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INTRODUCTION

О LOW, or thermal, neutrons interacting with the
atoms of a scatterer are subject to two types of scat-
tering: nuclear and magnetic. The first is caused by
the interaction of the neutron with the nucleus via
purely nuclear forces and has a scattering cross sec-
tion of the order of one barn. The second type of
scattering is due to the presence of the magnetic mo-
ment of the neutron which interacts with the magnetic
moment of the atom so long as it is different from
zero. The cross section for magnetic scattering, like
nuclear scattering, is of the order of a barn.

In the scattering of slow neutrons in a crystal the
de Broglie wave lengths of which are comparable with
interatomic spacings, one gets the typical diffraction
scattering picture: for scattering angles correspond-
ing to the Wulff-Bragg conditions, there appear sharp
peaks in the intensity of coherently scattered neutrons.
If the crystal does not contain magnetic atoms, the
entire interference picture is caused by the nuclear
scattering of the neutrons from the atoms occupying
periodic positions in this space. When the crystal
contains magnetic atoms, but these do not form a
magnetic order (of the ferro- or antiferromagnetic
type), the magnetic scattering of the neutrons will not
be coherent because of the chaotic orientation of the
magnetic moments of the atoms, and thus the coherent
picture will once more be caused by the nuclear scat-
tering.

However, if there is magnetic order in the crystal
over a volume of one or several unit cells, the mag-
netic scattering of the neutrons will also be coherent.
In general the conditions for Bragg magnetic reflec-
tions will be different from those for nuclear reflec-
tions, so that the locations of the coherent peaks in the
magnetic scattering may not coincide with those of the
nuclear peaks.

In the scattering of unpolarized neutrons there is
no interference between nuclear and magnetic scatter-
ing, so that we have a simple superposition of the in-
tensities for the two; then, depending on the magnetic
structure of the crystal, the magnetic peaks may be
superposed on the nuclear peaks (since each magnetic
atom also gives a nuclear scattering of the neutron),
but they may also appear independently of the nuclear
peaks.

As we see from the foregoing, the study of coherent
scattering of neutrons in crystals permits one to un-
derstand the crystal-chemical and magnetic structure
of the crystal. This constitutes the method of neu-
troaography, which at present has already developed
into an extensive region of experimental physics and
becomes more and more important, especially for the
science of magnetic materials. So-called magnetic
neutronography is the basis on which the modern
theory of ferro- and antiferromagnetism is based.

But the method of neutron diffraction is not limited
to the possibility of studying just crystal structures.
The coherent Bragg peaks which are associated with
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the determination of the structure are those directions
along which neutrons are scattered elastically for the
most part, i.e., without exchange of energy with the
crystal. But neutrons can also be scattered inelastic-
ally, giving up a part of their energy to the crystal or
getting some from it.

It is well known that inelastic nuclear scattering
of neutrons occurs via absorption or emission by the
neutron of a definite number of phonons. Magnetic
inelastic scattering in the presence of magnetic order
occurs via the absorption or emission of magnons—
quanta of the spin waves. Phonons and magnons are
collective motions of the atoms coupled by the crystal-
line forces and by the exchange forces between the
magnetic moments of the atoms in the crystal. It
therefore follows that the study of inelastic scattering
of neutrons in crystals permits one to study the dy-
namics of the crystal: the spectrum of thermal lattice
vibrations (phonons) and the spectrum of thermal
vibrations of the spin system (magnons).

We can say immediately that the greatest informa-
tion about the state of the magnetic system of a crys-
tal which has magnetic order comes from a study of
the scattering of neutrons near the transition point-
magnetic order-disorder, and also from the study of
the scattering of polarized neutrons, where one gets
interference between the nuclear and magnetic scat-
tering. Even such a brief glance at the possibilities
of neutronography shows that experimenters have at
their disposal a powerful method for studying the
solid state.

The survey as a whole will consistently and sys-
tematically present the theory of scattering of slow
neutrons in crystals. Since the theory of nuclear
scattering in crystals was worked out in detail in the
monograph of Akhiezer and Pomeranchuk,'-1^, our main
attention will be devoted to magnetic scattering, es-
pecially to questions which have become important in
recent years: inelastic scattering, critical scattering,
and also the scattering of polarized neutrons. Various
applications of elastic magnetic scattering have been
treated earlier in the monograph of Bacon ^ and also
in the surveys >-3»4J. At the same time we have tried
to maintain a definite equilibrium between the differ-
ent parts of the theory in order to cover a wide range
of problems. The survey does not pretend to com-
plete explanation of the problem, and only those as-
pects are considered which have an application to ex-
periment, although very few experimental data are
given.* In this connection we have not considered at
all problems of multi-phonon and multi-magnon scat-
tering, limiting ourselves merely to a description of
their main features.

The presentation is given within a unified mathe-
matical scheme corresponding to a description of the

*A survey of various applications of the neutronographic method
is contained in the paper of Zhdanov and Ozerov.M

scattering in the Born approximation. By introducing
the so-called time formalism (Van Hove '-5'6-1), the
problem of calculating the scattering cross section
per unit solid angle and per unit energy range reduces
to computing the Fourier components of the correla-
tions between positions of two atoms in the lattice at
different moments in time for the nuclear scattering,
and of the correlation functions of the spin projec-
tions for the magnetic scattering. The appropriate
mathematical apparatus is developed in part I. Later
it is applied to various problems of scattering theory.

In part II we consider elastic nuclear and magnetic
scattering of neutrons and present the fundamentals
of neutronography—nuclear and magnetic. »Part III
considers inelastic scattering of neutrons. Here only
one-quantum scattering is considered, in which one
phonon or one magnon is absorbed or emitted. The
theory of this question lies at the basis of the experi-
mental method for reconstructing the spectra of pho-
non and spin waves from the data on inelastic scatter-
ing. In part IV we present the features of magnetic
scattering of neutrons near the Curie point. Under
conditions of a phase transition of the second kind,
where fluctuations in the magnetization increase, one
gets "cr i t ica l " scattering of neutrons which is simi-
lar to the scattering of light in a medium in the criti-
cal state (opalescence). And finally, part V is devoted
to the scattering of polarized neutrons. Here we con-
sider two classes of questions: 1) scattering cross
sections of polarized neutrons, 2) change in the polar-
ization vector of the incident neutron beam on scatter-
ing in ferro- and antiferromagnets.

I. GENERAL EXPRESSIONS FOR SCATTERING
CROSS SECTIONS

1. Time formalism in scattering theory

In problems of scattering of slow neutrons in
materials, under conditions remote from resonance
capture by the atomic nuclei, one usually starts from
the Born approximation which corresponds to the first
order of perturbation theory. When the scatterer con-
sists of a large number of particles (for example, a
crystal), it is convenient in calculating scattering
cross sections to introduce the time formalism. In its
most general formulation the problem consists of the
following.

The scatterer is in a state of statistical equili-
brium at a given temperature and is described by the
statistical operator p = e ' ^ / T r e~PX, where 3C is
the Hamiltonian and /3 = 1/kT. Let the initial state of
the scatterer by characterized by the wave function
| п 0 ) , which is an eigenfunction of the s c a t t e r e r

Hamiltonian so that

During interaction with the neutron the scatterer goes
over into another stationary state, and the neutron
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can change i ts momentum and spin. The initial s ta te

of the neutron is descr ibed by the wave function

| per) where p is the wave vector and a is the spin.

We shall d e t e r m i n e the total probabil i ty for a p r o c e s s

in which the neutron, after interact ing with the s c a t -

t e r e r , goes over into the s tate | p'cr')-

The total Hamiltonian of the sys tem, s c a t t e r e r plus

neutron, cons i s t s of two p a r t s :

# = # „ + # ' ,

where EQ = X + ЗСд is the Hamiltonian of the s c a t t e r e r

and the neutron, and H' is the operator for i n t e r a c -

tion between t h e m .

To study the development of the sys tem, s c a t t e r e r

plus neutron, in t ime, it is convenient to use the evo-

lution o p e r a t o r , ^ expanding i t in powers of the in-

t e r a c t i o n :

dti-
(1.1)

We go over to a second-quantization r e p r e s e n t a -

tion for the neutrons, in which we have

SVn=^1Epa;aapa, # ' = У\ F p . o ,, р аа+. а .ар 0, (1.2)
pa pp'aa'

where Ep is the neutron energy, Vp/ff< p a i s the

m a t r i x e lement for the interact ion o p e r a t o r taken b e -

tween the neutron s t a t e s .

If at the initial t ime the s y s t e m was descr ibed by

the wave function | p a ) | n 0 ) , then a t t ime T the wave

function of the sys tem will be

(1.3)

(1.4)

pp'aa' 0

X Fp.o-, P o ( < i ) a p V a P a + . . .1 ! pa) I n 0),

w h e r e

T/ / / \ — , h T/ '
* () Q ' , p o \^) '—• - ' p ' o ' , n o ^

i s the H e i s e n b e r g r e p r e s e n t a t i v e of the i n t e r a c t i o n

o p e r a t o r f o r t h e s c a t t e r e r H a m i l t o n i a n .

F r o m e x p r e s s i o n (1.3) i t f o l l o w s t h a t t h e t o t a l

p r o b a b i l i t y of t r a n s i t i o n of t h e n e u t r o n to t h e s t a t e

| р ' а ' ) a t t i m e T in w h i c h t h e s c a t t e r e r l e a v e s f r o m

t h e i n i t i a l s t a t e | n 0 ) , i s e q u a l t o

T T I
1" Г irWp'-E^itl-to)

\dl2ytie (•'•Jv.
0 (1.5)

We average this probabil i ty over the init ial s t a t e s of

the s c a t t e r e r , i .e. , we multiply (1.5) by рщ and sum

over n 0 . We note that this i s equivalent to taking the

t r a c e of the product of p with the o p e r a t o r appearing

in (1.5) under the m a t r i x e lement symbol. In addition,

we make a change of var iab les of integration in (1.5),

introducing t = t t — t 2 . Noting that under the t r a c e

s i g n w e c a n m a k e a c y c l i c p e r m u t a t i o n of t h e o p e r a -

t o r s , w e o b t a i n f o r t h e a v e r a g e d t r a n s i t i o n p r o b a b i l i t y

t h e e x p r e s s i o n

J dte*^"^ V p - c P«Ve-a., pa(t)), (1.6)

w h e r e ( . . . ) i s a s y m b o l f o r s t a t i s t i c a l a v e r a g i n g

o v e r t h e s t a t e s of t h e s c a t t e r e r , i . e . ,

) = S p ( e - P ^ . . . ) / S p e - P ' 9 * (1-7)

In m a n y s t a t i s t i c a l s y s t e m s , i n c l u d i n g c r y s t a l s , t h e

c o r r e l a t i o n f u n c t i o n s d e c r e a s e r a p i d l y w i t h t i m e

( f r e q u e n t l y e x p o n e n t i a l l y ) . If t h e c o r r e l a t i o n f u n c t i o n

in (1.6) d e c r e a s e s r a p i d l y w i t h s o m e c h a r a c t e r i s t i c

t i m e r c , t h e n for t i m e s T » т с w e c a n find t h e

a s y m p t o t i c b e h a v i o r of (1.6) b y r e p l a c i n g t h e l i m i t s

i n t h e s e c o n d i n t e g r a l b y + °° a n d — °°. Now we s e e

t h a t u n d e r t h e s e c o n d i t i o n s t h e t r a n s i t i o n p r o b a b i l i t y

i s p r o p o r t i o n a l to t h e t i m e of t h e t r a n s i t i o n , a n d w e

c a n i n t r o d u c e t h e t r a n s i t i o n p r o b a b i l i t y p e r u n i t t i m e

p ' o ' , p a - >- (1-8)

If t h e w a v e f u n c t i o n s of t h e n e u t r o n a r e n o r m a l i z e d

to u n i t y (to a б f u n c t i o n ) , t h e e f fec t ive c r o s s s e c t i o n

f o r s c a t t e r i n g in to u n i t s o l i d a n g l e p e r u n i t e n e r g y

r a n g e d 2 a / d S i d E p ' i s r e l a t e d to t h i s p r o b a b i l i t y by the

e q u a t i o n [8]

nfl
d Q dEv,

W . (1.9)

H e r e m i s t h e m a s s of t h e n e u t r o n , W p / p i s t h e

p r o b a b i l i t y W p ' ^ p g ^ a v e r a g e d o v e r t h e s p i n s t a t e s in

t h e i n i t i a l b e a m a n d s u m m e d o v e r t h e s p i n s t a t e s in

t h e f inal b e a m . T h u s t h e e f fect ive s c a t t e r i n g c r o s s

s e c t i o n i s e q u a l t o

nfi
dQdlSp.

Л- \ dtehT (*V-En) t

(1.10)

where Vp^p is the m a t r i x e lement of the o p e r a t o r for

interact ion of the neutron with the s c a t t e r e r taken

only with r e s p e c t to the momentum s ta tes of the neu-

t r o n . The b a r over the o p e r a t o r means

L = Sp QaL, (1.11)

w h e r e pa i s t h e s p i n d e n s i t y o p e r a t o r in t h e i n i t i a l

b e a m .

T h u s i n t h e g e n e r a l c a s e t h e e f f e c t i v e c r o s s s e c -

t i o n f o r s c a t t e r i n g of n e u t r o n s in a m a t e r i a l i s p r o -

p o r t i o n a l to t h e F o u r i e r c o m p o n e n t of t h e c o r r e l a t o r

of t h e i n t e r a c t i o n . T i m e c o r r e l a t i o n s in t h e t h e o r y

of s c a t t e r i n g of n e u t r o n s w e r e f i r s t c o n s i d e r e d b y

V a n Hove '-5'6^ f o r t h e p r o b l e m s of n u c l e a r a n d m a g -

n e t i c s c a t t e r i n g .

It i s u s e f u l a l s o to put E q . (1.8) in m a t r i x f o r m (in

t h e r e p r e s e n t a t i o n of t h e s c a t t e r e r H a m i l t o n i a n ЭС),

a f t e r i n t e g r a t i o n o v e r t h e t i m e :
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Wp'a-. pa = -£- 2 6«о I К | ^p'p | П) [2 б (£p — £p ' — j£n + Ещ).
пщ

( 1 . 1 2 )

F r o m t h i s w e s e e t h a t t h e m e t h o d d e v e l o p e d h e r e

i s e q u i v a l e n t t o t h e f i r s t a p p r o x i m a t i o n i n t h e B o r n

t h e o r y of s c a t t e r i n g .

2 . I n t e r a c t i o n o f S l o w N e u t r o n s w i t h M a g n e t i c

M a t e r i a l s

T h e e n e r g y o f i n t e r a c t i o n o f a n e u t r o n w i t h a m a g -

n e t i c m a t e r i a l c o n s i s t s o f t w o p a r t s : t h e i n t e r a c t i o n

e n e r g y w i t h t h e n u c l e i a n d t h e m a g n e t i c i n t e r a c t i o n

e n e r g y w i t h t h e e l e c t r o n s . G e n e r a l l y s p e a k i n g , t h e r e

i s a l s o a n i n t e r a c t i o n o f t h e n e u t r o n w i t h t h e e l e c t r o n s

w h i c h i s i n d e p e n d e n t o f s p i n , a n d a m a g n e t i c i n t e r a c -

t i o n w i t h t h e m a g n e t i c m o m e n t s o f t h e n u c l e i . B u t

b o t h t h e s e i n t e r a c t i o n s a r e v e r y s m a l l a n d w i l l b e

n e g l e c t e d i n w h a t f o l l o w s .

T o c a l c u l a t e s c a t t e r i n g c r o s s s e c t i o n s u s i n g t h e

f o r m a l i s m d e v e l o p e d i n S e c . 1 , w e m u s t f i n d e x p r e s -

s i o n s f o r t h e m a t r i x e l e m e n t s V p / ) P o f t h e o p e r a t o r

f o r i n t e r a c t i o n of t h e n e u t r o n w i t h t h e s c a t t e r e r .

1 . M a t r i x e l e m e n t of n u c l e a r i n t e r a c t i o n . T h e

e n e r g y of i n t e r a c t i o n of a n e u t r o n w i t h a n u c l e u s i s

c o n v e n i e n t l y d e s c r i b e d b y i n t r o d u c i n g t h e s o - c a l l e d

p s e u d o - p o t e n t i a l . F o r s l o w n e u t r o n s , w h e r e t h e s c a t -

t e r i n g i s m a i n l y b y S - w a v e , t h e s c a t t e r i n g a m p l i t u d e

c o n s e q u e n t l y d o e s n o t d e p e n d o n t h e s c a t t e r i n g a n g l e ,

a n d t h e p s e u d o - p o t e n t i a l c a n b e t a k e n i n t h e f o l l o w i n g

f o r m : [ 1 ]

F ( r n ) = a 6 ( r n - R ) , ( 2 . 1 )

w h e r e r n a n d R a r e t h e c o o r d i n a t e s of t h e n e u t r o n

a n d n u c l e u s a n d a i s d e t e r m i n e d b y t h e s c a t t e r i n g

a m p l i t u d e o f t h e f r e e n u c l e u s .

If t h e n u c l e u s h a s a s p i n , t h e s c a t t e r i n g a m p l i t u d e

d i f f e r s d e p e n d i n g o n t h e o r i e n t a t i o n s of t h e s p i n s o f

t h e n u c l e u s a n d n e u t r o n . T h i s c a n b e t a k e n i n t o a c -

c o u n t b y w r i t i n g a i n t h e f o r m

a = A + B(Snl), ( 2 . 2 )

where S n and I are the spins of the neutron and nu-
cleus, and A and В are constants. From the well-

x v z
known properties of the operators Sn, S n and Sn,
expression (2.2) is the most general form for a.

In the case of interaction with a system of N
nuclei, we have

i=i
(2.3)

The matrix element Vp',p of the operator V between
states of the neutron with momenta Kp and Rp' is
given on the basis of (2.3) in the form

- p ' ) - R z ] . (2.4)

2. Matrix element of magnetic interaction. By
magnetic interaction of the neutron with the scatterer
we should understand the interaction of the magnetic

field produced by the neutron with the electron cur-
rents forming unclosed shells of the scatterer atoms.
The energy operator for such an interaction can be
written in the form

V= 2 ~ A" (r;) J(r/)> (2.5)*

where A n ( r ) = [цп x ( Г - r n ) ] / | г - r n | 3 is the
vector-pontential of the field at point r produced by
the neutron located at point r n , цп = 2y/inSn is the
magnetic moment of the neutron (y = —1.93 is the
value of the magnetic moment of the neutron in
nuclear Bohr magnetons ^ n ) , j ( r ; ) is the current
produced by the Z'th electron. Summing in (2.5) is
done over all the unpaired electrons of the scatterer.

