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INTRODUCTION However, if there is magnetic order in the crystal

SLOW, or thermal, neutrons interacting with the
atoms of a scatterer are subject to two types of scat-
tering: nuclear and magnetic. The first is caused by
the interaction of the neutron with the nucleus via
purely nuclear forces and has a scattering cross sec-
tion of the order of one barn. The second type of
scattering is due to the presence of the magnetic mo-
ment of the neutron which interacts with the magnetic
moment of the atom so long as it is different from
zero. The cross section for magnetic scattering, like
nuclear scattering, is of the order of a barn.

In the scattering of slow neutrons in a crystal the
de Broglie wave lengths of which are comparable with
interatomic spacings, one gets the typical diffraction
scattering picture: for scattering angles correspond-
ing to the Wulff-Bragg conditions, there appear sharp

peaks in the intensity of coherently scattered neutrons.

If the crystal does not contain magnetic atoms, the
entire interference picture is caused by the nuclear
scattering of the neutrons from the atoms occupying
periodic positions in this space. When the crystal
contains magnetic atoms, but these do not form a
magnetic order (of the ferro- or antiferromagnetic
type), the magnetic scattering of the neutrons will not
be coherent because of the chaotic orientation of the
magnetic moments of the atoms, and thus the coherent
picture will once more be caused by the nuclear scat-
tering.

over a volume of one or several unit cells, the mag-
netic scattering of the neutrons will also be coherent.
In general the conditions for Bragg magnetic reflec-
tions will be different from those for nuclear reflec-
tions, so that the locations of the coherent peaks in the
magnetic scattering may not coincide with those of the
nuclear peaks.

In the scattering of unpolarized neutrons there is
no interference between nuclear and magnetic scatter-
ing, so that we have a simple superposition of the in-
tensities for the two; then, depending on the magnetic
structure of the crystal, the magnetic peaks may be
superposed on the nuclear peaks (since each magnetic
atom also gives a nuclear scattering of the neutron),
but they may also appear independently of the nuclear
peaks.

As we see from the foregoing, the study of coherent
scattering of neutrons in crystals permits one to un-
derstand the crystal-chemical and magnetic structure
of the crystal. This constitutes the method of neu-
tronography, which at present has already developed
into an extensive region of experimental physics and
becomes more and more important, especially for the
science of magnetic materials. So-called magnetic
neutronography is the basis on which the modern
theory of ferro- and antiferromagnetism is based.

But the method of neutron diffraction is not limited
to the possibility of studying just crystal structures.
The coherent Bragg peaks which are associated with
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the determination of the structure are those directions
along which neutrons are scattered elastically for the
most part, i.e., without exchange of energy with the
crystal. But neutrons can also be scattered inelastic-
ally, giving up a part of their energy to the crystal or
getting some from it.

It is well known that inelastic nuclear scattering
of neutrons occurs via absorption or emission by the
neutron of a definite number of phonons. Magnetic
inelastic scattering in the presence of magnetic order
occurs via the absorption or emission of magnons—
quanta of the spin waves. Phonons and magnons are
collective motions of the atoms coupled by the crystal-
line forces and by the exchange forces between the
magnetic moments of the atoms in the crystal. It
therefore follows that the study of inelastic scattering
of neutrons in crystals permits one to study the dy-
namics of the crystal: the spectrum of thermal lattice
vibrations (phonons) and the spectrum of thermal
vibrations of the spin system (magnons).

We can say immediately that the greatest informa-
tion about the state of the magnetic system of a crys-
tal which has magnetic order comes from a study of
the scattering of neutrons near the transitionpoint—
magnetic order-disorder, and also from the study of
the scattering of polarized neutrons, where one gets
interference between the nuclear and magnetic scat-
tering. Even such a brief glance at the possibilities
of neutronography shows that experimenters have at
their disposal a powerful method for studying the
solid state.

The survey as a whole will consistently and sys-
tematically present the theory of scattering of slow
neutrons in crystals. Since the theory of nuclear
scattering in crystals was worked out in detail in the
monograph of Akhiezer and Pomeranchuk,™, our main
attention will be devoted to magnetic scattering, es-
pecially to questions which have become important in
recent years: inelastic scattering, critical scattering,
and also the scattering of polarized neutrons. Various
applications of elastic magnetic scattering have been
treated earlier in the monograph of Bacon (2] and also
in the surveys (3,41, At the same time we have tried
to maintain a definite equilibrium between the differ-
ent parts of the theory in order to cover a wide range
of problems. The survey does not pretend to com-
plete explanation of the problem, and only those as-
pects are considered which have an application to ex-
periment, although very few experimental data are
given.* In this connection we have not considered at
all problems of multi-phonon and multi-magnon scat-
tering, limiting ourselves merely to a description of
their main features.

The presentation is given within a unified mathe-~
matical scheme corresponding to a description of the

*A survey of various applications of the neutronographic method
is contained in the paper of Zhdanov and Ozerov.[*]
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scattering in the Born approximation. By introducing
the so-called time formalism (Van Hove (5,6 ), the
problem of calculating the scattering cross section
per unit solid angle and per unit energy range reduces
to computing the Fourier components of the correla-
tions between positions of two atoms in the lattice at
different moments in time for the nuclear scattering,
and of the correlation functions of the spin projec-
tions for the magnetic scattering. The appropriate
mathematical apparatus is developed in part I. Later
it is applied to various problems of scattering theory.

In part II we consider elastic nuclear and magnetic
scattering of neutrons and present the fundamentals
of neutronography—nuclear and magnetic. sPart III
considers inelastic scattering of neutrons. Here only
one-quantum scattering is considered, in which one
phonon or one magnon is absorbed or emitted. The
theory of this question lies at the basis of the experi-
mental method for reconstructing the spectra of pho-
non and spin waves from the data on inelastic scatter-
ing. In part IV we present the features of magnetic
scattering of neutrons near the Curie point. Under
conditions of a phase transition of the second kind,
where fluctuations in the magnetization increase, one
gets ‘‘critical’’ scattering of neutrons which is simi-
lar to the scattering of light in a medium in the criti-
cal state (opalescence). And finally, part V is devoted
to the scattering of polarized neutrons. Here we con-
sider two classes of questions: 1) scattering cross
sections of polarized neutrons, 2) change in the polar-
ization vector of the incident neutron beam on scatter-
ing in ferro- and antiferromagnets.

I. GENERAL EXPRESSIONS FOR SCATTERING
CROSS SECTIONS

1. Time formalism in scattering theory

In problems of scattering of slow neutrons in
materials, under conditions remote from resonance
capture by the atomic nuclei, one usually starts from
the Born approximation which corresponds to the first
order of perturbation theory. When the scatterer con-
sists of a large number of particles (for example, a
crystal), it is convenient in calculating scattering
cross sections to introduce the time formalism. In its
most general formulation the problem consists of the
following.

The scatterer is in a state of statistical equili-
brium at a given temperature and is described by the
statistical operator p = e P /Tr P , where I is
the Hamiltonian and 8 = 1/kT. Let the initial state of
the scatterer by characterized by the wave function
] ny), which is an eigenfunction of the scatterer
Hamiltonian so that

F | ng) = Eng | o).

During interaction with the neutron the scatterer goes
over into another stationary state, and the neutron
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can change its momentum and spin. The initial state
of the neutron is described by the wave function
| po) where p is the wave vector and ¢ is the spin.
We shall determine the total probability for a process
in which the neutron, after interacting with the scat-
terer, goes over into the state | p'a’).

The total Hamiltonian of the system, scatterer plus
neutron, consists of two parts:

H=H,+H,

where Hp =3C +3C, is the Hamiltonian of the scatterer
and the neutron, and H’ is the operator for interac-
tion between them.

To study the development of the system, scatterer
plus neutron, in time, it is convenient to use the evo-

lution operator, 3 expanding it in powers of the in-
teraction:
_tgr  _lomg T g —imy
e " —=e " 0<1—A;L—\eh 01[1’6 h Mdlfl—%—...).
0 (1.1)

We go over to a second-quantization representa-
tion for the neutrons, in which we have

Hon = 2 Epazl—oapo’ H = E Vi, pca;’(‘]’ Qpg, (1.2)
po Pp’OC’
where Ep is the neutron energy, Vp'a’,pcr is the

matrix element for the interaction operator taken be-
tween the neutron states.

If at the initial time the system was described by
the wave function | po) | ny), then at time T the wave
function of the system will be

i

-Xur

—tar . z (Ep~Ep) 11
e ™ |po)|ng=e " [1—%L E :dlieh °
pp'oo’ 0
X Voo, po (1) @hrortps + .. .1 | pO) [ no), (1.3)
where
Vo, pall)=¢ Vo, poe (1.4)

is the Heisenberg representative of the interaction
operator for the scatterer Hamiltonian.

From expression (1.3) it follows that the total
probability of transition of the neutron to the state
| p'o’) at time T in which the scatterer leaves from
the initial state | ny), is equal to

T T P
1 ! L T By —Ep) (=t v
he <n0‘ \ diy Sdlie ¥ ;'0', po (72) I/p‘u’, po (1) ! n0> .
0 0 4

(1.5)

We average this probability over the initial states of
the scatterer, i.e., we multiply (1.5) by Pny and sum
over ng. We note that this is equivalent to taking the
trace of the product of p with the operator appearing
in (1.5) under the matrix element symbol. In addition,
we make a change of variables of integration in (1.5),
introducing t =t; — t;. Noting that under the trace

sign we can make a cyclic permutation of the opera-
tors, we obtain for the averaged transition probability
the expression
T T—tg i
1 ¢ - —(Ey—Ej t . i
wVda § a7 Vi Ve o (), (1.6)
0 Sty
where (...) is a symbol for statistical averaging
over the states of the scatterer, i.e.,

(...)=S8p(ePF# _y/Spe—HF, (1.7)

In many statistical systems, including crystals, the
correlation functions decrease rapidly with time
(frequently exponentially). If the correlation function
in (1.6) decreases rapidly with some characteristic
time 7., then for times T > 7, we can find the
asymptotic behavior of (1.6) by replacing the limits
in the second integral by + e« and — *. Now we see
that under these conditions the transition probability
is proportional to the time of the transition, and we
can introduce the transition probability per unit time

y ii@v’”ﬂ'v“ .
Wy, po = 33 ) die (Vo poVpror, pa (1)), (1.8)

If the wave functions of the neutron are normalized
to unity (to a 6 function), the effective cross section
for scattering into unit solid angle per unit energy
range dza/deEp/ is related to this probability by the

equation (8]
d2g ~ m? p’
dQdls, ~ (2ah) W (1.9)
Here m is the mass of the neutron, Wp/’ is the

probability Wp/gr ny averaged over the spin states in
the initial beam and summed over the spin states in
the final beam. Thus the effective scattering cross
section is equal to

mo w0 T
dQdE, (2nprs  p 3 p.p¥ PR ’(1'10)
where Vp’ p is the matrix element of the operator for
interaction of the neutron with the scatterer taken
only with respect to the momentum states of the neu-
tron. The bar over the operator means

L=Spo,L, (1.11)

where p; is the spin density operator in the initial
beam.

Thus in the general case the effective cross sec-
tion for scattering of neutrons in a material is pro-
portional to the Fourier component of the correlator
of the interaction. Time correlations in the theory
of scattering of neutrons were first considered by
Van Hove %% for the problems of nuclear and mag-
netic scattering.

It is useful also to put Eq. (1.8) in matrix form (in
the representation of the scatterer Hamiltonian 3C),
after integration over the time:
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2
Wyo po= T ) gl (10| Vrp | 1) P8 (Ep — Ey — En + Eny).
" (1.12)

From this we see that the method developed here
is equivalent to the first approximation in the Born
theory of scattering.

2. Interaction of Slow Neutrons with Magnetic
Materials

The energy of interaction of a neutron with a mag-
netic material consists of two parts: the interaction
energy with the nuclei and the magnetic interaction
energy with the electrons. Generally speaking, there
is also an interaction of the neutron with the electrons
which is independent of spin, and a magnetic interac-
tion with the magnetic moments of the nuclei. But
both these interactions are very small and will be
neglected in what follows.

To calculate scattering cross sections using the
formalism developed in Sec. 1, we must find expres-
sions for the matrix elements Vp',p of the operator
for interaction of the neutron with the scatterer.

1. Matrix element of nuclear interaction. The
energy of interaction of a neutron with a nucleus is
conveniently described by introducing the so-called
pseudo-potential. For slow neutrons, where the scat-
tering is mainly by S-wave, the scattering amplitude
consequently does not depend on the scattering angle,
and the pseudo-potential can be taken in the following
form: (1

V (ra) = abd (r, — R), (2.1

where r, and R are the coordinates of the neutron
and nucleus and «a is determined by the scattering
amplitude of the free nucleus.

If the nucleus has a spin, the scattering amplitude
differs depending on the orientations of the spins of
the nucleus and neutron. This can be taken into ac-
count by writing « in the form

a=A+ B(S,I), (2.2)

where 8, and I are the spins of the neutron and nu-
cleus, and A and B are constants. From the well-
known properties of the operators Sﬁ, S, and Sy
expression (2.2) is the most general form for «.

In the case of interaction with a system of N
nuclei, we have

N

V—_"Z a0 (rn_Rl)- (2.3)
=1

The matrix element Vpr p of the operator V between

states of the neutron with momenta hp and hp’ is

given on the basis of (2.3) in the form

Vp’,p =Z1a exp [i(p - p') *Ry]. (2.4)

2. Matrix element of magnetic interaction. By
magnetic interaction of the neutron with the scatterer
we should understand the interaction of the magnetic
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field produced by the neutron with the electron cur-
rents forming unclosed shells of the scatterer atoms.
The energy operator for such an interaction can be
written in the form

V= 1 A (r)jr), (2.5)*
i
where Ap (1) = [y X (r — rp)l/| v = ry |? is the
vector-pontential of the field at point r produced by
the neutron located at point ry, pp = 2yppSy is the
magnetic moment of the neutron (y = -1.93 is the
value of the magnetic moment of the neutron in
nuclear Bohr magnetons un), j{ry) is the current
produced by the I’th electron. Summing in (2.5) is
done over all the unpaired electrons of the scatterer.
Let us calculate the matrix element between states
of the neutron with momenta hp and Hp’ and states
of the scatterer ¥4 and ¥,/. We have

(a'|Vp,,,,|a)=z‘,Sgwn_><(rgro_l

jrp—rp 3
{

X Waj (1) Yoo di, (d). (2.6)
Integration over dr is done over the coordinates of
all electrons included in (2.5). It is well known 8] that
the matrix elements of the current are equal to

LW () Wa = o (FaVi¥E — VaVY) + 2o rot, (¥2, si¥a),
(2.0

where g7 is the spin operator of the I’th electron,
uo is the Bohr magneton. The first term on the right
of (2.7) describes the current produced by the orbital
motion of the electron, and the second gives the spin
current. For the present we shall consider only the
spin part of the current. Substituting the expression
for it into (2.6) and introducing the relative coordi-
nates ry — rn = R, we write the expression for the
matrix element (2.6) in the form

(@ |Ve.pla)

1 (2.8)

where q = p — p’ is the vector of scattering. Noting
that

R dR e—igR e __ 4miq
R3 - qz

S eiqr‘ rot; (W8 ¥,)dr;= — i [qx S eiqr“I"}{rsl‘I’a dr; ] R
we now have in place of (2.8)
(@' |Vp,pla)

- 4’:‘2 roy <<a' l > ei‘l'tszba> s Sn—(eSy) e). (2.9)
!

*(ab) or (a,b) = a-b.

frot = curl.
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The expression in parentheses gives the scalar prod-
uct of the vectors, ry = e¥myc? is the electromagnetic
radius of the electron, and e = q/q is the unit scat-
tering vector.

In expression (2.9) the spin variables of the neu-
tron and scatterer are separated. A further simplifi-
cation can be achieved if we break up the summation
over [ into a sum over electrons of the individual

atoms ), and a sum over all atoms of the scatterer
v

D,. We shall consider purely magnetic scattering,
J

when the state of the lattice does not change, while
| a) characterizes the set of spin variables for the
electrons. In this case we can write

. N N o
<ar l 2_‘ eiqusll a) = }j ¢laR; <a’ \ 2 elqwsﬂ a> ,
1 i v

is the number of unpaired electrons in atom

(2.10)

where Z;
j.

