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1. INTRODUCTION

THE existence of induced emission of radiation was
first postulated by Einstein £1] on the basis of thermo-
dynamic arguments, before the development of the
quantum theory of radiative processes. The quantum
theory, however, has given the simplest and most natu-
ral explanation of this effect and of its main features.
According to this theory the probability of transition
of an atom from state a with energy E, to state b
with energy Ep, accompanied by the emission of a
photon, of frequency w = (E3 —Ep)/h and polarized
along the direction e&p, into the element of solid angle
dO, is given by the expression
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The probability of the inverse transition b — a, in
which absorption occurs, is
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In Egs. (1.1) and (1.2) dap is the matrix element of
the dipole moment of the atom*; I,k is the spectral in-
tensity of radiation with polarization ey and wave vec-
tor k. This last quantity is defined so that Ipkdw dO
is the energy arriving from the solid angle dO through
1 ecm? in 1 sec. Consequently the units of L)k are erg
em~2 sr-l.

Accordmg to Eq. (1.1) the emission probability is
made up of two parts. The first does not depend on the
intensity of the radiation incident on the atom, and is
due to spontaneous emission. If Ipk = 0, we have in
addition to the spontaneous emission a term propor-
tional to Ipk, which corresponds to the induced emis-
sion. Equation (1.1) shows an important feature of the
induced emission: it occurs with the same frequency,
in the same direction, and with the same polarization
as the incident radiation.

In the case of isotropic naturally-polarized radia-
tion, for which L = L = % I(w), we can carry out a
summation over polarization directions and an inte-
gration over angles in Egs. (1.1) and (1.2). We thus
obtain as the formulas for the spontaneous emission
probability Wig, the induced emission probability
W;%d, and the absorption probability ngsz
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*Here and in what follows we confine ourselves for simplicity
to the consideration of electric dipole radiation.

267

For transitions between levels vy, y’ which are de-
generate with multiplicities g, g’ we have
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where the indices a, b are used to number the states
belonging to the levels vy, y’. If the concentrations of
atoms in the levels vy, v’ are Ny, Ny, then the num -
bers of transitions y — y’ and y’ — vy per cubic centi-
meter and second are given by the respective formulas
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Under conditions of thermodynamic equilibrium the
number of transitions y — v’ is equal to the number
of transitions y’ — v, and furthermore
Ey—E,. b
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Equating the expressions (1.5), (1.6) and using Eq.
(1.7), we get
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which is Planck’s formula for the spectral density of
black-body radiation.

It is obvious that Planck’s formula follows from the
equality of the numbers of y — vy’ and y" — vy transi-
tions in thermal equilibrium only if we postulate the
existence of induced emission. It is from just these
considerations that Einstein postulated the relations
(1.4) between W-y%),,, wind ang W%P{;’. For low frequen-
cies, hw « kT, Eq. (1.8) goes over into the classical
Rayleigh-Jeans formula, which does not contain
Planck’s constant h:
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It is not hard to see that this formula also could not
be obtained from Eqgs. (1.5)—(1.7) if the induced emis-
sion were absent. (As is well known, when the induced
emission is omitted Planck’s formula goes over into
Wien’s formula.) It follows from this fact that the in-
duced emission cannot be a purely quantum effect, and
must be present in the classical theory of radiative
processes. As we shall show, however, the passage
from the quantum formulas to the classical limit oc-
curs in a very peculiar way. In particular, the quanti-
ties

§1 — hoN Wi, S oW, WS, (1.10)
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which give the power of the induced emission and the
absorbed power, have no direct classical analogs.

It must be pointed out that the classical theory of
radiative processes is usually constructed for the ex-
ample of the harmonic-oscillator model. This is the
simplest model, but at the same time a very limited
one. A number of effects in the interaction of oscilla-
tors with the field disappear when we go over to this
model. In particular, the harmonic-oscillator model
is quite useless for the treatment of radiative proc-
esses induced by the field. The reason for this is a
specific feature of the harmonic oscillator, the fact
that the energy levels are equidistant. Meanwhile
there have been almost no general treatments in
classical theory of the interaction between the radi-
ation field and nonlinear oscillators (whose fre-
quency depends on the energy). For this reason,
and also because of the recent interest in the problem
of quantum generators based on the use of induced
emission {masers and lasers), a special treatment
of the guestion of the role of induced emission in the
classical theory is justified.

In Secs. 2—6 we develop the classical theory of
radiative processes and bring out some specific fea-
tures of the behavior of classical systems as com-
pared with quantum systems. A detailed comparison
of the classical and quantum theories is made in Sec. 7.
In this section, and also in Sec. 8, it is shown that under
certain conditions classical systems can strengthen in-
cident radiation instead of absorbing it.

2. RADIATIVE PROCESSES IN CLASSICAL THEORY

Let us consider the interaction of a classical oscil-
lator with the electromagnetic field. We shall here in
general take an oscillator to mean any system capable
of emitting and absorbing electromagnetic waves: for
example, a harmonic oscillator, an anharmonic oscil-
lator, a rotator, and so on. For definiteness let the
oscillator be a particle of charge e and mass m in a
potential well U(r). The interaction of such an oscil-
lator with the electromagnetic field is described by
the equation of motion of the charge in the field and
the Maxwell field equations, with the current in the
right members of these equations being that given by
the motion of the charge. For the derivation of this
system of equations, and also for all of the further
treatment, it is convenient to start from Hamilton’s
equations.

