ —-;-(Y"’—i-ag)] Iy(@y).  (21b)

The results of the calculations based on formula (21b)
are listed in Table IV.

We present a formula for the average number of
peaks of one nonstationary normal process £(t), 3]
representing the sum of a linearly increasing voltage
and a normal stationary noise £(t) with zero mean
value, variance ¢?, and correlation coefficient R(T)

L) =(Co+Bt) +E (D). @7

If we use the well known expression for the joint
probability density of the independent normal quanti-
ties £(t) and £(t), and then change over in this ex-
pression from ¢ and £ to ¢ and ¢, then from for-
mula (13), written down for the nonstationary process

T oo
Fay=\at{ iw,(c, i,
0 0
we obtain after some transformations

=[5V 2o (k)
+0 () 1 [0 (55 -0 (55 }2;3)

This formula is frequently used in an analysis of the
accuracy of the operation of pulsed synchronization
devices in the presence of an interfering noise.

3. DISTRIBUTION OF PEAK DURATIONS AND OF
THE INTERVALS BETWEEN PEAKS

The problem of calculating the probability densities
for the duration of peaks of fluctuating processes was
posed in the basic paper of Rice[?!] in 1945. The same
paper indicates one approximate method of solving the
problem, a method considered in greater detail in [34J,
In later years this problem was considered in many
theoretical [%35-491 and experimental [31:41-4] papers.
A brief summary of the basic papers is indicated
below. *

The rigorous theoretical solution obtained in [35]
gives an important particular result, namely that the
distribution of the peaks for large durations should have
an exponential form. However, at not very large dura-
tions the solution leads to very complicated final for-
mulas very cumbersome to use in calculations. It is
therefore of interest to consider approximate methods
for calculating the probability densities for the dura-
tions of the peaks.

Three approximate methods can be mentioned: the
Rice method, the uncorrelated pulse method, and the

*Note added in proof. An analogous problem was considered
by Slepian [BSTJ, 41(2), 463 (1962)].
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quadratic approximation. The nature of these methods
and the results obtained with them are explained below.

From the physical premises on which all three
methods are based it follows that they yield results
that are valid for peaks of short duration at high levels.
However, it is difficult to indicate the range of applica-
bility of the results, since this is connected as a rule
with a solution of the more complicated problem. Later
on we shall present in this connection new experimental
results.

In view of the limited extent of the article, we shall
mention here from among the extensive experimental
material only a small fraction of the results pertain-
ing to the fluctuation processes A(t) and E(t). We
note, incidentally, that for these processes calculations
even on the basis of the approximate formulas turn out
to be also very complicated.

The Rice method [21:34], We assume that the peak
starts at a certain instant of time t,, i.e., the random
function £(t) crosses the level C in the upward direc-
tion (see Fig. 1) at t = ty; then, obviously

Bo=E(t)=C, Ey=E(t)>0.

Let the duration of the peak be 7. Then at the end
of the peak, i.e., at t =ty + 7, the function £(t) and
its derivative should satisfy the condition

E=E(l+V=C E=E(+1)<0.

By geometrical reasoning it is easy to show that if
we know the joint probability density W,(£g, &, &g, £7)
for the values of the random function and its derivative
at two different instants of time, then the probability
density for the duration of the peaks is determined by
the formula

P= [ &EW.(C C L B dh e (292)
U]

The approximate character of this formula follows
from the arguments that lead to (29a). In fact, several
peaks can occur in the interval 7. Obviously, if T is
small compared with the correlation time of £(t), then
the probability of multiple crossings is small and for-
mula (29a) will yield more correct results.

The method of uncorrelated pulses >3], In place
of the random function £(t) let us consider the ran-
dom sequence of rectangular pulses of unit height
n(t), obtained from £(t) by means of the nonlinear
transformation (Fig. 3):

0EM<C,
n@)= { 1E(1)>C.

It is clear that the distribution of the pulses by
duration coincides with the distribution P(7) of the
peaks of £(t) at the level C, and when C = ¢ the
peaks of the normal stationary fluctuations can be
assumed approximately to be uncorrelated [e2],

As applied to normal stationary fluctuations, such
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¢

14

FIG. 3. Nonlinear transformation.

an approach yields for the probability density the Ray-
leigh law
P(t)= — %yZR" (0) T exp [%WR"(O) 1:2J . (29b)

This formula enables us to calculate the mean value
and the variance of the pulse durations.

