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1. INTRODUCTION

THE transition of a system from a non-equilibrium
to equilibrium state-—relaxation—is accompanied by
a change in the entropy. The entropy usually increa-
ses. This circumstance connects naturally the two
problems indicated in the title of the present review.

The question of motivating the principle of en-
tropy increase has a rather long history. One can
refer, for example, to the detailed review of ter
Haar™. However, several original papers devoted
to the theory of relaxation processes appeared after
the publication of this review. We present a more or
less detailed analysis of these papers later. Here we
note merely that equations describing irreversible
relaxation processes are derived in these papers
from dynamic equations. These include the papers of
Van Hove® 4, the series of papers by Prigogine and
his co-workers % (see also the collection of papers
1), as well as a paper by Bogolyubovm,which is
earlier but not indicated in™, and several other
papers (see below).

An analysis of the premises that have formed the
basis of the derivation of the equations that describe

relaxation enables us to establish the limits of applica-

bility of the principle of entropy increase. This is
indeed one of the purposes of the present review.
Another purpose is to describe several specific ap-
plications of the quantum theory of relaxation proc-
esses.

In many parts of the review we deal with a closed
system. We assume that such an idealization is al-
ways possible, in other words, that we can always
choose a system so large that the influence of the
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remaining part of the universe can be neglected in
the analysis of the given processes.
For a closed system one can introduce a quantity

o= -k ff(N) In f(N)' d 71 [where f(N) is the distri-

bution function of all the coordinates and momenta of
the N particles that make up the system and d T is a
volume element of phase spacel. The quantity o
might naturally be regarded as the total entropy of
the system, but it is easy to show, by using the
Liouville theorem, that ¢ is independent of the time,
An analogous situation obtains in quantum theory.
This raises the question of how to define entropy
(that is, how to define entropy such that it can in-
crease). In the paper by P. and T. Ehrenfest™ and
in many other papers (see["“ﬂ) the point of view as-
sumed is that whereas the fine-grained entropy is
conserved, the coarse-grained entropy increases.
We cannot agree with such a point of view and we
shall discuss this question below (Sec. 6). (The defi-
nition of entropy given in Sec. 2 pertains to the
coarse-grained density matrix.) We point out here
that we are defining the entropy everywhere in the
sense of Gibbs, that is, we refer to an ensemble and
not to an individual state*. This means that a mono-
tonic increase of such an entropy does not contradict
the possibility of fluctuations, since the very concept
of entropy in the sense of Gibbs has a probabilistic
meaning. Section 2 contains in addition to a defini-
tion of the entropy some general laws governing the
behavior of a closed system. It turns out, however,

*0On the other hand, the Boltzmann definition pertains to an in-
dividual member of the ensemble, so that the Boltzmann entropy is
a random quantity.
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that these general laws are insufficient for an inves-
tigation of the region of applicability of the principle
of entropy increase. It is necessary to analyze the
solutions of the dynamic equations (the Neumann
equation for the density matrix, the Liouville equa-
tion) in one approximation or another. Such solutions
(or approximate equations) were indeed obtained for
systems with infinitely many degrees of freedom in
the previously cited papers[z'Bj and elsewhere. In
Secs. 3—5 we analyze the assumptions and the con-
ditions for the derivation of irreversible equations
that describe the behavior of the corresponding sta-
tistical ensembles.

In Sec. 6 the limits of applicability of the princi-
ple of entropy increase are obtained on the basis of
this analysis. If the statistical ensemble under con-
sideration is in a non-equilibrium state at a given
instant of time t;, then, by using the equations of
Secs. 3—5, we are in a position to indicate, gen-
erally speaking, the further behavior of the ensem-
ble. However, the entropy increases in this case only
for definite classes of initial conditions. At the ma-
croscopic level of information concerning the state of
the system we can, in general, make only some a
priori statistical predictions concerning the initial
state. In Sec. 6 we consider precisely the statistical
assumptions and initial conditions that give rise to an
increase in the entropy.

In Sec. 7 we give a generalization of the balance
equation of the entire system to include the case
when one part of the system has a discrete spec-
trum and another part has a continuous spectrum.
We call the former part of the system the dynamic
subsystem and the latter the dissipative one. The
introduced equation describes the behavior of a sys-
tem consisting of these subsystems, which interact
with each other, in the presence of an external field
acting on the dynamic subsystem. In Secs. 8—11 this
equation is used to investigate several processes
(under the assumption that the time variation of the
state of the dissipative system can be neglected). In
the Appendix we give some information concerning
the description of quantum systems with the aid of
the density matrix.

2. ENTROPY AND INFORMATION. GENERAL
THEOREMS

In thermodynamics the entropy of an equilibrium
system is usually defined with the aid of the equation

Y
AS=—-,

where AS is the increment in the entropy of a sys-
tem that has a temperature T and receives an
amount of heat AQ. The thermodynamic definition
of entropy can be related to the statistical definition

of entropy with the aid of the Boltzmann principle*
S=FkInAT, (1)

where k is Boltzmann’s constant and AT is the ther-
modynamic probability or the statistical weight of
the macroscopic state of the system®?:83, We shall
be henceforth interested in the behavior of non-
equilibrium systems, to which the foregoing rela-
tions cannot be applied directly. It is therefore
necessary to give a more general definition of the
entropy, valid for all systems. Such a general defi-
nition of entropy is used, in particular, in informa-
tion theory®4.

Let a probability distribution characterizing a
certain statistical ensemble t be given. The entropy
of the ensemble characterizes the statistical spread
or the randomness of the probability distribution in
the ensemble. By definition, the entropy satisfies
the following requirements: It is a functional of the
probability distribution function and has a maximum
value in the most ‘““random’’ ensemble, in which all
the states (members of the ensemble) are encoun-
tered with equal probability. The entropy has a
minimum value (equal to zero) when the system is
with certainty in the specified state. Finally, the
entropy should have an additivity property wherein
the entropy of a system consisting of two statistically
independent subsystems is equal to the sum of the
entropies of each of the subsystems. All these re-
quirements are satisfied (apart from a constant fac-
tor) by the quantity

=—2plnp, e

where pj is the probability with which the i-th term
of the statistical ensemble is represented ( Zj pj

= 1). The index i denotes the aggregates of indices
characterizing a given state. The indices i, in par-
ticular, can vary continuously. In this case it is
necessary to change over from summation to inte-
gration. In thermodynamics and in statistical phy-
sics one uses also the dimensional entropy

S=kE= —kZpi]npi. "

This formula leads to the Boltzmann principle (1) for
equilibrium distributions. In a microcanonical en-
semble all AI" states in the energy interval AE are
equally probable and the entropy (1”) is

AT
1 1

*As is well known[“], Boltzmann himself did not write down
such a formula. The term ‘‘the Boltzmann principle’’ was intro-
duced by Einstein, who also used the inverted form of the Boltz-
mann principle Al" = exp(S/k) for investigations of fluctuations.

tSee the Appendix.
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For a canonical ensemble, the statistical weight AT
can be defined as®

ATp(E)=1,

where p(E) is the probability distribution in the
canonical ensemble. Using (1”) we get

S = —kgp(E)lnp(E)= —kInp(E)=kInAT.

The last equation follows from the fact that in a
canonical distribution In p(E) depends linearly on
the energy E.

Along with the entropy we can introduce a quan-
tity characterizing the ‘‘orderliness’’ of the given
probability distribution. This quantity is called in-
formation and is equal to00x

I=Yplnp=—8. @)

Let this system be in a quantum state (generally
speaking, mixed) described by a density matrix p.
Let us consider the connection between the entropy
or information and the density matrix of the system.
This question, generally speaking, has no unambig-
uous solution. The point is that specification of a
quantum state, described by a density matrix ﬁ, does
not mean as yet specification of a definite statistical
ensemble T . In order to specify the ensemble it is
necessary to spell out the measurements that have
to be made on the system which is in the state 5 .
Assume that we perform on the system measure-
ments of a quantity described by an operator A , the
eigenvalues of which are numbered by an index n.
Then the probability distribution in such an ensem-
ble is specified by the diagonal element of the den-

sity matrix pg‘%‘), and the entropy of the ensemble is 1

8a= — 2 oA Ing). (3)

(The matrix elements p are taken here in a repre-
sentation in which the operator Ais diagonal.) Mea-
surements of another quantity B, which does not
commute with A, lead to a different ensemble with
an accordingly different value of the entropy

&p=—2 e Ingly = &4, 3"

*Wé shall henceforth use Wiener’s definition of information.

This measure of information differs from that introduced by Shannon.

(For more details see [*2]).

tThe quantum state, the density matrix, and similar problems
are discussed in the Appendix.

10f course, the density matrix is characterized not only by the
indices n but also by other indices. Obviously, it is necessary to
sum over these indices, too, that is,

A
E4p=— ZQ(l)nlannl nl*

V. M. FAIN

where the matrix elements g are taken in a repre-
sentation in which the operator B is diagonal. Among
all the ensembles corresponding to the given state
there are some special ones, arising in the course
of measurements of a set of quantities i, M, N

and characterized by the fact that in the representa—
tion diagonal in these quantities the density matrix

is also diagonal. We call such ensembles ‘‘com-
plete,’’ and call the corresponding measurements
complete. The entropy of a complete ensemble is

$=—29“1n9”=—5pélné, 4)

and the last equation (where Sp stands for the opera-
tion of summing the diagonal elements) enables us to
determine the entropy of a complete ensemble if the
density matrix is specified in an arbitrary repre-
sentation. Equation (4) enables us to characterize
the quantum states described by the density matrix
0, defined by entropy or information

$m=_Im=—Spélné- (5)

It must be borne in mind, however, that this entropy
(information) does not characterize all the ensem-
bles that arise during the measurements in a given
state, but only the complete ensemble. The following
statement can be made. The information defined by
(5) is the maximum information possessed by the
state p. In other words, the information Im

= Spp In § is larger than the information of any
ensemble that is realized in the case of an incom-
plete measurement

I.>1I4 or Ig.
This statement follows from the fact that

Spelng> Zem Ing,,, (6)

where the equality holds if the nondiagonal elements
pnm = 0. Formula (6) is an expression of the so-
called Klein lemma™®. The proof of this lemma
follows from the properties of the unitary transfor-
mation relating the matrix elements pnpn with the
matrix element p in the arbitrary representation.
Elsasser™ has called the quantity

I,=Speng

the mixture index. This designation derives from the
fact that this quantity allows us to determine whether
the system is in a pure or in a mixed state. In fact,
in the pure state and in a representation in which the
density matrix is diagonal, the density matrix has,
as can be readily visualized, only one non-zero ma-
trix element, equal to unity. Therefore in the pure
state we have

I, =Spolng=0.

In any mixed state I, < 0. We shall henceforth call
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the quantity Iy, (or respectively £€m) the information
of the state, to distinguish it from the information I
(the entropy &) characterizing the ensemble. The
index m denotes that Ty is the maximum informa-
tion (which is realized in a complete measurement)*.

We now proceed to investigate the evolution of
closed systems, and consider in the present section
only exact consequences of quantum theory.

From the invariance of the trace under unitary
transformations (and the evolution of the density ma-
trix in time can be regarded as a unitary transfor-
mation) it follows that the entropy of the state (the
information of the state) of a closed dynamic system
does not depend on the time

1,= —&,=const.

This means that the state of the system varies in
such a way, that the information (or entropy) does
not change in an ensemble arising during complete
measurements. Thus, if the entire system is ini-
tially in a pure state, it continues to remain in this
state during all the time. T

Assume that a complete measurement of the sys-
tem is made at some instant of time t;, and let the
distribution of the probabilities be a diagonalized
density matrix

an (to) = an (to) 6mn'

The entropy of this ensemble is
8 (t) = — 3 @un (f) 10.0p () = —Sp @ (t) I & (8-

Assume that at an instant of time t > t; a measure-
ment is made of the same quantities as at the in-
stant ty, that is, we are considering the evolution of
the ensemble in time. This ensemble (which initially
was complete) is now, generally speaking, not com-
plete, since a complete measurement realizes at
each instant of time a different ensemble, corres-
ponding to a different set of quantities{ . At the in-
stant t the entropy of the initially chosen ensemble
(which was complete at the instant t;) has a value

*[t must be emphasized that we are dealing here with the maxi-
mum of information (ot with the minimum of entropy) with respect
to other ensembles, produced by measurements in a given state at
a definite instant of time. The question of the time variation of the
entropy will be considered later.

tWe assume throughout, as is customary, that we have an ag-
gregate of identical systems, and that if a measurement is made at
some instant of time on some representatives of the ensemble, then
these are subsequently disregarded, since the measurement has
changed them into a different state.

$ A complete ensemble arises in the measurement of a set of
quantities L, M, R, ..., such that in the representation diagonal
in these quantities the density matrix is diagonal. This property
of the quantities L, M, R, ... (and of the ensemble of measure-
ments of these quantities) is not, generally speaking, conserved
in time. At the instant t > t; the density matrix ;;is no longer
diagonal in the L, M, R, ... representation.

E(1)= = 2w (1) Inun (1) > B (tg)= —Spelnd, (7)

where the inequality sign follows from Klein’s
lemma, since the matrix ppy is generally speaking
diagonal at the instant t. Of course, inequality (7)

is not the expression for the entropy increase in its
ordinary thermodynamic formulation, since it does
not follow from (7) that &(t;) = - Zp pnn(ty) 1n ppn(ty)
must be larger than € (t;) at an instant t; > t. It can
only be stated that g(t;) = &(ty). The instant t; is
special because the density matrix is diagonal at
that instant. We shall see below (Sec. 6) that in gen-
eral we cannot prove that the entropy increases
monotonically. The question of when the entropy
actually increases can be solved in investigations of
specific solutions of the equations of a closed dy-
namic system (see below).

We note that everything stated above can be
readily translated into classical language. The role
of the complete ensemble is assumed by the ensem-
ble of measurements of all the coordinates and mo-
menta of the system. This ensemble is character-
ized by a probability distribution W(x;j, pj). The
entropy of this ensemble, as can be readily shown
with the aid of the Liouville theorem, does not de-
pend on the time. On the other hand, the entropy of
any incomplete ensemble, for example the ensemble
characterized by a distribution of the momenta only
with arbitrary values of the coordinates, can depend
on the time. The increase of such an entropy can be
gauged by solving the equations of classical dy-
namics‘for a closed system (Sec. 6).

