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1. INTRODUCTION

A HE transition of a system from a non-equilibrium
to equilibrium state—relaxation—is accompanied by
a change in the entropy. The entropy usually increa-
ses. This circumstance connects naturally the two
problems indicated in the title of the present review.

The question of motivating the principle of en-
tropy increase has a rather long history. One can
refer, for example, to the detailed review of ter
H a a r ^ . However, several original papers devoted
to the theory of relaxation processes appeared after
the publication of this review. We present a more or
less detailed analysis of these papers later. Here we
note merely that equations describing irreversible
relaxation processes are derived in these papers
from dynamic equations. These include the papers of
Van Hove^"4-', the series of papers by Prigogine and
his co-workers'-5'^ (see also the collection of papers
^ ) , as well as a paper by Bogolyubov^-1, which is
earlier but not indicated in'-1-', and several other
papers (see below).

An analysis of the premises that have formed the
basis of the derivation of the equations that describe
relaxation enables us to establish the limits of applica-
bility of the principle of entropy increase. This is
indeed one of the purposes of the present review.
Another purpose is to describe several specific ap-
plications of the quantum theory of relaxation proc-
esses.

In many parts of the review we deal with a closed
system. We assume that such an idealization is al-
ways possible, in other words, that we can always
choose a system so large that the influence of the

remaining part of the universe can be neglected in
the analysis of the given processes.

For a closed system one can introduce a quantity
, r , ( N ) , _(N) , . , _(N) .• i U

a = -k J f lnf d r [where f is the distri-
bution function of all the coordinates and momenta of
the N particles that make up the system and d т is a
volume element of phase space]. The quantity a
might naturally be regarded as the total entropy of
the system, but it is easy to show, by using the
Liouville theorem, that a is independent of the time.
An analogous situation obtains in quantum theory.
This raises the question of how to define entropy
(that is, how to define entropy such that it can in-
crease). In the paper by P. and T. Ehrenfest^ and
in many other papers (see&•1(^) the point of view as-
sumed is that whereas the fine-grained entropy is
conserved, the coarse-grained entropy increases.
We cannot agree with such a point of view and we
shall discuss this question below (Sec. 6). (The defi-
nition of entropy given in Sec. 2 pertains to the
coarse-grained density matrix.) We point out here
that we are defining the entropy everywhere in the
sense of Gibbs, that is, we refer to an ensemble and
not to an individual state*. This means that a mono-
tonic increase of such an entropy does not contradict
the possibility of fluctuations, since the very concept
of entropy in the sense of Gibbs has a probabilistic
meaning. Section 2 contains in addition to a defini-
tion of the entropy some general laws governing the
behavior of a closed system. It turns out, however,

*On the other hand, the Boltzmann definition pertains to an in-
dividual member of the ensemble, so that the Boltzmann entropy is
a random quantity.
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that these genera l laws a r e insufficient for an inves-
tigation of the region of applicability of the pr incip le
of entropy i n c r e a s e . It is n e c e s s a r y to analyze the
solutions of the dynamic equations (the Neumann
equation for the density matr ix , the Liouville equa-
tion) in one approximation o r another . Such solutions
(or approximate equations) were indeed obtained for
s y s t e m s with infinitely many degrees of freedom in
the previously cited papers^"*^ and e l sewhere . In
Sees. 3—5 we analyze the assumptions and the con-
ditions for the derivation of i r r e v e r s i b l e equations
that d e s c r i b e the behavior of the corresponding s t a -
t i s t ica l e n s e m b l e s .

In Sec. 6 the l imits of applicability of the p r i n c i -
ple of entropy i n c r e a s e a r e obtained on the bas i s of
this analys i s . If the s ta t i s t ica l ensemble under con-
s idera t ion is in a non-equil ibrium state at a given
instant of t ime to, then, by using the equations of
Sees . 3—5, we a r e in a position to indicate, gen-
era l ly speaking, the further behavior of the e n s e m -
ble. However, the entropy i n c r e a s e s in this c a s e only
for definite c l a s s e s of initial condit ions. At the m a -
croscopic level of information concerning the s ta te of
the sys tem we can, in genera l , make only some a
p r i o r i s ta t i s t ica l predict ions concerning the initial
s t a t e . In Sec. 6 we cons ider p r e c i s e l y the s ta t i s t ica l
assumptions and initial conditions that give r i s e to an
i n c r e a s e in the entropy.

In Sec. 7 we give a general izat ion of the balance
equation of the e n t i r e sys tem to include the case
when one p a r t of the sys tem has a d i s c r e t e s p e c -
t rum and another p a r t has a continuous s p e c t r u m .
We call the f o r m e r p a r t of the sys tem the dynamic
subsys tem and the l a t t e r the diss ipat ive one. The
introduced equation d e s c r i b e s the behavior of a s y s -
tem consist ing of these subsys tems, which interact
with each other, in the p r e s e n c e of an external field
acting on the dynamic subsys tem. In Sees. 8—11 this
equation is used to investigate s e v e r a l p r o c e s s e s
(under the assumption that the t ime var iat ion of the
s tate of the diss ipative sys tem can be neglected). In
the Appendix we give s o m e information concerning
the descr ipt ion of quantum s y s t e m s with the aid of
the density m a t r i x .

2. ENTROPY AND INFORMATION. GENERAL
THEOREMS

In thermodynamics the entropy of an equil ibrium
sys tem is usually defined with the aid of the equation

of entropy with the aid of the Boltzmann pr inc ip le*

AS = AQ

where AS is the increment in the entropy of a s y s -
tem that has a t e m p e r a t u r e T and rece ives an
amount of heat A Q . The thermodynamic definition
of entropy can be re la ted to the s ta t i s t ica l definition

(1)

where к is Boltzmann's constant and ДГ is the t h e r -
modynamic probability o r the s ta t i s t ica l weight of
the macroscopic s ta te of the s y s t e m * 2 ' 8 ^ . We shal l
be henceforth in teres ted in the behavior of non-
equil ibrium s y s t e m s , to which the foregoing r e l a -
tions cannot be applied d i rect ly . It is therefore
n e c e s s a r y to give a m o r e genera l definition of the
entropy, valid for al l s y s t e m s . Such a genera l defi-
nition of entropy is used, in p a r t i c u l a r , in informa-
tion theory M .

Let a probabil i ty distr ibution c h a r a c t e r i z i n g a
c e r t a i n s ta t i s t ica l ensemble t be given. The entropy
of the ensemble c h a r a c t e r i z e s the s ta t i s t ica l s p r e a d
o r the randomness of the probability distr ibution in
the ensemble . By definition, the entropy sat is f ies
the following r e q u i r e m e n t s : It is a functional of the
probabil i ty distr ibution function and has a maximum
value in the m o s t " r a n d o m " ensemble, in which all
the s t a t e s ( m e m b e r s of the ensemble) a r e encoun-
t e r e d with equal probabil i ty. The entropy has a
minimum value (equal to zero) when the s y s t e m is
with certa inty in the specified s t a t e . Finally, the
entropy should have an additivity proper ty wherein
the entropy of a s y s t e m consist ing of two s ta t i s t ica l ly
independent subsys tems is equal to the sum of the
entropies of each of the s u b s y s t e m s . All these r e -
qui rements a r e satisfied (apart f rom a constant fac-
tor) by the quantity

; = — S Pi hi P t , d')

w h e r e p i i s t h e p r o b a b i l i t y w i t h w h i c h t h e i - t h t e r m
of t h e s t a t i s t i c a l e n s e m b l e i s r e p r e s e n t e d ( 2 j Pi
= 1). T h e i n d e x i d e n o t e s t h e a g g r e g a t e s of i n d i c e s
c h a r a c t e r i z i n g a g i v e n s t a t e . T h e i n d i c e s i, in p a r -
t i c u l a r , c a n v a r y c o n t i n u o u s l y . In t h i s c a s e i t i s
n e c e s s a r y t o c h a n g e o v e r f r o m s u m m a t i o n t o i n t e -
g r a t i o n . In t h e r m o d y n a m i c s a n d in s t a t i s t i c a l p h y -
s i c s o n e u s e s a l s o t h e d i m e n s i o n a l e n t r o p y

S = k%= - f c S P i l n P i - (1" )

T h i s f o r m u l a l e a d s t o t h e B o l t z m a n n p r i n c i p l e (1) f o r
equil ibrium dis t r ibut ions . In a microcanonical e n -
semble all ДГ s ta tes in the energy interval AE a r e
equally probable and the entropy (1") is

*As is well knownt82], Boltzmann himself did not write down
such a formula. The term " t h e Boltzmann principle" was intro-
duced by Einstein, who also used the inverted form of the Boltz-
mann principle ДГ = exp(S/k) for investigations of fluctuations.

tSee the Appendix.
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F o r a canonical ensemble, the s ta t i s t ica l weight ДГ
can be defined as ^

w h e r e p ( E ) i s t h e p r o b a b i l i t y d i s t r i b u t i o n i n t h e

c a n o n i c a l e n s e m b l e . U s i n g ( 1 " ) w e g e t

S = - k ' % p ( E ) ] n p ( E ) = -
E

T h e l a s t e q u a t i o n f o l l o w s f r o m t h e f a c t t h a t i n a

c a n o n i c a l d i s t r i b u t i o n I n p ( E ) d e p e n d s l i n e a r l y o n

t h e e n e r g y E .

A l o n g w i t h t h e e n t r o p y w e c a n i n t r o d u c e a q u a n -

t i t y c h a r a c t e r i z i n g t h e " o r d e r l i n e s s " o f t h e g i v e n

p r o b a b i l i t y d i s t r i b u t i o n . T h i s q u a n t i t y i s c a l l e d i n -

f o r m a t i o n a n d i s e q u a l ^ O

(2)

Let this sys tem be in a quantum s ta te (generally

speaking, mixed) descr ibed by a density m a t r i x p .

Let us cons ider the connection between the entropy

o r information and the density m a t r i x of the s y s t e m .

This question, general ly speaking, has no unambig-

uous solution. The point is that specification of a

quantum state, descr ibed by a density m a t r i x p, does

not m e a n as yet specification of a definite s ta t i s t ica l

ensemble t . In o r d e r to specify the ensemble it is

n e c e s s a r y to spell out the m e a s u r e m e n t s that have

to be made on the sys tem which is in the s ta te p .

A s s u m e that we per form on the s y s t e m m e a s u r e -

ments of a quantity descr ibed by an o p e r a t o r A , the

eigenvalues of which a r e numbered by an index n.

Then the probability dis tr ibution in such an e n s e m -

ble is specified by the diagonal e lement of the den-

sity m a t r i x p^n , a n d t n e entropy of the ensemble is t

(3)

(The m a t r i x e lements p a r e taken h e r e in a r e p r e -
sentation in which the o p e r a t o r A is diagonal.) M e a -
s u r e m e n t s of another quantity B, which does not
commute with A , lead to a different ensemble with
an accordingly different value of the entropy

B) | „(B) , tg inl\

*We shall henceforth use Wiener's definition of information.
This measure of information differs from that introduced by Shannon.
(For more details see ["]).

tThe quantum state, the density matrix, and similar problems
are discussed in the Appendix.

tOf course, the density matrix is characterized not only by the
indices n but also by other indices. Obviously, it is necessary to
sum over these indices, too, that is,

where the m a t r i x e lements p a r e taken in a r e p r e -
sentat ion in which the o p e r a t o r fi is diagonal. Among
all the ensembles corresponding to the given s ta te
t h e r e a r e s o m e special ones, a r i s ing in the c o u r s e
of m e a s u r e m e n t s of a se t of quantit ies L, M, N, . . .
and c h a r a c t e r i z e d by'the fact that in the r e p r e s e n t a -
tion diagonal in these quantit ies the density m a t r i x
is a l so diagonal. We call such ensembles " c o m -
p l e t e , " and call the corresponding m e a s u r e m e n t s
complete . The entropy of a complete ensemble is

Ш=—2бн'п6и=—Spolno, (4)
i

and the la s t equation (where Sp s tands for the o p e r a -
tion of summing the diagonal e lements) enables us to
d e t e r m i n e the entropy of a complete ensemble if the
density m a t r i x is specified in an a r b i t r a r y r e p r e -
sentat ion. Equation (4) enables us to c h a r a c t e r i z e
the quantum s ta tes descr ibed by the density m a t r i x
p, defined by entropy or information

It must be borne in mind, however, that this entropy
(information) does not c h a r a c t e r i z e all the e n s e m -
bles that a r i s e during the m e a s u r e m e n t s in a given
state , but only the complete ensemble . The following
s t a t e m e n t can be made. The information defined by
(5) is the maximum information posses sed by the
s ta te p . In other words, the information Im
= Sp p In p is l a r g e r than the information of any
ensemble that is real ized in the c a s e of an i n c o m -
plete m e a s u r e m e n t

J > /^ or I в-

This s ta tement follows from the fact that

where the equality holds if the nondiagonal e lements
P n m = 0- F o r m u l a (6) is an express ion of the s o -
called Klein lemma'-1 3-. The proof of this l e m m a
follows from the p r o p e r t i e s of the unitary t r a n s f o r -
mation relat ing the m a t r i x e lements p n n with the
m a t r i x e lement p in the a r b i t r a r y representa t ion.
Elsasser- 1 4 ^ has called the quantity

the mixture index. This designation der ives from the
fact that this quantity allows us to determine whether
the sys tem is in a pure o r in a mixed s ta te . In fact,
in the pure s tate and in a representa t ion in which the
density matr ix is diagonal, the density m a t r i x has,
as can be readi ly visualized, only one non-zero m a -
t r ix element, equal to unity. Therefore in the pure
s ta te we have

2
n,;

In any mixed s ta te I m < 0. We shall henceforth call
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the quantity I m (or respectively | m ) the information
of the state, to distinguish it from the information I
(the entropy g) characterizing the ensemble. The
index m denotes that I m is the maximum informa-
tion (which is realized in a complete measurement)*.

We now proceed to investigate the evolution of
closed systems, and consider in the present section
only exact consequences of quantum theory.

From the invariance of the trace under unitary
transformations (and the evolution of the density ma-
trix in time can be regarded as a unitary transfor-
mation) it follows that the entropy of the state (the
information of the state) of a closed dynamic system
does not depend on the time

I m— —S m = const.

This means that the state of the system varies in
such a way, that the information (or entropy) does
not change in an ensemble arising during complete
measurements. Thus, if the entire system is ini-
tially in a pure state, it continues to remain in this
state during all the t ime.t

Assume that a complete measurement of the sys-
tem is made at some instant of time t 0 , and let the
distribution of the probabilities be a diagonalized
density matrix

Qmn Co) = Qnn Co) 5 _ .

The entropy of this ensemble is

8 Co) = ~ 2 Qnn Co) l n Qn» Co) = - S P Q Co)In Q Co)-
n

Assume that at an instant of time t > t0 a measure-
ment is made of the same quantities as at the in-
stant t 0 , that is, we are considering the evolution of
the ensemble in time. This ensemble (which initially
was complete) is now, generally speaking, not com-
plete, since a complete measurement realizes at
each instant of time a different ensemble, corres-
ponding to a different set of quantities % . At the in-
stant t the entropy of the initially chosen ensemble
(which was complete at the instant t0) has a value

*It must be emphasized that we are dealing here with the maxi-
mum of information (or with the minimum of entropy) with respect
to other ensembles, produced by measurements in a given state at
a definite instant of time. The question of the time variation of the
entropy will be considered later.

tWe assume throughout, as is customary, that we have an ag-
gregate of identical systems, and that if a measurement is made at
some instant of time on some representatives of the ensemble, then
these are subsequently disregarded, since the measurement has
changed them into a different state.

t A complete ensemble arises in the measurement of a set of
quantities С, 1Й, ft such that in the representation diagonal
in these quantities the density matrix i s diagonal. This property
of the quantities С, Й, ft, . . . (and of the ensemble of measure-
ments of these quantities) is not, generally speaking, conserved
in time. At the instant t > t,, the density matrix p i s no longer
diagonal in the С, Й, ft, . . . representation.

w h e r e t h e i n e q u a l i t y s i g n f o l l o w s f r o m K l e i n ' s

l e m m a , s i n c e t h e m a t r i x p n m i s g e n e r a l l y s p e a k i n g

d i a g o n a l a t t h e i n s t a n t t . Of c o u r s e , i n e q u a l i t y (7)

i s n o t t h e e x p r e s s i o n f o r t h e e n t r o p y i n c r e a s e in i t s

o r d i n a r y t h e r m o d y n a m i c f o r m u l a t i o n , s i n c e i t d o e s

not follow from (7) that Щ^) = -Z n Pnn(4) lnp n n ( t , )
must be larger than g (t0) at an instant t t > t. It can
only be stated that g(t t) 2 g(t0). The instant t0 is
special because the density matrix is diagonal at
that instant. We shall see below (Sec. 6) that in gen-
eral we cannot prove that the entropy increases
monotonically. The question of when the entropy
actually increases can be solved in investigations of
specific solutions of the equations of a closed dy-
namic system (see below).