Quadratic approximation1%4%], The quadratic ap-
proximation is based on the assumption that at suffi-
ciently high levels the overwhelming majority of the
peaks have short durations, and that the shape of the
peak is nearly parabolic.

Let t, be the instant of the start of the peak, i.e.,
£9=C, £, >0. For a smoothly varying fluctuating
process we can expand £(t) in a Taylor series in the
vicinity of the point t; and retain only the quadratic
term

E() =5 (f)+E(t) (t— 10) + 5 E (ta) (L — o)

If we put t =ty + 7, where 7 is the duration of the
peak, then £(ty + 7) = £(ty) = C, and we obtain from
the preceding relation

T=—2 §—° .

&
Inasmuch as the start of the peak corresponds to a
positive derivative £, > 0, Eq. (30) is valid only for
negative values of the second derivative '.»;fo < 0.

If we now use the known formula for the normal
three-dimensional probability density of the quantities
&os £ ¢» and Eo, we obtain the following formula for the
probability density of the peak duration:

By ko Eort =0, (30)

Y2

vR" ()T [ ¥y

= . 7 T2
P o Vst
rYZ
e +T R” (0) y212 - v
e [T | et (—aem ) @0
where

_ R®(0)— R"(0)
=R
4
—q_ N pm 2 —1 2 —t2
g()=1—FR*(0)%, erfc(z)=1 V—RSB dt.

0
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The quadratic approximation makes it also possible in
principle to calculate analytically the peak distribution
by areas %], which is of interest in the analysis of the
effect of noise on electronic relays and flipflops.

Comparison of the results of the calculations by
means of formulas (29a)—(29¢) with the experimental
data for normal stationary fluctuations with spectral
densities (2) and (26) given in [37]) shows that in the
case of smoothly varying and oscillating correlation
functions a sufficiently good approximation to the ex-
perimental data is given by formula (29b) at not very
long durations 7, starting with the level y = 1.5.

For the fluctuating processes A(t) and E(t), the
performance of the analytic calculations is difficult.
Figures 4 and 5 show the experimental probability
densities for the dimensionless quantities TAf and
6Af of the random process E(t) at two levels vy =0
and vy, = 2, for different signal/noise ratios, for the
case when the spectral density of the initial quasi-
harmonic noise £(t) -has the form (9).

By relative level vy, is meant in this case the quan-
tity

C

Y"———oE ’

(31)

where C is tlle absolute level, reckoned from the av-
erage value E, and of is the mean-square value of
the fluctuating process E(t).
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FIG. 4. Probability densities for the peak durations and inter-
vals of the envelope of E(t) at the level y, =0.
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FIG. 5. Probability densities for the peak durations and inter-
vals of the envelope E(t) at the level y, = 2.

The individual curves were obtained as a result of
processing of M realizations (photographs), each
realization with duration T = 20/Af.

From the analysis of the results we can draw the
following qualitative conclusions.

1. The probability densities for both the peak dura-
tions and the intervals between peaks increase rapidly
from zero to a certain maximum value, and then de-
crease slowly to zero, the probability density for the
intervals dropping more slowly than the probability
density for the peak durations.

2. Both the start of the signal and the increase in
the level are accompanied by a shift in the most prob-
able value of 7 towards smaller 7. The maximum of
the probability density for the peak durations at a fixed
signal increases with increasing level y,.

3. A change in the magnitude of the signal hardly
changes the most probable value of 7. However, when
the signal is increased the maximum value of the prob-
ability density first decreases and then increases.

We shall not cite other conclusions, for if necessary
this can be made by the reader himself, using the pre-
vious results.

Table III indicates the values of the average dura-
tions of the peaks T and of the intervals ®, and also
the mean square values o, and oy at a definite level
Yo- The data were obtained by statistical processing
of 530 realizations for Ay, /o = 1.5. Each realization
had a duration T = 20/Af.

We see that with increasing level 7y, the average
peak duration 7 decreases, and the average interval

TIKHONOV

Table III. Main characteristics of the
peaks of a fluctuating process E(t)

Yo —1 0 1 2 3
TAf 2,60 | 1,415 1.0 0.802 | 0.842
0. Af 2,832 | 1,059 | 0.776 | 0,530 {0,458
B8Af 0.802 | 1,482 | 2.89 | 4,870 | 5,510
GAf 0,777 | 1,493 | 2,855 | 4,375 | 5,025

between peaks ® increases. The same holds true for
the mean-square values: with increasing level the
mean-square value of the pulse duration o, decreases,
and the mean square value of the interval duration og
increases.

