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ВY transition metals, their alloys and compounds we ogy. It is sufficient to recall that the various steels,
mean crystalline bodies containing transition-group which are the "backbone" of technology, are alloys of
element atoms which have unfilled d or f shells. The iron, which is a transition element. One can also add
distinctive features of the electronic structure of the that numerous magnetic materials, without which the
isolated atoms should be conserved to some degree in most important branches of modern technology (elec-
the condensed (liquid and crystal) phases, and this tricity, radio, computer mathematics, etc) are incon-
leads to many singularities and to a great variety in ceivable, must contain at least one transition-metal
the physical and chemical properties of these sub- component. It is therefore understandable why these
stances, as compared with bodies that contain no tran- theoretical and practical aspects make the transition
sition element atoms. This makes the transition metals a timely and interesting object of scientific
metals, their alloys, and compounds interesting objects research.
to the theoretical or experimental physicist engaged in From the physical point of view, the problem of
the study of the structure of solids, their nature and transition metals, their alloys, and their compounds
physical properties, and the processes occurring in is a very extensive and complicated branch of solid
them under different external actions. Transition met- state theory. In the present review we confine our-
als are also of prime importance in applications, since selves to a narrower problem, to the present day status
these substances play a leading role in modern technol- of the theory of the electronic structure of pure transi-
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548 S. V. VONSOVSKII and Yu. A. IZYUMOV

tion metals, without touching upon their ionic crystal
structure or the theory of their alloys and compounds,
although in some cases we shall have to stop during
the course of the exposition and discuss properties of
these more complicated substances, too. Even in this
more restricted formulation, the problem of transition
metals is far from solved. Many unanswered questions
still remain; many model representations, to which it
becomes necessary to resort in the theoretical calcu-
lations, are of necessity quite approximate and some-
times even highly debatable. In spite of these circum-
stances, and perhaps precisely because of them, a sum-
mary of certain theoretical treatments used in the study
of transition metal properties is of interest to physi-
cists and engineers.

Much attention has been paid to transition metals in
many books on quantum theory of solids E1"*^ and in r e -
views of general problems in the band theory of met-
als I-5"7-'. We also call attention to a special review on
transition metals and alloys written by Hume-Rothery
and Coles ^ , in which much experimental material is
cited, and in which structural properties of transition
metals and alloys are also considered.

The present review differs noticeably both in con-
tents and in the form of exposition from its predeces-
sors on the theory of transition metals. The analysis
is based on the notion of an unfilled and spin-uncom-
pensated electron shell of the transition element atom,
which leads to special properties of the electron sys-
tem in the crystal lattice. The electron level density
near the Fermi surface is always appreciably increased
in transition metals, and when atomic ferromagnetic
order arises in the crystal as a result of non-compen-
sation of the magnetic moments, it becomes necessary
to lift the spin degeneracy, i.e., to "shift" the energy
bands* for the collectivized electrons with different
spin projections. In the case of antiferromagnetic
order, the spatial degeneracy is partially lifted for
the conduction electrons. It is precisely these singu-
larities of the electron structure of the transition met-
als that single them out as a special group of sub-
stances and bring about the entire specific nature of
their physical and chemical properties; they can there-
fore be the subject of a special chapter in quantum solid
state theory, namely the theory of transition metals.
Much attention is paid in the present review to the ef-
fect of the "shift" of the energy bands of the conduc-
tion electrons with two different spin projections,
whereas in preceding reviews principal attention was
paid to the increase in the density of the electron lev-
els near the Fermi surface. In the first part of the
review (Chapters I and II) we present concise infor-
mation on the electron structure of the transition group
element atoms (Sec. 1); a brief summary is given of

the singularities of certain physical properties of t ran-
sition metals (Sec. 2); a general qualitative treatment
of the electron structure of transition metals is devel-
oped, along with a critical estimate of the models now
employed in it (Sec. 3); this is followed by an exposition
of the elementary theoretical treatment based on the
band model of the crystals (Fig. 4), and on the so-
called s-d exchange model (Sec. 5). The second part
of this review is devoted to a development of a more
rigorous quantum theory of transition metals, where
we first consider the properties of the crystal spin
subsystem (Chapter III), and then the conduction-
electron subsystem (Chapter IV). This second part
of the review can be regarded not only as a report of
the specific results of the theoretical calculations, but
also as an illustration of the new quantum-statistical
methods (temperature Green's functions) employed
in solid-state problems. The review concludes with
a brief summarizing chapter V. On the whole, the
review is not encyclopedic and consequently the at-
tached bibliography, although covering the majority
of basic papers on the theory of transition metals,
cannot be regarded as exhaustive.*

I. INTRODUCTION

1. Brief Data on the Electronic Structure of Transi-
tion-element Atoms.

Although the transition-element atoms have many
electrons, it is known^ that in the approximation of
the centrally-symmetrical self-consistent field it is
possible to retain for the states of the individual elec-
trons of these atoms the same quantum characteristics
as in the single-electron hydrogen atom, i.e., four
quantum numbers: principal n, orbital I, magnetic m,
and spin s. The state of a multielectron atom is de-
termined above all by its electron configuration, i.e.,
by the number of electrons with given n and I. In ac-
cordance with the Pauli principle, not more than
21(1 + 1) electrons can exist in each equivalent state
(with given n and I); once this number is reached,
we deal with a closed electron shell: (nl)2^+i\
Table I shows the successive filling of the electron
shells of these atoms.

For a complete description of the quantum state of
the shell of a multielectron atom it is necessary to spe-
cify in addition to the electron configuration also the
following total momenta: spin S, orbital L, and result-
ant J = S + L. Consequently, even if we disregard the
fine structure of the terms (the magnetic interaction),
states with the same configuration but different L and

•This effect is sometimes called in the literature, without com-
plete justification, the "shift" of the Fermi surfaces of conduction
electrons with two different spin projections.

*It must also be emphasized that the present review is devoted
essentially to theoretical treatments of the physical properties of
transition metals having a magnetic order, i.e., ferromagnetic and
antiferromagnetic metals. Paramagnetic transition metals are dis-
cussed in much briefer form. Consequently the title of the review is
in this respect somewhat broader than its content.
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Table I. Successive filling of the electron
shells of an atom

Configuration with given n and /

\ ^ I

n \^

i
2
3
4
5
6
7

8

Is 2

2s2

3s2

4s2

5s2

6s2

7s2

p

2p>
Sp'
4p«
5/>«
6p«
lp°

d

3d10

id1"
5d10

№<>
Id10

t

4/u
5/»
6/"
7/»

3

6^1»

V8

h

7Л2 2

ft

Ik2"

Total
number
of elec-
trons in

shell

2
8

18
32
50
72
98

Shell
symbol

К
L
M
N
О
P
Q

S have different energies, owing to the electrostatic
interaction between the electrons. These energy dif-
ferences usually range between 0.1 and 1.0 eV, which
as a rule is several times smaller than the energy dif-
ference between levels with different electron configu-
ration (approximately several eV). The sequence of
levels with like configuration but with different L and
S, arranged in ascending energy order, is determined
by Hund's empirical rule (1927). According to Hund's
rule, the minimum energy is possessed by the term
with the largest value (for a specified configuration)
of the summary spin S and the largest (for the same
value of S) summary с rbital momentum L. Qualita-
tively this rule follows from the requirement that the
energy of the electrostatic interaction of the electrons
in the atom, namely the exchange part of this interac-
tion,* be a minimum. Figure 1 shows the level scheme
for the iron atom, from which it is seen that as a rule
levels with unlike configurations differ more in energy
than levels within the same configuration.

The electron-shell filling sequence shown in Table I
actually does not apply beyond potassium (K; Z = 19).
In the potassium atom, as well as in the calcium atom
that follows it (Z = 20), the states to be filled next are
not the 3d states, which follow "in order" after the 3p
states that are filled in the case of argon (Z = 18), but
the next 4s states. Only in scandium (Z =21) does a
delayed filling of the ten-place 3d shell begin, and is

a -
7 -

5 -

s -
4 -

3 "~

0 -

Sp Jg !S Sp Ij, !F fg lp J, Tp

. 3dftsh

FIG. 1. Level scheme of iron atom after HundJ10] Terms with
like electron configuration are joined by dashed lines (1 eV = 8067.5
cm'1).

completed for the copper atom (Z =29). Other viola-
tions of the simple sequence are observed in the filling
of the 3d shell (iron group): for example, in the chro-
mium atom (Z =24) the configuration realized is
3d54s in place of the "correct" configuration 3d44s2,
whereas the 3d84s2 configuration of the nickel atom
(Z = 28) is replaced in the copper atom not by the
3d94s2 configuration, but by 3dI04s. A delay in the
filling of the 4d shell is observed in the elements
from yttrium (Z = 39) to palladium (Pd; Z = 46)
(the palladium group); a similar delay is observed for
the 4f shell in the elements from lanthanum (La; Z
= 57) to ytterbium (Yb; Z = 70) (rare earth group),
for the 5d shell from lutetium ( Lu; Z = 71) to plati-
num (Pt; Z = 78) (the platinum group), and finally for
the 6d and 5f shells from actinium (Ac; Z = 89) to
uranium (U; Z = 92), including the transuranic ele-
ments (the actinide group) (see Table II). It is thus
precisely in the filling of the d and f electron shells
that the normal sequence is violated. The elements in
which the "delayed" filling of these shells takes place
are those called the transition elements.*

The physical reason for the existence of internal
unfilled groups in the shell of a multielectron atom is
that the electron energy in such groups depends appre-
ciably not only on the quantum number n, but also on
I. For specified n, the energy increases with increas-
ing I. The more the self-consistent field of the multi-
electron atom shell differs from the Coulomb field of
the hydrogen atom, the more pronounced the depend-
ence of the energy on I. It may therefore turn out to
be energetically more favorable for the electron that
is added on going from the element Z to the element
(Z + l ) not to experience an increase in I (which is
possible for a given n), but an increase in n with
simultaneous decrease in I. Thus, for example, the
states (n + l)s and (n + l)p can be energetically more
favored than the states nd or nf. Using the approxi-
mate Thomas-Fermi statistical method,! it is possible
to predict quantitatively the minimum atomic number
(Z£ )min. with which the filling of a shell with specified
I can begin. Elementary calculation shows that
(Zp)min= 5(Zd)min = 21, (Zf)m in=58, etc, in
splendid agreement with experiment.

Along with the energy singularities, the d and f
shells have also "geometrical singularities" in the
sense of the character of the distribution of the corre-
sponding electron density. The electrons in the nd and
nf states are as a rule closer in space to the atomic
nucleus than the electrons in the (n + l)s and (n + l)p
states, which have nearly the same energy. The reason

•See, for example, the second footnote on p. 264 of M.

*The periodic table (including the transuranic elements) con-
tains altogether 42 transition elements, of which 24 are d-metals
from the iron, palladium, and platinum groups, 14 are rare earth
metals, and 4 are actinides.

tSee, for example, pp. 286-288 in ['], pp. 461-463 in M , or the
book ["].
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Table II. The electronic configurations, the principal term, the
radii of the incomplete shells, and the shells of the valence elec-
trons of the transition elements and the distances between the
ions, the nearest neighbors in the crystal lattice of the metal
(data on interatomic distances and on the lattice type are based
on the book by B. F. Ormont, Struktura neorganicheskikh
veshchestv (Structure of Inorganic Substances), Gostekhizdat,
1950).

a) Iron Group (3d)
(Electron shell configuration of argon: Is22s22p63s23p6)

z

21

22
23
24
25
26
27
28
29

Element

Sc

Ti
V
Gr
Мц
Fe
Co
Ni
Cu

Electron
configu-

ration
without

argon
shell

3d4s2

3d 24s 2

3dHs 2

3dHs

3d4s*
3d»4sa

3<2'4s2

3d»4sa

3di»4s

Principal
term of

atom

W

эр

if

*F
зр

*S

Radii of 3d and
4s shel l s (in A)

°3d

3.00

2.36

2.09

1,96

1.60
1.44
1,30
1,19
1,14

0*s

4,56 |

4,35 |

4.15

4,98 |

3.80
3.39
3,51
3,40
3.70

Distance between ions
in the metal (nearest

neighbors) (in A)f

type of latt ice

3.24 hep (a)
3.204 fee (P)
2,900 hep (a)
2,875 bcc (P)
2.627 4 bcc
2.493 bcc (a)
2,70 hep (P)
2.494 complex (a)
2.4778 bcc (a)
2.507 hep (a)
2.4878 fee
2.5509 fee

b ) P a l l a d i u m G r o u p ( 4 d )

( C o n f i g u r a t i o n o f K r e l e c t r o n s h e l l : I s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d i o 4 s 2 4 p 6 )

z

39

40

41
42
43
44
45
46
47

Element

Y

Zr

Nb
Mo
Те
Ru
Rh
Pd
Ag

Electron
configu-

ration
without

Kr shell

4<255г

4d a 5s s

idlbs
4d65s
4d&5s*
4d'5s
4d«5s

4d 1 0

4d«5s

Principal

term of
atom

W
tp

w

ър
iF

Radii of 4d and
5s shel ls (in A)

0

4,56

3.75

3,47
2.98
2,44
2.32
2,09
4,35
3,29

П

5 . 3 3

5 , 0 8 I

5 , 7 2

5 . 4 2

4 i 4 4

4 . 9 2

4 . 7 0

4 . 3 2

D i s t a n c e b e t w e e n

i o n s i n

3 ,

3 ,

3 ,

2 .

2 .

2 .

2 ,

2 .

2 ,

2 ,

5 9

1 8

1 2 6

8 5 2

7 2

7 3 5

6 9 3

6 8 4

7 4 4 8

8 8 3

t h e m

h e p

h e p

b c c

b c c

b c c

h e p

h e p

f e e

f e e

f e e

2 t a l

Ф)

(P)
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c) Rare Earth Group ( Lanthanides, 4f)
(Configuration of xenon electron shell:
Is22s22p63s23p63d lo4s24p64d lo5s25p6)

551

z

57
58

59

60
61
62
63
64
65
66
67
68
69
70

Element

La
Ce

Pr

Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tu
Yb

Electron
configu-
ration

without
Xe shell

4/5d6s2

4/36s2

4/46s2

4/56s2

4/e6s2

4/'6s2

4/75rf6s2

4/85rf6s2

4/106s2

4/"6s2

4/126s2

4/136s2

4/«6s2

Principal
term of
atom

2A,,2
з #7

4/9,2

вНыг
7P»

8^7/2
9O 2

5/8

3fJ
2F, ; 2

1S°

Radii of 4f, 5d .
and 6s shells (in A)

°*y

1,14

1.11

1.05
1,00
0,96
0.92
0.85
0.83
0,80

—

0.73
o;7o

Q6d

5,33

5,33

—

—
—
—

5.33
5.33

—
—

—
—

Q6S

5,88

5,88 {

6.20 i

6.20
6.20
6.20
6.20
9,80
9,80
6,20
6.20
6.20
6,20
6.20

Distance between
ions in the metal

3.71 Hexag. (a)
3,634 fee (p)
3,65 hep ( a )
3,662 Hexag. ( a )
3,642 fee (R)
3.657 Hexag.

4.084 bec
3,622 hep
3.585 hep
3.578 hep
3.557 hep
3.532 hep
3,523 hep
3.866 fcc

d) Platinum Group (5d)
(Configuration of Yb++ electron shell:
Is22s22p63s23p63d lo4s24p64d lo4fw5s25p6)

Z

71
72
73
74
75
76
77
78
79

Element

Lu
Hf
Та
W
Re
Os
Ir
Pt
Au

Electron
configu-

ration
without

Yb++shell

5tf6S

2

5rf26s2

Sec 6s2

5<f«6s2

5d1Qs2

5rf96s
5dl°6s

Principal
term of

atom

2 ^ 2

bD

sp

Radii of 5d and
6s shells (in A)

y5d

5.33
4.35
3,72
3.25
2.86
2.56
2,32
2,22
1.94

ges

9,80
9.33
8.40
7.90
7.35
6.88
6,53
7.51
7,06

Distance between
ions in the metal

3.509 hep
3,14 hep (a)
2,854 bee
2,735 bee (a)
2-755 hep
2,725 hep
2,709 fcc
2,769 fcc
2.883 fcc

e) Actinide Group (5f and 6d)
(Configuration of Rn electron shell:

Is22s22p63s23p63d lo4s24p64d lo4f145s25pe5d lo6s26p6)

Z

89
90
91
92

93
94
95
96
97
98

Element

Ac
Th
Pa
U

Np
Pu
Am
Cm
Bk
Gf

Electron
configu-

ration
without
Rn shell

6c(27s2

5/*6o!7s2 (?)
5/36d7s2

5/46d7sa (?)
5/67s2

5/'7sa

5/76^7s2 (?)
5/86rf7s2 (?)
5/107s2 (?)

Principal
term of

atom

2A>/2aPt

2 i 6
2L11/2

7/1

8^7/2

bh

Radii of Sf, 6d
and 7s shells (in A1

—
—
—

1.11

1,11
1,07

—

°ed

5.80
4,8
4.1

5.88

—

°7s

~10
~9
8,4 {

- 1 0

6,2
6,2

'

Distance between
ions in the metal

3,59 fcc
3,25 Tetrag.
2.77 Complex (a)
2.97 bee (6)
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Table III. Magnetic moments of trivalent ions of
rare-earth elements

z

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

*In

Element

La+3

Ce*3

Pr*3

Nd*3

Pm*3

Sm*3

Eu*3

Gd*3

Tb*3

Dy*3

Ho*3

Er*3

Tu*3

Yb*3

Lu*3

Number
of 4f

electrons

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Principal
term

1Sg
2Fbn

lHl

n't
6я6 / 6
8J>7/2

%Н1Ъп

5/8

3H a

^°

the case of the Sm+S and Eu+S ions at

g-factor

0
V,

8/ll

Iй

o7

2
3I i
4 /з
5/4
6 / б

'/в
V,
0

^theor. eff
(in U R )

0
2.54
3.58
3.62
2,68
1,55*
3,40 •
7.94
9.72

10.64
10.61
9.60
7,56
4.53
0

/*ехр
(in a p»)

0
2.51
3.53
3.55

—
1.46
3.37

8.07+.0.05**
9 . 6 2 ± 0 . 0 5 * *

1 0 . 6 7 ± 0 . 0 5 * *
1 0 . 8 6 ± 0 . 2 * *

9 . 7 9 ± 0 . 1 5 * *
7.35
4.50

0

room temperature, the condition that the en-

ergy difference of neighboring levels of the multiplet be small compared with kT is vio-
lated
comes
Meff =

Ei - E2 > kT), and consequently the' formula for the magnetic
more complicated and the formula for

susceptibility be-
/Û ff differs from the ordinary formula

gi/j(J + 1) . This question was investigated in detail by Van Vleck.[*8a"b]
**See the experimental data on the measurement of paramagnetic susceptibility in

these
Arajs

metals as presented by Arajs and Miller (J. of Appl. Phys. 31
and Colvin at the 6th Conference on Magnetism and Magnetic

November 1960, New York. Green, Levgold,
for Er (Phys. Rev. 122, 827 (1961)).

and Spedding obtained

, 325 (1960); by
Materials of 14-17
Mexp =(9.9 +0.2)p^

for it is that the effective potential well for the d or f
electrons is located closer to the nucleus than for the s
and p electrons.* Therefore the region of "classically
attainable" distances for the d or f states will also
be closer to the nucleus of the atom, i.e., the d and f
groups are closer to the nucleus.t

As long ago as in 1930, Slater^13^ proposed a
semi-empirical method of calculating the effec-
tive radii of different electron shells of multi-
electron atoms, which are regarded as spheres
on the surfaces of which a maximum electron
probability distribution density is attained; this
distribution was determined with the aid of the
approximate wave function of the electron in the
self-consistent field of the atom.t By way of the
first approximation, Slater chose for the radial
part of the wave function of the electron the
nodeless function

<P(Q)= (1.1)

which at large distances (p—distance measured
in Bohr radii r B = 0.5291 x 10"8 cm) behaves
asymptotically like a hydrogen wave function
with "principal quantum number" n* and with
nuclear charge (Z - o-)e, where a is the screen-
ing parameter. Slater has shown that best agree-
ment with experiment is obtained by choosing
n* = 1, 2, 3, 3.7, 4, 4.2, . . . , in correspondence
to the values of the true quantum number n = 1,
2, 3, 4, 5, 6, . . . and by breaking up the electrons
into shells:

Is; 2s, p; 3s, p; 3d; is, p; id; if; 5s, P\

*See, for example, p. 324 in the book I"].
tlnasmuch as most physico-chemical properties of the atoms are

determined essentially by their valence electrons (s and p), which
are farthest away from the nucleus, one can expect that differences
in the number of the d and particularly f electrons, which are
closer to the nucleus, will not lead to any noticeable differences in
the indicated properties. A clear cut example of this are the rare-
earth elements, which are very close to one another in their physico-
chemical properties. This, naturally, does not pertain to those
properties which are the direct consequence of the difference in the
structure of the 4f shell of these elements, for example to their
magnetic properties (see below).

tThese calculations were subsequently made more precise (see,
for example, supplement to the Russian translation of L"J, p. 424).
For our purposes, however. Slater's approximate calculation is per-
fectly adequate.

to determine the screening parameter. No ac-
count is taken whatever of the influence of the
electrons in shells that are exterior to the given
shell; each electron of a given shell contributes
to the parameter a value equal to 0.35 (except
for the first group, for which this fraction is
0.30); if the shell under consideration is s or
p, then for this shell, each electron from the
nearest neighboring internal shell with (n - 1)
introduces a fraction equal to 0.85, while the
electrons from the following innermost shells
introduce a fraction equal to 1.00; for the d or
f shells this fraction is always 1.00.

With the aid of these rules it is possible to
calculate the energies of the atoms and ions, and
also the effective radii of different groups of
their shells. In the last columns of Table II are
given the values of the effective radii for the
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internal [ (n + l ) s ] and unfilled (nd or nf)
shells. It is seen from these data that the latter
always have a considerably smaller radius than
the former.

One of the most important features of transition-
element atoms is the fact that their spin and orbital
momenta are not compensated; this fact follows from
Hund's rule and determines their paramagnetic nature.
By way of an example, Table III lists the values of the
magnetic moments of trivalent ions of ra re earths as
predicted by the theory and as observed experimen-
tally. As regards the latter, the most accurate method
for the determination would be to measure the magnetic
susceptibility of rarefied monatomic gases of transition
elements. In practice, however, these measurements
entail great technical difficulties, since the tempera-
ture region where the gas phase of these substances
exists is quite high, making the experiment exceedingly
complicated. In addition, the measured effect itself
becomes very small, since the paramagnetic suscepti-
bility decreases with temperature in accordance with
the Curie law, Xp ~ 1/T. Therefore to obtain experi-
mental information on the magnetic properties of the
transition element atoms it becomes necessary to
measure their magnetic properties in the solid phase.
Naturally, in a crystal each ion is under the influence
of its own atomic environment, which can change ap-
preciably the properties that characterize its free
state (for more details see Sec. 2). One can expect,
however, the deep 4f shell of ions of the rare-earth
elements to be practically immune to noticeable influ-
ence of the neighboring atoms, owing to the good
screening on the part of the outer 5s25p6 group, at
least when it comes to the values of the magnetic
moments. The trivalent ions of the ra re earths should
therefore behave also in crystals like free ions, from
the magnetic point of view. This assumption is well
justified in practice, as can be seen from Table III.
Unlike the atoms of the ra re earths, the atoms of iron
palladium, and platinum have 3d, 4d, and 5d shells
which lie closer to the periphery of the atom and
therefore are not so strongly screened against the in-
fluence of the neighboring atoms in the crystal. This
influence is primarily manifest in the so-called phe-
nomenon of "quenching" of the orbital momenta of the
d shells, and consequently in crystals the entire mag-
netism of the ions of this type is due essentially to the
spin moments. Comparison of the theoretical moments
with the observed ones* does not yield for these atoms
as good an agreement as in the case of the ra re earths.
Even in this case, however, it is quite obvious that the
magnetic properties of the atoms are determined prac-
tically completely by the momenta of the unfilled d
shell s. t

2. Some Data on Electronic Properties of Transi-
tion Metals

In the condensed phase (liquid or crystal) , the
atoms of the transition elements come close to one
another or to the atoms of other transition and non-
transition elements (in alloys or compounds) and
the distances between them are of the order of the
atomic distances; the interactions between the atoms
therefore become comparable in magnitude with the
bonds between the electrons in the shells of the indi-
vidual atoms. These interatomic interactions affect
above all the valence electrons, the character of the mo-
tion of which is radically changed in the crystal. This
is seen most clearly from a comparison of the entirely
different optical spectra, which reflect the structure of
the energy levels of the valence electrons in gases
(line spectra) and crystals (continuous spectra). This
change in the spectrum character indicates that the
valence electrons experience complete collectivization
in the metallic crystals and form an electronic Fermi
liquid in which the ionic lattice of the crystal is " im-
mersed." On the other hand, the electrons of the inner-
most filled atomic shells hardly change the character
of their motion in the crystal. This is evident from the
x-ray spectra produced by electronic transitions be-
tween levels of the internal shells, which practically
do not change their line character on going from the
free atom to the crystal.* On the other hand, the elec-
trons of the unfilled d and f shells cannot be classified
as either belonging to closed shells or as valence elec-
trons. One can only expect the f electrons, being
closer to the nucleus of the atom than the d electron,
to move in a crystal more like the electrons of the
inner shells, whereas the d electrons should experi-
ence to a greater extent the collectivizing action of the
interatomic interaction in the crystal. This will be dis-
cussed in greater detail in Sec. 3 and in Chapter II. We
mention here only the characteristic features of some
physical properties of transition metals, which have a
direct bearing on the electron system of the crystal.

a) Magnetic properties. As already indicated in
Sec. 1, the atoms and ions of transition elements are
always paramagnetic t in the free state, since by virtue
of Hund's rule their electron shells have in the ground
state a nonvanishing spin, nonvanishing orbital momen-
tum or both simultaneously. Comparison of magnetic
properties of isolated atoms or ions of transition ele-

*A more detailed exposition of data on atomic paramagnetism
can be found in books on magnetism L15""J, and also in L"J.

t Another method of measuring atomic and ionic magnetic mo-
ments is the well known Stern and Gerlach experiment with an
atomic beam passing through an inhomogeneous magnetic field.