We note that everything stated above can be
readily translated into classical language. The role
of the complete ensemble is assumed by the ensem-
ble of measurements of all the coordinates and mo-
menta of the system. This ensemble is character-
ized by a probability distribution W(XJ , Pi). The
entropy of this ensemble, as can be readily shown
with the aid of the Liouville theorem, does not de-
pend on the time. On the other hand, the entropy of
any incomplete ensemble, for example the ensemble
characterized by a distribution of the momenta only
with arbitrary values of the coordinates, can depend
on the time. The increase of such an entropy can be
gauged by solving the equations of classical dy-
namics-for a closed system (Sec. 6).

We' now continue the general investigation of the
behavior of closed systems. We shall show (see
a l s o ^ ) that if <A(t)> is the mean value of some
quantity A at the instant of time t, then in a finite
closed dynamic system < A(t) > has a limit as t — «
only if <A(t)> does not depend on t. On the other
hand, in an infinite closed system, the energy levels
of which form a continuous spectrum, < A (t) > tends
to a limit as t —*- °° under sufficiently general as-
sumptions. The mean value of the quantity A at the
instant t is equal to

(8)= SV (Q(t)A),

w h e r e p o b e y s t h e N e u m a n n equat ion"- 1 ^

R e c o g n i z i n g t h a t t h e g e n e r a l s o l u t i o n of (9) c a n be

w r i t t e n i n t h e f o r m

w e o b t a i n t h e v a l u e of < A (t) > in t h e f o r m

(10)

w h e r e n a n d m a r e i n d i c e s t h a t n u m b e r t h e e n e r g y
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levels; u, u' are other quantum numbers; the quan-
tity g(k;), as can be readily verified, is defined by
the equation

- ш ) . (11)

If the system has a discrete spectrum of energies,
then g(w) is a discontinuous function and <A(t)> is
equal to a discrete sum of harmonic functions and
has no limit as t — °°. After a finite time the system
will come arbitrarily close to the initial state d'^.
In order for a limit to exist as t —- °° for an infinite
system with a continuous spectrum, it is sufficient
that the function g(w) have the form

where h(w) does not have any delta-like singularities
and is absolutely integrable in the interval [-°°, +°°].
Then we get on the basis of the Lebesque-Riemann
theorem

hm{A(t))= lim
l-t-co f->co

e-'«' da\ = G. (12)
J

Using further Eqs. (10) and (11) we find for the
asymptotic value <A(°°)>

2n, u, u'
Qnu;nu-(0)Anu-,nU. (13)

It must be emphasized that the proof given here is
based essentially on the assumption that g(w) does
not contain any delta functions when w * 0. As can
be seen from (11), this assumption pertains both to
the density matrix p and to the operator A of interest
to us. In principle we can visualize idealized situa-
tions when g(cii) contains delta functions when u> * 0.
Thus, if the matrix elements of A differ from zero
only when (E n -En)/R = w0, *

 t n e n . a s c a n b e readily
seen from (11),

g (со) = hfi (со - ш0) + Л26 (со + coo)

and consequently

has no limit as t —* °°.
We note that the deduced presence of a definite

limit for the average values as t —~ °° is not at all
connected with the averaging of the density matrix
over the coordinates and over the time of observa-
tion. This means that the system can have an i r r e -

*It might seem that matrix elements of the coordinate (or mo-
mentum) of a harmonic oscillator satisfy this condition. One must
not forget, however, that the Hamiltonian Й (by virtue of the as-
sumption that the spectrum of the system is continuous) differs
from the Hamiltonian of a harmonic oscillator, and consequently
the matrix elements of the coordinate of a harmonic oscillator do
not generally speaking satisfy the foregoing condition in a repre-
sentation in which H is diagonal.

versible behavior, one characteristic of which is the
presence of a limit < A(°°)>, even if we deal with a
so-called fine-grained density matrix. Frequently
a different point of view is assumed, according to
which the irreversible behavior is connected pre-
cisely with averaging and with the introduction of a
fine-grained density matrix^ 1 ' 9 ' 1^. We shall return
to this question later on when we discuss the prin-
ciple of entropy increase (Sec. 6).

3. QUANTUM BALANCE EQUATION IN Г SPACE

In this section and in the two that follow we
analyze the assumptions used to derive the kinetic
equations that describe the time variation of the
corresponding ensemble. We begin with the deriva-
tion of the equations in the Г space, that is, in the
complete phase space of the system. These equa-
tions, under certain assumptions which will be made
more precise below, reduce to equations that des-
cribe transitions in accordance with a Markov-chain
scheme. We know that Markov chains play an im-
portant role in the analysis of many physical prob-
lems (see, for example!-18^ and a l s o ^ , which contains
a detailed bibliography).

The notion that the processes occurring in a gas
can be regarded as processes that follow a Markov-
chain scheme was first used by the Ehrenfests.
Leontovich^ has shown that the actual subject
matter of kinetic theory can be developed with the
aid of a statistical scheme of Markov chains. Later
papers by K a c ^ are devoted to the same question.
A Markov process is described by a balance equation

d4? = У (WRaP& - Ш^РЛ, (14)

w h e r e Pa a r e t h e p r o b a b i l i t i e s of o b s e r v i n g t h e s y s -

t e m i n s t a t e s a, w h i l e W ^ i s t h e p r o b a b i l i t y p e r

u n i t t i m e of t h e t r a n s i t i o n f r o m a i n t o t h e s t a t e /3.

E q u a t i o n (14) i s f r e q u e n t l y c a l l e d ( in t h e f o r e i g n

literature) the master equation. It was first intro-
duced in Г space by P a u l i ^ . However, he used in
the derivation the assumption that molecular chaos
sets in every sufficiently small time interval At.
The balance equation was derived under analogous
assumptions by Landau^and Bloch'^4-' for a small
part of a large closed system* (see also the paper by
Vonsovskii^, who considered the question of the
requirements that must be satisfied by a quantum-
mechanical ensemble in order for the balance equa-
tion to hold). It is obvious that the derivation of the
balance equation in^2"24-' is not satisfactory, since
the assumption of molecular chaos, which must be
made at every instant of time, is a very strong sta-
tistical assumption which does not follow from the
dynamic SchrSdinger equation.

The derivation of the balance equations from the

*For details about these equations see Sec. 8.



P R I N C I P L E O F E N T R O P Y I N C R E A S E A N D Q U A N T U M T H E O R Y O F R E L A X A T I O N 299

Schrodinger equation for a definite c la s s of initial
conditions was f i r s t made by Van H o v e ^ ' 3 ' ^ . We
discuss now in g r e a t e r detai l the p r e m i s e s used to
base the derivat ionp' 3 ^ [we do not ci te the d e r i v a -
tion itself; in Sec. 7 we der ive an equation which in
a p a r t i c u l a r case goes over into (14)].

The balance equations (14) a r e derived in Van
Hove's p a p e r s for a quantum-mechanical sys tem
with an infinitely large number of degrees of f r e e -
dom. Such a sys tem is obtained as a r e s u l t of going
to the l imit from a sys tem having a finite number of
degrees of freedom (finite volume) and accordingly
a d i s c r e t e s p e c t r u m . If the number of degrees of
freedom N and the volume п tend to infinity (such
that N/ft r e m a i n s finite), the s p e c t r u m of the sys tem
becomes continuous. The Hamiltonian of the s y s t e m
can be wri t ten in the form

H = H0 + XV, (15)

where the resolution into an unperturbed Hamiltonian
Ho and an interact ion Hamiltonian AV is to a con-
s iderab le degree a r b i t r a r y and is determined by the
ensemble whose t ime behavior is of in teres t to us .
Let the density m a t r i x have in the r e p r e s e n t a t i o n in
which Ho is diagonal a form paa' (the indices a run
through a continuous s e r i e s of values) . Then P Q

= paa d e t e r m i n e s the probability distr ibution in the
ensemble of i n t e r e s t to us, and P Q obeys the balance
equation upon satisfaction of a s e r i e s of conditions,
which we shall now cons ider .

1) The matr ix e lements of the o p e r a t o r V, taken
with the aid of the eigenfunctions of the o p e r a t o r Hg,
satisfy the condition of diagonal s ingularity, which
cons i s t s in the fact that the diagonal e lements of the
m a t r i x < a I VAV | a' > (where A is a diagonal m a -
trix) is at leas t N t imes l a r g e r than the nondiagonal
e lement of the s a m e m a t r i x . This condition is s a t i s -
fied for all known energ ies of interact ions that lead
to diss ipat ion. An example for the c a s e of an e l e c -
tromagnet ic field interact ing with m a t t e r is given in
Sec. 7. The condition of diagonal s ingulari ty reduces
essent ia l ly to the fact that the t rans i t ion probability
p e r unit t ime differs from z e r o . It is easy to verify
that matr ix e lements VAj VA2 V . . . A n V and

AtVA2 . . . VAn (where Aj a re diagonal m a t r i c e s )
also have diagonal s ingularity.

2) The second condition concerns the smal lnes s
of the interact ion energy. In o r d e r to wr i te down
this condition, it is necessary to introduce a c o r r e -
lation t ime тс. This t ime is determined in the fol-
lowing m a n n e r (see also footnote on page 300):

T, = T V = ^ . (16)

where 6 0E is the energy difference (difference b e -
tween the eigenvalues of the unperturbed Hamilton-
ian Ho), which d e t e r m i n e s the c h a r a c t e r i s t i c energy
sca le of the m a t r i x e lements of the o p e r a t o r s , which

a r e functions of the interact ion energy V. This
means thati f f(E) is such a m a t r i x e lement, then when
AE < < 60E the function f(E) does not differ from
f(E + A E ) , and when AE > 6 0E there is an a p p r e c i -
able difference between f(E) and f(E + AE).

Let T o be the c h a r a c t e r i s t i c re laxat ion t ime, and
then the condition that the interaction energy be
s m a l l can be writ ten in the implicit form

If this condition is satisfied, we can wr i te T 0 =A Г
(where Г does not depend on A)*. Thus, the condi-
tion for the smal lnes s of the interact ion energy is
wr i t ten in the form

(17)

3) The th i rd condition per ta ins to the choice of
the init ial conditions. We shall c h a r a c t e r i z e the in i-
t ial s ta te of the density m a t r i x paa>(0). Such a d e s -
cript ion enables us to cons ider both pure and mixed
sta tes in a single m a n n e r . Let

be a unitary operator , descr ib ing the evolution of
the sys tem in t i m e . The solution of the Neumann
equation (9) can be writ ten in the form

Q(t) = UQ(0)U*.

It follows therefore that the quantity Pa of i n t e r e s t
to us, namely the probabil i ty of the s tate | a>, is
writ ten in the form

Pa = e««(0 = 2 2 Uaa.Qa-a. (0) Ut-a. (18)

The diagonal-singularity condition indicated above
leads to the diagonal s ingulari ty of UAU*, and the
l a t t e r means that P Q ( t ) can be broken up into two
p a r t s :

Л, (9 = 2 ffaa'Qa'a' (0) U*-a + 2 2 Uaa' Qa'o-(O) tfj-a, (19)
a ' а'фо."

t h e s i n g l e s u m h a v i n g t h e s a m e o r d e r o f m a g n i t u d e

i n N a s t h e d o u b l e s u m . I n ^ t h e f i r s t s u m o f ( 1 9 ) i s

i n v e s t i g a t e d i n a p p r o x i m a t i o n 2 ) . T h i s s u m i s e x p a n -

d e d i n p o w e r s o f A V a n d o n l y t h e t e r m s o f o r d e r

A 2 n t n a r e r e t a i n e d [ t h e r e m a i n i n g t e r m s a r e o f

o r d e r A 2 n + ^ t n a n d a r e a s s u m e d t o v a n i s h w h e n

к > 0 by virtue of the condition (17) ] . A r e s u l t
of such an investigation is the fact that the f irst
sum in (19)

a'

sat is f ies the balance equation (14). Thus, the equa-

*The fact that To has the form А"2Г follows from the balance
equation (14), in which 4laf3 are the probabilities per unit time,
calculated by perturbation theory; consequently, Via/3 ~ A2 and
т„ ~ w;'a ~ A"2.
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tion turns out to be applicable under such initial con-
ditions which cause the vanishing of the express ion

i-OTC/J-o. (21)
а'Фа."

T h i s e x p r e s s i o n v a n i s h e s , f i r s t , i f t h e s y s t e m h a s

b e e n i n i t i a l l y i n a m i x e d s t a t e w i t h d i a g o n a l d e n s i t y

m a t r i x

s e c o n d , i f t h e s y s t e m h a s b e e n i n i t i a l l y i n a s t a t e

with definite a, that is, ф{0) = | a), o r in a s ta te
which would be approximately s ta t ionary after a r e -
laxation t ime T o = ГЛ."2, provided the perturbat ion
XV were not effective. More accurately, if

ij)(U) = Jj Oa | a) , \££)
a

then the energy interval 6E charac te r iz ing this wave
packet should satisfy the inequality

(23)

Third, it can be shown that (21) tends to zero as
X — 0 (Л.21 finite) if the initial s ta te is the wave
packet (22) and if 6E sat is f ies the inequality*

We have thus proved the balance equation for two
c l a s s e s of pure initial conditions, r e p r e s e n t e d by
packets (23) o r (24), o r e l se for mixed initial s ta tes
with a diagonal density m a t r i x . I n ^ (see a l s o ^ ) it
is shown that if we do not a s s u m e X to be smal l , the
balance equation is i n c o r r e c t . We cannot, for e x a m -
ple, calculate the probabil i ty p e r unit t ime in h igher-
o r d e r approximations and use the s a m e balance
equation (14). An investigation c a r r i e d out i n ^ by
the resolvent method yields for the quantity (20) an
integro-differential equation that descr ibes a non-
Markov p r o c e s s . When X is smal l this equation
goes over into (14). Unlike (14), the equation of®
with finite X is valid only for initial conditions (23)
and for mixed initial s ta tes with diagonal density
m a t r i x .

The derivation of the Van Hove integro-dif feren-
tial equation, made i n ^ without assuming X smal l ,
is r a t h e r complicated. This equation is derived in
much s i m p l e r fashion in the paper by Z w a n z i g ^ .
We p r e s e n t this derivat ion. In o r d e r not to give a
s e p a r a t e derivation for the c las s ica l case, we wr i te
(9) in the form

(25)

(24) where

LQ-

^-P—31^--P-*) i n t h e c l a s s i c a l t h e o r y ,

= - £ • ( з й ? е — in quantum theory.

In t h e c l a s s i c a l c a s e (25) i s t h e L i o u v i l l e e q u a t i o n
a n d p d e n o t e s t h e d i s t r i b u t i o n f u n c t i o n of a l l t h e c o -
o r d i n a t e s q a a n d m o m e n t a p a of t h e s y s t e m . T h e
f o r m a l s o l u t i o n of (25) h a s t h e f o r m

Qaa' = ' + (1 — ба 0 ') Qaa'. (26')

In q u a n t u m t h e o r y t h i s e q u a t i o n i s e q u i v a l e n t t o

We s h a l l n o t d i s t i n g u i s h b e t w e e n t h e q u a n t u m a n d
c l a s s i c a l c a s e s f r o m now o n . We a r e u s u a l l y i n t e r -
e s t e d i n t h e t i m e b e h a v i o r of a d e f i n i t e e n s e m b l e ,
w h i c h i s c h a r a c t e r i z e d by a c e r t a i n " p r o j e c t i o n " of
t h e d e n s i t y m a t r i x ( o r d i s t r i b u t i o n f u n c t i o n ) . We
t h e r e f o r e w r i t e p in t h e f o r m

Q = PQ + (1-P)Q^Q1 + Qt, (26)

w h e r e p t i s t h e d e n s i t y m a t r i x p r o j e c t i o n of i n t e r e s t
t o u s . T h u s , f o r m u l a (18) s e p a r a t e s t h e d i a g o n a l
p a r t of t h e d e n s i t y m a t r i x , a n d i n t h i s c a s e (26) i s
w r i t t e n i n t h e f o r m

Another example of subdivision of (26) will be given

l a t e r on in the derivation of the c la s s ica l balance

equation. We a s s u m e henceforth that P is an o p e r a -

t o r that is l inear and independent of the t ime, so that

P and 3/91 commute. Equation (25) can in this case

be rewr i t ten in the form

(27a)

e * + ^ - (27b)

The formal solution of (27b) is wri t ten in the form

(28)

[it is possible to verify by d i r e c t substitution that
this solution satisf ies (27b)]. We then substitute
(28) in (27a) and obtain the sought equation

dt
*We note that in this case the characteristic correlation fre-

quency a>* coincides with SEA if SE < S0E (but if S0E < SE
then <u* = S0E/H).