We note that for average values of the peak dura-
tion 7 and for the duration of the interval between
peaks ® we can obtain relatively simple formulas.
Let us consider the realization of the stationary er-
godic process £(t) of sufficiently long duration T.

Let the realization have a sufficiently large number

of peaks N. We shall assume that for a stationary
ergodic process the quantity W(¢) A¢ is proportional
to the relative time of stay of the random function £(t)
in the interval (&, £ +Af). We can therefore write the
relations

oo

N c
o= {"ea Ye-{wea
i=1 i

c i

ik

—ao

[

where 7 and ®j are the durations of the i-th peak
and the i-th interval at the level C.
The mean duration of the peaks and the mean dura-
tion of the intervals are obviously
1 1 <
A _Zri, 8= o > 6.

i={

T=

Gt
From this we obtain final formulas

c

{ W@

—co

fW(&)dg, 6= —
C

T, (32)

Using (19), we find that for a normal fluctuating
process formulas (32) assume the form

1 i
=2 _p-ome", 8= _omwmea". (32a)

Y —R7(0) V—E(0)
From formulas (7) and (20) we obtain for the fluctu-
ating process A(t) the relations
1 2n 1 v?

4 2n 8= LN
6= »Q”(O)(e

vy ¥V =" ] (32b)

T= —1).
If we substitute in (32a), (32b) the values of R”(0)

and p”(0) expressed in terms of the spectral density

of the fluctuating process £(t), then we find that in

both cases the average duration of the peaks and of the
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intervals is inversely proportional to the width of the
spectral density.

For the envelope E(t), the following formulas are
found to hold:

- 1 2n ety J

= Vo () nw

5 1 " 2; a®Ly2\ 1—J

6=+ Vo (S ) ey 62

where

J = i z exp < ——az_;zz> 1y (az)dz.
0

The results of the calculations by formulas (32c¢)
for four signal/noise ratios a =0, 1.5, 3, and 5 and
for several values of vy are listed in Table IV. It is
assumed here that the spectral density of the initial
quasi-harmonic noise £(t) has a Gaussian form (9).

4. TIME OF FIRST ATTAINMENT OF THE LEVEL

In some problems it is interesting to know the dis-
tribution of the time 7, (see Fig. 1). By 7, is meant
here the time interval between a certain fixed instant
of time (say, the start of the realization) and the in-
stant when the random process crosses for the first
time the constant level C in an upward direction.

Such a problem is solved analytically only for the
case of Markov processes [6:40:45:46)  For real smooth
processes, on the other hand, there have been few
theoretical results to date (471,
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FIG. 6. Probability densities ,,

of the time of first attainment of
the level for a normal noise,

=1

We present below the experimental data. Figure 6
shows the probability densities W(7,) for a normal
stationary noise &(t) with spectral density (2) for
three values of relative level y = C/o. The plots are
the results of the processing of 500 realizations, each
of duration T = 10/Af.

In Table V are indicated the most important prac-
tical statistical characteristics of the random quantity
T¢ —the mean value 7y and the mean-square value g,
—for the indicated normal noise and also for the en-
velope A(t) of quasi-harmonic fluctuations with spec-
tral density (9).

It follows from these experimental results that in
both cases the mean value of the time of first attain-
ment of the level and the mean square value have min-
ima at the level C, a level equal to the mean value of
the initial fluctuation processes. The mean and the

Table IV. Characteristics of peaks of the process E(t)