*The observed broadening of the emission lines of the x-ray
spectra, which is particularly large in the case of heavy-element
atoms, is due to the reduction in the average lifetime of the cor-
responding excited states of the atom with absence of the electron
at the deep inner levels [see also item d) below].

TThis holds true for ions which do not completely lack an un-
filled shell. In the case of ions which do not have such a shell (for
example Sc+++, Zr+4), they are diamagnetic; on the other hand
ions of transition element atoms in which an unfilled electron shell
occurs can also be paramagnetic. Thus, for example, the divalent
ions Cu , Ag , etc., are paramagnetic.
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ments with the same properties of crystals containing
these atoms in their makeup can serve as an important
indicator of the changes that occur in the unfilled d and
f shells of the condensed phase under the influence of
interatomic forces.

The extensive experimental material on the mag-
netic properties of such crystals makes it possible to
present, with sufficient reliability, the following clas-
sification by magnetic properties. We first discuss
the 42 transition metals in pure form. We have here
two different groups: 1) metals with atomic magnetic
order, which in turn include: la) ferromagnets— Fe,
Co, Ni (from the 3d metal group) and Gd, Tb, Dy, Ho,
Er, and Tu (from the 4f metal and rare-earth groups);
lb) antiferromagnets—Cr, Mn (from the 3d metal
group) and Ce, Pr, Nd, Pm, Sm, and Eu (from the
4f metal and r a r e earth groups); 2) paramagnetic
transition metals—Sc, Ti, V (from the 3d metal
group); Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd (from the 4d
metal group); La, Yb (from the 4f metal and r a r e
earth groups); Lu, Hf, Та, W, Re, Os, Ir, Pt (from
the 5d metal group); and Ac, Th, Pa, U (from the
6d and 5f metal and actinide groups). *

Ferromagnetic metals have below the Curie point
(®f) a spontaneous magnetization I s , which reaches
a maximum Io at 0°K ( I s = 0 when T > ®f). In anti-
ferromagnetic metals, the crystal breaks up into two
(or more) magnetic sublattices, which have at tem-
peratures below the Neel point ®JJ spontaneous mag-
netizations I i s ; however, the vector sum of Ii S taken
over all the sublattices is equal to zero: 2 I i s = 0. In
the case of rare-earth metals with magnetic order,
both ferromagnetic and antiferromagnetic states can
be observed in neighboring temperature intervals. For
example'^20»21-', dysprosium is ferromagnetic from zero
to ®f = 85°K and antiferromagnetic from ®f to ®JJ
= 175°K. Holmium is ferromagnetic from zero to ®f
= 20°K and antiferromagnetic from ®f to ©N = 132°K.
Finally, erbium is ferromagnetic from zero to ©f
= 19.9°K and antiferromagnetic from ®f to ®N = 80°K.
Above the Curie or Neel point, all the metals with
atomic magnetic order lose this order and become
paramagnetic with a susceptibility that obeys approx-
imately the Curie-Weiss lawt

%„ =r - e r

(2.1)

*It should be noted that so far there are no sufficiently reliable
data on the measurements of magnetic properties of several metals
of the 3d, 4d, and Sd groups, the rare earths, and the actinides. In
particular, there are some grounds for assuming that palladium and
platinum are antiferromagneticj"4] It is possible that vanadium is
also antiferromagnetict1"], but final conclusions call for additional
more careful investigations. A later paper by Barnes and Grahamt1"]
suggests, in contrast with ["'], that vanadium is not antiferromag-
netic.

•(•Investigations have shown that the actual dependence i s more
complicated. Recently K. P. Belov and A. V. Ped'ko observed (by
magnetic measurements) that gadolinium has in the interval from
0f = 210°К to © N = 290°К an antiferromagnetic state, with ap-
parently helicoidal structure (gadolinium i s in the ferromagnetic

if T » ©f o r © N ; h e r e ®p i s t h e p a r a m a g n e t i c C u r i e

p o i n t , w h i c h i n t h e g e n e r a l c a s e d i f f e r s f r o m ©f o r

©N in both magnitude and sign, * and С is the Curie
constant.

Comparison of the magnetic properties of free
atoms and crystals of transition elements with atomic
magnetic order is simplest to carry out by determining
the average atomic magnetic moments obtained from
measurements on crystals. The sought-for information
can be obtained in two ways. First, it is possible to
determine the average moments for a crystal with
magnetic order by dividing Io of the ferromagnet by
the number of atoms per unit volume. In the case of
an antiferromagnet it is necessary to determine for
this purpose the sublattice saturation Ii0 [for example
by neutron diffraction^22^, see Item d) below]. These
average moments should be compared with the mo-
ments of the free atoms or ions. Second, in the case
when T » ®f, ®£j, when the transition metals have no
spontaneous magnetization and go over into the para-
magnetic state, the effective atomic magnetic moments
are determined, for example, by measuring the Weiss
constants which are contained in expression (2.1) for
the susceptibility; these should be compared with the
moments of the free atoms.

Table IV lists the values of the average atomic mo-
ments calculated by the saturation method, for the p res -
ently known ferromagnetic and anti-ferromagnetic met-
als of the iron and rare-earth groups. From a com-
parison of these average moments with those of the
free atoms, listed in the same table, we see that in
the case of the iron group a noticeable difference ex-
ists between the two, something not observed for the
rare-earth group metals; in addition, all the average
atomic moments have fractional values greatly devi-
ating from whole numbers.t

To determine the effective magnetic moments from
measurements of paramagnetic susceptibility, in the
case when the latter is given by (2.1), it is necessary
to know the expression for the constant C. For iso-
lated atoms (gases) theory yields the following for-
mula: t

state below 0f), in analogy with the other rare-earth metals Dy, Tb,
Ho, Er, and Tu. The antiferromagnetism of gadolinium turns out to
be very "weak" and is destroyed in a critical field Hc ~ 15 Oe.
This apparently explains also why it remained unnoticed in earlier
investigations. A final solution of this problem calls, naturally,
for the performance of neutron diffraction investigations.

"See, for example, Item 4 of Sec. 25 in M.
tThe deviation of t̂at from /*av in rare-earth metals is appar-

ently due to the influence of the crystalline field on the states of
the 4f electrons (see t4*'150] on this topic).

tin the general case the paramagnetic susceptibility has a more
complicated form than (2.2) even for gases of free atoms (see, for
example, Sec. 9, Item A in ["]); we shall not discuss this in greater
detail at present, however.
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Table IV. Comparison of spin magnetic moments
(in p-g units) of isolated atoms of certain transi-
tion metals with the average atomic moments for
the ferromagnetic and antiferromagnetic state of

the crystal

Element

Gr
Mn
Fe
Co
Ni
Gd
Er
Ho

Spin mag-
netic moment
of the iso-
lated atom

(in MB)

5
5
4
3
2
7
9

10

Average
atomic mag-
netic moment

of the
crystal
(in д в )

0 . 2 - 0 . 4
1.5
2,218
1.715
0.604
7.12
8—9?
4.0

С =
3k

(2.2)

where N is Avogadro's number, g is the Lande fac-
tor, /UB is the Bohr magneton, and к is Boltzmann's
constant. Thus, comparison with theory necessitates
the knowledge of the quantum numbers J and the Lande
factor. Measurements of the gyromagnetic ratio yield
for metals of the iron group g = 2, i.e., the "quench-
ing" of the orbital momenta mentioned in Sec. 1 does
take place; therefore expression (2.2) assumes the
simpler form

С =
3k

(2.3)

A c t u a l l y , h o w e v e r , t h e t e m p e r a t u r e v a r i a t i o n of x> s a v

f o r n i c k e l , c o b a l t , a n d i r o n , h a s b e e n s h o w n b y e x p e r i -

m e n t t o d e v i a t e a p p r e c i a b l y f r o m t h e C u r i e - W e i s s l a w

w h e n T > ®f C 2 3 ^. C o n s e q u e n t l y , c o m p a r i s o n w i t h t h e -

o r y c a l l s f o r a d e t a i l e d i n v e s t i g a t i o n ( s e e ^ , a n d

a l s o S e c . 4 b e l o w ) . T h e p i c t u r e i s s i m p l e r i n t h e c a s e

of r a r e - e a r t h m e t a l s , f o r e x a m p l e g a d o l i n i u m a n d

d y s p r o s i u m , w h e r e t h e s u s c e p t i b i l i t y f o l l o w s (2.1)

a b o v e t h e C u r i e p o i n t a n d w h e r e g o o d a g r e e m e n t i s

o b t a i n e d b e t w e e n t h e o r y a n d e x p e r i m e n t f o r t h e c o n -

s t a n t C, u s i n g (2.2) o r (2 .3) , if i t i s a s s u m e d t h a t t h e

g r o u n d s t a t e s of t h e 4f s h e l l s of t h e g a d o l i n i u m a n d

d y s p r o s i u m i o n s i n t h e c r y s t a l a r e r e s p e c t i v e l y 8 S a n d
e H 1 5 / 2 > * a n d t h e r e f o r e J e d = ?/2, gQd = 2 - 0 a n d J p y = 8,

g D y = 1.25. S u b s t i t u t i o n of t h e s e v a l u e s i n (2.2) y i e l d s
c G d = 7.87 a n d C i t y = 1 4 . 0 5 , w h e r e a s e x p e r i m e n t

y i e l d s 7.8 a n d 1 3 . 6 — 1 4 . 0 0 , r e s p e c t i v e l y .

h i t h e c a s e of t h e a n t i f e r r o m a g n e t i c m e t a l s c h r o -

*I.e., both the Russel-Saunders (LS) coupling С9'14] and Hund's
rule [10] hold true, and in addition the susceptibility of the conduc-
tion electrons can be neglected.

m i u m a n d m a n g a n e s e , n e u t r o n d i f f r a c t i o n y i e l d s ^2 2-'

f o r t h e a v e r a g e a t o m i c m a g n e t i c m o m e n t s of t h e s u b -

lattice 0.2—0.4 for chromium and 0, 1, and 2 for man-
ganese, respectively (in дв units).*

If we exclude the rare-earth metals, which appar-
ently all have in practice magnetic atomic order at low
temperatures, t then the majority of the transition met-
als have no magnetic atomic order, t and are paramag-
netic in their behavior. Yet the paramagnetism of these
metals has many peculiarities.'-24^ One should note
first that the magnitude of the atomic susceptibility at
room temperature greatly exceeds in practically all
these metals the corresponding values for alkali and
alkali-earth non-transition metals (Table V), and is
exceeded only by the rare-earth metals (when T > ®f
or ® N ) - The temperature dependence of the suscepti-
bilities of these substances is quite unique. In none of
these metals does it obey the Curie-Weiss law (2.1).
In some metals x decreases with increasing tempera-
ture (V, Nb, Pd, Та, Pt) , and in others it increases
(Ti, Zr, Mo, Ru, Rh, Hf, W, Os, I r ) . Another charac-
teristic feature is that elements of different groups,
but located in the same column of the periodic table,
have the same character of temperature dependence
X(T) (for example, dx/dT > 0 for Ti, Zr, Hf, or
dx/dT < 0 for V, Nb, Та), and on going from one
column to the other the sign of the derivative dx/dT
changes (for example, Zr + , Nb", Mo+ or Hf+, Та",
W+). A definite correlation is also observed in the
values of the susceptibility and the change in sign of
dx/dT with the values of the electronic specific heat
[see item b) below]. In some cases a maximum (for
example, Pd) or a minimum (Zr and Nb) is observed
on the x(T) curves. One must note, however, that in-
vestigations of the magnetic properties of paramagnetic
transition metals (including rare-earth metals) vary
in character, have been carried out under different ex-
perimental conditions, with differently prepared mate-
rials of different quality, and as a rule not on single
crystals of high purity. Nor are there sufficiently de-
tailed measurements in the field of low and super low
temperatures, or simultaneous magnetic and neutron
diffraction investigations.

Of appreciable interest are also investigations of
the magnetic properties of ferromagnetic and antifer-
romagnetic alloys and compounds of transition metals,
both with one another and with non-transition elements,
since these observations can yield important informa-

*The complicated crystalline structure of manganese has not
made it possible to obtain as yet reliable results, and consequently
the authors of M give three different values; it is also possible
that ions with unequal moments are located in the different sites
of the elementary cell of the manganese crystal.

T Although there are still no exhaustive data on all the elements
of this group.

tHere, too, there are not enough complete data for very low tem-
peratures.
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Table V. Atomic magnetic susceptibility of
paramagnetic transition metals at room

temperatures, XA> a n ( * the sign of
its derivative

Metal

Scandium
Titanium
Vanadium
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Lutetium
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Sodium
Potassium
Aluminum

315
156
255

191
119
209
82.5

270
44

101
558

ч
75

152
55
69
9.5

35
189
15.6
44
16.7

dXA/dT

?
+

+

+

— ?

_
+

4-
+

Literature

6
2,3
4

6

2,3
4,5
4,5
1
7
8
8

9
4,8
4,5
6,9
7

10,11
8

l.C. M. Nelson, Ph. D. Diss., Univ. of Tenn.
(1952), см."

2 С F. S q u i r e and A. R. K a u f m a n n, J. Chem.
Phys. 9, 673 (1941).

3. L. K l e m m , Z. Electrochem. 45, 354 (1939).
4. C. J. K r i e s s m a n , Revs. Mod. Phys. 25, 122 (1953).
5. W. J. de H a a s and P. M. v a n A l p h e n , Proc.

Acad. Sci. Amst. 36, 263 (1933).
6. H. B o m m e r , Z. Electrochem. 45, 357 (1939).
7 A. N. G u t h r i e and L. Т. В o u r l a n d , Phys. Rev.

37, 303(1931).
8. F. E. H o a r e and J. C. W a l l i n g , Proc. Phys.

Soc. B64, 337 (1951).
9 G J K r i e s s m a n and T. R. M c G u i r e , Phys.

Rev. 90, 374 (1953).
10. K. H o n d a , Ann. Phys. 32, 1027 (1910).
11. M H o r o w i t z and J. G. D a u n t , Phys. Rev. 91,

1099 (1953).

t i o n on the e l e c t r o n i c s t r u c t u r e of t h e s u b s t a n c e s of i n -

t e r e s t t o u s . Not be ing able to dwe l l on th i s q u e s t i o n

in deta i l , w e note only the m o s t e s s e n t i a l r e s u l t s w h i c h

have a d i r e c t b e a r i n g on the sub ject of the p r e s e n t r e -

v i e w . F o r e x a m p l e , in the c a s e of a l l o y s of f e r r o m a g -

n e t i c m e t a l s of the i r o n group ( F e , Co, N i ) a p p r e c i a b l e

d e v i a t i o n s a r e o b s e r v e d f r o m the r u l e of s i m p l e m i x i n g

for the a v e r a g e a t o m i c m a g n e t i c m o m e n t s . In the study

of b inary a l l o y s of n icke l w i th low c o n c e n t r a t i o n s of

n o n - t r a n s i t i o n m e t a l s , w h e n t h e a l l o y i s s t i l l f e r r o -

m a g n e t i c , the fo l lowing r e g u l a r i t y w a s o b s e r v e d : r e -

p l a c e m e n t of e a c h a tom of n icke l by an a t o m of another

e l e m e n t of v a l e n c e v d e c r e a s e s the a v e r a g e a t o m i c

moment of the alloy р^ц (in дв units) by an amount
w, i.e.,

(2.4)

where v is the atomic percentage of additive in the
alloy. A similar relationship but less clearly pro-
nounced holds for cobalt alloys, too. On the other
hand, in alloys based on iron substitution of each iron
atom by an atom of anon-transition element of any va-
lence decreases the average atomic magnetic moment
of the alloy by 2.2 ^ 3 , i.e., by the average moment of
pure iron:

(2.5)

A more complicated law governs the variation of
the average atomic moments in alloys of F, Co, or Ni
with transition elements. The data for some alloys of
this type are listed in Table VI, from which it is seen
that in the case of alloys of Ni with Pd or Fe with
Ru, which are in the same column of the periodic table
and consequently have an electronic shell of similar
structure, the average atomic moment of the alloy r e -

Table VI. Change in average atomic moments Др in
alloys of iron, cobalt, and nickel with transition

elements of the 3d, 4d, and 5d groups at an
additive concentration of 1% *

Solvent

Fe(3d)

Go(3d)

Additive

Cr (3d)
Mil (3d)
Co (3d)
Ni (3d)
Ru (4d)
Rh (4d)
Pd (4d)
Os (5d)
Ir (5d)
Pt (5d)

Mn(3d)
Fe (3d)

Ap.100 Solvent

—2.2
—2.2
+ 1.2
+0,6

0.0
+1.0
—0.20
— 1.6
+0.87
+2.0

—4.8
+ 1.6

Ni(3d)

Additive

Ni (3d)
Pt (5d)

Gr(3d)
Mn (3d)
Fe (3d)
Co (3d)
Mo (4d)
Ru (4d)
Pd (4d)
W(5d)
Pt(5d)

*See Table 69 of ["], after L. Ntfel, Le Magnetisme, Reunion
Strasbourg, 1939 (1940).

Ap.100

—0.93
+1,15

—4.4
+2.4
+2,8
+1.2
—5.4
—2.8

0.0
—5.8
-0.6
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Table VII. Average atomic (molecular) magnetic
moment of compounds of transition elements

Compound

Fe2B
Fe3CFe4NF.eBe2MnAs
MnSb

"mol

3,82
6.045
8.88
2.24
3.40
3.53

Literature

x

l
2
3
1
1

Compound

MnBi
Mn2Sb
Mn2Sn
CrTe
MnP

•*mol

3.52
0,94
0.86
2.39
1.2

1. L. Neel, Le Magnetisme, Reunion a Strasbourg, 1939
2. Ch, Gui
3. V. Mar

llaud, H
ian, Ann

. С гё v e a u x, Compt. rend. 222,
de phys. (11) 7, 459'(1937).

Literature

(1940).
1170 (1946).

mains the same as in crystals of pure nickel or iron.
On the other hand, in an analogous alloy of nickel with
platinum, the average moment of the alloy decreases
upon addition of each platinum atom by an amount equal
to the average moment of the pure nickel [ see formula
(2.5)]. A similar law is observed also in alloys of iron
with chromium and manganese.

The average atomic moment of an alloy is greatly
influenced by a phase transition of the order-disorder
type. In some cases the moment may change by 100%,
for example, in the alloys Fe3Pt or Ni3Mn (see
Table 7 in C17J).

No less interesting are the magnetic properties of
the intermetallic compounds. Table VII lists data for
the average magnetic moments per "molecule" of sev-
eral such compounds. An analysis of these data in con-
junction with the results of measurements of other
properties of the substances (electric conductivity etc.)
is an essential stage in the study of the electronic struc-
ture of transition metals, their alloys, and compounds.

Recently tremendous experimental material has
been accumulated on the determination of the average
atomic magnetic moments in semiconductor ferrimag-
nets—ferrites C25^ with different crystalline structures
(spinel, garnet, perovskite, magnetoplumbite, and
others), and also in oxides, sulfides, selenides, and
other nonmetallic compounds of transition elements.
We are unable to dwell here on this question. We
merely note that studies of the magnetic properties
of these substances, and particularly the determination
of the magnetic saturation, in conjunction with x-ray
structural and neutron diffraction investigations, have
yielded a fairly complete picture of the atomic distri-
bution of the spin magnetic moments in these sub-
stances. Unlike pure metals and alloys (except for
the rare-earth ones), ferrites and other nonmetallic
compounds conserve to a considerable degree the mag-
netic characteristics of the free atoms or ions of the
transition elements. Where necessary, we shall use
below the data on the average magnetic moments of
ferrites and other compounds.

No less interesting are the magnetic properties of
paramagnetic alloys, in which atoms of transition ele-
ments participate. Unfortunately, in most cases the

investigations of these substances were sporadic and
can therefore not be used for an analysis of the prop-
erties of their electronic structure.* Only in the very
latest time did a more systematic study of the mag-
netic properties of dilute solutions of transition met-
als in diamagnetic solvents begin, for example solu-
tions of Mn or Cr in copper, gold, and silver. In
these solutions ferromagnetism and antiferromagne-
tism of apparently a very special type was observed
at low temperatures (at very low concentrations of
manganese and chromium atoms ).^263 This phenom-
enon is of great interest in the study of the nature of
exchange interaction of electrons in transition metals
and alloyst (see Sec. 5 below).

In conclusion it can be stated that the magnetic prop-
erties of transition metals, their alloys, and compounds
are one of the most important ways of obtaining detailed
information on the electronic structure of these sub-
stances and primarily on the distribution of the spin
density of the electrons in the crystal lattice.

b) Electronic specific heat^ 2 1 ' 2 7^. Another type of
important information on the details of the electronic
structure of transition metal crystals is obtained by
low-temperature measurements of the specific heats
of these substances. As is well known, the specific
heat of a normal metal is the sum of the specific heats
of the ionic crystal lattice Ci a t and of the system of
collectivized electrons Ce2- If the metal has in addi-
tion also atomic magnetic order or paramagnetism of
the lattice, then it becomes necessary to add the mag-
netic specific heat C m a g to the other two terms. One
must also bear in mind that at low temperatures cer-
tain transition metals are superconductors, and that
the atomic nuclei may become oriented (see, for ex-
ample ^28J and Sec. 5); because of this it is necessary
to take into account in most cases two additional terms,

*See, for example, the remark made on this subject in Sec. 5 of
Ch. V, Part III of M .

t Very recently most important experimental researches were re-
ported on the magnetic properties of dilute alloys of ferromagnetic
elements (iron and cobalt) in paramagnetic transition metals and
alloys of the palladium group [»"•««-«"], -phe results of these re-
searches are of very great interest for the entire problem of transi-
tion metals as a whole (see also Sec. 5 below).
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Table VIII. Electronic specific heat (at 1°K) for different metals

Metal

Li
Na
К

Cu
Ag
Au

Zn
Cd

Ti
V
Cr
Mn
Fe
Co

У ехр,
10 s Joule-mole-Meg-1 Litera-

ture Metal

I

1.75
1.37
1.97

0.686
0.66
0,74

0.654
0.71

3.3
9.1
1.5

15.8
5.0
5,0

Ni
Zr
Nb
Mo
Tc
Ru
Rh
Pd
Ш
Та
W
Re
Os
Ir
Pt
La

У ехр,
103 Joule-mole-'deg1

7.3
2.89
8.7
2.1
8.3
3.0
4.8

13.0
2.1
5.9
1.2
2.3
2.3
2.9
6.6
8.4
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C s c and C n o . At first glance the task of separating
these components in the experimentally observed over-
all specific heat of the metal may appear hopeless.
However, the highly different character of the temper-
ature dependence of the individual terms comes to the
rescue here. In practice, in all metals the system of
collectivized electrons is highly degenerate (the de-
generacy temperature is ®deg ~ 104 deg K). Conse-
quently at room temperatures (~ 3 x Ю2 deg K) we
have Clat » Ce\. However, at temperatures that are
noticeably below the Debye temperature of the metal,
where С\^ ~ T 3 and C e i ~ T, the inverse inequality,
C e i » Clat, т а У hold true if the other two terms C s c

and Cno are absent. In such a case one measures in
practice only the electronic specific heat. From ele-
mentary electron theory ^ we have for the case of
strong degeneracy

Cel = yT, (2.6)

Y = ^ ^ ( S o ) . (2.7)

where N( £0) is the number (density) of the electronic
states per unit energy interval in one gram atom of the
metal at the Fermi surface, and £0 is the limiting
Fermi energy at T = 0°K.* It follows from (2.7) that

Cei is determined by the density of the electronic en-
ergy levels in the metal.* Table VIII lists experimen-
tal values of у for certain normal metals, and also for
the investigated transition metals of the iron, palla-
dium, and platinum group and some of their alloys. It
is seen from Table VIII that in transition metals у is
appreciably larger than in normal metals. We can
therefore state by virtue of (2.7) that the level density
of the electron states in these metals is also higher
than in the non-transition metals. This is usually r e -
garded as the most direct and convincing proof that
the d electrons participate in the system of collecti-
vized electrons of these metals. Figure 2a shows a
curve plotted from the data of Table VIII, while Fig. 2b
shows the dependence of the electron density N( f0)
[calculated from formula (2.7)] on the total number v
of the d and s electrons per atom of investigated tran-
sition metal. From the form of the curves N( £0)
= f( v) it follows, first, that a definite correlation ex-
ists between the densities for the metals of the 3d, 4d,

•LandauM and LuttingerM have shown that expression (2.7)
for the coefficient у remains valid also in the more rigorous theory
of the Fermi liquid with account of strong interaction between
the electrons

*In the model of electron gas with quadratic dispersion law
е=1Рк 2/2т (e —energy, tik — quasimomentum, 2irH = h — Planck's
constant, m — electron mass), the coefficient i s y0 = (4/3)(rck/h)2

x Va(3Na/wVa)
 3m, where N a i s the number of electrons per atom

and Va i s the atomic volume. An account of the influence of the
crystalline field in the effective-mass approximation (m*) yields
у = m*yo/m. Attempts were also made to introduce correlation cor-
rections into the value of y, which reduce this quantity somewhat
(see, for example, Table 2 on p. 409 of the reviewM).
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FIG. 2. a) Electronic specific heat (at 1° K) of transition
metals.L21J b) Continuous curve shows the density of the electron
states N(E) for the 3d band in copper as a function of the total
number 3d + 4s of electrons after Kruttert"] and Slatert 6 5]. The
dots denote the magnitudes of this density, calculated by formula
(2.7) using the experimental data for the electronic specific heat
(see Fig. a).

a n d 5d g r o u p s , l o c a t e d i n l i k e c o l u m n s of t h e p e r i o d i c

t a b l e , a n d s e c o n d t h a t t h e s e c u r v e s a r e n o t m o n o t o n i c

i n c h a r a c t e r , b u t h a v e m a x i m a a n d m i n i m a . A s w a s

a l r e a d y n o t e d a b o v e [ s e e i t e m a)] t h e s e m a x i m a a n d

m i n i m a a r e c o n n e c t e d i n r e g u l a r f a s h i o n w i t h t h e r e -

v e r s a l i n t h e s i g n s of t h e d e r i v a t i v e s of t h e p a r a m a g -

n e t i c s u s c e p t i b i l i t y w i t h r e s p e c t t o t h e t e m p e r a t u r e ,

d x / d T , a n d t h e v a l u e of t h e s u s c e p t i b i l i t y x i t se l f .