We' now continue the general investigation of the
behavior of closed systems. We shall show (see
also[m) that if < A(t)> is the mean value of some
quantity A at the instant of time ¢, then in a finite
closed dynamic system < A (t)> has a limit as t— «
only if <A (t)> does not depend on t. On the other
hand, in an infinite closed system, the energy levels
of which form a continuous spectrum, <A (t)> tends
to a limit as t — « under sufficiently general as-
sumptions. The mean value of the quantity A at the
instant t is equal to

(A(t))=Sp (a(t) ), (8)

where p obeys the Neumann equationm]

., 90 N A
zha—$=HQ—gH. (9)

Recognizing that the general solution of (9) can be
written in the form

Q (t) = e—iBtng (0) ¢ifim,

we obtain the value of <A (t)> in the form

(A= Cusmu (0) Amur; my ¢ nmt = g g (©) e do,
nmuu’ —_—00 (10)

where n and m are indices that number the energy
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levels; u, u’ are other quantum numbers; the quan-
tity g(w), as can be readily verified, is defined by
the equation

g(m) = 2 Qnu; mu’(o) Amu’; nu6 <E‘"——1:Em— —(D) . (11)

uu'nm

If the system has a discrete spectrum of energies,
then g(w) is a discontinuous function and < A (t)> is
equal to a discrete sum of harmonic functions and
has no limit as t — ., After a finite time the system
will come arbitrarily close to the initial state[17]
In order for a limit to exist as t — « for an infinite
system with a continuous spectrum, it is sufficient
that the function g(w) have the form

g (0) = G3 (v) 4 (w),
where h(w) does not have any delta-like singularities
and is absolutely integrable in the interval [-, +«],
Then we get on the basis of the Lebesque-Riemann
theorem

lim (A (1)) = lim {G+- g k(o) e—iwdm}=a. (12)
t—rco 1=

—C0

Using further Egs. (10) and (11) we find for the
asymptotic value < A (<) >

{A (o)) = 2 , Qny; nu (0) Anw; nu. (13)

It must be emphasized that the proof given here is
based essentially on the assumption that g(w) does
not contain any delta functions when w = 0. As can
be seen from (11), this assumption pertains both to
the density matrix p and to the operator A of interest
to us. In principle we can visualize idealized situa-
tions when g(w) contains delta functions when w = 0.
Thus, if the matrix elements of A differ from zero
only when (Ep -Ep)/li = wg, * then, as can be readily
seen from (11),

g(0) = 7,8 (0 — 0y) 4 hyd (0 + @)
and consequently
(A) — hle~imot _|__ hzeimot

has no limit as t — <,

We note that the deduced presence of a definite
limit for the average values as t — « is not at all
connected with the averaging of the density matrix
over the coordinates and over the time of observa-
tion. This means that the system can have an irre-

*It might seem that matrix elements of the coordinate (or mo-
mentum) of a harmonic oscillator satisfy this condition. One must
not forget, however, that the Hamiltonian A (by virtue of the as-
sumption that the spectrum of the system is continuous) differs
from the Hamiltonian of a harmonic oscillator, and consequently
the matrix elements of the coordinate of a harmonic oscillator do
not generally speaking satisfy the foregoing condition in a repre-
sentation in which H is diagonal.

versible behavior, one characteristic of which is the
presence of a limit < A(=)>, even if we deal with a
so-called fine-grained density matrix. Frequently

a different point of view is assumed, according to
which the irreversible behavior is connected pre-
cisely with averaging and with the introduction of a
fine-grained density matrix®®19 We shall return
to this question later on when we discuss the prin-
ciple of entropy increase (Sec. 6).

3. QUANTUM BALANCE EQUATION IN I' SPACE

In this section and in the two that follow we
analyze the assumptions used to derive the kinetic
equations that describe the time variation of the
corresponding ensemble. We begin with the deriva-
tion of the equations in the I" space, that is, in the
complete phase space of the system. These equa-
tions, under certain assumptions which will be made
more precise below, reduce to equations that des-
cribe transitions in accordance with a Markov-chain
scheme. We know that Markov chains play an im-
portant role in the analysis of many physical prob-
lems (see, for example,m] and also[m—‘, which contains
a detailed bibliography).

The notion that the processes occurring in a gas
can be regarded as processes that follow a Markov-
chain scheme was first used by the Ehrenfests.
Leontovich % has shown that the actual subject
matter of kinetic theory can be developed with the
aid of a statistical scheme of Markov chains. Later
papers by Kac®D are devoted to the same question.
A Markov process is described by a balance equation
dTPt“ = >} WgaPs—~WosPu), (14)

B
where Py, are the probabilities of observing the sys-
tem in states @, while Wqg is the probability per
unit time of the transition from « into the state 8.
Equation (14) is frequently called (in the foreign

literature) the master equation. It was first intro-

duced in I’ space by Pauli @2 However, he used in
the derivation the assumption that molecular chaos
sets in every sufficiently small time interval At.
The balance equation was derived under analogous
assumptions by Landau®¥and Bloch®4 for a small
part of a large closed system* (see also the paper by
Vonsovskii[m, who considered the question of the
requirements that must be satisfied by a quantum-
mechanical ensemble in order for the balance equa-
tion to hold). It is obvious that the derivation of the
balance equation in?224 g not satisfactory, since
the assumption of molecular chaos, which must be
made at every instant of time, is a very strong sta-
tistical assumption which does not follow from the
dynamic Schrédinger equation.

The derivation of the balance equations from the

*For details about these equations see Sec. 8.
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Schrédinger equation for a definite class of initial
conditions was first made by Van Hove®3 T we
discuss now in greater detail the premises used to
base the derivation?’:ﬂ [we do not cite the deriva-
tion itself; in Sec. 7 we derive an equation which in
a particular case goes over into (14)].

The balance equations (14) are derived in Van
Hove’s papers for a quantum-mechanical system
with an infinitely large number of degrees of free-
dom. Such a system is obtained as a result of going
to the limit from a system having a finite number of
degrees of freedom (finite volume) and accordingly
a discrete spectrum. If the number of degrees of
freedom N and the volume §itend to infinity (such
that N/Q remains finite), the spectrum of the system
becomes continuous. The Hamiltonian of the system
can be written in the form

H=Hy+27, (15)

where the resolution into an unpertuArbed Hamiltonian
H, and an interaction Hamiltonian AV is to a con-
siderable degree arbitrary and is determined by the
ensemble whose time behavior is of interest to us.
Let the density matrix have in the representation in
which ﬁo is diagonal a form pgye’ (the indices o run
through a continuous series of values). Then P,

= Po o determines the probability distribution in the
ensemble of interest to us, and P, obeys the balance
equation upon satisfaction of a series of conditions,
which we shall now consider.

1) The matrix elements of the operator V, taken
with the aid of the eigenfunctions of the operator H,,
satisfy the condition of diagonal singularity, which
consists in the fact that the diagonal elements of the
matrix < @ | VAV | «’> (where A is a diagonal ma-
trix) is at least N times larger than the nondiagonal
element of the same matrix. This condition is satis-
fied for all known energies of interactions that lead
to dissipation. An example for the case of an elec-
tromagnetic field interacting with matter is given in
Sec. 7. The condition of diagonal singularity reduces
essentially to the fact that the transition probability
per unit time differs from zero. It is easy to verify
that matrix elements VA1 VA2 .AyV and
AVA, ... VA, (where A; are dlagonal matrices)
also have diagonal singularity.

2) The second condition concerns the smallness
of the interaction energy. In order to write down
this condition, it is necessary to introduce a corre-
lation time 7. This time is determined in the fol-
lowing manner (see also footnote on page 300):

Ty =
¢ §E T w*’

(16)

where 6)E is the energy difference (difference be-
tween the eigenvalues of the unperturbed Hamilton-
ian ﬁo), which determines the characteristic energy
scale of the matrix elements of the operators, which

are functions of the interaction energy V. This
means that if f(E) is such a matrix element, then when
AE << 6yE the function f(E) does not differ from
f(E + AE), and when AE > §yE there is an appreci-
able difference between f(E) and f(E + AE).

Let T be the characteristic relaxation time, and
then the condition that the interaction energy be
small can be written in the implicit form

Ty > ..

If this condition is satisfied, we can write Tog=A"% T
(where I" does not depend on A)*. Thus, the condi-
tion for the smallness of the interaction energy is
written in the form
ML ¢ 0% = an
Te
3) The third condition pertains to the choice of
the initial conditions. We shall characterize the ini-
tial state of the density matrix pqy’(0). Such a des-
cription enables us to consider both pure and mixed
states in a single manner. Let
O o + Horadyt
be a unitary operator, describing the evolution of
the system in time. The solution of the Neumann
equation (9) can be written in the form

e () =Ue(0) 0.

It follows therefore that the quantity P, of interest
to us, namely the probability of the state | >, is
written in the form

Py =0qo(t)= Z Z Ugar@arar (0) Ugra. (18)
o a”

The diagonal -singularity condition indicated above

leads to the diagonal singularity of UAU*, and the

latter means that P, (t) can be broken up into two

parts:

Po(t)= g] UowQua (0) Uga+ Z 2 Ugor Qua(0) Ugra,  (19)

the single sum having the same order of magnitude
in N as the double sum. In® the first sum of (19) is
investigated in approximation 2). This sum is expan-
ded in powers of AV and only the terms of order

A2 D are retained [the remaining terms are of
order A20*K{N ang are assumed to vanish when

k > 0 by virtue of the condition (17)]. A result

of such an investigation is the fact that the first

sum in (19)

p, = ; Uaa.'Qa'a’ (0) Ui (20)
satisfies the balance equation (14). Thus, the equa-

*The fact that T, has the form A™[" follows from the balance
equation (14), in which Wug are the probabilities per unit time,
calculated by perturbation theory; consequently, W,z ~ A* and
T, ~ Waig ~ A7
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tion turns out to be applicable under such initial con-
ditions which cause the vanishing of the expression

2 Z Uga'Qarar (0) Ugra. (21)
a’+a”

This expression vanishes, first, if the system has
been initially in a mixed state with diagonal density
matrix

Qava” (0) = Qarar(0) 8gam;

second, if the system has been initially in a state
with definite @, that is, $(0) = | @), or in a state
which would be approximately stationary after a re-
laxation time Ty = TA~2, provided the perturbation
AV were not effective. More accurately, if

¢(0)=§Cala>, (22)

then the energy interval 6E characterizing this wave
packet should satisfy the inequality

8E <1 . (23)
Ty

Third, it can be shown that'(21) tends to zero as

A — 0 (A%t finite) if the initial state is the wave

packet (22) and if 6E satisfies the inequality*

1 ~ R R
5 [#.0] =5 (He—eH)

In the classical case (25) is the Liouville equation
and p denotes the distribution function of all the co-
ordinates ¢  and momenta p of the system. The
formal solution of (25) has the form

o (t) =" (0).
In quantum theory this equation is equivalent to
Q(t) = e Ihq(0) it M.

We shall not distinguish between the quantum and
classical cases from now on. We are usually inter-
ested in the time behavior of a definite ensemble,
which is characterized by a certain ‘‘projection’’ of
the density matrix (or distribution function). We
therefore write p in the form

e=Po+(1—P)o=0,+0u

where p; is the density matrix projection of interest
to us. Thus, formula (18) separates the diagonal
part of the density matrix, and in this case (26) is
written in the form

(26)

*We note that in this case the characteristic correlation fre-
quency w* coincides with SE/h if SE < §,E (but if §,E < SE
then o* = §,E/H).

V. M. FAIN

We have thus proved the balance equation for two
classes of pure initial conditions, represented by
packets (23) or (24), or else for mixed initial states
with a diagonal density matrix. In® (see also!T) it
is shown that if we do not assume A to be small, the
balance equation is incorrect. We cannot, for exam-
ple, calculate the probability per unit time in higher-
order approximations and use the same balance
equation (14). An investigation carried out in® by
the resolvent method yields for the quantity (20) an
integro-differential equation that describes a non-
Markov process. When A is small this equation
goes over into (14). Unlike (14), the equation of &
with finite A is valid only for initial conditions (23)
and for mixed initial states with diagonal density
matrix.

The derivation of the Van Hove integro-differen-
tial equation, made in® without assuming A small,
is rather complicated. This equation is derived in
much simpler fashion in the paper by Zwanzigtm.
We present this derivation. In order not to give a
separate derivation for the classical case, we write
(9) in the form

.9 .
i a—f = Lo, (25)
where
9% 8 '\ ip the classical theory,
99y Opg
in quantum theory.
Qaa’ = QuaOuar + (4 — a0’) Qaar (26")

Another example of subdivision of (26) will be given
later on in the derivation of the classical balance
equation. We assume henceforth that Pis an opera-
tgr that is linear and independent of the time, so that
P and 5/0t commute. Equation (25) can in this case
be rewritten in the form

i 2= P (0, +0y),

. a ~ A
i52=(1—P)L(0,+0y). (27h)
The formal solution of (27b) is written in the form

:(t)=exp[—it(1—P)L]e,(0)
t
—i K dsexp[—is(1—f')[:](1—l3)LAQI(t—s)
0
[it is possible to verify by direct substitution that
this solution satisfies (27b)]. We then substitute
(28) in (27a) and obtain the sought equation

(27a)

(28)

i % = pLexpl— it(1— P) L1, (0)

i
+ ﬁﬁgl—ig ds PLexp [—is(1— PYL] (1~ B) Lo, (t — 5).

0 (29)
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This equation is a generalization of the Van Hove
equations and goes over into the latter after separa-
tion of the Hamiltonian given by formula (15), when
the operator P separates only the diagonal matrix
elements p in the representation of the unperturbed
Hamiltonian ﬁo. The initial conditions indicated
above correspond to

Po(0)=1¢(0), . (0)=0.

In this case (29) does not contain p, at all. The
choice of initial conditions and the irreversibility of
(29) [with py (0) = 0] will be discussed in greater de-
tail in Sec. 6 below. Equation (29; goes over into the
balance equation (14) as A — 0 (A%t finite). We do
not derive the balance equation now, but proceed to
derive®7 its classical analog.