Ny/Af TAf 8Af

h

a=1,5 3 5 a=0 1,5 3 5 a=0 1.9 3 5
0.5 | 0,473840 | 0,008550 | 0.000006 | 1.88814 5.51639 | 116.756 — 0.25140 | 0,23602( 0.20233] —
1.0 | 0.343469 | 0,034835 | 0.000085 | 0.94407 2.43462 28.3889 — 0.61244| 0,47683| 0.31371] —
1.5 | 0.456691 | 0,100244 | 0,000515 | 0,62037 1.40953 9.56923 | 1960.47 1,30925 | 0.78013| 0,40700| 0,31371
2.0 | 0.454304 | 0,214143 | 0.003008 | 0.47201 0,93259 4,14084 | 331,870 3.01583 | 1.26858| 0.52899  0.32226
2,5 | 0.344452 | 0.346606 | 0,013266 | 0.39484 0.67391 2,17506 | 74.9841 | 8.21710| 2.22926| 0.71001 0,35117
3.0 | 0.200346 | 0.428865 | 0.044682 | 0.31473 0,51824 1.32209 | 21.9796 | 28.0139 | 4.47302| 1,00853| 0.39973
3.5 | 0.089729 | 0,407885 | 0.115630 | 0.27003 0,41691 0,89653 8.17434 (123,034 | 10,7276 | 1.55516| 0.47393
4.0 | 0,031025 | 0.299199 | 0,230722 | 0.23944 0,34676 0,65678 3,75801 | 703,986 | 31.8801 | 2.68546| 0,57623
5.0 | 0.001718 | 0.074472 | 0.424738 0.25581 0,41197 1.27160 581.140 | 13,0162 | 1.08278

Table V. Statistical characteristics of T,
TAf=10, M =500 TAf=20, M =593
y=—2 —1 0 1 2 ' y=0.66 1.25 2.0 2.6 3.3
£ ~ A
ToAf=3.46 1.24 0.86 1.40 3.46 ToAf=3.63 1.48 4.05 6.80 7.51
OoAf=2.53 0.96 0.65 1,03 2.5 GoAf=4.40 1.64 3.97 5 4.79
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mean square values increase with decreasing or in-
creasing level. The incomplete data presented do not
lead to more general conclusions and if necessary can
be used only for tentative estimates.

5. DISTRIBUTION OF MAXIMA

Let us find the probability density for the maxima
of the random function £(t), i.e., let us find the law of
distribution of the maxima as a function of their height
211, In this case we assume a certain three-dimen-
sional probability density W (£(t), £(t), £(t)).

Let us consider some realization of a stationary
random function £(t) (Fig. 7), which we assume to be
continuous together with its derivative é(t). At cer-
tain instants of time tp, the realization has maxima.
As is well known, at the points t, the following con-
ditions are satisfied

E(t,)=0, E(t)<0, n=0,1,2, ...

From the continuity of the function £(t) it follows that
in a sufficiently small interval At, i.e., within the in-
terval t <t’< t + At, there can be not more than one
maximum (or minimum). Thus, in the interval At
there can be one maximum or no maximum at all. We
denote by Py(H,t) the probability that there will be
one maximum in the interval At, with a value within
the limts (H—-AH) and H, and by Py(H,t) the prob-
ability that there will be no such maximum. It is ob-
vious that in the interval At the average number of
maxima lies between H~AH and H and is

N (H, )=1-Py(H, 1)+ 0-Po(H, ) =P, (H, 1),  (33)

i.e., it coincides with Py.

Let a certain time instant t; correspond to the
maximum of the random function £(t). Then the ex-
pression

dp =W, (E (t), £ (o), E(t,)) AH (— AE) AE

at £(ty) =0 and £(t,) < 0 determines the probability
that on the interval t, <t’ < ty + At there will be a
maximum lying between H -~ AH and H, and at the
same time the first derivative lies between zero and
— Af, while the second derivative lies in the interval
(.é - AZ, 'é )- .

From the continuity of the first derivative £(t) it
follows that on a small interval At, i.e., within the in-
terval ty <t’ <ty + At, it is close to the straight line

E@)=E (to) FE(to) (' — o)
or

FIG. 7. Realization of stationary random process.
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AE=E(t 4 A)—E(t) =E(t) At.

Substituting this value of Aé into the preceding ex-
pression, we obtain

dp=— AtW, (H, 0, £) EAHAE.

Integrating the right half over all negative values of
the second derivative (from —« to 0) we obtain the
probability P;(H,t) of finding the maximum in the
elementary rectangle AHAt:

0
Py (H, t)= — AAH { EW,(H, 0,%) dE. (34)

As shown by formula (33), the probability P; coin-
cides with the average number of the corresponding
maxima

0
7 (H, t)= — AtAH S EW,(H, 0, §) dt.
Dividing both halves of this equation by At, we obtain
the average number of the maxima per unit time with
values lying in the interval (H- AH, H):
0
nu(H, )= — a8 { W, (1, 0,%) &E.