V e r y g r e a t i n t e r e s t a t t a c h e s t o a d e t a i l e d i n v e s t i g a t i o n

of s e v e r a l t r a n s i t i o n m e t a l a l l o y s of t h e T i - V , V - C r ,

C r - F e , F e - C o , V - F e , a n d C r - M n s y s t e m s . [ 3 1 ] T h e

s h a r p m a x i m a a n d m i n i m a f o r c e r t a i n c o m p o s i t i o n s

of t h e s e a l l o y s , a n d a l s o f o r p u r e c h r o m i u m , a r e

s t r i k i n g .

T h e o b s e r v e d e x p e r i m e n t a l f a c t s o b t a i n e d i n m e a s -

u r e m e n t s of t h e e l e c t r o n i c s p e c i f i c h e a t w i l l b e d i s -

c u s s e d b e l o w ( s e e S e c . 4 a n d e l s e w h e r e ) . *

A s a l r e a d y n o t e d a b o v e ( s e e S e c . 1 ) , t h e e l e c t r o n i c

s t r u c t u r e of t h e r a r e e a r t h e l e m e n t a t o m s h a s t h e f o l -

l o w i n g f o r m : a c l o s e d x e n o n s h e l l , a n u n f i l l e d 4f s h e l l ,

a n d f ina l ly , t h e 6 s 2 a n d Sd 1 v a l e n c e e l e c t r o n s ( w i t h

s t i p u l a t i o n t h a t e l e c t r o n e x c h a n g e i s p o s s i b l e b e t w e e n

t h e 4f a n d 5d s t a t e s ) . T h e 4f e l e c t r o n s a r e r e l i a b l y

s c r e e n e d b y t h e x e n o n o u t e r c l o s e d s h e l l 5 s 2 , 5 p 6 s i n c e

t h e 4f s h e l l h a s a s m a l l e r r a d i u s ( s e e T a b l e I I ) . Al l

t h i s g i v e s g r o u n d s f o r e x p e c t i n g t h a t t h e 4f e l e c t r o n s

a r e p r a c t i c a l l y n o t c o l l e c t i v i z e d i n t h e c r y s t a l . T h e r e -

f o r e t h e i r c o n t r i b u t i o n t o t h e s p e c i f i c h e a t of t h e r a r e -

e a r t h m e t a l g r o u p i s m a d e n o t t o t h e e l e c t r o n i c c o m p o -

n e n t C e i , b u t p r i m a r i l y t o t h e m a g n e t i c c o m p o n e n t

C m a g , s i n c e i t i s p r e c i s e l y t h e 4f e l e c t r o n s t h a t d e -

t e r m i n e p r i n c i p a l l y t h e m a g n e t i c p r o p e r t i e s of t h e s e

m e t a l s , t h e f e r r o m a g n e t i c a n d a n t i f e r r o m a g n e t i c p r o p -

e r t i e s a s w e l l a s t h e p a r a m a g n e t i c o n e s . N a t u r a l l y , t h e

5d e l e c t r o n s of t h e r a r e - e a r t h m e t a l s w i l l i n c r e a s e

t h e i r e l e c t r o n i c s p e c i f i c h e a t c o m p a r e d w i t h n o r m a l

m e t a l s . T h i s c a n b e s e e n , f o r e x a m p l e , i n t h e c a s e of

l a n t h a n u m , w h i c h d o e s n o t h a v e a n y 4f e l e c t r o n s , b u t

h a s 5d e l e c t r o n s i n t h e v a l e n c e b a n d . T h e c o e f f i c i e n t

у for lanthanum is 8.4 x 10~3 Joule-mole"1 deg~2 E213,
which is comparable with the values of у for transi-
tion metals of the d groups. In the case of the remain-
ing rare-earth metals, the electronic component of
specific heat has not yet been separated and the entire
attention of the researchers was aimed at a study of
the magnetic "anomalies." Figure 3 shows the tem-
perature curves for the specific heats of Gd, Dy, Ho,
and Er (for T > 10°K), which are well correlated
with the magnetic data for these metals (the Curie
and Neel points!). It is obvious that for these metals
it is necessary to continue to investigate the temperature
dependence of the specific heat at lower temperatures (T
£ 10—1°K). It is also important to note that investiga-
tions of the specific heat must be carried out with very
pure specimens, single crystals as a rule, and must be
accompanied by investigations of other properties of
metals (primarily magnetic).

c) X-ray emission and absorption spectra. * -̂33~35-̂
A study of the optical and x-ray line spectra of isolated

Er

an0)

n
о 5
5.

U

f-да

•Bd

о so tx i5o wo 150 m
T.'KFIG. 3. Specific heats of gadolinium, dysprosium, holmium, and

erbium. Different ordinates are used for each metal.

*We call attention also to special reviews on electronic spe-
cific h e a t t 2 1 ' " ] and to С31Ь] •

*See also Sec. 9 of Ch. Ill in M, Sec. 104 in M, Sees. 3.9,
3.91, and 3.92 in M, and pp. 103-111 in M.
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atoms yields a direct and accurate picture of the struc-
ture of their electronic spectra. In the case of solid
crystalline bodies, a study of the spectra of the emis-
sion or absorption of electromagnetic waves also yields
important information on the structure of the electronic
spectrum of these substances. Unlike the majority of
other physical properties of crystals, which are deter-
mined either by the entire spectrum as a whole (bind-
ing forces, most magnetic parameters), or else by the
character of the distribution of the electronic levels
near the Fermi surface (specific heat, kinetic proc-
esses, etc.), the spectra of emission or absorption of
electromagnetic waves can in principle disclose the en-
tire structure of the energy spectrum of the crystal
electrons. As was already noted above, it is precisely
a study of the x-ray spectra of solids * that made it
possible to state for the first time, from the experi-
mental point of view, that the motion of the internal
electrons in crystals has the same characteristics as
that of free atoms (localization near the nuclei and
line-type energy spectrum), while the external elec-
trons are collectivized and become delocalized over
the volume of the crystal, their spectrum having no
longer a discrete but a band nature. Among the most
convenient methods for the study of the energy spec-
trum of electrons in crystals are, for example, the
spectra of emission of electromagnetic waves, ob-
tained after the internal electrons are knocked out
from the crystal (in an x-ray tube) and their places
occupied by external collectivized electrons (Fig. 4a)
from some energy band. The width (ВС) of these bands
may reach an order of 10 eV, so that we will have a
continuous emission spectrum which (accurate to the
natural width of the initial state level, where a vacancy
exists on the internal levelt) will reflect to some de-

c =

*The optical spectra of solids (in the visible and near ultra-
violet region) also have certain specific features. However, as
noted for example by the author of the review M (p. 258), . . . "The
optical emission and absorption spectra in a solid correspond to
transitions between two groups of levels, each of which belongs to
a distribution N(E), and the energies of which are not exactly de-
termined. Although selection rules (for the quasi-momentum k)
exist in this case, this cannot eliminate the fact that there is no
one to one correspondence between the emitted and absorbed wave-
lengths of the light and a definite pair of levels in the electronic
energy spectrum of the lattice. It follows therefore that it is im-
possible to resolve the level structures in the electronic energy
spectrum bands of a solid with the aid of the optical emission and
absorption spectra." In addition, the optical spectra of a solid are
quite sensitive to the smallest variations in the structure of the
surface.

Tit is obvious that the reciprocal of the width of the x-ray level
(AE)"1 can be defined as the theoretical limit of the resolution of
the entire method used to determine the level structure in the bands,
i.e., in the determination of the function N(E). It must be recalled
that the x-ray levels (when a "hole" exists on an internal level of
the atom) broaden not only because of interactions within the crys-
tal, but also because of radiation damping and probabilities of non-
radiative transitions (Auger effect). This factor limits the region of

A'-

£» I Level band of | <•»
I collectivized
Г electrons of
I the crystal

Internal level

Internal level

-d

•A'

FIG. 4. L e v e l scheme of x-ray spectra in emiss ion (a) and ab-

sorption (b). Co - Fermi l e v e l at 0° K.

g r e e t h e c h a r a c t e r i s t i c s o f t h e f i l l e d p a r t o f t h e s p e c -

t r u m o f t h e c o l l e c t i v i z e d e l e c t r o n s t h a t p a r t i c i p a t e i n

t h e t r a n s i t i o n s . T h e w a v e l e n g t h s o f t h e s e s p e c t r a a r e

u s u a l l y o n t h e o r d e r o f 1 0 0 A a n d m o r e , i . e . , t h e y l i e i n

t h e s o f t x - r a y r e g i o n . T h e x - r a y a b s o r p t i o n s p e c t r a ,

w h i c h r e f l e c t t h e s p e c i f i c f e a t u r e s o f t h e e l e c t r o n i c

s p e c t r a o f t h e c r y s t a l , a r e p r o d u c e d w h e n a n y o f t h e

i n t e r n a l e l e c t r o n s i s e x c i t e d to t h e f r e e l e v e l s o f t h e

e n e r g y b a n d s o f t h e c o l l e c t i v i z e d s t a t e s ( F i g . 4 b ) . W e

c a n t h u s e x p e c t t h e x - r a y e m i s s i o n s p e c t r a c o n n e c t e d

w i t h a g i v e n i n t e r n a l d i s c r e t e ( K , L, M , . . . ) l e v e l t o

h a v e t h e f o r m o f a c o n t i n u o u s b a n d , t h e w i d t h o f w h i c h

is directly connected with the width (ВС in Fig. 4) of
the filled part of the energy band of the electron spec-
trum. At room temperatures that are low compared
with ®6q, the emission band should have a sharply
pronounced edge on the short-wave side, which corre-
sponds to transitions (С A on Fig. 4a) of the electrons
from the Fermi level £0.

 T n e absorption spectrum is
likewise continuous, but its sharp edge is located on
the long wave side (corresponding to the transition AC
on Fig. 4b), which coincides with the short-wave edge
of the emission band; on the short-wave side, on the
other hand, there is no limitation on the absorption
spectrum.

Figure 5 shows the results for emission and absorp-
tion К spectra of aluminum t 3 6 a ^ , which corroborate
fully the picture described above. The ordinates of
Fig. 5 represent the intensity I(E) as a function of
the energy E in eV in the case of the emission spec-
trum, and the absorption coefficient ц (E) for the ab-
sorption spectrum.* These "optical" characteristics
of the spectra are directly related with the character-
istics of the electronic spectra. Indeed, it is known
from the quantum theory of radiation С33"35] that I(E)
and /n(E) are determined by the product of two fac-
tors : the electron state density N(E) in the band and
the probability P ( E ) of the corresponding transition
from the initial states to the final one:

x-ray spectrum wavelengths to not higher than several A, if we
want the resolution to be on the order of 1 eV (for more details see
Ch. 3 of ["1 or the end of Sec. 1 in the review L35].

*In Fig. 5 the energy is reckoned from the Fermi level £0 (the
point £„); I(E) and fi(E) are plotted in arbitrary units.
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(2.8)

(2.9)
VL(E)~P(E)N(E),

T h e p r o b a b i l i t y P ( E ) i s d e t e r m i n e d i n t u r n b y t h e

s q u a r e of t h e m a t r i x e l e m e n t c o r r e s p o n d i n g t o d i p o l e ,

q u a d r u p o l e , e t c . r a d i a t i o n , w h i c h h a s t h e f o r m

t)di. (2.10)

where фо(т) is the electronic wave function of the
atomic state (s, p, d,. . . ) , 0(k; r ) is the wave func-
tion of the collectivized state (occupied in the case
of emission and free in the case of absorption), and
к is the quasimomentum vector.

It is natural to expect that the peculiar electronic
structure of the transition metals will lead also to
specific peculiarities in their soft x-ray emission and
absorption spectra. However, in view of the fact that
the intensity in the emission spectrum or the absorp-
tion coefficient are proportional to the product of the
probability of transition and the state density [ see for-
mulas (2.8) and (2.9)], we cannot say anything definite
concerning the latter, until some assumptions or esti-
mates of the transition probabilities are made. It is
seen from (2.10) that the transition probability depends
appreciably on the wave function of the electron and
the lattice, which we do not know exactly, and all the
more in the case of the transition metals. It must be
noted that formula (2.10) implies also that the ordinary
selection rules are approximately valid for the dipole
and quadrupole radiation С 9 ""] , if we recall that the
wave function ф(к; г) in the lattice is approximated
by a linear combination of the atomic functions of the
s, p, or d states. In those cases when we deal with
near-lying atomic levels and accordingly with "Over-
lapping" energy bands in the crystal, it becomes nec-
essary to take simultaneous account of functions of all
the "overlapping" states in the expansion of ф(к; r )
in the atomic functions. However, not the entire state
density N(E) participates in the formation of the spec-
trum, but only the part of the density corresponding to
the selection rules. Therefore, for example in dipole

Nickel la
Copper /д7

FIG. 6. Absorption x-ray L spectra for n icke l and copper. The

absorption p i s in arbitrary units, and the energy (frequency) in

eV; £ 0 corresponds to ~ 3 eV for nickel and 6 .2 eV for copper.

x-ray К spectra, we cannot hope to single out in the
case of the iron-group metals, with sufficient clarity,
the participation of the 3d band alone (since the cor-
responding dipole atomic transition s ^ d is forbidden
by the selection rules). A simpler spectral picture can
be expected in the case of L spectra (atomic transi-
tion of the p 5= d type). Figure 6 shows an example
where the absorption L spectra of soft x-rays are
compared for the transition metal nickel and copper l

from which it is seen that ц increases sharply in nickel
near the absorption edge.

Emission spectra can also yield information on the
total width of the energy band participating in the emis-
sion. Unfortunately, there is still a great disparity in
the results obtained by various researchers .* Exten-
sive and systematic experimental work is still neces-
sary to obtain reliable results for the entire aggregate
of transition metals, both of the 3d, 4d, and 5d groups
and particularly for the rare-earth groups, which have
hardly been investigated to date (see also Sec. 4 below,
the remarks following Eq. (4.9)].

d) Determination of electron density in transition
metals by methods of structural x-ray and neutron
diffraction. The transition-metal properties listed
above display the peculiarities of the magnetic char-
acteristics and of the electronic energy spectrum in
the crystals of these substances. No less important
to the understanding of the nature of transition metals
is detailed information on the spatial distribution of
the electrons within the crystal. Theoretically it is
possible to obtain this distribution from knowledge of
the exact wave function of the electron system, since
the square of its modulus does give the spatial distri-
bution density of the electrons. From the general
theory of electron motion in a self-consistent periodic
field of a crystal lattice &~^ we know that the wave
function should have the form of a plane wave which

*See, for example, the remark'on p. 185 in M.
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i s m o d u l a t e d i n " s t e p " w i t h t h e l a t t i c e [ s e e a l s o ( 2 . 1 0 ) ] :

i|)(k; rj = e i k r

 й (к; г), (2.11)

where the modulating factor u(k; r ) has the same pe-
riodicity as the lattice, and its form is determined by
the potential of the latter. From (2.11) we see that the
electron density p ( r ) * in the crystal is determined by
the modulating factor u(k; r ) :

6(r) = |u(k; r) | 2 . (2.12)

Unfortunately, we do not know as yet with any degree of
accuracy not only the multielectron function of the
electron system in the crystal, but also the single-
electron function (2.11), so that an exact calculation of
the density (2.12) is impossible. Much attention has
been paid recently to this question, and several papers
have been published in which attempts are made, using
the Hartree-Fock method, to calculate as accurately
as possible the electron density in transition metal
crystals E3 7].t The most reliable information that can
be obtained for the time being is from measurements
of the atomic form factors in the determination of
the scattering cross sections of x rays and neutrons
in crystals. The atomic scattering form factor F(q),
as is well known'-9'11-', is directly related to the den-
sity of the electron cloud of the atom p(r) :$

F(4)=l (2.13)

where q is the change, resulting from the collision,
in the momentum vector of the particle (photon or
neutron) scattered by the atom. Inasmuch, as can be
seen from (2.13), the form factor and the density
are Fourier transforms of each other, we have in the
limiting case of homogeneous density (free electrons:
ф(к; r ) » exp [ ik«r] and p = const) F(q) = 6(q),
i.e., there is no scattering; in the opposite limiting
case of maximally inhomogeneous electron distribution
[p(r ) = 6(r)] , the form factor is independent of the
scattering angle, F(q) = const. It is obvious that in
the most interesting intermediate cases F(q) is some
function of q, and once this function is determined by
experiment, it is possible to determine also p ( r ) with
the aid of (2.13).

It is therefore clear that measurement of the form
factors in the scattering of x rays and neutrons in
crystals, and particularly in crystals of transition

•Strictly speaking, the electron density in space should be deter-
mined by means of the exact multielectron function ^ r L , r 2 , . . ., Гц);
in this case the density function (2.12) is determined as the integral
of \ф(*1, r2, . . ., гм) | а , taken over the coordinates of all the (N - 1)
electrons:

Q(r) г„ rs, . . . , r i v ) | e dr 1 . . .dr J v. i

tA bibliography of all the earlier investigations is listed in L"].
tin the case of x rays, p(r) should be taken to mean the density

of the electronic charge, while for neutrons it is the density of the
uncompensated magnetic moments.
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determination of the x-ray form factors in crystals and their inter-
pretation involve very great experimental and theoretical difficulties.
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tron form factors, and also initiated the search for
more accurate theoretical methods of calculating the
electron density in crystals (the Hartree-Fock method
and others).

No less important information concerning the elec-
tron density in a crystal is obtained by studying the
atomic form factors, using polarized beams of slow
neutrons for diffraction studies of substances with
atomic magnetic order. In accordance with general
formula (2.13), the neutron scattering form factor,
normalized to the number of electrons in a Wigner-
Seitz cell С1"*], is connected with the density of the
uncompensated electronic spins by the formula E41^

(q)= \ (2.14)

where |#f | 2 and |#>il2 are the charge densities nor-
malized per unit volume and per electron for the
" r i g h t " and "left" spin projections, respectively,
while A and В are respectively the numbers of the
electrons with " r i g h t " and "left" spin projections;
the integration is carried out over the volume of the
Wigner-Seitz cell. The x-ray form factor is obvi-
ously

) = \ (2.15)

When q = 0 we have F n eut(0) = A - B , i.e., equal to
the average atomic magnetic moment in дв units, and
Fx-ray(O) = A + В = Z, i.e., the atomic number of the
elements. It is assumed here that the contribution of
the 18 electrons of the argon shell is the same as in
the free atom. For F n e u t , the argon shell makes a
negligible contribution, since the approximate equality
A | i / i t | 2 3 B | ^ | 2 is satisfied for it at all points of the
cell.* In the case of the x-ray form factor (2.15), this
contribution can be first calculated for the free atom
by the self-consistent field method and then subtracted.
Thus, formulas (2.14) and (2.15) yield the form factors
due to the scattering of neutrons and x-ray photons by
the 3d, and 4s or 4p electrons. Weiss and Freeman
^41^, using new methods to calculate the form factors
t 3 7 ] , and also x - r a y [ 3 8 ] and neutron №1 diffraction data,
calculated the electron density for iron and nickel crys -
tals.t Figure 7 shows curves for the electron density

•The intra-atomic exchange interaction, in the presence of a
group with uncompensated spin (for example 3d or 4f). influences the
radial distribution of the other groups even if their spin is compen-
sated. This effect, as shown by calculations of M, is most signifi-
cant for 3s, 3p, and 4s electrons, and increases the coherent mag-
netic scattering of the neutrons. Although the absolute magnitude
of the form factor due to this effect is small, it cannot be ne-
glected and may reach -0.1 in electron units.

t Allowance is made here for the deviation of the electron den-
sity distribution from spherical symmetry near the crystal lattice
sites, which leads to the appearance of "outgrowths" on the F(q)
curve. Later on we take account also of the influence of the crys-
talline field (of definite symmetry) on the 3d states (the distribution
of the 3d levels, partial lifting of the degeneracy).

FIG. 7. Curves showing the
radial distribution of the electron
density with uncompensated spin
in an iron crystal (curve 3d) and
also for the electrons with com-
pensated spin (curve 4s, 4p). The
dashed curve corresponds to the
radial distribution of the density
for homogenous distribution of the
charge in the crystal.M

02 0.4 0J 0.8 1.0 12 1,4
r.A

in an iron crystal with uncompensated spin (curves 3d),
and also for the radial density with compensated spin
(4s—4p). The same figure shows (dashed) the curve
for uniform density, for which the form factor is
equal to zero at all Bragg angles. Thus, according to
E41^, the magnetic moment in the iron crystal is pro-
duced by a charge with density 2.2 | ^ ) (3d) | 2 , localized
at the lattice sites, and all the remaining 3d electrons
(3.8 per site) form together with the two 4s electrons
a nearly homogeneously distributed system of collecti-
vized electrons with density 2.9 [ | i/if(4s, 4p) | 2

+ | i M 4 s , 4 p I2]-
In the case of the nickel crystal, the situation is dif-

ferent. The spin density is the result here of 5.0 3d
electrons with one spin projection (right hand) and 4.4
3d electrons with the other (left hand) projection.
Figure 8 shows the distribution of the localized charge
near the nickel crystal site. Furthermore, it was pos-
sible to establish by experiment that the 5.0 3d elec-
trons in nickel have a radial density which is somewhat
more compressed towards the center of the site than
the 4.4 3d electrons with opposite spin projection.
Figure 9 shows a plot of the difference of these den-
sities.

It must be noted, however, that the theoretical in-
terpretation given above for the experiments on neu-
tron diffraction is limited by the fact that the self-
consistent field method employed is approximate.
Watson and Freeman ^43^ pointed out that owing to
effects of spin polarization, a measureable difference
arises in the neutron and x-ray form factors, making

FIG. 8. Radial distribution of
total charge at the site of the
nickel lattice (continuous curve)
and radial distribution of the spin
density, normalized to the total
density (dashed curve). M
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FIG. 9. Difference in charge den-
sity (per electron) for two spin projec-
tions for the free iron atom (continu-
ous curve) and for the nickel crystal
(dashed curve).

02 S*US US 0 U 1.4
rJ

it difficult to obtain direct and detailed information on
the distribution of the 3d electrons with the aid of the
measured neutron (magnetic) form factors. In addi-
tion, these authors have called attention to still another
difficulty that arises in the interpretation of the meas-
urements of the form factors in experiments such as
made by Weiss and de Marco E38^, a difficulty they dis-
covered in an attempt to make the calculations more
precise by the Hartree-Fock method and which con-
sists in the fact that the theoretical interpretation of
the form factor depends essentially on the degree of
"ionization" of the atom in the crystal, which cannot
be determined directly from these experiments. In
connection with these investigations, interest attaches
to the calculations made by Wood E44^, who showed that
one-electron functions of the d band in the body cen-
tered cubic lattice of iron reduce the degree of delocal-
ization on going from the "bottom" of the band to its
'Чор." The author believes here that his calculations
contradict the data of Weiss and de Marco ^S8^.

In conclusion we can emphasize once more that the
question of the spatial distribution of 3d electrons in
crystals of the iron group metals has not yet been
solved with any degree of completeness.

e) Binding forces in transition metals. It is known
from quantum theory of metals C1"4^ that the metallic
bond is determined by the sum of the kinetic and poten-
tial energies of the electrons and ions of the crystal.
Besides, the entire distinguishing feature of the metal-
lic bond itself lies in the presence of conduction elec-
trons with large Fermi energy and with wave functions
that are nearly plane. The calculation is usually car-
ried out, say for the alkali metals, under the assump-
tion that there exist sufficiently "stiff" positively
charged ions, which are immersed in an electron
fluid. The interaction between the electron fluid and
the ion determines the equilibrium distances between
the ions (the constants of the crystal lattices), and
the binding energy as a function of these distances, as
well as the entire aggregate of elastic constants. Ex-

periment shows that the binding forces of the transi-
tion metals also single them out as a special group M .
If we choose as a measure of the binding forces the
heat of sublimation, i.e., the energy necessary for com-
plete dissociation of one gram molecule of solid metal
into isolated atoms, the values obtained for the transi-
tion metals are four or five times higher than for the
monovalent alkali metals. In addition, a comparison of
the metals occupying the extreme right places in the
transition periods (nickel, palladium, and platinum)
with the neighboring precious metals (copper, silver,
and gold) shows that the transition metals have high
sublimation energies. These features of transition
metals are again connected somehow with the active
participation in the metallic bond of not only the con-
duction electrons, but also of the electrons of the un-
filled d and f groups. However, this question will not
be considered in greater detail here, since it is beyond
the scope of the present review. *

f) Kinetic properties—electric conductivity. So far
we have considered the statistically equilibrium prop-
erties of the transition metals. In the analysis of the
kinetic effects connected with the transport of electrons
in the crystal, the transition metals also have several
specific properties. By way of an example let us con-
sider the most typical kinetic phenomenon—electric
conductivity. Table IX lists the values of the approxi-
mate specific electric resistivity of metals p (in units
of 10~6 ohm-cm) at room temperature. Even from
this essentially random comparison (inasmuch as the
" r o o m " temperature is not "identical" for the differ-
ent metals) we can draw certain conclusions concern-
ing the specific properties of transition metals. What
is particularly striking are the very high values of p
in the case of metals from the rare-earth group, which
exceed by one or two orders of magnitude the values of
p for monovalent noble metals copper, silver, and gold.
An appreciable reduction in p is also observed as the
d shell becomes filled, for example on going over from
nickel to copper (12.0 x 10~6 — 1.56 x 10" 6), from pal-
ladium to silver (10.2 x 10"6 — 1.49 x 10"6), and from
platinum to gold (9.81 x 10"6 — 2.04 x 10" 6). However,
a much more distinguishing feature of transition metals
are the anomalies in the temperature dependence of the
specific resistivity, particularly in the case of ferro-
magnetic and antiferromagnetic transition metals. In
Fig. 10a—d are shown, by way of an example, curves
of the temperature dependence of specific resistivity
for several metals of the rare-earth group and the
iron group C20,46-50]. for comparison we show in Fig.