PLQ,, -i[dsPLexp[-is(l-P)L](i-P) LQX (t - s).
о (29)
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This equation is a generalization of the Van Hove
equations and goes over into the latter after separa-
tion of the Hamiltonian given by formula (15), when
the operator P separates only the diagonal matrix
elements p in the representation of the unperturbed
Hamiltonian H o . The initial conditions indicated
above correspond to

PQ(0) = Q(0), e2(0) = 0.

In this case (29) does not contain p2 at all. The
choice of initial conditions and the irreversibility of
(29) [with p2 (0) = 0 ] will be discussed in greater de-
tail in Sec. 6 below. Equation (29) goes over into the
balance equation (14) as Л. -~ 0 (A.2 t finite). We do
not derive the balance equation now, but proceed to
d e r i v e ^ its classical analog.

4. DERIVATION OF CLASSICAL BALANCE EQUA-
TIONS IN Г SPACE

The classical balance equations in Г space were
derived in the paper by Brout and Prigogine^.
Different generalizations and applications of these
equations are the subject of several papers by
Prigogine and his co-workers®. The derivation of
the classical balance equation given i n ^ corres-
ponds fully to the Van Hove derivation^. We there-
fore do not stop to discuss the premises on which
this derivation is based. We merely note that a con-
dition of the type of diagonal singularity of the per-
turbation energy is used here, too. Now, however,
this condition is imposed not on the matrix elements
V, but on the corresponding Fourier components of
the perturbation energy. It is k n o w n ^ that the ma-
trix elements go over into the Fourier components
in the quasiclassical approximation.

We now proceed to d e r i v e ^ the classical bal-
ance equations. We consider a classical system of
N particles in a volume U. The Hamiltonian of such
a system has the form

where the j-th particle has a momentum pj, a co-
ordinate r j , and a mass m; U(r-jk) is the energy of
interaction between the j-th and k-th particles. The
corresponding Liouville operator has the form*

L = Lo

Зфи

w h e r e A . F j k = - X [ 9 U ( r j k ) / 3 r j ]

( 3 1 )

( 3 2 )

*We recall that in classical mechanics the Liouville operator
is defined by Eq. (25).

The Liouville equation (25) describes the evolu-
tion of the distribution function p(rj, pj, t) in time.
The balance equation which we derive pertains to the
distribution function of the momenta only ; then

p =

and

(33)

(34)

We assume that the distribution is homogeneous at
the initial instant of time, that is, p2 (0) = 0. It is
easy to show further ^

In this case (29) simplifies to

dt
-= — \ dsPLexp[ - i s ( 1 - P ) L ] Lq^t — i

b

We furthermore use the fact that

LQi = XL^i and PLf = IPLJ,

(35)

(36)

(37)

where the first equality follows from the fact that
L0Pi = 0 and the second follows from the fact that
the operator P annihilates any function Lof.

Using these equations, we obtain ultimately

-^-=X 2 | j dsk(s;X)Q1(t-s), (38)
b

where fc(s ; Л) is an operator in momentum space:

fe(s; X)= -PL X exp[- i s(1 - />)£] £j. (39)

Equation (38) is exact. This equation describes a
non-Markov process of approaching the equilibrium
state. It can be simplified in case of small A.. In
this case we introduce a new time scale

(40)

Equation (38) is written in the form
_ r/J.2

We assume further that the kernel к is finite in the
interval 0 < s < то :

k(s; X)^ if S > T C

Here т с is the characteristic correlation time; it
is, in particular, equal to the collision time (whereas
the relaxation time is of the order of the time be-
tween collisions; see also Sec. 3). We now go to the
limit as X —*• 0 for fixed т > 0. As a result we ob-
tain

(41!

which is an equation describing a Markov process.
Using (37) we find
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к (*; 0) = - ALj exp ( - isl0) Lv (42)

Equations (41) and (42) coincide with those derived
by Brout and Prigogine^.

5. KINETIC EQUATIONS IN M SPACE

So far we have dealt with equations in Г space.
For the case of sufficiently rarefied gases it be-
comes possible to write closed equations in ^ space,
that is, in the space of the individual particle. The
д space is characterized in general by the coordi-
nates x, y, and z and momenta Px. Py. Pz °f the in-
dividual particle. The first to write the kinetic equa-
tions in \x space was B o l t z m a n n ^ . These equations,
however, were not derived from dynamic equations,
inasmuch as the statistical assumption of molecular
chaos (Stosszahlansatz) was made for each instant
of time t .

From the balance equations we can obtain directly
the following equations for the occupation numbers
nk in ц space (see, for example, B 9 ' 3 ( ^ ) :

d(.nh вв,)>

(43)

where Ajj are constant coefficients characterizing
the transition probability per unit time, while the
angle brackets ( . . . ) denote averaging with the aid
of the probability distribution function
P(n t , n g , . . . , % , . . . , t) in Г space. Thus, for ex-
ample,

also devoted to the derivation of kinetic equations in
ц space directly on the basis of the Liouville equa-
tion or the Schrb'dinger equation for the density ma-
trix. Foremost among these is the work of Bogo-
lyubov^. Let us dwell briefly on the assumption
that serves as the basis for the derivation of the
kinetic equation in that paper.

From the Liouville equation (25), (30) we can
derive a hierarchy of equations for the s-particle
distribution functions

. («.*„ ...,*.)

t,xlt xt, .. .,xN)dxitldxttt ... dxN, (45)

where xi = qi, pi stands for the coordinates and
the momentum of the i-th particle and fi is the vol-
ume of the gas. When п and N tend to infinity in
such a way that v = fi/N remains finite, the system
of coupled equations for the functions F s has the
form (see also [ 3 2 > 3 3 ])

( 4 6 )

where H s is the Hamiltonian of the system of s par-
ticles, and the braces denote Poisson brackets. This
is an exact system of equations, equivalent to the
initial Liouville equation. To go over to the ordinary
kinetic equations [which are equations for the func-
tion F t (x4)], the following assumptions are made:

1. For a broad class of initial conditions for the
function p, F s depends on the time only through F j :
after a time that is large compared with the colli-
sion time (i.e., тс)

в = 0, 1, and - 1 , respectively, for particles obey-
ing classical, Bose-Einstein, and Fermi-Dirac sta-
tistics.

Equation (43) is essentially not in ц space and
differs from the Uehling-Uhlenbeck equation used in
kinetic theory of gases M in that the right half of
(43) contains the average of particle products
( nj nj ) , ( щ nj n^) , etc. in place of products of
averages. It is essentially necessary to make an
assumption which is equivalent to Stosszahlansatz:

j

(44)
in order to go over to the ordinary kinetic equations
used in theory of gases*.

The question of the derivation of the kinetic equa-
tions in p. space from the balance equations in Г
space was considered in^0 > 20 . Several papers are

•Equation (43) and the equation obtained from it under condi-
tion (44) describe the relaxation of a homogeneous gas in the
absence of external forces, that is, the right half of (43)—(44)
yields the collision integral.

2. The decrease in correlation is assumed to
have the form

?°(

T

S) F, (0, xl... xt)

— f[ ^ ( 0 , xJ]—>0 as T- со, s=2, 3 . . . ,

where s9_^i?' denotes an o p e r a t o r corresponding to
uniform s t ra ight- l ine motion of the sys tem of s m a -
t e r i a l p a r t i c l e s with momenta p s . This condition
expresses the fact that the particles were statisti-
cally independent prior to "turning on" the inter-
action. If т is made to approach - «> in the condi-
tion for the weakening correlation (which denotes
that Fs is expressed as a product of functions Fj as
t —' °°), then the collision integral in the kinetic
equation will have the opposite sign ^ and in this
case it will not describe the approach to the state of
equilibrium with increasing entropy.

Using the indicated assumptions and expanding in
powers of 1/v, we can obtain an equation for Fj in
closed form. We shall not dwell in greater detail
o n ^ and other papers devoted to the derivation of
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the kinetic equation from the Liouville equation. A
detai led review and a c r i t i ca l analysis of these p a -
p e r s can be found in the a r t i c l e s B5.3ff] ^ s e e a j s o

[7,30,37-33])_ yje p O m t o u t o n i y t n e paper by
Bogolyubov and Gurov^4^ , where a quantum gen-
era l iza t ion is made of Bogolyubov's paper (to a case
when the potential energy can be regarded as a smal l
per turbat ion) . The Bogolyubov method was used in
many pape r s (for a detailed bibliography see^O) to
der ive kinetic equations in different physical s i t u -
at ions .

6. PRINCIPLE OF ENTROPY INCREASE

In Sees . 3—5 we have considered the connection
between the kinetic equations that de termine the
t ime variat ion of the s ta t i s t ica l ensembles and the
dynamic equations that de termine the t ime variat ion
of the s ta te of the ent i re sys tem. Since such a con-
nection has been established, we can proceed to d i s -
cuss the s ta t i s t ica l justification of the entropy i n -
c r e a s e pr inciple .

We now presen t the cus tomary proof of the p r i n -
ciple of inc rease of entropy from the balance equa-
tion. According to formula (4), the entropy of an
ensemble , charac te r i zed by diagonal e lements of
the density ma t r ix p, is equal to

Differentiating this equation and using the balance
equations (14), we get

In P o 2 Pa P p - Wap Pa) In P a

(47)

In going over from the second equation to the third
we have used the fact that the sum £ } a P Q does not
depend on the t ime, and in going over to the las t
equation we used the proper ty of 'mic roscop ic r e -
vers ib i l i ty '

W& = Wpo, (48)

which follows from the fact that the pe r tu rba t ion-
energy opera tor V is Hermit ian. Let us interchange
the indices a and 0 in (47) (which of course , does
not change the sum) and add the resu l tan t express ion
to (47). Dividing by two, we obtain

(49)

It is easy to see that the express ion in the right half
of (49) is always positive, i. e., the entropy i n c r e a -
s e s , except for the case

cor responds to the s ta te of equil ibr ium. If we take
account of the fact that in the balance equation W a ^
denotes the probabil i ty of t ransi t ion between s ta tes
with identical energy, then the equil ibrium s ta te (50)
is descr ibed by a microcanonical distr ibution, in
which all s ta tes with given energy a r e encountered
with an identical probability

•l

Л Г ( £ )

(50')

(50)

when the right half of (49) vanishes . This case

where Д Г (E) is the number of s ta tes with a s p e c i -
fied energy. It is easy to see that the s ta te (50') has
the maximum entropy.

Thus, the balance equations lead to the pr inciple
of i n c r e a s e of energy, and the maximum value of the
entropy is rea l ized for a microcanonical ensemble .
We note that unl ike^ 2 ' 1 1 ^, the derivat ion presented
h e r e for the pr inciple of entropy i n c r e a s e does not
call for separat ing the density m a t r i x into f ine-
grained and c o a r s e - g r a i n e d components. On the
other hand, one cannot agree with the s ta tements
made in'- 1 0 '^ that the i n c r e a s e in the entropy of a
f ine-grained ensemble, which we have jus t proved,
is purely a quantum effect and is connected with the
m e a s u r e m e n t p r o c e s s . An analogous s ta tement is
made by Davydov'-42-'. Let us dwell on this question in
somewhat g r e a t e r detai l . The usual reasoning that
leads to the need for introducing a c o a r s e - g r a i n e d
density m a t r i x is as follows. The entropy, defined
with the aid of the density m a t r i x (or distr ibution
function, in the c la s s ica l case) of the ent i re sys tem
in the Г space, does not depend on the t ime (see
Sec. 2). It is concluded therefore that if we define
the entropy with the aid of a c o a r s e - g r a i n e d density
matr ix , such an entropy will i n c r e a s e . The c o a r s e -
grained density m a t r i x is introduced in the following
m a n n e r ^ 1 0 ' 0 . The s tat ionary s ta tes of the sys tem
a r e subdivided into groups such that the differences
between different groups, but not within the groups,
can be establ ished with the aid of access ib le m e a -
s u r e m e n t methods. Then the c o a r s e - g r a i n e d density
m a t r i x has in the chosen r e p r e s e n t a t i o n the form

P _ § у 211

i
where the summation is over all the Si-s tates of the
i-th group and the energy level E^ belongs to the
i-th group. The entropy is defined with the aid of
this density m a t r i x as

2 = - 2 Pkk In Phh = - 2 Quk In Рп-
k

Of course , the entropy so defined should no longer
r e m a i n constant, and it is usually concluded (without
proof) that 2 i n c r e a s e s . On the other hand, the f ine-
grained quantity

g = - 2 e ^ i n Q H (

should likewise not be constant and both quantit ies,
by v i r tue of the Klein lemma, should be l a r g e r than
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thus concludes that there are two reasons
for the increase in 2 . The first is in the difference
between the coarse- and fine-grained quantities P
and p; the second reason for the change in 2 is the
increase in I = - 2Pkk l n Pkk (this increase is
likewise not proved). The second cause of the change
in 2 is called by Tolman the quantum-mechanical
variation of the fine-grained probability and, accor-
ding to him, has no classical analog. We cannot
agree with such a point of view, and, as we have al-
ready seen, the principle of entropy increase and the
approaches to the state of equilibrium can be des-
cribed without resorting to the concept of the coarse-
grained density matrix.

The situation can be described in the following
fashion. The entropy of the state I m i n y space
does not depend on the time. In order to check this
statement experimentally, it is necessary to carry
out at each instant of time a complete measure-
ment on the system and to separate an ensemble
(which in general is different at each instant of time)
corresponding to this complete measurement. On
the other hand, if we are interested in the behavior
of the same ensemble, specified by the same meas-
urements, then the entropy of such an ensemble, as
has been shown above, increases monotonically.
This is true also for the same assumptions under
which the balance equation (14) has been derived.
We can say more generally the following: we are
usually interested not in the entire density matrix
p , which contains all the information concerning the
system, but in part of the density matrix, its projec-
tion pj = P p , for which we establish the corres-
ponding kinetic equation that leads in turn to the en-
tropy increase principle. Thus, in the case analyzed
the operator P separated the diagonal elements of
the density matrix of the entire system in terms of
the eigenfunctions of the unperturbed Hamiltonian

S(!u, and the corresponding ensemble was determined
by the same token. In Sec. 4 the operator P separ-
ated the classical ensemble corresponding to the
measurement of all the momenta of the system:

Qi(Pi,Pi---) = PQ(ri> r2, • . - . Л . Pt, •••)•

I n t h e c a s e o f g a s e s , t h e e n t r o p y i n c r e a s e p r i n c i p l e

c a n b e e s t a b l i s h e d f o r t h e e n s e m b l e c o r r e s p o n d i n g

to measurement in ц space, i. e., in the space of
momenta and velocities of one particle. In this case
the operator P projects p on the y. space. We thus
see that the situation is the same here for both the
classical and quantum cases, and what Tolman calls
the quantum-mechanical change in the fine-grained
probability is none other than the change in the en-
tropy of the corresponding ensemble, which does not
coincide with the complete ensemble and is charac-
terized by specification of the type of measure-

ments.* We can say also the following. We are usu-
ally interested not in the complete information I m ,
but only in the part of the information contained in
the density matrix P p . For this part we obtain the
law of decrease of information (entropy increase).
The information contained in Pp is transferred to
the remaining part (1 - P) p , so that the total in-
formation remains unchanged. Davydov^ has ac-
tually suggested that the change in entropy
Ш = - 2 о , Р а 1 п Р а is due to the repeated measure-
ments. As is obvious from the foregoing, the change
in S follows from the Schrbdinger equation, in which
the effect of the measurement is not taken into ac-
count.