Let us calculate the matrix element between states
of the neutron with momenta fip and Kp' and states
of the scatterer Ф а and Фа». We have

[Ц»х(г,-г„)]

4 ' 'J <r') P-P'"-" drn
(2.6)

Integration over d r is done over the coordinates of
all electrons included in (2.5). It is well known'-8-' that
the matrix elements of the current are equal to

(2.7)t
where sj is the spin operator of the Z'th electron,
HD is the Bohr magneton. The first term on the right
of (2.7) describes the current produced by the orbital
motion of the electron, and the second gives the spin
current. For the present we shall consider only the
spin part of the current. Substituting the expression
for it into (2.6) and introducing the relative coordi-
nates г^ — r n = R, we write the expression for the
matrix element (2.6) in the form

К I I V . P И

= "2 О
(2.8)

w h e r e q = p - p ' i s t h e v e c t o r of s c a t t e r i n g . N o t i n g

t h a t

RdR ,-tqR __ iniq

we now have in place of (2.8)

a ) . S B -(eS B )e) . (2.9)

*(ab) or (a, b) = a-b.
trot = curl.
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The expression in parentheses gives the scalar prod-
uct of the vectors, r 0 = e2/m0c

2 is the electromagnetic
radius of the electron, and e = q/q is the unit scat-
tering vector.

In expression (2.9) the spin variables of the neu-
tron and scatterer are separated. A further simplifi-
cation can be achieved if we break up the summation
over I into a sum over electrons of the individual

atoms
а s u m over all atoms of the scatterer

v
£ ) . We shall consider purely magnetic scattering,
i
when the state of the lattice does not change, while
I a) characterizes the set of spin variables for the
electrons. In this case we can write

V JVy sv|a (2.10)

where Zj is the number of unpaired electrons in atom
j -

For slow neutrons we can assume that they do not
produce transitions of the atoms into excited states,
but produce only a reorientation of the atomic spins.
Thus the transition | a) — | a') has the form | am)
—* | am') , where m and m' are the sets of spin
quantum numbers for the scatterer atoms, while a
is the set of all the remaining quantum numbers of
the atom. From general theorems of quantum mechan-
ics* it follows that the matrix element in (2.10) can
be written in our case as

zi *qrv ,_ o

z i
where Sj =

= (m' I Sj I m) I am V -

(2.11)

s v is the spin operator for atom j , and

orientation of the atomic spin and is a characteristic
of the scattering power of the atom. This quantity is
called the magnetic form factor of the atom (it should
more precisely be called the spin form factor). Fj (q)
characterizes the distribution of the spin density in
the atom. For Zj = 1, F j (q) is simply the Fourier
component of the spin density.

Thus the transformation (2.10) and (2.11) allowed
us to express the matrix element (2.6) in terms of
matrix elements (m | S; | m ' ) of the spin operators
of the individual scatterer atoms. Combining expres-
sions (2.9)—(2.12), we get the following expression
for the magnetic interaction operator:

^ SB-(eSn)-e), (2.13)

is the value of the spin. The expression

i
which was first given by Halpern and Johnson.'-10-'

Similar calculations can also be made for the
orbital part of the electron current, but they are
more complicated since the orbital angular momentum
operator does not commute with e1(^ ' r . The corre-
sponding results are given in'-11-'. Obviously the ex-
pression corresponding to (2.13) in the case of scat-
tering by the orbital angular momentum of an atom
must contain in place of the operators Si, the opera-
tors L; of the orbital angular momenta of the atoms.
Also, in ferromagnets containing elements of the
first transition group, orbital angular momenta are
suppressed because of the fact that the crystalline
field acting on the atom does not have axial symmetry,
so that the average value of the projection of the
angular momentum of the atom in the ground state is
either equal to zero or much less than the value of
the orbital moment of the atom. Therefore, scattering
because of interaction of the neutron with orbital mo-
tion of electrons in such ferromagnets need not be
considered.

am J

'4rv ,
(2.12)

where Ф: is the wave function of the electrons of the
j-th atom, dTj is the element of volume in configura-
tion space of the electrons of the j-th atom, and does
not depend on the quantum numbers m, i.e., on the

*In quantum mechanics it is shown (cf., for example, I'J), that
if the vector quantities l̂ Ck = x, y, z) satisfy the commutation re-
lation [Jb'fic] = illeuc/Ti, where j \ is the projection of the angu-
lar momentum, then we have the relation

j{) + i)(ajm\ T\a'jm') = (ajm\l |a/m')(a/m' | (JT) | a'/m'),

where j is the total angular momentum of the system, m is the pro-
jection of the total angular momentum. Applying this relation to the

operator f = ,, we get formula (2.11).

3. Differential Cross Sections for Scattering of
Unpolarized Neutrons

The expressions for the matrix elements of nu-
clear (2.4) and magnetic (2.13) interaction of the neu-
tron with a scatterer allow one, by using the funda-
mental formula (1.10), to get the effective differential
cross sections for scattering of unpolarized neutrons.
For nuclear scattering

O
)dt, (3.1)

where R^(t) is the Heisenberg representative of the
quantity R? with the scatterer Hamiltonian 3C,

Rl(t) = e*dmRle-*m. (3-2

For magnetic scattering we find the expression
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Xr

X

ink J

T 2 j ^ - ( q ) ^ - ' ( 4 ) 2
ii' afs

UEP—EP)(

( 3 - 3 )

where Sj ( t ) is the Heisenberg representative of the
spin operator S?

i i
S?(t) = en Sfe n . (3.4)

In getting (3.3) we have, in accordance with the r e -
quirements of formula (1.10), averaged over the spin
orientations in the neutron beam:

It is easy to see that in the scattering of unpolar-
ized neutrons there is no interference of nuclear and
magnetic scattering, so that for a magnetic material

dQdEp dQ dEp dQ dEp

When the correlations in the positions of the atom
and its spin projections can be neglected, i.e., when
spin-lattice interaction is unimportant, the correla-
tion function in (3.3) can be written approximately in
the form

{Sf (0)e Sf (0) Sy (t)),

(3.6)

where the averaging on the right side is done inde-
pendently: in the first factor over the states of the
lattice, and in the second factor over the states of the
spin system. The Heisenberg representatives of the
quantities Rj(t) and s P ( t ) are taken with the cor-
responding Hamiltonians.

If we neglect lattice vibrations, i.e., we set

the expression for the cross section for magnetic
scattering takes the form

r (q)

-
{Sf{O)SP(t))dt.

(3.8)

In the following, however, we shall use the approxi-
mation (3.6) taking account of the lattice vibrations
by introducing the so-called temperature factor.

Expressions (3.1) and (3.8) will be basic in our
presentation of the scattering theory. We see that the
cross sections for nuclear and magnetic scattering
are simply the Fourier components of the correlation
functions: [ 6 ' 6 ]

(3.9)

II. ELASTIC SCATTERING

4. Nuclear Scattering in Single and Polycrystals

The differential cross section for elastic scatter-
ing of neutrons by nuclei can be gotten from (3.1) if
we take out of the corresponding correlation function
the term independent of the time. We can break up the
correlation function most naturally as follows:

) ) _ /6-iqR|<0)giqR(,((x.),

1 ''') — (e ' q ' ещ '' CO))}. (4.1)

Since the posit ions of the a toms a r e not c o r r e l a t e d

over infinitely long t i m e s , the f i r s t t e r m on the r ight

of (4.1), which is respons ib le for the e las t ic s c a t t e r -

ing, is equal to

Substituting the expansion (4.1) in (3.1) and inte-
grating over the energy of the scattered neutron, we
get for the effective cross section for elastic scatter-
ing into unit solid angle the expression

For simplicity, we consider in the following a
crystal consisting of atoms of one kind, assuming,
however, that there may be different isotopes. Ex-
pression (4.3) must be averaged over the distributions
of isotopes. We note first of all that if we expand the
radius vector R£ into its equilibrium part R^ and
the displacement Vf.

(4.4)

then in the expression (e~ iq ' Щ ) = e " i q (e" i q ' U z >p ( ) (
the average value of the displacement function U;
should be independent of I. Averaging in the sum
over I and I' of (4.3) over the isotope distribution,
as well as over the orientations of spins in the neu-
tron beam, in the case where the nuclei of the scat-
terer have spins, we write the expression (4.3) in the
form

(4.5)

where we have introduced the notation

(4.6)

(4.7)

In the expression (4.6) the bar above means an
average over the isotope distribution; for example,
A = 2 ^ A S C S , where C s is the concentration of the

s
isotope for which A; = A s, N is the number of nuclei
in the crystal, I is the spin of the nucleus. The
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quantity W q introduced in (4.5) is the Debye-Waller

t e m p e r a t u r e factor.'-12-' It can be calculated using the

re lat ion (4.7).

The sum appear ing in (4.5) can a l so be calculated

eas i ly . If in the c r y s t a l there is one atom per unit

cel l , we have the re lat ion LMSJ

VI i q R 0 2 (2rt) 3 iV ХЧ

2je — - ^ p — 2 J б (Ч — т)> (4-8)

where т is a vector of the r e c i p r o c a l latt ice mul t i-

plied by 27Г, Vo is the volume of a unit ce l l . If in a

unit cell t h e r e a r e severa l a t o m s , the phase sum over

all the atoms should be split into a sum over atoms

within a single unit cell and a sum over all of the unit

c e l l s . This gives ^

where

S(q)= iqR»

(4.9)

(4.10)

i s t h e s t r u c t u r e f a c t o r ; t h e s u m m a t i o n o v e r v g o e s

o v e r a l l t h e a t o m s of a s i n g l e u n i t c e l l .

S u b s t i t u t i n g e x p r e s s i o n (4.8) in (4 .5) , w e g e t t h e

f o r m u l a f o r t h e d i f f e r e n t i a l c r o s s s e c t i o n f o r e l a s t i c

n u c l e a r s c a t t e r i n g

б (q - т ) (4.11)

T h e f i r s t t e r m g i v e s s h a r p m a x i m a in t h e i n t e n s i t y of

s c a t t e r e d n e u t r o n s g i v e n by t h e W u l f f - B r a g g f o r m u l a

P - P = (4.12)

T h i s t e r m d e s c r i b e s t h e c o h e r e n t n e u t r o n s c a t t e r i n g .

T h e s e c o n d t e r m d e s c r i b e s t h e i n c o h e r e n t s c a t t e r i n g .

If w e n e g l e c t t h e f a c t o r e~ 2 1, i t i s i n d e p e n d e n t of

s c a t t e r i n g a n g l e a n d i s s i m i l a r t o t h e b a c k g r o u n d o b -

s e r v e d i n t h e s c a t t e r i n g of x - r a y s .

F r o m t h e r e l a t i o n s (4.6) w e s e e t h a t t h e c o h e r e n t

s c a t t e r i n g i s d e t e r m i n e d b y t h e a v e r a g e v a l u e ( o v e r

t h e d i s t r i b u t i o n of i s o t o p e s ) of t h e q u a n t i t y A . T h e

i n c o h e r e n t s c a t t e r i n g i s d e t e r m i n e d b y t h e q u a d r a t i c

f l u c t u a t i o n of t h e q u a n t i t y A a n d t h e q u a n t i t y

В 1(1+ 1 ) , depending on the nuclear spin. Thus the

coherent sca t te r ing is determined by col l is ions of the

neutron with nuclei without a change in spin direct ion,

while for incoherent sca t ter ing the spin of the neu-

tron may change.

Now let us look at re la t ion (4.12). F o r e las t ic

sca t te r ing p ' = p, which is possible when p > т/2,

so that e las t ic coherent sca t te r ing at angles different

from z e r o is possible only if p > T m i n / 2 , where
T min i s the s m a l l e s t vector of r e c i p r o c a l l a t t ice . It

is useful to e x p r e s s this fact as follows: coherent

elast ic sca t te r ing is impossible if the wave length of

the neutron is g r e a t e r than the Bragg wave length

Лв = 47г/т т 1 П . One can show that inelast ic s c a t t e r i n g

is also impossible under these condit ions. It thus

follows that if a beam of t h e r m a l neutrons is incident

on a c r y s t a l consist ing of monoisotopic atoms whose

nuclei have no spin, then in the direct ion of the initial

beam, after e m e r g e n c e from the c r y s t a l , one will find

only those neutrons whose wave vectors a r e s m a l l e r

than T m i n / 2 . Thus, one can f i l ter out very slow

" c o l d " neut rons . An example of such a f i l ter is poly-

crys ta l l ine graphite, beryl l ium, beryl l ium oxide, e t c .

We can now calculate the t e m p e r a t u r e factor Wq

using the definition (4.7). We know that the d i sp lace-

ments of the a t o m s from the i r equi l ibr ium posit ion

can be expanded in F o u r i e r s e r i e s * ,

with quantized Bose-ampli tudes which satisfy the

commutation re lat ions

[bkj, bk,j.]=O, [bkj, (4.14)

Here к and ej ( k ) a r e the wave vector and the po lar-

ization vector of the phonon, OJJ ( k ) is i ts frequency,

j = 1, 2, 3 i s an index for the phonon polar izat ion,

and M is the m a s s of the a t o m .

The energy s p e c t r u m of the latt ice v ibrat ions is

then a sum over a definite number of phonons:

Using express ion (4.13), we can eas i ly wr i te

where for brevi ty we have used the notation

(4.16)

F r o m formula (4.16), taking account of the additivity

of the energy o p e r a t o r (4.15), we get

i ч i / 4 1 Я\
/„•qu, , г т / i t i b n + i i . bt.-,. \ ^ - x o /

where

(4.19)

Expanding the exponent in (4.18) in s e r i e s and

calculating the t r a c e s of the individual t e r m s , we

wr i te the whole express ion in the form

*If the unit cell consists not of one, but several atoms (in gen-
eral, different atoms), we should write in place of the expansion
(4.13),

where the complex polarization vectors e*[(k) satisfy the ortho-
normalization relations

2 ej (k) e;,
v (k)=b, r. 2 еУ* (к) e;»-p (k)=6 v v,a a ( i.

V j
Here eya(k) is the projection of the vector ej'(k) on the axis
a = x,y, z.
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where
kj

, (4.20) . 3 Hg»
2 M% (4.25)

„ fb-\— /h+h Л /J"">A K ) 4N-1 /A 9 1 \

i s t h e B o s e d i s t r i b u t i o n f u n c t i o n f o r t h e a v e r a g e n u m -

ber of phonons in state kj at temperature T = 1//Jk. t o r q 2 = 1 6 ] r s s i n 2 в Д 2 w h e r e g i s t h e ^ ^ b e t w e e n

Here © is the Debye temperature.* Thus, for a
cubic crystal the dependence of the temperature fac-
tor on the direction of scattering is given by the fac-

j
The remaining term contains terms in the expansion
~N~ 2 and higher order.

If we write

expression (4.20) can easily be brought to the form *

kj

kj

kj
1+ 2 flk;O(iV-2) + (4.22)

Since the sum over к contains N terms, all of those
terms which contain a sum of products of a^j are of
order 1, while terms containing O(N~2) in addition to
the a^j are at least of order NT1, and can be neglected.
From arguments of this sort it is clear that the sum
containing m factors a^j can be replaced by
(Z/ a kj) m » where we make an error of order N" 1, so

kj
that instead of (4.22) we get

kj

to an accuracy of order N" 1 .
Substituting this result in (4.7), we get*

2MN
kj

( 4 - 2 3 )

This expression can be calculated by going from
summation to integration

(4.24)

In a cubic crystal the energy of the phonons is the
same for all three branches. If, in addition, we con-
sider that for such a crystal £y (q-ej (k))2 = q2, then

in the Debye approximation, where it is assumed that
wj(k) = ck (where с is the sound velocity), expres-
sion (4.23) reduces to the following:

*If the unit cell contains several atoms, then for atom v the
temperature factor Wq is again given by expression (4.23) with
the appropriate value of the mass of the atom Mv and the polari-
zation vector ey(k).

the scattered and incident beams, X is the wave length
of the neutrons in the incident beam. In the presence
of anisotropy of the sound velocity in non-cubic crys-
tals, the angular dependence of Wq will be more
complicated.

Formulas (4.11) apply to scattering by single
crystals. In order to get the cross section for scatter-
ing by polycrystals we must average these cross
sections over the orientations of the microcrystals,
assuming that all orientations are equally probable.

Let us consider elastic coherent scattering.
To average over the orientations of the micro-

crystals it is sufficient, in the expressions

dQ.

to average ™ the 6-function over all orientations т;
in doing this we assume that the dependence of the
temperature factor on q is given by the quantity q2.
Since

(4.27)

we have, after averaging (4.26),

/polyc
-5- e~2W4 (2p sin 0 - т),

* (4.28)
where a T is the number of different vectors of the
reciprocal lattice having length т.

From (4.28) it follows that in place of individual
diffraction maxima given by the equation: p' = p + т,
which were present for a single crystal, in scattering
by a polycrystal there are diffraction cones, with
their axis along p and with the angles between their
generator and the axis given by the conditions

2psin-| = T, (4.29)

along whose generators the neutrons are scattered.

•Recently attempts have been made to calculate the tempera-
ture factor using a more rigorous theory of lattice vibrations than
the Debye theory. These papers were stimulated by the discovery
of the MOssbauer effect, for which it turned out that the probability
of emission of а у quantum by a nucleus in a crystal without re-
coil is determined by the expression е~*ч. As was shown by
KaganJ 1 5 ] the Debye temperature is a satisfactory characteristic
of the temperature factor only for a monatomic lattice. Already for
the case of a diatomic lattice it i s not even an approximate descrip-
tion of the temperature dependence of the temperature factor. In the
case of polyatomic lattices the optical vibration branches play an
important part.
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Integrating (4.28) with respect to du, we get the
total cross section for coherent scattering of a poly-
crystal:

(pcoh) . _ 0<о> zILH_ 'V 1 e~2>v%'. iA 30^

F r o m f o r m u l a (4.30) w e s e e t h a t w i t h i n c r e a s i n g p t h e

c r o s s s e c t i o n j u m p s w h e n p r e a c h e s a v a l u e e q u a l t o

half of any reciprocal lattice vector т. It then de-
creases in inverse proportion to p2, i.e., the neu-
tron energy, until p reaches half the modulus of the
next larger reciprocal lattice vector. With increasing
p more and more planes characterized by vectors т
begin to participate in the reflection, so that the cross
section becomes a smoothly varying function of the
neutron energy.