•The reader can find details on this question in the bookst1"4]
and in the review of Hume-Rothery and ColesM. Notice should also
be made of the work by SternC45], in which a theoretical calculation
is made of the binding energy of metallic iron with body centered
cubic lattice, to be sure under the assumption that the unfilled 3d
group is in the singlet state.
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Table IX. Specific electric resistivity p of transition
metals at room temperature (300°K) in units of

10"6 ohm-cm in comparison with the electric resistivity
of monovalent metals (normal) such as

gold, silver, and copper

Element

Sc
Ti
V
Cr
Mn
Fe
Co
Ni
Cu
Y
Zr
Nb
Mo
Те
Ru
Rh
Pd
Ag
Lu
Hf
Та

e

47.5
58.8
2.6

150.0
8,7
6.2

12,0
1,56

41.0
21.0

5.03
7.64
—
4,58

10.2
1.49

55,0
32.1
14.0

Literature

2
2
2
40
2
2
2
2

2
2
2
2

2
2
2
20
2
2

Element

W
Re
Os
Ir
Pt
Au
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tu
Yb
Lu

о

4.9
18,9
8,9
5,0
9,81
2.04

82
93
70
70

100

90
130
115
95
80
90
70
30
55

Literature

2
2
2
2

7b
9, 20a
7b
7b
7b

7d
7 a
7 a
7 a
7 a
7 a
7a
7d
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10c a curve for the non-ferromagnetic palladium; this
curve was artificially made to coincide with the curve
for nickel in the region T > ®f. It is seen from this
comparison that at temperatures below the Curie point
the electric resistivity of ferromagnets decreases much
more rapidly upon cooling than in the case of non-ferro-
magnetic metals. At the Curie point there is a more or
less clearly pronounced kink in the curve (maximum
of the derivative dp/dT). Anomalies are also observed
in the temperature variation of the specific electric r e -
sistivity at low temperatures, too. t51»52^. Unlike the
alkali and noble metals, the temperature variation of
p(T) for transition metals obeys not the " T 5 , " but a
different law: aT + ЬТ2. Anomalies in the temperature
variation of the electric resistivity were observed in
antiferromagnetic metals ^53^, and also in antiferromag-
netic and ferromagnetic semiconductors'-54-' (in ferrites).

It is thus the task of the theory to explain the follow-
ing two effects: 1) why is p generally larger for tran-
sition metals than for normal metals, and 2) what
causes the temperature anomalies. The first question
can be answered in a most general fashion using the
elementary Drude-Zener formula for the electric con-
ductivity cr, C1~4] j by assuming that there are two types
of carr ier in the transition metal (for example from
the group Fe, Pd, or Pt) , namely the s and d elec-
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trons ; then a =
and n s —densities

+ n s e 2 r s / m | , where
д and T S —relaxation times, and

m ĵ and т |—effect ive masses for the d and s elec-
trons, respectively. At first glance it may appear that
и should be larger in a transition metal (many car r i -
ers with n<j > ng). This is not so, however, since we
have for the d electrons a very large effective mass

FIG. 10. a — Temperature dependence of the electric resistivity
of gadolinium^47".!; b — temperature dependence of the electric re-
sistivity of dysprosium^47"]; с — temperature dependence of the
electric resistivity of nickel; the ordinates represent the relative
resistivity; in addition to nickel, data are given for non-ferromag-
netic palladium as a comparisonL48]; d —temperature dependence of
the electric resistivity of iron; the a^y and у ^=t 5 phase transi-
tion points and the Curie point 0 f are marked on the curve.t4 9]

(m^[ » n i g , f o r e x a m p l e , i n i r o n m ^ ~ 30 m | ) , o w i n g

t o t h e n a r r o w n e s s of t h e d b a n d , a n d a l s o b e c a u s e t h e

f r e e p a t h t i m e s T(j a n d T S d e c r e a s e v e r y r a p i d l y , s o

t h a t t h e r e a r e m a n y m o r e p o s s i b i l i t i e s i n a t r a n s i t i o n

m e t a l f o r t h e s c a t t e r i n g of t h e e l e c t r o n s p a r t i c i p a t i n g

i n t h e c u r r e n t .

A m o r e d e t a i l e d d i s c u s s i o n of t h e o b s e r v e d a n o m a -

l i e s i n t h e e l e c t r i c c o n d u c t i v i t y of t r a n s i t i o n m e t a l s

w i l l b e g i v e n l a t e r ( S e e s . 5 a n d 1 6 ) .
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3. General Qualitative Ideas on the Electronic Struc-
ture of Crystals Containing Transition-element
Atoms

In Sec. 2 we have explained some distinguishing fea-
tures of the experimentally observed physical proper-
ties of transition metals. Let us summarize our find-
ings briefly.

The most distinct features of the transition metals
are the peculiarities in the magnetic properties, pr i-
marily in the realization of the ferromagnetic or anti-
ferromagnetic magnetically-ordered states. From an
analysis of some characteristic properties of these
states we can establish an essential difference between
transition metals with unfilled d or f shells. We shall
henceforth, for the sake of brevity, call these d or f
metals. Thus paramagnetism, which is the inherent
characteristic of free atoms of say the rare-earth
elements, is practically always realized in f metals.
At high temperatures we deal with ordinary paramag-
netism of the Curie-Weiss type. On the other hand, at
low temperatures we practically always observe in
these metals ferromagnetism or antiferromagnetism,
and sometimes both [ in different but adjacent temper-
ature intervals, see item a) of Sec. 2 ] . The average
atomic magnetic moment in these metals is practically
the same as the moment of the free atom of the corre-
sponding element. This indicates that, at least in the
sense of magnetic characteristics, the unfilled 4f shell
retains its atomic individuality also in a rare-earth
metal crystal. The good screening of the 4f shells ex-
cludes their direct interaction in the crystal. Only in-
direct coupling is therefore possible, via the conduction
electrons (5d and 6s), the wave functions of which are
more or less uniformly "smeared out" over the crystal
or else via the closed electron shell 5s2, 5p6.

The situation is more complicated in d metals.
From the very fact that the atomic magnetic moments
have fractional values and the essential difference be-
tween these moments and the moments of the isolated
atoms of the corresponding elements, in the case of
ferromagnetic and antiferromagnetic d metals (Fe,
Co, Ni, Cr, Mn), and also the total loss of magnetic
activity, characteristic of free ions, it follows that in
most crystals of these metals (Sc, Ti, V, all metals
of the palladium and platinum groups) the quantum
states of the former d shells of the atoms of these
elements experience quite appreciable changes in the
crystal. Another indication of this circumstance are
the anomalously large values of the electronic specific
heat of d metals, from which it follows that in these
metals the electron densities near the Fermi surface
are incomparably larger than in normal metals [ see
item b) of Sec. 2 ]. This is also indicated by the x-ray
emission and absorption spectra [ see item c) of Sec. 2 ] .
It is therefore natural to assume that in a crystal the d
electrons, whose wave functions overlap appreciably
are not sufficiently screened and behave like d elec-

trons of isolated atoms, forming a unified collective
group of crystal electrons, filling the states in the con-
tinuous energy band like the valence electrons of ordi-
nary metals, except that this "d band" is appreciably
narrower than the band of the valence s electrons, and
the level density in this band is considerably larger,
since the number of d states is five times larger than
that of s states. At the same time, as we have seen
above [item d) of Sec. 2], the d electrons are appar-
ently unevenly distributed over the volume of the crys-
tal, and their distribution is more likely to be the same
as for isolated atoms. The situation observed here
can therefore be arbitrarily described as a special kind
of "superposition" of a crystalline energy collectiviza-
tion, and the known conservation of the spatial localiza-
tion at the individual lattice sites, characteristic of
isolated atoms. This "superposition" can be clearly
seen in the general form of the electron wave function
in the periodic lattice field (2.11), which has the form
of a plane wave modulated in step with the lattice. The
plane-wave factor exp[i(k«r)] characterizes the col -
lectiveness of the system, while the modulating factor
u ( k ; r ) characterizes the degree of localization at the
individual lattice sites. In the case of d metals, the
factor ид(к;г) for the d electrons is apparently quite
different from the atomic d functions, while in f met-
als, to the contrary, the function uf(k;r) does not dif-
fer in practice from the f function of the isolated atoms
(in the sense of the degree of spatial localization).

We thus arrive at the conclusion that there exist
two types of transition metals, d and f, with which
one must deal when an attempt is made to construct
a quantitative atomic theory of transition metals. In
addition, we are faced in the case of d metals with the
question why some have magnetic order and others do
not, i.e., it is necessary to ascertain the genesis of the
exchange interaction which causes the existence of mag-
netic ordering in the crystals. Apparently, this genesis
is somewhat different in the case of d and f metals.

In fact, as we have just noticed, in the case of f
metals the 4f shells of the neighboring lattice sites
do not overlap at all in practice, so that we can hardly
assume a direct f-f exchange interaction to exist be-
tween them. On the other hand, the very existence of
ferromagnetism and antiferromagnetism in practically
all 4f metals indicates without any doubt that some ex-
change mechanism is realized in these metals.* As was
already noted, one can suggest here two indirect mech-
anisms of such an exchange coupling—either through
the conduction electrons (Zener '-35-'), or through the
electrons of the magnetically neutral 5s25p6 shell E56^.
Consequently, in the case of f metals the electron sys-
tem (on top of the internal filled shells which are " a s -
cribed" to the ionic lattice) can be subdivided into

•Inasmuch as, say in gadolinium, the Curie point is ©f - 300° K,
the energy of this interaction pet atom is equal to k©f - 10"" erg,
i.e., it is undoubtedly electrostatic rather than magnetic.
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three subsystems: 1) the 4d and 6s conduction elec-
trons, 2) the closed magnetically-neutral shell of
5s25p6 electrons, and 3) the magnetically-active sys-
tem of quasi-isolated 4f electrons. Such a subdivision
must naturally be taken to have a rather arbitrary
meaning, since a very noticeable interaction exists be-
tween these systems. First, the already mentioned in-
direct interaction, in which all three subsystems can
actively participate. Second, the 4f electrons, which
become spontaneously magnetized by interaction with
the conduction electrons and with the 5s25p6 closed
shell can exert a reverse "magnetizing" influence
primarily on the conduction electrons. In addition,
each of the 4f shells, like the d shells, is under the
influence of its surrounding "crystalline electric field,"
which has the symmetry properties of the given crystal
(cubic, hexagonal, etc.) . It is natural to assume the
anisotropy of the electrostatic field in the crystal
around each ion to lift the energy degeneracy for the
f and d levels of the isolated atom, i.e., we deal with
a Stark splitting of the f and d levels.* In rare-ear th
ions there is very strong spin-orbit interaction, which
splits terms with different quantum numbers J by
amounts on the order of 1,000 cm"1, so that J remains
a "good" quantum number even in the crystal. Con-
sequently, to clarify the magnetic and other properties
of f metals, their alloys, and their compound it is very
important to know the "energy" spectrum of the ions
and those internal crystalline fields which form this
spectrum. One of the methods of investigating this
spectrum are paramagnetic resonance studies, gyro-
magnetic experiments, and also the determination of
the atomic magnetic moments at 0°K. ^58-'

From everything stated above with regard to the f
metals, we can assume that in first approximation a
quantitative quantum analysis of their electronic prop-
erties is best made by using the following "model."
The crystal of the rare-earth metal is subdivided into
an ionic lattice, in the sites of which are located ions
with " f ree" 4f shell, subject to the action of the crys-
talline field of the given symmetry, and also spin-orbit
and exchange interactions (of the Hund type, and also
indirectly via the 5d6s and 5s25p6 electrons). The
electrons of the 4f shells can be regarded with suffi-
cient justification as strictly localized at the lattice
sites (we can neglect the crystalline level splitting
characteristic of valence and d electrons, since there
is practically no "overlap" of the 4f functions and be-
cause of their "good" screening), as is the case with
5s and 5p electrons. The 5d and 6s electrons are
fully collectivized and form a Fermi gas or liquid in

*Owing to the good screening of the 4f shell in the crystal, this
splitting is one order of magnitude smaller in f metals than in d
metals, and amounts to L"J several hundred cm"1; furthermore, this
splitting decreases with increasing number x of electrons in the
4f shell (from 600 cm'1 for Ce+++ with x = 1 to 100 cm'1 in Yb + + +

with x - 13).

which the screened lattice of the trivalent 4f ions is
immersed. The interaction between the localized 4f
shells and the collectivized conduction electrons de-
termines the entire aggregate of electronic properties
of the f metals. Below, in Ch. II (Sees. 4 and 5), and
also in the second part of the review (Ch. Ill and IV)
we shall describe different "variants" in the develop-
ment of these model representations concerning the
electronic structure of the metals.

A more complicated problem is that of the elec-
tronic properties of d metals. This is connected pr i -
marily with the fact that in a crystal the less "deep"
(in the spatial sense) d shells of the neighboring lat-
tice sites experience already a noticeable overlap of
their wave functions, and this in turn leads to a much
sharper manifestation of the collective effects in the
behavior of the d electrons in the crystal lattice of
the d metals. Two obvious experimental facts—the
sharp increase in the value of the electronic specific
heat [ see item b) of Sec. 2 ] and the appreciable dif-
ference in the magnetic characteristics of the isolated
d atoms from those of d metals [see item a) of Sec. 2]
—indicate without any doubt that such an assumption is
indeed real. In other words, the d electrons in the
metal experience to an appreciable degree the effect
of crystalline collectivization. One can therefore no
longer speak here of quasi-free d shells, but we must
speak of a d band which furthermore cannot be r e -
garded in a rigorous analysis as being completely an
independent formation with respect to the energy band
of the conduction electrons, as is usually done in the
band theory of transition metals (see Sec. 4 below),
assuming that the d and s bands simply overlap
but retain in all other respects their individuality.

Recently Herring C4°] emphasized that the ordinary
band theory of d-transition metals has two appreciable
shortcomings: 1) it does not take into account the de-
generacy of the d states, which leads to a "degenerate"
d energy band in the crystal, and 2) it ignores the pos-
sibility of exact separation of the d and s bands in the
crystal, connected with the fact that the former nd and
(n + 1 )s electrons of the isolated atoms in crystals of
d metals form a unified collective, with a complex
spatial distribution of the electron density, in which,
to be sure, "echoes" of the atomic localization of the
d electrons are conserved to a considerable degree
[see item d) in Sec. 2 ] . On the whole, we deal with a
Fermi liquid having a complicated dispersion law and
a higher density of states near the Fermi surface. The
account of the exchange and spatial correlations in such
a system is essential in order to formulate a criterion
for ferromagnetic or antiferromagnetic states in d
metals.

In transition metals we are interested primarily in
the active manifestation of paramagnetism of unfilled
internal groups of the electron shell, characteristic of
isolated atoms of the transition metals. Therefore in
ascertaining the distinguishing features of the behavior
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of the electron system in such metals it is necessary
to take into account the interaction between the elec-
trons and the magnetic moments, which can form mag-
netically ordered states, either ferromagnetic or anti-
ferromagnetic (for the latter one must make a distinc-
tion between the case of compensated antiferromagne-
tism or antiferromagnetism proper, and also uncom-
pensated antiferromagnetism or ferrimagnetism) i.e.,
it is necessary to take into account the influence of
this magnetic order on the entire set of electronic
properties of the given substances.

In the case of ferromagnetism, the presence of spon-
taneous magnetization lifts the degeneracy in the con-
duction electron system with respect to the spin direc-
tion. This leads to a "displacement" of the energy
bands of these electrons with different spin orienta-
tions, and also to a splitting of the internal levels of
the ionic cores. Quantitatively this effect can be de-
scribed in general form by including in the Hamilto-
nian of the electron system of the metal terms of the
form A s d ( r ) m - s , where m is the relative magneti-
zation of the electron system, s is the spin vector
operator of the individual electron, and AS ( j(r) is a
certain energy parameter, describing the exchange
interaction between the electron and the magnetization,
which in the general case is a function of the coordi-
nates. In the particular case when the conduction elec-
tron system is treated as a gas of Fermi particles ^
with complicated dispersion, the general form of the
latter in the approximation which is " i sotropic" in
the spin terms is given by the formula

e(k, а)=8(к)+Л3„(к)/и2а, (3.1)

where к is the quasi-momentum vector and a is the
z-axis projection of the Fermi particle spin, while
e(k) is the spin-independent part of the energy and
AS (j(k) is the exchange coupling parameter. The ap-
pearance of the second term in the right half of (3.1)
does indeed describe the specific properties of the
Fermi system in a metal with ferromagnetic order
(see Sec. 5 below).

In the case of antiferromagnetism* the presence of
the magnetic sublattice also influences the motion of
the conduction electrons. Indeed, any collectivized
electron going from the site of one sublattice to the
site of another sublattice will move from a site with
a spin of a certain value or a certain direction to a
site having a different value or different direction of
spin, but in transitions between sites of the same sub-
lattice there will be no such changes in the spin at the
sites. It is therefore clear that the state of the conduc-

*If we exclude the fact that for uncompensated antiferromagnet-
ism there exists the above-considered influence of the resultant
magnetization of the crystal, which leads to a "shift" of the energy
bands for electrons with positive and negative spins, but include
on the other hand ferromagnetism of the ordered-alloy type, i.e.,
with sites that have magnetic moments that are different in value
but are parallel.

tion electrons in a crystal with several magnetic sub-
lattices should differ appreciably from the states in a
crystal with a single sublattice or in a paramagnetic
crystal. This difference reduces to the fact that in an
antiferromagnetic crystal there is a partial lifting of
the spatial degeneracy of the conduction electrons, in-
asmuch as the antiferromagnetic order leads to a
change in the periodicity of the potential field (a low-
ering of its symmetry), in which these Fermi par-
ticles move. In this case there is no "shif t" of the
energy bands for electrons of different spin projections,
but nonetheless an appreciable change can take place
in the energy spectrum of the electrons (for example,
splitting of the energy bands, similar to that arising
in effects of atomic ordering in metallic alloys'-115-').

Summarizing, we can state that the presence of
magnetic order in transition-metal crystals leads pr i-
marily to appreciable changes in the energy spectrum
of the conduction electrons. Two principal effects are
observed in this case: a) lifting of the degeneracy in
the spin direction (ferromagnetic case) and 2) lifting
of the spatial degeneracy (antiferromagnetic case).

A second important effect of the magnetic order on
the conduction electron system is their scattering by
the inhomogeneities of this order. Conduction elec-
trons, participating in the electric or thermal current
in a transition metal, are scattered not only by the
thermal lattice vibrations (phonons) or by its static
distortions, but also by collision with different dy-
namic and static magnetic inhomogeneities. Therefore
the interaction mechanism which brings about these
collisions differs from the phonon mechanism and
from scattering on lattice defects, and the correspond-
ing contributions to the kinetic coefficients (electric
conductivity, thermal conductivity, etc.) in terms of
the scattering probabilities will therefore have a spe-
cific temperature dependence (ferromagnetic anoma-
lies ) which is particularly pronounced near the Curie
or Neel points, where one can expect a maximum effect
of magnetic inhomogeneities.

One must also mention that in ferromagnetic and
antiferromagnetic metals one observes galvanomag-
netic phenomena of a specific character, for owing to
the magnetic order in these metals an appreciable role
is assumed by the spin-orbit magnetic interaction be-
tween the magnetization of the crystal and the current
carr iers in the crystal. The latter are under the in-
fluence of very strong local magnetic fields (up to 105

Oe and higher). All this leads to the appearance of
spontaneous galvanomagnetic phenomena—the Hall
effect, magnetoresistance, etc.

In connection with these strong local magnetic
fields, mention should be made of the recently ob-
served analogous fields (up to 10е Oe) acting on
atomic nuclei in transition metals with magnetic order
[see item f) of Sec. 5]. This raises the important
problem of explaining in detail the genesis of these
strong internal magnetic fields.
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We can also mention that magnetic order exerts an
influence on the possibility of realization of a super-
conducting state in the electron system of the transi-
tion metal (see Sec. 14), on the possible occurrence
of magnetic polarization of atomic nuclei (see Sec. 5),
on the electron and nuclear magnetic resonances, etc.

So far we dealt with the influence of the magnetic
order on the electron system of the transition metal
crystal, i.e., we were interested so to speak in passive
properties of this system. It was assumed here that
the magnetic order already existed in the crystal, being
brought about by some special forces of exchange na-
ture. However, no interactions other than between elec-
trons can occur in a crystal. Therefore the exchange
which leads to a magnetic order of one type or another
is an interaction between the very same electrons.
Thus, the electron system is not only a passive partner
with respect to the magnetic order, but must itself take
active and direct participation in its establishment in
the crystal. This, of course, manifests itself in dif-
ferent fashion in the case of d and f metals. In d
metals the magnetic order is the result of the active
influence of the exchange interaction in the system of
collectivized electrons, in its struggle against the
Fermi kinetic energy and the correlation energy, which
counteract the establishment of such an order. In f
metals, the exchange interaction occurs with active
participation of the conduction electrons by an in-
direct exchange-coupling mechanism.

Finally, there is still another class of transition
metals, namely paramagnetic metals, which have no
magnetic order at any temperature, and also metals
which have such an order but at temperatures above
their Curie or Neel points. Various mechanisms of
"absence" of atomic magnetic order are possible
here: this may be the result of the Fermi energy
counteracting the magnetization, or else the effect
of thermal motion which breaks up the magnetic order.
Naturally, in a rigorous formulation of the problem it
is necessary to start from the exact Hamiltonian of
the system of all the electrons, in which all possible
interactions are taken into account. However, the
great mathematical difficulties encountered in the
theoretical treatment of such complicated systems
as transition metals, make it necessary to follow the
path of developing some approximate models. In spite
of the apparent variety in such models, they can be
reduced essentially to two main types: 1) the band
model and 2) the model of interacting internal and
external electrons.

In Ch. II we shall consider in greater detail two
quantitative treatments of the transition d and f met-
als: one based on the elementary notions of the band
model (Sec. 4) and the other on the basis of the so-
called (s-d)-exchange model, also in an elementary
form (Sec. 5). In the second part (Ch. Ill and IV)
we shall develop more rigorous variants of the ( s-d)-
exchange model, and in the concluding Ch. V we shall

return once more to a general estimate of the status
of the theory of transition metals.

To conclude this section, let us dwell briefly on in-
vestigations in which model attempts are being made
to solve the problem of the electronic structure of 3d
metals, their compounds, and alloys in which they are
contained C59-60,",«2,юз, 153,154]_ T h u s > f o r e x a m p l e ,

Wollan E59^ cons ider s the question of the magnetic
(exchange) coupling in c r y s t a l s of compounds and
pure 3d m e t a l s . This coupling i s analyzed with the
aid of the notion of " o r b i t s , " which a r i s e a s a r e s u l t
of the splitt ing of the 3d levels in the crys ta l l ine field.
Gioodenough ^60-l introduces the hypothesis that t h e r e
exi s t s a c e r t a i n cr i t ica l dis tance ( R c ~ 2.9 ± 0.1 A ) ;
at d i s tances R < R c , the f o r m e r 3d e lec t rons of the
a t o m s , whose orb i t s a r e or iented along the bonds, a r e
converted into collectivized c r y s t a l e lec t rons , and at
di s tances R > R c they r e m a i n local ized. Inasmuch a s
the wave function of the 3d e lec t rons is anisotropic,
we can expect a s imultaneous rea l iza t ion of the l o c a l -
ized and collectivized 3d e l e c t r o n s . The localized
e lec t rons obey the Hund rule ^10^ and there fore play
an active r o l e in the magnetic p r o p e r t i e s of the c r y s -
ta l . Goodenough postulates further the exis tence of an
internal exchange bond, and of ant i ferromagnet ic o r -
der ing as a function of the d e g r e e of filling of the 3d
shel l e t c . Assumptions of the s a m e o r d e r a r e made
also by Mott and Stevens E102^, Lomer and Marshal l ^103^,
and Van Vleck^77-'. These p a p e r s do not there fore give
a r i g o r o u s justification of the as sumed hypothesis and
a r e purely i l lus t rat ive in c h a r a c t e r , aimed at indicat-
ing the " z o o l o g i c a l " o r d e r in the physical p r o p e r t i e s
of the t rans i t ion m e t a l s , t h e i r al loys, and t h e i r c o m -
pounds; th i s , never the les s , is a n e c e s s a r y and quite
useful ( p a r t i c u l a r l y from the pract ica l point of view)
stage in the development of the theory of t rans i t ion
m e t a l s and the i r compounds. P a r t i c u l a r l y instruct ive
in prec i se ly the l a t t e r meaning is the work of Goode-
nough et al E153^, in which a detai led analys is of the in-
t r a c r y s t a l l i n e " f i e l d s " and the i r influence on the e l e c -
t r o n density of magnetoactive ions makes it poss ible to
obtain s e v e r a l important indications of purely p r a c t i c a l
n a t u r e for a planned " c o n s t r u c t i o n " of new magnet ic
compounds with specified physical p r o p e r t i e s .