For slow neutrons we can assume that they do not
produce transitions of the atoms into excited states,
but produce only a reorientation of the atomic spins.
Thus the transition | a) — | a’) has the form | am)
— | am’), where m and m’ are the sets of spin
quantum numbers for the scatterer atoms, while «
is the set of all the remaining quantum numbers of

the atom. From general theorems of quantum mechan-'

ics* it follows that the matrix element in (2.10) can
be written in our case as
jam).

(2.11)

Zj

(a"i:ei‘"vsv!a>:(m')sj}m)(am‘!_‘J

v

(Sv‘—.)

ESTIEE
Zj

where Sj = ZV> 8, is the spin operator for atom j, and

Sj is the value of the spin. The expression
_ o (sy37)
Ff(‘”‘(“’”]u e o)

%j g
¥ (s,85)

N
S\F Zm?;dl’j, (2.12)

where ¥. is the wave function of the electrons of the
j-th atom, d'rj is the element of volume in configura-
tion space of the electrons of the j-th atom, and does
not depend on the quantum numbers m, i.e., on the

*In quantum mechanics it is shown (cf., for example, [’]), that
if the vector quantities Ty(k = x,y, z) satisfy the commutation re-
lation (J;, Tyl = ieyT;, where J; is the projection of the angu-~
lar momentum, then we have the relation

JUD(eim | T @' im )y =(ajm || ajm’) (@im’ | (AT) | a’jm’),

where j is the total angular momentum of the system, m is the pro-
jection of the total angular momentum. Applying this relation to the

operator T = Ee“""s,,, we get formula (2.11).
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orientation of the atomic spin and is a characteristic
of the scattering power of the atom. This quantity is
called the magnetic form factor of the atom (it should
more precisely be called the spin form factor). Fj (q)
characterizes the distribution of the spin density in
the atom. For zj = 1, Fj(q) is simply the Fourier
component of the spin density.

Thus the transformation (2.10) and (2.11) allowed
us to express the matrix element (2.6) in terms of
matrix elements (m | Sj | m’) of the spin operators
of the individual scatterer atoms. Combining expres-
sions (2.9)—(2.12), we get the following expression
for the magnetic interaction operator:

R iy D F5(q)
M
which was first given by Halpern and Johnson. 14
Similar calculations can also be made for the
orbital part of the electron current, but they are
more complicated since the orbital angular momentum
operator does not commute with e'9°Y. The corre-
sponding results are given in {13, Obviously the ex-
pression corresponding to (2.13) in the case of scat-
tering by the orbital angular momentum of an atom
must contain in place of the operators Sj, the opera-
tors L; of the orbital angular momenta of the atoms.
Also, in ferromagnets containing elements of the
first transition group, orbital angular momenta are
suppressed because of the fact that the crystalline
field acting on the atom does not have axial symmetry,
so that the average value of the projection of the
angular momentum of the atom in the ground state is
either equal to zero or much less than the value of
the orbital moment of the atom. Therefore, scattering
because of interaction of the neutron with orbital mo-
tion of electrons in such ferromagnets need not be
considered.

Vo= — (€Sa)e), (2.13)

eiqu (Sj, Sn —

3. Differential Cross Sections for Scattering of
Unpolarized Neutrons

The expressions for the matrix elements of nu-
clear (2.4) and magnetic (2.13) interaction of the neu-
tron with a scatterer allow one, by using the funda-
mental formula (1.10), to get the effective differential
cross sections for scattering of unpolarized neutrons.
For nuclear scattering

d2¢
a9 dE, ~ (2n)3 75 Z (@)

P L (Bp~Ept —iaRy0) iqRp(0)
x e )

€ ’

(3.1)

—00

where Rj(t) is the Heisenberg representative of the
quantity R7 with the scatterer Hamiltonian i,
R; (t) = eE%tRle_’T(%’i. (3'2)

For magnetic scattering we find the expression
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d2g P
aa aE, 7 V) LDV F @ F i (@) ) (Bap— atp)
i’ af
G i
1 7(Ep~Ep)?
X 27k S

—_—0

X (8%(0) e_iqRi(O)eiqu'(f)Sf;, MYdt (@, B==z, y, 2), (3.3)

where Sja (t) is the Heisenberg representative of the
spin operator Sja
Eiad (3.4)

i
Se (1) =" 7 Sge
In getting (3.3) we have, in accordance with the re-
quirements of formula (1.10), averaged over the spin
orientations in the neutron beam:

(5% — (€S eal [SE — (650 gl =4 (Ban —tatp):  (3.5)

It is easy to see that in the scattering of unpolar-
ized neutrons there is no interference of nuclear and
magnetic scattering, so that for a magnetic material

di¢  d, d2g
dQdE, ~ dQdE, dQdE,, *

When the correlations in the positions of the atom
and its spin projections can be neglected, i.e., when
spin-lattice interaction is unimportant, the correla-
tion function in (3.3) can be written approximately in
the form

(8% (0)e THRIOGRI G, (g  (THRADLIRI Oy (82 (0) S (8)),
(3.6)

where the averaging on the right side is done inde-
pendently: in the first factor over the states of the
lattice, and in the second factor over the states of the
spin system. The Heisenberg representatives of the
quantities Rj(t) and S]Q (t) are taken with the cor-
responding Hamiltonians.

If we neglect lattice vibrations, i.e., we set

(e—iqu(O)eiqu,(t)> ~ e—iq(Rj—R]-»),

(3.7)

the expression for the cross section for magnetic
scattering takes the form

d2g
dQ dEp,

’ —ig(R;—R;)
=L X F @ Fr@e 77 D (Bup — cats)
il ap
1 N
Xm S e

—o0

N Ey—Eyt
RPN (82(0) S8 (1)) dt. (3.8)

In the following, however, we shall use the approxi-
mation (3.6) taking account of the lattice vibrations
by introducing the so-called temperature factor.

Expressions (3.1) and (3.8) will be basic in our
presentation of the scattering theory. We see that the
cross sections for nuclear and magnetic scattering
are simply the Fourier components of the correlation
functions: 58]
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(e OGOy (55(0) 5 (1) (3.9)

II. ELASTIC SCATTERING

4. Nuclear Scattering in Single and Polycrystals

The differential cross section for elastic scatter-
ing of neutrons by nuclei can be gotten from (3.1) if
we take out of the corresponding correlation function
the term independent of the time. We can break up the
correlation function most naturally as follows:

(e—iqu(O)eiqu’(t) Y <e—iqu(0)eiqu/(oo)>

+ {(e—iqu(O)eiqu'(U) . (e—iqu(O)eiqu,(oo))}. (4.1)
Since the positions of the atoms are not correlated
over infinitely long times, the first term on the right
of (4.1), which is responsible for the elastic scatter-
ing, is equal to

(e—iqu(O)eiqu'(w)) — (8_-1'qu> (eiqu')_ (4‘2)

Substituting the expansion (4.1) in (3.1) and inte-

grating over the energy of the scattered neutron, we
get for the effective cross section for elastic scatter-
ing into unit solid angle the expression

d 2 T, —i iqR;.
_dqgfo‘: 4:;;,4 Z (o) (e qu) (el

w

For simplicity, we consider in the following a

crystal consisting of atoms of one kind, assuming,
however, that there may be different isotopes. Ex-
pression (4.3) must be averaged over the distributions
of isotopes. We note first of all that if we expand the
radius vector R} into its equilibrium part Rg and
the displacement Uy:

R1=R?+Ulv (4'4)

: . 0 .
then in the expression (e-lq ) RZ) =1 R (e_lq ’ Ul)
the average value of the displacement function Uj
should be independent of I. Averaging in the sum
over [ and I’ of (4.3) over the isotope distribution,
as well as over the orientations of spins in the neu-
tron beam, in the case where the nuclei of the scat-
terer have spins, we write the expression (4.3) in the
form

(4.3)

9% ~ foo ! P R IR L Path (4.5)
]
where we have introduced the notation
m2 - , m2 - = 1 53777 7%
o0 — i A 0= e [# A BT | (4.6)
6~2W’q _ [ (6 iqu> l2. (4.7)

In the expression (4.6) the bar above means an
average over the isotope distribution; for example,
A =EASCS, where Cg is the concentration of the

]
isotope for which A7 = Ag, N is the number of nuclei
in the crystal, I is the spin of the nucleus. The
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quantity Wq introduced in (4.5) is the Debye-Waller
temperature factor.[?] 1t can be calculated using the
relation (4.7).

The sum appearing in (4.5) can also be calculated
easily. If in the crystal there is one atom per unit
cell, we have the relation (1,13]

\ZeiqR? zzjﬁlzﬁz(s(q_r),
4 T

where T is a vector of the reciprocal lattice multi-
plied by 27, V; is the volume of a unit cell. If ina
unit cell there are several atoms, the phase sum over
all the atoms should be split into a sum over atoms
within a single unit cell and a sum over all of the unit
cells. This gives e

‘2 eiqR?“ZT:MS(q)Eé(‘I_T)’
’ T

(4.8)

i (4.9)

where
2

S (q) = ‘ 3 iR (4.10)
v
is the structure factor; the summation over v goes
over all the atoms of a single unit cell.
Substituting expression (4.8) in (4.5), we get the
formula for the differential cross section for elastic
nuclear scattering

do 2m3N — , -

=0 P M s (g v e e NtV (41D)
T

The first term gives sharp maxima in the intensity of

scattered neutrons given by the Wulff-Bragg formula

p—p=r. (4.12)

This term describes the coherent neutron scattering.
The second term describes the incoherent scattering.
If we neglect the factor e—2Wq’ it is independent of
scattering angle and is similar to the background ob-
served in the scattering of x-rays.

From the relations (4.6) we see that the coherent
scattering is determined by the average value (over
the distribution of isotopes) of the quantity A. The
incoherent scattering is determined by the quadratic
fluctuation of the quantity A and the quantity
BXI(I+ 1), depending on the nuclear spin. Thus the
coherent scattering is determined by collisions of the
neutron with nuclei without a change in spin direction,
while for incoherent scattering the spin of the neu-
tron may change.

Now let us look at relation (4.12). For elastic
scattering p’ = p, which is possible when p > 7/2,
so that elastic coherent scattering at angles different
from zero is possible only if p > Tmin/2, where
Tmin 1S the smallest vector of reciprocal lattice. It
is useful to express this fact as follows: coherent
elastic scattering is impossible if the wave length of
the neutron is greater than the Bragg wave length
AB = 47/ Tmin. One can show that inelastic scattering
is also impossible under these conditions. It thus

follows that if a beam of thermal neutrons is incident
on a crystal consisting of monoisotopic atoms whose
nuclei have no spin, then in the direction of the initial
beam, after emergence from the crystal, one will find
only those neutrons whose wave vectors are smaller
than 7pin/2. Thus, one can filter out very slow
“cold’’ neutrons. An example of such a filter is poly-
crystalline graphite, beryllium, beryllium oxide, etc.

We can now calculate the temperature factor Wq
using the definition (4.7). We know that the displace-
ments of the atoms from their equilibrium position
can be expanded in Fourier series*,

U= kZ &0 [ gz ] (o™ + b (4.13)

7

with quantized Bose-amplitudes which satisfy the
commutation relations

[oki, biil =0, 1bgj, birirl = 8j5dun-. (4.14)

Here k and ej (k) are the wave vector and the polar-
ization vector of the phonon, wj (k) is its frequency,
j=1, 2, 3 is an index for the phonon polarization,
and M is the mass of the atom.

The energy spectrum of the lattice vibrations is
then a sum over a definite number of phonons:

S = ;Ejnmj (k) b bu;- (4.15)
Using expression (4.13), we can easily write
(£ = (gei[n,ﬁjbkﬁn;}bgj])’ (4.16)
j
where for brevity we have used the notation
(4.17)

i 1 kRO
= mrwera ] (@es o) .

From formula (4.16), taking account of the additivity
of the energy operator (4.15), we get

(eiqu> _ Il(ei[nll‘jbkj+n;§bl:j])kj; (4.18)
where
(e SplT IO (4.19)

Sp ¢ "B bk

Expanding the exponent in (4.18) in series and
calculating the traces of the individual terms, we
write the whole expression in the form

*If the unit cell consists not of one, but several atoms (in gen-
eral, different atoms), we should write in place of the expansion
(4.13),

= [ 2 ikR}), . —ikR?
U= [ I y0; )N ] (€] (k) ™oy ;4 €3Y (k) e~ KR,
%

where the complex polarization vectors e’j(k) satisfy the ortho-
normalization relations

ey el W)=d;r, e} &) e;VF (K)=08,y.8,p
N 2

Here ej”(k) is the projection of the vector e%(k) on the axis
a=2x,y, 2
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@ =TT {13 |k [ 120 (0 + 11O N2}, (4.20)
kj

where

n; (k) = (bigsbushe = (€% — 1)1 (4.21)

is the Bose distribution function for the average num-
ber of phonons in state k; at temperature T = 1/Bk.
The remaining term contains terms in the expansion
~N~% and higher order.
If we write
aus = g | iy | 120y (0)+11,

expression (4.20) can easily be brought to the form {4

(@ Viy=T] (1= a; +0 (V)]
kj

= 1-——2 akj"f"% 2 akjak-j'—si! 2

akjak'j ’ ak’ljll

kj Kj#Kk’'j’ kiK' j k" 5"
+A0N Y+ T 400y 4 .. (4.22)
ki kj#k’j

Since the sum over k containg N terms, all of those
terms which contain a sum of products of ag; are of
order 1, while terms containing O( N~?) in addition to

the akj are at least of order N1, and can be neglected.

From arguments of this sort it is clear that the sum
containing m factors akj can be replaced by
(27 akj)™, where we make an error of order N-I so

k
thgt instead of (4.22) we get
- 1
(@ =1—Nag+4 (Do)
kj Kj

-3 oy

——31!— oo FONYYne W

to an accuracy of order N1
Substituting this result in (4.7), we get*
__h lge; (k))2 1
Wa= 25w % a; (K) [”f(k)+7] : (4.23)
J
This expression can be calculated by going from
summation to integration

14
D = Ok

k
In a cubic crystal the energy of the phonons is the
same for all three branches. If, in addition, we con-
sider that for such a crystal Z} (q-ej (k))2 = g%, then

(4.24)

J
in the Debye approximation, where it is assumed that
w; (k) = ck (where c is the sound velocity), expres-
sion (4.23) reduces to the following:

*If the unit cell contains several atoms, then for atom v the
temperature factor Wy is again given by expression (4.23) with
the appropriate value of the mass of the atom M,, and the polari-
zation vector e%(k).

IZYUMOV

&/r
3 k22 1 T \2 zdzx
Wo=3 770 <Z+<“@> SO Py (4.25)
Here ® is the Debye temperature.* Thus, for a
cubic crystal the dependence of the temperature fac-
tor on the direction of scattering is given by the fac-

tor q* = 167% sin® Zi/xz where 6 is the angle between

the scattered and incident beams, A is the wave length
of the neutrons in the incident beam. In the presence
of anisotropy of the sound velocity in non-cubic crys-
tals, the angular dependence of Wq will be more
complicated.

Formulas (4.11) apply to scattering by single
crystals. In order to get the cross section for scatter-
ing by polycrystals we must average these cross
sections over the orientations of the microcrystals,
assuming that all orientations are equally probable.

Let us consider elastic coherent scattering.

To average over the orientations of the micro-
crystals it is sufficient, in the expressions

(4.26)

dgg“’ g0 G 5 (g vy e
T

to average (13 the 6-function over all orientations T;

in doing this we assume that the dependence of the

temperature factor on q is given by the quantity qz.

Since

1 1 .8
S 498 (q —7)= -8 (g—7) :r—26<2psm7—r>, (4.27)
we have, after averaging (4.26),

T (4.28)
where a; is the number of different vectors of the
reciprocal lattice having length 7.