The principle of entropy increase and the micro-
canonical distribution in the state of equilibrium
were derived above from the balance equation. The
latter was derived from the Schrodinger equation
with the aid of several assumptions. These assump-
tions concern, on the one hand, the properties of the
perturbation energy and are the necessary conditions
for the existence of a dissipative process. On the
other hand, these conditions are not sufficient, since
the satisfaction of a definite class of initial condi-
tions is required. It is precisely here that the sta-
tistical assumptions should be contained. Were it
possible to prove the balance equations (or the cor-
responding kinetic equations) for arbitrary initial
conditions, then we could prove by the same token
the entropy increase principle in a statistical formt
and the ergodic theorem. However, it is impossible
to obtain such a proof, as will be seen from the ex-
amples given below.

Let us turn now to discuss in somewhat greater
detail the initial conditions. As was noted in Sec. 3,
the balance equations can be derived if at the initial
instant the density matrix is diagonal in the indices
a which characterize the states of the unperturbed

*To single out a corresponding ensemble by the type of meas-
urement performed may seem somewhat artificial in the classical
case. However, the kinetic equation (both classical and quantum)
determines the time variation of the projection Pp of the complete
distribution function, and this projection always gives the proba-
bility distribution only for a definite class of measurements on the
system. On the other hand, the ensemble and accordingly the pro-
jection P p are determined in natural fashion by the class of physi-
cal quantities whose averages are of interest to us. Thus, for ex-
ample, the average values of physical quantities, which depend
only on the momenta pi of systems, are determined by the projec-
tion of the distribution function

ei (ri---P^) = PQ(ii---7N, Pi--- />.v).
Analogously, single-particle physical quantities (such as volume
or gas pressure) are determined by the distribution function in (i
space.

tlnasmuch as we are using the Gibbs definition of entropy (see
Sec. 2), a monotonic increase in this quantity does not contradict
the existence of fluctuations in the equilibrium ensembles and by
the same token the increase in the Boltzmann entropy (see, for ex-
ample, M ) .
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Hamiltonian J5?o- [In addition, the balance equation
can be der ived if in the initial instant the sys tem is
in a p u r e s ta te , satisfying condition (24).] If the d e n -
sity m a t r i x is diagonal at the initial instant (in the
chosen representat ion) then, without confining o u r -
se lves to s m a l l values of the p a r a m e t e r X, we can
show'^'3-' that as t — °° the s y s t e m is c h a r a c t e r i z e d
by a microcanonica l dis t r ibut ion. (However, for an
initial dis tr ibution corresponding to condition (24),
such a s t a t e m e n t has not been proved for finite A..)
The question a r i s e s whether the initial ensemble can
have a r e p r e s e n t a t i o n (at t = 0) with a diagonal d e n -
sity m a t r i x . Were it possible to prove such a r e p r e -
sentat ion at the initial instant (i. e., prove that such
an ensemble can be used to obtain c o r r e c t l y all the
mean values of the physical quantit ies), then we
could prove by the s a m e token the pr inciple of. e n -
tropy i n c r e a s e in its s ta t i s t ica l form. Let us ex-
amine the degree to which such an ensemble can be
r e g a r d e d as r e p r e s e n t a t i v e . In the macroscopic ex-
per iment , the initial s ta te is c h a r a c t e r i z e d by s p e c i -
fying a s e r i e s of averages

S P Q ( 0 ) ^ = 0!, S P Q ( 0 ) i 2 = <72, . . . . Spc(O) = l . (51)

The las t equality is the normal izat ion condition (the
average value of the unit o p e r a t o r is always equal
to 1). However, equations (51) s t i l l do not d e t e r m i n e
the density m a t r i x . In o r d e r to d e t e r m i n e the den-
sity m a t r i x we m u s t advance the postulate that the
s tate p (0) is the most chaotic of all the s ta tes that
a r e compatible with conditions (5i)B6>14>14J (see a l so
[44,45,0^ Analytically this is expres sed by the con-
dition of maximum entropy (or minimum informa-
tion) of the s tate

6 S m = - 6 S p Q ( 0 ) l n Q ( 0 ) (52)

with supplementary conditions (51). In p a r t i c u l a r ,
the r e q u i r e m e n t that the m e a n value of the energy
and of the unit o p e r a t o r be definite leads to a canon-
ical distr ibution. We can genera l ize this pr incip le
by as suming that the distr ibution is specified in the
init ial ensemble, i . e . , that the diagonal e lements of
the density m a t r i x a r e specified

Qaa — * ai 2J Pa — *, (53)

and that in all other r e s p e c t s the s tate is the most
chaotic, i . e . , it has a minimum of information

6SpQ(0)ln e(0) = (54)

subject to condition (53). It is obvious that the so lu-
tion of this e x t r e m a l problem is given in accordance
with the Klein l e m m a by the diagonal m a t r i x
Рсш(0) ( р а а ' = 0 when a * a'). Thus, an initial
s ta te with diagonal density m a t r i x (for which the i r -
r e v e r s i b l e equations a r e derived) is the m o s t p r o b a -
ble of all the poss ib le initial s ta tes compatible with
the specified probability dis tr ibution (53). It has
maximum entropy (maximum lack of information)

subject to conditions (53). One m u s t not think, how-
ever, that the e x t r e m a l pr inciple cons idered h e r e is
an unavoidable consequence of quantum theory. Al-
though such a notion can r e s u l t from the previously
cited p a p e r s (see a l s o ^ ) , this is never the less not
so . We now proceed to an examination of c a s e s when
this pr inciple is not satisf ied. F r o m the paper of
Van H o v e r a (see a l so [ 4 7 ) 4 8 : i ) it follows that for nega-
tive t an analogous balance equation is valid, which
leads to a microcanonica l dis tr ibut ion a s t —» -°c.
The behavior of the entropy is shown schematical ly
in Fig. 1. When t = 0 the entropy has the s m a l l e s t
value [for initial conditions (53)—(54)*].

Equilibrium e

At an instant of t ime t * 0 the density m a t r i x is
no longer diagonal, and if we choose such an instant
of t ime as the initial one, then, depending on the va l-
ues of the non-diagonal m a t r i x e lements pact' > the
entropy will i n c r e a s e o r d e c r e a s e (the l a t t e r will be
rea l ized if the m a t r i x e lements cor respond to the
instant of t ime t < 0). As a rule, however, in a
m a c r o s c o p i c exper iment we do not know all the d e -
ta i l s of the initial s ta te and choose a p r i o r i the m o s t
probable one, i . e . , in fact the s ta te (53)—(54); and
in this c a s e we obtain the balance equation. On the
other hand, if as a r e s u l t of the exper iment we o b -
s e r v e that the behavior of the sys tem is such that
the entropy d e c r e a s e s , we a s c r i b e such a behavior
to a low-probability fluctuation.

However, c a s e s a r e poss ible when we can p r e d i c t
that the entropy will d e c r e a s e after a c e r t a i n t ime
interval . Such a case o c c u r s in the spin-echo ex-
per iment^ 4 ^ (see a l s o ^ , in which the s ta t i s t ica l
a s p e c t of this exper iment is d i scussed) . This e x -
p e r i m e n t can be d e s c r i b e d roughly and s c h e m a t i -
cally in the following fashion. The s y s t e m of spins
is in an inhomogeneous magnetic field, and a t the
init ial instant of t ime all the spins a r e aligned with
the x axis, which is perpendicular to the direct ion
of the magnetic field (the z axis) . The spins in the
magnetic field p r e c e s s with a frequency w = yH,
which is different for each spin. Let the frequencies
u; be s y m m e t r i c a l l y dis tr ibuted with r e s p e c t to the

*To avoid a misunderstanding we note that at the initial instant
of time the entropy is the largest of all those possible at that in-
stant [subject to conditions (51)], but it has a smallest value com-
pared with the entropy for 111 > 0.
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frequency ш0 . We proceed to a system rotating with
frequency WQ . Then, if g(a>) (the distribution func-
tion of the frequencies in this system) is a delta-
function

the total spin of the system will be aligned at all
times with the x axis (in the rotating system of
coordinates). In the general case, when g(a>) is not
a delta-function, the summary spin along the x axis
is proportional to

CO
С g(a)eiatda>

and, in accordance with the Lebesque-Riemann
theorem, it tends to zero as t —* -<*>. The behavior
of the spins at different instants of time is shown
schematically in Fig. 2a, from which it is seen that
the entropy of the spin distribution increases mono-
tonically (the state tt is more chaotic than t = 0).
However, if we reverse the magnetic field at the
instant t j , the signs of the frequencies are r e -
versed [g(w) does not change], and the process pro-
ceeds in the opposite direction (Fig. 2b). The en-
tropy then first decreases, reaches a minimum at
t = t " , and then increases again and the system
goes into the equilibrium state.

Let us summarize the contents of the present
section. If an initial non-equilibrium state is spec-
ified in a macroscopic experiment, when we do not
know all the details of the states, then the a priori
most probable state will be one with a diagonal den-
sity matrix, and consequently an entropy increase
will be observed in further experiments in the same
ensemble. However, cases are probable in which the
entropy decreases. In all the analyzed examples,
whether the entropy behaves monotonically or not,
the system goes over into an equilibrium state char-
acterized by a microcanonical ensemble. This sug-
gests that it is possible to prove the ergodic theorem
for a much more general class of initial conditions
than given in the paper of Van ^

7. QUANTUM THEORY OF RELAXATION PROC-

ESSES

In the investigation of relaxation processes of
different physical systems we usually deal with the
following characteristic situation. Relaxation occurs
as a result of the interaction between some dynamic
system and a dissipative system. We define as dy-
namic that part of a system (or subsystem) which
has a finite number of degrees of freedom and dis -
crete energy levels, and which is described in prin-
ciple by simple dynamic equations. This dynamic
subsystem interacts with the dissipative system,
which has an infinite number of degrees of freedom
and a continuous spectrum. A simple example of a
relaxation process is the spontaneous radiation of
an atom in free space. The role of the dynamic sys-
tem is played here by the atom, while the dissipa-
tive system is the radiation field in free space. The
radiation field in free space has a continuous spec-
trum, while the atom has a discrete spectrum. The
probability of spontaneous radiation in a quantum
transition from excited state a into state b is equal

л

= ? S ^ao; ы, Vblk.,aOd (Ea0 - EbJ t = wab t. (55)
A,

The singularities of spontaneous radiation, which
follow in particular from expression (55) and which
are of interest to us, are :

1. The interaction between the atom and the ra-
diation field leads to an "accumulation" effect—the
transition probability is proportional to the time.

2. Expression (55) is valid if the following con-
dition is satisfied

т с «г«г 0 =-^-, (56)

where т с = 2ir/wo is the period of the spontaneous
radiation and l/w ab is the average lifetime of the
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excited s t a t e ^ . Thus, in o r d e r for a t rans i t ion

probabil i ty to exist in a unit t ime, it is n e c e s s a r y to

have

2Л

I t i s e a s y t o s e e t h a t t h e l a t t e r c o n d i t i o n i s a n a l -

o g o u s t o c o n d i t i o n ( 1 7 ) , w h i c h w e e n c o u n t e r e d i n t h e

i n v e s t i g a t i o n o f t h e a p p l i c a b i l i t y o f t h e b a l a n c e e q u a -

t i o n .

3 . I t f o l l o w s f r o m ( 5 5 ) t h a t t o h a v e a n o n - z e r o

t r a n s i t i o n p r o b a b i l i t y p e r u n i t t i m e i t i s n e c e s s a r y

t o s a t i s f y t h e d i a g o n a l s i n g u l a r i t y c o n d i t i o n . I n f a c t ,

t h e m a t r i x e l e m e n t s of t h e e n e r g y V o f i n t e r a c t i o n

w i t h t h e r a d i a t i o n f i e l d a r e i n v e r s e l y p r o p o r t i o n a l t o

V U , ( w h e r e L i s t h e d i m e n s i o n o f t h e c u b e i n w h i c h

t h e r a d i a t i o n f i e l d i s c o n t a i n e d ) . F o r f r e e s p a c e

L —* » , a n d c o n s e q u e n t l y t h e m a t r i x e l e m e n t s a r e

i n f i n i t e s i m a l l y s m a l l . O n t h e o t h e r h a n d , t h e e x -

p r e s s i o n

/f>2\
I = V }aO; aO

( 5 8 )

i s f i n i t e , s i n c e i t i s n e c e s s a r y t o c h a n g e o v e r f r o m

s u m m a t i o n t o i n t e g r a t i o n , a n d t h e s t a t e d e n s i t y i s

p r o p o r t i o n a l t o L 3 . [ E x p r e s s i o n ( 5 5 ) c o n t a i n s t h e

s u m

w h i c h i s t a k e n o n t h e c o n s t a n t - e n e r g y s u r f a c e

H o w e v e r , i t i s e a s y t o s e e t h a t t h i s s u m i s a l s o

f i n i t e , a n d c o r r e s p o n d s t o a d i a g o n a l s i n g u l a r i t y of

t h e m a t r i x V A V ] .

T h e f o r e g o i n g s i n g u l a r i t i e s of t h e s p o n t a n e o u s

r a d i a t i o n a r e i n h e r e n t a l s o i n o t h e r r e l a x a t i o n p r o c -

e s s e s . A n a c c o u n t o f t h e s e s i n g u l a r i t i e s m a k e s i t

p o s s i b l e t o d e r i v e t h e b a l a n c e e q u a t i o n ( s e e S e c . 3 ) .

T h e b a l a n c e e q u a t i o n ( 1 4 ) d e r i v e d b y V a n H o v e ^

c h a r a c t e r i z e s e s s e n t i a l l y t h e r e l a x a t i o n o f a d i s s i -

p a t i v e s y s t e m ( t h e d y n a m i c s y s t e m i s n o t i n t r o d u c e d

a t a l l ) . I n o r d e r t o b e a b l e t o d e t e r m i n e t h e d i f f e r e n t

a v e r a g e s p e r t a i n i n g t o t h e d y n a m i c s u b s y s t e m i t i s

n e c e s s a r y t o d e r i v e t h e k i n e t i c e q u a t i o n f o r a d e n -

s i t y m a t r i x w h i c h i s d i a g o n a l i n t h e i n d i c e s a o f t h e

d i s s i p a t i v e s u b s y s t e m a n d i s , g e n e r a l l y s p e a k i n g ,

n o n d i a g o n a l i n t h e d i s c r e t e i n d i c e s m a n d n of t h e

d y n a m i c s u b s y s t e m . I n f a c t , t h e a v e r a g e v a l u e of

s o m e o p e r a t o r A p e r t a i n i n g t o t h e d y n a m i c s u b s y s -

t e m i s e q u a l t o

(^> = S p Q l = 2 Qna'; та Лла; па' = 2 Qna; тпа Amn. (59)
птаа' тп, п, а

T h e l a s t e q u a l i t y f o l l o w s f r o m t h e f a c t t h a t t h e m a -

t r i x A i s d i a g o n a l i n t h e i n d i c e s a i n t h e r e p r e s e n -

t a t i o n w i t h a d i a g o n a l H a m i l t o n i a n o p e r a t o r f o r a

s y s t e m c o n s i s t i n g o f n o n - i n t e r a c t i n g d y n a m i c a n d

d i s s i p a t i v e s u b s y s t e m s .

W e n o w p r o c e e d t o d e r i v e t h e e q u a t i o n f o r t h e

( 5 7 ) m a t r i x p m a . n Q

[52]

T h e H a m i l t o n i a n of a s y s t e m c o n s i s t i n g o f a d y -

n a m i c a n d d i s s i p a t i v e s u b s y s t e m t h a t i n t e r a c t w i t h

e a c h o t h e r h a s t h e f o r m

( 6 0 )

where h~F is the Hamiltonian o p e r a t o r of the d i s s i -
pative subsystem, ЙЁ is the Hamiltonian o p e r a t o r
of the dynamic subsystem, and h"V is the interact ion
energy. In o r d e r to take into account the external
forces acting on the dynamic subsystem, we a s s u m e
that E can depend explicitly on the t ime in an a r b i -
t r a r y fashion. Equation (9) for the density m a t r i x
a s s u m e s the form

• dt
( 6 1 )

Let us change over to the interact ion r e p r e s e n t a t i o n .
F o r this purpose it is n e c e s s a r y to c a r r y out a uni-
tary t rans format ion on al l the o p e r a t o r s

e - ^ ' , (62)

( 6 3 )

w h e r e t h e m a t r i x S s a t i s f i e s t h e e q u a t i o n s

I n t h i s r e p r e s e n t a t i o n E q . ( 6 1 ) a s s u m e s t h e f o r m

( 6 4 )

Here V and p a r e o p e r a t o r s in the interact ion r e p r e -
sentat ion. Our problem consis t s of deriving the
kinetic equation for the density m a t r i x pmcc; п а by
s tar t ing from this equation and using the above-con-
s idered assumptions concerning the s m a l l n e s s of v
(v c h a r a c t e r i z e s the o r d e r of magnitude of the o p -
e r a t o r V) and the condition of diagonal s ingular i ty
in the index a . We a r e in teres ted in the behavior of
the density m a t r i x p , using for the scale a t ime on
the o r d e r of the relaxation t ime т0 = г/v2 (where
Г does not depend on v). This means that when we
refer l a t e r on to the var iat ion of the density m a t r i x
over an infinitesimally shor t t ime, we shal l have in
mind var iat ion over a t ime much s h o r t e r than T

o .
On the other hand, however, this shor t t ime should
be very long compared with another t ime scale, of
the o r d e r of т с = й/(50Е, where 60E is the a l r e a d y -
introduced energy difference [see formula (16) of
Sec. 3], c h a r a c t e r i z i n g the diss ipat ive subsys tem. The
increment in the density m a t r i x * over a t i m e т sa t i s -
ying the condition

t c € x •€ т0> (65)

*We refer throughout t o a matr ix with e l e m e n t s p m a ; n a .