II. ELEMENTARY ELECTRON THEORY OF TRAN-
SITION METALS

As we noted above, from the t rans la t ional s y m m e -
t r y p r o p e r t i e s of the crys ta l it follows that the s ta te
of the e lec t ron in the sel f-consis tent periodic field is
descr ibed by wave function (2.11), which has the form
of a modulated plane wave, in which, as it were , is
contained a superposi t ion of the tendencies of co l lec-
tivization ( e x p [ i k - r ] ) and local izat ion [ u ( k - r ) ] of
the e l e c t r o n in the c r y s t a l . Neither effect can be ex-
actly evaluated at p r e s e n t , owing to the mathemat ica l
difficulties. It becomes n e c e s s a r y there fore to d e -
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scribe them artificially as effects that are in a certain
sense distinct. It is in such an approximate approach
that the foregoing model quantitative treatments were
originated, namely the band model and the model of
interacting external and internal electrons (s-d ex-
change model). In both models it is assumed from
the very outset that it is possible to separate in a
transition metal, albeit arbitrarily, two autonomous
groups of electrons, one originating from the valence
electrons of the initial atoms of the crystal and arbi-
trarily called the s-electron system (or the conduc-
tion electron system), and the other comes from the
former electrons of the unfilled d or f shells of the
initial atoms and is arbitrarily called the system of
d (or f) electrons.* The s and d electrons are as-
signed different functions (2.11):

4>,(к„ г) = e**i«, (к„ r), (2.11a)

^ ( k , , r) = e iVMd(kd, r). (2.11b)

The function for the s electron, is chosen to be the
same in both models. On the other hand, in choosing
the function for the d electrons, these two models dif-
fer in that the function ^(kj j , r ) is approximated in
them in different manners.

In the band model, principal attention is paid in
(2.11) to the plane-wave factor ( " f r e e " completely
delocalized electrons with u(k, r ) = const). Only for
the s and d electrons quantitatively different disper-
sion laws of type (3.1) are chosen:

8s (ks, as) = es

ea(kd, od) = ed(

It is assumed here that the functions e s , e^, Ag, and
Ad are such that energetically the band for the s elec-
trons is noticeably wider than the d band. These bands
overlap and have a common Fermi surface. When the
exchange interaction is sufficiently large the bands for
the electrons with plus and minus spins can shift, and
this leads to ferromagnetism.

In the s-d exchange model principal attention is
paid in (2.11) for the d electrons to the modulating
factor, which is approximated by a localized atomic
function <pn( r ) at the crystal lattice sites R n

We therefore obtain for the wave function $d(kd> r) of
the d electron <p^(^, r ) s <pn(r). For the wave func-
tion of the s electron, the same approximation is r e -
tained as in the band model [ u s ( k s , r ) s const]. The
dispersion law used for the s electrons has therefore
in the zeroth approximation the usual band-theory form
e s ( k s ) , and the d-electron energy is identified with the

*We must emphasize here the entire arbitrariness of such a ter-
minology, the s electrons comprise essentially the collectivized
part of the electron density in the crystal, which is practically de-
localized, while the d electrons are its localized and consequently
less collectivized component.

discrete atomic d levels, e d (kd) = E d . The d-band
width connected with the transport of the charge in the
crystal is thus equal to zero. In the higher first and
second approximations account is taken of the electro-
static exchange interaction, both between the d elec-
trons themselves and between the s and d electrons
(s-d exchange coupling), which can ensure an atomic
magnetic order in such a system.

In Sec. 4 below we describe briefly the band model
of transition metals, while in Sec. 5 we discuss the
s-d exchange model.

4. Band Model of Transition d-Metal Crystals

As noted above in the treatment of the electronic
properties of d metals, it is necessary to allow for
the appreciable influence of the crystalline state on
the character of motion of the d electrons, which are
subject to a noticeable collectivization effect. Conse-
quently attempts to construct a band model for d met-
als began already long ago. Historically the first paper
on the "collective model" as applied to ferromagnetism
of metals is that of J. I. Frenkel [ 6 i : i(1928), who showed
that ferromagnetism is possible in a gas of collecti-
vized electrons if the absolute magnitude of the ex-
change energy of the magnetized electron gas is in a
definite relation with the Fermi kinetic energy of this
gas. This question was considered in greater detail by
Bloch [ 6 2 ] (1929). The latter work was criticized by
Bethe [ 6 3 : i and Wigner [ 6 4 b : !, who showed that in the
zeroth approximation of perfectly free electrons fer-
romagnetism is possible only when the lattice constant
exceeds a definite minimum boundary ( £ 5 A ) , and in
addition, perturbation theory was incorrectly used in
Bloch's calculations, inasmuch as ferromagnetism is
possible only in the limit in which the "perturbation,"
i.e., the exchange energy, is comparable with the
"ze ro" Fermi energy, and finally, the calculations
disregarded other correlation effects. The collecti-
vized model of ferromagnetism found further develop-
ment in the papers by Slater ^65^ , Stoner^66^, and
Mott^1'68^, who attempted to improve the Frenkel-
Bloch ferromagnetism criterion by making the band
model of the transition metals more specific. Namely,
they introduced the notion that in addition to the un-
filled energy band of valence electrons (s and p)
there exists in d metals also another unfilled band
resulting from the splitting of the atomic d levels.
It is assumed that the d band is noticeably narrower
than the valence band (because of the smaller overlap
of the d functions of the neighboring atoms in the crys-
tal ), but in view of the closeness of the energies of the
nd, (n + 1) s, and (n + l ) p levels of the transition ele-
ment atoms these bands must overlap and behave au-
tonomously in all other respects. In particular, one
can speak of "holes" in the d band and of " t ransi-
t ions" of electrons from the d to the s band, wherein
the electrons and "holes" of the d bands are treated
as quasi-free particles, which differ from the electrons
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S p e c i f i c c a l c u l a t i o n s o f t h e d b a n d w e r e f i r s t m a d e

b y K r u t t e r i n 1 9 3 5 £ 6 4 f o l l o w e d b y S l a t e r ^ , M o t t ^ ,

W o h l f a h r t [ 6 9 ] , a n d F l e t c h e r [ 7 0 ] . *

B y w a y o f i l l u s t r a t i o n l e t u s s h o w t h e m o r e d e t a i l e d

c a l c u l a t i o n a s g i v e n b y F l e t c h e r ' - 7 0 - ' . It i s k n o w n t h a t

t h e p r o b l e m o f d e t e r m i n i n g t h e e n e r g y s p e c t r u m o f a n

e l e c t r o n i n t h e c r y s t a l l i n e s e l f - c o n s i s t e n t p o t e n t i a l

f i e l d i n t h e o n e - e l e c t r o n l i n e a r i z e d a p p r o x i m a t i o n r e -

d u c e s t o s o l v i n g a S c h r 6 d i n g e r e q u a t i o n o f t h e t y p e

r) = Г — ^ Д + V (r) 1 г|) (г) ;= £г|> (г), (4.1)

w h e r e Д is the Laplace o p e r a t o r and V ( r ) = V ( r + n )
is the se l f-consis tent per iodic potential of the l a t t ice :
n = njaj + n 2 aj + п3аз is the la t t ice vector , with nj, n 2,
and n 3 in teger s o r hal f- integers and a t , a 2, and a 3 the
bas ic la t t ice v e c t o r s , while ф(т) and E a r e r e s p e c -
tively the sought wave function and the e lec t ron energy.
Usually some approximate method i s used to solve
(4.1) [1-4J. Inasmuch a s the d s t a t e s , a s was noted
many t i m e s above, a r e l e s s per turbed by the c r y s t a l -

*A review of these calculations was presented by Callaway in
Solid State Physics (v. 7)M. See also later papers by the same
author on this subject [">"].

l i n e " f i e l d s " t h a n t h e v a l e n c e e l e c t r o n s , w e c a n u s e

i n t h i s c a s e t h e " s t r o n g c o u p l i n g " * a p p r o x i m a t i o n t o

s o l v e ( 4 . 1 ) . In t h i s a p p r o x i m a t i o n t h e w a v e f u n c t i o n

o f t h e e l e c t r o n i n t h e c r y s t a l i s s o u g h t i n t h e f o r m o f

a s e r i e s

n

where Ф ш ( г - п ) is one of the five ( m = 1, 2, 3,4, 5)
atomic wave d-functionst of the n-th la t t ice s i te . The
summation in (4.2) is c a r r i e d out over all the la t t ice
s i te s , and к is the quas imomentum of the collectivized
e lec t ron in the la t t ice . The atomic d functions c o r r e -
sponding to the energy level E d have the
(for n = 0)

15 2 — г"
-^г-fH, Ф5 (r) = ( ш ) _ - j _ / ( r ) ,

(4.3)

where f ( r ) i s the normal ized rad ia l d function of the
isolated atom, while the n u m e r i c a l factors in (4.3) a p -
p e a r a s a r e s u l t of normal izat ion of the angle p a r t s of
the functions. By v i r tue of the degeneracy of the
atomic d functions, the c o r r e c t z e r o t h approximation
function for Eq. (4.1) in the crys ta l will be a l i n e a r
combination of the solutions (4.2) with unknown coeffi-
ficients a m m ' ( k ) :

.(к)ф т.(к; r). (4.4)

Substituting (4.4) in (4.1) and neglecting the inexact
orthogonality of the functions (4.2) with r e s p e c t to the
indices m, we obtain from Eq. (4.4) for the d e t e r m i -
nation of the coefficients a m m » ( k ) , homogeneous a l -
gebra ic equations, the conditions for the solvability of
which will be the vanishing of the corresponding d e t e r -
minant of the sys tem, from which we a r r i v e at the fol-
lowing s e c u l a r equation for the determinat ion of the
energy:

I! Hmm. - E.6mm. || = 0, (m, m' = l, 2, 3, 4, 5), (4.5)

where j 0 m Ф т',

< = г)г|>т.(к; г) dr. (4.5')

•This is pointed out, for example, by Jones and MottM. How-
ever, Kruttert6'] and Slater^ used the cell method following Wigner
and Seitz.

tAs was already noted above [item c) in Sec. 2], the expansion
(4.2) should strictly speaking be carried out directly in the d, s,
and p atomic functions, inasmuch as there is a single "hybridized"
energy band in the crystal. However, for purposes of illustration,
we are describing here a Krutter scheme of "individual" overlap-
ping bands: d, s, etc.
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U s i n g t h e s m a l l n e s s o f t h e o v e r l a p i n t e g r a l f o r t h e d

f u n c t i o n s ( 4 . 3 ) a n d r e t a i n i n g i n t h e i n t e g r a l s a m o n l y

t e r m s w i t h n = 0 , w e o b t a i n f o r t h e e n e r g y m a t r i x

H mm' "~ \^d ~r ^ / Omm'

пФО

J Ф^(г - n) [V (r) - U (г)] Ф т ' (г) dr, (4.6)

w h e r e U ( r ) i s t h e p o t e n t i a l o f t h e i s o l a t e d a t o m , a n d

С = / Ф т ( г ) [V(r) - U ( r ) ] Ф m ( г ) d r is the drop of
the atomic d level due to the interaction between the
electron of the given site with other lattice atoms. The
energy in the band is measured usually from the level
Ea + С and the nearest neighbor approximation is used
in addition. To calculate the matrix elements (4.5) it
becomes necessary to make specific assumptions con-
cerning the form of the radial wave function f ( r ) , and
also concerning the potential V(r) — U(r) . The wave
functions are usually chosen by the Hartree [ see, for
example, the calculation for the Cu+ ion in C763] or
the Hartree-Fock m e t h o d ^ for isolated ions (see,
for example Cu+ etc.), while the next approximation
for the potential is V(r) = U(r) inside a sphere of
radius equal to half the distance between the nearest
neighbors, and U(r) = 0 outside this sphere, where
V( r ) is replaced by the potential of the atoms placed
in the nearest neighboring sites. These simplifications
enable us to obtain numerical values for the matrix
elements (4.6). It becomes necessary then to solve the
fifth-degree secular equation (4.5). One more simpli-
fying assumption is made now. As first shown by
Bethe^78^, the atomic d level splits in the cubic elec-
tric field of the crystal into two levels, which are
three-fold and two-fold degenerate, respectively. We
can therefore expect in the cubic crystal not five but
two d sub-bands, which will either overlap or will be
separated by a forbidden energy gap. The number of
states per atom in these two sub-bands will be six and
four respectively. The wave functions corresponding
to the first of the sub-bands (d^) are the first three
from (4.3), while the wave functions corresponding to
the second sub-band (d€) are the fourth and fifth from
(4.3). Jones and MottC™] indicated that, for example
in a body centered cubic lattice where each atom is
surrounded by eight nearest neighbors, the potential
energy of the electron will be the lowest on the [111]
axes. Inasmuch as the wave functions Ф4, Ф%, and Ф3

have maxima, while Ф4 and Ф5 vanish along these
axes, the dt sub-band of the energies will lie lower
than the d sub-band. For a face centered cubic lat-
tice one can expect the positions of these sub-bands
to be reversed.

If we assume such a splitting into sub-bands and
neglect their interaction in first approximation, we
can also neglect the matrix elements H m m ' in (4.5)
with m = 1,2,3 and m' = 4, 5. Then the fifth-degree
equation (4.5) splits up into two, one cubic and one
quadratic, thus greatly simplifying the solution. How-

FIG. 12. Electron level den- |
sity curve for nickel (as calcu- "
lated by FletcherM) in the re- а
gion of the top of the band. Ы

г,* и
f,eV

ifi

ever, for certain directions in k-space the secular
equation (4.5) can be solved exactly. Using the ap-
proximate calculation scheme given above we can
construct the equal-energy surfaces in the first
Brilluoin zone t1"*»8*] and then determine also the
density of the energy levels in the band with the aid
of the formula [1«3:i*:

N(E)~\\ dS
|V£(k)| (4.7)

Figure 12 shows the N(E) curve for the "upper" part
of the d band of nickel. The total width of this band
as calculated by Fletcher C70] is 2.70 eV.t which is
much less than the width of the (n + l)s bands of real
metals (approximately a fraction of an eV). From the
N( E) curve of Fig. 12 we see that the electron density
in the d band has a peak near an energy value Ep
somewhat lower than its upper edge Eo.

After calculating the distribution of the levels in
the d band, the question arises of the relative place-
ment of the nd and (n + l)s bands on the energy scale.
To solve this problem we must solve in principle the
problem of the crystal as a whole, making the expan-
sion (4.2) more precise, and taking simultaneous ac-
count in it of all the external atomic functions nd,
(n + l)s, (n + l)p, etc.| At the same time, whereas
for metals with a closed d shell (copper, silver, gold,
etc.) the relative placement of the (n + l)s and nd
bands is not so important (inasmuch as the Fermi sur-
face passes "over" the "top" of the nd band), in tran-
sition d metals this question is of primary significance.
Howarth'-79-', using the self-consistent field method,
makes an attempt to give a more rigorous approximate
estimate of the relative placement of the nd and
(n + l)s bands. Usually this question is solved by

•The integration in (4.7) is over a surface in k-space with spe-
cified energy E = const. This integral can be simply approximated
by N(E) - AV"k, where AVfc is the volume in k-space enclosed be-
tween the two equal-energy surfaces E and E + AE; the integral
can then be referred to the energy E + (1/2) AEAVfc, which is de-
termined by graphical integration.

t'This value can be readily obtained from the energy difference
E 1, 2 С 3 7 7 ) ~ ^ 3 (k=77 ) •

t S e e a l s o i t e m c ) o f S e c . 2 .
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»(£)-

FIG. 13. Schematic dia-
gram of the electron level
density distribution in over-
lapping nd and (n+ l)s
bands for two different spin
projections (plus and minus)
in transition d metals, a —
Case when the Fermi level
£0 lies above the top of the
sub-band for the plus spins;
b — case when the Fermi
level Co lies below the top
of the sub-band for plus
spins.

0
b

simple "fitting" of the placement of the bands to the
known experimental data on the average atomic magnetic
moments for ferromagnetic metals, or from the data
on the electronic specific heat and paramagnetic suscep-
tibility of paramagnetic metals (see below). Thus, for
example, Fletcher'-70-' (see Fig. 12) gives the Fermi
level for ferromagnetic nickel by using the fact that
the average atomic magnetic moment is 0.6 дв. and
assigning this moment only to 3d electrons (com-
pletely neglecting the polarization of the 4s electrons,
see Sec. 5). In this case Fletcher is forced to postu-
late the lifting of the spin degeneracy in the 3d band,
which now consists of two shifted 3d sub-bands for
"right hand" and "left hand" spins (Figs. 13a and b).
These two 3d sub-bands can be shifted relative to
each other to such a degree and so located relative
to the Fermi surface, that one lies below this energy
level and is completely filled, while the second is left
with 0.6 unfilled levels per atom from among the total
number of five levels per atom for the given spin ori-
entation (see Fig. 13a).* In paramagnetic crystals of
d metals, both d sub-bands for different spin projec-
tions are practically not shifted relative to each other,
and the spectrum has an appearance shown schematic-
ally in Fig. 14.

FIG. 14. Schematic
diagram of electron level
density distribution in
overlapping nd and
(n + l)s bands for two
different spin projec-
tions (plus and minus)
in non-transition metals.

> 'y Fermi level

Л(£)* 0 "(£)'

From Fig. 12, plotted in accord with Fletcher's cal-
culations for nickel, it is seen that the Fermi level £
is to the left of the maximum of the N(E) curve (Ep
> £). The point where the ordinate £ crosses the
curve of Fig. 12, i.e., N(£), makes it possible, in
accord with (2.7), to compare theory with experiment
by using the data for the electronic specific heat at
1°K. Namely, according to Fletcher, the value of у
from (2.7) should be 7.1 x 10"3 J-mole" 1 deg"2, while
experiment yields a quantity that is somewhat larger,
namely 7.3 x 10"3 J-mole" 1 deg"2, but at any rate of
the same order of magnitude. It is also interesting to
make a more detailed comparison of the values of the
electronic specific heats over an entire series of transi-
tion d metals and their alloys, something already men-
tioned in item b) of Sec. 2.

In items a) and b) of Sec. 2 it was also noted that
important information on the distribution of the levels
in the d band can be obtained by studying the temper-
ature variation of the Pauli paramagnetic susceptibility
Xp in nonferromagnetic d metals. From quantum the-
ory of metals, neglecting the diamagnetic effect (the
quantization of the orbital motion of the electrons in a
magnetic field after Landau E80^) we can obtain the fol-
lowing approximate expression for the paramagnetic
susceptibility of a degenerate

(4.8)

From (4.8) it follows that Xp i n transition metals at
T = 0°K should as a rule be larger than for nontransi-
tion metals, inasmuch as N( £) in the former is larger
than in the latter. As noted in item a) of Sec. 2, this
is indeed observed.

Kriessman and Kallen^23-' give a detailed analysis
of the data for the temperature dependence Xp(T) of
practically all the paramagnetic d metals (Ti, V, Cr,
Mn, Zn, Hf, Nb, Та, Mo, Ru, Rh, Ir, Os, Pd, Pt) . For
the low-temperature region, as compared with the
temperature of the electron gas degeneracy in the
metal, the function N( E) can be expanded in powers
of the small difference E - £, so that (4.8) becomes

Ж2 j j

%v =
*In other cases the Fermi level can pass through both sub-bands

for electrons with plus and minus spin projections (see Fig. 13b).

N" (« - (4.9)

It is seen from Eq. (49) that the temperature depend-
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ence Xp(T) is determined by the first and second de-
rivatives of the function N(E) on the Fermi surface.
Usually the first term in the square brackets of the
right half of (4.9) exceeds the second and therefore
dx/dT < 0. A reversal of the sign of the derivative,
i.e., dx/dT > 0, can occur only near the minima of
the N(E) curve, where N'(E) = 0 . Thus, from the
measured sign of the derivative dx/dT we can deter-
mine whether the Fermi level lies near the minimum
of the N(E) curve or not. Thus, for example, in the
case of Ti, Zr, Hf, Mo, W, Ru, Rh, Os, and Ir, when
experiment apparently yields dx/dT > 0, f lies near
the minimum of the N(E) curve, while in V, Nb, Та,
Pd, and Pt the Fermi level lies away from the min-
ima of the N( E) curve. As was noted above [ items
a) and b) of Sec. 2], this agrees with the experimental
datafor the electronic specific heat, the values of which,
for example, are appreciably lower for Ti than for
Nb. Thus, we again verify how important it is to carry
out a simultaneous experimental investigation of the
electronic specific heat and the paramagnetic suscepti-
bility for transition metals.*

It is quite tempting to use experimental data on the
x-ray emission and absorption spectra to determine
the distribution of the electron energy levels in the
spectrum of the crystals. However, for the time being
it hardly makes sense to attempt any numerical com-
parisons, except for the most general qualitative pre-
dictions referred to above [see item c) in Sec. 2),
since we do not know the exact theoretical form of
the function N(E), nor do we know the theoretical
values of the transition probabilities in (2.8) and (2.9),
the equations which must be compared with experiment.
Nonetheless, in principle, the x-ray spectral method of
investigating the electron spectrum in d metals is one
of the most promising and one must continue to develop
it vigorously in both experimental and theoretical as-
pects.

An important and urgent problem is that of the oc-
currence and of the properties of the ferromagnetic
and antiferromagnetic states in transition d metals.
It is necessary to ascertain here the genesis of the
ferromagnetic and antiferromagnetic state in d met-

*The correlation between the paramagnetic susceptibility y p

and the level density at the Fermi surface can also be obtained by
investigating the dependence of the susceptibility on the concen-
tration in many alloys of transition paramagnetic metals with non-
transition diamagnetic metals. Thus, for example, in alloys of the
substitution type where the transition metal palladium is replaced
by the nontransition metal silver t 1 " ' 1 ] , a monotonic decrease in
the susceptibility with increasing silver concentration is observed.
At approximately 50% silver, the susceptibility becomes equal to
zero and further increase in the silver concentration makes the
susceptibility reach a constant negative value, equal to the dia-
magnetic susceptibility of pure silver. From these data we can
conclude that in palladium we have on the average 0.5 "holes" per
3d band, which are indeed filled in the alloy when the silver con-
centration is 50%.

als, to establish a quantitative criterion for the pos-
sibility of occurrence or absence of magnetic spin
ordering, to explain the influence of the "orbital mag-
netism" of the d states, and to present a quantitative
explanation of the average atomic moments (their dif-
ference from the moments of the free atoms, and also
their fractional character), to clarify the question of
localization of the spin moments of d electrons in the
crystal and the interaction effects between s and d
electrons in the metal, and finally to explain the occur-
rence of spin waves as excitations of a definite type of
the magnetically ordered state of the system of collec-
tivized electrons.

The ordinary band model, in which the quasi-
Coulomb and exchange interaction is considered as
a perturbation, describes sufficiently well qualitatively
the paramagnetic and ferromagnetic state of d metals.
However, antiferromagnetism in d metals (Cr and
Mn) still remain unexplained, as is the fact that the
paramagnetic susceptibility of some of these substances
below the Curie or Neel point follows the Curie-Weiss
law (i.e., we deal not with a Pauli type of paramagne-
tism, but with a Langevin type). Below, following
Friedel, Leman, and Olszewski'-81-', we consider briefly
the problem of ferromagnetism within the framework
of the band theory. *

From the point of view of this model, ferromagne-
tism in an electron gas is possible when an energy
"shift" 6E occurs in the ± sub-bands for the " r ight-
hand" and ' left-hand" spins respectively (see Fig. 14),
owing to the "exchange" interaction. As a result of
this shift, a total of e electrons per atom will go over
from the minus sub-band to the plus sub-band. This
leads to an increase in the kinetic energy per atom
e<5E (if e is very small). The exchange energy of
the metal is determined by the interaction of the elec-
tron pairs, and is therefore proportional to the square
of the number of d electrons in each sub-band. We
denote by n+ and n_ the number of electrons (or
holes) per atom in the ± sub-bands; in the paramag-
netic state we have n+ = n_ = n/2. The change in en-
ergy on going from the paramagnetic into the ferro-
magnetic state is then equal to

(4.10)

where E ex is the average exchange energy per pair
of nucleons. At the beginning of the iron group transition
element series the 3d band is broader and is strongly
"hybridized" with the 4s and 4p bands, and therefore
the energy E ex should be close to its value for the
" f r e e " electrons. To the contrary, for the end of
this series, the 3d band becomes narrower and less

*Slater L151] and Ledyardt'"] developed a treatment of antiferro-
magnetism within the framework of the collectivized electron model,
somewhat different from LM].
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hybridized with* the broad conduction band, so that in
this case E e x is closer to its value for the isolated
atom. Because of this, an "average" estimate for
E e x yields a value 0.7 eV. ^32^ It is easy to see that
n( £0) = ne/6E. We introduce the dimensionless pa-
rameter

п (£„)
~7Г (4.11)

From a comparison of (4.10) with (4.11) it follows that:
a) If ij > 1, then the equilibrium state is ferromag-

netic.
b) If | < 1, then the equilibrium state is paramag-

netic.
It can be shown that the exchange interaction in-

creases the paramagnetic susceptibility of the electron
gas. Indeed, the exchange energy - 2 n 2 e 2 E e x in (4.10)
is proportional to the square of the magnetization
2п^ве. so that we can introduce an effective (molec-
ular) field

ff- = - д( — 2 2пеЕе

д (2пц.ве)

w h i c h i s proport iona l to the m a g n e t i z a t i o n . Further ,

by def in i t ion w e have Xp. e x p = 2n/ij$e/H ( w h e r e H i s

the e x t e r n a l m a g n e t i c f i e l d ) , and in a c c o r d a n c e with

the band m o d e l the s u s c e p t i b i l i t y i s [ s e e f o r m u l a

( 4 . 8 ) * ]

and on the o ther hand

tp.band

a "(go)
n

2/цх,ве

(4.12)

(4.12a)

F r o m a c o m p a r i s o n of t h e s e two f o r m u l a s w e g e t H

+ H m = n 2 e / ^ g n ( f 0 ) , and in addit ion it i s e a s i l y s e e n

that Xp. band( H + H m ) = xp. e x p H - U s i n g the e x p r e s -

s i o n s g i v e n above for H + H m and for H m w e g e t

^p.band uBn(£0

Г пЧ
?(ЧЦв"(£с)

2ns.Ee

F r o m t h i s it i s a l r e a d y e a s y to find that

Xp. band = <l—l)-11 P . (4.13)

F o r m u l a (4.13) a g r e e s w i th the e x p e r i m e n t a l data [ s e e

i t e m a) in S e c . 2 ] , w h i c h g i v e for Xp. e x p v a l u e s that

a r e g r e a t e r than p r e d i c t e d by the e l e m e n t a r y band

m o d e l without account of e x c h a n g e , if f o r m u l a (4.12)

i s c o m p a r e d with that for the s p e c i f i c h e a t (2.6). The

v a l u e obtained e x p e r i m e n t a l l y for the c o r r e c t i o n f a c t o r

( 1 - 1 ) " 1 l i e s b e t w e e n two and t h r e e ; w e thus g e t f rom

(4.11) E e x ~ 0 .3—1.0 eV; f r o m s t u d i e s of a t o m i c s p e c -

t r a i t i s known that E | x ~ 0 . 4 — 0 . 8 eV. The a g r e e m e n t

i s thus su f f ic ient ly good. The a u t h o r s of '-81-' a s s u m e

that for p a r a m a g n e t i c d m e t a l s E e x l i e s b e t w e e n 0.5

and 1.0 eV.