The Hamiltonian function for the oscillator and the
electromagnetic field treated as interacting can be
written in the form

H=Hosc+H¢ 4 H', (2.1)

where Hpge and Hf are the Hamiltoniang for the free
oscillator and the field, and H’ is that for the interac-
tion between them. We confine ourselves to the non-
relativistic approximation. The Hamiltonian of the
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free oscillator is

2
Hose=4—4-U(r). (2.2)
Let the field be concentrated in some finite volume
V, while the oscillator is at the point R = 0 and its di-
mensions are small in comparison with the wavelength
of the radiation. Then (cf. e.g., [%4])
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where Qu, Py are ‘‘canonically conjugate”” field vari-
variables; the index u consists of the wave vector k
and the polarization direction ek p; ek,p is the unit
vector of the polarization. The expressions for the
vector potential A and the electric field strength E
in terms of Qu and Py are as follows:

Afr, )=2 ‘/-3— 2 ek,o(ch,ocoskR——lt—Pk,QsinkR> .

o=t 2 (2.5)
2 .
E(r,)=—2)/ 2 3 e o(chQu,osinkR+ PygooskR).
k,0=1,2 (2.6)
Using Hamilton’s equations
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we get
.« 1 8 e .
r+76_:=—_2 l/‘%—;—z Qu,ep,y (2-9)
0w
Ou+©iQu=2e¢ I/%eui. (2.10)

[ In accordance with the approximation used hereafter
we have omitted from the right member of Eg. (2.10)
aterm 2(n/V)Y2(e?/m) Y Quey proportional to e?.]

The equations of motion (2?9), (2.10) together with the
first of the equations (2.8) allow us to find the field in
the volume V. Let us also find the increase per unit
time f{“ of the energy of the p-component of the field
owing to the interaction with the oscillator. The quan-
tity I'iy is expressed in terms of a Poisson bracket:

In an analogous way we easily get for the increase
per unit time of the oscillator energy Hoge owing to
interaction with the field:
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The quantities (2.11), (2.12) can be expressed in
terms of the electric field strength E or the vector
potentialTA at the point R = 0. For the average in-
crease Hpge of the oscillator energy over a period
of the field we get

Hosc——EH,,,:eErEu—- -——-ZI‘A

1

(2.13)

The equations of motion (2.9), (2.10) can also be written
in terms of the quantity A, that appears in Eq. (2.13):
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A+ olA, = (2.15)
This is the requ1red system of equations, wh1ch enable
us to calculate r, A/J’ and consequently also Hoge.

Let the interaction between the oscillator and the
field be turned on at the time t = 0. Up to this time
there were only the free vibrations r®? of the oscilla-
tor and Aﬁ” of the field. We shall solve the equations
(2.14), (2.15) by a method of successive approximations,

i.e., in terms of series r =@ +r@ 4+ | A= Alf?’
+ Af}) + ..., in which we confine ourselves to the terms

proportional to e, while in Eq. (2.13) we keep the terms
proportional to e?. This is equivalent to the first-order
perturbation theory used in quantum theory to derive
the formulas (1.1), (1.2). It is not hard to show that
Eqgs. (1.1) and (1.2) can also be obtained by averaging

the operator (e/c)? fA“ over the wave functions of
]

the system (atom + radiation field) calculated in first-
order perturbation theory. Thus we have a right to ex-
pect that the approximation we have chosen will lead to
the same results as the taking of the quasi-classical
limit in quantum theory. We accordingly write, by Eq.
(2.13),

=
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m
In the general case the free vibrations r®’ of the
oscillator can be written in the form of a Fourier
series

= Zbl cos (0t -+98,), (2.17)
where wy = wyl = (2n/T)l, where T is the period and
1=1,2,..

The free field vibrations A,‘f’ are of the form

AL = a, cos (wut + Pp), (2.18)

where ay is directed along ey: ay = ayey.

When we substitute Eqs. (2.17) and (2.18) in the
right members of Eqs. (2.14) and (2.15) we can find
r and A{P, and then calculate Figge.
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3. SPONTANEQUS EMISSION

Let us begin with an examination of the third term
in Eq. (2.16), the only one that is not zero when there
are no free vibrations of the field, i.e., when Ap, = 0.

Substituting Eq. (2.17) in the right member of Eq.
(2.15), we get

AP = — ——-ecZ(eub,)euma
X [sm(mlt—}-é‘)—smélcosmut——%"— cos §; sinmpt]. 3.1)
.

Since Eq. (3.1) contains the resonance factor
wl/(wf‘—wf), we can set

and

-
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in the square brackets in Eq. (3.1). When we do this
we get
1¢ i
_:_ rOAL = - S _% FOAL
0

i1—cos (wu—wg) k4
T (0, — )

=§I-/e—22m?|eubl[2 (3.2)
1

Let us sum Eq. (3.2) over u, i.e., over k and the po-

larization directions ek ,. We can replace the summa-

tion over k by an integration (for V — «), setting

—V S e

For 7— o che factor

1 1—cos ((ou—ml) T
ER e @3
has the property of the § function 6 (wy —wy). There-
fore

— oZdo
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Since
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we finally get
4
e 2 «nAu) E 83(:3’ b? = Z % d7. (3.4)
i

n

As is well known, in the classical limit the square
of the absolute value of the matrix element, |fgp Iz, of
an operator f corresponding to a physical quantity

f= 2 focos (ot +ay),

goes over into ¥,f2,, where w = (E, — Ep)/h. This is
the content of the so-called correspondence principle.
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Therefore from a comparison of Eq. (3.4) and (1.3) it
follows that each term of the sum (3.4) is the classical

S sp =
limit of an expression S°P = hw bW ab’ where W,p = @

4. INDUCED RADIATIVE PROCESSES

If for some values of u A{]’ = 0, then in addition
to the spontaneous emission there are radiative proc-
esses induced by the field. These processes are de-
scribed by the first and second terms in Eq. (2.16). It
must be pointed out that already at this stage there
comes to light some difference between the classical
and quantum-mechanical descriptions of absorption
and induced emission. In quantum theory we can dis-
tinguish these two effects in a guite natural way and
consider them independently, since it follows from
general intuitive ideas that the downward transition
(y — v”, Ey > Eyn) is responsible for induced emis-
sion and the upward transition (y — ¥, Ey < E,), for
absorption. The situation is different in classical the-
ory, since there is no basis for separating out from
the first two terms of the expression (2.16) any parts
responsible only for absorption or only for induced
emission. Thus the absorption and the induced emis-
sion have to be treated together. For this reason we
shall call processes described by the first and second
terms of the expression (2.16) induced radiative proc-
esses. It is easy to see that the same properties of
coherence with the incident field hold for these proc-
esses as in the quantum theory [for those components
u(k, ek o) of the unperturbed field that have Al(iO) =0,
the first two terms in Eq. (2.16) are zerol.