From (4.30) it also follows that the total coherent
scattering of a polycrystal is equal to zero if
p < Tm jn/2. This is entirely reasonable, since under
this condition coherent scattering is not possible for
the individual single crystals.

5. Magnetic Scattering in Single and Polycrystals

The differential cross section for magnetic scat-
tering by atomic spins is given by formula (3.8).
First let us consider the scattering in paramagnets
for which the interaction of the atomic spins can be
neglected. In this case SJ* (t) = S^, so that we see
from (3.8) that the scattering will be elastic. Since
there is no correlation between the orientations of
the atomic spins of a paramagnet, and all orienta-
tions are equally probable, we have the relation

<.S*.Se.> = <W^'< (>??)'> = ^S (S+1)6^6 jy. (5.1)

Substituting this expression in (3.8) and integrating

over the energy of the scattered neutrons, we get DO]

I). (5.2)

Thus the angular dependence of the intensity of neutrons
scattered from a paramagnet is given completely by the
angular dependence of the magnetic form factor.

In the case of a ferromagnet there is a strong ex-
change interaction between the atomic spins which
leads to a spontaneous ordering of the spins. Every
reorientation of the spin of an individual atom is
associated with an expenditure of energy against the
exchange forces, so that magnetic scattering of neu-
trons in a ferromagnet can be either elastic or in-
elastic.

In order to take out of the cross section (3.8) the
elastic part, we note, as in the case of nuclear scat-
tering, that the time correlator (S? ( 0) s£(t)> is to

be replaced by the expression (S? ( 0) S ,̂( °°) ) which

is independent of time. Since there is no correlation
between the orientations of the spins over an infinitely
long time interval, we can write

(5.3)

Suppose that the average value of the spin at
lattice site j along the direction of the spontaneous
moment is Sj ( T); this is a function of temperature
proportional to the magnetization of the ferromagnet.

From the theory of ferromagnetism it is known
that for temperatures below the Curie point, but not
close to it, the average value of spin components per-
pendicular to the direction of the spontaneous moment
is equal to zero. Taking this fact into account, after
substituting (5.3) in (3.8) and integrating over the
energy of the scattered neutrons we get an expression
for the differential cross section for elastic scatter-
ing in ferromagnets

Щ- = ЫГ 2 Fl (4) Fr (1) e-iq <R'-R'" ) Sj (T) Sf. (T) [1 - (em)»],

(5.4)

where m is a unit vector in the direction of the
spontaneous magnetic moment of the crystal. In (5.4)
the summation over j extends over all the magnetic
atoms of the crystal. If the ferromagnetic material
consists of identical magnetic atoms, then Fj (q)
= F (q) and Sj ( T) = S ( T) is independent of the lo-
cation of the lattice site and can be taken out of the
summation sign. The sum over phase factors can be
transformed to the form (4.8), after which the expres-
sion for the elastic scattering cross section is
written as

dan
(2я)3 N

(5.5)

For ferromagnetic materials consisting of mag-
netic and non-magnetic atoms, the magnetic unit cell
coincides with the chemical cell, but the arrangement
of the magnetic moments within the unit cell leads to
the appearance in the scattering cross section of a
structure factor for magnetic scattering analogous to
the nuclear factor (4.10).

Thus, in the scattering of neutrons by a ferromag-
net we get coherent maxima of the intensity at angles
corresponding to the Wulff-Bragg conditions (4.12).
These maxima are superposed on the maxima in the
intensity of nuclear scattering. Since the cross sec-
tion for magnetic scattering is proportional to the
square of the magnetization, the coherent magnetic
scattering should disappear above the Curie point,
and thus the coherent maxima in the paramagnetic
region correspond to nuclear scattering.

The angular dependence of coherent elastic mag-
netic scattering is much more complicated than that
of the corresponding nuclear scattering, since it is
determined by the additional angular dependence of
the magnetic form factor as well as by the factor
1 — (e -m) 2 , depending on the orientation of the scat-
tering vector relative to the vector m of the spon-
taneous magnetic moment.

In the case of a complex magnetic material (ferrite
or antiferromagnet), one must take into account the
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fact that the unit magnetic cell does not coincide with
the chemical ce l l , but is l a r g e r than i t . Such a m a g -
net ic ma te r i a l frequently can be considered as con-
s is t ing of severa l (v = 1, 2, . . . , n ) identical s u b -
la t t ices super imposed upon one another , in which the
direct ions of the spontaneous moments a r e c h a r a c -
t e r i zed by unit vec to r s m^,. Fo r the averaging of the
spin S ^ ( T ) in each of these subla t t ices , the same
arguments hold as were given for a s imple f e r r o m a g -
net consist ing of one sublat t ice (cf. the re la t ion (5.3)

and the following text) . Breaking up the sum £ } in
j

(3.8) into a sum 2_j over magnetic ce l ls and a sum 2_/
s v

over magnetic a toms within a single magnetic ce l l , or ,
what is the same thing, over the sublat t ices (since we
associa te a sublat t ice with each of the magnetic a toms
in the unit magnetic cel l ) , we obtain for the sca t te r ing
c r o s s section the express ion

dan

magnet consisting of two equivalent collinear sub-
lattices :

iq ('v-x (q) S4 (T) S4. (T)e

Here N m is the number of magnetic unit ce l l s in the
c rys ta l , Vo m i s the volume of the unit magnetic ce l l ,
T m is a vec tor of the rec iproca l la t t ice (multiplied by
27Г), W ^ is the t e m p e r a t u r e factor* corresponding
to an atom of the к-th sublat t ice.

In getting the express ion (5.6) we have used the
relat ion

= — v — — 2 б ( Ч ~ Tm), (5.7)

which is analogous to (4.8).
Thus, in magnetic elastic scattering of neutrons in

magnetic materials, coherent maxima of the intensity
appear in places corresponding to Bragg reflections
from the planes of the magnetic lattice. If the unit
magnetic cell is larger than the chemical cell, we
should get purely magnetic scattering maxima, not
necessarily coincident with the nuclear maxima.
Above the Curie point or the Neel point these are not
present. Experimental study of these maxima, using
relations of the type (5.6), permit one to determine
the magnetic structure of the material. A relation of
type (5.6) is the basis of magnetic neutronography.

From (5.6) we easily obtain the special formula
for the cross section for scattering by an antiferro-

*In getting (5.5) from (5.4) we have also taken account of the
effect on the magnetic scattering of neutrons of thermal vibrations
of the lattice, in the scheme of the relations (3.3), (3.6), and (4.7).
It reduces to the appearance of a factor e"w4 in the cross section
for pure magnetic scattering. In the following all expressions ob-
tained from the general formula (3.8) for the magnetic scattering
cross sections are to be corrected by the temperature factor e~2W4.

da,- ^ = ( r o Y ) 3 - F 2 ( q ) S 2

X [ 1 — cos(qr12)] * (q - t m ). (5.8)

Here e z i s the projection of the sca t ter ing vector on
the direct ion of one of the sublat t ices , r j 2 is a vector
from one magnetic atom to the neighboring atom of
the second sublat t ice . F o r m u l a (5.8) is equivalent to
formula (5.5) for the sca t ter ing by a fe r romagnet . The
e s s e n t i a l difference cons i s t s in the fact that the s e t s
of vectors { T } and { т т } a r e different. The magnetic
unit cell in the p r e s e n t c a s e is twice as la rge as the
chemical ce l l . The t e m p e r a t u r e dependence of the
intensity of ant i ferromagnet ic peaks is de termined by
the square of the magnetization of e i ther sublat t ice .

Recently new magnetic s t r u c t u r e s have been d i s -
covered ( MnAu2, Ho, Dy, E r e t al.) in which t h e r e is
a completely special magnetic o r d e r . These s t r u c -
t u r e s a r e c h a r a c t e r i z e d by the fact that along some
c r y s t a l d irect ion, which is a s y m m e t r y axis of high
o r d e r , the or ientat ions of the spins as one goes from
one atom to the next change periodical ly, and the
per iod of this var iat ion does not coincide with the
period of the c r y s t a l lat t ice and may change with
t e m p e r a t u r e . Among a l a r g e c l a s s of such s t r u c t u r e s ,
which have been cal led helicoidal or s c r e w s t r u c t u r e s ,
the s imples t i s the so-cal led fer romagnet ic sp i ra l
(FS). The components of the spins along the base
planes in such s p i r a l s go through a periodic rotat ion
with a c e r t a i n angle <p,- while the components along
the axis of the helicoid a r e constant. Such a c rys ta l
as a whole is a fe r romagnet . A special case of the
FS s t r u c t u r e is the s imple s p i r a l (SS) which does not
have a ferromagnet ic component.

If the spin of the atom located at the origin is
called So, the spin of the atom at lat t ice s i te j can
be given by the following t rans format ion:

S ; = Sim + * +

where m is the unit vector along the axis of the
helicoid, m* = m x ± im v , where m x and m v are unit
vectors in the base plane, k0 is a vector directed
along the axis of the helicoid (k 0 II m) of such a
length that koc = <p i s the angle between two neighbor-
ing spins of the helicoid (с is the dis tance between
two magnetic atoms along the helicoid axis) .

F r o m express ion (3.8) it follows that the c r o s s
sect ion for e las t ic magnetic s c a t t e r i n g in the c a s e of
identical magnetic atoms in a c rys ta l is equal to

dan 3 F2 (q) 2

Using the preceding re lat ions we can r e w r i t e the sum
over a and /3 in the form
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2

+ 1 ((S;S~)) [1 + (em)2] eik° (R;-R'"> + ...

The terms which have not been written down contain

phase factors of the form e ° J ^ .
After substituting this expression in the formula

for dao/сШ, the t e r m s with factors e °i J J

drop out of the summations over j and j ' ; then using

relat ion (4.8) we finally get

(q) S* (T) -<

- -г sin2 a [1 -j- (em)2] б (q — т + к0)

4 sin2 а [ 1+(em)2]6 (q - т - k0) j , (5.8')

where S ( T ) is the average, at a given t e m p e r a t u r e ,

of the projection of the spin on to the equi l ibr ium

position, and a is the angle between the axis of the

helicoid and the direct ion of the equil ibrium o r i e n t a -

tion of the spins .

F r o m formula (5.8) we see that for each т t h e r e

a r e t h r e e magnetic peaks . One peak, for the condition

q = т, is caused by the " f e r r o m a g n e t i c " component

of the spin; it is absent for the case of a s imple

s p i r a l . The two other s at q ± k 0 = т a r e associated

with the project ions of the spin on the base p lane.

Usually k 0 « т, so that the l a t t e r two magnetic peaks

should be located close to the nuclear peak q = т. The

p r e s e n c e of such a " t r i d e n t " consist ing of a nuclear

peak at the center and two magnetic peaks at the s ides

led to the discovery of the helicoidal s t r u c t u r e . *

F o r m u l a (5.5) applies to s c a t t e r i n g by a f e r r o m a g -

netic single c r y s t a l . To get the s c a t t e r i n g c r o s s s e c -

tion for a polycrysta l , we must average over the

direct ion of т. We then get ClT]

polycr

e~2W^(g- (5.9)

As in the c a s e of nuclear sca t te r ing by a poly-
c r y s t a l , the magnetical ly s c a t t e r e d neutrons move
along the g e n e r a t o r s of cones with thei r axes along
the vector p and an opening angle 20. The angular
dependence of the intensity i s , however, m o r e c o m -
plicated than for nuc lear s c a t t e r i n g .

*Such a "trident" was first discovered on a neutronogram of
MnO2 by ErickssonA49J The interpretation of such neutronograms in
terms of a helicoidal structure was given by Yoshimori.t50] In a
paper of KoehlerLs'J a general method was given for the interpreta-
tion of neutronograms of helicoidal structures. The theory of heli-
coidal ordering was developed by Kaplan.LS2J The temperature vari-
ation in the spiral step was calculated theoretically in L53L

I t i s a l s o o f i n t e r e s t t o c o m p u t e t h e t o t a l s c a t t e r -

i n g i n a p o l y c r y s t a l , f o r w h i c h p u r p o s e w e m u s t i n -

t e g r a t e e x p r e s s i o n ( 5 . 9 ) o v e r a l l a n g l e s of s c a t t e r i n g

of neutrons , i .e. , over dfi = sin в d6 d(p; в is the

polar angle of the vector p ' in the coordinate s y s t e m

where the z axis is taken along the direct ion of p . It

is not difficult to show that e | is e x p r e s s e d in the

following fashion in t e r m s of the angles в and <p:

el = ( c o s у s i n ф s i n £ — s i n у c o s j , ( 5 . I D )

w h e r e £ i s t h e a n g l e b e t w e e n p a n d t h e m a g n e t i z a t i o n

m , a n d <p i s t h e a z i m u t h a l a n g l e of t h e v e c t o r p '

t a k e n i n t h e p l a n e p e r p e n d i c u l a r t o t h e v e c t o r p f r o m

a n a x i s d i r e c t e d a l o n g t h e v e c t o r p x m .

S u b s t i t u t i n g ( 5 . 1 0 ) i n ( 5 . 9 ) a n d i n t e g r a t i n g o v e r

d f i , w e f i n d t h e t o t a l c r o s s s e c t i o n f o r t h e p o l y c r y s t a l

) polycr — (Г0У) Л Ц)
-Щ- 2л

[ l + c o s 2 g + ^ ( l - 3 c o s 2 g ) ] . (5.11)

The essent ia l difference between this expres s ion

and (4.30) is that the total c r o s s sect ion depends on

the orientat ion of the initial neutron beam with r e -

spect to the magnetic moment of the s a m p l e . J u s t as

for nuclear sca t te r ing , it i n c r e a s e s abruptly as the

energy of the neutrons is i n c r e a s e d .

Ш. INELASTIC ONE-QUANTUM SCATTERING

6. Scattering with Emission and Absorption of a

Phonon

In this section we shall cons ider in detail the

nuclear s c a t t e r i n g by a single c r y s t a l . We shall s t a r t

from the general formula (3.1) for the differential

s c a t t e r i n g c r o s s sect ion. As in Sec. 4, we expand the

nuclear coordinates R/ into an equi l ibr ium p a r t R^

and the displacement U/. Expanding the d i sp lacement

Uj in F o u r i e r s e r i e s (4.13), we wr i te the express ion

(3.1) in the form

where

dte*

it'

- E P > '

(6.2)

ki
Here

(6-3)

and in the Heisenberga r e the o p e r a t o r s
r e p r e s e n t a t i o n .

We expand the exponent under the average sign in
express ion (6.2) in s e r i e s of powers of the argument .
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To terms of order TJL |2 we obtain after averaging

Ц
kj

(6.4)
where nj (k) is the distribution function for the pho-
nons, determined by expression (4.21). In addition,
to terms of order N"1 the product in (6.4) can be
written in the form

П.{

- 2 l i ' . | * ( 2 T » _ , - № ) + 1 )

(к)

2

Integrating over the time in (6.4) we now get

Iw (q) = е~21Уч (б (Ep- — .Ер)

+ 2 hLX'i (l + ni (к))б (£p' -EP + ba>j (k))

+ inijTlL>; (к) в (£P- - £P - Лш7- (к))]}.

Now we substitute this expression into (6.1).
Averaging the sum YJ o v e r t l l e distribution of iso-

IV
topes, and using the transformation (4.8), we find the
following expression for the differential scattering
cross section:

к)

(k)
xn;(k)6(£,.-£p-).u)j(k)), (6.6)

where a^ and a' are the constants (4.6) which de-
termine the coherent and incoherent scattering. The
individual terms in (6.6) have the following meaning.

The first term represents the differential cross
section for elastic nuclear scattering. If we integrate
over the energies of the scattered neutrons, we get
the expression for the scattering cross section per
unit solid angle identical with (4.11). The second
term, and also the third, describe the inelastic scat-
tering. The first of these gives the cross section for

sca t te r ing with emiss ion of a phonon, and the second
with absorption of a phonon. As we see from (6.6),
these p r o c e s s e s lead both to coherent , as well as to
incoherent sca t t e r ing . The 6-functions appearing in
(6.6) take account of the conservat ion laws for energy
and quasimomentum in collision of a neutron with a
phonon.

The inelast ic sca t te r ing t e r m s given in (6.6)
cor respond to one-quantum sca t te r ing , i .e . , to s c a t -
te r ing in which the number of phonons of the s c a t t e r e r
changes by unity. If the expansion of the exponent in
(6.2) is c a r r i e d to higher degree , we can obtain an
express ion for the c ro s s sect ions for sca t te r ing with
multiphonon t rans i t ions in which severa l phonons a r e
absorbed or emit ted. The ro le of such p roces se s was
studied in re fe rence '-18-'. We shall not cons ider them
in detail h e r e . It is important only to emphasize that
at t empe ra tu re s below the Debye t empera tu re the
main contribution to the inelast ic sca t te r ing comes
from one-phonon p r o c e s s e s .

Let us consider in more detail the incoherent one-
phonon sca t t e r ing . The corresponding sca t te r ing
c r o s s sect ion, according to (6.6), can be wri t ten in
the form

k)
2Ma>j (k)

PX [ nj(k) + 1 ± | ] P~ б (Ev -Ev± b<Oj (k)). (6.7)

The upper sign c o r r e s p o n d s to sca t te r ing with e m i s -
sion, and the lower with absorption of a phonon. The
sum over к generally cannot be calculated since we
do not know the form of the function WJ ( к ) . We shall
therefore see what physical consequences can follow
from an analysis of expression (6.7).

First of all, we find that neutrons scattered in any
direction have a continuous energy spectrum covering
the interval

Ep < Ev (6.8)

in the case of scattering with absorption, and the in-
terval

Ep>Ep->
0

(6.9)

in the case of scattering with emission of a phonon.
In these inequalities w m a x is the maximum value of
the phonon frequency.