From (4.28) it follows that in place of individual
diffraction maxima given by the equation: p’=p+ 7,
which were present for a single crystal, in scattering
by a polycrystal there are diffraction cones, with
their axis along p and with the angles between their

generator and the axis given by the conditions

2psin%:1:, (4.29)

along whose generators the neutrons are scattered.

*Recently attempts have been made to calculate the tempera-
ture factor using a more rigorous theory of lattice vibrations than
the Debye theory. These papers wete stimulated by the discovery
of the M3ssbauer effect, for which it tumed out that the probability
of emission of a2 y quantum by a nucleus in a crystal without re-
coil is determined by the expression e~ Vg, As was shown by
Kagan,[‘s] the Debye temperature is a satisfactory characteristic
of the temperature factor only for a monatomic lattice. Already for
the case of a diatomic lattice it is not even an approximate descrip-
tion of the temperature dependence of the temperature factor. In the
case of polyatomic lattices the optical vibration branches play an
important part.
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Integrating (4.28) with respect to d{2, we get the
total cross section for coherent scattering of a poly-
crystal:

o ATH W S g2y
T

(05 potyer =06 Vor?

(4.30)
TS2p

From formula (4.30) we see that with increasing p the
cross section jumps when p reaches a value equal to
half of any reciprocal lattice vector 7. It then de-
creases in inverse proportion to pz, i.e., the neu-
tron energy, until p reaches half the modulus of the
next larger reciprocal lattice vector. With increasing
p more and more planes characterized by vectors T
begin to participate in the reflection, so that the cross
section becomes a smoothly varying function of the
neutron energy.

From (4.30) it also follows that the total coherent
scattering of a polycrystal is equal to zero if
P < Tmin/2. This is entirely reasonable, since under
this condition coherent scattering is not possible for
the individual single crystals.

5. Magnetic Scattering in Single and Polycrystals

The differential cross section for magnetic scat-
tering by atomic spins is given by formula (3.8).
First let us consider the scattering in paramagnets
for which the interaction of the atomic spins can be
neglected. In this case S-a(t) = 8%, so that we see
from (3.8) that the scattering will be elastic. Since
there is no correlation between the orientations of
the atomic spins of a paramagnet, and all orienta-
tions are equally probable, we have the relation

(55S8,) == 8ug0; ((SH)?) = + 8 (S +1) dapdyp.  (5.1)

Substituting this expression in (3.8) and integrating
over the energy of the scattered neutrons, we get {0l

99— NES(S+1)(ro) F (@), (5.2)

aQ2
Thus the angular dependence of the intensity of neutrons
scattered from a paramagnet is given completely by the
angular dependence of the magnetic form factor.

In the case of a ferromagnet there is a strong ex-
change interaction between the atomic spins which
leads to a spontaneous ordering of the spins. Every
reorientation of the spin of an individual atom is
associated with an expenditure of energy against the
exchange forces, so that magnetic scattering of neu-
trons in a ferromagnet can be either elastic or in-
elastic.

In order to take out of the cross section (3.8) the
elastic part, we note, as in the case of nuclear scat-
tering, that the time correlator (S (0) S'?,(t)) is to

be replaced by the expression <qu (0) SJ.B,( )% which
is independent of time. Since there is no correlation

between the orientations of the spins over an infinitely
long time interval, we can write

(SF(0) S (c0)) 2= (ST) (%), (5.3)

Suppose that the average value of the spin at
lattice site j along the direction of the spontaneous
moment is Sj (T); this is a function of temperature
proportional to the magnetization of the ferromagnet.

From the theory of ferromagnetism it is known
that for temperatures below the Curie point, but not
close to it, the average value of spin components per-
pendicular to the direction of the spontaneous moment
is equal to zero. Taking this fact into account, after
substituting (5.3) in (3.8) and integrating over the
energy of the scattered neutrons we get an expression
for the differential cross section for elastic scatter-
ing in ferromagnets

o,

=g =(rov)? 2 Fi(q) Fy (@) e R08 () S50 (T) [1 — (em)?],
" (5.4)

where m is a unit vector in the direction of the
spontaneous magnhetic moment of the crystal. In (5.4)
the summation over j extends over all the magnetic
atoms of the crystal. If the ferromagnetic material
consists of identical magnetic atoms, then Fj(a)

= F(q) and Sj (T)=S(T) is independent of the lo-
cation of the lattice site and can be taken out of the
summation sign. The sum over phase factors can be
transformed to the form (4.8), after which the expres-
sion for the elastic scattering cross section is
written as

d
Go= (roy)? *(T) F*(q) [1 —<em)212(—2”V)37N D 6(q—1) .

: (5.5)

For ferromagnetic materials consisting of mag-
netic and non-magnetic atoms, the magnetic unit cell
coincides with the chemical cell, but the arrangement
of the magnetic moments within the unit cell leads to
the appearance in the scattering cross section of a
structure factor for magnetic scattering analogous to
the nuclear factor (4.10).

Thus, in the scattering of neutrons by a ferromag-
net we get coherent maxima of the intensity at angles
corresponding to the Wulff-Bragg conditions (4.12).
These maxima are superposed on the maxima in the
intensity of nuclear scattering. Since the cross sec-
tion for magnetic scattering is proportional to the
square of the magnetization, the coherent magnetic
scattering should disappear above the Curie point,
and thus the coherent maxima in the paramagnetic
region correspond to nuclear scattering.

The angular dependence of coherent elastic mag-
netic scattering is much more complicated than that
of the corresponding nuclear scattering, since it is
determined by the additional angular dependence of
the magnetic form factor as well as by the factor
1 - (e-m)? depending on the orientation of the scat-
tering vector relative to the vector m of the spon-
taneous magnetic moment.

In the case of a complex magnetic material (ferrite
or antiferromagnet), one must take into account the
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fact that the unit magnetic cell does not coincide with
the chemical cell, but is larger than it. Such a mag-~
netic material frequently can be considered as con-
sisting of several (v=1, 2, ..., n) identical sub-
lattices superimposed upon one another, in which the
directions of the spontaneous moments are charac-
terized by unit vectors m,. For the averaging of the
spin S, (T) in each of these sublattices, the same
arguments hold as were given for a simple ferromag-
net consisting of one sublattice (cf. the relation (5.3)
and the following text). Breaking up the sum  in

J
(3.8) into a sum ) over magnetic cells and a’sum
S v

over magnetic atoms within a single magnetic cell, or,
what is the same thing, over the sublattices (since we

associate a sublattice with each of the magnetic atoms
in the unit magnetic cell), we obtain for the scattering
cross section the expression

70 =y &SP, (g P

% (q) Sy (T) Sy (T)e' v e va=Wv'a. [mym,,.
—(emy) (emy-)] - Z d(q—7m) (5.6)

Tm

Here Ny, is the number of magnetic unit cells in the
crystal, Vo, is the volume of the unit magnetic cell,
Tm is a vector of the reciprocal lattice (multiplied by
), W,,q is the temperature factor* corresponding
to an atom of the v-th sublattice.

In getting the expression (5.6) we have used the
relation

| 3 ams (5.7)
8
which is analogous to (4.8).

Thus, in magnetic elastic scattering of neutrons in
magnetic materials, coherent maxima of the intensity
appear in places corresponding to Bragg reflections
from the planes of the magnetic lattice. If the unit
magnetic cell is larger than the chemical cell, we
should gét purely magnetic scattering maxima, not
necessarily coincident with the nuclear maxima.
Above the Curie point or the Néel point these are not
present. Experimental study of these maxima, using
relations of the type (5.6), permit one to determine
the magnetic structure of the material. A relation of
type (5.6) is the basis of magnetic neutronography.

From (5.6) we easily obtain the special formula
for the cross section for scattering by an antiferro-

2 (2n)B Ny,
=y 2 O(q—tm),
Tm

*In getting (5.5) from (5.4) we have also taken account of the
effect on the magnetic scattering of neutrons of thermal vibrations
of the lattice, in the scheme of the relations (3.3), (3.6), and (4.7).
It reduces to the appearance of a factor e~¥q in the cross section
for pure magnetic scattering. In the following all expressions ob-
tained from the general formula (3.8) for the magnetic scattering
cross sections are to be corrected by the temperature factor e

-2Wq,
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magnet consisting of two equivalent collinear sub-
lattices:

200 = (roy) F* (@) $* (1) 72 (1 — )

2 ’
X [1 —cos(qrip)] %—’1 2 S(q—n). (5.8)
Tm

Here ey is the projection of the scattering vector on
the direction of one of the sublattices, ry; is a vector
from one magnetic atom to the neighboring atom of
the second sublattice. Formula (5.8) is equivalent to
formula (5.5) for the scattering by a ferromagnet. The
essential difference consists in the fact that the sets
of vectors {7} and {7y, } are different. The magnetic
unit cell in the present case is twice as large as the
chemical cell. The temperature dependence of the
intensity of antiferromagnetic peaks is determined by
the square of the magnetization of either sublattice.

Recently new magnetic structures have been dis-
covered (MnAu,, Ho, Dy, Er et al.) in which there is
a completely special magnetic order. These struc-
tures are characterized by the fact that along some
crystal direction, which is a symmetry axis of high
order, the orientations of the spins as one goes from
one atom to the next change periodically, and the
period of this variation does not coincide with the
period of the crystal lattice and may change with
temperature. Among a large class of such structures,
which have been called helicoidal or screw structures,
the simplest is the so-called ferromagnetic spiral
(FS). The components of the spins along the base
planes in such spirals go through a periodic rotation
with a certain angle ¢, while the components along
the axis of the helicoid are constant. Such a crystal
as a whole is a ferromagnet. A special case of the
FS structure is the simple gspiral (SS) which does not
have a ferromagnetic component.

If the spin of the atom located at the origin is
called §;, the spin of the atom at lattice site j can
be given by the following transformation:

S = Sim++ Sye”“Rim* 4 L srehotime,

where m is the unit vector along the axis of the
helicoid, m* = mX + im¥, where m¥X and mY are unit
vectors in the base plane, k; is a vector directed
along the axis of the helicoid (ky Il m) of such a
length that kyc = ¢ is the angle between two neighbor-
ing spins of the helicoid (c¢ is the distance between
two magnetic atoms along the helicoid axis).

From expression (3.8) it follows that the cross
section for elastic magnetic scattering in the case of
identical magnetic atoms in a crystal is equal to

d N —i —Ris 3
=Y P2 () 3 e TR N (B —ear) (ST

i ap
Using the preceding relations we can rewrite the sum
over « and $ in the form
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2‘ (6545 - eaeﬁ) (S?Sg) = <(Sé)2> [1 _ (em)2]
b
LS55 1 fem] =0 BB

(82870 [ (em)e] O RITRI

The terms which have not been written down contain
. +iko(Ri+Ri7)

phase factors of the form e 0 47",

After substituting this expression in the formula

:t' . > .

for doy/d2, the terms with factors e ko (Rj+Rj")

drop out of the summations over j and j’; then using

relation (4.8) we finally get

do
dQ

= (rov)* F* (@) 8* (1) S 3} {cos?a (1 — (em)?1 8 (q — )

sin? o [1 + (em)?] & (q — v+ ko)

IS

,.]._

(5.8")

st a U fem)1d (q — v —ko) | 72",

N

where S(T) is the average, at a given temperature,
of the projection of the spin on to the equilibrium
position, and « is the angle between the axis of the
helicoid and the direction of the equilibrium orienta-
tion of the spins.

From formula (5.8) we see that for each 7 there
are three magnetic peaks. One peak, for the condition
q = 7, is caused by the ‘“‘ferromagnetic’’ component
of the spin; it is absent for the case of a simple
spiral. The two others at q + ky = 7 are associated
with the projections of the spin on the base plane.
Usually ky < 7, so that the latter two magnetic peaks
should be located close to the nuclear peak q = 7. The
presence of such a ‘‘trident’’ consisting of a nuclear
peak at the center and two magnetic peaks at the sides
led to the discovery of the helicoidal structure.*

Formula (5.5) applies to scattering by a ferromag-
netic single crystal. To get the scattering cross sec-
tion for a polycrystal, we must average over the
direction of 7. We then get[”]

doy
dQ / polyer

=y S (=) ot ) e o). (5.9)
T<2p
As in the case of nuclear scattering by a poly-
crystal, the magnetically scattered neutrons move
along the generators of cones with their axes along
the vector p and an opening angle 26. The angular
dependence of the intensity is, however, more com-

plicated than for nuclear scattering.

*Such a ‘‘trident’’ was first discovered on a neutronogram of
MnO, by Ericksson.[*] The interpretation of such neutronograms in
terms of a helicoidal structure was given by Yoshimori.[**] In a
paper of Koehlerl®!] a general method was given for the interpreta-
tion of neutronograms of helicoidal structures. The theory of heli-
coidal ordering was developed by Kaplan.[“] The temperature vari-
ation in the spiral step was calculated theoretically in [s2].
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It is also of interest to compute the total scatter-
ing in a polycrystal, for which purpose we must in-
tegrate expression (5.9) over all angles of scattering
of neutrons, i.e., over d = sin 8 d6 d¢; 0 is the
polar angle of the vector p’ in the coordinate system
where the z axis is taken along the direction of p. It
is not difficult to show that e} is expressed in the
following fashion in terms of the angles 6 and ¢:

e§=<cos%sinq)sin§-—sin%cos§>2 s (5.10)
where £ is the angle between p and the magnetization
m, and ¢ is the azimuthal angle of the vector p’
taken in the plane perpendicular to the vector p from
an axis directed along the vector p X m.

Substituting (5.10) in (5.9) and integrating over
d2, we find the total cross section for the polycrystal

(250)3 FY(1) 2w
(00) potyer = (roy)* S*(T) aVop? 2 1:( e T
T<2p

X [1-}—0052 E,—}—%; (1—3cos2§)] .

(5.11)

The essential difference between this expression
and (4.30) is that the total cross section depends on
the orientation of the initial neutron beam with re-
spect to the magnetic moment of the sample. Just as
for nuclear scattering, it increases abruptly as the
energy of the neutrons is increased.

III. INELASTIC ONE-QUANTUM SCATTERING

6. Scattering with Emission and Absorption of a
Phonon

In this section we shall consider in detail the
nuclear scattering by a single crystal. We shall start
from the general formula (3.1) for the differential
scattering cross section. As in Sec. 4, we expand the
nuclear coordinates R; into an equilibrium part Rg
and the displacement Uj. Expanding the displacement
U; in Fourier series (4.13), we write the expression
(3.1) in the form

d2g m? r

_ge ™ P\ ~ —iqg(R}~RY)
dQdE, ~ (Zm2ht p Z (ogapr)y Iy (q) e , (6.1)
w

where
¢
Iu'(‘l):m S dt eh

—~00

(Bpy—Ep) t

* *
irnl Y s Tl B U b+,
i [nkjbk1+ “kjbk}] -el Iy ;0kj + (M b5 (D]

Yk (6.2)

xH(e
ki

Here

by (t) = bije "7 M b (t) = bie' WO

(6.3)

are the operators bgj and bi'{j in the Heisenberg
representation.

We expand the exponent under the average sign in
expression (6.2) in series of powers of the argument.
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To terms of order | nll(j |2 we obtain after averaging

+oo i
2 (Eyr—Ep)t 4
Ly @ =g { dte® P {20 (k) 1)
o kj
L [ ()] €l (k) e 0T L,

(6.4)
where n; (k) is the distribution function for the pho-
nons, determined by expression (4.21). In addition,
to terms of order N~! the product in (6.4) can be
written in the form

I1...~ [J{1—|n& 2 @n; (k) +
k kj

7

D} {1+ il L 1+ 72y () 5

* .
+nlntn (k) e O 4

= 2Vink; 2 @0 0+ D)
kj

~ €

(ot 3 InLhE (44 g () o
7

+nl i (k) e~ 1), (6.9)

Integrating over the time in (6.4) we now get
L (q)=e >V {8 (Ey — Ep)

o 2 5 (1 00) 8 (Eyr — Ept-ho ()

L (8) 8 (Ey — Ep— ho, (R)1)-

Now we substitute this expression into (6.1).