Let us begin by considering the first term in Eq.
(2.16). Using the fact that for V— «

E a, cos (out + ¢pp) — S A (v) cos (0t + ¢,) do,
n

we write this term in the form

£ 2 ‘(o)A(o)

[4

T

_LX asy

T c
0

b, sin(w,z46,) S dowA (0) sin (0t + @)

1 1
=1 ap, S dooA (0) 5 [smf“;[’l )% cos (8, — o)
{
1— — .
e a9 T gin (3, g0) | - (4.1)

For 7 —= we can replace T"ff’(wl —w) lgin(wi—w)T
by (n/7)6(wp—w) and 7 Hwj—w) 11 -cos(wy~w)T]
by m(w]-w) é(w;—w). When after this we integrate
over dw, we get

% Z ro Aﬁ":
n
Thus the total increase of the field energy in a large
time T owing to the first term in Eq. (2.16) is

%%% D, oibA (@) cos (8, — o). (4.2)
:
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and is finite and independent of 7. It can be seen from
Eq. (4.3) that this quantity can have either sign, depend-
ing on the phase relation between the free vibrations of
the oscillator and the field, i.e., it is possible for en-
ergy to be transferred from the field to the oscillator,
or, on the other hand, from the oscillator to the field.

The average rate of energy transfer is zero, how-
ever, when we average over a sufficiently large time
interval 7. The expressions (4.2), (4.3) also give zero
when averaged over the phases 67 of the oscillators.
This shows that the role of the first term in Eq. (2.16)
in induced radiative processes depends essentially on
the physical statement of the problem. When we con-
sider the interaction with the field of oscillators with
fixed energy E and arbitrary phases, the first term in
Eq. (2.16) is equal to zero and all the induced radiative
processes are described by the term

e ST

— > rPAD,

cZ u
©n

We note that it is just this statement of the problem
that corresponds to the quantum-mechanical formulas
for sind anq gabs given above, since sind j5 the av-
erage of the induced radiation (per unit time) over
an ensemble of oscillators with the energy Ey, and
Sabs is the average of the absorption over an ensemble
of oscillators with the energy E-’.

We therefore proceed to the calculation of the ex-
pression (4.4). In Sec. 8 we shall look into the role of
the first term in Eq. (2.16) in the interaction of oscil--
lators with the field, and the conditions under which it
becomes important.

(4.4)

5. HARMONIC OSCILLATOR

Let us begin with the treatment of the simplest case,

that of the harmonic oscillator.
Setting m™~!8U/8r = wir in Eq. (2.14), we get
r+ m?,r:%oc‘ia,,L sin(@uf + @,). (5.1)

In the case of interest, wy ® Wy [ compare with Egs.
(3.1) and (3.2)],

= 7;70)0 [sin (0u¢ + @p) —sin(opt + @)1 (5.2)
and
Y 22 Pogos
—:— rPAR = ;mc‘; mo-f'm = 5 sin (0ut + @) cos (0t + ¢,) dt
b (5.3)
Let a light beam IgxAwAO = 2 Ik 5AwAO fall

p=1,2
on the oscillator. Let us sum Eq. (5.2) over the values
of u(k,p) which correspond to this beam. Replacing
the summation over k by an integration and repeating
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the arguments used in the derivation of (3.4), we get

(5.4)

Vik @ 18l
¢ .S_‘l 8(231)375 8t Z TiqB0 AO,
o=1,2 =1, 2
2 DA 2ne?
—c—E rPARY = — me 2
[ =1, 2

I A0 = =22 [, A0, (5.5)

For isotropic radiation

(5.6)

£ S vAp = 8T )
13

The sign of this expression, unlike that of the quan-
tity (4.2), does not depend on the phase relation be-
tween the vibrations of the oscillator and of the field.
1t follows from Eq. (2.13) that the time average of the
increase of the oscillator energy described by the ex-
pression (5.6) is positive. In other words, the har-
monic oscillator always absorbs radiation.

To bring out the reason for this, let us see what
quantum theory gives for the harmonic oscillator.

The energy levels of the harmonic oscillator, given
by the formula

E,=ho, <n-{—%> (.7)
are equidistant, i.e., separated by equal intervals hw,.
If we place an oscillator which is in its Ievel n in the
light beam Ik Aw AO, two types of induced radiative
processes are possible: the transition n— n+1, ac-
companied by absorption, and the transition n— n-1,
accompanied by induced emission.

In accordance with Egs. (1.1), (1.2) the probabilities
of these transitions are

41262

AW"’ nel T Thic 1 Lsnel |2 IkoAO'l (5 8)
4me? o
AW", n-1=— -ﬁ_ l L, -1 I“ IkOAO’
where
s (nEDh _ nh
“Z)L;ll+1| =-mTa lxn,n-llz_ 2mm0 . (5.9)

Obviously the only actually observable quantity is
the total energy transferred to the oscillator (per sec-
ond) as the result of both processes. This quantity is
given by
2m2e?

me

hw, (AW AW (5.10)

el o nml) = I, AO.

Thus quantum theory leads to just the same sort of re-
sult as classical theory [compare Eqs. (5.10) and
(5.6)]; a harmonic oscillator always absorbs radiation,
independently of what energy level it is in. This fact is
due to a specific feature of the system of energy levels
of the harmonic oscillator —the fact that they are equi-
distant and that the probability for transitions n—n+1
is larger than that for transitions n— n—1. There-
fore it is natural that for the harmonic oscillator the
classical theory also gives only absorption.
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6. ANHARMONIC OSCILLATOR

For a system with nonequidistant levels, in the gen-
eral case the transitions y — ¥y’ (upward) and y— vy”
(downward ) will correspond to different frequencies
w’ = (Ey' —E-y)/ﬁ and w” = (Ey—Ey” )/h.