4. DERIVATION OF CLASSICAL BALANCE EQUA-
TIONS IN I' SPACE

The classical balance equations in I' space were
derived in the paper by Brout and Prlgogmem
Different generalizations and applications of these
equations are the subject of several papers by
Prigogine and his co-workers™, The derivation of
the classical balance equation given in® corres-
ponds fully to the Van Hove derivation® . We there~
fore do not stop to discuss the premises on which
this derivation is based. We merely note that a con-
dition of the type of diagonal singularity of the per-
turbation energy is used here, too. Now, however,
this condition is imposed not on the matrix elements
V, but on the corresponding Fourier components of
the perturbation energy. It is known®7 that the ma-
trix elements go over into the Fourier components
in the quasiclassical approximation.

We now proceed to derive™®® the classical bal-
ance equations. We consider a classical system of
N particles in a volume §2. The Hamiltonian of such
a system has the form

N N
=gt t5h X NU(r), (30)
H

ik

where the j-th particle has a momentum pj, a co-
ordinate rj, and a mass m; U(rjk) is the energy of
interaction between the j-th and k-th particles. The
corresponding Liouville operator has the form*

Z_'1":0"_}‘[,;.1:

°_—l2‘ m 8r (31)
- ——ZZF”‘[(%) (m)J (32)
where AFjk = - A[aU(rjk)/Brj

*We recall that in classical mechanics the Liouville operator
is defined by Eg. (25).

The Liouville equation (25) describes the evolu-
tion of the distribution function p(rj, pj t) in time.
The balance equation which we derive pertains to the
distribution function of the momenta only; then

b =(vnyt S 3N (33)

and

bo(r, p, Y= (P, 2). (34)

We assume that the distribution is homogeneous at
the initial instant of time, that is, py (0) = 0. It is
easy to show further that 28

bPig,=0. (35)

In this case (29) simplifies to
t

= — K ds PLexp| ——is(i—-ﬁ)ﬁ] Lo, (t~s).  (36)
0

8o,
ot

We furthermore use the fact that
Lo = ﬁqgl and PLf= Ms[:l]‘, (37)

where the first equality follows from the fact that
Lo py = 0 and the second follows from the fact that
the operator P annihilates any function Lof

Using these equations, we obtain ultimately

a A
7?L_}ﬁgalsk(s; Ao (t—s), 39)
where ﬁ(s; A) is an operator in momentum space:
E(s; \)= — PLyexp[—is(1—PYL) L,. (39)

Equation (38) is exact. This equation describes a
non-Markov process of approaching the equilibrium
state. It can be simplified in case of small L. In
this case we introduce a new time scale

T=A%. (40)

Equation (38) is written in the form

r/A2

o 3 ds i (3 1) 0y (T — AZs).
1]

ot

We assume further that the kernel k is finite in the
interval 0 <s <7g:

E(s; A)==0, if s>,

Here 7, is the characteristic correlation time; it
is, in particular, equal to the collision time (whereas
the relaxation time is of the order of the time be-
tween collisions; see also Sec. 3). We now go to the
limit as A — 0 for fixed 7 > 0. As a result we ob~
tain

900 _ 32 dsi(s; 0) o, (v) 41y
0

which is an equation describing a Markov process.
Using (37) we find
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k(s; 0= — PL,exp (—isL,) L,. (42)
Equations (41) and (42) coincide with those derived
by Brout and Prigogine[EJ .

5. KINETIC EQUATIONS IN ¢ SPACE

So far we have dealt with equations in I" space.
For the case of sufficiently rarefied gases it be-
comes possible to write closed equations in y space,
that is, in the space of the individual particle. The
y space is characterized in general by the coordi-
nates x, y, and z and momenta px, py, py of the in-
dividual particle. The first to write the kinetic equa-
tions in p space was Boltzmann®®, These equations,
however, were not derived from dynamic equations,
inasmuch as the statistical assumption of molecular
chaos (Stosszahlansatz) was made for each instant
of time t.

From the balance equations we can obtain directly
the following equations for the occupation numbers
nk in p space (see, for example, 237 ;

d 1

;’:h) =3 2 h (nin; (146n) (1 + 6n)))

it
— AP (ngn, (1 +4-6n) (14 6n;)), (43)

where Ali{jl are constant coefficients characterizing
the transition probability per unit time, while the
angle brackets (... ) denote averaging with the aid
of the probability distribution function

P(ny, 0y, ..., Ng, ..., t) in I space. Thus, for ex-
ample,
(Y= 22 ... ... D mP(ny...n,. . 1)
ny Ny ’Ilh 'n]-

=0, 1, and -1, respectively, for particles obey-
ing classical, Bose-Einstein, and Fermi-Dirac sta-
tistics.

Equation (43) is essentially not in u space and
differs from the Uehling-Uhlenbeck equation used in
kinetic theory of gases30 in that the right half of
(43) contains the average of particle products
{njnj ), {njnjng), etc. in place of products of
averages. It is essentially necessary to make an
assumption which is equivalent to Stosszahlansatz:

(nsn; (14 0n,) (14-0n)) = (n3) (n5) (1+8(m)) (14064 (n)),
(44)
in order to go over to the ordinary kinetic equations
used in theory of gases*.
The question of the derivation of the kinetic equa-
tions in ¢ space from the balance equations in I
space was considered in%21 | Several papers are

*Equation (43) and the equation obtained from it under condi-
tion (44) describe the relaxation of a homogeneous gas in the
absence of external forces, that is, the right half of (43)—(44)
yields the collision integral.

also devoted to the derivation of kinetic equations in
p space directly on the basis of the Liouville equa-
tion or the Schrddinger equation for the density ma-
trix. Foremost among these is the work of Bogo-
lyubov®, Let us dwell briefly on the assumption
that serves as the basis for the derivation of the
kinetic equation in that paper.

From the Liouville equation (25), (30) we can
derive a hierarchy of equations for the s-particle
distribution functions

Fotyz, ..., z)

=ng Sg(t, Ty, Tgy - .1 By) A2y, T,y . . . dzy, (45)

where xi = qj, pi stands for the coordinates and
the momentum of the i-th particle and Q is the vol-
ume of the gas. When £ and N tend to infinity in
such a way that v = /N remains finite, the system
of coupled equations for the functions Fg has the
form (see also[32,33)

oF 1
— S = Py ({3 W (ai— g ) P} daas,
1<igs (46)

where Hg is the Hamiltonian of the system of s par-
ticles, and the braces denote Poisson brackets. This
is an exact system of equations, equivalent to the
initial Liouville equation. To go over to the ordinary
kinetic equations [which are equations for the func-
tion F; (%4)], the following assumptions are made:

1. For a broad class of initial conditions for the
function p, Fg depends on the time only through Fy:
after a time that is large compared with the colli-
sion time (i.e., Tg)

Fo(e,...250)—>F (x,...2,|F)).

2. The decrease in correlation is assumed to
have the form

[S2PF (0, ;... z,)

— 1 Fy(0, 2)]—0 as v—> 0, s=2,3...,

1<igs

where SO_(,‘S_) denotes an operator corresponding to
uniform straight-line motion of the system of s ma-
terial particles with momenta pg. This condition
expresses the fact that the particles were statisti-
cally independent prior to ‘‘turning on’’ the inter-
action. If 7is made to approach - « in the condi-
tion for the weakening correlation (which denotes
that Fs is expressed as a product of functions F, as
t — ), then the collision integral in the kinetic
equation will have the opposite sign 4] and in this
case it will not describe the approach to the state of
equilibrium with increasing entropy.

Using the indicated assumptions and expanding in
powers of 1/v, we can obtain an equation for Fy in
closed form. We shall not dwell in greater detail
onl® and other papers devoted to the derivation of
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the kinetic equation from the Liouville equation. A
detailed review and a critical analysis of these pa-
pers can be found in the articles B35,3¢) {(see also
[7:30,37-39)  We point out only the paper by
Bogolyubov and Gurov® | where a quantum gen-
eralization is made of Bogolyubov’s paper (fo a case
when the potential energy can be regarded as a small
perturbation). The Bogolyubov method was used in
many papers (for a detailed bibliography see[“]) to
derive kinetic equations in different physical situ-
ations.

6. PRINCIPLE OF ENTROPY INCREASE

In Secs. 3—5 we have considered the connection
between the kinetic equations that determine the
time variation of the statistical ensembles and the
dynamic equations that determine the time variation
of the state of the entire system. Since such a con-
nection has been established, we can proceed to dis-
cuss the statistical justification of the entropy in-
crease principle.

We now present the customary proof of the prin-
ciple of increase of entropy from the balance equa-
tion. According to formula (4), the entropy of an
ensemble, characterized by diagonal elements of
the density matrix p, is equal to

= — 2 0aIngee= — X Pyln P,
a

Differentiating this equation and using the balance
equations (14), we get

g= — %’ (Poln Pyt Pg)= — 2:3 (Wao Pg— Wep Pg) In Py
a
= %Waﬁ (Pg—Py)1n Pg. (47)
al

In going over from the second equation to the third
we have used the fact that the sum ), P, does not
depend on the time, and in going over to the last
equation we used the property of ‘microscopic re-
versibility’

Wap =Wea, (48)

which follows frogl the fact that the perturbation-
energy operator V is Hermitian. Let us interchange
the indices o and 8 in (47) (which of course, does
not change the sum) and add the resultant expression
to (47). Dividing by two, we obtain

P
g= — 5> Wag (Pg—Po) In .°. (49)
Zaﬂ PB

It is easy to see that the expression in the right half
of (49) is always positive, i. e., the entropy increa-
ses, except for the case

Py =Py, (50)
when the right half of (49) vanishes. This case

corresponds to the state of equilibrium. If we take
account of the fact that in the balance equation W43
denotes the probability of transition between states
with identical energy, then the equilibrium state (50)
is described by a microcanonical distribution, in
which all states with given energy are encountered
with an identical probability

pB=Pu=ﬁl(T)’ (50)
where AT (E) is the number of states with a speci-
fied energy. It is easy to see that the state (50’) has
the maximum entropy.

Thus, the balance equations lead to the principle
of increase of energy, and the maximum value of the
entropy is realized for a microcanonical ensemble.
We note that unlikem’m, the derivation presented
here for the principle of entropy increase does not
call for separating the density matrix into fine-
grained and coarse-grained components. On the
other hand, one cannot agree with the statements
made in(1%1) that the increase in the entropy of a
fine-grained ensemble, which we have just proved,
is purely a quantum effect and is connected with the
measurement process. An analogous statement is
made by Davydovfm . Let us dwell on this question in
somewhat greater detail. The usual reasoning that
leads to the need for introducing a coarse-grained
density matrix is as follows. The entropy, defined
with the aid of the density matrix (or distribution
function, in the classical case) of the entire system
in the I" space, does not depend on the time (see
Sec. 2). It is concluded therefore that if we define
the entropy with the aid of a coarse-grained density
matrix, such an entropy will increase. The coarse-
grained density matrix is introduced in the following
manner 3% The stationary states of the system
are subdivided into groups such that the differences
between different groups, but not within the groups,
can be established with the aid of accessible mea-
surement methods. Then the coarse-grained density
matrix has in the chosen representation the form

i
~ 93 ¢
3
where the summation is over all the Si-states of the
i-th group and the energy level Ej belongs to the
i-th group. The entropy is defined with the aid of
this density matrix as

zz_gphhlnphh: “—Eleﬂphw

Of course, the entropy so defined should no longer
remain constant, and it is usually concluded (without
proof) that = increases. On the other hand, the fine-
grained quantity

szakz

€= —2 amlngy

should likewise not be constant and both quantities,
by virtue of the Klein lemma, should be larger than
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Tolman[% thus concludes that there are two reasons
for the increase in . The first is in the difference
between the coarse- and fine-grained quantities P
and p; the second reason for the change in X is the
increase in € = - Zpkk In pkk (this increase is
likewise not proved). The second cause of the change
in Z is called by Tolman the quantum-mechanical
variation of the fine-grained probability and, accor-
ding to him, has no classical analog. We cannot
agree with such a point of view, and, as we have al-
ready seen, the principle of entropy increase and the
approaches to the state of equilibrium can be des-
cribed without resorting to the concept of the coarse-
grained density matrix.

The situation can be described in the following
fashion. The entropy of the state &, in vy space
does not depend on the time. In order to check this
statement experimentally, it is necessary to carry
out at each instant of time a complete measure-
ment on the system and to separate an ensemble
(which in general is different at each instant of time)
corresponding to this complete measurement. On
the other hand, if we are interested in the behavior
of the same ensemble, specified by the same meas-
urements, then the entropy of such an ensemble, as
has been shown above, increases monotonically.
This is true also for the same assumptions under
which the balance equation (14) has been derived.
We can say more generally the following: we are
usually interested not in the entire density matrix
p , which contains all the information concerning the
system, but in part of the density matrix, its projec-
tion p, = P p, for which we establish the corres-
ponding kinetic equation that leads in turn to the en-
tropy increase principle. Thus, in the case analyzed
the operator P separated the diagonal elements of
the density matrix of the entire system in terms of
the eigenfunctions of the unperturbed Hamiltonian
&%, and the corresponding ensemble was determined
by the same token. In Sec. 4 the operator P separ-
ated the classical ensemble correspounding to the
measurement of all the momenta of the system:

Ql(phpﬁ"‘)=pg(rls rZ’ “eay plspzu ---)-

In the case of gases, the entropy increase principle
can be established for the ensemble corresponding
to measurement in y space, i.e., in the space of
momenta and velocities of one particle. In this case
the operator P projects p on the pu space, We thus
see that the situation is the same here for both the
classical and quantum cases, and what Tolman calls
the quantum-mechanical change in the fine-grained
probability is none other than the change in the en-~
tropy of the corresponding ensemble, which does not
coincide with the complete ensemble and is charac-
terized by specification of the type of measure-

ments.* We can say also the following. We are usu-
ally interested not in the complete information Iy, ,
but only in the part of the information contained in
the density matrix f’;’)\ . For this part we obtain the
law of decrease of information (entropy increase).
The information containeg in f’ﬁ is transferred to
the remaining part (1 - P) p, so that the total in-
formation remains unchanged. Davydov®? has ac-
tually suggested that the change in entropy

& = -Z,4Pqy InPy is due to the repeated measure-
ments. As is obvious from the foregoing, the change
in & follows from the Schridinger equation, in which
the effect of the measurement is not taken into ac~
count,

The principle of entropy increase and the micro-
canonical distribution in the state of equilibrium
were derived above from the balance equation. The
latter was derived from the Schridinger equation
with the aid of several assumptions. These assump-
tions concern, on the one hand, the properties of the
perturbation energy and are the necessary conditions
for the existence of a dissipative process. On the
other hand, these conditions are not sufficient, since
the satisfaction of a definite class of initial condi-
tions is required. It is precisely here that the sta-
tistical assumptions should be contained. Were it
possible to prove the balance equations (or the cor-
responding kinetic equations) for arbitrary initial
conditions, then we could prove by the same token
the entropy increase principle in a statistical form ¥
and the ergodic theorem. However, it is impossible
to obtain such a proof, as will be seen from the ex-
amples given below.