Averaging the sum ), over the distribution of iso-
4

. 1
topes, and using the transformation (4.8), we find the
following expression for the differential scattering
cross section:

a2 2.1)3
o :N{G(O)(IILO)Z d(q
T

’ —2W,
0 aE, —v) o'} e (Ey — Ey)

+NE R {8 N s q—k—7)+o'}
kj T

e~ 2Wq I (ge) (K)? (
2M1Vm (k)

—Eptho; () +NZ S

kJj

xe +n; (k) & (Eyp:

—2wq f (gej (k))?

(2m)3 ’
x{o(m 7 26({1-}—]{—‘:‘)—}—0’}6 IMNoj (K)
T

X n; (k) 6 (Epy — Ep —hoj;(k)), (6.6)
where 0% and o’ are the constants (4.6) which de-
termine the coherent and incoherent scattering. The
individual terms in (6.6) have the following meaning.
The first term represents the differential cross
section for elastic nuclear scattering. If we integrate
over the energies of the scattered neutrons, we get
the expression for the scattering cross section per
unit solid angle identical with (4.11). The second
term, and also the third, describe the inelastic scat-
tering. The first of these gives the cross section for
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scattering with emission of a phonon, and the second
with absorption of a phonon. As we see from (6.6),
these processes lead both to coherent, as well as to
incoherent scattering. The §-functions appearing in
(6.6) take account of the conservation laws for energy
and quasimomentum in collision of a neutron with a
phonon.

The inelastic scattering terms given in (6.6)
correspond to one-quantum scattering, i.e., to scat-
tering in which the number of phonons of the scatterer
changes by unity. If the expansion of the exponent in
(6.2) is carried to higher degree, we can obtain an
expression for the cross sections for scattering with
multiphonon transitions in which several phonons are
absorbed or emitted. The role of such processes was
studied in reference 8. we shall not consider them
in detail here. It is important only to emphasize that
at temperatures below the Debye temperature the
main contribution to the inelastic scattering comes
from one-phonon processes.

Let us consider in more detail the incoherent one-
phonon scattering. The corresponding scattering
cross section, according to (6.6), can be written in
the form

2 1
d'c mcoh

o'e 2% 'k (gej (k)
0 dE,, 1 2

oMoy (k)

x| 71 0)+ 5 o | 8 (By — Ep 50 (). (6.7)
The upper sign corresponds to scattering with emis-
sion, and the lower with absorption of a phonon. The
sum over k generally cannot be calculated since we
do not know the form of the function wj (k). We shall
therefore see what physical consequences can follow
from an analysis of expression (6.7).

First of all, we find that neutrons scattered in any
direction have a continuous energy spectrum covering

the interval

Ep<Ep'<Ep+hmmax (6.8)

in the case of scattering with absorption, and the in-
terval
E,—homax, Ep > hogax,

6.9
0 » Ep <hopax ( )

Ey>Ep > {
in the case of scattering with emission of a phonon.
In these inequalities Wmax is the maximum value of
the phonon frequency.

In the following, for simplicity we shall restrict
ourselves to crystals with cubic symmetry; then

NV0 —ag? o
(Gmp36M 2 S (9} (k) P

—Ep £ ho;(K),

a? Umcoh —
a2 dE

X [nj(k)+%j:7]‘5(ﬂp (6.10)

where « is determined by (4.23), and is independent
of scattering angle.
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We now introduce the frequency distribution func-
tion g(w) which determines how many normal vibra-
tions there are per unit frequency interval, divided by
the total number of vibrations:

(6.11)

after which expression (6.10) can be written as (1]

2 ’
d"c mcoh =N ’i_pi e—aq? *

dQ dE,, 2M p [Ey—Ey |

iEp*Eprl) 1 1 1
X 5+ 5
g( % (eﬁpr-Epw_i"‘z * 2)

(6.12)

where the limits of variation of Ep are given by ex-
pressions (6.8) and (6.9). Thus for a cubic crystal the
cross section for incoherent one-phonon scattering is
proportional to the frequency distribution function
g(w). In the case of crystals of arbitrary symmetry
this is no longer true because of the presence of
polarization terms in the expression for the cross
section. This leads to difficulties in the determina-
tion of g(w) in crystals which do not have cubic sym-
metry. However, the polarization terms in the cross
section can be eliminated under certain definite con-
ditions. First of all, we note that at temperatures
below the Debye temperature the temperature factor
is close to 1. Oskot-skil 20 pag shown that in this
case the polarization terms in (6.7) are eliminated if
we consider scattering in a composite sample.

We form the sample of twelve plates in the follow-
ing fashion. We arbitrarily orient a Cartesian coordi-
nate system X, Y, Z in the first plate. In the second
plate the crystal axes should be turned relative to the
central line of the axial cross through 120°, in the
third through 240°. In the fourth, seventh, and tenth
plates the crystal axes are turned through 180° about
the axes X, Y, Z respectively. Relative to these
orientations, the remaining three pairs of plates are
oriented just as in the first triple. The cross section
for scattering from all of the plates is the sum of the
cross sections for scattering from the individual
plates (where t labels the plates). In the twelve sums
E in expressions (6.7) we shall consider simultane-

clfusly those ki which are identically oriented w1th re-
spect to the crystal axes of their plates. Then wj (k)
= wj{ k), where the quantity without the superscmpt

t refers to the first plate. Now only | q et (kt) |2
depends on the label t. It is easy to show that

; le; (k) q*=4q°

Thus, neglecting the temperature factor the cross
section for scattering from the composite plate is
given by formula (6.12), which is appropriate for a
cubic lattice, multiplied by 4, i.e., the cross section

turns out to be proportional to the frequency function
g (w). If the crystal contains a three- or four-fold
axis, then four or three plates are sufficient. For a
cubic crystal, naturally, we need only a single
‘“plate.”’

A simpler method for eliminat1n§ the polarization
terms has been proposed by Kagan. 21] Namely, for
a fixed scattering direction we want to determine
d2 fﬁc/deEp’ for three orientations of the single
crystal which differ from one another by cyclic per-
mutation of the coordinates. It is not hard to see that
the sum of these three cross sections (for e—ZWq
=~ 1) is

3 a2 R
1 mcoh — [VO"—.{L—L, q>
dQ dE,. d[*p it 2M p | “p—EP,}

{

o (1 Ep—Ep 1 (1o
x& A BiEpEyl_, 253

and allows us to determine the frequency function
g(w). In the case of uniaxial crystals two orienta-
tions of the crystal are sufficient. In a cubic crystal
a single position of the sample is enough, and we
arrive at the formula of Placzek and Van Hove (%
(6.12).

If the crystal consists of atoms of different types,
the quantity

2 +1
9incoh

aQ dEp,

0
Fincoh ! l
dQ2 {

also is proportional to the function g(w).m] Thus a
measurement of the cross section for three orienta-
tions of a single crystal allows us in any case to re-
establish the frequency function g(w).

As was shown in reference [22], the function g(w)
in the crystal has a finite number of singularities
wg which are roots of the equation

Vo, (k) =0. (6.13)
In the neighborhood of the singular points, the func-

tion g(w) has one of the forms

Alo—og12 +o(o—ay, 0 <o
g(m):[o(m__ms)’ > 0g

(6.14)

or the same thing with the relations w < wg and
w > wg interchanged. The symbol O(w — wg) de-
notes the remainder term in the series, of order
| w - wg | for W wge

Because of (6.12) the cross section for one-phonon
incoherent scattering for scattering energies Ep’
satisfying the relation | Ep — Epr | ~ fiwg also has a
singularity of the type (6.14), where this singularity
in the spectrum of scattered neutrons is independent
of the scattering direction. Moreover, one can show
that the energy distribution of multi-phonon incoherent
scattering has a_continuous derivative with respect to
the energy of the scattered neutrons.® On the other
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hand, the singularities in the energy distribution of
coherently scattered neutrons depend on the scatter-
ing angle and on the orientation of the crystal relative
to the direction of the incident neutrons, so that they
can be separated experimentally from the singulari-
ties considered above. Thus, incoherent one-phonon
scattering is the simplest phenomenon from which
one can determine the singularities in the frequency
function of the crystal (and the function itself, of
course).

The preceding discussion refers to a single crys-
tal. For inelastic scattering by a powder, the expres-
sion (6.7) should be averaged over the orientations of
the microcrystals. Since the singularities in the en-
ergy distribution do not depend on direction, they re-
main even after the averaging is done.

Now we go on to one-phonon coherent scattering.
From (6.6) we get
dzoc::bolh :Nom)i 2 Z S dke—ZWqu (qe; (k)2
dQ dE, M 4 p 0k

1 1
X [ri) + 5 + 5 | 8@ T k=) 8 (Ey —Ep £ ho, (k).
(6.15)

Using the é6-function in the momenta, we eliminate
the integral over k, replacing k in each term by

g + 7. All the terms in (6.15) depend on k through a
function with periods equal to the basis vectors of the
reciprocal lattice multiplied by 27, so that

0; (q+7)=0;(q), e;(q+1)=-e;(q). (6.16)

Taking this into account we find from (6.15), for a
reflection in the neighborhood of the vector 7, the
expression

dzo,:i:i

1, coh No© h Z
= VO 537 (4

—2wy P’ (gej (9)?
aQ dE M

P 0j(q)

i

1 1
x [ ny@+3 5 | 8 (By—EpLha ). (6.17)
Scattering with emission and absorption of a pho-
non will occur when the energy conservation condi-
tions are satisfied

Ey —Ep + ho;(q)=0,
or

+ (PP p) 2o, (p—p)=0. (6.18)

Here the plus sign corresponds to scattering with
emission, the minus sign with absorption of a phonon.
Let us consider these two cases separately.

We start with scattering accompanied by absorp-
tion, and show that equation (6.18) has a solution for
p’ for any angle of scattering and any p. It is obvious
that for a given p the range of admissible values of
p’ is determined by the inequalities (6.8). We con-
struct the function "%

IZYUMOV

- ’ ’ 2M 14
95 (p, P)=p"—p'— 5 0;(p—p).

For p'?=p?+ 2M/H wmax. ®j(p, p’) = 0, and when
P’ =p, <pj'(p, p’) = 0, but it follows from this that,
in the case of absorption of a phonon, equation (6.17)
for any p has at least one solution for any scattering
angle, and all the solutions lie between two concentric
spheres C and Cpax with radii p and ppax

= Vp? + (2M/h)wmax, having their centers at the
origin. These solutions form surfaces Sj‘ in p-space,
lying completely between the two spheres. Any radius
vector taken at any point of the surface Sj‘ is permis-
sible, by virtue of the energy and momentum conser-
vation laws, as a wave vector of the scattered neutron.
It is obvious that in each scattering direction there

is a finite number of possible values of p’ (in gen-
eral, no fewer than three, which corresponds to the
three possible polarizations of the phonons), and con-
sequently the spectrum of neutrons scattered in any
direction as a result of one-phonon coherent scatter-
ing is discrete.

Now let us go on to scattering with emission of a
phonon. If p? = p} = 2M/h Wmax» the range of possi-
ble values of p’, because of (6.9), runs from p to
Prmin = VDP? — pf, and just as in the case of scattering
with absorption of a phonon, we get surfaces S, lo-
cated between concentric spheres Cpin and C, with
radii pmin and p. To each scattering angle there
again correspond definite discrete values of p’. If,
however, p < py, then pmip = 0 and the function

P o 2M ,
¢ (P P)=p'—p == 0;(p—p)

for p’ = 0 is equal to p° — (2M/ﬁ)wj (p). No conclu-
sion can be drawn concerning the sign of this expres-
sion without taking a specific form for the function
wj(p), and we can only assert that for p < p; neu-
trons in general will not be scattered over all direc-
tions when a phonon is emitted.

Furthermore if p is sufficiently small, scattering
with emission of a phonon is not possible. In fact,
from the momentum conservation law it follows that
for 7= 0, 7T — k=p’ — p. This equality is possible
only if | T —k | < p’ + p. But for scattering with
emission of a phonon p’ + p = 2p, and consequently
scattering is possible if p > % | 7 — k |. Therefore
there exists a p; = Y4 7min, such that for p < p,
scattering with emission is impossible. X, however,
7= 0 and k is small, scattering with emission is
possible (1] only for V > c.

Thus, for any direction of scattering, in addition to
the continuous spectrum of neutrons which are scat-
tered incoherently and as a result of multi-phonon
coherent scattering, one should observe, for definite
values of p’ peaks due to one-phonon coherent scat-
tering. By studying the location of the one-phonon
peaks in the neutron spectrum scattered at different
angles and using (6.18), one can easily get wj(k). In
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fact, the quantity p is given to us, p’ is found di-
rectly by measuring the location of the peak. From
(6.18) one then determines the quantity wj (p-p).
The direction of the vector p’ is determined by the
assigned scattering angle.

Thus, the peaks of coherent one-phonon scattering
allow us to reconstruct the energy spectrum of the
crystal vibrations, while the incoherent one-phonon
scattering permits us to find the frequency distribu-
tion function. The question therefore arises: How do
we separate these two types of scattering? If we
measure the intensity of neutrons in the scattering
direction p’, it will consist of both types of scattering
together.

However, by changing the technique of measure-
ment one can eliminate the coherent one-phonon
scattering in certain cases (Kagan 23] ). In fact, let us
consider formulas (6.10) and (6.17), which determine
the cross sections for incoherent and coherent scat-
tering. From these formulae we see that the cross
sections are functions of the two quantities AE = Ep
- Ep and gq—the energy and momentum transferred
by the neutron to the crystal.

In the general case both these quantities can be
considered to be independent. Once this is the case,
we can fix q and study the cross section as a function
of AE alone. Let us set q = 7; then, as we see from
(6.17), the coherent cross section will be different
from zero if AE = iﬁwj(O), since wj (q) is a periodic
function of q with period 7. For the acoustic branches
wj (0) = 0, so that, in the case of an arbitrary mon-
atomic lattice, by measuring the cross section as a
function of AE for AE = 0 we will measure the cross
section for purely incoherent scattering, i.e., the
quantity (6.10). Thus for monatomic lattices we can
make a completely rigorous separation.

If there is more than one atom in the unit cell of
the crystal, then in addition to the acoustic branches
there are also optical branches, for which wj (0) = 0.
If the minimum value of the frequency in the optical
branches is above “’%:ax for the acoustic branches,
then for AE = w8~ the scattering will again be
purely incoherent. For an interval AE corresponding
to the optical branches there is a superposition of
both types of scattering. In the general case we can
not assert that wiS, < wIPt, so that the superposi-
tion can still occur within the frequency interval
AE/H corresponding to the acoustic branches. How-
ever, coherent scattering corresponding to the fre-
quencies of the optical branches wj (0) will lead to
narrow sharp lines, so that apparently one can get
both a clear separation of the coherent scattering at
the frequencies wj (0), as well as obtain the cross
section for incoherent scattering for the whole range
of frequencies in the phonon spectrum.

The coherent one-phonon scattering in principle
permits one to determine not only the spectrum of the
lattice vibrations, but also the values of the complex
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vectors of polarization of the vibrations. To do this
requires a study of the scattering on samples with
different isotopic composition. Such measurements
would solve the complete inverse problem—the re-
construction of the frequency function of the distribu-
tion, the spectrum of vibrations, and the polarization
vectors of the vibrations. Conditions for solvability
of the complete reciprocal problem have been investi-
gated recently by Kagan.m:| Practically such a prob-
lem apparently can be solved only for lattices which
are monatomic and diatomic and in which each lattice
site is a center of inversion.

7. Scattering with Emission and Absorption of a Spin
Wave

We now proceed to study magnetic scattering in
ferromagnets. We shall start from the simplest
Heisenberg model of a ferromagnet: The crystal con-
sists of N magnetic atoms each of which has spin S.
We include only the isotropic exchange interaction of
the spins, taking the Hamiltonian of the system in the
form

= — 2 J(R;—R;)(S;Sp).
i]

(7.1)

The differential scattering cross section in the
magnetic material is determined by the expression
(3.8) multiplied by e™*Wd, In the general case, the
spin correlator (SJQ ( O)Séi (t)) cannot be computed

since we do not know the eigenvalues of the energy
operator (7.1). However, in two limiting cases one
can develop an approximate theory of ferromagnetism,
namely, for temperatures much less than the Curie
temperature and in the immediate vicinity of the Curie
point. In this section we shall consider the case of
low temperatures. The other limiting case will be
treated specially in part IV.