Therefore in quantum theory it follows that for such
a system there will be absorption at the frequencies
w’ and induced emission at the frequencies w”. There-
fore it is interesting to find out what classical theory
gives for the anharmonic oscillator.

For an arbitrary anharmonic potential U(r) one
cannot find the explicit form of r? by integrating
Eq. (2.14). Therefore calculations of the same type
as those we have made for the harmonic oscillator
are possible only in particular special cases. Never-
theless, by using a somewhat different way of calcu-
lating the quantity (4.4) we can get a general formula
valid for any nonlinear system (cf. e.g.,[%:8]).

To make the point of this method clear it is helpful
to refer to the example of quantum mechanics. The
general formulas (1.1), (1.2) for the probabilities of
radiative transitions are valid in all cases to which
perturbation theory can be applied, independently of
whether or not the Schridinger equation can be in-
tegrated for the unperturbed system. Everything spe-
cific to the unperturbed system is included in the ma-
trix elements dgp. In classical mechanics also there
exists a method of small perturbations of the very
same kind, which allows us to make all the calcula-
tions in general form without choosing concrete prop-
erties for the unperturbed system, and all the results
are expressed in terms of characteristics of the un-
perturbed motion. This method was widely used in
atomic physics in the years preceding the development
of quantum mechanics.

It is essentially a prototype of the quantum-mechan-
ical perturbation theory (a detailed exposition of the
method can be found in Born[€]),

The method consists of the use of successive ap-
proximations to integrate the Hamilton equations writ-
ten in terms of action and angle variables I, w. These
canonically conjugate variables have a very remark-
able property: expressed in terms of I and w the
Hamiltonian depends only on the I’s, while the angular
variables are linear functions of the time, and any
single-valued function of the coordinates and momenta
is periodic in the w’s.

Precisely these properties of the variables I and w
are very convenient in the solution of a number of prob-
lems by the method of successive approximations.

Let us proceed to the proof of our formula (on this
cf. also [8]). For simplicity we shall confine ourselves
to the treatment of an oscillator with one degree of
freedom.

In the Hamiltonian Hgg, of the unperturbed oscilla-
tor we change from the variables p, r to new canonic-
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ally conjugate variables, the action variable I and the
angle variable w. These variables have the property
that Hpge depends only on I:

0Hosc

j___%__o, I =const {6.1)
and
L : ® 1
o= gt wegr(od 4, 62

where 2n/wy= T is the period of the motion. Suppose
that beginning at time t = 0 the oscillator is acted on
by the perturbation

H = ———pA= ———Z ay (eup) cos (pf +¢u);  (6.3)

for the perturbed system the variables I and w satisfy
the equations
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whereas for t = 0 they satisfy Egs. (6.1), (6.2). We de~
note the unperturbed values satisfying Egs. (6.1), (6.2)
by IO, w®, In solving Eq. (6.4) we shall confine our-
selves to the first approximation in the perturbation.

In this case we can substitute in Eq. (6.3) the unper-
turbed value of p/m

%‘”: rO— — ) @b, sin 2l ® (6.5)
and write H’ in the form l
H' =23 o (eub;) aysin 2niw cos (out 4 ¢,)
N
’ (6.6)

= % 2 o, (eub;) ay sin [2a10'® — o, — @,].
pol
In Eq. (6.6) we have dropped terms corresponding to
combination frequencies, which do not give any contri-
bution to the final expression for the energy trans-

i= _%%'_, ©= 312 t}sc+ 01 , (6.4) ferred. Substituting Eq. (6.6) in the first of the equa-
tions (6.4), we get
=- 2 lo; (euby) oy cosf{w;, —wy )t + 6, — 1, ]I
w sin (8; — @) —sin [(0; —©,) £+ 8 —@,] €7
e - - - s
Af=1—19 =2 lo/(eub) ay B Ty s £ ]
uyt

In the second of the equations (6.4)

do

JH
—r = + Zn I ®

Tor 5T® AI

(]
=~ (6.8)
Substituting Egs. (6.6), (6.8), and (6.7) in this equation,
we get

sin (’51—“13”) ¢

(1)1——(1)”

dwy
Aw=w—w® = 9% Z { 7o (eub;) ay [

cos (8 — @) —cos [(0; — ) t-+8—q,) ]
- (ml - wp,)z

cos (8; —

@) — 08 (@ — ) t-+8—,] }
1

a
+ 57w o) (enb))l oy o—w

(6.9)

We can now calculate 7%

Ar®
Fw©®

or

D __
Y =Zro

[ .
AT + Aw = — AT 2 57 (@/b;) sin (ot +8,)
1

— Aw2m M Logb; cos (02 + ). (6.10)
i

Substituting Eqs. (6.10) and (6.9) in Eq. (4.4) and aver-

aging over the phases 07, ¢, we obtain without diffi-

culty the result

e ‘A e a sin (m;—mu) .
< 2 A= - 4¢® 2 g7 [0 (eub)] ouaplo; (eubl)w
a B, L
me? Aoy
s 2 31©® wyailof [eyb; |?
", 1
t cof —w,)¢t sin{oj—o))t
rteos (@ —o,) ¢ sin (o y;) > o)
GO (@1—aoy)

Using the obvious relation

t cos (@ —ay)t sin (ml—mu) t

_ d sin(@ —oy):¢
0 -0, (©0r—w,)*

d(ou

(.l)[—(l)u'

and then averaging Eq. (6.11) over the time, we get

2 1—cos (0 —w,) T
DA ne? 2 m
ZJ rUAR = Gt L 0[(0) [0 | eub, | ]lmuau =)
!
et doy d 1—cos(oj—ay)T
+= 4% Z 37® lo} [eubl 1 ‘”uau T —T((Wz— (6.12)

w1

Replacing the summation over k by an integration
and using Egs. (3.3), (5.4), we get finally