For the stationary random process £(t) formula
(35) is independent of the time and determines the
average number of maxima per unit time between
H—-AH and H:

(35)

0
nm(H) = — AH { EWy(H, 0,8)dE.

—c0

(39)

_ The total average number of maxima per unit time,
Nym- independently of their magnitude, is obtained
from this by integrating the right half over all possible
values of H:
o 0
Nim=—{ an § Ew,(H, 0,8 &,

—o0 o)

@7

The probability density for the maxima is obviously
determined from the relation

P(H)AH ="
N

1m

i.e.,

0
P(Hy= ——— { EW,(,0,%) k.

—Q0

(38)

The average number of maxima per unit time ex-
ceeding a certain value C is obtained by integrating
the right half of (36) over all values H = C, i.e., we
can write

@ 0
Mo (H>C)= — | ail { EW,(H, 0, §)&E.
c —c0

Let us assume that the random function ¢(t) is a
normal stationary process with zero mean value and
with correlation function

(39)
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k(1) =0%R (1), (40)

where ¢? is the variance and R(7) is the correlation
coefficient.

In view of the fact that the autocorrelation functions
of stationary processes are even, the correlation be-
tween the random function itself and its derivative, and
also between the first and second derivatives at one and
the same instants of time are zero. Recognizing that
when normal processes are not correlated they are in-
dependent, we can write

Wi (&), ), E@)=w () w, (& E).

Using the well known expression for the normal
probability densities, we obtain
_ 1 pa2 282 2y
exp{ 2_5[02§ 4+ 0% +201§§]} , (41)

w B 1
2(5.0.5) @en)}lra, Ve

where
0'= —0®R’(0), o'=0®R®(0), e=o%l—o!. (42)
Substituting this, probability density in (32) and in-
tegratmg first with respect to H and then with respect

to g , we obtain

p— 1 0'2
Ny, = H?‘—: . 43)
Carrying out the calculations in (38) we obtain
o cr%H2
PH)= }/chr oxp K )
clH o}
+]/2n exp< 202) (u 7 _H (44)

Formula (44) can be made more compact. For this
purpose we consider in lieu of £(t) the normalized
random function

L) =~ (),

which has a zero mean value and a unity variance.
From the obvious relation

PE)dE=W(L)dL
we have
W (t)=0oP (ot).
We introduce the new quantity

& of
o203 o203’

(45)

vi=

Carrying out the necessary transformations we ob-
tain a final formula for the probability density of the
maxima of a random function

H2
[ve_ 2vE

W (H)= 1/1271

_ Lt
+V2(1—v)IHe 25 @

Vi—HE -
= )] w0
This formula enables us to conclude that the proba-

bility density of the maxima of a normal stationary
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function is determined uniquely by the single param-
eter v. It can be shown that v ranges from zero to
one, where small values v « 1 correspond to a narrow
band process of the type (5), while values v ~ 1 corre-
spond to broadband processes. Putting v = 0 in (46) we
obtain a Rayleigh probability density of the type (7):
i
W(H)y=He 27,

H>0. (46a)

When v =1 we obtain from (46) the normal probability
density

A

e 2, (46b)

1
W(H)= —

(H) e

These results can be explained physically. For
quasi-harmonic fluctuations (5) we have

E () = A () cos {wyf + ¢ (£)] — (0, + ) sin [o,t + @ (£)].

Near the points t,, for which wgty, + @ (t;) = 2m,
n=0,1,2,..., the random function £(t) has maxima.
At these points the following equations hold true

E(t) =A(t), E(t) =4(,),

i.e., near the maxima of £(t) the envelope A(t) and
the random function £(t) have common tangents. In-
asmuch as the envelope A(t) has a probability density
(7), it is natural to expect the maxima of the random
function £(t), which are discrete values of the enve-
lope, to have the same distribution.

The maxima of a normal broadband process, which
are discrete values of a normal random function, also
have a normal distribution. Thus, the probability den-
sity for the maximum values of a normal narrow-band
process is in the limit (when v = 0) a Rayleigh den-
sity, and the probability density for the maximum val-
ues of a normal broadband process is in the limit
(when v =1) normal. Figure 8 shows the probability
densities calculated by formula (46) for several values
of v.[48] The curves show the transition from the nor-
mal to the Rayleigh distribution.