Let us turn now to discuss in somewhat greater
detail the initial conditions. As was noted in Sec. 3,
the balance equations can be derived if at the initial
instant the density matrix is diagonal in the indices
« which characterize the states of the unperturbed

*To single out a corresponding ensemble by the type of meas-
urement performed may seem somewhat artificial in the classical
case. However, the kinetic equation (both classical and quantum)
determines the time variation of the projection f’p of the complete
distribution function, and this projection always gives the proba-
bility distribution only for a definite class of measurements on the
system. On the other hand, the ensemble and accordingly the pro-
jection Pp are determined in natural fashion by the class of physi-
cal quantities whose averages are of interest to us. Thus, for ex-
ample, the average values of physical quantities, which depend
only on the momenta p; of systems, are determined by the projec-
tion of the distribution function

o (r1-- Px)=Po (@1 - oIN} Pre-. Px)-
Analogously, single-particle physical quantities (such as volume
or gas pressure) are determined by the distribution function in g
space.

fInasmuch as we are using the Gibbs definition of entropy (see
Sec. 2), a monotonic increase in this quantity does not contradict
the existence of fluctuations in the equilibrium ensembles and by

the same token the increase in the Boltzmann entropy (see, for ex-
ample, [+*1).
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Hamiltoniand#,. [In addition, the balance equation
can be derived if in the initial instant the system is
in a pure state, satisfying condition (24).] If the den-
sity matrix is diagonal at the initial instant (in the
chosen representation) then, without confining our-
selves to small values of the parameter A, we can
show®? that as t — o the system is characterized
by a microcanonical distribution. (However, for an
initial distribution corresponding to condition (24),
such a statement has not been proved for finite A.)
The question arises whether the initial ensemble can
have a representation (at t = 0) with a diagonal den-
sity matrix. Were it possible to prove such a repre-
sentation at the initial instant (i, e., prove that such
an ensemble can be used to obtain correctly all the
mean values of the physical quantities), then we
could prove by the same token the principle of en-
tropy increase in its statistical form. Let us ex-
amine the degree to which such an ensemble can be
regarded as representative. In the macroscopic ex-
periment, the initial state is characterized by speci-
fying a series of averages

Spo(0)4,=a,, Spo(0)Ay,=a, ..., Spe(0)=1. (51)

The last equality is the normalization condition (the
average value of the unit operator is always equal
to 1). However, equations (51) still do not determine
the density matrix. In order to determine the den-
sity matrix we must advance the postulate that the
state p (0) is the most chaotic of all the states that
are compatible with conditions (51) 1&141% (see also
[44,45,1y Analytically this is expressed by the con-
dition of maximum entropy (or minimum informa-
tion) of the state

82, = —8Spa(0)lng(0)=0 (52)

with supplementary conditions (51). In particular,
the requirement that the mean value of the energy
and of the unit operator be definite leads to a canon-
ical distribution. We can generalize this principle
by assuming that the distribution is specified in the
initial ensemble, i.e., that the diagonal elements of
the density matrix are specified

Qea=Pa, 2D Pe=1, (53)

and that in all other respects the state is the most
chaotic, i.e., it has a minimum of information

8Spe(0)In (0)=0 (54)

subject to condition (53). It is obvious that the solu-
tion of this extremal problem is given in accordance
with the Klein lemma by the diagonal matrix

pPaa(0) (Pge’'= 0 when a # a’). Thus, an initial
state with diagonal density matrix (for which the ir-
reversible equations are derived) is the most proba-
ble of all the possible initial states compatible with
the specified probability distribution (53). It has
maximum entropy (maximum lack of information)

subject to conditions (53). One must not think, how-
ever, that the extremal principle considered here is
an unavoidable consequence of quantum theory. Al-
though such a notion can result from the previously
cited papers (see alsoM€)), this is nevertheless not
so. We now proceed to an examination of cases when
this principle is not satisfied. From the paper of
van Hove™® (see also™%4) it follows that for nega-
tive t an analogous balance equation is valid, which
leads to a microcanonical distribution as t — -oc,
The behavior of the entropy is shown schematically
in Fig, 1. When t = 0 the entropy has the smallest
value [for initial conditions (53)—(54)*].

Equilibrium ¢

g ¢
FIG. 1

At an instant of time t = 0 the density matrix is
no longer diagonal, and if we choose such an instant
of time as the initial one, then, depending on the val-
ues of the non-diagonal matrix elements pgq’, the
entropy will increase or decrease (the latter will be
realized if the matrix elements correspond to the
instant of time t < 0). As a rule, however, in a
macroscopic experiment we do not know all the de-
tails of the initial state and choose a priori the most
probable one, i.e., in fact the state (63)—(54); and
in this case we obtain the balance equation. On the
other hand, if as a result of the experiment we ob-
serve that the behavior of the system is such that
the entropy decreases, we ascribe such a behavior
to a low-probability fluctuation.

However, cases are possible when we can predict
that the entropy will decrease after a ¢ertain time
interval. Such a case occurs in the spin-echo ex-
periment®¥ (see also®?, in which the statistical
aspect of this experiment is discussed). This ex-
periment can be described roughly and schemati-
cally in the following fashion. The system of spins
is in an inhomogeneous magnetic field, and at the
initial instant of time all the spins are aligned with
the x axis, which is perpendicular to the direction
of the magnetic field (the z axis). The spins in the
magnetic field precess with a frequency w = yH,
which is different for each spin. Let the frequencies
w be symmetrically distributed with respect to the

*To avoid a misunderstanding we note that at the initial instant

of time the entropy is the largest of all those possible at that in-
stant [subject to conditions (51)], but it has a smallest value com-
pared with the entropy for |t| > 0.
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¢ ¢

frequency wy. We proceed to a system rotating with
frequency wj. Then, if g(w) (the distribution func-
tion of the frequencies in this system) is a delta-
function

g ((1)) =9 ((.0),

the total spin of the system will be aligned at all
times with the x axis (in the rotating system of
coordinates). In the general case, when g(w) is not
a delta-function, the summary spin along the x axis
is proportional to

S g(w)etotdo

-—00

and, in accordance with the Lebesque-Riemann
theorem, it tends to zero as t — -, The behavior
of the spins at different instants of time is shown
schematically in Fig. 2a, from which it is seen that
the entropy of the spin distribution increases mono-
tonically (the state t; is more chaotic than t = 0).
However, if we reverse the magnetic field at the
instant t, the signs of the frequencies are re-
versed [g(w) does not change], and the process pro~
ceeds in the opposite direction (Fig. 2b). The en-
tropy then first decreases, reaches a minimum at

t = t’/, and then increases again and the system
goes into the equilibrium state.

Let us summarize the contents of the present
section. If an initial non-equilibrium state is spec-
ified in a macroscopic experiment, when we do not
know all the details of the states, then the a priori
most probable state will be one with a diagonal den-~
sity matrix, and consequently an entropy increase
will be observed in further experiments in the same
ensemble. However, cases are probable in which the
entropy decreases. In all the analyzed examples,
whether the entropy behaves monotonically or not,
the system goes over into an equilibrium state char-
acterized by a microcanonical ensemble. This sug-
gests that it is possible to prove the ergodic theorem
for a much more general class of initial conditions
than given in the paper of Van Hove “,

¢ 7

FIG. 2

7. QUANTUM THEORY OF RELAXATION PROC-~
ESSES

In the investigation of relaxation processes of
different physical systems we usually deal with the
following characteristic situation. Relaxation occurs
as a result of the interaction between some dynamic
system and a dissipative system. We define as dy-
namic that part of a system (or subsystem) which
has a finite number of degrees of freedom and dis-
crete energy levels, and which is described in prin-
ciple by simple dynamic equations. This dynamic
subsystem interacts with the dissipative system,
which has an infinite number of degrees of freedom
and a continuous spectrum. A simple example of a
relaxation process is the spontaneous radiation of
an atom in free space. The role of the dynamic sys-
tem is played here by the atom, while the dissipa-
tive system is the radiation field in free space. The
radiation field in free space has a continuous spec-
trum, while the atom has a discrete spectrum. The
probability of spontaneous radiation in a quantum

tr%nsition from excited state a into state b is equal
tobl

2
W= —;? z [ Vao; b1 P8 (Ego— Ev1,) ¢
A
2
== ; Vao; b1y, Votpia08 (Eog— Epyy) t = Wy £ (55)

The singularities of spontaneous radiation, which
follow in particular from expression (55) and which
are of interest to us, are:

1. The interaction between the atom and the ra-
diation field leads to an ‘‘accumulation’’ effect—the
transition probability is proportional to the time.

2. Expression (55) is valid if the following con-
dition is satisfied

fc<<t<<ro=5f—£, (56)

where T¢ = 27/w, is the period of the spontaneous
radiation and 1/wgyp, is the average lifetime of the
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excited statePD. Thus, in order for a transition
probability to exist in a unit time, it is necessary to
have

Loy =2, (57)

T, =
07 wgp Wy

It is easy to see that the latter condition is anal-
ogous to condition (17), which we encountered in the
investigation of the applicability of the balance equa~
tion,

3. It follows from (55) that to have a non-zero
transition probability per unit time it is necessary
to satisfy the diagonal singularity condition. In fact,
the matrix elements of the energy ¥ of interaction
with the radiation field are inversely proportional to
m, (where L is the dimension of the cube in which
the radiation field is contained). For free space
L — =, and consequently the matrix elements are
infinitesimally small. On the other hand, the ex-
pression

; Vao; b1, Vaty: a0 = (V2a0; a0 (58)

is finite, since it is necessary to change over from
summation to integration, and the state density is
proportional to L. [Expression (55) contains the
sum

; VaO; bivaih: a0y

which is taken on the constant-energy surface
Ego= Eyy,.

However, it is easy to see that this sum is also
finite, and corresponds to a diagonal singularity of
the matrix VAV].

The foregoing singularities of the spontaneous
radiation are inherent also in other relaxation proc-
esses. An account of these singularities makes it
possible to derive the balance equation (see Sec. 3).
The balance equation (14) derived by Van Hove®
characterizes essentially the relaxation of a dissi-
pative system (the dynamic system is not introduced
at all). In order to be able to determine the different
averages pertaining to the dynamic subsystem it is
necessary to derive the kinetic equation for a den-
sity matrix which is diagonal in the indices « of the
dissipative subsystem and is, generally speaking,
nondiagonal in the discrete indices m and n of the
dynamic subsystem. In fact, the average value of
some operator A pertaining to the dynamic subsys-
tem is equal to
(4= Sp éf’i = 2 , Qno’; ma Ama; na’ = 2 Qna; ma Amn' (69)

nmaa m, n,
The last equality follows from the fact that the ma-
trix A is diagonal in the indices « in the represen-

tation with a diagonal Hamiltonian operator for a
system consisting of non-interacting dynamic and
dissipative subsystems.

We now proceed to derive the equation for the
matrix pma;nam]'

The Hamiltonian of a system consisting of a dy-
namic and dissipative subsystem that interact with
each other has the form

SO =Gy + 1V, Spo=hF+1E, (60)

where HF is the Hamiltonian operator of the dissi-
pative subsystem, HE is the Hamiltonian operator
of the dynamic subsystem, and fV is the interaction
energy. In order to take into account the external
forces acting on the dynamic subsystem, we assume
that £ can depend explicitly on the time in an arbi-
trary fashion. Equation (9) for the density matrix
assumes the form

ig_§=[ﬁ+E+V, al. (61)
Let us change over to the interaction representation.
For this purpose it is necessary to carry out a uni-
tary transformation on all the operators

A—> eift SAS 1 e-ift (62)
where the matrix S satisfies the equations
a8 .ap dd7

O =i8E, = —iB8, §*'(0)=1.  (63)

In this representation Eq. (61) assumes the form
.80 it 64
52 =[Val. (64)

Here V and ;3 are operators in the interaction repre-
sentation. Our problem consists of deriving the
kinetic equation for the density matrix pmeg ;ne by
starting from this equation and using the above-con-
sidered assumptions concerning the smallness of v
(v characterizes the order of magnitude of the op-
erator V) and the condition of diagonal singularity
in the index « . We are interested in the behavior of
the density matrix P, using for the scale a time on
the order of the relaxation time 7, = I'/v* (where

T does not depend on v). This means that when we
refer later on to the variation of the density matrix
over an infinitesimally short time, we shall have in
mind variation over a time much shorter than T;.
On the other hand, however, this short time should
be very long compared with another time scale, of
the order of 7, = h/6¢E, where 8,k is the already-
introduced energy difference [see formula (16) of
Sec. 3], characterizing the dissipative subsystem. The
increment in the density matrix* over a time 7 satis-
ying the condition

T, L 1L T (65)

*We refer throughout to a matrix with elements pya;na.
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can be reduced, as will be shown below, to the form
Qt+T1)—Q(t)=A(t) v+ B(t)v+C (). (66)

We denote by 1 the time in the v scale, T = vt
Equation (66) assumes the form

e+ 7)o@ =A@ T+BHo+C[H0" (66"
Letting now v — 0 and T — 0 (the latter denotes
smallness only in the scale v? ), we arrive at the
differential equation

% _ 4
ot

or, going over to the old time scale t, we obtain
Y
= v2A. (67)
This indeed will be the sought-for differential equa-
tion. We note that only in the interaction represen-
tation can we assume that the density matrix varies
slowly and neglect its variation over a time of the
order of 7o. The point is that the transition to the
interaction representation denotes precisely the
elimination of the high-frequency dependence. The
density matrix p in the interaction representation
represents, roughly speaking, the amplitude of the

probability matrix in the Schrédinger representation.

The principal variation of this ‘‘amplitude’’ with
time is connected with the relaxation processes and,
by virtue of the smallness of v?%, is relatively slow.
We note also that the approximation consisting in the
changeover from (66) to (67) corresponds to the ap-

proximation used by Vgn Hove™® (A— 0, At finite).