T 8n4e2
% 2 FPAL = Z f 81(°> [ORHECH)
m

3p2
= —[”;Ce Do fiE‘ (@b} (@)].
i

(6.13)

We must take the derivative of the intensity I with
respect to the energy as given by

df dl de

9E T do dE °
In the case of the harmonic oscillator [frequency
independent of E, and b? = (2/mw?)E] the formula
(6.13) takes the form

€ N T oo
_Zr(”A:f)
(9

[n

8ﬂ392

2 (). (6.14)

Apart from a factor 1/3 this formula is the same as
Eq. (5.6). The factor 1/3 is due to the fact that Eq.
(6.14) has been derived for an oscillator with one
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degree of freedom, whereas Eq. (5.6) corresponds
to an oscillator with three degrees of freedom.*
If the intensity does not depend on the frequency,
dI/dE = 0, the formula (6.13) takes the form
. . 3,
% z r“’Aﬁ” 47;;
18 l
Obviously the sign of the quantity (6.15) depends on the
sign of the derivative, i.e., on whether the quantity
wlb% increases or decreases as the energy of the sys-
tem increases. It is not hard to show that for quite a
number of nonlinear systems Eq. (6.15) gives absorp-
tion, and not induced emission, at all frequencies wj.
We shall show this for the examples of a particle
in a field U(x) = a|x (9, where g > 0, and of a rigid
rotator.
From the definition of by it follows that

I{o) o, o (o). (6.15)

1

a
o,bi= 12;32 w, [ Scos ot () d(x)}z, (6.16)
§

where

G e =it T
Y (. S
IV Ze—vw) 1/—[E ~v .17

a is the turning point given by the condition[3]
E -U(y) = 0. Substituting Eq. (6.17) in Eq. (6.16) and
making the change of variables

1
e\ T /S a
z=?/("E—) ) = &'E‘) ’
we get
1 24 1
8V3 /1N o ¢ dz -t
@b} Y <E\ E ¢ [S)Vi-zq]
u 2
K dz
o V1———zq
cos 2nl? dul ,
& dz
5 ]/1——19
1 u 2
) % dz
]/1—1‘1
‘DldE(“’Lbl —?—”'—t{'q—q 1—-—2——— cos| 2nl-3 - du
. z
l§ V1 A go Vl—zq)

(6.18)

For all values of I the expression (6.18) is positive.

Consequently, again according to Eq. (6.15) the field
energy decreases at all frequencies wy, i.e., only ab-
sorption by the oscillator is possible, and not induced
emission.

A second and extremely characteristic example is
the rigid rotator. We assume for simplicity that the
rotator consists of a particle with charge e¢ and mass

*For simplicity we confine ourselves in what follows to the
treatment of the oscillator with one degree of freedom.
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m revolving around a fixed axis at the distance R. In
this case the rotation frequency is connected with the
energy by the relation
1 mR?
E=-2‘]C02='—~2—(02, (6.19)
where I is the moment of inertia of the rotator. There-
fore the sum over I in Eq. (6.15) reduces to a single
term, for which
4 (0b%)= 20 - (0RY) = R o1 (0%) = =,
and Eq. (6.15) goes over into the expression obtained
earlier for the absorption by a harmonic oscillator.
At the same time, in quantum theory the energy
levels of such a rotator are given by the formula
E="F, k=0, 21, £2, ..., (6.20)
and thus are not equidistant. The frequency that cor-
responds to the transition |k| — |k| -1 is w”
= (f/21)(2] k| - 1), and that for the transition |k|
— |k] +1 is w’ = (8/21)(2{k| + 1), which is not
equal to w”. Therefore there must be induced emis-

sion at the frequency w” and absorption at w’, with

s =222 k|~ D I (),

S abs __ 4mBe?

s 1R+ I (o). (6.21)

Many examples can be given of other systems for
which quantum theory gives absorption at some fre-
quencies and induced emission at others, whereas in
classical theory, in the framework of our formulation
of the problem, only absorption is possible. The cause
of this fact, which is due to general properties of clas-
sical motions, and also the conditions under which a
classical system can amplify radiation, will be brought
out in the following section.

7. THE PASSAGE FROM QUANTUM THEORY TO THE
LIMIT OF CLASSICAL THEORY

As is well known (cf. e.g., [°J), in the quasi-classi-
cal approximation in quantum mechanics what corre-
sponds to motion along a trajectory is a wave packet
formed by the superposition of a large number of
closely spaced stationary states. We denote by n the
average value of the quantum number which labels
these stationary states. Then the average value of an
operator I over such a wave packet can be written in
the form (cf. [53)

<F> = 1% (Fn—H, neim"-‘—l’nt + Fn—l, ne—imn, n—lt)' (71)
>

In the limit the expression (7.1) must coincide with the
classical quantity F(t). Since F(t) is a real quantity,
it follows from Eq. (7.1) that in the quasi-classical
limit

F

n-bn

— F}

Balynr On, g = Oy, o —> O = Ol, (7.2)
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where w, is the frequency of the classical motion, and
1=1,2,... is the number of the harmonic. From this,
however, it can be seen that in the classical limit the
energy levels of any system are equidistant.

We can also arrive at this same result in a different
way. In the quasi-classical approximation the energy
levels are determined by the Bohr quantization rule

(Epdx=2nh (n —|——l-)

Calculating the difference between the energy levels
n + An and n by means of Eq. {7.3), we easily get

(7.3)

m=%?—2”A[]+ aE(%)A (7.4)
where
ap _ dz _E
7= 533 dz— @VW and o,= >

are the period and frequency of the classical motion.
For h — 0

0—> 2 An=a,An. (7.5)

T
Consequently, wp p-7 — wol, wn.+l,n — wyl, and the
difference wp.l,n —wn,n-I, being proportional to A,
goes to zero. It can be seen from this that in the quasi-
classical limit the energy levels of any system are
equidistant, According to Eq. (7.4), in the general case
wp is a function of the energy. Therefore the distances
hw, between adjacent levels are different for different
values of E. But in any arbitrarily small, but finite,
energy range AE there is a very large (infinite for
h— 0) number of levels, at distances which are equal
up to terms proportional to k.