308 V. M. F A I N

can be reduced, as will be shown below, to the form

Q(t + T)-Q(t)=A(t)v*r + 6(t)v + C(t)v*. (66)

We denote by t the time in the v~2 scale, t = v2^
Equation (66) assumes the form

) - ( > ( 7 ) = A(t)x + В (T)v + C (t)v\ (66')

Letting now v —* 0 and т —• 0 (the latter denotes
smallness only in the scale v" 2 ), we arrive at the
differential equation

dt
or, going over to the old time scale t, we obtain

(67)

This indeed will be the sought-for differential equa-
tion. We note that only in the interaction represen-
tation can we assume that the density matrix varies
slowly and neglect its variation over a time of the
order of т с . The point is that the transition to the
interaction representation denotes precisely the
elimination of the high-frequency dependence. The
density matrix p in the interaction representation
represents, roughly speaking, the amplitude of the
probability matrix in the Schrodinger representation.
The principal variation of this "amplitude" with
time is connected with the relaxation processes and,
by virtue of the smallness of v2 , is relatively slow.
We note also that the approximation consisting in the
changeover from (66) to (67) corresponds to the ap-
proximation used by Van Hove^ (Л. — 0 , Л.21 finite).

In order to find v 2 A in (67), we use Eq. (64).
From this equation we obtain, accurate to terms of
order v 2

x')t Q(t)\di'

(68)
6 b

It is easy to see that without loss of generality we
can expand an arbitrary operator A in the interac-
tion representation in a series of harmonic functions
of the time:

i = 2 AT(t) eiart, Ar (t) = (69)

where the time-independent operators A r and the
frequencies ш are determined by the transforma-
tion S(t)

(70)

Using (69) and (70), we can write the first term of
(68) in the form

= 2

where paa' is an operator matrix acting on the
variables of the dynamic subsystem, and in the rep-
resentation | m a ) its matrix elements are Pma;na';

the function £т(х) = i J exp (ixi"') d'r' goes over
о

when т » h/боЕ into the singular function^
£(x) = P/x - i6(x). Since a ' v a r i e s continuously by
assumption, it is necessary to change over from
summation over a' in (71) to integration. This in-
tegral, subject to condition (65), does not depend on
the time т and is of the order of v.that is, it has a
structure B(t) v. We discard such terms. We note
that the dependence on the time т could appear
were the matrix Vaa' to have a singularity, that is,
were the contribution made to the sum by the indi-
vidual term of the sum different from zero. Each
individual term of the sum can yield a proportion-
ality to т. However, we assume later on that the
matrix V is not singular. This means that as the
number of degrees of freedom N tends to infinity,
the matrix element Vaa' tends to zero.

Let us proceed now to examine the second term
in the right half of (68). It can be written in the form

), Q]]a
= - J dx' J

о о

rs a'a" 0

X (f) Qa-a el (шг+°аа'> ^

- Vr

aa. (t) Q a . a . V-a.a («) el (шг+шаа-> V+i «0,+oW x"

- Ka' (0 Qa-ar K»a (t) в' <шг+ша-а> f+i K+<o00-) x-

+ Qaa' Via- (0 Va-a («) e' (ur+<*a-a> *'+* (»,+»a'a-) ̂ "} e* (»,+«,)'.

(72)

J u s t as in the case of &-\Paa > w n e n T sat isf ies the
condition (65) the double sum (double integral) with
r e s p e c t to a and a' does not depend on the t ime
and has a s t r u c t u r e c ( t ) v 2 ; we neglect such t e r m s .
However, there is now the condition of diagonal s ing-
ularity, which s e p a r a t e s from the double sum only
the sum over a'. Before we calculate this single
sum, let us c a r r y out the following auxil iary c o m -
putation. The sum analogous to that obtained from
(72) after leaving out the diagonal-singular t e r m s ,
has for fixed r and s the form

/ = dx> (u, v).

C h a n g i n g i n t e g r a t i o n v a r i a b l e s w e h a v e

' (0 V«

T • / _ ( , , ) ' ( л. л

(73)

( 7 3 )

— tx (шг + В,',) Qaa- Va'a (t)] exp (i(i (71) where the function
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Fix)= "^ e~ivxif(u v) (73a) W e now c h a n g e o v e r t o a s e c o n d r e p r e s e n t a t i o n :

$-iZc vr — S'1VrS (79)11, V
u+u=const

is essent ia l ly different from z e r o when Tt & т с ,
and т с is de termined by the interval 6v of the v a r i -
ation of f (const - v, v); т с = l / 6 v . Let т » т с

and then for (u + v) т » 1 the cur ly b r a c k e t in (73')
is smal l , and when (u + v) т ^ 1 we can rep lace
exp [ i(u + v) T t ] by unity. Thus, d i scarding s m a l l
t e r m s with (u + v) т » 1, we have

/ = (u, v) 1 ( 7 3 " )

[we have also replaced the l imits of integration in
(73') by infinity, by v ir tue of the p r o p e r t i e s of F ( T t ) ] .
Now, using (73) and the diagonal-singulari ty condi-
tion, and going in the s e n s e indicated above to the
l imi t as т —• 0 , we obtain the sought-for kinetic
equation in the form

f =-2 е ' ( " г + в ' И 1*' Г ^в]]АК + «>,). (74)
Г, S

w h e r e p i s t h e p a r t o f t h e m a t r i x p d i a g o n a l i n t h e

i n d i c e s a :

ОЭ

Vs = \ e - * £ ' ' V s e - W e1*1' dt'

and

( 7 5 )

Д (x) denoting the function

!

1 when x < ш* = — ,

0 otherwise .

Equation (74) can be r e w r i t t e n in a somewhat differ-
ent form, which is m o r e convenient for appl icat ions.
If we expand the c o m m u t a t o r s in (74), use re la t ion
(75) as well as the fact that o; r + ws « w*, we can
obtain the kinetic equation (74) in the form *

where

R*a (6) = Я

ё ^ А к
' S К + <"«'«) {2 ^ a - Qa-a' ^a 'a

- Ka- ^a-a 6a<z - Qaa Vr

aa- FS

a-a} Л (<Br + Ш,).

(76)

(77)

(78)

It is easy to s e e that in this r e p r e s e n t a t i o n Eqs .

(76)—(78) a s s u m e the form

(76')

where

Naa = S"1 NaaS = - 2 '

r, sa'

rt \ i i (to 4"(i) ) t с / , a.a- F^. a - Vr

aa. fs

a-a Qa

(78')

L e t u s c o n s i d e r t h e p a r t i c u l a r c a s e w h e r e t h e H a m -

i l t o n i a n o f t h e d y n a m i c s u b s y s t e m c o n s i s t s o f a l a r g e

c o n s t a n t p a r t R E Q a n d a s m a l l a d d i t i o n K W ( t ) :

( 8 0 )

T h e s m a l l n e s s o f W s i g n i f i e s t h a t t h e m a t r i x e l e -

m e n t s W n m a r e m u c h s m a l l e r t h a n 6 t E ( t h e d i f f e r -

e n c e b e t w e e n t h e t e r m s o f t h e d y n a m i c s u b s y s t e m )

and a r e much s m a l l e r than ш*:

Wnm « ( 6 ^ , a,*).

In this c a s e we can put approximately

i * г ' П

a n d E q s . ( 7 6 ) — ( 7 8 ) a s s u m e t h e f o r m

9 Q

dt

where
Vma;hvVha.-,Tia.-

(81)

(82)

(76")

(I/ )

'; la Q;o; паб (Ek — Et + Fa. — f a ) Л ( ш т [ )

- F a ) A (fl)nk)}. (78")

L e t u s c o n s i d e r n o w t h e q u e s t i o n of t h e c o n d i t i o n s
u n d e r w h i c h w e o b t a i n f r o m (76)—(78) t h e b a l a n c e
e q u a t i o n (14) . F o r t h i s p u r p o s e w e p u t W = 0 a n d
t a k e t h e d i a g o n a l p a r t of (76)

9ла; п а i • ЧГ1 / дг n ЛГ \
^ Г t 2^J \ ' n a > ^a Q^a; n a Qna; fta•** fta; na)

= It a-; naQta'; lo-Й (^i - En + Fa- - Fa) A (

*It i s assumed here that we are dealing with the case described
by formula (24), when SE/Ti > «* (SE characterizes the energy scale
of the inhomogeneity of the density matrix).

- V n o ; fca. Vka-- ia Qia- п а б (Ek — £ , + Fa- — Fa) Д (C0nI)

• F f t a ; , a -F ( a - . , n a Qna. hab (Et -En + Fa. - Fa) Л (a>nft)}.
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As can be seen from this equation, in the general
case, the part of the matrix p which is diagonal in
all the indices is connected with the nondiagonal
elements of p . This means that in order to obtain
the balance equations it is necessary to introduce
additional conditions, namely, it is necessary first
that there exist no term differences w n m different
from zero and much smaller than w* and, second,
that the levels of the dynamic subsystem be nonde-
generate. Then, as can be readily seen, (76) as-
sumes the form

system do not depend on the time (or vary very
slowly). Let us consider in this approximation, for
example, the first sum in the left half of (84)

2 Nma; haQha. na = Nm- h- 2 Qha; na = #„,-. fto<Tftn(0.
a ' a

where Nmjj-kjj is some average value of N m Q , . k a .
Our assumption is that this average should not de-
pend on the time. We therefore calculate it for the
instant of time t = tp when the interaction between
the dynamic dissipated subsystems is turned on, a s-
suming that at that instant of time the density matrix
of the entire system can be represented by

X [Qfta';fta- — Qna; na]. (83)

which coincides with the balance equation, and

2я | Vna-, ta. |3 б {En - Ek + Fa - /?B.)

are the transition probabilities per unit time. The
equations derived by Van Hove^ are obtained from
(83) by removing the index n, that is, in the case
when there is no dynamic subsystem. Then these
equations describe the relaxation of the dissipative
subsystem. We note that the term containing N has
dropped out in the transition to the balance equa-
tions. The point is that this term, as can be seen
from its structure, yields the correction to the
energy levels of the unperturbed system and does
not lead by itself to relaxation.

The relaxation of the entire system (dissipative
+ dynamic) has in our approximation a Markov char-
acter (we are dealing with a case when the balance
equations are valid). This cannot be said, generally
speaking, about the relaxation of the dynamic sub-
system itself. The density matrix crnm of only the
dynamic part of the system does not obey a first-
order equation in the general case, and accordingly
°nm does not obey the balance equations.

In fact, since
amn = 2л Qma; na>

a

i t f o l l o w s f r o m ( 7 6 ) t h a t

— ^ Ь * [E, O]mn -\- I 2J (•"ma; SaQfta; na — Qma; haNha; na)
n

= ^ j Rma-.na- ( 8 4 )
a

It i s o b v i o u s t h a t t h e s u m i n t h e l e f t h a l f a n d t h e

r i g h t h a l f o f t h i s e q u a t i o n d o n o t r e d u c e i n g e n e r a l

t o f u n c t i o n s o f a o n l y . H o w e v e r , s u c h a r e d u c t i o n

i s p o s s i b l e u n d e r t h e a s s u m p t i o n t h a t t h e d i s s i p a t i v e

s y s t e m i s m u c h l a r g e r t h a n t h e d y n a m i c s y s t e m a n d

i s a l l t h e t i m e i n a s p e c i f i e d s t a t e , s o t h a t t h e i n f l u -

e n c e o f t h e d y n a m i c s y s t e m o n i t c a n b e n e g l e c t e d .

In o t h e r w o r d s , t h i s a s s u m p t i o n m e a n s t h a t a l l t h e

a v e r a g e q u a n t i t i e s p e r t a i n i n g t o t h e d i s s i p a t i v e s u b -

Thus,

x. .
2л ®ka; i

2 * « . ; *a P a Co) "fen Co)
_a

Cftn (*„)

— 2J, ™ rnn\

We shall henceforth leave out the argument t0 in the
function Pa, since by assumption the variation of
the state of the dissipative circuit can be neglected.
In this assumption the kinetic equation defining the
behavior of the dynamic system assumes the form

, a]mn = 2 Wmki^ki-Tklmk<jln- Tlnklamh),
hi

(85)
where

f = - 2 ^ ^
r, saa'

,,), (86)

a; ka.Pa

'Pa »° А К + св.),
aI, r, saa'

rmft,n = « S e1 (и'-+ш') *Ь К + «„-о) Vr

ma, ka-Pa-V'la., MA (<or + со,).
aa'rs

(87)
In the particular case when we can use (82) (the ex-
ternal force is small), the coefficients Г do not de-
pend on the time and assume the form

v aa'"a'ara

- 2
Irsaa'

• 2 '
/aa'

"ma; la'* la'; (86')
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2
ao1

(87')

If the dissipative subsystem is in the state of
thermodynamic equilibrium characterized by a tem-
perature T, then a connection exists between the
different coefficients Г. In o r d e r to der ive this con-
nection, it is n e c e s s a r y to change over from s u m -
mation to integrat ion over the e n e r g i e s :

where Tju(Fa) is the density of the number of states
with specified quantum number u in the energy in-
terval d F a . It is further necessary to take into ac-
count the fact that if the dissipative system is in an
equilibrium state, then

-1Fa/hT
Pa = P (Fa) =

2ле

a'

-tiFa./hT

As a r e s u l t we get

Г,„т* = * 2 ei(<Dr+Ws)'A((

uu'rs
x(m, Fa+v>., u'\P\k, Fa, u)P(Fa)

x (I, Fa, u\V°\n,

.-naJhT . nhln
Пат/кТ ( 8 8 )

If it is possible to employ formulas (87'), then (88)
a s s u m e s the form *

Г „ - Г
1 mhln — * l

-UEm-Eh)lhT

It follows from the last formulas that in the absence
of external forces Eq. (85) has a s tat ionary solution

e-nEh/hT
akl = ' « у -UEJkT i

s

t h a t i s , t h e d y n a m i c s u b s y s t e m e n t e r s i n t o e q u i l i -
b r i u m w i t h t h e d i s s i p a t i v e s u b s y s t e m . I n t h e a b -
s e n c e o f e x t e r n a l f o r c e s , f o r n o n d e g e n e r a t e l e v e l s of
t h e d y n a m i c s y s t e m u n d e r t h e c o n d i t i o n t h a t A g o e s
o v e r i n t o t h e K r o n e c k e r s y m b o l ( t h a t i s , t h a t t h e r e
exis t no nonvanishing ц)Пк « w*), we can obtain
from (85) the balance equation

= 2 {wmk°hk —

where the probabil i t ies p e r unit t ime a r e

(89)

•Formulas (88) and (88') hold true if o>r + cos « kT/ti. This
condition follows from the condition <ur + U>S « ы* o n l y if equality
(24) i s satisfied (where the role of SE is played by kT). If
kT < S0E, then t>* plays a role; on the other hand, if S0E > kT,
then kT/fi > <u*.

a n d i f t h e d i s s i p a t i v e s y s t e m i s i n a n e q u i l i b r i u m

s t a t e , t h e n i t f o l l o w s f r o m ( 8 8 ' ) t h a t

Wjim^=wmb6 m ^ . ( 9 0 )

T h e c o r r e c t i o n s t o t h e e i g e n v a l u e s o f t h e e n e r g y o f

t h e d y n a m i c s u b s y s t e m c a n b e o b t a i n e d f r o m ( 8 6 ' )

= r m m = - 2 (91)Eh-Em + F ,-Fa •
а, а', к

It i s s o m e t i m e s c o n v e n i e n t t o u s e n o t t h e k i n e t i c
e q u a t i o n (85), b u t e q u a t i o n s t h a t fo l low f r o m i t f o r
t h e m e a n v a l u e s of t h e o p e r a t o r s p e r t a i n i n g t o t h e
d y n a m i c s y s t e m . T o o b t a i n s u c h e q u a t i o n s w e r e p r e -
s e n t t h e o p e r a t o r V r i n t h e ^ f o r m of a s u m of p r o d -
u c t s of o p e r a t o r s V j r a n d W i r a c t i n g o n t h e d y n a m i c
s u b s y s t e m a n d on t h e d i s s i p a t i v e s y s t e m s , r e s p e c -
t i v e l y :

VT=y^WrCvri. (92)
i

In t h i s c a s e t h e c o e f f i c i e n t s (86) a n d (87) c a n be r e -
w r i t t e n i n t h e f o r m

f = 2 Ф«'ЙЙ?<,
г, s , i , i '

— V fT) r s /
•4- .. " v

(93)

where

& - - 2 e H B r n n ^ w i ° > P a A ( M f + M

aa'

ФЙ- = я 2 J(Mr+Ms>'«(«в. + «>«'•,) (a I W\ I o') (a' | W\. | a)

(94)

We can establ ish a connection between the coeffi-
cients Ф analogous to (88) (if the diss ipative sys tem
is in a s ta te of equi l ibr ium):

ФЙ. = Ф Г / Ш ^ Т . (95)

We a r e now in a position to find the equations for the
mean value of some operator Q

S i m p l e t r a n s f o r m a t i o n s l e a d t o t h e f o r m u l a s

dt г, s, i , i '

(96)

W e s h a l l p r e s e n t b e l o w d i f f e r e n t a p p l i c a t i o n s o f t h e

f o r m u l a s o b t a i n e d h e r e .