In order to find v2 A in (67), we use Eq. (64).
From this equation we obtain, accurate to terms of
order v?

eit+v)—e=—i\ P (+7), a(t)dv

Ot A

- g v \ av V(¢ +v), (7 (E+7), el (68)
5 b

0

It is easy to see that without loss of generality we
can expand an arbitrary operator A in the interac-
tion representation in a series of harmonic functions
of the time:

A4=7) Ar(t) et A () = ¢ift AT g—iFt (69)
r
where the time-independent operators AT and the

frequencies w are determined by the transforma-
tion S(t)

§AS =D Aretor (70

Using (69) and (70), we can write the first term of
(68) in the form

Aléaa = g; [z (0, + 0gq) v;a' (t)AQa'a

— (0, + ©ga) éau.’ I‘}"’a'.’a. ()l exp (iw2), (71)

where ﬁaa’ is an operator matrix acting on the
variables of the dynamic subsystem, and in the rep-
resentation |ma ) its matrix elements are pmg;ne’;

the function 7(x) = i fexp (ix7"y dT’ goes over
0

when T >> h/6,E into the singular function®T
£(x) = P/x - i6(x). Since «’ varies continuously by
assumption, it is necessary to change over from
summation over &’ in (71) to integration. This in-
tegral, subject to condition (65), does not depend on
the time 7 and is of the order of v,that is, it has a
structure ﬁ(t) v. We discard such terms. We note
that the dependence on the time 7 could appear
were the matrix Vaa’ to have a singularity, that is,
were the contribution made to the sum by the indi-
vidual term of the sum different from zero. Each
individual term of the sum can yield a proportion-
ality to 7. However, we assume later on that the
matrix V is not singular. This means that as the
number of degrees of freedom N tends to infinity,
the matrix element Gaa’ tends to zero.

Let us proceed now to examine the second term
in the right half of (68). It can be written in the form

T

T
Agaa=—{ av { a1V (t4v), 7 (47, e
0 0

T K

S z S av' \ av (i (1)

0 0

X I’}(Ax’u" (®) éﬂ"a ot (@ T0ge) Ui (0gtegrgr) T

- VAr’z‘a' ® éa’u" I’}fz”a ® ¢t @pt0gg) Vi (0 +ogug)
— Vi (1) furae Vi (1) o' o0 T @) v
+Gaw Virar (1) Vi (1)  CrFowrad ¥ H Octoaad ¥y giCrbop .
(72)
Just as in the case of A, When T satisfies the
condition (65) the double sum (double integral) with
respect to « and ¢’ does not depend on the time
and has a structure c(t)v2 ; we neglect such terms.
However, there is now the condition of diagonal sing-
ularity, which separates from the double sum only
the sum over «’. Before we calculate this single
sum, let us carry out the following auxiliary com-
putation. The sum analogous to that obtained from
(72) after leaving out the diagonal-singular terms,
has for fixed r and s the form
T T
I= 3 S v’ § v etuT+iov £ (y, o). (73)
u+:=,gonst 0 ¢

Changing integration variables we have

: AU T_iuin
ro § e, e

T }rF(r,), (73%)

where the function
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wn, v
u-4v=const

F(t) = e=ivu f(y, v) (73a)

is essentially different from zero when 7, £ T¢,
and Te is determined by the interval 6v of the vari-
ation of f(const - v, v); Te = 1/6v., Let T >> 7¢
and then for (u + v} T >> 1 the curly bracket in (73’)
is small, and when (u + v) 7 g 1 we can replace
exp [i(u +v) 7y ] by unity. Thus, discarding small
terms with (u + v) T >> 1, we have

T w©
Z S dtv’eiuto) v S dv,e=f(u, v) [(737)
u, v 0 0
u+v=cozzst<<Ti
[

I=

[we have also replaced the limits of integration in
(73" by infinity, by virtue of the properties of F(1,)].
Now, using (73) and the diagonal-singularity condi~
tion, and going in the sense indicated above to the
limit as 7 — 0, we obtain the sought-for kinetic
equation in the form

69

== et I 1A (0,4 0,),

where p is the part of the matrix p diagonal in the
indices «:

(74)

o0

s

Ve = S e=iPt s gmiost” gifitr gy
b

and
v;a’ - S et @t0ge) dt'f’za'= __”}za,;*(ws + Oga)

0

=iVig [m Too. + ind (o, +maa)] (75)

A (x) denoting the function
1 whenz<<m*=i,
Az)= ‘ Te
0 otherwise.
Equation (74) can be rewritten in a somewhat differ-
ent form, which is more convenient for applications.
If we expand the commutators in (74), use relation
(75) as well as the fact that wy * ws << w*, we can
obtain the kinetic equation (74) in the form *

~

a0
2= —ill, al+R(e) (76)
where
Nog= — D> € @t “a‘:iT Ao, 4+0), (17
r,s, a”
Roa (0) =7 2, e @) 8 (0, 4+ 0ga) {2 Voo Quer Vira
rsa’
- I}:zu.' I’7(57.'41 éau — éua f/:m’ IA/v;'u} A ((1),. + o,). (78)

*It is assumed here that we are dealing with the case described
by formula (24), when S8E/% 2 w* (8E characterizes the energy scale
of the inhomogeneity of the density matrix).
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a second representation:

S$WrS.

We now change over to
~ &

—S$1e8, V= (79)
It is easy to see that in this representation Eqgs.
(76) —(78) assume the form

F P

3 THELN, o=

R (@), (76")

where

A B
t((n+cn)t aa u'uA ® @
—2 oo, Do o,

, 807

ot t A o~ 2 & S A
=1 2 et lortedty (0, + 0q-q) {ZV(rzu' Qurar Vaa—Vae Vo Qaa
r, sa’”

~ &

- Qaa V’(‘:L(l' V;'Cl} A (mr + 0)3). (78,)
Let us consider the particular case where the Ham-
iltonian of the dynamic subsystem consists of a large

constant part hE, and a small addition EW(t):

The smallness of W signifies that the matrix ele-
ments Wpm are much smaller than 64 E (the differ-
ence between the terms of the dynamic subsystem)
and are much smaller than w*:

W, < (8,E, o*). (81)
In this case we can put approximately
§¥n a1, Vi mar = Voo mard o, €, (82)
and Egs. (76)—(78) assume the form
By, ¥, = F), (76")
where
Fosira= =3 el Ao, (777)
Rug; na =2 k%’ {2Vima; raViar; narar; tard (By~ B+ For — Fo)
X Ao, o)
— Vina; hoVira; ta Quo;nad (B — Ey+ For — Fa) A (0,,)
— Vo 1oV ia7; na Oma; kad (B, — E,+ For — Fo) A(0,,)}). (78")

Let us consider now the question of the conditions
under which we obtain from (76) —(78) the balance
equation (14). For this purpose we put W =0 and
take the diagonal part of (76)

3,4:n R ~ ~
A%—i +i 2 (N ne; ka Ora: ne — Qna; ka IV ka; na)
R
=7 ) {2Vna; k¥ 10 na Qrar; 108 (B, — Epy+ Fa- — Fo) A (o)
ki
— Voo hor Vier; 10 Qias nad (Ep ~ Ej+ For — Fo) A(0y,)

- Vka; lo.’Vlu’; na Qna; kaa (EL - En + Fa.’ - a) A (mnh)}-
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As can be seen from this equation, in the general
case, the part of the matrix ﬁ which is diagonal in
all the indices is connected with the nondiagonal
elements of p. This means that in order to obtain
the balance equations it is necessary to introduce
additional conditions, namely, it is necessary first
that there exist no term differences wpy, different
from zero and much smaller than w* and, second,
that the levels of the dynamic subsystem be nonde-
generate. Then, as can be readily seen, (76) as~-
sumes the form

anz ne

ZanVna,ka ]26(E —E,+F,—Fqy)

X [Orar; Ra’ — Ona; nal, (83)

which coincides with the balance equation, and
20| Vg ha 20 (E, — Ey + Fo— Fy)

are the transition probabilities per unit time. The
equations derived by Van Hove™ are obtained from
(83) by removing the index n, that is, in the case
when there is no dynamic subsystem. Then these
equations describe the relaxation of the dissipative
subsystem. We note that the term containing N has
dropped out in the transition to the balance equa-
tions. The point is that this term, as can be seen
from its structure, yields the correction to the
energy levels of the unperturbed system and does
not lead by itself to relaxation.

The relaxation of the entire system (dissipative
+ dynamic) has in our approximation a Markov char-
acter (we are dealing with a case when the balance
equations are valid). This cannot be said, generally
speaking, about the relaxation of the dynamic sub-
system itself. The density matrix onm of only the
dynamic part of the system does not obey a first-
order equation in the general case, and accordingly
Onm does not obey the balance equations.

In fact, since

Cpn = 2 Qma; nay
o

it follows from (76) that

606";" + i [E'y &]m,, + i Z (-’Vma; kaQra; na — Oma; haﬁka; nu)
= 2 ﬁma; na- (84)
a

It is obvious that the sum in the left half and the
right half of this equation do not reduce in general
to functions of ¢ only. However, such a reduction
is possible under the assumption that the dissipative
system is much larger than the dynamic system and
is all the time in a specified state, so that the influ-
ence of the dynamic system on it can be neglected.
In other words, this assumption means that all the
average quantities pertaining to the dissipative sub-

system do not depend on the time (or vary very
slowly). Let us consider in this approximation, for
example, the first sum in the left half of (84)

; Nmo; nahana = Nz i D) Qo na =Nz 1zOnn (£
a

where ﬁma;ka is some average value of Nma;ka .
Our assumption is that this average should not de-
pend on the time. We therefore calculate it for the
instant of time t = t; when the interaction between
the dynamic dissipated subsystems is turned on, as-
suming that at that instant of time the density matrix
of the entire system can be represented by

Cma; na (o) = Cmn (t ) Pg (to)
Thus,
E ﬁma; 2alha; na 2 Nmu raPo (f0) Orn (%)
N - o=t L
ma; ki Z Qha: na Ogn (2o)
a

We shall henceforth leave out the argument ty in the
function P, since by assumption the variation of
the state of the dissipative circuit can be neglected.
In this assumption the kinetic equation defining the
behavior of the dynamic system assumes the form

% +i[E+TF, 0]y =2 2 ma1nThi — ThimkOin— TinkiOma)s
&l (85)
where
N . V" Ve,
[=— 3 elortedip, _aa-sa +m° L A(0,40,), (86)

r, s0a’

th=2ﬁma;kapa
a

-
1((\\ +m)£P 'm(:.ol_ﬂ‘._mlu ; ha A((I)r+(l).),
s

-- 3

i, r, sac’

3 ‘ o~ o~
) S "‘MZG ¢ (ortagiy (@, + 0a'a) Ving; ke ParViar; nalh (0, + ©,).
7

(87)

In the particular case when we can use (82) (the ex-
ternal force is small), the coefficients I' do not de-
pend on the time and assume the form

f.__'_z f’ﬁaVﬁa aA(m +(1))
= TosF oy, @b
r,8

V:mr la'V?a" hka
Fon= — 2 WPGA (0, + o)

Irsaa’

ma; | VI L ’
= — Z P(l E,-—%#F%—— A(mmk)v (86 )

lag’
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Counin =7 3} A(0;+0) Vings narParV ler; nad (@ -+ Ova)

=n 02 Ving: harParV a7 n0® (E; — B+ For — Fo) A (0, + @)
<

(87"

If the dissipative subsystem is in the state of
thermodynamic equilibrium characterized by a tem-
perature T, then a connection exists between the
different coefficients I'. In order to derive this con-
nection, it is necessary to change over from sum-
mation to integration over the energies:

R S dFan, (Fa),

where n,(Fg) is the density of the number of states
with specified quantum number u in the energy in-
terval dF, . It is further necessary to take into ac-
count the fact that if the dissipative system is in an
equilibrium state, then
,~PFa/AT

- MFa/RT

Po=P(Fo) =

As a result we get

Linmp =1 2 ¢ ©OrFOI A (0, + @) S dFan, (Fo)n (Fot o)

uu'rs
X(my Fa +(l)s, u,lvrjk’ Fa’ u>P(Fﬂ)

—hms/hT

x (I, Fo, u| V¥ |n, Foto,, u')e

- h hw_ /kRT
nu)s/ T ~ F'mhln r/ .

=T (88)

mhin€
If it is possible to employ formulas (87’), then (88)
assumes the form *

r

— n(E;~ —n(E,, —E,)/kT
Plnmxe : m k .

mhin —

EAT o Tkt (88"

It follows from the last formulas that in the absence
of external forces Eq. (85) has a stationary solution

—-ﬁFh/hT

Z —RE /RT ?

that is, the dynamic subsystem enters into equili-
brium with the dissipative subsystem. In the ab-
sence of external forces, for nondegenerate levels of
the dynamic system under the condition that A goes
over into the Kronecker symbol (that is, that there
exist no nonvanishing wpk << w*), we can obtain
from (85) the balance equation

Ohy = 61:1

&mm = ; (wmhckk - wkmgmm)’ (89)

where the probabilities per unit time are

=27

mRRm»

*Formulas (88) and (88”) hold true if w, + s < kT/h. This
congition follows from the condition w; + ws K w* only if equality
(24) is satisfied (where the role of SE is played by kT). If
kT < §E, then u* plays a role; on the other hand, if §E > kT,
then kT/f > w*.

and if the dissipative system is in an equilibrium
state, then it follows from (88) that

—n(E, ~Ep)/kT

Whm = Wk (90)

The corrections to the eigenvalues of the energy of
the dynamic subsystem can be obtained from (86"

Vi nar PP
BE,=Tpn=— 3 ET'LM'_«!_

m Th—Em—+Fo—Fq (91)

a, e,k

It is sometimes convenient to use not the kinetic
equation (85), but equations that follow from it for
the mean values of the operators pertaining to the
dynamic system. To obtain such equations we repre-
sent the operator Vr in the form of a sum of prod-
ucts of operators v T and Wl acting on the dynamic
subsystem and on the dissipative systems, respec-
tively:

V=Y Wik (92)

1

In this case the coefficients (86) and (87) can be re-
written in the form

F= 3 ¢bviol,
T, 8, 1, 1 5 (93)
Prpin =2 @ (m|vilk)(I]od]n),
78 1,10
where
re 1(m+m)t(a[Wr|a)((1|Ws[a)PA
W= @, + 0,),
(p‘ll % ms+mq_q a ( r S)
(sz,=n 2 ei (m,+ms)t6 (ms+ma’a) (CI.IW”(L') (G’lella)
aa’
x PoA (0, + o).
(94)

We can establish a connection between the coeffi-
cients & analogous to (88) (if the dissipative system
is in a state of equilibrium):

(D:f _(Dsr ho /hT (95)

We are now in a position to find the equations for the
mean value of some operator Q

(Q)=5paQ.
Simple transformations lead to the formulas
d( ) o
29 Q).
(96)

—ED, O+ Y OF (10, T 4[5,

7,8, 1,1

We shall present below different applications of the
formulas obtained here.