Thus the situation that arises is the same as in the
case of the harmonic oscillator. At any natural fre-
quency wj there will always be transitions n— n +1
(absorption) and n — n -1 (emission), and conse-
quently the only observable quantity is the difference
of the energies absorbed and emitted, not each amount
separately.

Let us now see how the formulas of quantum theory
for radiative processes behave on passage to the limit
of classical theory. For definiteness we assume that
the incident radiation is isotropic and of natural polar-
ization. In this case the formulas (1.4) lead to the fol-
lowing expressions for the power spontaneously emitted
Ssg the induced emission S™4, and the absorption
sabs.

4el0d

el
S5P= 323‘” ‘rn, n-ll ’ (7.6)
: 1673200,
Slﬂd = 307:l ek lrﬂ,\ n-1 lz 1 ((Dns n-l)' (7-7)
1673wy, g,
Sabs — 36;: L Irn. n+l Izl(wn+l,n)' (7'8)

In these equations | Tn,n’ [2 is to be understood as the
value averaged over all transitions between the degen-
erate states a and a’ which belong to the levels n and

n’: !I'n,n' 2= (1/gn) 2, (ra,a’ 2
a,a’
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To go to the classical limit in these formulas we
must let i — 0 and replace 4|rp n: 1I2 by |bz|? [see
discussion of Eq. (3.4)].

As a result of this passage to the limit the formula
(7.6) for SSP, which does not contain h, goes over into
the previously obtained formula (3.4) of classical the-
ory. On the other hand the quantities S?PS and sind
increase without limit as i — 0. This shows that each
of these quantities has no physical meaning by itself in
the classical theory. At the same time the difference
of these quantities
__ A6m3e?

3e

= abs 1
S;=8 S 'h—[mml,nlrn,nﬂlzl(mmbn)

— Op, ny I Tn, n-t ]21 (mn, n—l)] (7'9)
remains finite, in accordance with Eq. (7.2). Thus the
only quantities which can appear in the claisical the-
ory and actually be observed are SSP and S = Sabs
—sind,

Multiplying and dividing the right member of Eq.
(7.9) by wj and using the fact that for i— 0

Onel, 0l Ta, ned 12T (Onad, n—~0n, n-1) 1T, ng? H{on, nog)
h(l)(

1 d
—_—> _[; EE [(Olb%[ (mk)lv
we get

~ 4nse?
5= 0, 2 [0 (0)]. (7.10)
Thus in the quasi-classical limit the difference §z

= §8bs _ gind goes over into the formula (6.13) of the

classical theory. If the intensity is independent of the
frequency, Eq. (7.10) is the same as Eq. (6.15). It is

convenient to write the last formula in the form

—~ 8 3

5.=2 1) (7.11)
where

f(=mg)l iE lo, HE (7.12)

This quantity is none other than the classical limit
of the difference of the absolute values of the oscilla-
tor strengths fy n,7 and fy .7 of the transitions. Since

fr, n0 =5 @p, w | Tnns %, (7.13)
in the classical limit
|fn.n+l"’lfn.n—l[‘>fl' (714)

The oscillator strengths fyn’ of the transitions
obey the sum rule

ann’ = 2 (Ifn.n«»ll_
n >0

Consequently

lfn' n-l[)=1- (7.15)

(7.16)

2t =1

[]
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According to Eg. (7.16) the sum of the §z over all fre-
quencies at which radiative processes are possible
(i.e., over all 1) is greater than zero. Thus as the
overall result there is always absorption. If the sys-
tem is such that radiative processes are possible at
only one frequency, then again S >0. S is then deter-
mined by the same formula as in the case of the har-
monic oscillator. An example of such a system is the
rigid rotator considered above. As for the individual
terms of the sums (7.15) and (7.16), the problem of
their signs is a difficult one in the general case. The
condition (7.16) does not impose any restrictions on
the signs of the individual terms in the sum. Still, as
was already stated in the preceding section, consider-
ation of a number of concrete examples with very dif-
ferent properties shows that for a wide class of sys-
tems §l > 0, i.e., absorption occurs at all frequencies
wi.

Thus at least for oscillators of this general type the
quantum and classical theories lead to essentially dif-
ferent results. A quantum-mechanical oscillator in
the level Ey absorbs radiation at frequencies Wty
(E.y/ > Ey) and gives induced emission, i.e., intensi-
fies the radiation, at frequencies w-yy”(E-),n < E-y).

In the classical theory there is just one harmonic
corresponding to each pair of frequencies wy’y and
wyy”, and an oscillator with the energy E = E,, (en-
ergy of the free vibrations) absorbs radiation at all
the harmonics wjy.

It does not, however, follow from what has been said
that induced emission, and thus also amplification of
radiation, are altogether impossible in the classical
theory. The point is that the results obtained above
for oscillators with a fixed energy cannot be carried
over to the case of an ensemble of oscillators distrib-
uted over a range of energies. In particular, in the
general case the absorption at the I-th harmonic by
oscillators with energies in the range E, E+AE is
not given by

E+AE
S,(E) N (E) dE. (7.17)

y

As will be shown below, this is again due to specific
features of the quasi-classical motion.