In the following, for simplicity we shall restrict
ourselves to crystals with cubic symmetry; then

5ярбЛ/ dk 2 P
q J

(6.10)

where a is determined by (4.23), and is independent
of scattering angle.
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We now introduce the frequency distribution func-
tion g ( a)) which determines how many normal vibra-
tions there are per unit frequency interval, divided by
the total number of vibrations:

g («) = 0, if > com

after which expression (6.10) can be written as

2 arf2ai incoh =\dEv. 2M p

1 1
"2" ±"2 (6.12)

where the limits of variation of Ep> are given by ex-
pressions (6.8) and (6.9). Thus for a cubic crystal the
cross section for incoherent one-phonon scattering is
proportional to the frequency distribution function
g(w) . In the case of crystals of arbitrary symmetry
this is no longer true because of the presence of
polarization terms in the expression for the cross
section. This leads to difficulties in the determina-
tion of' g (w) in crystals which do not have cubic sym-
metry. However, the polarization terms in the cross
section can be eliminated under certain definite con-
ditions. First of all, we note that at temperatures
below the Debye temperature the temperature factor
is close to 1. Oskot-skii °̂̂  has shown that in this
case the polarization terms in (6.7) are eliminated if
we consider scattering in a composite sample.

We form the sample of twelve plates in the follow-
ing fashion. We arbitrarily orient a Cartesian coordi-
nate system X, Y, Z in the first plate. In the second
plate the crystal axes should be turned relative to the
central line of the axial cross through 120°, in the
third through 240°. In the fourth, seventh, and tenth
plates the crystal axes are turned through 180° about
the axes X, Y, Z respectively. Relative to these
orientations, the remaining three pairs of plates are
oriented just as in the first triple. The cross section
for scattering from all of the plates is the sum of the
cross sections for scattering from the individual
plates (where t labels the plates). In the twelve sums
2} in expressions (6.7) we shall consider simultane-

ously those Ц- which a r e identically oriented with r e -
spect to the crys ta l axes of the i r p l a t e s . Then w; ( k )
= Ш] ( к ) , where the quantity without the s u p e r s c r i p t
t r e f e r s to the f i rs t p late . Now only | q e j ' (kt) | 2

depends on the label t . It is easy to show that

2 | в; (k,) q |2 = V .
t

Thus, neglecting the temperature factor the cross
section for scattering from the composite plate is
given by formula (6.12), which is appropriate for a
cubic lattice, multiplied by 4, i.e., the cross section

turns out to be proportional to the frequency function
g (to). If the crystal contains a three- or four-fold
axis, then four or three plates are sufficient. For a
cubic crystal, naturally, we need only a single
" p l a t e . "

A simpler method for eliminating the polarization
terms has been proposed by Kagan.'-2U Namely, for
a fixed scattering direction we want to determine
d2<Tj^c/dS2dEp' for three orientations of the single
crystal which differ from one another by cyclic per-
mutation of the coordinates. It is not hard to see that
the sum of these three cross sections (for e~ 2 ^q
» 1) is

dQ dEp' \l
A-lL I !
2M p | £„-£„

I £„-£„. I
1 1

-2 ±2

and allows us to determine the frequency function
g(w) . In the case of uniaxial crystals two orienta-
tions of the crystal are sufficient. In a cubic crystal
a single position of the sample is enough, and we
arrive at the formula of Placzek and Van Hove '-19J
(6.12).

If the crystal consists of atoms of different types,
the quantity

2j du dE., \ dQ

[21]also is proportional to the function g(aj).L J Thus a
measurement of the cross section for three orienta-
tions of a single crystal allows us in any case to r e -
establish the frequency function g( w ).

As was shown in re ference -̂22-', the function g( ш )
in the crys ta l has a finite number of s ingular i t ies
ш ч which a r e roots of the equation

Vio,- (k) = 0. (6.13)

In the neighborhood of the s ingular points, the func-
tion g (ш) has one of the forms

— (0s), C0<0)s, (6.14)

o r the s a m e thing with the re la t ions ш < ws and
ш > ш 8 interchanged. The symbol О ( ш — w s ) d e -
notes the r e m a i n d e r t e r m in the s e r i e s , of o r d e r
| ш — w s | for ш — w s .

Because of (6.12) the c r o s s sect ion for one-phonon
incoherent s c a t t e r i n g for s c a t t e r i n g energ ies E p '
satisfying the re lat ion | Ep - Ер ' | w KOJS a lso has a
singular i ty of the type (6.14), where this s ingular i ty
in the s p e c t r u m of s c a t t e r e d neutrons is independent
of the sca t te r ing d i rect ion. Moreover, one can show
that the energy distr ibution of multi-phonon incoherent
s c a t t e r i n g has a.continuous derivat ive with r e s p e c t to
the energy of the s c a t t e r e d n e u t r o n s . ^ ^ On the other
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hand, the singularities in the energy distribution of
coherently scattered neutrons depend on the scatter-
ing angle and on the orientation of the crystal relative
to the direction of the incident neutrons, so that they
can be separated experimentally from the singulari-
ties considered above. Thus, incoherent one-phonon
scattering is the simplest phenomenon from which
one can determine the singularities in the frequency
function of the crystal (and the function itself, of
course).

The preceding discussion refers to a single crys-
tal. For inelastic scattering by a powder, the expres-
sion (6.7) should be averaged over the orientations of
the microcrystals. Since the singularities in the en-
ergy distribution do not depend on direction, they re-
main even after the averaging is done.

Now we go on to one-phonon coherent scattering.
From (6.6) we get

ф7(Р. P') =
> 2 2M

P ~ T

dQ dEp, i x

' + у ± т ! б ( ч Т к - 'X [ nj(k) + y±fJ0(q-fk-T)6 (£p. - £ p + fc(o; (k)).
(6.15)

Using the б-function in the momenta, we el iminate
the integral over k, replacing к in each t e r m by
q + т. All the t e r m s in (6.15) depend on к through a
function with per iods equal to the bas i s vectors of the
r e c i p r o c a l latt ice multiplied by 27Г, so that

= to,- (q), ej (q + T) = e, (q). (6.16)

Taking this into account we find from (6.15), for a
reflection in the neighborhood of the vector т, the
express ion

dQ di'. __
Ш

®j (q)

(6.17)

S c a t t e r i n g w i t h e m i s s i o n a n d a b s o r p t i o n of a p h o -
n o n wi l l o c c u r w h e n t h e e n e r g y c o n s e r v a t i o n c o n d i -
t i o n s a r e s a t i s f i e d

— £ p ±

o r

±(P2-P'2)-
2M

(6.18)

H e r e t h e p l u s s i g n c o r r e s p o n d s to s c a t t e r i n g w i t h
e m i s s i o n , t h e m i n u s s i g n w i t h a b s o r p t i o n of a p h o n o n .
L e t u s c o n s i d e r t h e s e two c a s e s s e p a r a t e l y .

We s t a r t w i t h s c a t t e r i n g a c c o m p a n i e d by a b s o r p -
t i o n , and s h o w t h a t e q u a t i o n (6.18) h a s a s o l u t i o n f o r
p ' f o r a n y a n g l e of s c a t t e r i n g and any p . It i s o b v i o u s
t h a t f o r a g i v e n p t h e r a n g e of a d m i s s i b l e v a l u e s of
p ' i s d e t e r m i n e d by the i n e q u a l i t i e s (6 .8 ) . We c o n -
s t r u c t t he func t ion '-1^

F o r p 1 2 = p 2 + 2M/K w m a x , (p J ( p , p ' ) 2r 0, a n d w h e n
p ' = p , (pj(p, p ' ) ^ 0, bu t i t f o l l ows f r o m t h i s t h a t ,
in t he c a s e of a b s o r p t i o n of a p h o n o n , e q u a t i o n (6.17)
f o r a n y p h a s a t l e a s t one s o l u t i o n f o r any s c a t t e r i n g
a n g l e , a n d a l l t h e s o l u t i o n s l i e b e t w e e n two c o n c e n t r i c
spheres С and C m ax with radii p and Pmax
= Vp2 + (2M/fi)ujmax, having their centers at the
origin. These solutions form surfaces Sj~ in p-space,
lying completely between the two spheres. Any radius
vector taken at any point of the surface Sr is permis-
sible, by virtue of the energy and momentum conser-
vation laws, as a wave vector of the scattered neutron.
It is obvious that in each scattering direction there
is a finite number of possible values of p ' (in gen-
eral, no fewer than three, which corresponds to the
three possible polarizations of the phonons), and con-
sequently the spectrum of neutrons scattered in any
direction as a result of one-phonon coherent scatter-
ing is discrete.

Now let us go on to scattering with emission of a
phonon. If p2 г p2 = 2M/R wmax> the range of possi-
ble values of p', because of (6.9), runs from p to
Pmin = Vp2 - p2, and just as in the case of scattering
with absorption of a phonon, we get surfaces S(, lo-
cated between concentric spheres C m i n and C, with
radii p m i n and p. To each scattering angle there
again correspond definite discrete values of p ' . If,
however, p < p 1 ( then p m i n = 0 and the function

Ф)' (P. P ) = P — P — ~j- «;• (P - P )

for p ' = 0 is equal to p 2 - (2M/R)o)j ( p ) . No conclu-
sion can be drawn concerning the sign of this e x p r e s -
sion without taking a specific form for the function
WJ ( p ) , and we can only a s s e r t that for p < Pi neu-
t rons in general will not be s c a t t e r e d over all d i r e c -
tions when a phonon is emit ted.

F u r t h e r m o r e if p is sufficiently smal l , s c a t t e r i n g
with e m i s s i o n of a phonon is not poss ib le . In fact,
from the momentum conservat ion law it follows that
for т * 0, т - к = p ' — p . This equality is possible
only if | т — к | :£ p ' + p . But for sca t t e r ing with
emiss ion of a phonon p ' + p — 2p, and consequently
sca t t e r ing is possible if p > V2 | т — к |. Therefore
t h e r e exis t s a p 2 = % Tmin> such that for p < p 2

sca t te r ing with emiss ion is imposs ib le . If, however,
т = 0 and к is smal l , sca t te r ing with e m i s s i o n is
possible'-1-' only for V > с

Thus, for any direct ion of sca t ter ing, in addition to
the continuous s p e c t r u m of neutrons which a r e s c a t -
t e r e d incoherently and as a r e s u l t of multi-phonon
coherent scat ter ing, one should observe, for definite
values of p ' peaks due to one-phonon coherent s c a t -
ter ing . By studying the location of the one-phonon
peaks in the neutron s p e c t r u m s c a t t e r e d at different
angles and using (6.18), one can easi ly get a i j ( k ) . In
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fact, the quantity p is given to us , p ' i s found d i -

rect ly by m e a s u r i n g the location of the peak. F r o m

(6.18) one then d e t e r m i n e s the quantity WJ (p — p ' ) .

The d i rect ion of the vector p ' i s determined by the

assigned s c a t t e r i n g angle.

Thus, the peaks of coherent one-phonon sca t te r ing

allow us to r e c o n s t r u c t the energy s p e c t r u m of the

c r y s t a l v ibrat ions, while the incoherent one-phonon

scat te r ing p e r m i t s us to find the frequency d i s t r ibu-

tion function. The question there fore a r i s e s : How do

we s e p a r a t e these two types of s c a t t e r i n g ? If we

m e a s u r e the intensity of neutrons in the s c a t t e r i n g

direct ion p ' , it will cons i s t of both types of s c a t t e r i n g

together .

However, by changing the technique of m e a s u r e -

ment one can el iminate the coherent one-phonon

s c a t t e r i n g in c e r t a i n c a s e s (Kagan L 2 3 J ) . In fact, let us

cons ider formulas (6.10) and (6.17), which d e t e r m i n e

the c r o s s sect ions for incoherent and coherent s c a t -

t e r i n g . F r o m these formulae we see that the c r o s s

sect ions a r e functions of the two quantities ДЕ = Ep'

— Ep and q—the energy and momentum t r a n s f e r r e d

by the neutron to the c r y s t a l .

In the general case both these quantit ies can be

cons idered to be independent. Once this is the c a s e ,

we can fix q and study the c r o s s sect ion as a function

of ДЕ alone. Let us set q = т; then, as we see from

(6.17), the coherent c r o s s sect ion will be different

from z e r o if ДЕ = ±KWJ( 0 ) , s ince coj ( q ) is a periodic

function of q with per iod т. F o r the acoust ic b ranches

wj ( 0 ) = 0, so that, in the c a s e of an a r b i t r a r y т о п -

atomic la t t ice, by m e a s u r i n g the c r o s s sect ion as a

function of ДЕ for ДЕ ^ 0 we will m e a s u r e the c r o s s

sect ion for purely incoherent sca t te r ing , i .e. , the

quantity (6.10). Thus for monatomic la t t ices we can

make a completely r igorous separa t ion .

И there is m o r e than one atom in the unit cell of

the c r y s t a l , then in addition to the acoust ic branches

t h e r e a r e a l so optical b r a n c h e s , for which Wj ( 0) * 0.

If the minimum value of the frequency in the optical

branches is above Ш щ Я for the acoustic b r a n c h e s ,

then for ДЕ ^ <*>max * n e s c a t t e r i n g will again be

purely incoherent . F o r an interval ДЕ corresponding

to the optical b ranches t h e r e is a superposi t ion of

both types of sca t te r ing . In the genera l case we can

not a s s e r t that u^ax < ^ m i n ' s 0 * n a * ^ n e s u P e r P ° s i -
tion can st i l l occur within the frequency interval
ДЕ/К corresponding to the acoust ic b r a n c h e s . How-
ever, coherent sca t te r ing corresponding to the f r e -
quencies of the optical b ranches WJ ( 0) will lead to
n a r r o w s h a r p l ines , so that apparently one can get
both a c l e a r separat ion of the coherent sca t te r ing at
the frequencies « j ( 0 ) , as well as obtain the c r o s s
sect ion for incoherent s c a t t e r i n g for the whole range
of frequencies in the phonon s p e c t r u m .

The coherent one-phonon sca t te r ing in pr inciple
p e r m i t s one to determine not only the s p e c t r u m of the
latt ice v ibrat ions, but also the values of the complex

v e c t o r s of polar izat ion of the v ibra t ions . To do this

r e q u i r e s a study of the s c a t t e r i n g on samples with

different isotopic composit ion. Such m e a s u r e m e n t s

would solve the complete inverse problem—the r e -

construct ion of the frequency function of the d i s t r ibu-

tion, the s p e c t r u m of v ibrat ions, and the polar izat ion

v e c t o r s of the v ibra t ions . Conditions for solvability

of the complete r e c i p r o c a l problem have been invest i-

gated recent ly by K a g a n . ^ P r a c t i c a l l y such a p r o b -

lem apparently can be solved only for la t t ices which

a r e monatomic and diatomic and in which each lat t ice

s i te is a c e n t e r of invers ion.

7. Scattering with Emission and Absorption of a Spin

Wave

We now proceed to study magnetic s c a t t e r i n g in

f e r r o m a g n e t s . We shall s t a r t from the s imples t

Heisenberg model of a fe r romagnet : The c r y s t a l con-

s i s t s of N magnetic atoms each of which has spin S.

We include only the i sotropic exchange interact ion of

the spins, taking the Hamiltonian of the s y s t e m in the

form

m=- (7.1)

The differential s c a t t e r i n g c r o s s sect ion in the

magnetic m a t e r i a l i s determined by the express ion

(3.8) multiplied by e~ 2 W Q. In the general c a s e , the

spin c o r r e l a t o r (S-* ( 0) SJ ( t ) ) cannot be computed

s ince we do not know the eigenvalues of the energy

o p e r a t o r (7.1). However, in two l imit ing c a s e s one

can develop an approximate theory of f e r r o m a g n e t i s m ,

namely, for t e m p e r a t u r e s much l e s s than the Curie

t e m p e r a t u r e and in the immedia te vicinity of the Curie

point. In this sect ion we shall cons ider the c a s e of

low t e m p e r a t u r e s . The other l imiting c a s e will be

t r e a t e d special ly in p a r t IV.

In the c a s e of low t e m p e r a t u r e s , when the magnet i-

zation of the c r y s t a l (we a r e thinking of a single

domain) does not differ very much from the sa tura t ion

magnetization at 0°K, the average value of the p r o -

jection of the spin along the d i rect ion of the spontane-

ous magnetic moment differs l i t t le f rom S, while the

average value of the t r a n s v e r s e components of the

spin is s m a l l . In this case we can use the well-known

relat ions ^ which e x p r e s s the spin o p e r a t o r s Sj of

the individual s i tes approximately in t e r m s of the

Bose o p e r a t o r s bj and b.*:

5 | = (2S)l'*b}, 5 j = (25)'/2b;, S^S-bJbj, (7.2)

S* = S* ±i SY.

J J J
If we change from the Bose amplitudes bj and bf

to the i r F o u r i e r components b ^ and b£,

; = ? = 2 « *r к ' к

the Hamiltonian (7.1) will be diagonal:
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= 2 (7.4)

Since the eigenvalues of the operator b^b^ are
integers 0, 1, 2, 3, . . . , this result can be treated as
follows: At low temperatures the state of the ferro-
magnet is equivalent to the state of an ideal Bose gas
of spin waves with energy

ek = 2 J 2 J ( R ) ( l - e i k R ) . (7.5)
R

Since the exchange integral falls off rapidly with dis-
tance, the main contribution to the sum over R in
(7.5) comes from the nearest neighbors. For small
к the exponent in (7.5) can be expanded in series
where, for example, for a cubic lattice we get the
following expression for the energy of a spin wave:

Bk = \SzJ0(ak)\ (7.6)

where J o is the exchange integral between nearest
neighbors, z is the number of nearest neighbors. In
the expression for the magnetic scattering cross
section

dQd£L 7 e- R '" 2 (««» ~
otf

(7.7)

we can neglect "non-diagonal" correlators
(Sj* S|v(t)>, (sf Sy(t)) and (Sf Sj> ( t ) ) . One can also
show that at low temperatures they are unimportant
compared to the others, not only for the phenomenon
of neutron scattering, but also for other phenomena in
ferromagnets. In this approximation expression (7.7)
is written as

ii'

J_

+ SjSj. (t)) [1 + (em)2] + (Sty (t)) [1 - (em)2]} .

Using (7.2), (7.3) and (4.8) we get

(roy)2F* (q) e~2V

б (q - т) 6 (£p. - Ev)

dQdEf,
Ц-

(7.8)

(2я)з N

X [1 + (em)2] ^ , - £p

(7.9)
where

) = 5Sft \ , Qi(E)
1 Г 1ГЕ1

= ok \ e (bibk{t))dt, nk = - (7.10)

is the average number of spin waves with momentum
к at a given temperature.