For the fluctuation process A(t) calculations with
the aid of formula (38) can be carried through to con-
clusion only in particular cases, for example, for a

win)

FIG. 8. Probability densities for the maxima of normal noise
at different values of the parameter v.
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FIG. 9. Probability densities for the maxima of the envelope
of quasi-harmonic fluctuations.

rectangular spectral density (26) L2t (see note added
in proof at the end of the article).

Figure 9 shows the non-normalized probability den-
sity for the maxima of the envelope A(t), obtained ex-
perimentally in [4*), when the quasi-harmonic noise
£(t) has a Gaussian spectral density. Although it re-
calls the normal probability density in appearance,
it does have a certain positive asymmetry.

Let us calculate the average number of maxima of
the normal process per unit time, exceeding a certain
level C. For this purpose it is necessary to substitute
in (39) the expression (41) for the probability density.
Carrying out the integration first with respect to E and
then with respect to H, we obtain

1y (H > C)

t oy

= G0y
T 2n o

L
A Y 9% @ — ;
[e q’(;/;, Y>+ ot o Ve ">J ’

where v = C/o.
If we introduce the parameter v (45), we obtain as

a final formula

> 0) =Dy [0 (=) + VI 20 (VI ),
47)

where ﬁ1m is the average number of all the maxima
of the random function per unit time, calculated by
formula (37).

We note that at sufficiently large y we can put in
(47) #(z =3)~1 and &(z < —-3) = 0. In this case
formula (47) goes over into formula (19) for the aver-
age number of peaks per unit time exceeding a level v.
In practice 1711 and Dy, coincide when y = 3.

From the equality of N; and fi;p, when y = 3 we
can draw the following conclusion. In Sec. 3 we pointed
out an approximate method for calculating the peak-
duration probability density, based on approximating
the random function in the vicinity of the peak by a
parabola. Obviously, such an approximation excludes
the possibility of existence of several maxima in the
vicinity of the peak. Consequently the quadratic ap-
proximation can be regarded as applicable for large
levels (y = 3).

TIKHONOV

6. DISTRIBUTION OF MAXIMUM VALUES

A rigorous mathematical calculation of the probabil-
ity density for the largest values Hp, (see Fig. 1) in
the realizations of a random process ¢ (t) of finite dura-
tion T is apparently a very complicated problem L5031,
It is necessary to calculate for this purpose the max-
ima, to determine the largest maximum, and to com-
pare its value with the values of the random function
assumed at the ends of the interval [0, T].

We can indicate the following method of solving this
problem. We break up the time interval T into m dif-
ferent segments of duration A = T/m each. We denote
the values of the random function at the (m+1) se-
lected reference points respectively by

E=E8(0) & =E(A) §=8(24), ..., Eu=E(mA)=E(T).

The probability density Wy, ,1(&¢, £1,..., &m ) for the
values of the random function at these points is as-
sumed known.

The probability pj(Hp) that the random function
£(t) assumes at t =iA(i=0,1,2,...,m) a value
£(iA) = Hy,, and that it assumes at all other refer-
ence points values smaller than Hy,, is

o oo

PlHR = § o § Woa Gor oo Bin o By - B

X'dg, ... dt,_ dE,., ... dE,,.

Inasmuch as for stationary fluctuations all the ref-
erence points are of equal weight, the probability
P(Hm) that the random function assumes a value Hp,
at any arbitrary reference point and assumes values
smaller than Hjp, in the remaining points is

(48)

p (Hm) =N 'i.§=]0 P; (H'm)? (49)

where N is a normalization factor, defined by

g P(H,)dH, =1.
Unfortunately, the multiple integral (48) can be cal-
culated only in particular cases, for example when the
values of the random function £(t) at the reference

, points are independent.

If the values of the random function at the reference
points are independent and have a normal distribution

1 &
we (50) = 5755 5P (—35)
or have a Rayleigh distribution

2
Wa(e)= o —25,)

then the probability densities (49) assume respectively
the form

Py(Hp) = (m+ wg (H) 0" (Z2 )
Py (Hp)=(m )Wy (Hy) [1—oxp(— 55 ]". (490)

203

(49a)
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FIG. 10. Probability densities for the largest values.

These probability densities are plotted in Fig. 10.

It must be noted that in order for the values of the
random function to be independent at the reference
points it is necessary to choose A > Tk, where Tk is
the correlation time of £(t). But at such large values
of A large errors are obtained, since the position of
the largest maximum may not coincide with the refer-
ence points tj and may be ‘‘left out.””