Let us consider an assembly of oscillators with a
quasi-classical (i.e., almost equidistant) energy spec-
trum, with the distribution over the energy levels given
by occupation numbers Np,. We then find the absorp-
tion power AQ2bS corresponding to transitions m
— m+1 and the induced-emission power AQind cor-
responding to transitions m — m ~ 1, in the frequency
range w, w+Aw. The quantities AQabS and AQind
can be found by summing NmSIaI'{’En+1 and Ny, im’im_i
over all levels m for which wmy,ym and wm m-y
are contained in the narrow range of frequencies. We
denote by the indices k and k’ the lowest and the high-
est levels for which the frequencies wy,y k and
wk’ k/-y still fall in the interval w, w+Aw (Fig. 1).
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k!

FIG. 1. Scheme of transitions in-
side the interval AE.

Then the total increase of the energy of the oscillators
per unit time resulting from the two processes will be
given by

g

- %

N Smd
m, m-—1
m=h44 ’

AQ = AQ s hii NS5 i~
m:h m m m‘1

I

= 3

me=k+1

—_ AQ ind __
(V=N o)) S ot

Substituting in this formula the expression (7.7) and
replacing the occupation numbers Ny by N(Epm)
hwy(Em ), where N(E) is the energy distribution func-
tion of the oscillators, we get in the quasi-classical
limit

‘Non—Nm_1

E—En_, ﬁh_"(wo]v)
and
E+AE 4 . s
AQ= — S 4dE .22 2 ob‘za_E(moN)I(mo), (7.18)
E
where
(DO(E)=(1)7 (DO(E+AE)=(D+A(1).

By repeating these same arguments in the general
case of transitions m — m+/, m — m -, we can get
an analogous expression for the total increase of en-
ergy of the oscillators per unit time corresponding to
the I-th harmonic:

4n3e

A01=

S dE-obt 2 (o N)I(0),  (7.19)

where

0 (F)=0, 0,(E4+AE)=0+ A,

Let us compare this expression with Eq. (7.18). We
integrate Eq. (7.19) by parts. Using Egs. (7.11), (7.13),

we get
it E+AE  E+AE
80 =2 r@yenty | + § S@w(E)ar.
E E (7.20)

This expression agrees with Eq. (7.17) only when the
first term in Eq. (7.20) is zero at the end points of the
interval E, E+AE. In the general case AQ; is not
equal to the expression (7.17), and in particular can

be of the opposite sign. As can be seen from Eq. (7.19),
the sign of AQ; is determined by the sign of the deriv-
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ative (9/8E)(wiN). If (8/3E)(wjN) < 0, then AQq > 0,
and consequently there is absorption by the oscillators.
If, on the other hand, (3/8E){wN) >0, then AQj < 0.
This means that the oscillators lose energy and am-
plify the incident radiation. Thus a system of classical
oscillators can either absorb or amplify incident radi-
ation, depending on the sign of (8/3E)(wyN). The con-
dition (8/8E)(wyN) > 0 is completely equivalent to the
condition for inverted populations Ny, > Ny -7 (or
Nm+l > N ) in quantum theory, since the quantities
which correspond to the occupation numbers Ny, in
the quasi-classical limit are

N (Ep) by (Ep) =2 N (E,,) 0,(E.).

If N(E) varies with E much faster than does wj
then we can replace (8/8E)(wyN) by w;{8N/3E). In
this case the sign of AQ] is entirely determined by
the form of the distribution function N(E). For
{8N/BE) < 0 there is absorption, and for (3N/3E) >0
there is induced emission.

What we have just said is graphically illustrated in
Fig. 2. In the frequency range Aw; which corresponds
to the energy range AE; we have (8N/3E) >0, AQg
< 0, and consequently the incident radiation is ampli-
fied. In the frequency range Aw, (the energy range
AE,) we have (8N/BE) <0, Q7 >0, i.e., there is ab-
sorption, Finally, in the range Aw (the energy range
AE) there are frequencies at which radiation is ab-
sorbed, and also frequencies at which the radiation is
amplified. The expression (7.19), which in this case
agrees with (7.17), describes the total effect. The
smaller the width of the distribution N(E), the smaller
the energy ranges for which (38N/3E) is larger and
smaller than zero, and the more difficult it is to dis-
tinguish the frequency range in which induced emission
occurs. In the case of a J-function distribution it is
obviously impossible to distinguish frequency ranges
corresponding to absorption and to induced emission.
When in Eq. (7.19) we set N = Ny3(E ~E;) and inte-
grate over an arbitrarily small range AE containing
the point E, we get

AQ,=N,S\(Es) > 0.

It is for this reason that in our treatment of an en-
semble of oscillators all having the same energy we
did not get any induced emission.

We also note that since Aw; ~ (8wy/9E)AE;, when
we have a given distribution function N(E) the range
of frequencies Aw; in which induced emission occurs
will be smaller if the anharmonicity is smaller, i.e.,

AN(E}

FIG. 2. Example of a distri~
bution function N(E) with par-
ticular portions corresponding
to induced emission and to ab-

il sorption.
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if the energy dependence of the frequency wj is weaker,
Therefore the smaller the anharmonicity the harder it
is to distinguish a frequency range in which induced
emission can be observed.

For the harmonic oscillator the only quantity which
can be observed or calculated in the theory is the in-
tegrated effect, since in this case the frequency does
not depend on the energy and in Eqs. (7.19) and (7.20)
the integration must be extended over the interval
0, ©. Then the first term in Eq. (7.20) is zero [b(0)
=0, N(«)=0], and since §(E) does not depend on E
the formula (7.20) gives

AQ=§XN(E)dE=§N>O,
0

where N is the total number of oscillators.

Thus under specific conditions both quantum and
classical systems have to equal degrees the capacity
to amplify incident radiation instead of absorbing it.
The differences existing between the effects for quan-
tum and classical systems (for example, for a 6-
function distribution) are entirely due to specific fea-
tures of their energy spectra.