The condi t ion | > 1 n e c e s s a r y for r e a l i z a t i o n of

f e r r o m a g n e t i s m r e q u i r e s that the l e v e l d e n s i t y n ( £ 0 )

at the F e r m i l e v e l b e high, and a l s o that the a v e r a g e

e x c h a n g e e n e r g y E e x a l s o b e h i g h , s o m e t h i n g m o r e

e a s i l y s a t i s f i e d for the d m e t a l s at the end of the

s e r i e s .

The f o r e g o i n g c a l c u l a t i o n s have the s h o r t c o m i n g

that they have b e e n c a r r i e d out in the m o m e n t u m

( e n e r g y ) s p a c e and that the d i s t r i b u t i o n of the s p i n s

p a r t i c i p a t i n g in the f e r r o m a g n e t i s m in o r d i n a r y s p a c e

i s c o m p l e t e l y n e g l e c t e d . In a l l b a n d - m o d e l c a l c u l a -

t i ons it i s t a c i t l y a s s u m e d that wi th in the f r a m e w o r k

of th i s m o d e l w e a r e d e a l i n g wi th c o m p l e t e spat ia l

h o m o g e n e i t y of the e l e c t r o n d e n s i t y for both s p i n

c o m p o n e n t s ( p l u s and m i n u s ) . T h i s would hold t rue

w e r e the w a v e function of the e l e c t r o n s to be a p lane

w a v e [ p ( r ) = c o n s t ] . Actua l ly , h o w e v e r , th i s i s not

the c a s e in a r e a l m e t a l , e s p e c i a l l y for the f o r m e r d

e l e c t r o n s . A s noted above , t h e i r w a v e funct ion in the

c r y s t a l i s m o r e l i k e l y to b e c l o s e to a l o c a l i z e d a t o m i c

d function than to a p lane w a v e . It i s t h e r e f o r e quite

natural for the sp in d e n s i t y in a f e r r o m a g n e t i c d

m e t a l to be i n h o m o g e n e o u s and l o c a l i z e d at the c r y s t a l

l a t t i c e s i t e s . The c r y s t a l l i n e c o l l e c t i v i z a t i o n e f f ec t

a lone m a k e s w h o l e - n u m b e r v a l u e s ( i n /*g u n i t s ) of

the e x c e s s s p i n d e n s i t y for a g i v e n sp in p r o j e c t i o n

(p lus o r m i n u s ) u n n e c e s s a r y . F r o m th i s e l e m e n t a r y

but p e r f e c t l y r i g o r o u s a n a l y s i s w e i m m e d i a t e l y e l i m i -

nate in p r i n c i p l e the b a n d - m o d e l " d i f f i c u l t y " m e n -

t ioned above in the exp lanat ion of a n t i f e r r o m a g n e t i s m

and Langev in p a r a m a g n e t i s m . The d i f f e r e n c e b e t w e e n

the P a u l i f e r r o m a g n e t i s m and a n t i f e r r o m a g n e t i s m l i e s

in the fac t that in the l a t t e r c a s e the e x c h a n g e ( n e g a -

t i v e ) i n t e r a c t i o n p r o d u c e s in the e l e c t r o n s y s t e m an

a n t i f e r r o m a g n e t i s m a x i s (quant iza t ion a x i s ) , w h i c h

i s " a t t a c h e d " by the m a g n e t i c f o r c e s to one c r y s t a l

a x i s , w h e r e a s in the c a s e of Pau l i p a r a m a g n e t i s m

t h e r e i s no s u c h a x i s . At t e m p e r a t u r e s above the C u r i e

or N e e l po in t s one c a n a l s o e x p e c t a n o t i c e a b l e a d m i x -

ture of Langev in p a r a m a g n e t i s m in f e r r o m a g n e t i c or

a n t i f e r r o m a g n e t i c d m e t a l s . *

In E813 the authors p r o p o s e a c o n c r e t e m e t h o d for

taking s p i n l o c a l i z a t i o n in s p a c e into account wi thin

the f r a m e w o r k of the c o l l e c t i v i z e d e l e c t r o n m o d e l .

The m a i n idea of th i s m o d e l i s that the e n e r g y go ing

to l o c a l i z a t i o n of the e l e c t r o n c h a r g e wi th one s p i n

p r o j e c t i o n i s c o m p e n s a t e d by the e l e c t r o s t a t i c r e p u l -

s i o n of the e l e c t r o n s wi th the o ther s p i n p r o j e c t i o n .

The condi t ion for the s tab i l i ty of s u c h l o c a l i z a t i o n

a g r e e s wi th the condi t ion for the p a r a m e t e r £ f r o m

*We note that N(£o) in (4.8) is equal to n{Q/n in (4.12).

•Differences can be expected here, for example, between nickel
and iron, inasmuch as in nickel the magnetic saturation is much
smaller (0.6 /JB P e r atom), and therefore the thermal motion will
contribute more to the Pauli magnetism than to the Langevin mag-
netism, while in iron, to the contrary, the Langevin paramagnetism
will play the greater role. In exactly the same manner, the scatter-
ing of the electrons on the "spin disorder" should have different
characters in iron and in nickel [see item e) of Sec. 2].

tFor details of the calculation we refer the reader to the origi-
nal article M .
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On the whole it can be s ta ted that the band theory
gives a sa t isfactory quali tat ive descr ip t ion of the
e lec t ron p roper t i e s of d m e t a l s . However, from the
quantitative point of view the si tuation tu rns out to be
much l e s s c l e a r . Most unsat isfactory a r e all a t tempts
at a quantitative determinat ion of the specific e x p r e s -
sions for the densi ty function n( £0) and for the e s t i -
mated " w i d t h " of the d band; the account of the " i n -
t e r a c t i o n " of the nd band with the ( n + l ) s and (n + l ) p
bands i s in p rac t i ce not c l ea r at a l l . Yet it has been
known for a long t ime from the calculation of the wave
functions and energ ies of the d levels of isolated a toms
that the l a t t e r a r e much m o r e sensi t ive to the l e a s t
var ia t ions of the potential than a r e the valence e l e c -
t r o n s . An account of the exchange and Coulomb in t e r -
act ions i s c a r r i e d out a s a r u l e in an i nco r r ec t form.
There i s st i l l no c l e a r - c u t answer to the question of
the spin waves within the framework of the ordinary
band model . This question was f i r s t considered qua l -
itatively for ferromagnet ic me ta l s by Herr ing and
Ki t te l^ 8 4 ^ xh is s a m e problem was considered in
g r e a t e r detail , within the f ramework of the Bohm and
Pines^8 3 '3 2^ collective descr ip t ion of the interact ion of
the e lec t rons in a metal , in an extensive r e s e a r c h by
Shimizu^8 2^ who obtained a m o r e accura te c r i t e r ion
for the rea l iza t ion of the fer romagnet ic s ta te (in p a r -
t icu lar , fe r romagnet i sm tu rns out to be possible in
r ea l c ry s t a l s only for F e r m i pa r t i c l e s with very l a rge
values of effective m a s s ) .

Shimizu a l so cons idered the question of spin waves
within the f ramework of the band model ( s ee Sec. 8
in £823), but he art if icial ly postulated there localized
s ta tes for the atomic c a r r i e r s of the magnet ic m o -
ment . Abrikosov and Dzyaloshinskii £86^ considered
in a ve ry in teres t ing paper , within the Landau theory
of the F e r m i liquid E28^, the question of the d ispers ion
law for magnet ic excitat ions (spin waves ) , and have
shown that this law i s quadrat ic in f i rs t approximation.
They used in the F e r m i - p a r t i c l e energy a t e r m s i m i l a r
to the second t e r m in (38.1), descr ib ing the in teract ion
between the spins of these pa r t i c l e s and the magne t i -
zation of the sys t em. Izujama^853 considered the q u e s -
tion of spin waves within the f ramework of the band a p -
proximation, re la t ing these magnet ic excitat ions with
the bound s ta tes in a sys tem of F e r m i pa r t i c l e s (of
the exciton type ) . Vonsovskii and Kobelevl-87^, on the
bas i s of the t e m p e r a t u r e Green ' s functions ( see P a r t
II of the p resen t review, Sees. 9—11), took into a c -
count the influence of the magnetizat ion densi ty f luc-
tuations in a sys tem of collectivized e lec t rons of a
fer romagnet ic me ta l . They have shown in th is c a s e
that at t e m p e r a t u r e s T « ®f the spontaneous magne t -
ization of the fer romagnet ic meta l d e c r e a s e s f i rs t b e -
cause of the t empera tu re dependence of the F e r m i
distr ibut ion function of the atomic c a r r i e r s of magne t -
i sm (the d-band e l ec t rons ) I j - (T) and, second, owing
to the occur rence of spin inhomogeneit ies —spin waves

I 6 w ( T ) . In the ca se of a fractional value of atomic
moments and a quadrat ic F e r m i - p a r t i c l e d i spers ion
we have

/ р (Г) aT\ ls.v~-$Tm. (4.14)

Analogous r e s u l t s were obtained by Edwards'-1 5*-', but
by a different method.

We note h e r e only one c i r c u m s t a n c e . One might
think that all the calculat ions based on the band model,
s i m i l a r to the Fle tcher calculation descr ibed above E7°J,
have no r e a l meaning whatever, inasmuch a s the band
model is too crude an approximation, in which the very
significant in teract ions in the sys tem of collectivized
e l e c t r o n s a r e neglected. Nonetheless, it i s p r e c i s e l y
now that a s i tuation has a r i s e n in meta l theory, that
calculat ions by m e a n s of even so imperfect a band
model a r e of r e a l physical i n t e r e s t and can be fruitful.
The point i s , a s shown by a phenomenological approach
to the t r e a t m e n t of the p r o p e r t i e s of F e r m i s y s t e m s
with a r b i t r a r y sign of d i spers ion in r e a l meta l l ic c r y s -
t a l s , developed in the well known p a p e r s of I. M. Lif-
shitz and his c o - w o r k e r s E93-', that a study of s e v e r a l
effects in a magnetic field (osci l la t ions of magnet ic
susceptibi l i ty, m a g n e t o r e s i s t a n c e , Hall effect, e t c . )
m a k e s it poss ible to const ruct the form of the F e r m i
sur faces in m e t a l s from exper imental data . This af-
fords a possibi l i ty of exact verif ication of the c o r r e -
sponding calculat ions of t h e s e sur faces , obtained a s
a r e s u l t of the use of model r e p r e s e n t a t i o n s of the band
theory. Thus, the approach proposed by I. M. Lifshitz
has placed on the firm ground of quantitative ver i f ica-
tion the calculat ions of the F e r m i - s u r f a c e shape, level
dens i t ies , e tc . , which were frequently made without
suitable checks within the f ramework of the band model
of m e t a l s ( s e e a l so P i p p a r d ' s review on the point'- 1 5 7^').
This is p r e c i s e l y why we made it poss ible to make room
in the p r e s e n t review to a descr ipt ion of band model
calculations ( s e e also Chapter 5 ) .

In spite of all the indicated essent ia l shortcomings
of the band model quantitative calculat ions, it has one
important advantage, namely that the f o r m e r d and
valence e lec t rons a r e considered in the c r y s t a l , in
principle, a s a single collectivized F e r m i - p a r t i c l e
sys tem. This m a k e s it poss ib le to obtain a natura l
explanation for the fractional nature of the average
atomic moments , and also the fractional numbers of
the conduction e lec t rons p e r latt ice s i t e . The band
model affords a lso a fair qualitative explanation of the
r e g u l a r i t i e s in the x- ray s p e c t r a of t rans i t ion m e t a l s .
One should add also the a l ready mentioned s u c c e s s of
this model in explaining large values of the e lect ronic
specific heat and paramagnet ic susceptibi l i ty of d
m e t a l s .

At the s a m e t i m e , the band model has s e v e r a l p r i n -
cipal difficulties and shor tcomings . The major among
these i s the postulation of sharply autonomous ex i s t -
ence of d and s bands in the energy s p e c t r u m of the
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system and the artificial "sticking" of these bands to
the common Fermi surface. In addition, in the ordi-
nary band treatment one ignores in practice the spatial
inhomogeneity of the electron density in the crystal
(which follows already from the statistical correlation
of the electrons in space, i.e., from the antisymmet-
rical character of the total wave function of the Fermi
system). This leads to failure to take into account the
individuality of the spin states of the electrons in the
crystal, does not permit an explanation of the experi-
mentally measured neutron and x-ray form factors,
and practically eliminates the possibility of quantita-
tively describing the kinetic coefficients due to various
types of "collisions" between the electrons and neu-
trons on the one hand and the spin (magnetic) inhomo-
geneities on the other.

Thus, it can be stated on the whole that the band
model, while emphasizing the localization of the d
electrons in the crystal, greatly impoverishes their
magnetic properties which are connected to a consid-
erable extent with the appreciable conservation* of a
localized electron charge density distribution and par -
ticularly the density distribution of the magnetic mo-
ments of the former d electrons in the crystal. This
model can therefore be employed with certain justifi-
cation in the case of d metals, but it is little suitable
for an explanation of the physical properties of f met-
als. (We shall return to an estimate of this model and
compare it with another approach in the theory of tran-
sition metals at the end of the next Section 5).

5. Model of Interacting Valence (Outer) Electrons
and Electrons of the Inner Unfilled Shells [ s -d(f )
Exchange Model ] ^Q-i2]

a) From the general considerations developed above
(Sees. 3 and 4), we can see an obvious specific singular-
ity of the electronic energy spectrum of the d and f
transition group metals. In the case of d metals this
reduces, in the language of the band model, to the fact
that both the former valence (s ,p) electrons and the
electrons of the unfilled inner d-shells of the iso-
lated atoms participate to an equal extent in the for-
mation of the Fermi surface. This leads as a rule to
an increased electron-level density near the Fermi
surface, something that manifests itself both on the
equilibrium statistical properties of the metal (spe-
cific heat, paramagnetic susceptibility, etc.) and on
the kinetic coefficients (electric conductivity, heat
conduction, etc.) , which can greatly differ both in
magnitude and in the temperature variation from the
corresponding quantities for normal metals (see Sees.
2 and 4) . The second major feature of transition met-
als and of their alloys and compounds is that they can
have perfectly unique magnetic properties, such as

*In so far as one can visualize the case of a localized distribu-
tion of the spin (magnetic) density with an almost homogeneous
distribution of the electron charge density.

atomic magnetic ordering (ferromagnetic or antifer-
romagnetic state), which is a direct consequence of
the spin non-saturation of the unfilled d or f groups
of the electron shell of the transition element atoms.
However, in d metals the perturbation due to the in-
tercrystalline interactions can hinder the realization
of magnetic order, and then we deal with Pauli para-
magnetism. Atomic magnetic order, which is most
typical for f metals, influences not only the magnetic
but also the electrical, optical, thermal, and other
properties of the metals in the formation of which the
principal role is played by conduction electrons, as in
paramagnetic metals of the transition and normal
groups. The existence of "magnetic anomalies" for
nonmagnetic properties of transition metals with
atomic magnetic order indicates that a definite con-
nection exists between the "magnetic" electrons par-
ticipating in this order, and the conduction electrons.
This raises the important question of whether it is
possible to distinguish in a crystal between conduction
electrons and "magnetic" electrons. Do not all the
former valence electrons and the electrons of the un-
filled d or f shells form a single collectivized system
—an electronic Fermi liquid which flows over the pos-
itively charged ionic lattice of the metal? Of course,
in the case of a crystal one cannot speak in the literal
sense of s, p, d, or f electrons, inasmuch as there is
a strong interaction among them. However, a study of
the x-ray and neutron form factors (see Sec. 2) gives
us an undisputable right to relate the spin (magnetic)
density not with the entire density of the electron
charge, but only with that part which is localized near
the lattice sites; on the other hand, the density of the
electrons which essentially determine the conductivity
and other nonmagnetic electronic properties of the
metal turns out to be more or less homogeneous over
the volume of the crystal. This experimental fact does
indeed justify, at least from the qualitative point of
view, the aforementioned subdivision of the transition
metal crystal electrons into conduction and "magnetic"
electrons. Using the analogy with the isolated atoms,
we can retain also the names for these electrons (s, p,
d, and f) although these terms must of course be a s -
signed a different physical content. In connection with
the problem under consideration, two other questions
arise: 1) do the "magnetic" electrons have noticeable
mobility in the crystal and 2) do the conduction elec-
trons participate in the atomic magnetic order, either
by making a direct contribution to the spontaneous mag-
netic moment of the crystal (in the case of ferromag-
netism) or to the sub-lattice magnetization (in the
case of antiferromagnetism), or else by influencing
the magnetic order via their interaction with the "mag-
netic" electrons. These questions were answered in
part in Sees. 3 and 4; it was emphasized there that ac-
count must be taken of the qualitative difference be-
tween the d and f metals. In the case of f metals one
can answer the first question in the negative, since,
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for example, the 4f electrons of the rare earth metals
retain practically the same properties that are charac-
teristic of isolated atoms, and can therefore be condi-
tionally "ascribed" to the "immobile" ionic lattice of
the rare earth metal. To the contrary, the two parts
of the first question should be answered in the case of
f metals in the affirmative: the conduction electrons
are magnetized by the inner 4f electrons, which
have a resultant magnetization, and also participate
actively in the very genesis of the magnetic order,
inasmuch as the exchange interaction between the 4f
layers of neighboring crystal ions has the character
of an indirect exchange with the decisive participation
of the conduction electrons. In the case of d metals,
the answer to the first question should be in the affirm-
ative, since the d electrons have a perfectly noticeable
mobility, albeit smaller than that of the s electrons,
and therefore participate in transport phenomena in
metals. The answer to the first half of the second
question is the same as for f metals, while the answer
to the second half, if not in the negative, is that in any
case one can think that the s electrons do not play a
decisive part in the formation of the exchange coupling
in d metals.

Taking these considerations into account, we must
describe the electron system of a transition d or f
metal with atomic magnetic order by means of a scalar
function p ( r ) , which determines the summary electron
(charge) density in the crystal, and a vector function
of the electron spin density s ( r ) . The symmetry prop-
erties of the former coincide with the crystal-chemical
symmetry of the metal, while the symmetry properties
of the latter coincide with its magnetic symmetry. In
addition, it is necessary to take into account also the
momentum density function P ( r ) describing the non-
localization of the electrons in the crystal. These
functions are quantum mechanical operators, so that
to obtain the statistical-thermodynamic characteristics
of the electron system of the crystal it is necessary to
determine the mean statistical values of these opera-
tors by means of the well known rules of quantum sta-
tistics [88^

r )_Sp[P(r)fr]
Sp#

(5.1)
where W = exp (— H/kT) is the density matrix opera-
tor and H is the Hamiltonian operator of the system.*
Naturally, a rigorous calculation of the functions (5.1)
entails great mathematical difficulties, making it nec-
essary to use approximate methods for the solution of
the problem.t We consider below an approximate treat-

f r , Sp[Q(r)fr] -M_Sp[S(r)fr]
[) SpW ' [>~ Sp# '

*Sp is the matrix trace (spur) operator, i.e., the sum of all its
diagonal elements; in our case these are the sums of the diagonal
elements of the matrix of the product of two operators pW, sW, and
PW, and also of the operator W alone.

tFor a possibility of a more general solution of the problem see
Ch. in-V below.

ment of transition metals having atomic magnetic order-
ing. We do not delve deeply into the genesis of the latter,
paying principal attention to a clarification of the in-
fluence of the magnetic ordering on the conduction
electrons.*

b) We first stop to discuss the indirect exchange
interaction via the conduction electrons, following
Zener's elementary a n a l y s i s ^ . (A more rigorous
solution is given in Sees. 7 and 8.) The energy of
direct d-d or f-f exchange per lattice site can be
written in first approximation in the form
-^AclcUf^ScUf), wbere Add(ff) is the parameter of
direct d-d or f-f exchange interaction, and Sd(f) is
the average value of the relative magnetization of the
d or f electrons per lattice site. The energy of the
s-d(f) exchange per site will be equal to
~ Asd(f) Sd(f) Ssi where Ss is the mean value of the
relative magnetization of the conduction electron per
site, and Asd(f) is the s-d(f) coupling parameter.
The addition to the Fermi energy brought about by the
magnetization of the conduction electrons is V2 ApS| ,
where A F = N/tg/xp, and xp = 2M|JN(£ 0 ) i s the ordi-
nary Pauli paramagnetic susceptibility.t Thus, the
total energy of the crystal per site, which depends on
S s and Sd(f), is

4 5 А ^ ^ ^ ASt (5.2)

Inasmuch as the entropy of a strongly degenerate gas
of the s electrons in metals is very small'-1"4-', the
equilibrium values of the magnetizations S s and S(j(f
can be obtained from the requirement that (5.2) have
a minimum value under the condition that | S s |
s s s . max and | Sd(f) | s Sd(f). m a x . One of the pos-
sible solutions has the form

(5.3)

The ratio А 8 (1ф/Ар amounts to ~ (10" 1 3-10" 1 4)/10~ 1 2

~ 0.1—0.01, and therefore the magnetization of the s
electrons amounts to ~ 1—10% of the total. Substitut-
ing (5.3) in (5.2) we obtain the equilibrium energy of
the s + d(f) system

= - j [ Addm + (5.4)

The quantity in the square brackets of (5.4) is the ef-
fective parameter of exchange between the inner
electrons that interact with the conduction electrons

(5.5)

The elementary analysis shows that the s-d or s-f

*We shall assume that either a d-d (or f-f) exchange is pos-
sible in the system of "magnetic" electrons of the metal, or else
indirect exchange via the conducting electrons and the closed
shells (see Sec. 3).

tin the case of a quadratic dispersion for the s electrons
Xp = (3/2)N/XB/£.> and consequently AF ~ £0.
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exchange coupling can lead to an effective exchange
coupling between the inner electrons, defined by the
parameter

garded. Such a choice of the zeroth approximation is
suitable if the following conditions are satisfied:

_ Asd(f)
-2 (5.6)

This indirect coupling parameter is always positive in
the present approximation and therefore contributes to
ferromagnetic spin order. The direct d-d or f-f ex-
change coupling can be of either sign. Consequently,
if A(jd(ff) > 0, then only ferromagnetism is possible
in the transition metal, while if A ^ f f ) < 0, then to
obtain ferromagnetism the condition Aind > I Add(ff) I
must be satisfied, otherwise only antiferromagnetism
is possible. In those cases when the direct exchange
is vanishingly small, the atomic magnetic order is de-
termined entirely by the indirect exchange coupling via
the conduction electrons.

It should be recalled that in 4f metals it is possible
to have also an indirect exchange coupling with partici-
pation of the closed 5s25p6 shell (of the Kramers type,
see Sec. 3). A more detailed discussion of the results
obtained will be postponed to Sees. 7 and 8, and we now
turn to an examination of the effects connected with the
magnetization of the conduction electrons.

c) In the general phenomenological treatment of fer-
romagnetic metals or semiconductors ^90^ the electron
system is regarded as a continuous medium, charac-
terized by magnetic-moment and momentum densities
I ( r ) and P ( r ) , respectively. Subdividing approxi-
mately the electron system into two subsystems of s
and d or of s and f electrons, and introducing conse-
quently the four functions I s ( r ) , Lj(f) ( г) and P s ( r ) ,

^d(f) w e c a n

Se = -

where 3Cd(f) is the Hamiltonian of the dj(f) subsystem,
which depends only on Id(f) and Pd(f). 3CS is the Ham-
iltonian of the s subsystem, a function of I s and Ps
only, and finally 3Cscj(f) is the Hamiltonian describing
the interaction of the subsystem, and depends on all
four functions.* Such a general formulation of the
problem does not predetermine the question of the
genesis of the exchange coupling in the d(f) subsys-
tem, which should be explained during the course of
the solution of the problem itself. However, we are
not interested here in this question, since we are in-
vestigating the effects exerted by the "magnetization"
produced by the "magnetic" electrons on the spectrum
and kinetic effects of the conduction electrons. In this
case we can choose as the zeroth-approximation Hamil-
tonian the sum of the first two terms in (5.7), when the
influences of the s subsystem and of the d(f) sub-
systems in 5Cd(f) and in 3CS respectively are disre-

*If we take into consideration also magnetic interactions, then
(5.7) contains additional terms that depend on the external and in-
ternal magnetic fields.