We now consider the connection between the re-
sults reported here and those in other papers. As
was already noted, Van Hove™ derived Eq. (83)
without discrete indices (see also[53]). This is called
the master equation, since it pertains to the behav-
ior of the entire system. The general kinetic equa-
tion (74) and (76) is essentially a generalization of
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the master equation to include the presence of ex-
ternal forces acting on the dynamic subsystem.
Another departure from the usual master equation
is that the density matrix is generally speaking non-
diagonal in the indices of the dynamic subsystem.
Equation (76) (in the presence of a weak external
field and disregarding N) was derived in®2. The
same equation (without the external force) was der-
ived inB0 by the Van Hove method. Equation (85)
and the following equations were derived in the main
in the papers of Bloch and Wangsnessfsz"57J for the
case when the dissipative subsystem is in an equili~
brium state (see also®%),

8. RELAXATION DUE TO INTERACTION WITH
THE RADIATION FIELD

We have already mentioned that the radiation
field in free space has a continuous spectrum and
can play the role of a dissipative system. The Ham-
iltonian operator of a complete system consisting of
charged particles (which play the role of the dy-
namic subsystem) interacting with the radiation field
can be written in the form (60)

S =hE+nF 1V,

where E is the Hamiltonian of the dynamic subsys-
tem,

Fe oS (B30

is the Hamiltonian of the radiation field, and

V=3 8,0, B,= PA,(s)  (97)

. hm
8=1

is the Hamiltonian of the interaction with the radia-
tion field*, while eg, mg, and i’s are the charge,
mass, and momentum of the s-th particle of the dy-
namic subsystem, Ay(s) is the vector potential of
the y-th normal oscillation of the free space at the
location of the s-th particle.

The complete vector potential is equal to

A(r, )=2Ay(r)Os.
It is easy to see that the non-zero matrix elements

of V have the form

[VIkinpg ...ny 1, nogy 200D

o Vo, +1
=I/Evah Vﬁ'v } . (98)

We now proceed to calculate the relaxation coeffi-
cients. For simplicity we use formulas (86’) and
(87’), which are valid for a sufficiently weak exter-
nal field W:

(m; nung ... Ny, Bygy ...

*We have assumed here, as is customary, that the omitted term
in the interaction energy, which is proportional to the square of
the charge, can be neglected.

Trpin=7% 2 Vantngys anty P AN Vigts niny
(‘"v} {ﬂv}

X 8 (B, —EptF oz, —Fing) A0+ 04,),

where { n,} denotes the totality of the quantum num-
bers nyny ...n, ... Using formula (98) and the fact
that P({n}}) is the distribution of the probabilities
of {n},}, we obtain

kaln =% E Bymn Byin A (0, + 0,,)

v

X e [(2y+ 1) 8 (B — Ex+ @3) + v 8 (B — Ep — 04)).

(99)
Analogously we obtain
'vml Bvlk ('_‘v+ )&
Lok = ’“Z A(‘”mh)r,—Eh+m 20,
1 Bun Bk
~ S8 om g T ey (100

In these formulas n, denotes the mean value of the
number of photons in the state characterized by the
index v. In particular, if the radiation field is in

equilibrium, then
1

hwy/RT *
SOVET g

Equations (85), (99), and (100) describe the relaxa-
tion of a dynamic system due to interaction with the
radiation field. We now consider some particular
cases of these equations. If the conditions of tran-
sition to the balance equation (89) are satisfied, then
the probabilities per unit of time have the form

ny =

TS
[ZnEIvakFﬂi—)—ﬁ(E —Etwy), E,>E,,

=
Ilz ]vahl 6(E —E,—wy), E,>E,.
v (101)

1t is interesting to see that these expressions coin-
cide with those obtained when Einstein’s coefficients
are used for spontaneous and induced emission

(Ek > Ey,) and absorption (Ex < Ep, ).

In order to relate (101) with the Einstein coeffi-
cients, it is necessary to change over from summa-
tion over v to integration over the frequencies and
propagation directions. As a result we obtain

' { dQ@ht 0. (O D), Ex>E,,
(101"

-~

Wim =

IR

{
l
\
l
{

§ a0, (@0 DO, Ea< B,

i

where alr{ns and bk . = bl are the Einstein coeffi-

cients for spontaneous emission, induced emission,
and absorption,
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2
0, (0, Q) doy 42 =T, nmvm—”(z'%fg—’
is the radiation density in the frequency interval dwy
and in the interval of solid angles d with polariza~
tion s. In particular, for dipole radiation of one par-
ticle (generally speaking, bound) we obtain the usual
expressions

2 00g? m _ 4% 200028 — p"
mn |2 00870, bng = =5 [y [* €OS® 6, = bims,

m__ 3
an = 2ahed [d

where dmp is the dipole moment matrix element and
fs is the angle between the direction of the dipole
moment and the direction of the polarization vector
€g .

We note that to find different averages pertaining
to the dynamic subsystem it is necessary to know
not only the density-matrix diagonal elements opp
entering into the balance equation, but also the nondi-
agonal elements onm of the density matrix. The equa-
tions for these quantities are (85), (99), and (100).

It is seen from (85), (99), and (100) that in gen-
eral the relaxation of the separate parts of the dy-
namic subsystem does not occur independently. The
point is that there is always a coupling through the
radiation field (although, if we disregard the inter-
action through the radiation field, the individual
parts of the system can behave perfectly indepen-
dently). Let us dwell on this question in somewhat
greater detail.

Let the dynamic system represent an aggregate
of non-interacting objects (for the sake of being
definite —molecules). If the levels of the molecules
are not equidistant, then in many problems connected
with the radiation it becomes possible to take into
account only two energy levels (which we shall
henceforth regard as nondegenerate). It is therefore
convenient to introduce an idealization of a molecule
with two levels*. All the operators pertaining to the
two-level molecule are represented by two-by-two
matrices. If we further stipulate that they be Her-
mitian, these matrices can be represented in the
form of a linear combination of spin operators f‘i
and a unit operator

O = af—l— b’:1+ c;z + d;:,,

where a, b, ¢, and d are constant coefficients and the
Ti have the following form in the representation in
1 70—

which r; is diagonal:
~ 1,71 0O
D=3 o 3“'2‘(0-1)'

It must be emphasized that the f'i , generally speak-
ing, do not coincide with the usual spin 1/2 which
represents the angular momentum. B9 this spin
was called energy spin to distinguish it from the

A~ 1701 -
=310

*It should be borne in mind that the possibility of introducing
such an idealization is, generally speaking, connected with the
quantum properties of the system, In fact, quasiclassical systems
have quasi-equidistant spectra (see, for example, ["]).

ordinary spin. In particular, it can be shown that
the energy of interaction between one molecule and
the radiation field has in the dipole approximation
the form

V;‘: _A(]')(el;lj“l_e2;2j)=;]fi‘;+;]7ﬁj+v
with the constants

, 2iwgdyy/he
+ — odz1/ ¢,
° EEE { —2iwyd;a/he, }
dyy is the molecule matrix element, dipole moment
Ay oa -~
ri =Ty 4 iry;
and

1 .
Ff= —5 A(j)ex.

It is easy to see that the energy of the j-th mole-
cule can be expressed as

RE; = hoyrs;.

We shall henceforth assume that all the molecules
have the same energy-level difference, equal to hwy.
The Hamiltonian of the dynamic subsystem consist-
ing of molecules that do not interact with one another
can be written in the form

hE =00, D) gy = ho Ry
2

The energy of interaction between the system of
two-level molecules and the radiation field has
the form

V=3V, =>r; F5+r7 ;.
3 )

We proceed now to derive equations for the mean
values (rJi > and ( ry;). For this purpose we use
formulas (96), where the role of the operators v¥ is
played by the operators r¥. As a result we obtain
for tl}e derivative of the mean value of some opera-
tor Q@

LD _E+ T, o+ D 0F (3710, 1+ 18w, 0170
+ D OFF 10, 1+t Q1RO (102)
where
®$7=~g~ Z(Av(i)e‘)(Av(i’)e —ay), ]
LD R
7= D@ A ) A o),
=121 (Pw"i fi'+fpi'i rart (103)

If the radiation field is in the state of thermodynamic
equilibrium, then

1 = e—hoo/kT 3%,

The coefficients & characterize the relaxation of

*We do not write out the coefficients ¢ here. The calculation
is analogous to the calculation of the coefficients ®.
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the dynamic subsystem. Let us calculate these co-
efficients. We assume that the molecules have
linearly polarized dipole moments perpendicular
to the line joining their centers of gravity. The
average occupation numbers fi, are assumed to
depend only on the frequency w;, = wy (as is the
case, in particular, for thermodynamic equilibrium).
Then

Vi

Vi
2 * (D‘L-l (nv + 1)

Qi =ny

Vit = Vit = 5 e 2 (Av (') dig) (Ay (8) dat) 8 (09— 04)
o |
= nzsh S do \ d0 sin® @ cos (ka sin 0 cos ). (104)
0 [
We ultimately obtain
N

Here k = wy/c; a is the distance between the i-th
and i '-th molecules, d is the value of the molecule
dipole moment matrix element ( |d12 [), and v, is
the natural line width of the isolated molecule T

4 4 a2
Yo =3 @0 G5 -

From (102) and (104) we get*

. — 1 A A
Lira) (;tm) = —2nyY, (T3 — E < Vi {Tri 1 r3)
p”
= Y @Ry 1) () + 5 =)
2y 1
— E‘J Y" (rhri + 3, (106)

V(£

(nv 2>Yo("t>+ Z Yiir (7'1"'3;) (107)

i (r,) = zo)o(r,

/(1)
a (’1)——“’)0(’1)—‘(”1’ 2>Vo("z>+ 2 Viir (Ti75).
(1) (108)

(We have used here the commutation relations for
the energy spin, which coincide with the commuta-
tors for the ordinary spin, rxr = ir; in addition,
we used relations that are valid for spin 1/2,

namely
1

O S 1o an an N
ToTg =Ty T3l = 5 T2 ryra+rary =0, ri=

etc.). It is seen from (106)—(108) that the relaxation
of the i~th molecule (which is described by the op-
erators i and Tji) is connected with the relaxa-
tions of the other molecules. This connection is the
result of the fact that each molecule is in the radia-
tion field of the remaining molecules.

*In order not to complicate the discussion, we disregard the
shift of the frequency w, due to the presence of the operator r
in the right half of (102).

Let us consider some consequences of equations
(106)—(108). Assume that at some instant of time
the states of the molecules are statistically inde~
pendent and the mean values are fli) = 0*. The
intensity of the spontaneous emission of the i-th
molecule at that instant is equal to

d<’3’) Ry == Yohog ( 5 +(r3)> =n,yho, =n,1,

and does not depend on the spontaneous radiation of
the remaining molecules. The total intensity of
spontaneous radiation of the entire system is equal
in this case to the sum of the radiation intensities of
the isolated molecules As time goes on, the corre-
+ A
lations (rlir +rir;y ) (i’ = i) differ from zero
and the intensity of the spontaneous radiation is no
longer equal to the sum of the intensities of the iso-
lated molecules. The width and the shape of the
spontaneous-radiation lines always differ from the
width and shape of the line of the: individual isolated,
molecule. The point is that the width and shape of
the radiation line are characteristics of the radia-
tion process not at an individual instant of time, but
over a sufficiently long time. Therefore, even if the
molecules are statistically independent at the initial
instant, in the course of time a connection arises
between themﬁ(fklarac’iirlized lgy 'Ehe valuerf the
correlation (rj’ri” +I;r{r), (ryri", (r} ry,) for
i’ =i).

Let us illustrate these considerations using as an
example the spontaneous emission of a system of
molecules, the dimensions of which are much
smaller than the wavelength®*$:5%  1n this case
(ka = 0) ¥ii’ =70 for any pair of molecules i and
i’. The total intensity of spontaneous emission is
equal tot

d A 1 AL A AA
— B0y X 7 (Fsi) =hOY, )  (Fhri +rird)
1 i1
= hogy, (R'R) = I (BRI + R+ Ry) = I, (B*— R34 Ry)
(109)
and, generally speaking, it is not equal to the sum of
intensities of the individual molecules. The sum of

*We recall the meaning of the components of the energy spin f
(see, for example, [”]) We express the molecule dipole moment

as a function of the time through #* and t
1 d . A,
75(1 etr +ert.

The mean value of the component r, is connected with the differ-
ence of the populations n; and n_ of the upper and lower levels
of the molecule:

- 1 ~
(7'3)="21‘(”+—"—)1 n,+-n_=1, '2_+("s)=n+-

The mean value is <r}{> =0, in particular, for the state in which
the molecule energy has a definite value (or the density matrix of
the molecule is diagonal in the energy representation).