If we restrict ourselves to a description of a ferro-
magnet using an ideal system of spin waves, i.e., if
we use (7.4) as the Hamiltonian of the scatterer, the
expression (7.10) is easily calculated:

where
(7.11)

(7.12)
is the Bose distribution function for the spin waves.
We also note that one of the factors in the first term
of expression (7.9) can be written approximately as

s* 2 n

Taking these remarks into account, the differential
cross section for magnetic scattering is equal to

2 (q) S2 (T) - (em)2] ^

X (£„ - (q) Ye

+ лкб (q + k - т ) 6 ( i > - £ p - 8 k ) } . (7.13)

The first term of this expression describes the
elastic scattering. After integration over dEp' it
goes over into expression (5.5) which we found earlier.
The second term gives the cross section for scatter-
ing of a neutron with emission or absorption of a spin
wave. The structure of this expression is very close
to that of the coherent part of the one-phonon scatter-
ing given by formula (6.6). The essential feature of
the magnetic one-magnon scattering is the additional
angular dependence of the coherent maxima through
the quantities F 2 (q) and 1+ ( e - m ) 2 . We also note
that if we consider terms of higher order in expres-
sion (7.7) for the expansion of the spin operator in
terms of Bose amplitudes, which one can do using the
formalism of Holstein and Primakoff, ™® we can
easily supplement expression (7.13) by terms corre-
sponding to multi-magnon scattering with absorption
and emission of several spin waves. Estimates made
by Maleev'-26-' show that for low temperatures the con-
tribution to the inelastic magnetic scattering from
these processes can be neglected.

Thus the cross section for one-magnon scattering
in a single crystal is equal to

dQdEf,
= N (г + (em)

p-

T h e u p p e r s i g n r e f e r s t o s c a t t e r i n g w i t h e m i s s i o n , t h e

l o w e r t o s c a t t e r i n g w i t h a b s o r p t i o n o f a s p i n w a v e .
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The 6-function in the momenta removes the integral

over k. Since in the spin-wave approximation ak « 1,

the quasi-momentum of the spin wave is much less

than the magnitude of the principal vectors of the r e -

ciprocal la t t ice, we can replace q by т in (7.14). The

r e s u l t is

X 6(£p. -£p±e q + T ) . (7-15)

It follows that in the energy distribution of neutrons
scattered with emission or absorption of a spin wave
one should see peaks whose location is determined by
the energy conservation law

or , considering that
equation

: p ± s q + T = 0 , (7.16)

is a periodic function, by the

^ Г - 2 Й Г ± е Р - р - = ° - (7.16')

The width of these peaks turns out to be equal to
zero which is shown by the presence of the 6-func-
tions-in (7.15). This i s connected with the assumption
that the s tate of a ferromagnet is descr ibed by a sys-
tem of non-interact ing spin waves which a r e in a
s tat ionary s t a t e . Actually, because of the interact ion
of these waves with one another and with the lat t ice,
the i r s ta tes a r e not s tat ionary, but they can be con-
s idered a s quas i-s ta t ionary for t e m p e r a t u r e s which
a r e much below the Curie point. They a r e c h a r a c t e r -
ized by a finite lifetime тк, or equivalently by a level
width Fk- The effect of the finite lifetime of the spin
waves can be taken into account phenomenologically
if, in the express ion determining the t ime dependence
of the spin wave o p e r a t o r s , we replace ek by ek

r. Thus we have

bk{t) = bke ' " e " ' , b+k{t) = bke " e " .

Substituting these express ions in (7.10), we find

Qk (E) = (1 + nk) / k ( - E), Qk (E) = nklk (E),

where

F r o m express ion (7.9) it follows that the c r o s s
section for one-magnon scat ter ing is descr ibed by
formulas (7.13)—(7.15), in which we simply should
r e p l a c e б ( E p - - E p ± % ) by I k ( ± I Ep< - E p ]) . The
peaks in the energy distr ibution of the neutrons a r e
thus descr ibed by a Lorentz-shaped line with half-
width Fk equal to the energy of damping of the c o r r e -
sponding spin wave. Fk is a complicated function of
quasimomentum and t e m p e r a t u r e , determined by the
mechanism of interact ion of the spin waves. At low
t e m p e r a t u r e s Fk « ek, so that the peaks descr ibed
by the function Ij^( E) a r e s h a r p and have maxima at

points given by equation (7.16). In the l imit as Fk

-— 0, Ik( E) goes over into а б ( E - ek)-function.

The Lorentz shape of the peak comes from the a s -

sumption of exponential damping of the s tat ionary

s t a t e s . In the general c a s e , the shape of the peaks is

determined by express ion (7.10), which can be c o m -

puted, for example, using t e m p e r a t u r e G r e e n ' s func-

t ions . ^ By this method Krivoglaz and Kashcheev ^

have computed the broadening of the one-magnon line

because of interact ion of spin waves with phonons and

with one another. Izyumov '-28-' t r e a t e d the broadening

of the line in a ferromagnet ic metal because of i n t e r -

action of the spin waves with the conduction e l e c t r o n s .

The exper imental investigation of the broadening

(after removing the apparatus broadening) of one-

magnon peaks would allow one to get valuable infor-

mation about the interact ion of atomic spins within a

fer romagnet (or an antiferromagnet) .*

Now let us consider in m o r e detail sca t ter ing with

absorption of a spin wave, assuming that the d i s p e r -

sion law for the spin waves in quadrat ic .

In this case the energy conservation law can be r e -

wri t ten as

SZJ
p'2 = P2 + a (Ч + T)2i a = ri:'-r-^>- > (7.17)

from which we get two possible values for the wave
vector of the s c a t t e r e d neutrons :

aPp'± ~-(JzZi {COS0 + К cos2 9 — cos290}- (7.18)

Here в is the scattering angle measured from the

direction of the vector P = p + т :

V aP2
(7.19)

Integrating (7.15) over the energies of the scattered
neutrons, we find, taking account of the possible values
of p'±, the differential cross section per unit solid
angle (Maleev ^ ) :

x (cos2 e -cos2 в,,)-1/* [n (k.) (cos e + ^cos2 e - cos4 e0)
2

+ n(k.) (cos 9 - l/cos^^cos^) 2 ] ,

where

(7.20)

/4 (cos 9) = ~ ^ j [(cos 9 ± Vcos^-cos2!»)2 -

(7.21)

is the square of the quasimomentum of the spin wave
which participates in the scattering.

Thus the scattering depends essentially on the

*A11 these remarks concerning broadening of one-magnon peaks
also apply to one-phonon coherent peaks. The magnitude of the
broadening of these peaks has been considered by Krivoglaz [20]
for various types of interaction of the phonons with one another
and with lattice defects (cf. also M).
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magnitude of the parameter a. For ferromagnets
with a Curie temperature of the order of several
hundreds of degrees, the parameter a ~ 100, so that
it follows from (7.19) that cos20o > 1 - I / a , so that
e0 < a~i/l2. Since according to (7.18) the limits of
variation of cos в are

1 >cos9>cos9 0 > 0, (7.22)

the angle в < a~i/2. This means that scattering with
absorption of a magnon is possible only within a nar-
row cone with the axis P = p + т, where to each di-
rection of scattering lying on the cone there corre-
spond two values (7.18) of the momenta of the scat-
tered neutrons.

Furthermore we note that since cos2 0O < 1.

(7.23)

where Ф is the angle between p and т .
Now let us consider scattering with emission of a

magnon. Just as in the case of scattering accompanied
by absorption, we get

Pa
p(a+1)2

X

X

Here the wave vectors of the magnon and the scat-
tered neutron have the values

k'l (cos 9) = •

aP [ c o s e ± j / c o s « e - S ^ ( l — i g -

Scattering is possible only if

7ПГ > : m ОГ - i f - l — i - Z
2 \ p a x

(7.25)

(7.26)

(7.27)

Since cos Ф SL - 1 , it follows from (7.27) that s c a t t e r -
with emiss ion of a magnon is poss ib le only when

p > ат

We must consider the two cases:

(7.28)

We f i rs t cons ider case one. J u s t as for s c a t t e r i n g
with absorption, cos в varies within the limits

I>cos9>cos6, > 0 (7.30)

and to each scattering angle в there correspond two

values of the momentum of the scattered neutron
(7.26). The structure of this expression is completely
analogous to (7.18).

Now we consider case two. It can occur only if

i.e., when p differs only very little from т. From
(7.26) it follows that in this case pi < 0 and, conse-
quently, to each scattering angle there corresponds
only one value p'+ for the momentum of the scattered
neutron, and the scattering angle can change from
z e r o to 7Г.

In conclusion we note that, as follows from (7.24)
and (7.27), s c a t t e r i n g with e m i s s i o n can o c c u r s i m u l -
taneously with sca t te r ing with absorption of a magnon
only if

(7.31)

i.e., within that range of values of Ф where both
cross sections reach their maximum values.

We shall now give a geometric interpretation of the
one-quantum coherent scattering. As already pointed
out above, it is determined by the energy and momen-
tum conservation laws:

• = -i_ e q ,

p — p ' + T = ± q , J

(7.32)

where q is the wave vector of the spin wave (or pho-
non) participating in the scattering and €q is its en-
ergy. The upper sign applies to emission and the
lower to absorption of a spin wave. Both these equa-
tions together determine a surface in the reciprocal
lattice space, on which the ends of the wave vectors
p ' of the scattered neutrons He (for fixed orientation
of the incident beam relative to the reciprocal lattice
vector of the reflection plane). Thus the scattering
surface determines the possible values of the ener-
gies of neutrons scattered in a given direction.

In the special case of a quadratic dispersion law
for the spin waves, we have from (7.32) (cf. (7.17)),
for absorption, a scattering surface given by the
equation

where

P = p + T .

(7.33)

(7.34)

Let us find the geometrical picture of this equation
(Fig. 1). We choose a rectangular coordinate system
(xyz) so that the x and у axes lie in the plane of the
vectors p, т (the vector p ' also lies in this plane).
Then the left side of equation (7.33), p ' 2 = p^2 + p ,̂2, is
a paraboloid of revolution with axis along z (in Fig. 1
we show the parabola a which is the section of the
paraboloid by a plane passing through the z axis).
The right side of the equation is a paraboloid with
vertex В taken above the plane (x, y) at a value p 2



T H E O R Y OF S C A T T E R I N G OF SLOW N E U T R O N S IN M A G N E T I C C R Y S T A L S

s

377

FIG. 1. Geometrical inter-
pretation of scattering with ab-
sorption of a spin wave, AB = p2.

and projected on the point A, which is the end of the
vector P taken from the coordinate origin (shown in
Fig. 1 as a paraboloid b lying in the same vertical
plane as paraboloid a).

The intersection of these two paraboloids gives a
curve which is shown dotted in Fig. 1. The projection
of this curve onto the (x, y) plane gives a closed
curve on which all the possible values of the ends of
vectors p ' lie, i.e., the scattering surface, or more
precisely, the scattering curve which is obtained by
the intersection of the spatial scattering surfaces and
the plane in which the scattering occurs. It is not
hard to see that this " surface" of scattering is a
circle with its center at a point lying in the neighbor-
hood of the end of the vector P. For a » 1 the cen-
ter of the circle practically coincides with the end of
the vector P. From Fig. 1 we see that scattering is
possible within a narrow sector near the direction P.
The opening angle 0Q in which scattering is possible
is determined by the expression (7.19) which was
found earlier.

In the case of scattering with emission of a spin
wave there should be a minus sign in the last term of
equation (7.33). Geometrically this corresponds to the
fact that paraboloid b is turned so that it opens down-
ward. From this we see that scattering with emission
is not always possible, but only for those values of p
for which the segment AB = p2 intersects the parabola
a, i.e., when the neutron energy is greater than the
energy of the emitted spin wave.

We also note that in the case of a linear dispersion
law for the spin waves (or in the case of acoustic pho-
nons) in place of the paraboloid b we should have a
cone with its vertex at point B, so that qualitatively
the picture remains a similar one, but the scattering
surface will be not a circle, but an ellipse.

One interesting result follows from Fig. 1: If we
shift the point A further from the coordinate origin,
the scattering surface will spread out. To develop ex-
perimental methods for studying inelastic scattering
we must find the relation between the value of the
vector P and the radius of the scattering surface.
Let us consider Fig. 2 which essentially shows a more
detailed scattering picture in the (x, y) plane of Fig.

FIG. 2. Momentum conservation law in absorption of a spin
wave. Reflection from a crystal plane shown by the dotted line a,
when the neutron beam is incident on it at a Bragg angle cpB. The
double line a' shows the reflecting plane when the crystal is
turned through an angle dcp from the Bragg position a.

1. Here scattering with absorption of a spin wave is
shown in the reciprocal lattice space. The dashed
line a shows the crystalline reflection plane which
goes perpendicular to the plane of the figure. Its lo-
cation is determined by the reciprocal lattice vector
т . The relative arrangement of the vectors p, p ' , т
and q satisfies the momentum conservation law for
the scattering. A circle drawn from point A is the
scattering surface. The ends of the vectors p ' should
necessarily lie on this circle, since only in this case
will the energy conservation law be satisfied, as well
as the momentum conservation law.

Let the orientation of the crystal plane a relative
to the incident neutron beam correspond to the Bragg
position, given by the conditions

or the equivalent

sin cpj/r = 2яр.

(7.35)

(7.36)

L e a v i n g t h e e n e r g y of t h e n e u t r o n s i n t h e i n c i d e n t

b e a m u n c h a n g e d , i . e . , f i x ing p , w e t u r n t h e c r y s t a l

f r o m t h e B r a g g p o s i t i o n t h r o u g h a n a n g l e d<p = cp —

In t h i s c a s e t h e v a l u e of t h e v e c t o r P Will c h a n g e

a l o n g w i t h dcp. T o f ind t h i s d e p e n d e n c e w e s q u a r e

( 7 . 3 4 ) . We h a v e

(7.37)

O b v i o u s l y

(pt) = pTCOS ( д + ф = — px sin (ф В -

F o r s m a l l d e v i a t i o n s s i n (cp-g + dcp) c a n b e e x p a n d e d

i n a s e r i e s i n dcp; s u b s t i t u t i n g t h e e x p a n s i o n in (7.37)

a n d u s i n g ( 7 . 3 6 ) , w e f ind a p p r o x i m a t e l y

— P (7.38)Т(ф — фл)сОвф,).

A s w e h a v e s e e n f r o m F i g . 1 , w i t h i n c r e a s i n g P

t h e s c a t t e r i n g s u r f a c e s ( a t l e a s t i n t h e c a s e of a

q u a d r a t i c d i s p e r s i o n l a w ) s p r e a d o u t . B y m e a n s of

( 7 . 3 8 ) w e c a n n o w r e l a t e t h i s c h a n g e i n t h e s c a t t e r i n g

s u r f a c e t o t h e a n g u l a r d e v i a t i o n o f t h e c r y s t a l f r o m

t h e B r a g g p o s i t i o n . T h i s l i e s a t t h e b a s i s o f t h e e x p e r -



378 Yu. A. IZYUMOV

imental determination of the dispersion law for mag-
nons (and phonons). It was shown earlier that in the
energy distribution of neutrons scattered in a given
direction coherently with absorption or emission of
one quasiparticle (spin wave or phonon) there should
be peaks whose positions are determined by the energy
conservation law. There are several experimental
techniques* which allow one to determine the momen-
tum of the quasiparticle participating in the scatter-
ing. Of these the most important are the following.

1. Conventional method. The experiment is done
as follows: The crystal to be studied is placed in the
Bragg position corresponding to reflection from the
plane т. An apparatus recording the scattered neu-
trons is placed at such a position as to capture neu-
trons scattered in the direction of the Bragg peak. In
such an arrangement one records mainly neutrons
which are elastically scattered. The fraction of neu-
trons scattered inelastically will be negligible. Fur-
thermore, without changing the angle of scattering ф
(the angle between the vectors p and p ' ) , one turns
the crystal through some angle from the Bragg posi-
tion and analyzes the neutrons scattered in the origi-
nal direction according to their energies. In the en-
ergy distribution of the scattered neutrons one ob-
serves peaks corresponding to absorption or emission
of a quasi-particle. Such measurements are done for
different angular deflections of the crystal from the
Bragg position; throughout the experiment ф = const.

In Fig. 3 we show in the reciprocal lattice space
the inelastic scattering for three positions of a single
crystal. Let us consider position 1. The distance
from the point St to point A (site of the reciprocal
lattice T) corresponds to the scattering surface 1
which we have shown by a circle. The points of inter-
section p' with the scattering surface correspond to
the two peaks in the energy distribution of the scat-
tered neutrons. Vectors drawn from point A to these
points of intersection give the wave vectors of the
quasiparticles participating in the scattering. We see
that the angle ф should be chosen so that the direc-

FIG. 3. Conventional method,
p = const, ф = const; <p changes.

*The details of the experimental methods, their possibilities,
and a comparison between them are discussed in the survey paper
of Brockhouse,tM] who i s the author of many of the techniques of
neutron spectrometry which are applied at the present time.

t i o n of p ' i n t e r s e c t s t h e s c a t t e r i n g s u r f a c e ; o t h e r w i s e

t h e r e w i l l b e n o i n e l a s t i c o n e - q u a n t u m s c a t t e r i n g . T o

t h e p o i n t S 2 w h i c h i s f u r t h e r f r o m p o i n t A ( l a r g e r

v a l u e of v e c t o r P ) t h e r e c o r r e s p o n d s a n o t h e r s c a t -

t e r i n g s u r f a c e (2) e t c .

If w e j o i n t h e p o i n t s of i n t e r s e c t i o n of t h e v e c t o r s

p ' w i t h t h e s c a t t e r i n g s u r f a c e s f o r d i f f e r e n t o r i e n t a -

t i o n s of t h e s i n g l e c r y s t a l , w e o b t a i n c u r v e s w h i c h a r e

a l s o c a l l e d " s c a t t e r i n g s u r f a c e s . " On t h e s e s u r f a c e s

l i e t h e e n d s of t h e v e c t o r s p ' c o r r e s p o n d i n g to i n e l a s t i c

s c a t t e r i n g . T h e a c t u a l s c a t t e r i n g s u r f a c e s a r e u s u a l l y

n o t k n o w n t o u s , a n d i n t h e e x p e r i m e n t w e u s u a l l y o b -

t a i n t h e c u r v e s w h i c h a r e s h o w n d o t t e d . F r o m t h e s e

c u r v e s o n e c a n o b t a i n a s e r i e s of p o i n t s f o r t h e d e -

p e n d e n c e of eq, t h e e n e r g y of t h e q u a s i p a r t i c l e , on

t h e w a v e v e c t o r .