W e n o w c o n s i d e r t h e c o n n e c t i o n b e t w e e n t h e r e -

s u l t s r e p o r t e d h e r e a n d t h o s e i n o t h e r p a p e r s . A s

w a s a l r e a d y n o t e d , V a n H o v e ^ d e r i v e d E q . ( 8 3 )

w i t h o u t d i s c r e t e i n d i c e s ( s e e a l s o ^ ) . T h i s i s c a l l e d

t h e m a s t e r e q u a t i o n , s i n c e i t p e r t a i n s t o t h e b e h a v -

i o r o f t h e e n t i r e s y s t e m . T h e g e n e r a l k i n e t i c e q u a -

t i o n ( 7 4 ) a n d ( 7 6 ) i s e s s e n t i a l l y a g e n e r a l i z a t i o n o f
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the master equation to include the presence of ex-
ternal forces acting on the dynamic subsystem.
Another departure from the usual master equation
is that the density matrix is generally speaking non-
diagonal in the indices of the dynamic subsystem.
Equation (76) (in the presence of a weak external
field and disregarding N) was derived i n ^ . The
same equation (without the external force) was der-
ived i n ^ by the Van Hove method. Equation (85)
and the following equations were derived in the main
in the papers of Bloch and Wangsness^5"5^ for the
case when the dissipative subsystem is in an equili-
brium state (see ^

8. RELAXATION DUE TO INTERACTION WITH
THE RADIATION FIELD

We have already mentioned that the radiation
field in free space has a continuous spectrum and
can play the role of a dissipative system. The Ham-
iltonian operator of a complete system consisting of
charged particles (which play the role of the dy-
namic subsystem) interacting with the radiation field
can be written in the form (60)

where E is the Hamiltonian of the dynamic subsys-
tem,

is the Hamiltonian of the radiation field, and

(97)

is the Hamiltonian of the interaction with the radia-
tion field*, while e s , m s , and P s are the charge,
mass, and momentum of the s-th particle of the dy-
namic subsystem, A^s) is the vector potential of
the j/-th normal oscillation of the free space at the
location of the s-th particle.

The complete vector potential is equal to

A(r, 0 = 2A v (r)(? v .

It is easy to see that the non-zero matrix elements
of V have the form

{m; njW2
| V \ к; пхпг ... nv ± 1, n v + i

(98)

We now proceed to calculate the relaxation coeffi-
cients. For simplicity we use formulas (86') and
(87'), which are valid for a sufficiently weak exter-
nal field W:

, n{nv}

X б (Я, - En + F<<} - F{nv}) Д (<omft + ю1п),

where { п„} denotes the totality of the quantum num
bers n4n2 . . . n ,̂ . . . Using formula (98) and the fact
that P({n'j,}) is the distribution of the probabilities
of {n'y}, we obtain

r m S l n = я ^ Bvmh Bvln A (comk + coln)

-£<• + fflv) + в , S ( E m - E y - щ ) ] .

(99)

Analogously we obtain

Г

i-тк = -

BvmlBv

2 Л Л , (100)

In t h e s e f o r m u l a s n,, d e n o t e s t h e m e a n v a l u e of t h e

n u m b e r of p h o t o n s i n t h e s t a t e c h a r a c t e r i z e d by t h e

i n d e x v. In p a r t i c u l a r , if t h e r a d i a t i o n f ie ld i s i n

e q u i l i b r i u m , t h e n

e v — 1

E q u a t i o n s ( 8 5 ) , ( 9 9 ) , a n d (100) d e s c r i b e t h e r e l a x a -

t i o n of a d y n a m i c s y s t e m d u e t o i n t e r a c t i o n w i t h t h e

r a d i a t i o n f i e l d . We now c o n s i d e r s o m e p a r t i c u l a r

c a s e s of t h e s e e q u a t i o n s . If t h e c o n d i t i o n s of t r a n -

s i t i o n t o t h e b a l a n c e e q u a t i o n (89) a r e s a t i s f i e d , t h e n

t h e p r o b a b i l i t i e s p e r u n i t of t i m e h a v e t h e f o r m

Ek>Em

_ -Ek-a>v), Em>Ek.
{ v (101)

It i s i n t e r e s t i n g t o s e e t h a t t h e s e e x p r e s s i o n s c o i n -

c i d e w i t h t h o s e o b t a i n e d w h e n E i n s t e i n ' s c o e f f i c i e n t s

a r e u s e d f o r s p o n t a n e o u s a n d i n d u c e d e m i s s i o n

( E ^ > E m ) and a b s o r p t i o n ( E ^ < E m ) .

In o r d e r t o r e l a t e (101) w i t h t h e E i n s t e i n c o e f f i -

c i e n t s , i t i s n e c e s s a r y t o c h a n g e o v e r f r o m s u m m a -

t i o n o v e r v t o i n t e g r a t i o n o v e r t h e f r e q u e n c i e s a n d

p r o p a g a t i o n d i r e c t i o n s . As a r e s u l t we o b t a i n

[ dQ (at, + Qs (w f t m, Q) bL), Eh > E
J

(101 ')

*We have assumed here, as is customary, that the omitted term
in the interaction energy, which is proportional to the square of
the charge, can be neglected.

w h e r e a ™ 4 a n d b S , 4 = b { " a r e t h e E i n s t e i n c o e f f i -

c i e n t s f o r s p o n t a n e o u s e m i s s i o n , i n d u c e d e m i s s i o n ,

a n d a b s o r p t i o n ,
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(cov, Q) du>v dQ =
da,v dQ

is the radiat ion density in the frequency interval dwj,
and in the interval of solid angles dfi with p o l a r i z a -
tion s. In par t icu lar , for dipole radiat ion of one p a r -
t icle (generally speaking, bound) we obtain the usual
expres s ions

a» = ш* Id™ I3 c o s 2 e.. b~=1-r I С I2 cos2 e5 = C8 )

where d m n is the dipole moment matrix element and
9S is the angle between the direction of the dipole
moment and the direction of the polarization vector
e s •

We note that to find different averages pertaining
to the dynamic subsystem it is necessary to know
not only the density-matrix diagonal elements crnn

entering into the balance equation, but also the nondi-
agonal elements crnm of the density matrix. The equa-
tions for these quantities are (85), (99), and (100).

It is seen from (85), (99), and (100) that in gen-
eral the relaxation of the separate parts of the dy-
namic subsystem does not occur independently. The
point is that there is always a coupling through the
radiation field (although, if we disregard the inter-
action through the radiation field, the individual
parts of the system can behave perfectly indepen-
dently). Let us dwell on this question in somewhat
greater detail.

Let the dynamic system represent an aggregate
of non-interacting objects (for the sake of being
definite—molecules). If the levels of the molecules
are not equidistant, then in many problems connected
with the radiation it becomes possible to take into
account only two energy levels (which we shall
henceforth regard as nondegenerate). It is therefore
convenient to introduce an idealization of a molecule
with two levels*. All the operators pertaining to the
two-level molecule are represented by two-by-two
matrices. If we further stipulate that they be Her-
mitian, these matrices can be represented in the
form of a linear combination of spin operators rj
and a unit operator

where a, b, c, and d a r e constant coefficients and the
r i have the following form in the r e p r e s e n t a t i o n in
which r 3 is diagonal:

It m u s t be emphasized that the r j , general ly speak-
ing, do not coincide with the usual spin 1/2 which
r e p r e s e n t s the angular momentum. In^5® this spin
was called energy spin to dist inguish it from the

*It should be borne in mind that the possibility of introducing
such an idealization is, generally speaking, connected with the
quantum properties of the system. In fact, quasiclassical systems
have quasi-equidistant spectra (see, for example, I27]).

ordinary spin. In particular, it can be shown that
the energy of interaction between one molecule and
the radiation field has in the dipole approximation
the form

Vj = - A (/) (Bl rv + V,,) = rj F] + ri Fj,

with the constants

dj2 is the molecule matrix element, dipole moment

г/= = Р„±.

and

It is easy to see that the energy of the j-th mole-
cule can be expressed as

We shall henceforth assume that all the molecules
have the same energy-level difference, equal to nuig.
The Hamiltonian of the dynamic subsystem consist-
ing of molecules that do not interact with one another
can be written in the form

hE = ha>02 r3j = b(£>0R3

The energy of interaction between the system of
two-level molecules and the radiation field has
the form

We proceed now to derive equations for the mean
values ( r f ) and ( r3; ) . For this purpose we use
formulas (96), where the role of the operators vj7 is
played by the operators r t . As a result we obtain
for the derivative of the mean value of some opera-
tor Q
djQ)
dt

where

I\ Ф«
i, i'

(102)

(О (0 в (со, - а»),

Г = 2 4>ti~rt к- + фГ-t rl-rt
i i'

(ЮЗ)

If the radiation field is in the state of thermodynamic
equilibrium, then

ф£- = е-пщ/кт ф-»._

The coefficients Ф c h a r a c t e r i z e the relaxat ion of

*We do not write out the coefficients cp here. The calculation
i s analogous to the calculation of the coefficients Ф.
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the dynamic subsystem. Let us calculate these co-
efficients. We assume that the molecules have
linearly polarized dipole moments perpendicular
to the line joining their centers of gravity. The
average occupation numbers n,, are assumed to
depend only on the frequency ши = OJ0 (as i s the
case , in par t icu lar , for thermodynamic equi l ibr ium).

Then

2Я it/2

desin3ecos(/casin9cos(p).

We ultimately obtain

3 f sin ka , cos ka sin ka

(104)

( 1 0 5 )

Here к = WQ/C ; a is the distance between the i-th
and i ' - t h molecules, d is the value of the molecule
dipole moment m a t r i x e lement ( I di2 I )» a n d Vo is
the natura l line width of the isolated m o l e c u l e ^

F r o m (102) and (104) we get*

= - 2/JvYo (r3i) — 2 у "
i'

( 1 0 6 )

4r

- J f < T > = — « 4 ( r O - ( " v + - 2 " " ) Yo ( r O + 2

( 1 0 8 )

( W e h a v e u s e d h e r e t h e c o m m u t a t i o n r e l a t i o n s f o r

t h e e n e r g y s p i n , w h i c h c o i n c i d e w i t h t h e c o m m u t a -

t o r s f o r t h e o r d i n a r y s p i n , r x r = i r ; i n a d d i t i o n ,

w e u s e d r e l a t i o n s t h a t a r e v a l i d f o r s p i n 1 / 2 ,

n a m e l y

^ h r r

e t c . ) . I t i s s e e n f r o m ( 1 0 6 ) — ( 1 0 8 ) t h a t t h e r e l a x a t i o n

o f t h e i - t h m o l e c u l e ( w h i c h i s d e s c r i b e d b y t h e o p -

e r a t o r s r j a n d r 3 i ) i s c o n n e c t e d w i t h t h e r e l a x a -

t i o n s o f t h e o t h e r m o l e c u l e s . T h i s c o n n e c t i o n i s t h e

r e s u l t o f t h e f a c t t h a t e a c h m o l e c u l e i s i n t h e r a d i a -

t i o n f i e l d o f t h e r e m a i n i n g m o l e c u l e s .

* I n o r d e r n o t t o c o m p l i c a t e t h e d i s c u s s i o n , w e d i s r e g a r d t h e

shift of the frequency eo0 due to the presence of the operator Г

in the right half of (102).

L e t u s c o n s i d e r s o m e c o n s e q u e n c e s of e q u a t i o n s

( 1 0 6 ) — ( 1 0 8 ) . A s s u m e t h a t a t s o m e i n s t a n t of t i m e

t h e s t a t e s of t h e m o l e c u l e s a r e s t a t i s t i c a l l y i n d e -

p e n d e n t a n d t h e m e a n v a l u e s a r e ( r j ) = 0 * . T h e

i n t e n s i t y of t h e s p o n t a n e o u s e m i s s i o n of t h e i - t h

m o l e c u l e a t t h a t i n s t a n t i s e q u a l t o

dt
+ ih)) = ntyhao = njo

a n d d o e s n o t d e p e n d on t h e s p o n t a n e o u s r a d i a t i o n of

t h e r e m a i n i n g m o l e c u l e s . T h e t o t a l i n t e n s i t y of

s p o n t a n e o u s r a d i a t i o n of t h e e n t i r e s y s t e m i s e q u a l

in t h i s c a s e t o t h e s u m of t h e r a d i a t i o n i n t e n s i t i e s of

t h e i s o l a t e d m o l e c u l e s . A s t i m e g o e s on, t h e c o r r e -

l a t i o n s ( r j ' J j " + ?[ r^/ ) ( i ' ^ i ) d i f f e r f r o m z e r o

a n d t h e i n t e n s i t y of t h e s p o n t a n e o u s r a d i a t i o n i s no

l o n g e r e q u a l t o t h e s u m of t h e i n t e n s i t i e s of t h e i s o -

l a t e d m o l e c u l e s . T h e w i d t h a n d t h e s h a p e of t h e

s p o n t a n e o u s - r a d i a t i o n l i n e s a l w a y s d i f f e r f r o m t h e

w i d t h a n d s h a p e of t h e l i n e of t h e i n d i v i d u a l i s o l a t e d

m o l e c u l e . T h e p o i n t i s t h a t t h e w i d t h a n d s h a p e of

t h e r a d i a t i o n l i n e a r e c h a r a c t e r i s t i c s of t h e r a d i a -

t i o n p r o c e s s n o t a t a n i n d i v i d u a l i n s t a n t of t i m e , b u t

o v e r a s u f f i c i e n t l y long t i m e . T h e r e f o r e , e v e n if t h e

m o l e c u l e s a r e s t a t i s t i c a l l y i n d e p e n d e n t a t t h e i n i t i a l

i n s t a n t , i n t h e c o u r s e of t i m e a c o n n e c t i o n a r i s e s

b e t w e e n t h e m ( c h a r a c t e r i z e d by t h e v a l u e of t h e

c o r r e l a t i o n ( r y r f + r ^ f p ) , < r 3 i r i ' ) , ( r ^ i ^ ) f o r

i ' * i ) .