•€ •€. (5.8)

T h e f i r s t c o n d i t i o n of (5.8) s i g n i f i e s t h a t t h e s - d o r

s - f e x c h a n g e c o u p l i n g i s s m a l l c o m p a r e d w i t h t h e

F e r m i e n e r g y , a n d i s a l w a y s s a t i s f i e d . T h e s e c o n d

c o n d i t i o n , n a m e l y t h a t t h e s e c o u p l i n g s b e s m a l l c o m -

p a r e d w i t h t h e d i r e c t e x c h a n g e , m a y no t b e s a t i s f i e d ,

f o r e x a m p l e by v i r t u e of t h e s m a l l n e s s of t h e o v e r l a p

of t h e d s h e l l s , a n d p a r t i c u l a r l y t h e f s h e l l s of t h e

n e i g h b o r i n g l a t t i c e s i t e s . C o n s e q u e n t l y w h e n t h e s e c -

ond c o n d i t i o n i n (5.8) i s v i o l a t e d , t h e i n d i c a t e d c h o i c e

of z e r o t h a p p r o x i m a t i o n s i g n i f i e s t h a t o n e c a n r e g a r d

i n d e p e n d e n t l y , on t h e o n e h a n d , t h e i n f l u e n c e of t h e

m a g n e t i z a t i o n of t h e d ( f ) s u b s y s t e m o n t h e c o n d u c t i o n

e l e c t r o n s ( t h e i r p o l a r i z a t i o n ) a n d t h e r e a c t i o n of t h e

m a g n e t i z e d s e l e c t r o n s o n t h e d ( f ) e l e c t r o n s , a n d ,

on t h e o t h e r s i d e , t h e i n f l u e n c e of t h e s - d o r s - f

c o u p l i n g on t h e g e n e s i s of t h e s t r o n g i n d i r e c t e x c h a n g e

b e t w e e n t h e s p i n s i n t h e d ( f ) s u b s y s t e m .

We c h o o s e a s t h e p e r t u r b a t i o n e n e r g y of t h e p r o b -

l e m u n d e r c o n s i d e r a t i o n t h e H a m i l t o n i a n * K s d and

s e e k t h e c o r r e c t i o n t o t h e z e r o - p o i n t e n e r g y 3Cg of

t h e c o n d u c t i o n e l e c t r o n s . We a r e l i k e w i s e u n i n t e r -

e s t e d i n t h e i r r e a c t i o n on t h e d ( f ) s u b s y s t e m ( s e e

C h a p t e r s III a n d IV b e l o w ) . T h e c o n d u c t i o n e l e c t r o n s

in t h e m e t a l w i l l b e r e g a r d e d a s a F e r m i - p a r t i c l e g a s

w i t h a r b i t r a r y d i s p e r s i o n ( s e e ^ 9 3 - ' ) . T h e e n e r g y d e n -

s i t y o p e r a t o r of s u c h a q u a s i p a r t i c l e , w i t h a l l o w a n c e

f o r t h e p e r t u r b a t i o n , h a s t h e f o r m

k? (r) = r) + Se,uf) (r) = Set (r) - в (г) (Sd(/) (r) s). (5.9)
f o r t h e H a m i l t o n i a n of t h e s y s t e m

+ M\<nt)< (5.7)
T h e o p e r a t o r !

e%?sd(f) (r) ~ — ^ ( v И 0 ) ( ') ^/' (5.10)

w h i c h d e s c r i b e s t h e i s o t r o p i c ( s - d ) o r ( s - f ) e x -

c h a n g e i n t e r a c t i o n i s c h o s e n i n t h e f o r m of a v e r y

s i m p l e i n v a r i a n t , n a m e l y t h e s c a l a r p r o d u c t of t h e

r e l a t i v e m a g n e t i z a t i o n v e c t o r S < j ( f ) ( r ) of t h e d ( f )

s u b s y s t e m a n d t h e s p i n v e c t o r S of t h e c o n d u c t i o n

e l e c t r o n . T h e f i r s t t e r m i n (5.9) s a t i s f i e s t h e i n v a r i -

a n c e r e q u i r e m e n t s r e l a t i v e t o t r a n s l a t i o n b y t h e p e -

r i o d q c . c of t h e c r y s t a l - c h e m i c a l l a t t i c e , 3CS

= ( r + n q c - C ) = 3 C s ( r ) . T h e s a m e c o n d i t i o n s h o u l d

h o l d f o r t h e c o e f f i c i e n t i n t h e o p e r a t o r (5 .10), n a m e l y

B ( r + n q g c ) = B ( r ) . H o w e v e r , t h e e n t i r e o p e r a t o r

(5.9) m a y n o t b e i n v a r i a n t u n d e r s u c h t r a n s l a t i o n s ,

i n a s m u c h a s t h e o p e r a t o r (5.10) i s i n v a r i a n t u n d e r

t r a n s l a t i o n s b y t h e p e r i o d of t h e e l e m e n t a r y m a g n e t i c

•This solution method was first proposed by S. P. ShubinL90J and
was further developed by one of us jointly with E. A. Turov.P"'52]

tStrictly speaking, we should use in (5.10) not Sd(f) but the
total magnetization of the s + d system. However, by virtue of
(5.3) the difference between the latter and S<i(f) i s a small quan-
tity (•*- A s<j/£0), and can be disregarded in the approximation used
in (5.10).
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cell q m > c , which in general may not coincide with the
crystal-chemical cell, for generally speaking

Sd(f)< r +<lc.c.c) ^Sd(f)( r )-
The energy operator of the entire system of s elec-

trons is given by the expression

(5.11)

The integration is carried here over the entire volume
of the crystal, and the summation is over two values
of the spin variable (a = ±V2); ф(т, s ) is the quantized
wave function of the s electron—Fermi particle (see
Sec. 118 of №1). if we confine ourselves to the first
approximation and average over the states of the in-
ner electrons, then we can show '-83-' that the disper-
sion law for the conduction electrons has the form

e£ = e°(k) - - i ( l + a.md(/))P(k), (5.12)

where €g(k) is the energy of the s electron as a func-
tion of the quasimomentum к (arbitrary dispersion
law) without allowance for the interaction with the d(f)
subsystem; ffs (crs = ±1) is the magnetic moment of
the s electron in /*£ units; m.cl(f) is the relative mag-
netization of the inner electrons; /3 (k) is the energy
parameter of the s-d(f) interaction, connected with
B( r ) .* The scalar product in (5.12) is equal to +т^(£)
or - m ^ f ) , depending on whether the direction of the
s-electron spin projection does or does not coincide
with the vector m^f j . t Formula (5.12) is valid, prop-
erly speaking, only for low temperatures (small devi-
ation of m<i(f) from absolute saturation at 0°K). How-
ever, (5.12) can be approximately extended also to the
region of high temperatures (close to the Curie point),
where the assumption that the magnetization m^f) is
close to its saturation is no longer valid. The justifica-
tion for it is the fact that the term with m,j(f) in (5.12)
is a small addition to the first term [it is linear in the
smallness parameter AS(j/£0, see (5.8)]. It is known
further from metal theory that the conduction electrons
remain degenerate up to temperatures on the order of
10,000°K (£ » kT). It is precisely for this reason that
(5.12) can be used for the conduction electrons in ferro-
magnetic metals up to the Curie points, taking m<i(f) to
mean the average statistical value of the magnetization
as a function of the temperature.

Formula (5.12) can be illustratively treated as fol-
lows: as a result of the s-d or s-f exchange interac-
tion, the s-electron spin is acted upon by a strong mo-
lecular quasimagnetic field, the magnitude of which is
on the order of the Weiss molecular field, and there-
fore the spin degeneracy is lifted in the s-electron gas.
It is also important to note that the appearance of a
term with <Jsmu(i) i n (5-12) i s connected not with the

*/3(k) - /1/r*(k,r)B(r) l/i(k,r)dr, where ф(М,г) ate the wave
functions of the electron in the crystal.

tFormula (5.12) was first derived in ['»•"].

c r u d e m o d e l r e p r e s e n t a t i o n s , but f o l l o w s f r o m the g e n -

e r a l t h e o r y and that the obta ined m o l e c u l a r f ield, a c t -

ing on the s e l e c t r o n s , g r e a t l y depends on the s t a t e s

of the inner e l e c t r o n s . The resu l t , for e x a m p l e n e a r

the Cur ie point w h e r e the m a g n e t i z a t i o n m ^ f ) d e -

p e n d s s h a r p l y on the t e m p e r a t u r e , i s a n o t i c e a b l e r e -

d i s t r ibut ion of the m o m e n t a ( i n the r e g i o n of the F e r m i

e n e r g y ) of the e l e c t r o n s in the " g a s " of the f e r r o m a g -

n e t i c - m e t a l conduct ion e l e c t r o n s , unl ike in n o n m a g -

n e t i c m e t a l s , and t h e i r e f fect i ve m a s s should change

in addit ion. U s i n g the c u s t o m a r y f o r m a l def in i t ion of

.. . .. „ К2

the latter, *m * we obtain from the

d i s p e r s i o n law ( 5 . 1 2 ) *

т;(к) = Я2[а(к) + р'(к)(а, (5.13)

where a is the lattice parameter, a ( k ) a quantity on
the order of the Fermi energy £, and /3'(k) is on the
order of the s-d(f) exchange parameter. In the ap-
proximation of a quadratic dispersion law

e£ = ao — Po (°smd(/)) + у fal + Pi (ffsmd(/))] '£2' (5.14)

where a0, /30, a t , and /3t are independent of the quasi-
momentum, we obtain in place of (5.13)

If we take into account the anisotropic exchange inter-
action E94 -I, we obtain for the effective-mass tensor in
place of (5.15)[95]

(5.16)SH = (ft/a2) {2 К - a, (p, - 2/?)]}-i,

where m*. and т * ц are respectively the "longitudi-
n a l " and " t r a n s v e r s e " terms of the effective mass
relative to the magnetization direction, and R is a
certain linear combination of the quasi-Coulomb and
exchange parameters of the magnetic interaction
( m d ( f ) = - l ) .

To estimate the influence of the magnetization ef-
fect on the thermodynamic properties of the ferromag-
net it is necessary to consider one of the thermody-
namic potentials, for example the free energy F. Its
determination is facilitated by the fact that the energy
(5.12) is the same for all the states of the d(f) elec-
trons with specified magnetic moment m^f). F can
therefore be written in the form'-91'15'16-'

F = Fo(mdU), T) + F1(mm, т., Т), (5.17)

where F o and F 4 are respectively the free energy of
the d(f) electrons without account of the s-d(f) ex-
change and of the s electrons with account of this ex-

*We can also use a more consistent definition of the effective
mass, by considering the motion of the s electron of the ferromag-
netic metal in the external magnetic field. M
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change. The latter can be replaced simply by virtue
of the energy of the Fermi gas of the s electrons, in
view of the degeneracy. We introduce the notation

n — n^.-\-n_, т. —— - , (5.18)

where n i s the total number of the s e l e c t r o n s p e r
unit volume, n + and n_ a r e respect ive ly the numbers
of t h e s e e l e c t r o n s with r ight hand and left hand spin
p r o j e c t i o n s , a n d m s i s t h e i r a v e r a g e r e l a t i v e m a g -

n e t i z a t i o n i n Ц - Q u n i t s . T h e e n e r g y d e n s i t y o f t h e d e -

g e n e r a t e g a s i s [ 1 - 4 , 6 3 , 1 5 , 1 6 , 9 1 ]

- ^ ( n + L , t + n J , . ) , ( 5 . 1 9 )

w h e r e f + a n d J _ a r e r e s p e c t i v e l y t h e F e r m i e n e r g i e s

f o r t h e r i g h t - h a n d a n d l e f t - h a n d e l e c t r o n s , e q u a l t o

( 5 - 2 0 )

Using (5.14), (5.15) and (5.17)—(5.20) we obtain accu-
rate to constant terms

F (mdU), ms, T) = Fo (md(/

(5.21)

where Л = (Зтг^^^Ютг2)"1 ~ 3. From the condition
that (5.21) be a minimum we can determine in prin-
ciple the equilibrium values of the magnetizations
md(f) a n d m s - И w e u s e the smallness of the ratios
/30/£0 and ^ i / go ( « 1), we obtain

4 ( A _ | | l ) ^ 0 . 1 - 0 . 0 1 . (5.22)

Inasmuch as the coefficient с is in first approximation
independent of T, md(f) and m s near the Curie point
have the same temperature dependence ~ (в — T) ,
as shown in C91>153.

The expressions obtained make it possible in prin-
ciple to explain one of the possible causes of the frac-
tional nature of the atomic magnetic moments of ferro-
magnetic metals Ei5,9i,96]_ i ^ e e ^ those values of
atomic moments which satisfy the minimum of (5.21)
even at 0°K need not be integers (in units of p g ) . This
fractionality at 0"K and the fractionality at higher tem-
peratures, determined in terms of the Curie constants
(see Sec. 2) will manifest themselves, generally
speaking, in different ways. To be sure, this " frac-
tionality effect" is of course not the only one and may
even be the principal one (see Sees. 2—4 and Ch. 5).

To explain the nature of the "anomalies" of the
kinetic coefficients in ferromagnetic metals (and also
in paramagnetic transition metals) there are two
causes of specific "anomalies" compared with the
same properties of normal metals. First, owing to
the presence of (at least) two sorts of current car-
r iers (for example, the s and d electrons) and to
the increased level density, additional opportunities
for the scattering of carr iers occur at the Fermi sur-

f a c e ( s - d t r a n s i t i o n s a f t e r M o t t C e 8 ] a n d s c a t t e r i n g b y

m a g n e t i c i n h o m o g e n e i t i e s ^ 4 ' 9 8 ' 9 9 3 ) . A l l t h i s c a n m a k e

i t s o w n a d d i t i v e c o n t r i b u t i o n s t o t h e e l e c t r i c r e s i s t i v -

i t y . S e c o n d , t h e k i n e t i c c o e f f i c i e n t s m a y a l s o b e i n f l u -

e n c e d b y a c h a n g e i n t h e e n e r g y s p e c t r u m o f t h e s

e l e c t r o n s i n t r a n s i t i o n m e t a l s , w h i c h h a v e m a g n e t i c

o r d e r ( f e r r o m a g n e t i c o r a n t i f e r r o m a g n e t i c ) . T h i s m a y

l e a d t o a d i f f e r e n t t e m p e r a t u r e d e p e n d e n c e e v e n i n t h e

p h o n o n p a r t o f t h e s p e c i f i c e l e c t r i c r e s i s t i v i t y . I n d e e d ,

f o r e x a m p l e i n t h e c a s e o f h i g h t e m p e r a t u r e s ( c o m -

p a r e d w i t h t h e D e b y e t e m p e r a t u r e o f t h e m e t a l ) i n a

f e r r o m a g n e t i c m e t a l , t h e c o l l i s i o n t i m e ( r e l a x a t i o n

t i m e ) o f t h e c o n d u c t i o n e l e c t r o n s T f d e p e n d s o n t h e

t e m p e r a t u r e n o t o n l y b e c a u s e o f t h e c o l l i s i o n s b e t w e e n

t h e e l e c t r o n s a n d t h e p h o n o n s , t h e n u m b e r o f w h i c h

v a r i e s w i t h t h e t e m p e r a t u r e , b u t a l s o b e c a u s e o f t h e

d e p e n d e n c e o f t h e c h e m i c a l p o t e n t i a l £ 0 ° f t h e e l e c -

t r o n s o n t h e t e m p e r a t u r e v i a t h e m a g n e t i z a t i o n [ s e e

f o r m u l a ( 5 . 2 ) ] . A s i s w e l l k n o w n [ 1 " 4 > 6 3 : i t h e t i m e T f

i s i n v e r s e l y p r o p o r t i o n a l t o t h e m e a n s q u a r e o f t h e

a m p l i t u d e o f t h e t h e r m a l v i b r a t i o n s o f t h e l a t t i c e

( w h i c h i n d e e d y i e l d s t h e o r d i n a r y p h o n o n d e p e n d e n c e

o n t h e t e m p e r a t u r e T f = 1 / T ) , a n d a l s o t h e d e n s i t y o f

t h e e l e c t r o n s t a t e s n e a r t h e F e r m i s u r f a c e , w h i c h i n

t u r n i s i n v e r s e l y p r o p o r t i o n a l t o t h e e n e r g y g r a d i e n t

| V ^ e ^ | ~ i i n t h e q u a s i m o m e n t u m s p a c e n e a r t h e s a m e

s u r f a c e I s e e ( 4 . 7 ) ] . F i n a l l y , T f i s a l s o d i r e c t l y p r o -

p o r t i o n a l t o t h e s q u a r e o f t h e q u a s i m o m e n t u m a t t h e

F e r m i s u r f a c e k 2
e = £ ) A s a n e t r e s u l t , t h e p h o n o n

r e l a x a t i o n t i m e f o r t h e c o n d u c t i o n e l e c t r o n s o f a f e r -

r o m a g n e t w i l l b e

w h e r e A ' i n c o r p o r a t e s a l l t h e c o n s t a n t s t h a t a r e i n d e -

p e n d e n t o f T a n d o f ( m ( j ( f ) + m s ) . T h e q u a n t i t i e s

k ( e = £ ± ) c a n b e d e f i n e d i n t e r m s o f t h e c o r r e s p o n d i n g

F e r m i - g a s d e n s i t i e s E 1 " 4 » 6 3 ]

(5.24)

For the energy gradient we obtain by virtue of (5.14)
and (5.24)

= A (Ox ±

Substituting (5.24) and (5.25) in (5.23) we obtain

(5.25)

= 4 («i ± ±

where A is independent of T. With the aid of the
Drude formula [ see item f) in Sec. 2 ] ст±

= n±e 2T±(f )/m± for s electrons with different spin
projections we can, by using the foregoing formulas,
obtain an expression for the ferromagnetic "anomaly"
of the electric resistivity (more accurately, its pho-
non part) of ferromagnetic transition metals, due to
the change in the energy spectrum of the conduction
electrons. This additional resistance is equal to
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rnsf, (5.27)

where p 0 denotes the " n o r m a l " phonon resistance and
c ' is a constant. It is meaningful to compare this for-
mula with experiment in conjunction with the contri-
bution to the electric resistivity due to the additional
scattering of the carr iers by the magnetic inhomoge-
neities (and also, generally speaking, in an account of
the s-d transitionC68^). These processes have been
considered in many papers CMM'-IM] a n ( j w e s hall
treat this question in greater detail in Sec. 16 of Ch.
IV. See also [ 8 ? : | .

Within the framework of the same simple consider-
ations it became possible to explain one of the causes
of ferromagnetic anomalies and other properties of
metals such as optical'^10*-', magneto-optical'-105-',
photoelectric '-106-', thermoelectronic '-107-', absorption
of sound t 1 0 8 ^ x-ray spectra t 1 0 9 ^ and paramagnetic
susceptibility [ l l o : ! .

d) The results obtained for the calculation of the
effects of "magnetized" conduction electrons in fer-
romagnetic metals can be generalized to include ferro-
magnetic semiconductors C1 1 1 '1 1 2^. in this case formula
(5.12) for the conduction-electron dispersion laws sig-
nifies that the activation energy (the gap ДЕ) and the
width of the conduction band or the effective mass of
the current carr ier show different dependence on the
magnetization of the semiconductor for different car-
r ier spin projections. For example, if the state with
к = 0 corresponds to the lowest energy (the "bottom"
of the conduction band^112^), then according to (5.14)
the activation energy is

AE = ct0 — p0 (<Tsnid(7)), (5.28)

where a 0 = ДЕ0 is the activation energy of the para-
magnetic state (md(f) = 0). It is seen from (5.28) that
regardless of the sign of the s-d(f) coupling param-
eter, the conduction band is split into two sub-bands
owing to the lifting of the spin degeneracy of the car-
r ie r s . We can therefore expect from the most general
considerations the appearance of ferromagnetic anom-
alies on going through the Curie point for those prop-
erties of the semiconductor, which depend on the acti-
vation energy of the elementary excitations. The elec-
tric conductivity of a ferromagnetic semiconductor in
the paramagnetic region depends on T in accord with
the formula

i — An (5.29)

where Ap is the pre-exponential factor, which de-
pends weakly on T. Below the Curie point we have
in place of (5.29), by virtue of (5.28)

a, = Ape-WT [c/md<>>/*T + c2e-pom<'(Ol''r], (5.30)

where c 4 and c 2 depend weakly on T and where c t

= с 2 = У2 when m<j(f) = 0. The asymptotic behavior of
In pi (pf = of1 is the electric resistivity) at tempera-

tures considerably below the Curie point (m^f) —• 1
and /30 » k®f) yields*

M , (5.31)

where the superior bar denotes the asymptotic value
and in the paramagnetic region

lnQp= — lnip-l-Tjr . (5.32)

Thus, in going over from (5.31) to (5.32) we must have
an increase in the slope of the line In p = f(1/T) (see
Fig. 15a—d). From the size of this decrease ДЕ = — /30

we can determine directly the exchange interaction pa-
rameter. At sufficiently large values of this param-
eter (/Jo > ДЕ 0), the sign of the temperature coefficient
of electric resistivity may even reverse, i.e., the con-
ductivity may become metallic (Figs. 15c and d). The
straight-line portion of the In pj curve given by (5.31)
can be extrapolated to the Curie point ®f and the value
of In pp for the same point subtracted from the result-
ant quantity; this yields

«i + ifel • (5-33>

Thus, the asymptotic line (5.31) will have, in addition
to the kink at the Curie point, also a jump б relative
to the In pp line. The direction of this jump is deter-
mined by the sign of the expression in the right half of
(5.33). Inasmuch as the second term in the bracket is
always greater than zero, the sign of б is determined
by the quantity c t . The experimental curves of the
type shown in Fig. 15a were clearly observed by Belov
et al'^54a-' in manganese ferrites. A kink in the In p
curve near the Curie point was observed in several
ferrites earlier by Komar and Klyushin ^M a-'. In some
of these, a weak bending of the type of Fig. 15a could

FIG. 15. Various types of "anomalies" in the specific elec-
tric resistivity of ferromagnetic semiconductors. The abscissas
are &{/в.

•For the sake of being specific it is assumed that /30 > 0. When
/30 < 0 it i s necessary to replace in (5.31) c, by c 2 and /30 by |Д, | .
The physical result will be the same.
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be noted. In the ferrites in which only a kink was ob-
served, there probably exist anomalies of the type of
Fig. 15b. Apparently, an anomaly of the type of Fig.
15c was observed in copper-zinc ferrite also by
Suchkov'-54a-'. Anomalies of the type of Figs. 15b—d
were found by Folger '-54a-' in ferromagnetic compounds
of manganese with perovskite structure, namely man-
ganites.

The formulas obtained for ferromagnetic metals
and for semiconductors with a single magnetic sub-
lattice were generalized to include both atomic and
polar antiferromagnetic semiconductors'-112'113-' and
also ferrites ^1 1 3 > 1 1 4 '1 1 2-' containing two and more mag-
netic sublattices.

In a ferromagnetic metal, the s-d(f) exchange inter-
action leads to a magnetization of the conduction elec-
trons, while in the case of an antiferromagnetic metal,
the influence of the spin system, on the s electrons
has a different character. By virtue of the s-d(f) ex-
change, the localization of the s electron with differ-
ent spin projections near the sites of different mag-
netic sublattices is no longer energetically equivalent.
Because of this, an appreciable change takes place in
the dispersion law for the s electrons, analogous to
that occurring in the theory of binary ordered alloys
E115^. As shown by Irkhin^116^1, in the case of an anti-
ferromagnetic metal with two collinear and equivalent
magnetic sublattices (in the strong coupling approxi-
mation of the band theory, and also for the case of high
temperatures, i.e., near the Neel point ® N ) , the dis-
persion law for the s electrons has the form

(k) = L - -i (ц2А2 + 4 | 2 L (А)
(5.34)

h >

where д is the relative magnetization of the sublattice
of the d or f electrons (ц « 1), while L, \, and L(h)
are the parameters of the s-d(f) exchange; L and
L(h) contains also quasi-Coulomb terms of the s-d(f)
coupling. It follows from (5.34) that in the paramag-
netic region (jx = 0) the ordinary dispersion law holds
true for the s electrons of the band model. At temper-
atures below the Neel point (T < ®N ) we have д ^ О
and in accordance with (5.34) a gap of forbidden ener-
gies, of width ~ ц\ \ |, is formed at the center of the
energy band of the s electrons of the antiferromag-
netic metal. Inasmuch as the magnetizations of the
sublattices vary rapidly with temperature near ®^,
one can expect in this temperature region sharp anti-
ferromagnetic "anomalies" of different physical prop-
erties, including also the electric conductivity. We
can separate here two limiting cases '-116-': 1) the
Fermi surface is located exactly at the center of the
conduction band (prior to its splitting)* and 2) the

Fermi surface is located near the edge of the con-
duction band.

In the former case, the energy gap produced below
the Neel point will separate the free sub-band from
the completely filled one (5.34), which should lead
simultaneously, on going through the Neel point, to
a transition from the metallic to the semiconductor
state. Taking into account only the exponential part
of the dependence of the electric conductivity [see,
for example, (5.29)] on T and using (5.33), we have

(5.35)- exp - 2kT J

It is seen from (5.35) that the activation energy in this
case depends itself on T. This should distort some-
what the ordinary semiconductor variation of the elec-
tric conductivity with T, particularly near ®N.

In the second limiting case one can use the effec-
tive-mass approximation (see E1"4»63]) and carry out
the usual band-theory calculation of the electric r e -
sistivity for high and low temperatures. This yields

(T > во),
(Т « 8D) (5.36)

where a, a' and /3, /?' are quantities independent of
T, and ®D is the Debye temperature. The first terms
in (5.36) make the ordinary phonon contributions to the
electric conductivity, while the second have arisen as
the result of a change in the energy spectrum of the s
electrons upon appearance of antiferromagnetic order-
ing.*

In the case of arbitrary location (and shape^95^) of
the Fermi surface in the antiferromagnetic metal, the
effects that are characteristics of the two limiting
cases considered above will be superimposed on each
other in some manner. The results obtained here are
in sufficiently good qualitative agreement with the ex-
perimental data, for example for manganese E5 3 a3. The
crudeness of the developed calculation does not enable
us, naturally, to speak of a quantitative comparison be-
tween theory and experiment in the case of the phenom-
enon considered.

Turov and Irkhin^112^ extended these calculations to
the case of antiferromagnetic semiconductors and to
ferromagnets, while Giterman and IrkhinC114^1 calcu-
lated the case of antiferromagnetic polar crystals.
We refer the readers to the original articles for de-
tails of these calculations.