In the case of low temperatures, when the magneti-
zation of the crystal (we are thinking of a single
domain) does not differ very much from the saturation
magnetization at 0°K, the average value of the pro-
jection of the spin along the direction of the spontane-
ous magnetic moment differs little from 8, while the
average value of the transverse components of the
spin is small. In this case we can use the well-known
relations 24 which express the spin operators 8; of
the individual sites approximately in terms of the
Bose operators bj and bj*:

S = (@SWab;, Sj = (28)b;, Si=S—bjb,  (1.2)

h + = g% 4 8.
where SJ i 1SJ

If we change from the Bose amplitudes bj and b{
. ; +
to their Fourier components by and by,
U “‘P‘fb-, bt — —1? —ikij,y
ITVN % e ks 03 VN ; € k

the Hamiltonian (7.1) will be diagonal:

(7.3)
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= g exbi:by + const. (7.4)

Since the eigenvalues of the operator byby are
integers 0, 1, 2, 3, ..., this result can be treated as
follows: At low temperatures the state of the ferro-
magnet is equivalent to the state of an ideal Bose gas
of spin waves with energy

e =25 gJ(R)u_eikR). (7.5)

Since the exchange integral falls off rapidly with dis-
tance, the main contribution to the sum over R in
(7.5) comes from the nearest neighbors. For small
k the exponent in (7.5) can be expanded in series
where, for example, for a cubic lattice we get the
following expression for the energy of a spin wave:

ex =4 S2Jo (ak)?, (7.6)

where J; is the exchange integral between nearest
neighbors, z is the number of nearest neighbors. In
the expression for the magnetic scattering cross
section

4z . ~ R
dgd(;:"p, = (rov)*F* (q)%e ZW"_Z" TETRIV S (Bap —~ eatp)
3’ af
%(Ep'—Ep)t N 6
X ok S ¢ (87 (0) S5 (#)yat (7.7)
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we can neglect ‘‘non-diagonal’’ correlators

(87 sfi(t)), (ST (t)) and (S{Sj"(t)). One can also
show that at low temperatures they are unimportant
compared to the others, not only for the phenomenon
of neutron scattering, but also for other phenomena in
ferromagnets. In this approximation expression (7.7)
is written as

d2c 2 g2\ P
?igzd—Ep,-(rOY) F(q) )

+oo i .
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+ 8787 (0) 11+ (em)?] + (SIS5 (1)) 1 — (em)I} . (T.8)

Using (7.2), (7.3) and (4.8) we get
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is the average number of spin waves with momentum
k at a given temperature.

If we restrict ourselves to a description of a ferro-
magnet using an ideal system of spin waves, i.e., if
we use (7.4) as the Hamiltonian of the scatterer, the
expression (7.10) is easily calculated:

Qk (E)=(1+ m) 8 (E+ &), Qi (E)= b (E— &),

where

(7.11)

ny = (% — 1)1 (7.12)

is the Bose distribution function for the spin waves.
We also note that one of the factors in the first term
of expression (7.9) can be written approximately as

28 1
51— D~ (S—F D mp=52D).
k k
Taking these remarks into account, the differential

cross section for magnetic scattering is equal to

d2g —aw, @B N <
a0, = VP @ 8 (1) e e —(emp 77 }:6(q—r>6

X (Ep — Ep) + (roy)?F* (q) %e’zwq% (1 + (em)?] %
X D) D {0(g—k— )8 (Ep — Ep+ex) (1)
T k

+ mid (q+ k—7) 8 (Ey — Ep— e} (7.19)

The first term of this expression describes the
elastic scattering. After integration over dEp it
goes over into expression (5.5) which we found earlier.
The second term gives the cross section for scatter-
ing of a neutron with emission or absorption of a spin
wave. The structure of this expression is very close
to that of the coherent part of the one-phonon scatter-
ing given by formula (6.6). The essential feature of
the magnetic one-magnon scattering is the additional
angular dependence of the coherent maxima through
the quantities F2(q) and 1+ (e -m)z. We also note
that if we consider terms of higher order in expres-
sion (7.7) for the expansion of the spin operator in
terms of Bose amplitudes, which one can do using the
formalism of Holstein and Primakoff, 4 we can
easily supplement expression (7.13) by terms corre-
sponding to multi~magnon scattering with absorption
and emission of several spin waves. Estimates made
by Maleev (2] show that for low temperatures the con-
tribution to the inelastic magnetic scattering from
these processes can be neglected.

Thus the cross section for one-magnon scattering
in a single crystal is equal to

d2oii

s _ .
m:N(roy)zFﬂq) 5e Wq 11 + (em)?] 2 S dk%

L

X[nk+%j;%]6(q$k—1:)6(Epo—Epi-sk). (7.14)

The upper sign refers to scattering with emission, the
lower to scattering with absorption of a spin wave.
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The 6-function in the momenta removes the integral
over k. Since in the spin-wave approximation ak <« 1,
the quasi-momentum of the spin wave is much less
than the magnitude of the principal vectors of the re-
ciprocal lattice, we can replace q by 7 in (7.14). The
result is

deot! ,
T S —2wep (Tm)

d9iE,, =N (V) F*{v) e T?[1+ ] [ “+ 7 J
X 8 (Ey—Ey+ 5. (7.15)

It follows that in the energy distribution of neutrons
scattered with emission or absorption of a spin wave
one should see peaks whose location is determined by
the energy conservation law

Epy—Ep+ aq+.r=0, (7.16)

or, considering that €k is a periodic function, by the

equation
hep'2 h2p2
2m

+ &pp =0. (7.16")

The width of these peaks turns out to be equal to
zero which is shown by the presence of the §-func-
tions in (7.15). This is connected with the assumption
that the state of a ferromagnet is described by a sys-
tem of non-interacting spin waves which are in a
stationary state. Actually, because of the interaction
of these waves with one another and with the lattice,
their states are not stationary, but they can be con-
sidered as quasi-stationary for temperatures which
are much below the Curie point. They are character-
ized by a finite lifetime 7k, or equivalently by a level
width T'y. The effect of the finite lifetime of the spin
waves can be taken into account phenomenologically
if, in the expression determining the time dependence
of the spin wave operators, we replace € by €x
- iT'kx. Thus we have

Aiilf_tﬁr_kl” iﬂ(_t_r_k!t!
by(t)=bge " e " , be(ty=bge " e

Substituting these expressions in (7.10), we find

O (E)= (14 nm) I (— F), Ou(E)=nlc(£),
where
doo i, Ty
1 Ti(l’a—ﬁk)[—Tit\ 1 Fk
Ix(E)= 2nh S ¢ = (E—sg, ‘)Z—LTI; :

From expression (7.9) it follows that the cross
section for one-magnon scattering is described by
formulas (7.13)—(7.15), in which we simply should
replace §(Ep’ ~ Ep + €x) by Ix(+ | Epr — Ep |). The
peaks in the energy distribution of the neutrons are
thus described by a Lorentz-shaped line with half-
width Tk equal to the energy of damping of the corre-
sponding spin wave. T'k is a complicated function of
quasimomentum and temperature, determined by the
mechanism of interaction of the spin waves. At low
temperatures I'k < €k, so that the peaks described
by the function Iyx(E) are sharp and have maxima at

points given by equation (7.16). In the limit as I'k

— 0, Ix(E) goes over into a 6 (E — €k)-function.
The Lorentz shape of the peak comes from the as-
sumption of exponential damping of the stationary
states. In the general case, the shape of the peaks is
determined by expression (7.10), which can be com-
puted, for example, using temperature Green’s func-
tlons.[zej By this method Krivoglaz and Kashcheev L]
have computed the broadening of the one-magnon line
because of interaction of spin waves with phonons and
with one another. Izyumov 28] treated the broadening
of the line in a ferromagnetic metal because of inter-
action of the spin waves with the conduction electrons.
The experimental investigation of the broadening
(after removing the apparatus broadening) of one-
magnon peaks would allow one to get valuable infor-
mation about the interaction of atomic spins within a
ferromagnet (or an antiferromagnet).*

Now let us consider in more detail scattering with
absorption of a spin wave, assuming that the disper-
sion law for the spin waves in quadratic.

In this case the energy conservation law can be re-
written as
SZI (7.17)

h2/2ma2 ’

pPEP=ptaq+r? a=

from which we get two possible values for the wave
vector of the scattered neutrons:

Py = aoijjl {cos0 & }costB— cog‘za)}. (7.18)

Here 6 is the scattering angle measured from the
direction of the vector P=p+ 7:

coszeo.————( 1+ aP2>

Integrating (7.15) over the energies of the scattered
neutrons, we find, taking account of the possible values
of p,, the differential cross section per unit solid

angle (Maleev [17])
~2We (vm)2 Pa
( e > pla—12

X {cos? 0—-c0s2By)=¥2[n (k,) (cos © -+ }/ cos? B — cos® 6y)?

(7.19)

do—1 S
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+n(k_)(cos 0 — 1/ cos? 8 — cos? 6p)?], (7.20)
where
o EATT T A e —1N2 R
k2 (c0s 6) = 1)2 [(cosB + 1/ cos?0 — cos? g)* — ( “— )2,@_ ]
(7.21)

is the square of the quasimomentum of the spin wave
which participates in the scattering.
Thus the scattering depends essentially on the

*All these remarks concerning broadening of one-magnon peaks
also apply to one-phonon coherent peaks. The magnitude of the
broadening of these peaks has been considered by Krivoglaz [2]
for various types of interaction of the phonons with one another
and with lattice defects (cf. also [*°]),
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magnitude of the parameter «. For ferromagnets
with a Curie temperature of the order of several
hundreds of degrees, the parameter @ ~ 100, so that
it follows from (7.19) that cos?6, > 1 — 1/a, so that

6y < a2, Since according to (7.18) the limits of
variation of cos 6 are
1> cos8>cos8; >0, (7.22)

the angle 6 < a V2, This means that scattering with
absorption of a magnon is possible only within a nar-
row cone with the axis P = p + 7, where to each di-
rection of scattering lying on the cone there corre-
spond two values (7.18) of the momenta of the scat-
tered neutrons.

Furthermore we note that since cos? 6, < 1,

or cos¥ > _%<%+é§>, (7.23)

pe a
Pt <G

where ¥ is the angle between p and 7.

Now let us consider scattering with emission of a
magnon. Just as in the case of scattering accompanied
by absorption, we get

dot?
dQ —N 2 (rOY ZFa(t)

TR s
x [eos0— 2Tt (1— 22 1" x {1t +n(k))
x [ eos04 )/ cost0 - T 1 - LB "t 4 n e
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Here the wave vectors of the magnon and the scat-
tered neutron have the values

(7.24)

ozP2 a-+1
o
- R
—[l/cosze—a—H<1—ﬁv—>icose] }. (7.25)
, P 12
Pi= 2 leos § & 1/ costo 2 —a5)] a2
Scattering is possible only if
1 T 1 p
P2>a+1 or cosYy<—3(5,~"4g7 (7.27)

Since cos ¥ = -1, it follows from (7.27) that scatter-
with emission of a magnon is possible only when

p>ar<l/1—{—»—-1> (1-~>

We must consider the two cases:

D ﬂ—:1<1 1;2> = cos?0; > 0; (2) 1__:;;2<0_ (7.29)

(7.28)

We first consider case one. Just as for scattering
with absorption, cos 6 varies within the limits

1>cos0>cos6, >0 (7.30)

and to each scattering angle 6 there correspond two

IZYUMOV

values of the momentum of the scattered neutron
(7.26). The structure of this expression is completely
analogous to (7.18).

Now we consider case two. It can occur only if

WaVa+r ) <p<eVa(YVa—1)"

i.e., when p differs only very little from 7. From
(7.26) it follows that in this case p’ < 0 and, conse-
quently, to each scattering angle there corresponds
only one value p’, for the momentum of the scattered
neutron, and the scattering angle can change from
zero to w.

In conclusion we note that, as follows from (7.24)
and (7.27), scattering with emission can occur simul-
taneously with scattering with absorption of a magnon
only if

_< +Lir P
P a
i.e., within that range of values of ¥ where both
cross sections reach their maximum values.

We shall now give a geometric interpretation of the
one-quantum coherent scattering. As already pointed
out above, it is determined by the energy and momen-
tum conservation laws:

2 p2  hep'2
T2 = l
p—p +r==*q )

<2cos¥ < (1—1£>, (7.31)

P a7t

(7.32)

where q is the wave vector of the spin wave (or pho-
non) participating in the scattering and €q is its en-
ergy. The upper sign applies to emission and the
lower to absorption of a spin wave. Both these equa-
tions together determine a surface in the reciprocal
lattice space, on which the ends of the wave vectors
p’ of the scattered neutrons lie (for fixed orientation
of the incident beam relative to the reciprocal lattice
vector of the reflection plane). Thus the scattering
surface determines the possible values of the ener-
gies of neutrons scattered in a given direction.

In the special case of a quadratic dispersion law
for the spin waves, we have from (7.32) (cf. (7.17)),
for absorption, a scattering surface given by the
equation

pr=pta(p — Py, (7.33)

where

P=pir (7.34)

Let us find the geometrical picture of this equation
(Fig. 1). We choose a rectangular coordinate system
(xyz) so that the x and y axes lie in the plane of the
vectors p, T (the vector p’ also lies in this plane)
Then the left side of equation (7.33), p’? = pX + p , is
a paraboloid of revolution with axis along z (in F1g 1
we show the parabola a which is the section of the
paraboloid by a plane passing through the z axis).
The right side of the equation is a paraboloid with
vertex B taken above the plane (x, y) at a value p
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FIG. 1. Geometrical inter~
pretation of scattering with ab-
sorption of a spin wave, AB=p>.

and projected on the point A, which is the end of the
vector P taken from the coordinate origin (shown in
Fig. 1 as a paraboloid b lying in the same vertical
plane as paraboloid a).

The intersection of these two paraboloids gives a
curve which is shown dotted in Fig. 1. The projection
of this curve onto the (x, y) plane gives a closed
curve on which all the possible values of the ends of
vectors p’ lie, i.e., the scattering surface, or more
precisely, the scattering curve which is obtained by
the intersection of the spatial scattering surfaces and
the plane in which the scattering occurs. It is not
hard to see that this ‘‘surface’’ of scattering is a
circle with its center at a point lying in the neighbor-
hood of the end of the vector P. For « > 1 the cen-
ter of the circle practically coincides with the end of
the vector P. From Fig. 1 we see that scattering is
possible within a narrow sector near the direction P.
The opening angle 6, in which scattering is possible
is determined by the expression (7.19) which was
found earlier.

In the case of scattering with emission of a spin
wave there should be a minus sign in the last term of
equation (7.33). Geometrically this corresponds to the
fact that paraboloid b is turned so that it opens down-
ward. From this we see that scattering with emission
is not always possible, but only for those values of p
for which the segment AB = p2 intersects the parabola
a, i.e., when the neutron energy is greater than the
energy of the emitted spin wave.

We also note that in the case of a linear dispersion
law for the spin waves (or in the case of acoustic pho-
nons) in place of the paraboloid b we should have a
cone with its vertex at point B, so that qualitatively
the picture remains a similar one, but the scattering
surface will be not a circle, but an ellipse.

One interesting result follows from Fig. 1: If we
shift the point A further from the coordinate origin,
the scattering surface will spread out. To develop ex-
perimental methods for studying inelastic scattering
we must find the relation between the value of the
vector P and the radius of the scattering surface.
Let us consider Fig. 2 which essentially shows a more
detailed scattering picture in the (x, y) plane of Fig.

FIG. 2. Momentum conservation law in absorption of a spin
wave. Reflection from a crystal plane shown by the dotted line a,
when the neutron beam is incident on it at a Bragg angle ¢g. The
double line a’ shows the reflecting plane when the crystal is
turned through an angle d¢ from the Bragg position a.