H o w e v e r , i n t h i s m e t h o d w e c a n n o t b e f o r e h a n d

c o n t r o l t h e d i r e c t i o n of t h e w a v e v e c t o r of t h e q u a s i -

p a r t i c l e q , s i n c e w e d o n o t k n o w t h e s c a t t e r i n g s u r -

f a c e b e f o r e h a n d a n d c a n n o t o r i e n t t h e c r y s t a l s o t h a t

t h e r e w i l l b e n e u t r o n s i n t h e s c a t t e r i n g d i r e c t i o n

w h i c h h a v e a b s o r b e d o r e m i t t e d a q u a s i p a r t i c l e w i t h

a g i v e n d i r e c t i o n of i t s w a v e v e c t o r . T h e r e f o r e i n t h e

c o n v e n t i o n a l m e t h o d w e c a n o b t a i n i n d i v i d u a l p o i n t s

o n t h e d i s p e r s i o n c u r v e c o r r e s p o n d i n g t o d i f f e r e n t

d i r e c t i o n s of t h e w a v e v e c t o r . If w e w a n t t o d e t e r -

m i n e t h e s p e c t r u m of t h e q u a s i p a r t i c l e f o r a p a r t i c u -

l a r d i r e c t i o n of t h e w a v e v e c t o r in r e c i p r o c a l l a t t i c e

s p a c e , w e m u s t m a k e t h e e x p e r i m e n t a l t e c h n i q u e

m o r e c o m p l i c a t e d . T h i s i s a c h i e v e d in t h e f o l l o w i n g

m e t h o d s :

2. M e t h o d of c o n s t a n t Q. T h e e x p e r i m e n t i s c a r -

r i e d o u t s o t h a t t h e v e c t o r Q = p - p ' = c o n s t . T h e r e

a r e t w o v a r i a n t s of t h i s t e c h n i q u e .

a ) T h e a n a l y z e r c r y s t a l i s p l a c e d a t a p o s i t i o n

w h e r e i t r e c o r d s a s i n g l e e n e r g y of t h e s c a t t e r e d

n e u t r o n s , i . e . , a s i n g l e v a l u e of p ' . If w e h o l d

Q = c o n s t , t h e n n e c e s s a r i l y q = c o n s t ; t h u s w e h a v e

a g i v e n v a l u e of t h e w a v e v e c t o r of t h e q u a s i p a r t i c l e

f o r w h i c h w e w a n t t o m e a s u r e t h e c o r r e s p o n d i n g

e n e r g y .

T h e e n e r g y of t h e n e u t r o n s in t h e i n c i d e n t b e a m i s

c h a n g e d s o t h a t t h e w a v e v e c t o r p v a r i e s . T h e e n d

of t h e v e c t o r p m u s t l i e on a n a r c of a c i r c l e w i t h

r a d i u s e q u a l t o t h e l e n g t h of t h e v e c t o r q d r a w n f r o m

t h e e n d of t h e v e c t o r p ' ( F i g . 4, a ) . C o n s e q u e n t l y t h e

end of the vector p slides along a circle and, to-
gether with its length, the angles cp and ф change.
For each value of p one measures the neutron inten-
sity scattered for fixed energy p ' . Step by step we
change the length of vector p so that the point S
moving along the circle will go further away or ap-
proach the point A of the reciprocal lattice. For
some value of p the scattering surface passes
through point q, and the intensity of the neutrons in-
creases markedly. The position of peaks in the in-
tensity of scattered neutrons as a function of the en-
ergy of the initial neutrons determines the energy of
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1 A

FIG. 4. Method of constant Q. a) p, cp, ф vary; p ' = const;

b) p ' , ф, ф vary; p = const.

t h e q u a s i p a r t i c l e s p a r t i c i p a t i n g i n t h e s c a t t e r i n g w i t h

a g i v e n w a v e v e c t o r q. T h u s i n t h i s m e t h o d , k e e p i n g

q f ixed, w e v a r y t h e i n i t i a l e n e r g y of t h e n e u t r o n s

u n t i l t h e e n e r g y c o n s e r v a t i o n l a w i s n o t s a t i s f i e d f o r

t h e c o l l i s i o n of t h e q u a s i p a r t i c l e w i t h t h e n e u t r o n .

A l o n g w i t h t h e c h a n g e i n t h e v a l u e of p , w e m u s t a l s o

change <p and ф according to the scheme correspond-
ing to the scattering picture in the reciprocal lattice
space.

Making the measurement of the energy distribution
for a given q, we then go to another value of q and
repeat the procedure. Consequently this method is a
most regular and ordered one. It does not require
any previous knowledge of the scattering surface.
Technically, however, the method is complicated,
since it requires a movement of the crystal mono-
chromator giving the energy of the incident beam to
agree with the motion of the crystal sample and the
crystal analyzer. Consequently, one should have a
so-called triaxial spectrometer. Another variant of
the constant Q method can be done with the usual
biaxial three-crystal spectrometer.

b) The energy of the incident neutron beam is kept
constant throughout. The end of the vector p lies on
a circle drawn from the origin—the point О (Fig.4,b).
The crystal analyzer is set to record neutrons with
energies corresponding to a given angle <p. The in-
tensity is measured as a function of the energy of the
scattered neutrons. The peaks on this curve also de-
termine the energy of the quasiparticles with a given
wave vector q participating in the scattering. In the
constant Q method (for both variants) we get sections
of all the dispersion curves of the quasiparticle for a
given direction of the wave vector by the vertical
lines q = const. In some cases it is convenient to
carry out the experiment so that one gets sections of
the dispersion curves by horizontal lines e~ = const.

3. The method of constant AE. The energy of the
incident neutrons E and the scattered neutrons E'
are not changed, so that ДЕ = E - E' = const. The
angles cp and ф are changed, but in such a way that
the end of the vector Q slides along a chosen direc-
tion for the wave vector of the quasiparticles (Fig. 5).

FIG. 5. Method of constant ДЕ.
ЛЕ = E - E' = const; cp and ф
change, but in such a way that
the vector Q slides along the
chosen direction.

For each value of the angles <p and ф one measures
the intensity of the scattered neutrons as a function of
the length of the wave vector q. In the intensity
curves one gets peaks when the end of the vector q
falls on the scattering surface. The values of q ob-
tained correspond to energies ДЕ of the quasiparti-
cles. One then varies ДЕ and repeats the whole
series of measurements.

In the constant ДЕ method one gets sections of the
dispersion curves by horizontal lines. This method is
convenient in that it permits one to choose the de-
sired value of ДЕ, but it obviously is inapplicable for
determining the dispersion law for branches of the
quasiparticles which vary slowly with q.

The methods considered for determining the dis-
persion curves of quasiparticles are based on the
study of the energy distribution of neutrons scattered
in some direction. There also exist methods based
on studying the angular width of the inelastic peaks,
among which the most widely used is the method of
Lowde.

4. The Lowde method.'-31-' In the case of a quad-
ratic dispersion law, as we have seen, there is a
maximum angle 6Q (angle AOP in Fig. 1), within
which there exists one-quantum inelastic scattering.
The value of this angle is determined by (7.19).
Usually a » 1, so that from (7.19) we get an approx-
imate expression for 6o:

Substituting (7.38), we get

У 2т cos

(7.39)

(7.40)

O n e c a n s h o w t h a t i n t h e c a s e of a l i n e a r d i s p e r s i o n

law (fq = cq, where с is the velocity of the quasi-
particle) we have, in place of (7.40), the relation

' siu2q);j | <p —< (7.41)

w h i c h i s a p p l i c a b l e o n l y f o r v > c , w h e r e v i s t h e

v e l o c i t y of t h e i n c i d e n t n e u t r o n s . T h u s t h e a n g u l a r

w i d t h of t h e i n e l a s t i c o n e - q u a n t u m p e a k v a r i e s

~ V I <p - <PB | i n t h e c a s e of a q u a d r a t i c d i s p e r s i o n

law f o r t h e q u a s i - p a r t i c l e s a n d v a r i e s ~ | <p ~ cp-g |

f o r t h e c a s e of a l i n e a r l a w .

T h e s e t w o d e p e n d e n c e s o p e n p o s s i b i l i t i e s f o r t h e
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following experimental technique.'^31-' The crystal is
placed in the Bragg position, and one measures the
angular width of the diffuse inelastic peak. Then one
turns the crystal through an angle <p — <p-g from the
Bragg peak ("missetting") and again measures the
angular width of the diffuse peak. Carrying out a
series of measurements, one constructs the depend-
ence of во on \ <p — <Pj$ \. From the form of this
dependence one determines the nature of the disper-
sion law, i.e., whether it is quadratic or linear. Al-
though this method is very simple (it requires a two-
crystal spectrometer), it is clear that using it one
can obtain only limited information about the disper-
sion curves.

In conclusion we consider one important question:
the experimental determination of the parameter oc
in the quadratic dispersion law for spin waves in a
ferromagnet. It is simplest to relate a to the exper-
imentally observed quantities if one uses formula
(7.18). Let us write the difference between the two
possible values of the vectors of the scattered neu-
trons in the direction of the center of the inelastic
peak, i.e., for 6 = 0. From (7.18) and (7.39) we have

2aP7 sin 601
2V2P\P-p\

/ a

The quantities p and P are fixed in the experiment
so that the last relation can be written as

If en changes under the influence of any physical fac-
tor, as for example the temperature, this change can
be determined from the change in 6q—the distance in
k-space between the two peaks of the inelastic scat-
tering. Such measurements were made a long time
ago by Brockhouse ™9-' for magnetite. The appearance
of the experiment for two temperatures is shown in
Fig. 6. The temperature dependence of the parameter
a, determined from (7.42), agreed well with the curve
of the temperature dependence of the spontaneous
magnetization of the ferromagnet M ( T ) . This result
( a ~ M(T)) is of fundamental importance since it
confirms qualitatively the new theory of the ferro-

FIG. 6. Scheme of the ex-
periment for determining the
dependence of the energy of
a spin wave in a ferromagnet
on temperature.

magnetic state of Bogolyubov and Tyablikov,^26'61-'
according to which spin waves exist at any tempera-
ture at which the ferromagnet is still ordered, but
their energy depends on temperature, decreasing as
the magnetization decreases. The development of
these investigations should play an important part in
the theory of atomic magnetic ordering. Such tem-
perature measurements of spectra of spin waves
should be carried out for different types of magnetic
structures. The corresponding theory of spin waves
in arbitrary structures is given in f-61-'.

Up to the present time, spectra of spin waves have
been investigated experimentally only for a few
magnetic materials: magnetite,'-55'59-' iron,'-56-'
C0 0. 9 2Feo. 0 8, ^ franklinite (zinc-manganese ferrite),
^ and hematite. ̂  Of these only hematite is an
antiferromagnet, while the others are ferromagnetic.
In accordance with the conclusions of the theory, in
papers ^55~583 they obtained a quadratic law for the
dispersion of the spin waves in a ferromagnet, while
a linear law was found for the antiferromagnet.'-37-'
In '-59-1 for magnetite one first observed an optical
branch of the spin waves in a ferromagnet, while the
dispersion law for the "acoust ic" branch was inves-
tigated for the principal directions over the whole
Brillouin zone. In papers'-58'59-' the lifetime of spin
waves in ferromagnets is estimated.

(7.42) rV. MAGNETIC CRITICAL SCATTERING

8. Scattering in the Neighborhood of the Curie or
Neel Points

Experiments show a sharp increase in magnetic
scattering of neutrons in ferro- '-32-' and antiferromag-
nets '-33-' in the neighborhood of the Bragg magnetic re-
flections as one approaches the phase transition point,
and above it, in the paramagnetic region. This phe-
nomenon, which has been called magnetic critical
scattering, in its nature is completely analogous to
the scattering of light in a liquid near its critical
state (opalescence) or the scattering of x-rays in
alloys in the neighborhood of the ordering point.

Magnetic critical scattering of neutrons is related
to the increase in large spontaneous fluctuations of
the magnetization in the vicinity of the Curie point.
Since the fluctuations propagate over distances
larger than the interatomic spacing and exist for a
long time compared with the time of microscopic re-
laxation, they produce a magnetic scattering whose
distribution in angle and energy is markedly different
from the distributions which appear at low tempera-
tures.

The theory of critical scattering of neutrons in a
ferromagnet was first developed by Van Hove '•e- on
the basis of a study of spin correlations near the
Curie point. A phenomenological treatment of the
phenomenon using the thermodynamic theory of fluc-
tuations was given by Krivoglaz,'-34^ who expressed
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the cross section in terms of the magnetic suscepti-
bility in the vicinity of the Curie point. A more com-
plete theory (which we shall proceed now to describe)
using a quasiclassical description of the spin system
near the ordering point was proposed recently by
de Gennes and Villain.^35]

Having in mind application of the theory to crystals
with an arbitrary lattice, whose unit cell may consist
of several magnetic atoms, we shall write the cross
section for magnetic scattering (3.8) in the following
form:

dQ dEp,
= C - . Y ) ^ : ft(4)· Σ*4 2 (δ«β - eo.e

RiRj (8.5)

is the magnetic susceptibi l i ty t e n s o r of the s c a t t e r e r
descr ib ing the react ion of its magnetic s y s t e m to an
inhomogeneous externa l magnetic field. In fact, if a
magnetic field Н щ acts on a spin located at the
lat t ice point Щ, it leads to a change in the equil i-
b r i u m value of the magnetic moment by an amount
бцщ. The average value of the magnetic m o m e n t in
the p r e s e n c e of an external inhomogeneous field is

x Ш,
,·-*.·„)( ( Sf<. (0) Si. (t)) dt. (8.1)

where the summation over the magnetic atoms of the
crystal is split into a sum 2 over the limits of one

unit cell and a sum £y over the atoms of a given type
Щ

located in all cells of the crystal.
Since in the ordered phase the average components

of the spin of each atom are not all equal to zero, it
is convenient to write the spin correlator in the form

<SS4(O)S|,(0> = <524>(5Ь,) +Yip(fy-Ri, 0- (8-2)

The first term, corresponding to long-range order,
gives elastic Bragg scattering. The second term gives
an additional diffuse scattering which in general is in-
elastic. It is also this part of the correlator which
causes the critical scattering in the neighborhood of
the ordering temperature. The part of the scattering
cross section corresponding to it is equal to

. <ШЕ

(5&,)}Л. (8.3)

We f i rs t cons ider the sca t te r ing in which the t r a n -
sit ion energy Ер' - Е„ is s m a l l c o m p a r e d with the
initial energy. In this c a s e we can s t a r t f rom a s tat ic
approximation for the c o r r e l a t i o n s , cons ider ing the i r
l imit ing values for t = 0. It is c l e a r that such an a p -
proximation d e s c r i b e s e last ic sca t te r ing . Integrating
expres s ion (8.3) for this c a s e over dEp/, we e x p r e s s
the c r o s s sect ions for c r i t i c a l s c a t t e r i n g into unit
solid angle in the form

(8.4)

where 63C = ^ μ 0 £ } ( s R i - H R i ) · Expanding the t r a c e s
iRi

in powers of 6K, we get in f i r s t approximation

fiHjj'o (8.7)

We shal l be i n t e r e s t e d in the c l a s s i c a l l imi t of the
spin p r o p e r t i e s of a s y s t e m which is n e a r the phase
t rans i t ion point, so we shall neglect the non-commuta-
tivity of the spin o p e r a t o r s , set t ing SU (iK/3j) = S^ .
In place of (8.7) we will have x г

(8.8)

The equation for the F o u r i e r component (8.8) has the
form

where H^(k) = Σ ) Η £ , e i k ' ( R j - r j ) is the Fourier
] R

component of the external field and N is the number
of cells in the sample. The last relation shows that
X ^ ( k ) , given by expression (8.5), is the magnetic
susceptibility tensor. According to (8.4) the calcula-
tion of the cross section reduces to calculating the
magnetic susceptibility tensor, taking into account the
spatial dispersion. Its components can be expressed
in terms of the exchange integrals if we use the fact
that each spin is in equilibrium under the action of
the external field and the molecular field of its neigh-
bors.

Above the t r a n s i t i o n point ( Τ > T o ) the local
equation for the magnetic moment at s i te Щ can ob-
viously be wr i t ten in the form ^-35]

3A-7'
JR.·

(8.10)

If we define the Hermit ian m a t r i x of rank η by the
equation

3kT
where (8.11)
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then equation (8.10) in Fourier components can be
easily written in the form

paramagnetic region
(8.4) takes the form

= χ(4.)δαβ; express ion

Going over to the inverse m a t r i x A ' and compar ing

with (8.9), we get

Xtf (k) = Ngy0 [А-1 (к)]„δαρ. (8.13)

Below the t rans i t ion t e m p e r a t u r e ( Τ < T o ) we

should include the p r e s e n c e of spontaneous magnetiza-

tion in the sys tem. The equation for calculating the

magnetic moment of the ion at point Щ in the d i r e c -

tion of spontaneous magnetization (z axis) is wri t ten

in the form

PR^B^F^ + HRJ), (8.14)

where

(8.15)— coth I -̂

is the Brillouin function, F R J is the molecular field
at point Rj. It is given by the express ion

р Я| = ^ 2 1 2 / я 4 я ^ я г (8.16)

Equation (8.14) leads to the following express ion for

the susceptibil i ty tensor when Τ < T o :

where

(8.17)

(8.18)

In the la s t re lat ions μ̂  and Fj a r e the average values
of the spin of the ion at position i and the molecular
field acting on it in the absence of the external field.

Thus, in the molecular field approximation the
cr i t ica l scat ter ing is descr ibed by formula (8.4),
where the magnetic susceptibil i ty t e n s o r i s expressed
by (8.13) for Τ > T o and by (8.17) for Τ < T o . The
specific calculation of the c r o s s section for c r i t ica l
scat ter ing using the method descr ibed of de Gennes
and Villain was recently done for magnetite "-36] and
hemat i te . -1. The extension of the method to the c a s e
of ant i ferromagnet i sm was done by de Gennes in '-38-'.