8. CLASSICAL THEORY FOR AN ENSEMBLE OF
OSCILLATORS DISTRIBUTED OVER ENERGY

It now remains for us to obtain the general formula
(7.19) for the increase of energy AQ; of an ensemble
of oscillators not by making a passage to a limit from
quantum theory, as we did in the preceding section,
but entirely within the framework of a classical treat-
ment. Let us consider the [-th-harmonic absorption
of radiation in the frequency range w, w+Aw by an
ensemble of oscillators. It is obvious that the absorp-
tion will be due to oscillators with energies in the
range E, E+AE, where wi(E) = w and wj(E+AE)
= w+Aw. The change of the energy of the oscillators
per unit time owing to the absorption consists of two
parts. First, there is a change of the distribution func-
tion in the range AE, and second, a certain number of
oscillators leave this range, and consequently cease to
take part in the absorption at frequencies in the range
w, w+Aw. The energy of an oscillator which leaves
the interval AE through the upper boundary will there-
after remain equal to E +AE, and that of one leaving
through the lower boundary, to E. Therefore

8Q,= \ N (B)E dE +1E/ (B)]
AE

IE+AE’ (8.1)
E

where j(E) is the flux in the energy space. The dis-
tribution function N(E) and the flux j(E) in the en-
ergy space can be expressed in terms of the corre-
sponding quantities in phase space, N(g) and j{g)

(g is a phase volume):

N(E)dE =N (g)dg, j(E)=](8) (8.2)
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The distribution function in this problem satisfies
the Fokker-Planck equation*

N2 {av—5 L em}=0.

Since N(g) and j(g) are connected by the equation
of continuity

(8.3)

N+ .(;_Z; j= (8.4)
it follows from Eq. (8.3) that
. 1

=aN—7—a-Z— (BN). (8.5)

The quantities o and B8 in Egs. (8.3) and (8.5) can
be expressed in terms of the mean increment of g and
the mean square increment of g per unit time:

a=(8g), B=(3g". (8.6)
Since
dg=g(E+8E)—g(E) =25 8E+ 5 28 8E2 4 ..

the calculation of the quantities (8.6) reduces to the
calculation of averages of the energy transfer OE, the
squared energy transfer SE2, and so on.

As is well known

27
where T is the period of the motion. The quantity
{6E) has been calculated earlier—see Eq. (6.13).

In the calculation of (SE?) it suffices to use only
the first term in Eq. (2.16), since it is the only one
that gives a contribution ~ e?,

Accordingly,

1
O =+ ( (8.8)

T
{2 SoApan)™s.
[
Performing the integration over dt and averaging over
the phases of the free vibrations of the oscillator and
the field, we get
1—cos (0 —©
(0 —wy)?

1 ol

T
7 2 (eub)?aho}
©®

W (8.9)
Repeating the arguments used for the derivation of

Eq. (3.4) and using Eq. (5.4), we get for the case of
isotropic radiation

(OB =22 ot (a)). (8.10)
Thus we have
=2 BB+ DL (887 = 5 oo 2 (b1 (o))
=122 p 2 B (@), (8.11)

*We recall that the Fokker-Planck equation in the general case
must be written in precisely the form (8.3). It is only in certain
special cases that this equation goes over into a corresponding
equation for N(E),

N(E) + a-%{azv (E) — (BN (B)] }—o

?T
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- ( ) BE) = 2 pii] (a)). (8.12)

It can be seen from Egs. (8.11) and (8.12) that «
and § satisfy the relation

a_%%a). (8.13)
Therefore we have by Egs. (8.5) and (8.13)
J=—5B5 (8.14)
Let us return to the expression (8.1). Using Egs.

(8.4) and (8.14) and integrating Eq. (8.1) by parts, we
get
E+AE

[ ;
5z 198+ (ED)

E+AE
80, =—Ep § +§
E

.Y

JE oN

1
=1 Sgﬁag S 48 (8.15)

Since according to Eqgs. (8.2) and (8.7) we have

N (g) =55 N (E),

Equation (8.15) finally gives

E+AE, 2
{ bt @) 55 @N)EE.

E

4n3e?

8Q,=—3%

(8.16)

This is the general formula for the absorption in
the frequency range Aw, and is exactly Eq. (7.19). A
detailed discussion of this formula is given in the pre-
ceding section. We note once more that according to
this formula a system of classical oscillators can
either absorb or amplify incident radiation, depending
on the sign of the derivative (9/9E)(wiN).

It can be seen from the derivation of Eq. (8.16) that
in the general case the induced processes are deter-
mined both by the mean energy (SE) transferred to
an oscillator and by the mean square fluctuation (S6E?).
It is essential that contributions to these processes
come from both the first term and the second term in
Eq. (2.16).

We note that in the quantum theory of radiative proc-
esses there are no expressions analogous to the first
term in Eq. (2.16). This is due to the fact that the av-~
erage value of the operator ¥ is equal to zero for any
stationary state. As has already been pointed out, how-
ever, in the quasi-classical approximation of quantum
mechanics a stationary state of a system by no means
gives the motion of the particle along a definite trajec-
tory (cf. e.g., 5]y, What corresponds to motion along
a trajectory in the quasi-classical approximation is a
superposition of a large number of closely spaced sta-
tionary states, i.e., a wave packet y = Zn) Cny¥n. For

such a wave packet the average value of ¥ is indeed
different from zero, and is of just the form necessary
to get the expression (e/c)Er“’)A(o)
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In conclusion we shall show that the formula (8.16)
allows us to obtain the Rayleigh-Jeans distribution di-
rectly from the equality of the absorbed energy AQj
and the quantity

E4+AE
AQP= S S (E)N dE
E
of energy emitted by an ensemble of arbitrary non-
linear oscillators in a state of thermodynamic equi-
librium.
Since in this case

_E
N(g)ooe

and consequently

g

E -—
0y (E)N (E)eo ¢ KT, 52 [0 (E) N (E)) co— e 7,

it follows from Egs. (3.4) and (8.16) that

E+AE
§ dE.

E+AE \ z
S dE 5 afible " =
E

4n3e?

\ _E
5o @bl (@) o e .
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From this we get

kT

I(0)= i« (8.17)
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