L e t u s i l l u s t r a t e t h e s e c o n s i d e r a t i o n s u s i n g a s a n

e x a m p l e t h e s p o n t a n e o u s e m i s s i o n of a s y s t e m of

m o l e c u l e s , t h e d i m e n s i o n s of w h i c h a r e m u c h

s m a l l e r t h a n t h e w a v e l e n g t h ® 0 " 6 4 ' 5 ^ . In t h i s c a s e

( k a — 0) yjj/ = yo f o r a n y p a i r of m o l e c u l e s i a n d

i ' . T h e t o t a l i n t e n s i t y of s p o n t a n e o u s e m i s s i o n i s

e q u a l t o t

"57
i, t'

(109)

a n d , g e n e r a l l y s p e a k i n g , i t i s n o t e q u a l t o t h e s u m of

i n t e n s i t i e s of t h e i n d i v i d u a l m o l e c u l e s . T h e s u m of

*We recall the meaning of the components of the energy spin f
(see, for example, L5'J). We express the molecule dipole moment
as a function of the time through f+ and t~:

- - ^ - d = e * r + e-r4
с dt

The mean value of the component r3 is connected with the differ-
ence of the populations n+ and n_ of the upper and lower levels
of the molecule:

The mean value i s <r*> = 0, in particular, for the state in which
the molecule energy has a definite value (or the density matrix of
the molecule i s diagonal in the energy representation).

tHere R = S i n .
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the correlations can be expressed in terms of R in
the form

** ' ' (110)

w h e r e n i s t h e t o t a l n u m b e r of m o l e c u l e s . T h e p r o c -

e s s of s p o n t a n e o u s e m i s s i o n p r o c e e d s in t h i s c a s e

w i t h c o n s e r v a t i o n of R? a n d w i t h d e c r e a s e of R 3

( t h a t i s , t h e e n e r g y of t h e d y n a m i c s y s t e m d e c r e a -

s e s ) . C o n s e q u e n t l y , if t h e c o r r e l a t i o n (110) i s e q u a l

t o z e r o a t t h e i n i t i a l i n s t a n t ( in w h i c h c a s e t h e r a -

d i a t i o n i n t e n s i t y i s e q u a l t o nn + R w 0 y 0 ) > t h e n i t w i l l

s u b s e q u e n t l y i n c r e a s e , a s c a n be s e e n f r o m (110) .

T h i s c a u s e s t h e r a d i a t i o n l i n e w i d t h of t h e e n t i r e

s y s t e m t o b e of t h e o r d e r of* n y 0 ( in p l a c e of y 0

f o r t h e i s o l a t e d m o l e c u l e ) , a n d t h e l i n e s h a p e d i f f e r s

f r o m L o r e n t z i a n ' - 6 0 ' 6 2 - ' . A long w i t h t h e b r o a d e n i n g of

t h e l i n e , t h e c e n t e r of t h e r a d i a t i o n l i n e i s d i s p l a c e d

( in a n a l o g y to t h e L a m b s h i f t ) . T h i s s h i f t i s a l s o d e -

t e r m i n e d f o r t h e e n t i r e s y s t e m of m o l e c u l e s ' - 6 4 - . T h e

s y s t e m (106)—(108) i s n o n l i n e a r . It i s i n c o m p l e t e ,

s i n c e t h e m e a n v a l u e s of r^ a r e e x p r e s s e d in i t in

t e r m s of t h e c o r r e l a t i o n s . T h e e q u a t i o n s f o r t h e

l a t t e r c a n b e o b t a i n e d f r o m ( 1 0 2 ) . We c a n t h u s o b -

t a i n a s y s t e m of e q u a t i o n s t h a t a r e c o u p l e d w i t h o n e

a n o t h e r . H o w e v e r , f o r s t a t e s t h a t a r e w e a k l y e x c i t e d

r e l a t i v e t o t h e e q u i l i b r i u m p o s i t i o n , t h e s y s t e m

(107)—(108) c a n b e l i n e a r i z e d . L e t u s c o n s i d e r t h e

c a s e n y = 0 ( s p o n t a n e o u s e m i s s i o n ) . In t h e e q u i l i -

b r i u m s t a t e r 3 ^ = - 1 / 2 ; s u b s t i t u t i n g t h i s v a l u e i n t o

t h e r i g h t h a n d half (107)—(108) , w e o b t a i n

l " 1 ' ь " л " х ч ~~= ±

We note that we obtain precisely the same system
of equations for the mean values of the annihilation
and creation operators ip.\) and (a^)of a system of
oscillators. At the same time, the equations for the
mean values of the coordinates of the harmonic
oscillators coincide (the Ehrenfest theorem) with
the classical equations. Thus, (111) is essentially
a classical system of equations. Let us consider the
case of two molecules

= ± «o0 (/?) -

The solution of this system has the form

(111')

(112)

where

3 sin fez , 3 cos ka 3 sin ka3 sin ka \

The problem of the radiation from an excited clas-
sical oscillator in the presence of similar unexcited
oscillators was solved in^6 5 '6^ under the assumption

that ka » 1.* Formulas (112) go over in this case
into the corresponding formulas of'-6" (for the case
of two oscillators, the variation of the radiation
frequencies was also taken into account'-6"). It is
seen from (112) that the relaxation process is not
exponential (sum of exponentials), resulting in a
non-Lorentzian line shape.

To conclude this section we note that the problem
of relaxation due to interaction with the radiation
field becomes particularly significant (in the optical
range) in connection with the invention of lasers. In
this case both the spontaneous emission (п„ = 0) and
the induced emission (rip * 0) are of interest. The
induced emission is due here to two causes. First,
when T * 0 the average numbers of the photons
ny(T) differ from zero, and second, nv * 0 owing to
the pumping field, which has a continuous spectrum,
like thermal radiation. The results of the present
section enable us to take account of relaxation due to
interaction with radiation in systems of the laser
type.

9. RELAXATION OF FIELD IN REAL RESONATORS

As a result of interaction between the electro-
magnetic field and the electrons of the resonator
walls, the field relaxes to an equilibrium state. The
atoms and electrons of the resonator walls play the
role of the dissipative subsystem, while the field in
the resonator now plays the role of the dynamic sub-
system.

In a resonator of finite dimensions, the field has
a discrete spectrum (unlike the field in free space).
The questions of quantum theory of attenuation of a
field in a resonator were considered in many papers
[50,67,68] _ W e appiy here the results of quantum theory
of relaxation (Sec. 7) to an investigation of the at-
tenuation of the field in a resonator.

The Hamiltonian of the system comprising the
resonator field and the resonator-wall electrons can
be written in the form

i=ifc ft
rih

mhc

Here the first sum represents the energy of the r a -
diation field, the second and third sums represent
the nonrelativistic energy of the particles compris-
ing the resonator, and the last sum is the energy of
interaction between the field and the particles of the

*More accurately, of the order of Rro (where R = V<R2>).

*In these papers, the system of oscillators is the model of a
system of nuclei that emit у quanta under conditions when the
Mossbauer effect takes place and the interaction via the radiation
field can be observed in principle, in spite of the smallness of this
interaction.
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resonator walls. Introducing the annihilation and
creation operators &v and a j , we can rewrite the
interaction Hamiltonian in the form

v V * (113)

We can now use formulas (93)—(96), where the
role of v r is taken by а„(а;г = - ши) and a£(w r = w,,),
since in the interaction representation we have
a.v ~ exp [i wut] and a^ ~ [i wvt]. From (96) we ob-
tain for the derivative of the mean value of some
operator Q

(114)

where

ф±„, = nS S ( T a>v + Шо'о)(a | F v | a ' ) (a' |/V1а) Ра-Д ( c o v - o v
aa'

(115)

and if the r e s o n a t o r walls a r e in a s ta te of t h e r m o -

dynamic equil ibrium, then, according to (95)

Ф&=ф;.че-1к*>/кт. (116)

F r o m express ions (114) we can, in par t icu lar , o b -
tain equations for the quantit ies ( a ^ ) and ( a ^ )
t h e m s e l v e s * (in the absence of external forces)

— (av> = _ jcov (o v) — 2 Yvv <<V>,—

-£<«$> = to, < « $ > - 2 Yw <«$•>,

(117)

where

1-е v ' ). (118)

It is assumed in (117) that the frequencies шр a r e
sufficiently large and therefore the frequency shift
connected with the o p e r a t o r Г is d i s regarded . It
m u s t be borne in mind, however, that such a shift
does take place, general ly speaking. Thus an account
of the interact ion with the dissipative sys tem leads
not only to relaxation, but also to a shift of the na t-
ura l frequencies of the s y s t e m . It is seen from
(117) that an account of diss ipation leads to coupling,
due to the p r e s e n c e of attenuation, between field
osc i l la tors that a r e not coupled with one another in
the absence of attenuation. However, this coupling
o c c u r s only at sufficiently high frequencies. This is

*We recall that

the energy of the i/-th natural oscillation is Hv = — fto>o (a+av -f-ava*)

and the permutations differing from zero are [a , a*\ = i.

s e e n from (116). Here the
from z e r o if

differ essent ia l ly

(119)

where тс i s the corre la t ion t ime of the sys tem of
p a r t i c l e s compris ing the r e s o n a t o r wal ls . The i n -
equality (119) holds in par t icu lar , for degenerate
frequencies of the r e s o n a t o r . In r e s o n a t o r theory
the coefficient уvv i s usually denoted by ( l/2)w l / /Q !

where Q is the figure of m e r i t of the r e s o n a t o r for
the specified mode. As can be seen from the f o r e -
going analysis , the attenuation in a r e s o n a t o r is d e -
termined, general ly speaking, not only by its Q but
also by the coefficients yvvi{v * v').* We have
encountered an essent ia l ly analogous situation in the
preceding section, where it is shown that the a t ten-
uation of a sys tem of molecules proceeds in a m u -
tually-dependent m a n n e r and is in genera l not p r o -
port ional to the number of p a r t i c l e s .

Using (114), we can d e t e r m i n e the energy d a m p -
ing of the y-th osc i l la tor

where

F r o m (114) we get

dt = - 2 Yvv (<aX-> - „

'

j

As can be seen from this express ion, we do not ob-
tain, general ly speaking, a closed sys tem of equa-
tions for the occupation numbers (this c o r r e s p o n d s
to the fact that in the p r e s e n c e of degeneracy the
balance equation does not hold t r u e ) . In the s a m e
case, when

Yvv' —
we obtain

where

— l

is the equil ibrium value of {п») , corresponding to
the t e m p e r a t u r e of the dissipative s y s t e m . Thus,
the energy of the natura l mode is damped in a c c o r -
dance with

(tfv> =

*The latter are connected with the mutual impedance of the
resonator (see, for example L6']).
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where (nv(0) ) is the mean value of (&„) at the
instant t = 0.

To conclude this section we note that the fore-
going examination of the attenuation of a system of
oscillators is sufficiently general and is applicable
not only to fields in resonators, but to any system
of oscillators whose energy of interaction with the
dissipative subsystem has the form (113).

10. SPIN-LATTICE RELAXATION. BLOCH'S EQUA-
TIONS

The results of the general theory, developed in
Sec. 7, can be used to study the relaxation of the
spins of nuclei interacting with a crystal lattice (or,
generally speaking, with molecules of matter). Such
an analysis was made i n ^ , in which the previously-
derived Bloch's phenomenological equations^ were
proved.

The lattice (or the molecular environment) is a
dissipative subsystem, while the nuclear spins are
a dynamic subsystem. This is called spin-lattice re-
laxation to distinguish it from spin-spin relaxation, in
which energy is exchanged between the spins (and not
between the spins and the lattice). We do not repeat
here the entire analysis of̂ 55], but derive Bloch's
equations for the case of a spin-1/2 system inter-
acting with the lattice. The character of the assump-
tions made i n ^ will be made clear by this derivation.

The Hamiltonian of the system of nuclei interact-
ing with the lattice has the form

(hz

where the external magnetic field is

(t) ц v (о Д),
(120)

I i is the spin o p e r a t o r of the i-th nucleus, I *
= I^ x ± Ijy, and KF is the latt ice e n e r g y ; the la s t
t e r m in (120) r e p r e s e n t s the energy of interact ion
between the nuclei and the latt ice, h(i) is the m a g -
netic field of the latt ice a t the location of the i-th
nucleus ( h * = h x ± i h y ) , and у in the gyromagnetic
r a t i o . We note that for spin 1/2 (140) is the most
genera l express ion for the interact ion energy. As
we have a l ready noted in Sec. 8, any l inear H e r -
mit ian o p e r a t o r can be expanded in a s e r i e s of sp in-
1/2 o p e r a t o r s ; the interact ion energy (120) r e p r e -
sents p r e c i s e l y this type of expansion [where h(i) is
some effective magnetic field] . The o p e r a t o r s I z i
and i f can be identified with the o p e r a t o r s vf i n -
troduced in Sec. 7 [see (92)] , the o p e r a t o r I z i
c o r r e s p o n d s to the frequency ш г = 0, while the
o p e r a t o r s i f c o r r e s p o n d s to frequencies
i o i j = ± y H G . F r o m formulas (93)—(96) we obtain
the equations of motion for the mean value of the
spin o p e r a t o r ( Q ) *

*For simplicity we do not consider the level shifts connected
with Г in (96).

d(Q)
dt <[Hif,

r, s, i, i

r and f a s s u m e h e r e the values + , - , and 0 ( I

i

Фи- = Щг 2 S (w0 + ша.а) (а 1 h- (i) | а') {а' | %+ (i') \ a) Paera'

( 1 2 2 )

ФЩ. = JtY

2 2 S К-а) (а ] hz (i) | а') (а' | h2 (£') | a) Pa., (123)
aa'

Фи* = Щ2 2 6 (± «о + %'.) (a I fe* (i) I a')
aa'

x (a'|A±(i')|a)i>a'A(2<B(1)I (124)

(125)

aa'

0 ^ TPF

If we substitute in (121) the o p e r a t o r s i f in place
of Q, then it is easy to see that the resu l tant equa-
tions re la te the spin of the i-th nucleus with the
spin of the other nuclei (with index i ' ) . Thus, the
relaxat ion of the individual spins does not occur,
genera l ly speaking, in an independent fashion, and a
c e r t a i n coherence takes p lace. As can be seen from
(122)—(125), this coherence is connected with the
c o r r e l a t i o n between the effective field of the latt ice
at different points i and i ' . If we neglect these c o r -
re la t ions, as can be done, obviously, for a suffici-
ently raref ied gas, we obtain a closed sys tem of
equations for the spin of the i-th nucleus. If we
f u r t h e r m o r e a s s u m e that the inequality

«0 < to* (126)

i s s a t i s f i e d , t h e n t h e c o e f f i c i e n t s of (124) a n d (125)

c a n b e n e g l e c t e d . In t h i s a p p r o x i m a t i o n w e c a n

r e a d i l y o b t a i n B l o c h ' s e q u a t i o n s

d Г I,, T Г

where

= -j Г"1 + Ф??; = ~ tanh

(127)

(128)

Bloch's equations (127), as can be seen from t h e i r
derivat ion a r e valid for not very s t rong externa l
a l ternat ing fields

Я х ( 0 « Я о a n d Yi/Zj ( < ) < « * •

In t h e c a s e of s u f f i c i e n t l y s t r o n g e x t e r n a l f i e l d s , i t

i s n e c e s s a r y t o t a k e i n t o a c c o u n t t h e d e p e n d e n c e of

*This follows from the dependence of P ( E a ) on F a in the state
of thermodynamic equilibrium. In general, however, we can state
kT/h >ы* (see also M ) .
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the relaxation coefficients Г т к 1 п (and consequently
also of T t and T2) on the field amplitude Щ . Such a
dependence follows from the general formulas of
Sec. 7. An analysis of the nonlinear effects that
arise in this connection is given inPi-ra.ST.sgl̂

11. RELAXATION IN FERROMAGNETS AND ANTI-

FERROMAQNETS

In experiments on ferromagnetic resonance we
are usually interested in the relaxation of the uni-
form precession of magnetization, or generally
speaking, in the behavior of the uniform precession
in the presence of an external alternating field. The
relaxation of uniform precession can be due to many
reasons. One of the mechanisms of relaxation is the
interaction between the uniform precession of mag-
netization (spin wave with wave vector к = 0) and
spin waves with к * 0 (see the r e v i e w ^ ) . Another
possible mechanism is interaction with p h o n o n s ^ .
To be specific, we consider now the relaxation con-
nected with the interaction between spin waves. Such
an interaction is the result of the fact that spin-wave
amplitudes are the normal coordinates of the sys-
tem only if they are infinitesimally small. The ac-
count of the finite nature of the amplitude of the spin
waves leads to their interaction. The Hamiltonian of
a system of interacting spin waves situated in an
alternating transverse magnetic field H x , Ну (and
in a constant magnetic field Ho directed along the z
axis) can be written in the form

k=jfcO

к 1 + к 2 , k 3 + C O n j . ]