1. Here scattering with absorption of a spin wave is
shown in the reciprocal lattice space. The dashed
line a shows the crystalline reflection plane which
goes perpendicular to the plane of the figure. Its lo-
cation is determined by the reciprocal lattice vector
T. The relative arrangement of the vectors p, p’, T
and q satisfies the momentum conservation law for
the scattering. A circle drawn from point A is the
scattering surface. The ends of the vectors p’ should
necessarily lie on this circle, since only in this case
will the energy conservation law be satisfied, as well
as the momentum conservation law.

Let the orientation of the crystal plane a relative
to the incident neutron beam correspond to the Bragg
position, given by the conditions

p'=p-+t, p =p, (7.35)

or the equivalent

sin @pT =271 p. (7.36)

Leaving the energy of the neutrons in the incident
beam unchanged, i.e., fixing p, we turn the crystal
from the Bragg position through an angle d¢ = ¢ — ¢p.
In this case the value of the vector P will change
along with d¢. To find this dependence we square
(7.34). We have

P12 4 2(p7) = P2 (7.37)

Obviously
(pv) = prcos Q_T + (P> = — prsin (pz -+ de).

For small deviations sin ( ¢g + d¢) can be expanded
in a series in d¢; substituting the expansion in (7.37)
and using (7.36), we find approximately

p—Px~1(9p—9pcosegp. (7.38)

As we have seen from Fig. 1, with increasing P
the scattering surfaces (at least in the case of a
quadratic dispersion law) spread out. By means of
(7.38) we can now relate this change in the scattering
surface to the angular deviation of the crystal from
the Bragg position. This lies at the basis of the exper-
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imental determination of the dispersion law for mag-
nons {and phonons). It was shown earlier that in the
energy distribution of neutrons scattered in a given
direction coherently with absorption or emission of
one quasiparticle (spin wave or phonon) there should
be peaks whose positions are determined by the energy
conservation law. There are several experimental
techniques* which allow one to determine the momen-
tum of the quasiparticle participating in the scatter-
ing. Of these the most important are the following.

1. Conventional method. The experiment is done
as follows: The crystal to be studied is placed in the
Bragg position corresponding to reflection from the
plane T. An apparatus recording the scattered neu-
trons is placed at such a position as to capture neu-
trons scattered in the direction of the Bragg peak. In
such an arrangement one records mainly neutrons
which are elastically scattered. The fraction of neu-
trons scattered inelastically will be negligible. Fur-
thermore, without changing the angle of scattering g
(the angle between the vectors p and p’), one turns
the crystal through some angle from the Bragg posi-
tion and analyzes the neutrons scattered in the origi-
nal direction according to their energies. In the en-
ergy distribution of the scattered neutrons one ob-
serves peaks corresponding to absorption or emission
of a quasi-particle. Such measurements are done for
different angular deflections of the crystal from the
Bragg position; throughout the experiment = const.

In Fig. 3 we show in the reciprocal lattice space
the inelastic scattering for three positions of a single
crystal. Let us consider position 1. The distance
from the point S; to point A (site of the reciprocal
lattice T) corresponds to the scattering surface 1
which we have shown by a circle. The points of inter-
section p’ with the scattering surface correspond fo
the two peaks in the energy distribution of the scat-
tered neutrons. Vectors drawn from point A to these
points of intersection give the wave vectors of the
quasiparticles participating in the scattering. We see
that the angle y should be chosen so that the direc-

FIG. 3. Conventional method.
p = const, i = const; ¢ changes.

*The details of the experimental methods, their possibilities,
and a comparison between them are discussed in the survey paper
of Brockhouse,[®*] who is the author of many of the techniques of
neutron spectrometry which are applied at the present time.
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tion of p’ intersects the scattering surface; otherwise
there will be no inelastic one-quantum scattering. To
the point 8, which is further from point A (larger
value of vector P) there corresponds another scat-
tering surface (2) etc.

If we join the points of intersection of the vectors
p’ with the scattering surfaces for different orienta-
tions of the single crystal, we obtain curves which are
also called ‘‘scattering surfaces.’’ On these surfaces
lie the ends of the vectors p’ corresponding to inelastic
scattering. The actual scattering surfaces are usually
not known to us, and in the experiment we usually ob-
tain the curves which are shown dotted. From these
curves one can obtain a series of points for the de-
pendence of €y, the energy of the quasiparticle, on
the wave vector.

However, in this method we can not beforehand
control the direction of the wave vector of the quasi-
particle q, since we do not know the scattering sur-
face beforehand and can not orient the crystal so that
there will be neutrons in the scattering direction
which have absorbed or emitted a quasiparticle with
a given direction of its wave vector. Therefore in the
conventional method we can obtain individual points
on the dispersion curve corresponding to different
directions of the wave vector. If we want to deter~
mine the spectrum of the quasiparticle for a particu-
lar direction of the wave vector in reciprocal lattice
space, we must make the experimental technique
more complicated. This is achieved in the following
methods:

2. Method of constant Q. The experiment is car-
ried out so that the vector Q =p — p’ = const. There
are two variants of this technique.

a) The analyzer crystal is placed at a position
where it records a single energy of the scattered
neutrons, i.e., a single value of p’. If we hold
Q = const, then necessarily g = const; thus we have
a given value of the wave vector of the quasiparticle
for which we want to measure the corresponding
energy.

The energy of the neutrons in the incident beam is
changed so that the wave vector p varies. The end
of the vector p must lie on an arc of a circle with
radius equal to the length of the vector q drawn from
the end of the vector p’ (Fig. 4, a). Consequently the
end of the vector p slides along a circle and, to-
gether with its length, the angles ¢ and y change.
For each value of p one measures the neutron inten-
sity scattered for fixed energy p’. Step by step we
change the length of vector p so that the point S
moving along the circle will go further away or ap-
proach the point A of the reciprocal lattice. For
some value of p the scattering surface passes
through point q, and the intensity of the neutrons in-
creases markedly. The position of peaks in the in-
tensity of scattered neutrons as a function of the en-
ergy of the initial neutrons determines the energy of
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FIG. 4. Method of constant Q. a) p, ¢, Y vary; p’ = const;
b) p’, @,  vary; p = const.

the quasiparticles participating in the scattering with
a given wave vector q. Thus in this method, keeping
q fixed, we vary the initial energy of the neutrons
until the energy conservation law is not satisfied for
the collision of the quasiparticle with the neutron.
Along with the change in the value of p, we must also
change ¢ and y according to the scheme correspond-
ing to the scattering picture in the reciprocal lattice
space.

Making the measurement of the energy distribution
for a given g, we then go to another value of q and
repeat the procedure. Consequently this method is a
most regular and ordered one. It does not require
any previous knowledge of the scattering surface.
Technically, however, the method is complicated,
since it requires a movement of the crystal mono-
chromator giving the energy of the incident beam to
agree with the motion of the crystal sample and the
crystal analyzer. Consequently, one should have a
so-called triaxial spectrometer. Another variant of
the constant Q method can be done with the usual
biaxial three-crystal spectrometer.

b) The energy of the incident neutron beam is kept
constant throughout. The end of the vector p lies on
a circle drawn from the origin— the point O (Fig. 4, b}.
The crystal analyzer is set to record neutrons with
energies corresponding to a given angle ¢. The in-
tensity is measured as a function of the energy of the
scattered neutrons. The peaks on this curve also de-
termine the energy of the quasiparticles with a given
wave vector q participating in the scattering. In the
constant @ method (for both variants) we get sections
of all the dispersion curves of the quasiparticle for a
given direction of the wave vector by the vertical
lines q = const. In some cases it is convenient to
carry out the experiment so that one gets sections of
the dispersion curves by horizontal lines €4 = const.

3. The method of constant AE. The energy of the
incident neutrons E and the scattered neutrons E’
are not changed, so that AE = E — E’ = const. The
angles ¢ and ;) are changed, but in such a way that
the end of the vector @ slides along a chosen direc-
tion for the wave vector of the quasiparticles (Fig. 5).
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FIG. 5. Method of constant AE.
AE = E - E" = const; ¢ and ¢
change, but in such a way that
the vector Q slides along the
chosen direction.

For each value of the angles ¢ and 3 one measures
the intensity of the scattered neutrons as a function of
the length of the wave vector q. In the intensity
curves one gets peaks when the end of the vector ¢
falls on the scattering surface. The values of q ob-
tained correspond to energies AE of the quasiparti-
cles. One then varies AE and repeats the whole
series of measurements.

In the constant AE method one gets sections of the
dispersion curves by horizontal lines. This method is
convenient in that it permits one to choose the de-
sired value of AE, but it obviously is inapplicable for
determining the dispersion law for branches of the
quasiparticles which vary slowly with .

The methods considered for determining the dis-
persion curves of quasiparticles are based on the
study of the energy distribution of neutrons scattered
in some direction. There also exist methods based
on studying the angular width of the inelastic peaks,
among which the most widely used is the method of
Lowde.

4. The Lowde method.B® In the case of a quad-
ratic dispersion law, as we have seen, there is a
maximum angle 6, {angle AOP in Fig. 1), within
which there exists one-quantum inelastic scattering.
The value of this angle is determined by (7.19).
Usually « > 1, so that from (7.19) we get an approx-
imate expression for 6;:

1 — .
OOQV@VZIP—PI. (7.39)
Substituting (7.38), we get
0, ~ VIS G 1) (5 (7.40)

V aP
One can show that in the case of a linear dispersion
law (eq = c¢q, where c is the velocity of the quasi-
particle) we have, in place of (7.40), the relation
v

B, ~ fi_1>—1/2 sin 2@ | ¢ — s |

)

(7.41)

which is applicable only for v > ¢, where v is the
velocity of the incident neutrons. Thus the angular
width of the inelastic one-quantum peak varies
~ v | ® — ¢B | in the case of a quadratic dispersion
law for the quasi-particles and varies ~ | ¢ - ¢p ]
for the case of a linear law.

These two dependences open possibilities for the
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following experimental technique.£3 g The crystal is
placed in the Bragg position, and one measures the
angular width of the diffuse inelastic peak. Then one
turns the crystal through an angle ¢ — ¢pg from the
Bragg peak (‘‘missetting’’) and again measures the
angular width of the diffuse peak. Carrying out a
series of measurements, one constructs the depend-
ence of 6y on | ¢ - ¢ |. From the form of this
dependence one determines the nature of the disper-
sion law, i.e., whether it is quadratic or linear. Al-
though this method is very simple (it requires a two-
crystal spectrometer), it is clear that using it one
can obtain only limited information about the disper-
sion curves.

In conclusion we consider one important question:
the experimental determination of the parameter «
in the quadratic dispersion law for spin waves in a
ferromagnet. It is simplest to relate « to the exper-
imentally observed quantities if one uses formula
(7.18). Let us write the difference between the two
possible values of the vectors of the scattered neu-
trons in the direction of the center of the inelastic
peak, i.e., for 8 =0. From (7.18) and (7.39) we have

2V 2P P—p]

Vo )
The quantities p and P are fixed in the experiment
so that the last relation can be written as

a ~(8g)2.

, . 20P .
bg = [p+-——p_]e:0=a—a__—1$1n90%

(7.42)

If @ changes under the influence of any physical fac~
tor, as for example the temperature, this change can
be determined from the change in dq—the distance in
k-space between the two peaks of the inelastic scat-
tering. Such measurements were made a long time
ago by Brockhouse (591 gorp magnetite. The appearance
of the experiment for two temperatures is shown in
Fig. 6. The temperature dependence of the parameter
@, determined from (7.42), agreed well with the curve
of the temperature dependence of the spontaneous
magnetization of the ferromagnet M(T). This result
(a ~M(T)) is of fundamental importance since it
confirms qualitatively the new theory of the ferro-

FIG. 6. Scheme of the ex-
periment for determining the
dependence of the energy of
a spin wave in a ferromagnet
on temperature,

Intensity
h]
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magnetic state of Bogolyubov and Tyablikov, 28 1

according to which spin waves exist at any tempera-
ture at which the ferromagnet is still ordered, but
their energy depends on temperature, decreasing as
the magnetization decreases. The development of
these investigations should play an important part in
the theory of atomic magnetic ordering. Such tem-
perature measurements of spectra of spin waves
should be carried out for different types of magnetic
structures. The corresponding theorﬁl of spin waves
in arbitrary structures is given in 81

Up to the present time, spectra of spin waves have
been investigated experimentally only for a few
magnetic materials: magnetite, "% jyon, [5¢
COy.s2Feg.03, °7 franklinite (zinc-manganese ferrite),
[58] and hematite. *0 Of these only hematite is an
antiferromagnet, while the others are ferromagnetic.
In accordance with the conclusions of the theory, in
papers®~5 they obtained a quadratic law for the
dispersion of the spin waves in a ferromagnet, while
a linear law was found for the antiferromagnet. [37]
In %7 for magnetite one first observed an optical
branch of the spin waves in a ferromagnet, while the
dispersion law for the ‘‘acoustic’’ branch was inves-
tigated for the principal directions over the whole
Brillouin zone. In papers(®®®] the lifetime of spin
waves in ferromagnets is estimated.

IV. MAGNETIC CRITICAL SCATTERING

8. Scattering in the Neighborhood of the Curie or
Néel Points

Experiments show a sharp increase in magnetic
scattering of neutrons in ferro- 3% and antiferromag-
nets %% in the neighborhood of the Bragg magnetic re-
flections as one approaches the phase transition point,
and above it, in the paramagnetic region. This phe-
nomenon, which has been called magnetic critical
scattering, in its nature is completely analogous to
the scattering of light in a liquid near its critical
state (opalescence) or the scattering of x-rays in
alloys in the neighborhood of the ordering point.

Magnetic critical scattering of neutrons is related
to the increase in large spontaneous fluctuations of
the magnetization in the vicinity of the Curie point.
Since the fluctuations propagate over distances
larger than the interatomic spacing and exist for a
long time compared with the time of microscopic re-
laxation, they produce a magnetic scattering whose
distribution in angle and energy is markedly different
from the distributions which appear at low tempera-
tures.

The theory of critical scattering of neutrons in a
ferromagnet was first developed by Van Hove ! on
the basis of a study of spin correlations near the
Curie point. A phenomenological treatment of the
phenomenon using the thermodynamic theory of fluc-
tuations was given by Krivoglaz,[m who expressed
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the cross section in terms of the magnetic suscepti-
bility in the vicinity of the Curie point. A more com-
plete theory (which we shall proceed now to describe})
using a quasiclassical description of the spin system
near the ordering point was proposed recently by
de Gennes and Villain.[?®

Having in mind application of the theory to crystals
with an arbitrary lattice, whose unit cell may consist
of several magnetic atoms, we shall write the cross
section for magnetic scattering (3.8) in the following
form:

dm = (rovp L 2F<q>r<q ) D) e VRTRYN (Bap — eaty)

R;R; aB
+oo
1 — (Epr—Ep)t
X 5k ‘; en PTR80Sk (1)) ar, (8.1)

where the summation over the magnetic atoms of the
crystal is split into a sum E over the limits of one

i
unit cell and a sum E over the atoms of a given type
Ry
located in all cells of the crystal.
Since in the ordered phase the average components
of the spin of each atom are not all equal to zero, it
is convenient to write the spin correlator in the form

(S%, (0) SR, (1) = (S (Sk ) +ves (R, —Ri, ). (8.2)

The first term, corresponding to long-range order,
gives elastic Bragg scattering. The second term gives
an additional diffuse scattering which in general is in-
elastic. It is also this part of the correlator which
causes the critical scattering in the neighborhood of
the ordering temperature. The part of the scattering
cross section corresponding to it is equal to

T d%
< ’]QdEp'

. U —R; 1
X SFAQF, (q) D) e T D (dap —eah) 5o

ij R;R; of

= (7ov)? %

crit

teo
x en BT st 0)Sh 0y — (S (Sh e (8.3)
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We first consider the scattering in which the tran-
sition energy Ep' - Ep is small compared with the
initial energy. In this case we can start from a static
approximation for the correlations, considering their
limiting values for t = 0. It is clear that such an ap-
proximation describes elastic scattering. Integrating
expression (8.3) for this case over dEp/, we express
the cross sections for critical scattering into unit
solid angle in the form

/d
(58) e = oW 3oz 2 X A @) 5@ 1 (@)
ij of
X (D — enlp) ALl (I‘i—l‘j), (8.4)

where

F (@) =Bgopd D) TR (S Sk ) — (SR, (Sk,))
RiR; (8.5)

is the magnetic susceptibility tensor of the scatterer
describing the reaction of its magnetic system to an
inhomogeneous external magnetic field. In fact, if a
magnetic field HR; acts on a spin located at the
lattice point R, it leads to a change in the equili-
brium value of the magnetic moment by an amount
duR;- The average value of the magnetic moment in
the presence of an external inhomogeneous field is

8o Sp [e_ﬁ ((%7+6%’) S (8 .6)

ta, = = pk, -+ Ope,s

Sp B (F+sH)

where 63€ = ~guy 25 (SR; - HR;)- Expanding the traces
iR;
in powers of 6¥, we get in first approximation

6!‘;1' ~ g,
B

3\ b 1085, ©
rJR 0

%, (inB1)) — (5%, (0)) (SE, (0))] HE;
(8.7)
We shall be interested in the classical limit of the
spin properties of a system which is near the phase
transition point, so we shall neglect the non-commuta-
tivity of the spin operators, setting S%, (ihBy) = S‘%_.
In place of (8.7) we will have ! !

duf, = Bg2ul D) 3 (S%, Sh)) —(SE,) (k) HE;.