Now let us consider in detail the cr i t ica l sca t ter ing
in the s imples t kind of ferromagnet consist ing of one
sublatt ice, for the paramagnet ic region ( Τ > T o ) .
Now it i s m o r e convenient not to use the method of
de Gennes and Villain, but to s t a r t from the initial
formulas (8.4) and (8.5) express ing the c r o s s section
in t e r m s of the susceptibil i ty χ ( q ) . Since in the

where N
q y 0 S ( S + l )

3kT
is the magnetic suscept i-

bility in the absence of exchange interact ion, χ ( q ) is

the susceptibil ity descr ibing the response of the sys-

tem to the inhomogeneous magnetic field with wave

vector q. According to (8.5), x ( q ) is expressed as

follows in t e r m s of the spin c o r r e l a t o r :

(8.20)

Here So is the spin of the s i te chosen as the coordi-

nate origin. Here we have f i rs t of all used the fact

that ( S R S ^ > ) depends only on the difference R - R'

and secondly that ( S ^ S S , } is the same for all

α = χ, у, ζ above the Curie point.

The further calculation requi res a knowledge of

the c o r r e l a t o r ( S 0 S R ) . At present there is no

method for exact calculation of this quantity, but c e r -

tain general proper t ie s of this quantity as a function

of R can be understood from physical a rguments . It

is completely obvious that in the absence of spin in-

teract ions (S 0Spj) Ξ 0, s ince in this case the spin

projections which refer to different s i tes a r e s t a t i s -

t ical ly independent, and so t h e i r average value i s

equal to z e r o . The p r e s e n c e of exchange interact ion

leads to a cer ta in corre lat ion of the spin projections

at different s i tes which i n c r e a s e s as we approach the

Curie point. This corre la t ion manifests itself in the

development of fluctuations of the magnetization

whose magnitude i n c r e a s e s n e a r the Curie point. The

phenomenological analysis given by Van Hove ^ led

to the following dependence of the corre la t ions near

the Curie point at la rge R (the long-range p a r t of the

corre la t ion) :
rr c· f c· ι л \

- f t i R , ( 8 . 2 1 )

w h e r e V o i s t h e v o l u m e p e r m a g n e t i c a t o m a n d r 1

a n d k j a r e c e r t a i n p h e n o m e n o l o g i c a l c o n s t a n t s d e -

p e n d i n g o n t e m p e r a t u r e ; r t s h o u l d c h a n g e s l o w l y w i t h

t e m p e r a t u r e a n d i n o r d e r o f m a g n i t u d e s h o u l d b e

s e v e r a l i n t e r a t o m i c d i s t a n c e s , w h i l e k t s h o u l d b e h a v e

c o m p l e t e l y d i f f e r e n t l y . A s w e a p p r o a c h t h e C u r i e

p o i n t , t h e c o r r e l a t i o n s s h o u l d i n c r e a s e , s o k j " 1

r e a c h e s a m a c r o s c o p i c s i z e a t t h e C u r i e p o i n t a n d

d r o p s o f f w i t h i n c r e a s i n g t e m p e r a t u r e t o a v a l u e o f

t h e o r d e r o f r t .

F r o m r e l a t i o n s ( 8 . 2 0 ) a n d ( 8 . 2 1 ) w e q u i c k l y s e e t h a t

( * Λ ) · = 5 $ - Γ (8-22)

Substituting (8.21) in (8.20) and summing over the
whole crys ta l , we get x ( q ) . But we a r e not interes ted
in the whole range of values of q, but only those
which lie near vectors of the rec iprocal lat t ice, i .e.,
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we a r e in teres ted in the cr i t ica l s t a t e near the pos i-

tion of the Bragg peak. F o r this r e a s o n we wr i te the

right-hand side of (8.20) in the form £ ) ( S 0 S R >

i(q-f) -R R

x e and expand the exponential in a s e r i e s in

powers of q — τ; we find after summat ion over

la t t ice s i te s for smal l values of | q - τ | (in the c a s e

of a cubic crysta l)

Ί ( * ? + ΐ 4 - τ | 2 ) "

The express ion for the sca t te r ing c r o s s section

when Τ > To takes the form

Since k t drops off sharply as we approach the Curie

point, i t follows f rom formula (8.24) that n e a r the

Bragg peak the s c a t t e r i n g intensity i n c r e a s e s m a r k -

edly with decreas ing t e m p e r a t u r e , reaching a m a x i -

mum value at the Curie point. F o r a fixed t e m p e r a -

t u r e the dependence of the intensity on the deviation

of the s c a t t e r i n g angle θ f rom the position of the

Bragg peak θ-g corresponding to the r e c i p r o c a l

la t t ice vector τ, is given by the factor

[ ^ + τ 2 ( θ - θ β ) 2 Γ (8.24')

i . e . , t h e d i s t r i b u t i o n h a s a L o r e n t z s h a p e w i t h w i d t h

~ k j .

Crit ica l sca t te r ing for τ = 0 c o r r e s p o n d s to s c a t -
t e r i n g at s m a l l angles . Cr i t ica l sca t te r ing with
τ & 0 can actually be observed if the form factor
F ( q ) is not smal l for q = т. The o c c u r r e n c e of
cr i t ica l sca t ter ing with τ * 0 is an important fea-
t u r e of c r i t i ca l magnetic sca t ter ing as compared, for
example, with the cr i t ica l sca t ter ing of light by a
liquid, where it does not occur . The sca t te r ing with
τ * 0 n e c e s s a r i l y shows that, despite the s t rong d i s -
o r d e r i n g fluctuations of the magnetization, the spin
sys tem p r e s e r v e s its o r d e r e d position in space be-
cause of the s t r u c t u r e of the lat t ice of the c r y s t a l .

It is useful to note that the same s o r t of e x p r e s -
sion for the susceptibil i ty x ( q ) as (8.23) can be ob-
tained by the method of de Gennes and Villain if we
s t a r t from relat ions (8.13) and (8.11). In fact, writ ing
(8.11) for i = j = 1 and expanding the exponential in
s e r i e s in powers of | q — τ | we immediately get, by
using (8.13), the re lat ion (8.23), where the p a r a m e t e r s
r t and k t a r e equal to

а* Т„ (8.25)

Here a i s the lat t ice constant, ζ is the number of
n e a r e s t neighbors, T o = 2 z J S ( S + l ) / 3 k is the Cur ie
t e m p e r a t u r e . We see that r j and kj have the p r o p e r -
t ie s predicted by Van Hove's phenomenological theory .
The length r t has microscopic dimensions and d e -
pends very slightly on t e m p e r a t u r e in the vicinity of
the Curie point. The quantity kj"1 i n c r e a s e s sharply
as one approaches the Curie point, but far from it
coincides with r ^ Thus the method of de Gennes and

Villain allows one to calculate the values of rt and

k t and to find the i r t e m p e r a t u r e dependence. F u r t h e r -

m o r e it p e r m i t s us to general ize the express ions for

the sca t ter ing c r o s s section (8.24) to the c a s e of sev-

e r a l ferromagnet ic sublat t ices . One can show'-3 5 ] that,

in the general c a s e , n e a r Bragg maxima the c r i t i c a l

sca t te r ing is equal to

<8-23> (Scat ^ ^ Ι Σ ^ + Ι^ Fi(4)
(*)[*! + |q-Tlal

where

ft? =
t

Ί (θ) 2 ХЦ (0) '

(8.26)

(8.27)

S ^ i ^ i + D

r M ^ 2 W ^ ? ( S W (8-28)

tj

in which A|j ( k ) is the minor of the m a t r i x Ajj ( k )

and A ( k ) is its determinant , so that [ A - 1 ( k ) ] , ;

= А^(к)/Д(к).
In the general case, expression (8.22) is replaced

by the following:

[fc.7-1 (0)]2
V yi

' Σ ^ ( Ο ) ' (8.29)

Expression (8.26), like (8.24), is valid near the
Curie point when Τ - T o « T o . Below the Curie point,

when T o - Τ « T o the c r i t ica l s c a t t e r i n g is de-

scr ibed by formula (8.4), taking into account (8.17).

F o r the c a s e w h e r e the fe r romagnet has a s ingle

sublatt ice, the express ion for the c r o s s sect ion takes

the s imple form

d<J Λ =Ν (Γ0γ)2 - Ц г F2 (q) {χ,ι (q) (1 - e\) + %x (q) (1 + el)},
crit 6 H-odQ

(8.30)

where χ,, and χ^ a r e the longitudinal and t r a n s v e r s e
components of the magnetic susceptibi l i ty t e n s o r .
Using express ion (8.18) for the sca t ter ing vec tors
n e a r the Bragg peaks, we can r e p r e s e n t the c r o s s
sect ion (8.30) in the form

da
dQ

.=N(rayrF*(q)\s(S + l)

{ ;
I-el

11*11+1 q - t [

Ч2 Т„

i + e.

> 1 [ * i + | q —ггц J (8.31)

Here r j 2 = — is a p a r a m e t e r which coincides

formally with that which appeared in the paramagnet ic

region, while the p a r a m e t e r s k2 and к2, a r e equal to

*fi =
g μ° V. OH ) F

2Ja?
fci=. 2Ja2

(8.32)

The p a r a m e t e r s к,, and к , drop off rapidly as we a p -
proach the Curie point, so the sca t te r ing intensity,
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according to (8.31) increases rapidly, reaching its
maximum value at the Curie point. Furthermore,
with increasing temperature the intensity also drops
sharply and is again described by formula (8.24); thus
the scattering of neutrons in the neighborhood of
Bragg reflections in the vicinity of the Curie point
gives peaks in the temperature dependence of the in-
tensity.

An important difference between the critical scat-
tering in the ferromagnetic region and the scattering
above the Curie point consists in the fact that in the
first case the intensity depends on the position of the
scattering vector relative to the direction of the
spontaneous magnetic moment of the crystal. The
scattering described by the two terms in curly brack-
ets in expression (8.31), which are related to the cor-
relations of the longitudinal or transverse components
of the spin, can be separated if we measure the scat-
tering in two directions: when the vector q is per-
pendicular and when it is parallel to the vector m.
Since at the Curie point кц and kĵ  are equal to zero,
the intensity of the scattering given by formula (8.31)
can easily be seen to agree with the value of the in-
tensity at the Curie point as given by formula (8.24);
thus both these formulas coalesce at the Curie point.

It is also interesting to note that, from a compari-
son of (8.31) and (8.24), it follows that below the Curie
point the long-range part of the correlations changes
with distance according to the same law as in the
paramagnetic domain (cf. (8.21)), with the single dif-
ference that the rate of drop-off of the correlations
will be different for the longitudinal and transverse
components of the spins. It will be given by factors
кц and k^ respectively in place of k4. Right up to the
Curie point k^ » кц, so the correlation of the per-
pendicular components drops off more rapidly. This
has the consequence that the contribution to the cross
section from the second term in (8.31) is small com-
pared to the contribution of the first term which is
associated with longitudinal correlations (except, of
course, for the case where q is close to m ) .

In conclusion we note that the distribution of in-
tensity of critical scattering of neutrons with angle is
determined by the long-range part of the spin correla-
tions as given by expression (8.2). These correlation
functions determine the scattering not only for neu-
trons, but also, for example, for electrons in a ferro-
magnetic metal which also leads to anomalies in
electrical conductivity and other kinetic coefficients
in the vicinity of the Curie point. Thus the computation
of such correlation functions is of general theoretical
interest.

The method of de Gennes and Villain which is de-
scribed here consists in using the relation of these
correlation functions to the magnetic susceptibility
which is calculated using the molecular field approx-
imation. Another possibility for calculating was pro-
posed earlier by Elliott and Marshall,^3 9 ] who de-

veloped an equation for the correlation functions using
the cluster method of Bethe and Peierls,'-40-' i.e., again
in the molecular field approximation which is appro-
priate in the vicinity of the Curie point.

A more general procedure for calculating correla-
tion functions on the Heisenberg model of a ferromag-
net consists in using the two-time Green's functions.
Bogolyubov and Tyablikov1-2^ in this way developed
the correlation function for spin s = %. A generaliza-
tion of their method to arbitrary spin has been given
recently. [ 4 1 ] The expression obtained by this method
for the correlation function in the form of a Fourier
series is valid approximately for the whole range of
temperatures in which the ferromagnetic state exists,
but the summation of the Fourier series in the inter-
mediate temperature range can be done only numer-
ically.

Now let us turn to the critical scattering. Up to
now we have studied only the static approximation for
the critical scattering, in which we neglected the
change in energy of the neutron Κω = E p - Ep> on
scattering. The energy distribution of the scattered
neutrons is related to the dependence of the spin op-
erators or spin correlations on the time. It is sim-
plest to get the qualitative features of this dependence
using a phenomenological method. Let us assume that
the dependence of the correlations on time is given in
the vicinity of the Curie point (for Τ > To) by a
damping of the magnetization fluctuations, which in
turn are described by a phenomenological equation
for irreversible processes in a spin system, for ex-
ample, by the diffusion equation

—— = Λ ι Δ Μ , {θ.oof

w h e r e Aj i s t h e d i f fus ion c o e f f i c i e n t , w h i c h i s i n -

v e r s e l y p r o p o r t i o n a l t o t h e m a g n e t i c s u s c e p t i b i l i t y .

F r o m t h i s t h e F o u r i e r c o m p o n e n t of t h e m a g n e t i z a -

t i o n Mq ~ e

c o r r e l a t i o n

Σ
R

, so that we can write for the time

(8.34)

Substituting this expression in (8.3) for the case
i = j = 1, and integrating over the time, we find in
place of (8.24)

1_
rJ[A« + | q - t | 2 J я

| q — -c | (8.35)

The energy distribution of the neutrons in the vicinity
of the Bragg peak is described by a Lorentz-shaped
line with width Ajfi | q — τ f. Since as we approach
the Curie point At — 0, the energy distribution func-
tion in (8.35) tends toward δ ( Ε ρ - E p / ) . This means
that near the Curie point the critical scattering of
neutrons is quasi-elastic. Upon integrating expres-
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sion (8.35) over d E p ' , we get the angular d is t r ibut ion

(8.24), multipl ied by a factor which is c lose to unity.

F r o m these s t a t e m e n t s we s e e that the exper i-

mental study of c r i t i c a l s c a t t e r i n g n e a r the phase

t rans i t ion point should give valuable information about

the behavior of the fluctuations of the magnet izat ion.

At p r e s e n t c r i t ica l sca t te r ing has been studied

m o s t completely for m a g n e t i t e . [ 3 6 ] The incompleteness

of the spin wave theory of the s c a t t e r i n g of neutrons

in the vicinity of the Curie point was shown e x p e r i -

mental ly for magneti te in ^ 4 2 ] . L a t e r Riste [-36] c a r r i e d

out a careful study of c r i t i c a l s c a t t e r i n g and a c o m -

p a r i s o n of the exper imenta l r e s u l t s with the theory of

de Gennes and Villain. The general p ic ture of the

s c a t t e r i n g turned out to be that proposed by Van Hove,

while quantitatively the r e s u l t s w e r e in good a g r e e -

ment with the predict ions of de Gennes and Villain

for magnet i t ie . The c r i t i c a l s c a t t e r i n g has a l so been

studied carefully for h e m a t i t e . [ 3 7 ]

V.. SCATTERING OF POLARIZED NEUTRONS

9. Differential C r o s s Section for Scatter ing of
P o l a r i z e d Neutrons

In the s c a t t e r i n g of polar ized neutrons we have an

inter fe rence of nuc lear and magnetic sca t te r ing which

was absent when the neutrons w e r e not polar ized.

Consequently, in the express ion for the differential

s c a t t e r i n g c r o s s section

(9.1)

w e s h o u l d i n c l u d e b o t h of t h e i n t e r a c t i o n s of t h e n e u -
t r o n w i t h t h e c r y s t a l , n u c l e a r a n d m a g n e t i c , s o t h a t
t h e q u a n t i t y V p ' p t a k e s t h e f o r m

(9.2)

The polar izat ion s ta te of the incident neutron beam
is given by the spin density m a t r i x

ρσ = | ( 1 + ροσ), (9.3)

w h e r e | σ is the spin o p e r a t o r of the neutron and
p 0 = T r ρσσ is the polar izat ion vector, equal to twice
the average value of the neutron spin in the b e a m .
The individual components of the vector σ a r e the
Paul i m a t r i c e s which satisfy the commutat ion r e l a -
tions

2δαβ. (9.4)

It should be emphas ized that expres s ion (9.1) has the
m o s t genera l form possible for a beam of par t ic le s
with spin | , this following d i rect ly from the p r o p e r -
t ies of the Pauli m a t r i c e s .

It i s c l e a r that in calculat ing the s c a t t e r i n g c r o s s

s e c t i o n w e r e q u i r e e x p r e s s i o n s f o r t h e t r a c e s of

v a r i o u s p r o d u c t s of P a u l i m a t r i c e s . F r o m t h e c o m -

m u t a t i o n r e l a t i o n s (9.4) o n e c a n e a s i l y o b t a i n t h e f o l -

l o w i n g r e l a t i o n s :

= δ α β δ ν ί — δ α γ δ β 6 + δ α 6 6 β ν . (9.5)

A s w e e a s i l y s e e f r o m r e l a t i o n s (9.1) a n d (9 .2) , a l l

p r o b l e m s c o n c e r n i n g t h e s c a t t e r i n g of p o l a r i z e d n e u -

t r o n s i n a m a g n e t i c m a t e r i a l r e q u i r e t h e c a l c u l a t i o n

of t r a c e s of t h e o p e r a t o r s

i n p r o d u c t s w i t h o t h e r s u c h o p e r a t o r s a n d w i t h t h e

P a u l i m a t r i c e s . T h e r e s u l t s of s u c h c o m p u t a t i o n s a r e

g i v e n i n t h e f o l l o w i n g t a b l e (9 .8) , i n w h i c h t h e v e c t o r

3Kj d e n o t e s

(9.7)

T h u s w e h a v e

{ S p { ( p a ) L 0 } = - i [ 2 B x p ] ,
(9.8)

у Sp {(per) L^} = i [3Ri χ 20l2] p,

•j Sp {(ρσ) Ζ,,σΖ,,} = Sli (ЯВф) + (9t l P ) Ш2 - ρ ( » ι » , ) .

Using this table, it is not difficult to get the follow-
ing general expression for the trace, which deter-
mines the differential cross section (9.1):

VR<'«>> + ( ^ royj I 2 F, (q) Fy (q)

χ < e-
i 4Vq R '< l i )>

( t ) ) p o ) _

y { 2

| 2 A i F .