In the low -temperature region, ferromagnetic and
antiferromagnetic metals have an additional electric
resistivity and heat resistivity that are specific to
them and are due to collisions of the s electrons with
the ferromagnons, which can exceed in magnitude the

•This case is possible, for example, in a body-centered cubic
lattice in which there is one s-electron per atom.

*Here, as in the case of ferromagnetic metals, we must bear in
mind the existence of other possible causes of the antiferromag-
netic anomalies in the kinetic effects (see Г.4».9"-102]). j n addition,
at low temperatures (T <K ©D) the condition j i . « l may no longer
be satisfied (see also Sec. 16 below).
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phonon resistivities, in A definite temperature interval,
owing to the specific dependence on T. The idea of the
existence of this effect was first advanced in C117>118^;
more detailed calculations were made in ^119^. It was
shown by Turov's detailed investigations^1 2 0"1 2 2^ that
the ferromagnon part of the electric resistivity pfm

is represented in the general case by a complicated
function and can be only approximately given as a sum
of two terms:

Qfm = (5.37)

where a4 and a2 are quantities independent of T. This
question will be considered in greater detail in Sec. 16
of Ch. IV.

e) To conclude this section let us consider still an-
other problem connected with s-d(f) exchange, namely
the influence of the spin and electron systems of a
transition metal on the atomic nuclei of its ions, the
so-called phenomenon of orientation of atomic nuclei
in crystals, due to interaction between the magnetic
moments of the electron orbits and spins, on the one
hand, and nuclear magnetic moments on the other, fii
isolated atoms this interaction leads to a hyperfine
structure (Ms) of the spectral lines and is therefore
called the "hyperfine" or hfs coupling [ 5 8 ' ш : | . Meth-
ods of microwave spectroscopy, and particularly para-
magnetic resonance, make it possible to investigate
the hfs coupling in solids, too, and this yielded rich
information on the electronic structure of ions in
various compounds C58,167,168] i n a s m u c h as in ferro-
magnetic crystals the resonance lines are usually very
broad, it is difficult to resolve the hfs components for
them. Therefore in ferromagnetic metals and alloys
use is made of other experimental methods for deter-
mining the hfs. At the same time, knowledge of the
hfs coupling for ferromagnets and antiferromagnets,
particularly metallic ones, can yield in principle im-
portant information on the state of the electrons r e -
sponsible for the magnetic atomic order. In a ferro-
magnetic crystal, owing to its spontaneous magnetiza-
tion M s at T < ©f, each atomic nucleus is situated in
a certain effective magnetic field Heff, which has the
same value and direction inside the ferromagnetic do-
main. * If the nuclei have magnetic moment Mnuc a n < *
a spin quantum number I, then (21 + 1) orientations
of the nucleus relative to Heff are possible, and the
energy differences for each two neighboring orienta-
tions are )un u cHeff/21. At high temperatures all the
nuclear spins are randomly distributed over all pos-
sible orientations. At low temperatures, however,
kT 4 MnucHeff/21. all the nuclear spins will be par-
allel to Heff, i.e., total orientation of the nuclei takes
place within the volume of each ferromagnetic domain.
Inasmuch as the degree of nuclear polarization depends

in a known manner on the Boltzmann factor, Heff can
be determined if the nuclear polarization, цпис, I, and
T are known. At the present time there are three ex-
perimental methods for the determination of Heff in
ferromagnets. *

1) Determination of Heff by measuring the aniso-
tropy of gamma or beta radiation. In this method use
is made of the fact that the gamma or beta rays emitted
by decaying radioactive nuclei are anisotropic. At high
temperatures, when the nuclear spins have random
orientations, the overall intensity of the radioactivity
from the specimen is isotropic. At low temperatures,
on the other hand, when the distribution of the nuclear
spins relative to the spontaneous magnetization M s of
the ferromagnet electrons becomes ordered, the radia-
tion in the domain becomes anisotropic, and if the spe-
cimen is magnetized to saturation the overall radiation
from the specimen will also be anisotropic. By way of
a measure (factor) of the anisotropy one chooses the
quantities

where Wyg( ©) is the intensity of the gamma or beta
radiation in a direction making an angle © with M s . t
Using the formula for the angular distribution of the
gamma or beta rays1^128^, we can obtain an approximate
expression for еу>;з (see C12T°3

a*
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FIG. 16. Temperature dependence of the anisotropy factor of
gamma radiation from radioactive oriented nuclei in a crystal.[l2*l

•This field, which has essentially an intra-atomic character,
must not be confused with the interatomic exchange field, which
is responsible for the ferromagnetic order in the crystal.

*The idea of this method was first advanced by Khutsishvilit124].
The first experiments on the measurement of the anisotropy of
gamma radiation of polarized nuclei were carried out by Alekseev-
skii and Shchegolevt125! and by Zavaritskii (see [124b]), and also by
a group headed by KurtH126] for Co'0 in poly crystalline and single-
crystal cobalt specimens at T - 0.03-0.08° K. Samoilov, Sklyarev-
skii, and Stepanovt127] extended this method to the case of polari-
zation of nuclei of diamagnetic elements in a ferromagnetic crystal,
and also by using measurements of the beta-radiation anisotropy.

t Inasmuch as Wy(n-) = Wr(0), to observe the summary aniso-
tropy of the gamma radiation it is sufficient for the ferromagnetic
specimen to contain domains with only the 180° type of neighbor-
hoods even in the demagnetized state.
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eY = const [ ykT J , ep = const(/+ 1)— у JkT -j ,

(5.38)

where the constants depend on the character of the r a -
dioactive decay of the nuclear spin'-1270-', v is the ve-
locity of the beta particle, and с is the velocity of
light. It is seen from (5.38) that the anisotropy of the
gamma radiation makes it possible to determine the
value of Heff, while the anisotropy of the beta radia-
tion determines also the sign of this field. Experiment
[125,126,127] h a s c o n f i r m e d formula (5.38). Figure 16 is
a typical plot of vTvs. l /T E 1 2 * ] . t j j e values obtained
for Heff are ~ 105—106 Oe.* The measured anisotropy
of the beta radiation for Co6 0 nuclei in an alloy of co-
balt with iron have shown that Heff is negative (rela-
tive to M s ) [ m ] .

2) Determination of Heff by measuring the addi-
tional specific heat connected with the polarization
of the nuclei in the crystals. This specific heat C o n

reaches a maximum at KT t ~ MnucHeff /21, and when
T > Tj it has the form (see supplement to C129^).

% / ( ^ f ^ V . (5.39)

Inasmuch as all other contributions to the specific
heat (from the lattice, from the conduction electrons,
and from the spin waves) are vanishingly small below
1°K, the experiment yields in practice the value of
C o n , from which Heff is determined, t Figure 17
shows a C/R curve for terbium in accordance with
the data of ^ ш ^ . From this we obtain for Heff a value
5700 kOe.t

*Figure 16 shows the average scatter of the experimental points;
the latter fit quite well the line V T = Vl .2 x 10"2T'' up to a tem-
perature 0.04° K. The deviations from this line at lower tempera-
tures are apparently due to the maximum of С of cobalt, which does
not give the specimen enough time to cool to the temperature of the
sa l t . t 1 2 *]

t The first indications concerning the use of this method were
given by Heer and Erickson,["°] who made the first experiment with
cobalt ["0 and found a value of 183 kOe for Heff. Arp, Kurti, and
PetersonC132] repeated these experiments and found Heff = 200 kOe.
Kurti and Safrata [1331 measured С for the rare-earth metals gado-
linium and terbium. No Сд, component was found for Gd, probably
owing to some additional specific-heat anomaly which has not yet
been explained. In the case of Tb one observes clearly a rise in
the C/R curve (see Fig. 17) below 1° K, connected with the nuclear
polarization. The field Heff was determined from (5.39) and found
to be 5700 kOe. It can be compared with the value Heff = 6100 kOe
obtained from paramagnetic resonance experiments^1 3 4! for terbium
ethyl sulfate. It is clear therefore that in a metal and nonmetallic
salt the hfs interaction is practically the same (the small differ-
ence can be attributed to different distributions of the electron
density in the 4f group of the Tb ion). Consequently, the role of
the conduction electrons in the formation of Heff i s apparently not
very large.

t T h e curve of Fig. 17 gives the sum of the lattice (~T3), ferro-
magnon (~TVl) and oriented-nuclei (-1/T1) specific heats; the cor-
responding distribution is shown in Fig. 17.
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FIG. 17. Temperature dependence of the specific heat of ter-

bium at low temperatures. The summary specific heat is made up
of the lattice specific heat (~T3), that of the conduction electrons
(~T), of the ferromagnons (-T*'2) and the nuclear component Co n

(after [»"]).

The values of Heff determined by any of these two
methods can be compared, for example, with the value
of the same field obtained in paramagnetic salts for
the same ions, by studying the variation of this field
with changing composition of the investigated alloy
or with changing crystal structure.*

3) Determination of Heff from the Zeeman nuclear
multiplet produced by Heff in measurement of the
Mb'ssbauer effect. The resonant absorption of gamma
quanta in crystals, discovered by MSssbauer '-135-' in
1956, has already been used in many practical ways to
study many physical phenomena (see, for example, the
reviews E136^), including the determination of the mag-
nitude and the field Heff acting on the atomic nuclei in
ferromagnetic crystals. In the case of the 14.4-keV
gamma radiation from Fe 5 7 , occurring in the decay of
Co5 7, the spectral line has a very small natural width,
so that the hfs can be resolved for the 14.4-keV tran-
sition C1 3 6»1"]. These experiments yielded Heff = 3.33
x 105 Oe. By superimposing a 20-kOe external mag-
netic field, which decreased the magnitude of the hfs
splitting, it was demonstrated that the direction of
Heff is opposite that of m s . The latter was also dem-
onstrated for cobalt E138^. The case of Dy161 nuclei at
room temperatures was also investigated and it was
found that H e f f ~ 2 x 106 O e [ 1 3 9 ' 1 2 7 d ] . In Table X,

*Wei, Cheng, and Beckt166-! recently measured the nuclear mag-
netic specific heat (5.39) from 1.6° to 4.2° К in two ferromagnetic
alloys of one structure (body centered cubic lattice): Co^jFed 7,
and V 0 - J jFe 0 - ( i 7, and have found that in the former alloy the Co nu-
cleus i s acted on by a field Heff - 312 kOe, while the V nucleus
in the second alloy i s in a field -61 kOe. Following [1 3 7 B], the
authors of ["•] attribute this difference in Heff to the fact that the
Co5 9 nucleus i s acted upon by a field Heff which arises principally
because of the magnetization of the s electrons of their own ionic
core (i.e., Co), produced by their (s-d) exchange coupling with the
3d electrons of the same core, which have an uncompensated mag-
netic moment. In the case of the vanadium ion, on the other hand,
its core apparently does not have the uncompensated 3d-electron
moment, and therefore the contribution to Heff i s made by the same
magnetization of the s electrons of the core of this vanadium ion,
which in this case arises as a result of the weaker (s-d) exchange
coupling with the neighboring iron ions.
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Table X. Effective field Heff acting on the nuclei in
ferromagnets and antiferromagnets ^ 1 6 9 '

Nuclei

"Fe

"Fe3* (tetra)

"Fe3* (oct)

"Fe3* (tetra)

"Fe3* (oct)

"Fe3*
"Fe

"Fe3*

57J'e3»

"Fe3*
57fe3+
"Co

"Ni

u»Sn

1S8Au
U4]n1S2Sb

Substance

Fe
Co
Ni
CoPd
YIG

YIG

DylG

DylG

GdlG
Fe3O4

NiOFe2O3

a-Fe,O3Y-Fe2O3

Mg-0
FeF2
Co (fee)
Co (hep)
Co
Fe
Ni
Fe

Coo,83Fe2,1;O4
Ni

Fe
Co
Ni
Mn2Sn
Mn4Sa
Fe
Fe
Fe

H *f • 1(йОе

- 3 . 4 2
3 . 3 0

3 . 1 2 ± 0 . 0 5
3 . 3

3 . 9 2 ± 0 , 0 5

o . y u

3 . 9 0 ± 0 , 0 7
' 4 , 6

4 . 7 4 ± 0 . 0 6
Л Я"Ч
*t .OO
4 . 7

4 . 9 0 ± 0 . 0 7
5 , 4

3,90
4 . 6

4 . 8 5
5 , 4

4 . 0 a n d 4 , 9

5
4 . 7 0 ± 0 . 2 0
4 . 5 0 ± 0 . 2 0

5 . 0 ± 0 ' , 2 0
4 . 5 ± 0 . 2 0
5 , l ± 0 . 2 0

( t e t r a )
4 , 5 ± 0 . 2 0 ( o c t )

5,1
5 , l ± 0 . 2 0

5 . 1 5
5 . 0 ± 0 , l

5 . 0 5 ± 0 . 2 0
5 , 1 5 ± 0 . 2 0

5 . 5 0

3 . 4 0

2 . 1 3 4
2 , 2 8
2 , 2 0
3,20
0 . 8 0

3 . 0 ± 0 , 2
4 . 1 0 ± l , 0

1.70

- 1 Л 0
-U,81±0.04

-0.205±0;015
+0.185±0.01

-0.45
+2.00

7,5

1.8
2.0

Method
of deter-
mination

M
NMR

M
»

»

NMR
M
»
»

NMR
M
»

»

»
NMR

M

я

;,)

»

,>

»
»
»

E P R

M

NMR
»

C^nuc

„

M

С nuc
NMR

M
„
»
»

»
NP

NP

NP

M — Mossbauer effect, NMR— nuclear magnetic resonance.
netic resonance, NP — nuclear polarization. If the
site is indicated in the reference, it is listed also

symmetry

Temperature
of experiment,

degrees К

0
295

0
88

Room

»
Liquid air
Room

»
Liquid air

Room
Liquid air

Room
Liquid аи-
Room

t,

85
Room

»

„
300

85
1.3

0
Room

0
0
0
0

4.5
6

Room
»
100
100
100
0
0

0.015

0.015

0,015

Litera-
ture

137

171
14«

137, 172
173
174
175
176
174
173
174
175
176
174
174
174
174

174
175
146

176

177

177
146
177
17b
179
177
177

1Ы0

145

168

171

131, 132

131, 132

131, 132

181

182

183

184

142, 185

142,185

142, 185

186

18«

127

127

127

EPR — electron paramag-
of the radioactive nucleus

in the table. The plus or minus

signs of the field are indicated clearly if known; if the fields are not indicated, this
means that they are unknown.

taken from H169H, is given a summary of the experi-
mental data on the measurement of the fields Heff
acting on nuclei in various substances. The table also
shows the temperature of the experiment, the method
of measuring Heff, the symmetry of the arrangement
of the crystal lattice site occupied by the investigated
ion (if that symmetry was reported in the correspond-
ing source), and also the sign of the field relative to
the magnetization of the electron system. Table X in-
dicates also all the literature sources.

It must be emphasized that the fields Heff, if cor-
rectly interpreted, can yield very valuable information

on the distribution of the "magnetic" electrons in the
crystal, and also help clarify the physical nature of the
magnetic properties of the transition metals (the gen-
esis of the exchange coupling etc.) . Watson and Free-
man recently published a detailed investigation ^169-', in
which they attempt to explain the origin of the effective
fields in magnetic materials. Their analysis is based
on the assumption that the main cause of these fields
are effects of exchange polarization of the internal s
electrons of the ionic cores of the crystal lattice, due
to their exchange coupling with the uncompensated mag-
netic moments of the 3d or 4f electrons of the same
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cores. The direct action on the nuclei is exerted by the
Fermi contact mechanism ^ u o > 1 4 1 ^. The Hamiltonian of
this interaction between one nucleus and one electron
is

(5.40)

where L, S, and I are respectively the operators of
electrons, orbital, spin, and nuclear spin moments;
g and gnuc are the electron and nuclear spectroscopic
splitting factors. The term with the б-function in
(5.40) is called the Fermi contact interaction; it dif-
fers from zero only for s electrons whose wave func-
tion has no nodes on the nucleus. To the contrary, for
s electrons the two last dipole terms in (5.40) vanish.
Thus, the Fermi contact interaction can be set in cor-
respondence with an effective magnetic field equal to

He — —T-^BS 1^(0) |2> (5.41)

where p(0) = |^i(0) | 2 is the density of the s electrons
in the nucleus. Experiment shows that in many mag-
netic substances the sign of Heff is negative with r e -
spect to the electron magnetization of the crystal. An
analysis of the data on the measurement of Heff for
3d metals, ferrites, r a r e earth ferrites with garnet
structure, and also many salts have made it possible
for Watson and Freeman '-169-' to state, in contradiction
to the previous pronouncements, for example in the
well-known paper by Marshall'-129-', that the main con-
tribution to Heff is made practically always by ex-
change polarization of the s electrons of the ionic
cores of the crystal lattice with the spin density of
the unpaired d or f electrons. As was first pointed
out by Marshall^129-', in addition to the contribution
of H c from (5.41), the effective field includes also a
local component Щ, which consists of the external
field, the demagnetizing field of the specimen surface,
and the Lorentz field 4M/3, as well as the corrections
to it for the case of noncubic crystals (and amounting
to not more than 10"3 of the Lorentz field). In addi-
tion to this field, one must also take into account 1) the
field due to the contact interaction with the conduction
electrons that are polarized by their exchange coupling
with the d or f electrons, 2) the field due to the con-
tact interaction with the conduction electrons that are
partially hybridized with the d electrons, 3) the field
due to the magnetic dipole interaction of the d elec-
trons, 4) the field due to the unquenched part of the
orbital momenta of the d or f electrons.

Other factors can contribute to Heff (see Sec. 5 in
). We consider by way of an example the fields act-

ing on the nuclei in metallic iron. The main negative
contribution can be produced here by the magnetized
2s and 3s layers of the ionic core (~ 400 kOe). A pos-
itive contribution (100 kOe) is made by the magnet-
ized conduction electrons, as was suggested by Mar-
shall C129^. At the same time, however, as shown by

Anderson and Clogston [ 1 7 0 : i, a negative effective field
may arise, due to the covalent bond between the con-
duction electrons and the unfilled 3d group.

As can be seen from Table X, by measuring the
Mb'ssbauer effect the Ms of Fe 5 7 was determined also
in the anti-ferromagnetic compound FeF 2 ^148^. It was
found there (by extrapolation to 0°K) that Heff = 3.40
x 105 Oe. It was also found that the Fe 5 7 nucleus in
Co is acted upon by a field Heff = - 312 kOe, whereas
in nickel Heff = -280 kOe. t l 4 6 J A few oxides of tran-
sition metals and ferrites were also investigated (see
Table X), in which Heff for He3 + turned out to be of
the order of 500 kOe. In the case of yttrium-iron gar-
net, the hfs was investigated separately for the tetra-
hedral and octahedral interstices. ^146^ Experiments
were also made to determine the magnitude and direc-
tion of Heff of the rare earth ions of samarium, gado-
linium, dysprosium, europium, and terbium in r a r e
earth iron garnets. ^U7^ Investigations with the aid of
nuclear magnetic resonance made it possible to deter-
mine the magnitude and the sign of the polarization of
the conduction electrons in r a r e earth intermetallic
compounds. An interpretation of these experiments
makes it possible to assume that the s-f exchange
interaction between localized 4f electrons of the r a r e
earth iron and s electrons is negative and amounts to
~ 0.1 eV^148-1. Measurements of the MSssbauer effect
for the determination of atomic magnetic moments in
ferromagnetic and antiferromagnetic metals and alloys
(see, for example, CU9^) is also very important.
Finally, an interesting attempt was made '-143-' to deter-
mine Heff in iron, cobalt, and nickel with the aid of
the Mossbauer effect on a nucleus of a diamagnetic
atom. For this purpose specimens were prepared of
strongly dilute alloys of radioactive tin (Sn1 1 9) in these
metals. The measurements have shown ^143^ that Heff
= - 0.81 x 105 Oe in iron, Heff = - 0.205 x 105 Oe in
cobalt, and Heff = +0.185 x 105 Oe in nickel. The au-
thors of C143] have proposed still another mechanism
for explaining the results obtained on the measure-
ments of Heff, acting on the nucleus of a diamagnetic
atom in a ferromagnet. In their opinion, the wave func-
tion of the 4s electrons of the tin atom overlaps the
functions of the 3d electrons of the Fe, Co, and Ni
atoms which are nearest neighbors of the Sn ion, and
the exchange coupling between these 4s and 3d elec-
trons leads to a strong "magnetization" of the former.
In the region of the Sn nucleus the prevailing spins will
be those of 4s electrons that are anti-parallel to the
magnetic moment of the 3d electrons, which in the case
of iron and cobalt produces a negative field Heff. Free-
man and Watson^144^ (see also ^43^) have shown with
the aid of Hartree-Fock calculations (with account of
spin exchange polarization) that the field H c is very
sensitive to the form of the 3d-electron distribution
near the lattice site (see Fig. 2 in t 1 4 4 ^) . They con-
sequently warn against introducing various hypothet-
ical "mechanisms" of exchange polarization (for ex-
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ample the mechanisms of L143^ or the one mentioned by
Goodings and Heine'-1*2^ an3 others). Thus, in deter-
mining Heff great difficulties arise in the interpreta-
tion, inasmuch as this field is the result of a super-
position of many different effects.

f) To conclude this chapter, which is devoted to an
exposition of elementary theoretical treatments of the
transition metals, let us dwell once more on a compari -
son of two basic microscopic models referred to above.

As will become particularly clear in the second
part of the review, an advantage ot the (s-d) metal
is that it makes it possible to describe correctly the
spin-wave branch of the energy spectrum of ferromag-
nets and antiferromagnets, it gives a good qualitative
explanation of the scattering of conduction electrons
and neutrons by magnetic inhomogeneities, explains
one of the reasons for the fractional atomic magnetic
moments, and can be used successfully to explain the
internal magnetic fields acting on the atomic nuclei in
transition metals with atomic magnetic order [ see
item e)].

At the same time, a shortcoming of the (s-d) ex-
change model, like that of the band model, is the sharp
autonomization of the s and d electrons. A specific
shortcoming of this approximation is the assumption
of complete conservation of the " a t o m i c " state of the
d or f shells in the metal. It follows therefore that
it is impossible to explain the fractional nature of the

average atomic magnetic moments (above the frac-
tional contribution to the magnetized conduction elec-
trons). Furthermore, this model eliminates com-
pletely the participation of the d electrons in the
transport of the electric charge in the metal.

In spite of all the foregoing shortcomings, the
(s-d) exchange model is undoubtedly useful in the
treatment of the properties of f metals, dilute d
alloys in solvents with low state density at the Fermi
surface, and also certain d metals (such as iron).
This model can be used with even greater justification
to explain the properties of ferromagnetic and anti-
ferromagnetic compounds of nonmetallic (semicon-
ductor) type.

It can thus be stated that the s-d model, in leaning
on the localization of the atomic magnetic moments in
the crystal, greatly underestimates the degree of par-
ticipation of the d electrons in the collective elec-
tronic properties of the Fermi system, connected
primarily with the transport of electric charge in the
crystal, with the formation of the Fermi surface in the
crystal, in the electronic specific heat, in Pauli para-
magnetism, etc.

Everything stated above concerning the main con-
tents of the two basic model treatments of transition
metals with atomic magnetic order can be summarized
for the sake of clarity as follows:

Properties

s states

s energy

d states

d energy

Ratio of s and
d states (Д -
band width)

Spin density

Band model

t s (k 8, r) ~ eik 3 r ; u, (k 3, r ) ~
~ c o n s t

e s (k, a,) = es {ks)+As (k s ) m2 a b

г|>й (к„, г) ~ A r ; ud(k,T)~
~const

Ed(kd,tjd) = Ed(kci) +
+Ad (kd) m: od

Д<г/Д,<1,
тЦт* » 1

Smeared over the crystal,
average atomic moment can be
arbitrary and fractional

s-d model

t s (ks, r) ~ eiksr; us (ks, r) ~ const

Es (ks, os) = ss (кв)+Л„ (k3) m2 os

*d (kd, r) ~ <p (r — rn); ud (kd, r) =
= 6(kd)<p(r — rn)

sj (к^, a(i) = E(i — Atomic level

Ad/As = 0,
mVm* ->•O T

Completely localized at the crys-
tal s i tes ; the average atomic moment
i s a multiple of /Xg , and the spin
coincides with i ts value for the iso-
lated atom
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Properties

Advantages
of model

Difficulties

Field of
applications

Band model

Explains the anomalies of
the electronic specific heat,
paramagnetic susceptibility,
fractional values of the atomic
magnetic moments and carriers,
qualitative description of x-
ray spectra

Ignores the spatial inhomo-
geneity of the electron density,
and does not permit an explana-
tion of the observed form fac-
tors and effects of scattering on
magnetic inhomogeneities

d metals and alloys (with
high density of the solvent-
metal states at the Fermi sur-
face)

s-d model

Gives good agreement with the
measured neutron and x-ray form fac-
tors, admits of simple spin-wave
treatment, offers an explanation of
the indirect exchange and scattering
of neutrons and electrons by the mag-
netic inhomogeneities, a description
of the magnetization of the s elec-
trons and its influence on the static
and kinetic electron properties of the
crystals, and an explanation of the
origin of the effective magnetic
fields on the nuclei.

The postulation of two autonomous
s and d electron subsystems; the
impossibility of explaining several
causes of the fractional nature of the
average atomic magnetic moments and
carriers; the collectivization of d
electrons is ignored

f metals, alloys, ferromagnetic and
antiferromagnetic semiconductors
(metal-solvents in alloys with low
density of states at the Fermi sur- ;
face) j

Comparing once more the band and (s-d) exchange
models, we can state that they represent two sides of
one and the same coin, two different asymptotic approx-
imations in the theory of transition metals with atomic
magnetic order. The problem of further development
of the theory consists in bringing together these two
approximate treatments and freeing them simultane-
ously of the particular model approximations (see also
Ch. V).
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