B iRj

(8.8)

The equation for the Fourier component (8.8) has the
form

Nops (k) = 2 X (k) HE ( (8.9)
where HP (k) = Y HP elk'(Rj'rJ’) is the Fourier

J Rj Rj
component of the external field and N is the number
of cells in the sample. The last relation shows that
xﬁﬁ(k), given by expression (8.5), is the magnetic
susceptibility tensor. According to (8.4) the calcula-
tion of the cross section reduces to calculating the
magnetic susceptibility tensor, taking into account the
spatial dispersion. Its components can be expressed
in terms of the exchange integrals if we use the fact
that each spin is in equilibrium under the action of
the external field and the molecular field of its neigh-
bors.

Above the transition point (T > T;) the local
equation for the magnetic moment at site R; can ob-
viously be written in the form (35

bR, zﬁ_(%i,‘lcgmg HR:' + 2 2JRiRj Br; > :
iR;
If we define the Hermitian matrix of rank n by the
equation

3kT
A;; (k) = 5ij‘m

(8.10)

. Z ZJR,Rj e'tk (Ri_Rj_ri+rj)
1

i

" (8.11)
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then equation (8.10) in Fourier components can be
easily written in the form

> Ay (k) pf (k) = g% HY (k). (8.12)

Going over to the inverse matrix Al
with (8.9), we get

1 (k)=

and comparing

Ngug (A7 (k)11 8ag.

Below the transition temperature (T < Tj) we
should include the presence of spontaneous magnetiza-
tion in the system. The equation for calculating the
magnetic moment of the ion at point R; in the direc-
tion of spontaneous magnetization (z axis) is written
in the form

(8.13)

wr, = Bi(|Fr, +Har,|), (8.14)
where
Bi(H)=%>guo{(2Si+1)coth [ggpo <5i+%> H
—coth [ BauoH |} (8.15)

is the Brillouin function, Fg; is the molecular field
at point Rj. It is given by the expression

=7 22 RiR; R (8.16)

Equation (8.14) leads to the following expression for
the susceptibility tensor when T < Tj:

%P (k) = Mgtz [4%7" (K)];; Baps (8.17)
where
Ailj (k) _ 6” g4 Z 2]R 1L (Ri"Rj_ri'i’rj)’
<‘9” Jrg (8.18)
A% () = Al () = g3 81y — 3 2, ¢ T,

]R

In the last relations p; and F; are the average values
of the spin of the ion at position i and the molecular
field acting on it in the absence of the external field.
Thus, in the molecular field approximation the
critical scattering is described by formula (8.4),
where the magnetic susceptibility tensor is expressed
by (8.13) for T > T; and by (8.17) for T < Ty. The
specific calculation of the cross section for critical
scattering using the method described of de Gennes
and Villain was recently done for magnetite 03] and
hematite."3, The extension of the method to the case
of antiferromagnetism was done by de Gennes in (3e,
Now let us consider in detail the critical scattering
in the simplest kind of ferromagnet consisting of one
sublattice, for the paramagnetic region ( T > T,).
Now it is more convenient not to use the method of
de Gennes and Villain, but to start from the initial
formulas (8.4) and (8.5) expressing the cross section
in terms of the susceptibility xa (q). Since in the
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paramagnetic region x®B(q) = x(q)é%B; expression
(8.4) takes the form

7 do

de crit
aufS(S + 1)

3kT

bility in the absence of exchange interaction, x (q) is
the susceptibility describing the response of the sys-
tem to the inhomogeneous magnetic field with wave
vector q. According to (8.5), x(q) is expressed as
follows in terms of the spin correlator:

S(S+1) X(‘” Z(S Sg) ciaR,

=N SE+) @Y, (8.19)

where x, = N is the magnetic suscepti-

(8.20)

Here S, is the spin of the site chosen as the coordi-
nate origin. Here we have first of all used the fact
that (S¢ Sﬁ ) depends only on the difference R — R’

and secondly that (Sﬁ S%,) is the same for all
= X, y, z above the Curie point.

The further calculation requires a knowledge of
the correlator (S;Sg). At present there is no
method for exact calculation of this quantity, but cer-
tain general properties of this quantity as a function
of R can be understood from physical arguments. It
is completely obvious that in the absence of spin in-
teractions (SySR) = 0, since in this case the spin
projections which refer to different sites are statis-
tically independent, and so their average value is
equal to zero. The presence of exchange interaction
leads to a certain correlation of the spin projections
at different sites which increases as we approach the
Curie point. This correlation manifests itself in the
development of fluctuations of the magnetization
whose magnitude increases near the Curie point. The
phenomenological analysis given by Van Hove ] Jed
to the following dependence of the correlations near
the Curie point at large R (the long-range part of the
correlation):

(SoSm) = VS D yn

inriR (8.21)

where V; is the volume per magnetic atom and r,
and k; are certain phenomenological constants de-
pending on temperature; r; should change slowly with
temperature and in order of magnitude should be
several interatomic distances, while k; should behave
completely differently. As we approach the Curie
point, the correlations should increase, so ki!
reaches a macroscopic size at the Curie point and
drops off with increasing temperature to a value of
the order of ry.

From relations (8.20) and (8.21) we quickly see that

_ X
(ksr1)* =75 - (8.22)

Substituting (8.21) in (8.20) and summing over the
whole crystal, we get x¥(q). But we are not interested
in the whole range of values of q, but only those
which lie near vectors of the reciprocal lattice, i.e.,
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we are interested in the critical state near the posi-
tion of the Bragg peak. For this reason we write the
right-hand 51de of (8.20) in the form E (S¢Sgr)

I(q n: and expand the exponent1a1 in a series in
powers of q — T; we find after summation over
lattice sites for small values of | @ — T | (in the case
of a cubic crystal)

X9 _ 1
%o ri(EHlg—T

The expression for the scattering cross section

when T > T, takes the form

(8.23)

2

(58 e =3 S DO e
Since k; drops off sharply as we approach the Curie
point, it follows from formula (8.24) that near the
Bragg peak the scattering intensity increases mark-
edly with decreasing temperature, reaching a maxi-
mum value at the Curie point. For a fixed tempera-
ture the dependence of the intensity on the deviation
of the scattering angle ¢ from the position of the
Bragg peak 6p corresponding to the reciprocal
lattice vector 7, is given by the factor

[kf -+ (0 —0p)"17",

i.e., the distribution has a Lorentz shape with width
~ky.

Critical scattering for = 0 corresponds to scat-
tering at small angles. Critical scattering with
T # 0 can actually be observed if the form factor
F(q) is not small for q = 7. The occurrence of
critical scattering with 7 = 0 is an important fea-
ture of critical magnetic scattering as compared, for
example, with the critical scattering of light by a
liquid, where it does not occur. The scattering with
T = 0 necessarily shows that, despite the strong dis-
ordering fluctuations of the magnetization, the spin
system preserves its ordered position in space be-
cause of the structure of the lattice of the crystal.

It is useful to note that the same sort of expres-
sion for the susceptibility y(q) as (8.23) can be ob-
tained by the method of de Gennes and Villain if we
start from relations (8.13) and (8.11). In fact, writing
(8.11) for i = j =1 and expanding the exponential in
series in powers of | q — 7 | we immediately get, by
using (8.13), the relation (8.23), where the parameters
r; and ky are equal to

(8.24)

(8.24")

2 __a? To

z2T—T,
1T T .

T,

= (8.25)

r

Here a is the lattice constant, z is the number of
nearest neighbors, Ty = 2zJS(S + 1)/3k is the Curie
temperature. We see that ry; and k; have the proper-

ties predicted by Van Hove’s phenomenological theory.

The length r; has microscopic dimensions and de-
pends very slightly on temperature in the vicinity of
the Curie point. The quantity k1'1 increases sharply
as one approaches the Curie point, but far from it
coincides with ry. Thus the method of de Gennes and

Villain allows one to calculate the values of ry and

ky and to find their temperature dependence. Further-
more it permits us to generalize the expressions for
the scattering cross section (8.24) to the case of sev-
eral ferromagnetic sublattices. One can show [35] that,
in the general case, near Bragg maxima the critical
scattering is equal to

7 dg Fi(q)
(88 )ene =7V E 5D i 620
where

Y
L R (8.27
EEACHERIT) )
ij

Z_Si (Si+1) A
1
t(ri—rj) <9A >17\ =Ty

in which AlJ (k) is the minor of the matrix Ajj (k)
and A (k) is its determinant, so that [A~ 1(k)]1J
= Aj; j(k)/A(k).

In the general case, expression (8.22) is replaced
by the following:

R =

— P (8.28)
18kT Z Ajj(t)e
[

-

Xi

2_ % (0)

Expression (8.26), like (8.24), is valid near the
Curie point when T — Ty « T,. Below the Curie point,
when Ty — T << T, the critical scattering is de-
scribed by formula (8.4), taking into account (8.17).

For the case where the ferromagnet has a single
sublattice, the expression for the cross section takes

the simple form
F2 () {y (@) (1 — e2) -+ %y (@) (1+€D)},

( >Cflt =
(8.30)

where x, and yx, are the longitudinal and transverse
components of the magnetic susceptibility tensor.
Using expression (8.18) for the scattering vectors
near the Bragg peaks, we can represent the cross
section (8.30) in the form

[kiri

(8.29)

(7%>mt =N (rpy)* F* (q)%S (S+1)

1—ez 1-+4-ez
x 2 .
{r% tki+lg—r 2] AL +|g—Tp } (8.31)

2

2
a
Here r{" = —

Ty
—— is a parameter which coincides

formally with that which appeared in the paramagnetic
region, while the parameters kf, and ki are equal to
F
B gzug —}I———ZZJ

2}%( ol ) —22J

52 kY 5 a2 (8.32)

The parameters k“ and kl drop off rapidly as we ap-
proach the Curie point, so the scattering intensity,
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according to (8.31) increases rapidly, reaching its
maximum value at the Curie point. Furthermore,
with increasing temperature the intensity also drops
sharply and is again described by formula (8.24); thus
the scattering of neutrons in the neighborhood of
Bragg reflections in the vicinity of the Curie point
gives peaks in the temperature dependence of the in-
tensity.

An important difference between the critical scat-
tering in the ferromagnetic region and the scattering
above the Curie point consists in the fact that in the
first case the intensity depends on the position of the
scattering vector relative to the direction of the
spontaneous magnetic moment of the crystal. The
scattering described by the two terms in curly brack-
ets in expression (8.31), which are related to the cor-
relations of the longitudinal or transverse components
of the spin, can be separated if we measure the scat-
tering in two directions: when the vector q is per-
pendicular and when it is parallel to the vector m.
Since at the Curie point k) and k) are equal to zero,
the intensity of the scattering given by formula (8.31)
can easily be seen to agree with the value of the in-
tensity at the Curie point as given by formula (8.24);
thus both these formulas coalesce at the Curie point.

It is also interesting to note that, from a compari-
son of (8.31) and (8.24), it foliows that below the Curie
point the long-range part of the correlations changes
with distance according to the same law as in the
paramagnetic domain (cf. (8.21)), with the single dif-
ference that the rate of drop-off of the correlations
will be different for the longitudinal and transverse
components of the spins. It will be given by factors
k) and k| respectively in place of ky. Right up to the
Curie point k) > Kk, so the correlation of the per-
pendicular components drops off more rapidly. This
has the consequence that the contribution to the cross
section from the second term in (8.31) is small com~
pared to the contribution of the first term which is
associated with longitudinal correlations (except, of
course, for the case where q is close to m).

In conclusion we note that the distribution of in-
tensity of critical scattering of neutrons with angle is
determined by the long-range part of the spin correla-
tions as given by expression (8.2). These correlation
functions determine the scattering not only for neu-
trons, but also, for example, for electrons in a ferro-
magnetic metal which also leads to anomalies in
electrical conductivity and other kinetic coeifficients
in the vicinity of the Curie point. Thus the computation
of such correlation functions is of general theoretical
interest.

The method of de Gennes and Villain which is de-
scribed here consists in using the relation of these
correlation functions to the magnetic susceptibility
which is calculated using the molecular field approx-
imation. Another possibility for calculating was pro-
posed earlier by Elliott and Marshall,[m who de-
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veloped an equation for the correlation functions using
the cluster method of Bethe and Peierls, " i.e., again
in the molecular field approximation which is appro-
priate in the vicinity of the Curie point.

A more general procedure for calculating correla-
tion functions on the Heisenberg model of a ferromag-
net consists in using the two-time Green’s functions.
Bogolyubov and Tyablikov[z"'] in this way developed
the correlation function for spin s = 1/2. A generaliza-
tion of their method to arbitrary spin has been given
recently.[*] The expression obtained by this method
for the correlation function in the form of a Fourier
series is valid approximately for the whole range of
temperatures in which the ferromagnetic state exists,
but the summation of the Fourier series in the inter-
mediate temperature range can be done only numer-
ically.

Now let us turn to the critical scattering. Up to
now we have studied only the static approximation for
the critical scattering, in which we neglected the
change in energy of the neutron hiw = E; — Epr on
scattering. The energy distribution of the scattered
neutrons is related to the dependence of the spin op-
erators or spin correlations on the time. It is sim-
plest to get the qualitative features of this dependence
using a phenomenological method. Let us assume that
the dependence of the correlations on time is given in
the vicinity of the Curie point (for T > T;) by a
damping of the magnetization fluctuations, which in
turn are described by a phenomenological equation
for irreversible processes in a spin system, for ex-
ample, by the diffusion equation

oM
M _ A AM, (8.33)

where A, is the diffusion coefficient, which is in-
versely proportional to the magnetic susceptibility.
From this the Fourier component of the magnetiza-
A2
tion Mq ~ e Ma’t
correlation

; (SoSk () €1R= 3} (S,8p) eiaRe~Ara2t,
]

, so that we can write for the time

(8.34)

Substituting this expression in (8.3) for the case
i=j=1, and integrating over the time, we find in
place of (8.24)

- dg 2
( a0 dEp, J esit =73 (rOY)ZS(S+ 1)

2 (q) 1 Ah |q—7|?