ч

In getting this expres s ion we have m a d e an approx ima-
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tion: we have neglected the interaction of the spin
system with the lattice, as a result of which it was
possible to split the average of the product into a
product of the averages over the states of the mag-
netic system and the lattice.

The scattering cross section is gotten by inte-
grating (9.9) with respect to the time so that, as one
easily sees, the first two terms describe the scatter-
ing of unpolarized neutrons. The additional term in
the cross section arising as a result of polarization
of the neutrons is proportional to the initial polariza-
tion vector p 0 . The third and fourth terms in (9.9)
come from interference of nuclear and magnetic
scattering.

It is of particular interest to consider (9.9) in two
special cases: when the scatterer is a ferromagnet
and when it is an antiferromagnet. For simplicity we
shall assume that in both cases the crystal consists
of atoms of only one type. From expression (9.9) we
should separate out first the parts corresponding to
elastic and inelastic scattering. For this purpose we
express the operator of the spin vector Sj in a co-
ordinate system where the ζ axis is directed along
the spontaneous magnetic moment. (К the crystal
consisted of several sublattices, we should have to
choose a separate coordinate system for each of them
with the ζ axis along the magnetization vector of the
sublattice.)

In the case of one sublattice

S,= SJm-fyS/m-+-|Sjm% (9.10)

where m* = m x ± im v , m x , m v are unit vectors
the χ and у axes. According to (9.10), the vector 9JL
(9.7) breaks up into components:

where

= m-(em)e, M* = m± - (em±) e.

(9.11)

(9.12)

Thus the whole expression (9.9) can be broken up
into a "longitudinal" part associated with the projec-
tions S: and leading to elastic scattering, and a
" t ransverse" part associated with the operators S^
and leading to inelastic scattering, bi this way we
get for a ferromagnet

1 Sp {ρσ <F+.PFP.P (f)>} = .V {^ - 2 * + 4- B4(J+l)} e-2W*

+ {A* + ( ^ - J (rov)2 F* (q) S* (T) -i M2

royF (q)S (Τ) A (Mp0)}

-2W4F*(q)-L%

χ {(SjSy (ή) [1 + (em)2 + 2 (em) (ep0)]

+ {SjSp (t))[l+ (em) 2- 2 (em) (ер„)]},

and for an antiferromagnet (two sublattices)

i Sp {ρσ (VppVp,p (/)>} = N {J* - A* + \ ВЩГ+Т)} e~2wi

X (1 - cos ( q r 1 2 ) )

x F* (q) e~™* i

χ e~ <i + ( ^ - royj

№

V ) S e ' 4 < Γ ν Γ ν / >

vv'
(t)

( 9 . 1 4 )

( 9 . 1 3 )

I n t h e l a s t e x p r e s s i o n m i s a u n i t v e c t o r i n t h e

d i r e c t i o n o f m a g n e t i z a t i o n o f e i t h e r s u b l a t t i c e . A s w e

s e e , t h i s e x p r e s s i o n i s i n v a r i a n t w i t h r e s p e c t t o t h e

c h o i c e o f t h e s u b l a t t i c e s . T h i s i s c o m p l e t e l y n a t u r a l

s i n c e t h e s u b l a t t i c e s a r e e q u i v a l e n t .

S u b s t i t u t i n g ( 9 . 1 3 ) a n d ( 9 . 1 4 ) i n f o r m u l a ( 9 . 1 ) , w e

c a n g e t a n e x p l i c i t e x p r e s s i o n f o r t h e s c a t t e r i n g

c r o s s s e c t i o n f o r p o l a r i z e d n e u t r o n s / 4 3 - ' b u t i t i s n o t

w o r t h w r i t i n g i t s i n c e a l l of i t s f e a t u r e s a r e e a s i l y

s e e n f r o m t h e l a s t t w o e x p r e s s i o n s .

I t i s i n t e r e s t i n g t o n o t e t h a t f o r a n a n t i f e r r o m a g n e t

w i t h t w o s u b l a t t i c e s t h e c r o s s s e c t i o n f o r s c a t t e r i n g o f

p o l a r i z e d n e u t r o n s d i f f e r s i n n o w a y f r o m t h e c r o s s

s e c t i o n f o r s c a t t e r i n g o f u n p o l a r i z e d n e u t r o n s . T h i s

i s e x a c t l y w h a t s h o u l d b e t h e c a s e . I n f a c t , a s f o l l o w s

f r o m ( 9 . 1 ) a n d ( 9 . 3 ) , t h e c r o s s s e c t i o n i s a l i n e a r

f u n c t i o n o f t h e p o l a r i z a t i o n v e c t o r p 0 . S i n c e Po i s a

p s e u d o v e c t o r a n d t h e c r o s s s e c t i o n i s a s c a l a r , p 0

c a n e n t e r i n t o t h e e x p r e s s i o n f o r t h e c r o s s s e c t i o n

o n l y i n a p r o d u c t w i t h s o m e p s e u d o v e c t o r c h a r a c t e r -

i z i n g t h e s c a t t e r e r . A n a n t i f e r r o m a g n e t i s n o t d e -

s c r i b e d b y a n y m a g n e t i c p s e u d o v e c t o r ( t h e s u b l a t t i c e s

g i v e o n l y t h e a x i s o f a n t i f e r r o m a g n e t i s m , b u t n o t i t s

d i r e c t i o n ) s o t h a t i n t h e c r o s s s e c t i o n t h e r e i s a l s o n o

t e r m c o n t a i n i n g t h e p o l a r i z a t i o n v e c t o r .

O n t h e o t h e r h a n d , a f e r r o m a g n e t i s c h a r a c t e r i z e d

b y a p s e u d o v e c t o r — t h e d i r e c t i o n o f t h e s p o n t a n e o u s

m a g n e t i c m o m e n t . F o r t h i s r e a s o n i n t h e s c a t t e r i n g

c r o s s s e c t i o n o b t a i n e d f r o m ( 9 . 1 3 ) t h e r e a r e t e r m s

d e p e n d i n g o n t h e p o l a r i z a t i o n . T h e s e t e r m s c h a n g e

t h e i n t e n s i t y o f t h e B r a g g p e a k s b e c a u s e o f i n t e r f e r -

e n c e b e t w e e n n u c l e a r a n d m a g n e t i c s c a t t e r i n g , a n d

a l s o c h a n g e t h e i n t e n s i t y o f i n e l a s t i c m a g n e t i c s c a t t e r -

i n g .

1 0 . C h a n g e i n P o l a r i z a t i o n o n S c a t t e r i n g i n F e r r o -

a n d A n t i f e r r o m a g n e t s

I n s c a t t e r i n g of p o l a r i z e d n e u t r o n s i n m a g n e t i c

m a t e r i a l s , m o s t of t h e i n f o r m a t i o n a b o u t t h e p r o p e r -

t i e s o f t h e m a g n e t i c s y s t e m c a n b e o b t a i n e d b y s t u d y -

i n g n o t t h e s c a t t e r i n g c r o s s s e c t i o n , b u t t h e c h a n g e i n

t h e p o l a r i z a t i o n v e c t o r o f t h e n e u t r o n s s c a t t e r e d i n a

g i v e n d i r e c t i o n . T h e p o l a r i z a t i o n v e c t o r o f t h e n e u -

t r o n s a f t e r t h e s c a t t e r i n g i s g i v e n b y t h e f o r m u l a
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P = (10.1)

by means of which we can easily calculate the polari-
zation vector of the neutrons scattered in a given di-
rection as a result of different processes: nuclear
and magnetic, elastic and inelastic. Let us consider
the scattering for two cases.

1. Ferromagnet. In purely nuclear scattering the
polarization vector obviously can not change its direc-
tion, but as a result of the scattering one can get a
partial depolarization of the beam. Calculations using

f o r m u l a (10.1) l e a d t o t h e f o l l o w i n g e x p r e s s i o n f o r t h e

p o l a r i z a t i o n v e c t o r of t h e n e u t r o n s s c a t t e r e d i n c o -

h e r e n t l y a n d e l a s t i c a l l y :

ι
κ ζ / 11 _ι_ ι \

( 1 0 . 2 )

"incoh — —
— ВЧ (I + l)

Ρο·

The polar izat ion vector of neutrons which suffer a
s c a t t e r i n g without change in the magnetic s ta te of the
s c a t t e r e r (without absorpt ion o r emiss ion of spin
waves) i s [-44]

Pnm:
ЬМ2Ро1 - WA

(Τ) \ M 2 -
( 1 0 . 3 )

royAF (q) S (T) (Mp0)

T h e p o l a r i z a t i o n v e c t o r P m ( p m ) d u e t o s c a t t e r i n g

w i t h e m i s s i o n ( a b s o r p t i o n ) o f o n e s p i n w a v e o r , m o r e

p r e c i s e l y , p r o c e s s e s o f s c a t t e r i n g i n w h i c h t h e n u m -

b e r o f s p i n w a v e s i n c r e a s e s ( d e c r e a s e s ) b y u n i t y , h a s

t h e f o r m [ 4 4 ]

± 2 (em) e+2MX (M *р0) + Жу (Муро) - (Μ J + Μ *) Ρ ο

Vm — :f 2(em)(ep0)
(10.4)

It i s easy to s e e that this express ion i s independent of
rotat ion of the coordinate axes about the vector m,

i .e . , it i s independent of the choice of the χ and у
axes .

The average polar izat ion vector of neutrons s c a t -
t e r e d in a given direct ion η i s obviously

_ Pihcoh^mcoh ( n ) + Упт<Упт (",
σ ι η ο οΗ(η) + σ η η ι ( η ,

n, p0)
+(n, n, p0) (10.5)

H e r e c r incoh( n ) i s the c r o s s sect ion for incoherent
nuc lear sca t te r ing

<Упт(п, ро) =
г f2 (q) S 2 (T) • i iW2 _ royF (q) S (T) A (Mp0)

where σ η ( η ) is the cross section for nuclear scatter-
ing of unpolarized neutrons and σ ^ ( η ) is the cross
section for magnetic scattering of unpolarized neu-
trons with increase or decrease in the number of
spin waves by one.

It is interesting to note the following fact: When
° lncoh( n ) = 0- which occurs for a lattice consisting
of atoms of a single isotope not having a spin, the
polarization vector of the neutrons scattered in a
given direction is expressed as a linear combination
of the three, in general non-coplanar, vectors p n m ,

and These vectors are given by equations
(10.3) a n d ( 1 0 . 4 ) . F r o m t h e s e e q u a t i o n s o n e c a n s e e

t h a t w e c a n c a l c u l a t e t h e m b e f o r e h a n d if w e k n o w t h e

n u c l e a r s c a t t e r i n g a m p l i t u d e a n d a l s o F ( q ) , S ( T ) ,

e a n d po- T h u s , b y m e a s u r i n g t h e p o l a r i z a t i o n v e c t o r

ρ of neutrons scattered in direction n, and also the
total cross section in that direction

σ ( η , Po) = (10.8)

we obviously can d e t e r m i n e separa te ly c r n m ( n , p 0 ) ,
a m ( n , p 0 ) , and consequently σ η ( η ) and a m ( n ) .
CTm*n' P°^ a n c * σ ϊ η ' η > Ρο)' a n ^ consequently σ η ( η )
and

ση(η). (10.6.)

E x p r e s s i o n s ( 1 0 / 3 ) — ( 1 0 . 5 ) a l l o w u s t o t r e a t t h e

c a s e o f s c a t t e r i n g of u n p o l a r i z e d n e u t r o n s i n a f e r r o -

m a g n e t ( M a l e e v ' - 4 ^ ) . S e t t i n g p 0 = 0 , w e g e t

royAF (q) S (Τ) Μ

P«'» = = T - T ^ 3 3 л5 ϊ ,. (10-9)

(10.10)

(10.11)
_ Ρ π η ι σ η η ι ( η .

f2 (q) & (Τ) ~ [ l - (

± = ± 2 ( e - m ) e

m ( n ) - C

ρ ± = 4-rra —

T h u s f r o m t h e l a s t r e l a t i o n s i t f o l l o w s t h a t i n i t i a l l y

u n p o l a r i z e d n e u t r o n s , w h e n s c a t t e r e d i n a f e r r o m a g -

n e t i n d i r e c t i o n n , b e c o m e p o l a r i z e d , a n d t h e p o l a r i -

z a t i o n v e c t o r (10.13) c o n s i s t s of two c o m p o n e n t s .

O n e of t h e s e ( P n m ) i s d u e t o i n t e r f e r e n c e of t h e

n u c l e a r a n d t h e e l a s t i c m a g n e t i c s c a t t e r i n g : t h e c o r -

r e s p o n d i n g p o l a r i z a t i o n i s d i r e c t e d a l o n g t h e v e c t o r

M = m - ( e - m ) e . T h e o t h e r c o m p o n e n t , w h i c h a p -

p e a r s b e c a u s e of i n e l a s t i c m a g n e t i c s c a t t e r i n g i s

d i r e c t e d a l o n g t h e v e c t o r e . T h e c o m p o n e n t s a r e

p e r p e n d i c u l a r t o o n e a n o t h e r s o t h a t t h e y a r e e a s i l y

s e p a r a t e d . T h u s , m a g n e t i z i n g a c r y s t a l p e r p e n d i c u l a r

t o t h e s c a t t e r i n g v e c t o r e , w e s e p a r a t e o u t t h e p a r t

of t h e p o l a r i z a t i o n d u e t o i n t e r f e r e n c e of n u c l e a r a n d
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magnetic scattering. Magnetizing the crystal along
the vector e, we get the p a r t of the vector ρ due to

inelast ic magnetic s c a t t e r i n g . This p e r m i t s us to

s e p a r a t e the inelast ic magnetic sca t te r ing from the

e l a s t i c .

2. Anti ferromagnet . In the s c a t t e r i n g of unpolar-

ized neutrons by an ant i ferromagnet, polar izat ion

obviously cannot occur . This i s re la ted again to the

fact that an ant i ferromagnet is not c h a r a c t e r i z e d by

any pseudovector along which the polar izat ion of the

s c a t t e r e d neutrons could be d i r e c t e d . Never the les s ,

in the s c a t t e r i n g of polar ized neutrons by an anti fer-

romagnet one can have a rotat ion of the polar izat ion

v e c t o r . J u s t as in the c a s e of a fe r romagnet , we shal l

wr i te the polar izat ion vector of the neutrons s c a t t e r e d

in a given direct ion as the r e s u l t of var ious s c a t t e r -

ing p r o c e s s e s .

F o r incoherent nuc lear s c a t t e r i n g , the polar izat ion

is proport ional to the polar izat ion of the incident

beam

Pincoh= (10.12)

where the coefficient a s l has a quite complicated

form and can be calculated individually for each

specific c a s e .

F o r coherent nuc lear s c a t t e r i n g the polar izat ion

does not change. The polar izat ion vector due to

s c a t t e r i n g without change in the magnetic s ta te of the

s c a t t e r e r (elastic magnetic scat ter ing) has the form
[44]

_ 2(MPo)M
PmO др Po. (10.13)

w h e r e Μ = m — ( β - m ) e, and m is the d i rect ion of

the magnetization vector of e i ther sublat t ice . This

formula d e s c r i b e s in p a r t i c u l a r the polar izat ion of

neutrons s c a t t e r e d in the d i rec t ions of the t h r e e

Bragg peaks due to magnetic s c a t t e r i n g which do not

coincide with the nuc lear Bragg peaks, s ince in these

direct ions we can neglect all s c a t t e r i n g p r o c e s s e s

except for the magnetic e las t ic s c a t t e r i n g . It is not

difficult to s e e that in absolute value the vector p m o

is equal to po· Breaking up the vector ртй into two

components, para l le l and perpendicular to the vector

M, and subst i tut ing this expansion in (10.13), one can

verify that the vector p m 0 is obtained from the vec-

t o r Po by a rotat ion through 180° around the direct ion

of m .

Thus, if Po is para l le l to M, then a s a r e s u l t of

magnetic reflection the polar izat ion is unchanged, and

this r e s u l t is obviously valid for any Bragg peak. If,

however, p 0 i s perpendicular to M, then for magnetic

Bragg peaks which do not coincide with nuc lear peaks,

the polar izat ion is equal to

Ifn —CTm
On + σ π ιP = -Po, (10.14)

w h e r e σ η a n d a m a r e t h e c r o s s s e c t i o n s f o r n u c l e a r

a n d m a g n e t i c s c a t t e r i n g i n t o t h e d i r e c t i o n of t h e

B r a g g p e a k .

Now w e w r i t e t h e p o l a r i z a t i o n v e c t o r f o r i n e l a s t i c

m a g n e t i c s c a t t e r i n g '-4 4 ]

Pml —
)

Ρο·
(10.15)

T h i s e x p r e s s i o n c a n b e r e w r i t t e n in i n v a r i a n t f o r m

where poj_ and ej_ a r e the components of the v e c t o r s

Po and e perpendicular to the vector m. Thus, for

example, ρχ = ρ - ( ρ · m ) m.

Now using (10.12), (10.13) and (10.15), we can

wr i te the average polar izat ion of the neutrons s c a t -

t e r e d in a given direct ion in the form

van (n) po + crmo (n) Pmo+Omi (n) proi
n) + Ото ( η ) + a m l (η)

(10.17)

Here σ η ( η ) is the c r o s s sect ion for n u c l e a r s c a t -

t e r i n g in the direct ion n, a m o ( n ) is the c r o s s s e c -

tion for magnetic s c a t t e r i n g in which the number of

spin waves does not change, and finally ami ( n ) is

the c r o s s section for sca t ter ing in which the total number

of spin waves changes by unity. Obviously formula

(10.17) allows one to d e t e r m i n e α, σ η ^ η ) and

a m ] ( n ) , if one knows the polar izat ion ρ and the total

c r o s s sect ion for s c a t t e r i n g in the given d i rect ion:

σ (η) = ση (η) + am0 (η) + ami (η).

We note that in s i m i l a r fashion one can t r e a t the

effects of polar izat ion in s c a t t e r i n g of neutrons in

c r y s t a l s with m o r e complex magnet ic s t r u c t u r e , such

a s f e r r i - and ant i fe r romagnets , weak f e r r o m a g n e t s

with non-col l inear sublat t ices, e t c .

P a r t i c u l a r l y in teres t ing effects as soc ia ted with

polar izat ion of the neutrons should appear in c r y s t a l s

with helicoidal magnetic structure. '- 4 7 · 4 8 -'
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