2, к3+к4

ki, k2, k3, k<

k2+k3+k4+COnj.], (129)

where w(k) is the frequency of the spin wave with
wave vector k, h* = (H x ± V2/x Mo V, p. is the Bohr
magneton, M0V is the saturation magnetic moment,
and a. and a+ are the magnon annihilation and crea-
tion operators; the coefficients Фаге given i n ^ .
The annihilation and creation operators of magnons
with к = 0 are connected with the transverse com-
ponents of the total magnetic moment by the rela-
tions

Йх - iMy = V a.
(130)

We assume further that all the spin waves (к * 0)
are in the state of equilibrium and represent a dissi-
pative subsystem, while the role of the dynamic sub-
system is played by the uniform precession. The

first two terms in (129) represent the Hamiltonian
of the dynamic subsystem, where the third term
represents the Hamiltonian of the dissipative sub-
system. The energy of interaction between the dy-
namic and dissipative subsystems is obtained from
the interaction Hamiltonian of (129) by separating
the terms proportional to RQ and э% :

й 2 (131)

We do not give here all the operators Fs > but indi-
cate only, using an example, the methods for their
derivation. Thus, in the first sum, the terms pro-
portional to a.Q have the form

7 2
ki,k2

?•= 2
k2, k3

F;= 2
ki,k3

The last two terms can be combined into

(132)

We analogously obtain the remaining F|. In addition
to the terms (131), the interaction energy includes
terms describing the interaction of spin waves with
к * 0. We disregard these terms, since we assume
that the spin waves (к ^ 0) are in equilibrium.
Using (93)—(96) we obtain from the Hamiltonian
(129) and (131) the equations of motion for the mean
values (aj ) and ( a 0 ) =

dt
(133)

where

and

= X 2 6 К + «во-а) («I Ft I a') (a' | F; | a) Pa.. (135)
aa's

The coefficients Ф"+аге calculated in analogy with
the calculation of the relaxation coefficients in the
case of interaction with the radiation field (Sec. 8).
Let us write down in explicit form, for example, the
contribution to Ф"+ connected with Fj (132):

X(nk— 1; n_k к; п_к),

Where n^ are the mean values of the occupation
numbers in the equilibrium state

1

An explicit calculation of the relaxation coefficients
was made i n ^ . Equations (133) are the sought equa-
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tions of motion for uniform p r e c e s s i o n or, according
to (130), for the t r a n s v e r s e magnetic moment M x ,
My in the p r e s e n c e of a t r a n s v e r s e magnetic field.
It must be noted that such equations can be used at
sufficiently s m a l l values of M x and My, and a c -
cordingly in not too strong fields H X y . F o r a c e r -
tain c r i t i c a l value of the field H X y , the occupation
numbers n^ of the spin waves begin to increase ex-
ponentially, and this upsets the equil ibrium and the
spin-waves P5~77J.

Relaxation in an ant i ferromagnet is analyzed in
s i m i l a r fashion'- 7 8 ' 7^. Now, however, the p r e s e n c e of
two sublatt ices leads to the need for including in the
dynamic s y s t e m two kinds of annihilation and c r e a -
tion o p e r a t o r s for the spin waves. In par t icu lar , the
interact ion energy a s s u m e s the form

= 2 2
i=l,2

An account of the spin-wave interact ion, s i m i l a r to
that cons idered above, leads to independent r e l a x a -
tions ( a ^ ) and ( a ^ ) - A connection appears between
the re laxat ions ( af 2 ) if account is taken of the
" l i n e a r " mechanism of spin-wave interact ion—the
interact ion of the spin waves due to the p r e s e n c e of
random inhomogeneities in a c r y s t a l s t r u c t u r e of the
a n t i f e r r o m a g n e t ^ . Calculations for such an i n t e r -
action w e r e made i n ™ for the c a s e of a f e r r o d i e l e c -
t r i c .

APPENDIX

DENSITY M A T R K AND DESCRIPTION OF A QUAN-

TUM STATE

Quantum theory is principally a s ta t i s t ica l theory.
The predict ions of quantum theory have usually a
probabi l i s t ic c h a r a c t e r . But probability and s t a t i s -
t ics have a definite meaning if one singles out the
aggregate of e lements to which the s ta t i s t ic s apply.
This c i r c u m s t a n c e was emphasized in p a r t i c u l a r by
Mandel ' shtam'- 8 1 j . Using his terminology, we shal l
cal l an aggregate of e lements on which the s ta t i s t ica l
process ing is being c a r r i e d out a s ta t i s t ica l e n s e m -
ble.

An important question is how to s e p a r a t e the
corresponding s ta t i s t ica l ensemble in quantum
theory. In quantum theory the s ta t i s t ica l ensemble
is an aggregate of identical exper iments ( m e a s u r e -
ments) c a r r i e d out on an object which is in a s p e c i -
fied quantum s ta te . The m e a s u r e m e n t or experiment,
general ly speaking, changes the s ta te of the object.
It is therefore necessary (in o r d e r to stay within the
framework of the given ensemble), to r e t u r n the ob-
jec t after each m e a s u r e m e n t to the initial quantum
sta te . In this case the m e a s u r e m e n t is c a r r i e d once
on each object. In the ensemble thus produced it is
possible to introduce the probability distr ibution of
one m e a s u r e m e n t r e s u l t or another. Thus, in o r d e r

to s e p a r a t e the ensemble in quantum theory it is
necessary , first, to specify the type of m e a s u r e m e n t
which must be c a r r i e d out on the object, and second,
to specify the s tate of the object.

In quantum theory s ta tes a r e classif ied as " p u r e "
and " m i x e d " o r " m i x t u r e s . " The pure s ta te is d e s -
s c r i b e d by a wave function. The probabil i ty d i s t r i -
bution of a cer ta in quantity q in an ensemble r e s u l t -
ing from the m e a s u r e m e n t of this quantity is s p e c i -
fied by the square of the modulus of the wave func-
tion \fr(q) in the q-representa t ion . Thus, for e x a m -
ple, the distr ibution of the probabi l i t ies of the c o o r -
dinates of an e lect ron in a s ta te with wave function
Ф(х) (in the ensemble resul t ing from the m e a s u r e -
ment of the coordinate x) is given by | ф(х) | 2 . In
o r d e r to obtain the momentum distr ibution (in the
ensemble resul t ing from the m e a s u r e m e n t of the
momentum of an e lectron in the s a m e state) it is
n e c e s s a r y to change over to the p-representa t ion,
by expanding *(x) in a s e r i e s of eigenfunctions of
the momentum o p e r a t o r p

The aggregate of the coefficient Ф(р) is indeed the
wave function in the p-representa t ion, while | Ф(р) I 2

gives the momentum probability distr ibution. It must
be borne in mind that in an individual m e a s u r e m e n t
the e lec t ron goes over from the s ta te \t(x) into a
s tate with a definite value of the coordinate 6(x -x 0)
[or with a definite value of the momentum * p ( x ) ] .
(Therefore, in o r d e r to investigate the ensemble of
the given state it becomes n e c e s s a r y to c a r r y out
m e a s u r e m e n t s over a s e r i e s of identical objects, al l
in the s a m e s ta te , or somehow r e t u r n the sys tem to
the initial s ta te after each measurement . ) In the gen-
e r a l case the t rans i t ion from one representa t ion to
the other is rea l ized with the aid of the c o r r e s p o n d -
ing unitary t ransformat ion

Thus the p r e s e n c e of a definite wave function
causes the probability dis tr ibut ions in the different
ensembles that r e s u l t from different m e a s u r e m e n t s
in a given pure s tate to be re lated through the uni-
tary t rans format ion

| 4 (?) | 2 = | t/Ф (Q) I2, | Ф (<?) | 2 = | 6-1ЧГ (q) \K

No s u c h c o n n e c t i o n e x i s t s f o r m i x e d s t a t e s , w h i c h

a r e n o t d e s c r i b e d by a w a v e f u n c t i o n . T h e f a c t t h a t

a s t a t e i s n o t a l w a y s d e s c r i b a b l e by a w a v e f u n c t i o n

c a n b e u n d e r s t o o d by c o n s i d e r i n g a s u b s y s t e m A of

some s y s t e m A + В . Let the sys tem A + В be d e s -
cr ibed by a wave function

where х д and х в a r e the coordinates of the s u b s y s -
t e m s A and B, respect ive ly . This function, general ly
speaking, can not be factored into a product of the
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(II)

even when the systems A and В do not interact*.
This means that neither A nor В are described by
wave functions. (For more details s e e ^ . )

How does one describe the state of a quantum
system when there is no wave function? Such a des-
cription was found by von N e u m a n n ^ . Mixed states
(like pure ones) can be described uniquely by a den-
sity matrix. We first introduce the density matrix
for the pure state. Let the wave function of this state
be *(q, t ) . Then, as is well known, the mean value
of some quantity described by the operator F is
equal to f

(q, t) FV (q, t) dq. (Ш)

Let us change over to a second representation, char-
acterized, for the sake of being specific, by a dis-
crete index n:

Y(?, *)= 2 «„¥„(<?); (IV)
n

here *n(9) are the eigenfunctions of some Hermi-
tian operator A, describing a certain physical quan-
tity; an is the wave function in the representation of
this operator. Substituting (IV) in (III), we obtain an
expression for the mean value F in the A-represen-
tation

(V)

where on>n
 = an ' an*, and Sp stands for the sum of

the diagonal elements (trace) of the matrix:

n

F n n ' denotes the matrix elements of the operator F

Kn'= \ VtfVn-

The matrix a is called a density matrix. It is ob-
vious that a density matrix yields the same informa-
tion as the wave function (if the latter exists). From
formula (V) we can obtain different mean values, and

*It is easy to show, for example, that the wave function of the
system A + В can differ from (II) if an interaction (collision) has
taken place between these systems, although they do not interact
at the present instant of time t .

tOne may ask in which ensemble the mean value of F is taken,
since F can, in particular, be a function of the noncommuting
operators q and p. It i s obvious that this cannot be the ensemble
of the measurement of p (or q). In fact, this ensemble i s deter-
mined by measurements of For, more accurately, the eigenvalues f
of this operator, that is ,

where w(f) is the probability that a single measurement will cause
the system to go over into a state with a definite value of f.

t h e d i a g o n a l e l e m e n t s of t h e d e n s i t y m a t r i x g i v e , a s

c a n b e r e a d i l y s e e n , t h e p r o b a b i l i t y d i s t r i b u t i o n of A .

F r o m t h i s , in p a r t i c u l a r , fo l low t h e n o r m a l i z a t i o n

c o n d i t i o n

2 < r n n = s P 5 = i .
n

We c a n d e s c r i b e m i x t u r e s , t o o , w i t h t h e a i d of t h e

d e n s i t y m a t r i x . L e t F b e a n o p e r a t o r p e r t a i n i n g t o

the subsystem A of the system A + B. Then the ma-
trix elements of F, taken with the aid of the eigen-
functions *nu = * П ( Х А ) * Ц ( Х В ) . have the form

F —F
nu; n'u' я

(VI)

w h e r e * n ( x A ) a r e t h e e i g e n f u n c t i o n s o f t h e o p e r a t o r

A p e r t a i n i n g t o t h e s u b s y s t e m A , w h i l e * u ( x g ) a r e

the eigenfunctions of the operator В of the subsys-
tem B. We note that the use of eigenfunctions *nu
in the form of products of eigenfunctions does not
mean at all that the subsystems A and В are statis-
tically independent. In fact, an arbitrary wave func-
tion can be expanded in a series in *nu a n d this
series, generally speaking, cannot be represented in
the form of a product * A * B - Substituting (VI) in (V)
(this can be done, since the entire system A + В is
in a pure state), we obtain

J= 2 "п-й;И«Лт.= 2 Qn-nFnn- = Sp(QF), (V)
nn'u tin'

where p n 'n = 2 U ' °n'u; nu i s ЬУ definition the den-
sity matrix of the subsystem A. It is easy to see that
with the aid of a density matrix we can obtain all the
mean values and the probability distributions in the
subsystem A. Thus, mixed states can be described
by the density matrix pnn>. The density matrix has
the following properties (see, for e x a m p l e , ^ ) :

a) the density matrix is Hermitian;

b ) i t i s n o r m a l i z e d t o u n i t y :

c ) f o r t h e d i a g o n a l e l e m e n t s of t h e d e n s i t y m a -

t r i x , w h i c h h a v e t h e m e a n i n g o f t h e p r o b a b i l i t i e s of

t h e s t a t e s | n ) , w e h a v e

Qnn>0;

d) Sp P ^ 1, where the equal sign holds for the
pure state. It is also easy to show that in the pure
state p2 = p . From the invariance of (V')

[see (V')] under the unitary transformation U, it
follows for an arbitrary operator F that under such
a transformation

(VII)

(whereas F — UFU" 1 ).
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Making use of tensor terminology, p and F can
be called second rank tensors and the wave function
can be called a vector (the roles of the different co-
ordinate systems are assumed by the different rep-
resentations). The mean values of a quantity are in-
variants of the transformation or scalars. It is
therefore clear that in the general case the states
should be represented by a second-rank tensor p ,
since the operators F are second-rank tensors, and
the invariants can consequently be obtained by con-
tracting these tensors with tensors of the same di-
mensionality. Only in particular cases can p be
represented by a product of two vectors ( p n ' n

= a n ' a n * ) .
It follows from (VII) that the probability distribu-

tions in the different ensembles that arise upon meas-
urement of different quantities are connected by the
relations

Qnn (VIII)
k, h'

which replace relations (I), since the latter are valid
only for pure states.

If the system is in a pure state, then the meas-
urement of the total assembly of the quantities char-
acterizing the wave function of the state leads with
assurance to the initial state, that is, the probability
distribution in such an ensemble consists of two
terms, 0 and 1. In a mixed state, in analogy to the
complete assembly of quantities, we can introduce
the commuting operators L, M, and N, which are
characterized by the fact that the density matrix is
diagonal in the representation that is diagonal in
these quantities. A measurement of these quantities
leads to an ensemble in which the probability distr i-
bution defines completely the density matrix (since
there are no nondiagonal elements)*. We shall call
such a measurement a complete measurement and
the corresponding ensemble a complete ensemble.
It can be seen that the complete measurement goes
over in the particular case of a pure state into a
measurement of a complete assembly of quantities.
(In this case p2

nn = p n n since рг = р .) It can be said
that a pure state differs from a mixed state in the
sense that in a pure state there is always an ensem-
ble in which the probability distribution consists of
two terms, 0 and 1.

Let us consider now the time variation of the den-
sity matrix. If a closed system has been at some
instant of time in a pure state, it remains in the pure
state all the time, and the time variation of the wave
function is described by the Schrbdinger equation.
It is easy to verify that the density matrix of such a
pure state obeys the equation

*In the general case the distribution of probabilities in one
ensemble does not make it possible to determine the density matrix
(or the wave function).

where 3C is the Hamiltonian of the system.
We shall show that in a closed system the density

matrix of the mixed state also obeys this equation.
For this purpose it is sufficient to assume that there
is a more general system A + В, including the sub-
system A as a part (the subsystems A and В do not
interact), and that this system A + В is in a pure
state. Then

Taking the trace of the right and left halves of the
equation over the indices B, we obtain without diffi-
culty

i - £ = l # . Й. (DC)

where p = S p g p ^ + g is the density matrix of the
system A and the subscript of ЗСд has been left out.
We shall call equation (DC) the Neumann equation

[1(3
In describing the variation of the quantum states

with the aid of (K) it is assumed that the operators
of the physical quantities do not depend on the time,
and the entire time dependence is contained in the
density matrix. Such a description or representa-
tion is called a Schrbdinger description. The time
dependence of the density matrix can be written in
this representation in the form

fc-Wt_ (X)

The forms (IX) and (X) are equivalent. Another pos-
sible representation is the Heisenberg representa-
tion. In this representation the entire time depen-
dence is transferred to the operators

'j> (0) e (XI)

and the density matrix does not depend on the time.
There exists a representation " intermediate" be-
tween the Schrbdinger and Heisenberg representa-
tions, namely the interaction representation. Let
the Hamiltonian of the system X be divisible into
two parts *

In the interaction representation the operators de-
pend on the time-like Heisenberg operators with
Hamiltonian 3C0

and the density matrix depends on the time, as in a
Schrbdinger representation with Hamiltonian

*Of course, such a subdivision is arbitrary and is determined
every time by the character of the problem.
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1'int» (XII)

Of course, the question of which representation
should be used in each specific case is solved ex-
clusively by considerations of convenience and sim-
plicity. In all other respects the three representa-
tions are perfectly equivalent.
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