THere R = 3ir;.
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the correlations can be expressed in terms of R in
the form

DD g ey = (R B — b= (R R~

s (110)
where n is the total number of molecules. The proc-
ess of spontaneous emission proceeds in this case
with conservation of R* and with decrease of R,
(that is, the energy of the dynamic system decrea-
ses). Consequently, if the correlation (110) is equal
to zero at the initial instant (in which case the ra-~
diation intensity is equal to nn, Hwqg y,), then it will
subsequently increase, as can be seen from (110).
This causes the radiation line width of the entire
system to be of the order of * ny; (in place of v,
for the isolated molecule), and the line shape differs
from Lorentzian %), Along with the broadening of
the line, the center of the radiation line is displaced
(in analogy to the Lamb shift). This shift is also de-
termined for the entire system of molecules ™. The
system (106)—(108) is nonlinear. It is incomplete,
since the mean values of rj are expressed in it in
terms of the correlations. The equations for the
latter can be obtained from (102). We can thus ob-
tain a system of equations that are coupled with one
another. However, for states that are weakly excited
relative to the equilibrium position, the system
{107)—(108) can be linearized. Let us consider the
case np = 0 (spontaneous emission). In the equili-

brium state r3; = -1/2; substituting this value into
the right hand half (107)—(108), we obtain

d . 1

S (rEy== 1(00<rii>——2'2—’Yii' ). (111)

-
We note that we obtain precisely the same system
of equations for the mean values of the annihilation
and creation operators {aj) and (aj)of a system of
oscillators. At the same time, the equations for the
mean values of the coordinates of the harmonic
oscillators coincide (the Ehrenfest theorem) with
the classical equations. Thus, (111) is essentially
a classical system of equations. Let us consider the
case of two molecules

X . 1 1
(rFY =10, (rF) — 5 Vo rifd — 5 Y2 (rifh

(111%)
A . 1 1
{rf)== lma(";)‘?‘\’o("z’i)"—gYﬂ(rzi)-
The solution of this system has the form
5 1 s 1
() = Afye W0 TEN g TN (112)

where

. 1 3 sinka 3 coska __ 3 sinka
Y1,2:Y0IY12=Y0{ + D " ke —ZWTj (ka)3

The problem of the radiation from an excited clas-
sical oscillator in the presence of similar unexcited
oscillators was solved in™-%! yunder the assumption

*More accurately, of the order of R, (where R = V< R? >).

that ka >> 1.* Formulas (112) go over in this case
into the corresponding formulas of (6] (for the case
of two oscillators, the variation of the radiation
frequencies was also taken into accountts“ﬂ). It is
seen from (112) that the relaxation process is not
exponential (sum of exponentials), resulting in a
non-Lorentzian line shape.

To conclude this section we note that the problem
of relaxation due to interaction with the radiation
field becomes particularly significant (in the optical
range) in connection with the invention of lasers. In
this case both the spontaneous emission (n, = 0) and
the induced emission (i, # 0) are of interest. The
induced emission is due here to two causes. First,
when T =0 the average numbers of the photons
ny(T) differ from zero, and second, ny = 0 owing to
the pumping field, which has a continuous spectrum,
like thermal radiation. The results of the present
section enable us to take account of relaxation due to
interaction with radiation in systems of the laser
type.

9. RELAXATION OF FIELD IN REAL RESONATORS

As a result of interaction between the electro-
magnetic field and the electrons of the resonator
walls, the field relaxes to an equilibrium state. The
atoms and electrons of the resonator walls play the
role of the dissipative subsystem, while the field in
the resonator now plays the role of the dynamic sub-
system.

In a resonator of finite dimensions, the field has
a discrete spectrum (unlike the field in free space).
The questions of quantum theory of attenuation of a
field in a resonator were considered in many papers
B0.87,68) e apply here the results of quantum theory
of relaxation (Sec. 7) to an investigation of the at-
tenuation of the field in a resonator.

The Hamiltonian of the system comprising the
resonator field and the resonator-wall electrons can
be written in the form

=5 X P+ o)+ )
k

L)

i _L._i_S‘ i
2my b2 Ay
ik

~ 30y 3k (PLA(K)).
v k

mge

Here the first sum represents the energy of the ra-
diation field, the second and third sums represent

the nonrelativistic energy of the particles compris-
ing the resonator, and the last sum is the energy of
interaction between the field and the particles of the

*In these papers, the system of oscillators is the model of a
system of nuclei that emit y quanta under conditions when the
Méssbauer effect takes place and the interaction via the radiation
field can be observed in principle, in spite of the smallness of this
interaction.
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resonator walls. Introducing the annihilation and
creation operators 5,1, and a,JS, we can rewrite the
interaction Hamiltonian in the form

7=—3G+iyh, K=y % D T (RrA(R)).
v “ (113)

We can now use formulas (93)—(96), where the
role of vy is taken by &y(wr = - w,) and &}, (wr=w,),
since in the interaction representation we have
apy ~ exp [i w,t] and aj, ~ [i wpt]. From (96) we ob-
tain for the derivative of the mean value of some
operator Q

L@y =B+, 0N+ D Div (ay [0, a31+[dv, O1d3)

+ > Dsv (v [0, aul+ 2%, Qlay),

v’

(114)

where

Df =1 8(F wy+0aa){a|Fy[a’')(a’'| Fy|a) PyA (oy— o),
aa’

(115)

and if the resonator walls are in a state of thermo-
dynamic equilibrium, then, according to (95)

(D“\')-v' = Q;’ve—hmv/kT'

(116)

From expressions (114) we can, in particular, ob-
tain equations for the quantities (a,) and (a})
themselves* (in the absence of external forces)

%‘ {ay) = —ioy(ay)— Z Yorw {8y ),
J v (117)
7 (@)Y =ioy (ad) — D\ vewr (a3,

where

Yvrv = Doy — q)t’v = gy (1 - ghmv/hT). (118)

It is assumed in (117) that the frequencies w;, are
sufficiently large and therefore the frequency shift
connected with the operator I' is disregarded. It
must be borne in mind, however, that such a shift
does take place, generally speaking. Thus an account
of the interaction with the dissipative system leads
not only to relaxation, but also to a shift of the nat-
ural frequencies of the system. It is seen from

(117) that an account of dissipation leads to coupling,
due to the presence of attenuation, between field
oscillators that are not coupled with one another in
the absence of attenuation. However, this coupling
occurs only at sufficiently high frequencies. This is

*We recall that

0,=V 20, (@,4a2), P,=0,=iV o2 (at—a,);

R . S 1 A A PN
the energy of the p-th natural oscillation is HV:TZ hoy (afa, +ayal)

and the permutations differing from zero are [4,, agl=1.

seen from (116). Here the &%, differ essentially
from zero if

Oy — 0y € = 0¥, (119)
c

where 7¢ is the correlation time of the system of
particles comprising the resonator walls. The in-
equality (119) holds in particular, for degenerate
frequencies of the resonator. In resonator theory
the coefficient Yy is usually denoted by (1/2)w,/Q,
where Q is the figure of merit of the resonator for
the specified mode. As can be seen from the fore-
going analysis, the attenuation in a resonator is de-
termined, generally speaking, not only by its Q but
also by the coefficients v,/ (v # v').* We have
encountered an essentially analogous situation in the
preceding section, where it is shown that the atten-
uation of a system of molecules proceeds in a mu-
tually-dependent manner and is in general not pro-
portional to the number of particles.

Using (114), we can determine the energy damp-
ing of the v-th oscillator

1
(Hy) = hoy (((m) + )
where
ny = aiay.
From (114) we get

d A~ . 6V'V
E- (a;av) = — 2 Yv'v ((a;av') - eh(nv/hT 1 )
v’ -

— E Yvv' ((a;'&v) - ‘ﬁ%‘? )'
-
As can be seen from this expression, we do not ob~
tain, generally speaking, a closed system of equa-
tions for the occupation numbers (this corresponds
to the fact that in the presence of degeneracy the
balance equation does not hold true). In the same
case, when

Yvv: = YVV6VV’1

we obtain

d(n.y 9 0

gt = —“Yw ({ny) —my),
where . 1

Ry == e

is the equilibrium value of {n,), corresponding to
the temperature of the dissipative system. Thus,
the energy of the natural mode is damped in accor-

dance with

(Hy) = hay ((m) 4+ ) =hoy, (nb+ )

+ hoy ({ny (0)) — ng) e~ 2¥vvt |

*The latter are connected with the mutual impedance of the
resonator (see, for example []).
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where (n,(0)) is the mean value of {f,) at the
instant t = 0.,

To conclude this section we note that the fore-
going examination of the attenuation of a system of
oscillators is sufficiently general and is applicable
not only to fields in resonators, but to any system
of oscillators whose energy of interaction with the
dissipative subsystem has the form (113).

10. SPIN-LATTICE RELAXATION. BLOCH’S EQUA-
TIONS

The results of the general theory, developed in
Sec. 7, can be used to study the relaxation of the
spins of nuclei interacting with a crystal lattice (or,
generally speaking, with molecules of matter). Such
an analysis was made in[‘r’gj, in which the previously-
derived Bloch’s phenomenological equations 0% were
proved.

The lattice (or the molecular environment) is a
dissipative subsystem, while the nuclear spins are
a dynamic subsystem. This is called spin-lattice re-
laxation to distinguish it from spin-spin relaxation, in
which energy is exchanged between the spins (and not
between the spins and the lattice). We do not repeat
here the entire analysis ofP% | but derive Bloch’s
equations for the case of a spin-1/2 system inter-
acting with the lattice. The character of the assump-~

tions made in®¥ will be made clear by this derivation.

The Hamiltonian of the system of nuclei interact-
ing with the lattice has the form

o= —yiH R B+ wf—yn 2 (h, ) Lo+ ) B -2 () ),
’ (120)
where the external magnetic field is

(H, (1) < Hy),

f; is the spin operator of the i-th nucleus, T*

=Ijx # liy, and HF is the lattice energy; the last
term in (120) represents the energy of interaction
between the nuclei and the lattice, h(i) is the mag-
netic field of the lattice at the location of the i-th
nucleus (h* = hy * ihy), and v in the gyromagnetic
ratio. We note that for spin 1/2 (140) is the most
general expression for the interaction energy. As
we have already noted in Sec. 8, any linear Her-
mitian operator can be expanded in a series of spin-
1/2 operators; the interaction energy (120) repre-
sents precisely this type of expansion {where h(i) is
some effective magnetic field] . The operators fzi
and I{ can be identified with the operators ¥{ in-
troduced in Sec. 7 [see (92)], the operator Izi
corresponds to the frequency wy = 0, while the
operators Iii corresponds to frequencies

+ wy =+ vy Hy. From formulas (93)—(96) we obtain
the equations of motion for the mean value of the
spin operator {Q)*

H=kH,+H, ()

*For simplicity we do not consider the level shifts connected
with " in (96).

= —iy D (L, Q1)

+ D ORI 10.f1+ 1, Q)T (121)
7,8, 1,4
r qnd f assume here the values +, -, and 0 (fz
= 1),
D5 =a1y® 23 8 (0 + @ara) (a] A (1) | ) (0 | 1 () [@) Por
— D;ehou/kT, (122)

cD:»"z=:wzuza,é(ma»a)<a1h;(t)1a'><a'lh,(i')la>Pa', (123)
(Di::-’i = nYz 2 ] (:i: mo“‘ma’u) (a ] hi (L) [ 0")
aa’

x (o' |BE ()| @) PaeA (20,), (124)

OF = ay* 38 (d @+ 0wa) (@] h, () |a') (@' | A5 (') [ @) Parh (00)

0 + himg
i Fd
=(I)ﬁe BT

(125}
If we substitute in (121) the operators fir in place
of Q, then it is easy to see that the resultant equa-
tions relate the spin of the i-th nucleus with the
spin of the other nuclei (with index i’). Thus, the
relaxation of the individual spins does not occur,
generally speaking, in an independent fashion, and a
certain coherence takes place. As can be seen from
(122)—(125), this coherence is connected with the
correlation between the effective field of the lattice
at different points i and i’. If we neglect these cor-
relations, as can be done, obviously, for a suffici-
ently rarefied gas, we obtain a closed system of
equations for the spin of the i-th nucleus. If we
furthermore assume that the inequality

0, € 0¥ (126)

is satisfied, then the coefficients of (124) and (125)
can be neglected. In this approximation we can
readily obtain Bloch’s equations

d R I,—1I
2 D =yAxH)—i 3 —jz—k=2—=2, (127)
where
T{ = 2(D5f + O ) = Dff (14 eroo/kT),
71— 1 71 @ [ — 1 tanh ho, (128)
z Tyt -+ @iy 0= an SET

Bloch’s equations (127), as can be seen from their
derivation are valid for not very strong external
alternating fields

H,(t) € H, and v,H, (t) € o*.

In the case of sufficiently strong external fields, it
is necessary to take into account the dependence of

*This follows from the dependence of P(E,) on F, in the state

of thermodynamic equilibrium. In general, however, we can state
kT/h > * (see also [**]).



318 V. M. FAIN

the relaxation coefficients I'ykln (and consequently
also of Ty and Ty) on the field amplitude Hy . Such a
dependence follows from the general formulas of
Sec. 7. An analysis of the nonlinear effects that
arise in this connection is given inl"=®:57:58

11. RELAXATION IN FERROMAGNETS AND ANTI-
FERROMAGNETS

In experiments on ferromagnetic resonance we
are usually interested in the relaxation of the uni-
form precession of magnetization, or generally
speaking, in the behavior of the uniform precession
in the presence of an external alternating field. The
relaxation of uniform precession can be due to many
reasons. One of the mechanisms of relaxation is the
interaction between the uniform precession of mag-
netization (spin wave with wave vector k = 0) and
spin waves with k = 0 (see the review[m). Another
possible mechanism is interaction with phononsm] .
To be specific, we consider now the relaxation con-
nected with the interaction between spin waves. Such
an interaction is the result of the fact that spin-wave
amplitudes are the normal coordinates of the sys-
tem only if they are infinitesimally small. The ac-
count of the finite nature of the amplitude of the spin
waves leads to their interaction. The Hamiltonian of
a system of interacting spin waves situated in an
alternating transverse magnetic field Hy, Hy (and
in a constant magnetic field Hy directed along the z
axis) can be written in the form

N 1 A ~ ~a
S =hoyaja— 5 (R ag + k'ag) + ) ho (k) aiay
k=0
- NP .
+ 24 [Dy,,32;85238k; +x5, k5 CON].]
k1, ko, k3
+ E [D12,548; 35 8300k; +kz, k3+ks

k1, k2, k3, kg

+ (Dl,z:m&; &2&3&46k1, Ka+ka+ke-1-CODJ.], (129)

where w(k) is the frequency of the spin wave with
wave vector k, h* = (Hy + iHy)V2u My V, p is the Bohr
magneton, MyV is the saturation magnetic moment,
and a and a+ are the magnon annihilation and crea-
tion operators; the coefficients & are given in("0,
The annihilation and creation operators of magnons
with k = 0 are connected with the transverse com-
ponents of the total magnetic moment by the rela-

tions
T+, = M,Var,
Mottt =VEITE )
Mx—iMu=V2pM0Va.