AR 9 =78 & (R —T i T By — (8.35)

X

The energy distribution of the neutrons in the vicinity
of the Bragg peak is described by a Lorentz-shaped
line with width Aqfi | q - T ]2. Since as we approach
the Curie point Ay — 0, the energy distribution func-
tion in (8.35) tends toward & ( Ep - Ep,). This means
that near the Curie point the critical scattering of
neutrons is quasi-elastic. Upon integrating expres-
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sion (8.35) over dEp:, we get the angular distribution
(8.24), multiplied by a factor which is close to unity.
From these statements we see that the experi-
mental study of critical scattering near the phase
transition point should give valuable information about
the behavior of the fluctuations of the magnetization.
At present critical scattering has been studied
most completely for magnetite.[m The incompleteness
of the spin wave theory of the scattering of neutrons
in the vicinity of the Curie point was shown experi-
mentally for magnetite in (2] Later Riste %% carried
out a careful study of critical scattering and a com-
parison of the experimental results with the theory of
de Gennes and Villain. The general picture of the
scattering turned out to be that proposed by Van Hove,
while quantitatively the results were in good agree-
ment with the predictions of de Gennes and Villain
for magnetitie. The critical scattering has also been
studied carefully for hematite. "

V..SCATTERING OF POLARIZED NEUTRONS

9. Differential Cross Section for Scattering of
Polarized Neutrons

In the scattering of polarized neutrons we have an
interference of nuclear and magnetic scattering which
was absent when the neutrons were not polarized.
Consequently, in the expression for the differential
scattering cross section

+oo i
d2%g m2 P’ —(Ey-—Eq) t
dQdE, ~ @RS p S drer " P Sples (Vi oV o))
- 9.1)

we should include both of the interactions of the neu-
tron with the erystal, nuclear and magnetic, so that
the quantity Vpr p takes the form

Vp’,p'":z [Al—{——;—Bl(O'Il)]
1

i 4nh2 1 > iqR;
x e o ry o D F(q) € (S0 —(e0)e).  (9.2)
i

The polarization state of the incident neutron beam
is given by the spin density matrix

0= 1 (L+p0), (9.3)

where 20 is the spin operator of the neutron and

Py = Tr pyo is the polarization vector, equal to twice
the average value of the neutron spin in the beam.
The individual components of the vector ¢ are the
Pauli matrices which satisfy the commutation rela-
tions

0,08 — 00y = 2i£a570'7, 0,08+ 0p0g = 260,5. (9.4)

It should be emphasized that expression (9.1) has the
most general form possible for a beam of particles
with spin 4, this following directly from the proper-
ties of the Pauli matrices.

It is clear that in calculating the scattering cross
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section we require expressions for the traces of
various products of Pauli matrices. From the com-
mutation relations (9.4) one can easily obtain the fol-
lowing relations:

1Spl=1, 2+Spoa=0, < Sp(0ads)="Dap,

1 .
5 SP (060p0y) = {84y,

1
5 Sp (GaUﬂO’vO'@) = 6‘,,56?6 — éavﬁﬁﬁ -+ 6,1565',,. (9 .5)

As we easily see from relations (9.1) and (9.2), all
problems concerning the scattering of polarized neu-
trons in a magnetic material require the calculation
of traces of the operators

L;=(8;, 60— (eg)e) (9.6)
in products with other such operators and with the
Payli matrices. The results of such computations are
given in the following table (9.8), in which the vector
M; denotes

?D?,-———Sj—(eS,-)e. (9.7)
Thus we have
1-Sp{oL} =M,
3 Sp {(p0) L} = (IMp),
550 ((po) 6L} = i 30 X p],
+5p{(po) Lo} = —i[M x p],
(9.8)

7 SPIL.Ls) = (),
3 Sp (L0 Lo} = — i [ X Ty,

350 ((90) LiLa} = 1 [0y X W] p,

5 S {(p0) Z,0La} = I, (Mzp) + (Myp) M — p (M),

Using this table, it is not difficult to get the follow-
ing general expression for the trace, which deter-
mines the differential cross section (9.1):

Sp o (Vi oVpr,p (801 = D) L Adr +—i— BiL (I +1) 511']
w
4mh?2

Ty ) £ 0 @ Fr (@)
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YRy (1)) — 225y 2 S AF (q)
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i & (

« (e—iqueiqu'(i)

4nh?
v 3 AF; ()
5]
—igR; i 4nh2 21
X (TP (R )y po) + (T rav ) 5 2 Fi (@ Fr (a)

i

X (e RNy (M (1)) po) —

X (&R iRy Oy ([ X My ()] po. ©.9)

In getting this expression we have made an approxima-~
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tion: we have neglected the interaction of the spin
system with the lattice, as a result of which it was
possible to split the average of the product into a
product of the averages over the states of the mag-
netic system and the lattice.

The scattering cross section is gotten by inte-
grating (39.9) with respect to the time so that, as one
easily sees, the first two terms describe the scatter-
ing of unpolarized neutrons. The additional term in
the cross section arising as a result of polarization
of the neutrons is proportional to the initial polariza-
tion vector py. The third and fourth terms in (9.9)
come from interference of nuclear and magnetic
scattering.

It is of particular interest to consider (9.9) in two
special cases: when the scatterer is a ferromagnet
and when it is an antiferromagnet. For simplicity we
shall assume that in both cases the crystal consists
of atoms of only one type. From expression (9.9) we
should separate out first the parts corresponding to
elastic and inelastic scattering. For this purpose we
express the operator of the spin vector Sj in a co-
ordinate system where the z axis is directed along
the spontaneous magnetic moment. (If the crystal
consisted of several sublattices, we should have to
choose a separate coordinate system for each of them
with the z axis along the magnetization vector of the
sublattice.)

In the case of one sublattice

sj=S§m+§s;m'+éjS;m*, (9.10)

where m* = mX + imY, m¥, mY are unit vectors
the x and y axes. According to (9.10), the vector EIJEj
(9.7) breaks up into components:

WM, = SM A+ S;M -+ 5 STM, (9.11)
where

M=m—(em)e, M*=m*—(em#)e. (9.12)

Thus the whole expression (9.9) can be broken up
into a “zlongitudinal” part associated with the projec-
tions S; and leading to elastic scattering, and a
‘“‘transverse’’ part associated with the operators st

~and leading to inelastic scattering. In this way we
get for a ferromagnet

L Spleo ViV () =N (B -T2+ L BTT+ D} e

{22+ (222 ) vy P @) 8* (D) M

4mh?
m

4mh2 2 2w, 1 —iq{R;—R;
+ (2 iy ) e ar (g 4 D) e TR
i

x {(8;87 (£)) [1 + (em)* + 2 (em) (epo)]

rovF (q) S(T) 4 (Mpo)} l 2, IR i2 e—2Wq

+ (8785 @) (1 + (em)®— 2 (em) (ep,)]}, (9.13)
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and for an antiferromagnet (two sublattices)

7 SP {0 ViV prp (0)) = N { 2= B BT (TF 1)} 2%

m

+ A D ey (Y gy sy L
4

X (1= cos (ana)) M2 | 39! s o2y (42 e
j
x F2(q) e~2Wq %2 e‘iQ(Rj‘RJ")E . “V_rv')(S}vS;vv/(t)

33 vy’

+ S5 ST (2)) [1 4 (em)?]. 9.14)

In the last expression m is a unit vector in the
direction of magnetization of either sublattice. As we
see, this expression is invariant with respect to the
choice of the sublattices. This is completely natural
since the sublattices are equivalent.

Substituting (9.13) and (9.14) in formula (9.1), we
can get an explicit expression for the scattering
cross section for polarized neutrons,m] but it is not
worth writing it since all of its features are easily
seen from the last two expressions.

It is interesting to note that for an antiferromagnet
with two sublattices the cross section for scattering of
polarized neutrons differs in no way from the cross
section for scattering of unpolarized neutrons. This
is exactly what should be the case. In fact, as follows
from (9.1) and (9.3), the cross section is a linear
function of the polarization vector p,;. Since py is a
pseudovector and the cross section is a scalar, p;
can enter into the expression for the cross section
only in a product with some pseudovector character-
izing the scatterer. An antiferromagnet is not de-
scribed by any magnetic pseudovector (the sublattices
give only the axis of antiferromagnetism, but not its
direction) so that in the cross section there is also no
term containing the polarization vector.

On the other hand, a ferromagnet is characterized
by a pseudovector—the direction of the spontaneous
magnetic moment. For this reason in the scattering
cross section obtained from (9.13) there are terms
depending on the polarization. These terms change
the intensity of the Bragg peaks because of interfer-
ence between nuclear and magnetic scattering, and
also change the intensity of inelastic magnetic scatter-
ing.

10. Change in Polarization on Scattering in Ferro-
and Antiferromagnets

In scattering of polarized neutrons in magnetic
materials, most of the information about the proper-
ties of the magnetic system can be obtained by study-
ing not the scattering cross section, but the change in
the polarization vector of the neutrons scattered in a
given direction. The polarization vector of the neu-
trons after the scattering is given by the formula



THEORY OF SCATTERING OF SLOW NEUTRONS IN MAGNETIC CRYSTALS

_ Sp{eg (V30V} 1 (10.1)

Sp {05 (VirpV prp}
by means of which we can easily calculate the polari-
zation vector of the neutrons scattered in a given di-
rection as a result of different processes: nuclear
and magnetic, elastic and inelastic. Let us consider
the scattering for two cases.

1. Ferromagnet. In purely nuclear scattering the
polarization vector obviously can not change its direc-
tion, but as a result of the scattering one can get a
partial depolarization of the beam. Calculations using

ZzpoJr( il

o) P St ¢ [2M (Mpo)—M2pg) — =2
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formula (10.1) lead to the following expression for the
polarization vector of the neutrons scattered inco-
herently and elastically:

713—22-——1—B21 I+

pm<:oh —_—_———bo

A2+ BI(I D)

(10.2)

The polarization vector of neutrons which suffer a
scattering without change in the magnetic state of the
scatterer (without absorption or emission of spin
waves) is (44]

rovAF @S (IHM
. (10.3)

Pam =

E2+< 42‘;‘

The polarization vector pj, (pp,) due to scattering
with emission (absorption) of one spin wave or, more
precisely, processes of scattering in which the num-
ber of spin waves increases (decreases) by unity, has
the form (441

=+ 2 (em) e—-2M (M po) - 2My (Mypo) — (M3 -+ M3) po
Pm = T (em)2 F 2 (ém) (epo) .

(10.4)

It is easy to see that this expression is independent of
rotation of the coordinate axes about the vector m,

rov )| 72 (0) $° (T) - M2

(T ) sy

4mh2

roVAF (g) S (T) (Mpo)

i.e., it is independent of the choice of the x and y
axes.

The average polarization vector of neutrons scat-
tered in a given direction n is obviously

p= PincohCincoh (1) +PamOnm (0, Po) - PmSm (1, Po)+ Pmom (N, Po)
Gincoh{B)+Onm (B, Po) -0 (N, Po)+ 0z (0, Po) a 0 5)

Here ojpcoh{n) is the cross section for incoherent
nuclear scattering

iMz._ h?

roYF (@) S (T) A (Mpo)

Onm (1, Po) = [1 +

o (n, p) = [ 1 5 HERE ) ox ),
where op(n) is the cross section for nuclear scatter-
ing of unpolarized neutrons and U}En (n) is the cross
section for magnetic scattering of unpolarized neu-
trons with increase or decrease in the number of

spin waves by one.

It is interesting to note the following fact: When
Oincoh (n) = 0, which occurs for a lattice consisting
of atoms of a single isotope not having a spin, the
polarization vector of the neutrons scattered in a
given direction is expressed as a linear combination
of the three, in general non-coplanar, vectors pppy,,
Prn and pp,. These vectors are given by equations
(10.3) and (10.4). From these equations one can see
that we can calculate them beforehand if we know the
nuclear scattering amplitude and also F(q), S(T),

e and py. Thus, by measuring the polarization vector
p of neutrons scattered in direction n, and also the
total cross section in that direction

(10.7)

o (n, Po) = Onp (0, Po) + 0 (n, po) + 05, (n, po),  (10.8)

we obviously can determine separately o, (1, Pg),
Om (1, Pg), and consequently o,(n) and orin(n).
or*n(n, Po) and op, (1, py), and consequently op,(n)
and o(n).

0 (n). (10.6)

ZZ

Expressions (10.3)—(10.5) allow us to treat the
case of scattering of unpolarized neutrons in a ferro-
magnet (Maleevm]). Setting py = 0, we get

A WAR @S (1) M
Prm == T T , (10.9)
A2+<Tfov> F2(q) 82(T) o (1 —(e-m)?)
2(e-
PE=E o (10.10)
_ PrmOam (0, 0)4-pi [05 (0) — 07 (0))
p= m"n:nn(ﬂ, 0)+a;, (n)+op, (n? : (10.11)

Thus from the last relations it follows that initially
unpolarized neutrons, when scattered in a ferromag-
net in direction n, become polarized, and the polari-
zation vector (10.13) consists of two components.
One of these (ppy,) is due to interference of the
nuclear and the elastic magnetic scattering: the cor-
responding polarization is directed along the vector
M=m - (e-m)e. The other component, which ap-
pears because of inelastic magnetic scattering is
directed along the vector e. The components are
perpendicular to one another so that they are easily
separated. Thus, magnetizing a crystal perpendicular
to the scattering vector e, we separate out the part
of the polarization due to interference of nuclear and
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magnetic scattering. Magnetizing the crystal along
the vector e, we get the part of the vector p due to
inelastic magnetic scattering. This permits us to
separate the inelastic magnetic scattering from the
elastic.

2. Antiferromagnet. In the scattering of unpolar-
ized neutrons by an antiferromagnet, polarization
obviously cannot occur. This is related again to the
fact that an antiferromagnet is not characterized by
any pseudovector along which the polarization of the
scattered neutrons could be directed. Nevertheless,
in the scattering of polarized neutrons by an antifer-
romagnet one can have a rotation of the polarization
vector. Just as in the case of a ferromagnet, we shall
write the polarization vector of the neutrons scattered
in a given direction as the result of various scatter-
ing processes.

For incoherent nuclear scattering, the polarization
is proportional to the polarization of the incident
beam

Pincoh== 0o, (10.12)

where the coefficient o =1 has a quite complicated
form and can be calculated individually for each
specific case.

For coherent nuclear scattering the polarization
does not change. The polarization vector due to
scattering without change in the magnetic state of the
?&ﬁlt’cerer (elastic magnetic scattering) has the form

2(Mpp)M
M

Prmo = Po, (10.13)

where M=m ~ (e-m) e, and m is the direction of
the magnetization vector of either sublattice. This
formula describes in particular the polarization of
neutrons scattered in the directions of the three
Bragg peaks due to magnetic scattering which do not
coincide with the nuclear Bragg peaks, since in these
directions we can neglect all scattering processes
except for the magnetic elastic scattering. It is not
difficult to see that in absolute value the vector ppyg
is equal to py. Breaking up the vector py,, into two
components, parallel and perpendicular to the vector
M, and substituting this expansion in (10.13), one can
verify that the vector pp, is obtained from the vec-
tor py by a rotation through 180° around the direction
of m.

Thus, if p, is parallel to M, then as a result of
magnetic reflection the polarization is unchanged, and
this result is obviously valid for any Bragg peak. If,
however, p, is perpendicular to M, then for magnetic
Bragg peaks which do not coincide with nuclear peaks,
the polarization is equal to

On —0Om
p= On +Gm Pos

(10.14)

where o and 0, are the cross sections for nuclear
and magnetic scattering into the direction of the
Bragg peak.

IZYUMOV

Now we write the polarization vector for inelastic
magnetic scattering (4]

M, (Mxpo)+My (MyPo)
Mifa TP

(10.15)

Pmt=2

This expression can be rewritten in invariant form

Pt =2 Poy eL(f«_r:z :;)ie m)(M-po) P
where pgj and e, are the components of the vectors
py and e perpendicular to the vector m. Thus, for
example, py =p - (p-m)m.

Now using (10.12), (10.13) and (10.15), we can
write the average polarization of the neutrons scat-
tered in a given direction in the form

(10.16)

p= 907 (1) Pot Omo () Prao-t-Tma (0) Py
Op (D)4 Omg (B) 4Oy (1)

Here op(n) is the cross section for nuclear scat-
tering in the direction n, opy¢(n) is the cross sec-
tion for magnetic scattering in which the number of
spin waves does not change, and finally op(n) is
the cross section for scattering in which the total number
of spin waves changes by unity. Obviously formula
(10.17) allows one to determine «, oyy(n) and
Omi (n), if one knows the polarization p and the total
cross section for scattering in the given direction:

(10.17)

6 (B) = G, (B) + O (0) -+ Oy (D).

We note that in similar fashion one can treat the
effects of polarization in scattering of neutrons in
crystals with more complex magnetic structure, such
as ferri- and antiferromagnets, weak ferromagnets
with non-collinear sublattices, etc.

Particularly interesting effects associated with
polarization of the neutrons should appear in crystals
with helicoidal magnetic structure.[47:4]
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