Figure 11 shows the probability densities for the
largest values in realizations of normal noise (2), (3),
and (4) for three values of the durations of the realiza-
tions. Each curve is plotted from results of process-
ing of M realizations of corresponding duration.

Figure 13 shows analogous curves for the fluctua-
tion process A(t), when the spectral density of the
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FIG. 12. Probability densities for the largest maxima of reali-
zations of the envelope of a quasi-harmonic noise of different
duration.

initial quasi-harmonic fluctuations £(t) has the form
(9), with f5 = 30 Mc, Af =0.92 Mc. Similar curves for
the E(t) process can be found in [513,

It follows from the foregoing results that with in-
creasing durations of the realizations, the probability
densities become narrower and shift towards the
larger values of Hy,. This is explained by the fact
that with increase in duration T first, the value of
Hp, increases in each individual realization, and
second, the scatter in the values of Hy, decreases.

7. DISTRIBUTION OF DISTANCE BETWEEN A MIN-
IMUM AND A NEIGHBORING MAXIMUM

Until recently no attempts were made to obtain
theoretically the probability densities for the dis-
tances h between the minima and the neighboring
maxima (see Fig. 1). We therefore confine ourselves
to an indication of several specific experimental re-
sults [54],

Figure 13 shows the probability densities of the
random quantity h for normal noise. Each curve is
plotted from the results of the processing of M real-
ization of duration T = 10/Af each, with curve 1 per-
taining to a normal noise with spectral density (2),
curve 2—with spectral density (3), and curve 3—with
spectral density (4). The abscissa axis shows the
relative value h/cp, where oy is the mean square
value of h.

/7(/’,"} p{”m/ /J[//m}
1 M i — T T 18
Arr=2s
ast T2 Q81 AfT=25 M =5z a8y HT=25
i e b) M=1k30 ¢ M=750
FIG. 11. Probability densities for the largest values @) M~568 » Y | arrezs

and realizations of normal noise of duration T (a— spec- 6 :_’ L;;jzj A;r;g_ s T
tral density is determined by formula (2), b~ by formula a4t ";T_;% a4t s M =617
(3) and c —by formula (4)).
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From a comparison of the curves we can conclude
that all the curves are similar in shape to the Rayleigh
probability density. All three probability densities
have a most probable value at approximately h/oy
~ 0.5. The slower the noise spectrum decreases with
increasing frequency, the larger the most probable
value and the faster the decrease of the probability
density to the right of this value.

Figure 14 shows a plot of the probability density of
the relative h/o}, for the envelope A(t) of a quasi-
harmonic noise with spectral density (9). The curve
is based on the results of the processing of 450 reali-
zations, each of duration T = 10/Af. In this case the
probability density has the form of a hyperbola.

We note that the probability density for the distances
between the maximum and neighboring minimum coin-
cides with the probability density for the distances be-
tween the minima and the neighboring maxima.

In conclusion we note, that owing to the space limi-
" tation we did not give here the statistical characteris-
tics of the peaks of the fluctuation processes ¢(t),
zﬁ(t), cos ¢(t), and cos Y(t), which are of great in-
terest in the case of radio circuits with frequency and
phase modulation. These results will be published
elsewhere.

Note added in proof. ‘For the fluctuating process A(t), formu-
las (37) and (48) assume the form

(379

~ (et —1) ‘/_—Qn%ji r(%+%> A,

Im = 5/. 7 n !
2(1) 2 n a
( ot (F+7)

TIKHONOV

3 w
2

7" g—ate? 2

ot (54+7)

S 3
1 —" (0 2 A
P@)=— V=0 (g g2 My 3y

We used here the following notation

= —"(0) H  ,_ o20 , i
CViveo-cno ¢ oo Tz 0
o (D)2} (el
4,= G 2L (n—mp 1) b,

m=0
L _3
s+ )(1—b) =2 (1—p) %,

if n is large.

Calculations based on formula (37”) show that the average num-
ber of the maxima of the envelope of a quasi-harmonic noise with
rectangular spectral density of width Af is

Ny = 0.6411 Af, (37°a)

while for a noise with a Gaussian spectral density (of width Af)
we get ’

Ny, = 1.06 Af, (37'b)

i.e., it is approximately twice as large for the same values of Af.
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