We assume further that all the spin waves (k # 0)
are in the state of equilibrium and represent a dissi-
pative subsystem, while the role of the dynamic sub-
system is played by the uniform precession. The

first two terms in (129) represent the Hamiltonian
of the dynamic subsystem, where the third term
represents the Hamiltonian of the dissipative sub-
system. The energy of interaction between the dy-
namic and dissipative subsystems is obtained from
the interaction Hamiltonian of (129) by separating
the terms proportional to 3, and aj :
V=0, % Fi+a; D F;. (131)
8 8
We do not give here all the operators F%, but indi-
cate only, using an example, the methods for their
derivation. Thus, in the first sum, the terms pro-
portional to a; have the form

= > Dyy,00;70; 8k, ~kss ]

ky, kg

Fy;= 2 Df2,30,a; bis; ke
kg, kg

Fy= 3 O,50,05°8
3= 10,3483 Oxy; k3-
ki. kg

(132)

The last two terms can be combined into
= g (D, « + Dho, k) xai.

We analogously obtain the remaining FL. In addition
to the terms (131), the interaction energy includes
terms describing the interaction of spin waves with
k # 0. We disregard these terms, since we assume
that the spin waves (k # 0) are in equilibrium.
Using (93)—(96) we obtain from the Hamiltonian
(129) and (131) the equations of motion for the mean
values (af) and {ay) = (ag)

d a¥y i

T 1wy (at) F o bt — g (ar),  (133)

where

Tl = @+ (4 — e~hoo/kT) (134)

and

O = 3! 8@+ 0wa) (a] Fi o) (@ | F; |@) Pur. (135)

aa’s

The coefficients & "are calculated in analogy with
the calculation of the relaxation coefficients in the
case of interaction with the radiation field (Sec. 8).
Let us write down in explicit form, for example, the
contribution to & * connected with F] (132):

Oy = 55 ) 8 (09— 0x — 0) (Mt | Dyg,0050k [rx— 15 7y +1)

k

X (me—1; nox+ 1] O 00ua x| s ni)s

Where Hk are the mean values of the occupation
numbers in the equilibrium state

i

Ny = ———
k NO/RT 4

An explicit calculation of the relaxation coefficients
was made in®4, Equations (133) are the sought equa-
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tions of motion for uniform precession or, according
to (130), for the transverse magnetic moment My,
M, in the presence of a transverse magnetic field.
It must be noted that such equations can be used at
sufficiently small values of Mx and My, and ac-
cordingly in not too strong fields Hy i . For a cer-
tain critical value of the field Hx,y , f‘{le occupation
numbers ny of the spin waves begin to increase ex-
ponentially, and this upsets the equilibrium and the
spin-waves fs-101

Relaxation in an antiferromagnet is analyzed in
similar fashionm’m. Now, however, the presence of
two sublattices leads to the need for including in the
dynamic system two kinds of annihilation and crea-
tion operators for the spin waves. In particular, the
interaction energy assumes the form

V= 2 512&'1‘*‘,2 &‘Z}?‘si.
$=1,2 8 i=1,2 s

An account of the spin-wave interaction, similar to
that considered above, leads to independent relaxa-
tions (aj) and {a}). A connection appears between
the relaxations { af ;) if account is taken of the
“‘linear’’ mechanism of spin-wave interaction—the
interaction of the spin waves due to the presence of
random inhomogeneities in a crystal structure of the
antiferromag.;:netm’:1 . Calculations for such an inter-
action were made in®% for the case of a ferrodielec-
tric.

APPENDIX

DENSITY MATRIX AND DESCRIPTION OF A QUAN-
TUM STATE

Quantum theory is principally a statistical theory.
The predictions of quantum theory have usually a
probabilistic character. But probability and statis-
tics have a definite meaning if one singles out the
aggregate of elements to which the statistics apply.
This circumstance was emphasized in particular by
Mandel’shtam B0 Using his terminology, we shall
call an aggregate of elements on which the statistical
processing is being carried out a statistical ensem-
ble.

An important question is how to separate the
corresponding statistical ensemble in quantum
theory. In quantum theory the statistical ensemble
is an aggregate of identical experiments (measure-
ments) carried out on an object which is in a speci-
fied quantum state. The measurement or experiment,
generally speaking, changes the state of the object.
It is therefore necessary (in order to stay within the
framework of the given ensemble), to return the ob-
ject after each measurement to the initial quantum
state. In this case the measurement is carried once
on each object. In the ensemble thus produced it is
possible to introduce the probability distribution of
one measurement result or another. Thus, in order

to separate the ensemble in quantum theory it is
necessary, first, to specify the type of measurement
which must be carried out on the object, and second,
to specify the state of the object.

In quantum theory states are classified as ‘“‘pure’’
and ‘‘mixed”” or ‘‘mixtures.’”’ The pure state is des-
scribed by a wave function. The probability distri-
bution of a certain quantity q in an ensemble result-
ing from the measurement of this quantity is speci-
fied by the square of the modulus of the wave func-
tion ¥(q) in the gq-representation. Thus, for exam-
ple, the distribution of the probabilities of the coor-
dinates of an electron in a state with wave function
¥(x) (in the ensemble resulting from the measure-
ment of the coordinate x) is given by [¥(x)|%. In
order to obtain the momentum distribution (in the
ensemble resulting from the measurement of the
momentum of an electron in the same state) it is
necessary to change over to the p-representation,
by expanding ¥(x) in a series of eigenfunctions of
the momentum operator p

¥ ()= @ (p) ¥p (2).
yd

The aggregate of the coefficient &(p) is indeed the
wave function in the p-representation, while | rI>(p)|2
gives the momentum probability distribution. It must
be borne in mind that in an individual measurement
the electron goes over from the state ¥(x) into a
state with a definite value of the coordinate &6(x -xg)
for with a definite value of the momentum ¥p(x) 1.
(Therefore, in order to investigate the ensemble of
the given state it becomes necessary to carry out
measurements over a series of identical objects, all
in the same state, or somehow return the system to
the initial state after each measurement.) In the gen-
eral case the transition from one representation to
the other is realized with the aid of the correspond-
ing unitary transformation

¥ (9)=TD Q). (h

Thus the presence of a definite wave function
causes the probability distributions in the different
ensembles that result from different measurements
in a given pure state to be related through the uni-
tary transformation

[¥ @) 2=10D Q)12 10 Q2=]0T1¥ (g) |

No such connection exists for mixed states, which
are not described by a wave function. The fact that
a state is not always describable by a wave function
can be understood by considering a subsystem A of
some system A + B. Let the system A + B be des-
cribed by a wave function

¥="(za, zn),

where xA and xB are the coordinates of the subsys-
tems A and B, respectively. This function, generally
speaking, can not be factored into a product of the
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wave functions
¥Y=Ya¥p (II)

even when the systems A and B do not interact*.
This means that neither A nor B are described by
wave functions. (For more details see[m.)

How does one describe the state of a quantum
system when there is no wave function? Such a des-~
cription was found by von Neumann¥. Mixed states
(like pure ones) can be described uniquely by a den~
sity matrix. We first introduce the density matrix
for the pure state. Let the wave function of this state
be ¥(q,t). Then, as is well known, the mean value
of some quantity described by the operator F is
equal to}

={v@obrena am
Let us change over to a second representation, char-
acterized, for the sake of being specific, by a dis-
crete index n:

¥ (g, t)= D, en¥n (9 (Iv)
here ¥n(9) are the eigenfunctions of some Hermi-
tian operator A, describing a certain physical quan-
tity; ap is the wave function in the representation of
this operator. Substituting (IV) in (III), we obtain an
expression for the mean value F in the A-represen-
tation

F=3 oy Fpnr=5p (6 F)=8p (F o), (V)
n'n
where oy, = 2y’ ap*, and Sp stands for the sum of
the diagonal elements (trace) of the matrix:

(0F Ypopm= 2 CnenFun»,
n
Fyn’ denotes the matrix elements of the operator F
P\ w200, dg

The matrix o is called a density matrix. It is ob-

vious that a density matrix yields the same informa-
tion as the wave function (if the latter exists). From
formula (V) we can obtain different mean values, and

*[t is easy to show, for example, that the wave function of the
system A + B can differ from (II) if an interaction (collision) has
taken place between these systems, although they do not interact
at the present instant of time t.

tOne may ask in which ensemble the mean value of F is taken,
since F can, in particular, be a function of the noncommuting
operators q and p. It is obvious that this cannot be the ensemble
of the measurement of p (or q). In fact, this ensemble is deter-
mined by measurements of For, more accurately, the eigenvalues f
of this operator, that is,

F=3Ywhi,

where w(f) is the probability that a single measurement will cause
the system to go over into a state with a definite value of f.
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the diagonal elements of the density matrix give, as
can be readily seen, the probability distribution of A.
From this, in particular, follow the normalization
condition

2 a,m=Sp &:1.
n

We can describe mixtures, too, with the aid of the
density matrix, Let F be an operator pertaining to
the subsystem A of the system A + B. Then the ma-
trix elements of ¥, taken with the aid of the eigen-
functions W¥py = ¥n(xy) ¥y (xB), have the form

F (VI)

—_— ’
nu; 'n'u’_an'éuu N

where ¥np(xp) are the eigenfunctions of the operator
A pertaining to the subsystem A, while ¥,(xg) are
the eigenfunctions of the operator B of the subsys-
tem B. We note that the use of eigenfunctions wnu
in the form of products of eigenfunctions does not
mean at all that the subsystems A and B are statis-
tically independent. In fact, an arbitrary wave func-
tion can be expanded in a series in ¥py and this
series, generally speaking, cannot be represented in
the form of a product ¥ ¥g. Substituting (VI) in (V)
(this can be done, since the entire system A + B is
in a pure state), we obtain

I'T: 2 Gﬂ‘u nu. nn’ —V Qo nn'_sp(QF)y (V,)

nn’u
where pn’n = Zy’ op’y;nu i8 by definition the den-
sity matrix of the subsystem A. It is easy to see that
with the aid of a density matrix we can obtain all the
mean values and the probability distributions in the
subsystem A. Thus, mixed states can be described
by the density matrix p,,’. The density matrix has
the following properties (see, for example, [45J)
a) the density matrix is Hermitian;

Op/ ‘n an '

b) it is normalized to unity:

Spazi;

c) for the diagonal elements of the density ma-
trix, which have the meaning of the probabilities of
the states |n), we have

Onn > 0;

d) Sp P> =1, where the equal sign holds for the
pure state. It is also easy to show that in the pure
state p? =p, From the invariance of (V)

~n

F=8p o

[
[see (V')] under the unitary transformation U, it
follows for an arbitrary operator F that under such

a transformation
e—> Vo0t (VIL)

(whereas F— O0F0 1).
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Making use of tensor terminology, p and F can
be called second rank tensors and the wave function
can be called a vector (the roles of the different co-
ordinate systems are assumed by the different rep-
resentations). The mean values of a quantity are in-
variants of the transformation or scalars. It is
therefore clear that in the general case the states
should be represented by a second-rank tensor 5,
since the operators F are second-rank tensors, and
the invariants can consequently be obtained by con-
tracting these tensors with tensors of the same di-
mensionality. Only in particular cases can p be
represented by a product of two vectors (pp’y
= ay’af).

It follows from (VII) that the probability distribu-
tions in the different ensembles that arise upon meas-
urement of different quantities are connected by the
relations

2 (U ) pn0p Upens (VL)

0in= 2, Uknluns U Nops Oun=
n’ kR

which replace relations (I), since the latter are valid

only for pure states.

If the system is in a pure state, then the meas-
urement of the total assembly of the quantities char-
acterizing the wave function of the state leads with
assurance to the initial state, that is, the probability
distribution in such an ensemble consists of two
terms, 0 and 1. In a mixed state, in analogy to the
complete assembly of quantltles we can introduce
the commuting operators L M, and N which are
characterized by the fact that the density matrix is
diagonal in the representation that is diagonal in
these quantities. A measurement of these quantities
leads to an ensemble in which the probability distri-
bution defines completely the density matrix (since
there are no nondiagonal elements)*. We shall call
such a measurement a complete measurement and
the corresponding ensemble a complete ensemble.

It can be seen that the complete measurement goes
over in the particular case of a pure state into a
measurement of a complete assembly of quantities.
(In this case p%, = ppn since p2 =5.) It can be said
that a pure state differs from a mixed state in the
sense that in a pure state there is always an ensem-
ble in which the probability distribution consists of
two terms, 0 and 1.

Let us consider now the time variation of the den-
sity matrix. If a closed system has been at some
instant of time in a pure state, it remains in the pure
state all the time, and the time variation of the wave
function is described by the Schridinger equation.

It is easy to verify that the density matrix of such a
pure state obeys the equation

*In the general case the distribution of probabilities in one
ensemble does not make it possible to determine the density matrix
(or the wave function).

ih 22 = F— 60 = 5%, g
where % is the Hamiltonian of the system.

We shall show that in a closed system the density
matrix of the mixed state also obeys this equation.
For this purpose it is sufficient to assume that there
is a more general system A + B, including the sub-
system A as a part (the subsystems A and B do not
interact), and that this system A + B is in a pure
state. Then

304,
ih =22 QA B— [$ea+ B, 0a.nl-

Taking the trace of the right and left halves of the
equation over the indices B, we obtain without diffi-
culty

ih 21, §l. (IX)
where ;3 = SpBF;A+B is the density matrix of the
system A and the subscript of 35 has been left out.
We shall call equation (IX) the Neumann equation
(see (e ).

In describing the variation of the quantum states
with the aid of (IX) it is assumed that the operators
of the physical quantities do not depend on the time,
and the entire time dependence is contained in the
density matrix. Such a description or representa-
tion is called a Schriddinger description. The time
dependence of the density matrix can be written in
this representation in the form

b ()= BTG () I, )
The forms (IX) and (X) are equivalent. Another pos-
sible representation is the Heisenberg representa-
tion. In this representation the entire time depen-
dence is transferred to the operators

F (1) =Rty ) o IRTISE (X1)
and the density matrix does not depend on the time.
There exists a representation ‘‘intermediate’’ be-
tween the Schrodinger and Heisenberg representa-
tions, namely the interaction representation. Let
the Hamiltonian of the system # be divisible into
two parts *

o=y V.

In the interaction representation tne operators de-
pend on the time-like Heisenberg operators with
Hamiltonian 3¢y

A q%’otp(o) ~—ih~ 1076’,,t

int™

and the density matrix depends on the time, as in a
Schridinger representation with Hamiltonian Vipt :

*0Of course, such a subdivision is arbitrary and is determined
every time by the character of the problem.
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(X1ID)

h ag;nt=[ﬁint' Qint]-

Of course, the question of which representation
should be used in each specific case is solved ex-
clusively by considerations of convenience and sim-
plicity. In all other respects the three representa-
tions are perfectly equivalent.
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