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1. INTRODUCTION

1 HE existence of induced emission of radiation was
first postulated by EinsteinШ o n the basis of thermo-
dynamic arguments, before the development of the
quantum theory of radiative processes. The quantum
theory, however, has given the simplest and most natu-
ral explanation of this effect and of its main features.
According to this theory the probability of transition
of an atom from state a with energy E a to state b
with energy E^, accompanied by the emission of a
photon, of frequency ш = ( Е а - Е ь ) / Н and polarized
along the direction ep, into the element of solid angle
dO, is given by the expression

The probability of the inverse transition b •
which absorption occurs, is

a, in

8я>с«
V do. (1.2)

I n E q s . (1.1) a n d (1.2) d a b i s t h e m a t r i x e l e m e n t of

t h e d i p o l e m o m e n t of t h e a t o m * ; Ipfc i s t h e s p e c t r a l i n -

t e n s i t y of r a d i a t i o n w i t h p o l a r i z a t i o n ep a n d w a v e v e c -

t o r k. T h i s l a s t q u a n t i t y i s d e f i n e d s o t h a t Ip fcdwdO

i s t h e e n e r g y a r r i v i n g f r o m t h e s o l i d a n g l e d O t h r o u g h

1 c m 2 i n 1 s e c . C o n s e q u e n t l y t h e u n i t s of I p k a r e e r g

c m " 2 s r " 1 .

A c c o r d i n g t o E q . (1.1) t h e e m i s s i o n p r o b a b i l i t y i s

m a d e u p of t w o p a r t s . T h e f i r s t d o e s n o t d e p e n d on t h e

i n t e n s i t y of t h e r a d i a t i o n i n c i d e n t on t h e a t o m , a n d i s

d u e t o s p o n t a n e o u s e m i s s i o n . If Ipfc * 0, w e h a v e i n

a d d i t i o n t o t h e s p o n t a n e o u s e m i s s i o n a t e r m p r o p o r -

t i o n a l t o Ipk, w h i c h c o r r e s p o n d s t o t h e i n d u c e d e m i s -

s i o n . E q u a t i o n (1.1) s h o w s a n i m p o r t a n t f e a t u r e of t h e

i n d u c e d e m i s s i o n : i t o c c u r s w i t h t h e s a m e f r e q u e n c y ,

i n t h e s a m e d i r e c t i o n , a n d w i t h t h e s a m e p o l a r i z a t i o n

a s t h e i n c i d e n t r a d i a t i o n .

In t h e c a s e of i s o t r o p i c n a t u r a l l y - p o l a r i z e d r a d i a -

t i o n , f o r w h i c h Ijfc = I 2 k = V2 I(OJ ), w e c a n c a r r y o u t a

s u m m a t i o n o v e r p o l a r i z a t i o n d i r e c t i o n s a n d a n i n t e -

g r a t i o n o v e r a n g l e s i n E q s . (1.1) a n d (1 .2) . W e t h u s

o b t a i n a s t h e f o r m u l a s f o r t h e s p o n t a n e o u s e m i s s i o n

p r o b a b i l i t y W S P , t h e i n d u c e d e m i s s i o n p r o b a b i l i t y

a n d t h e a b s o r p t i o n p r o b a b i l i t y W ^ s :
- _ J Л 1 / * ^ Я Л Й -

•'(«)• 1

3ftc3 '"<•<"• J

ft a»3

(1.3)

*Here and in what follows we confine ourselves for simplicity
to the consideration of electric dipole radiation.

For transitions between levels у, y' which are de-
generate with multiplicities g, g' we have

wind— g' wabs

" YY — ~~Г~ ' Y Y
p - 4 2

о, Ь

w h e r e t h e i n d i c e s a , b a r e u s e d t o n u m b e r t h e s t a t e s

belonging to the levels у, у'. If the concentrations of
atoms in the levels у, у' are Ny, Ny', then the num-
bers of transitions у —» у' and у' — у per cubic centi-
meter and second are given by the respective formulas

(1.5)

— !V g

— iVY.' V"
g' fcco3 (1.6)

U n d e r c o n d i t i o n s of t h e r m o d y n a m i c e q u i l i b r i u m t h e

number of transitions у —- у' is equal to the number
of transitions у' — у, and furthermore

Ev-Ev

v̂Y-

у~ду -

(1.7)

Equating the expressions (1.5), (1.6) and using Eq.
(1.7), we get

(1.8)

which is Planck's formula for the spectral density of
black-body radiation.

It is obvious that Planck's formula follows from the
equality of the numbers of у —• у' and у' —• у transi-
tions in thermal equilibrium only if we postulate the
existence of induced emission. It is from just these
considerations that Einstein postulated the relations
(1.4) between Wyy1,, Wy^d, and Wy-by\ For low frequen-
cies, fiw « kT, Eq. (1.8) goes over into the classical
Rayleigh-Jeans formula, which does not contain
Planck's constant Й:

<л*кТ ш'кТ (1.9)

It is not hard to s e e that this formula a lso could not
be obtained from Eqs. (1.5)—(1.7) if the induced e m i s -
sion w e r e absent. (As i s well known, when the induced
e m i s s i o n is omitted P lanck ' s formula goes over into
Wien's formula . ) It follows from this fact that the in-
duced e m i s s i o n cannot be a purely quantum effect, and
m u s t be p r e s e n t in the c la s s ica l theory of radiat ive
p r o c e s s e s . As we shall show, however, the passage
from the quantum formulas to the c las s ica l l imit o c -
c u r s in a very pecul iar way. In p a r t i c u l a r , the quant i-
t i e s

•1; a b s

* V Y . ( 1 . 1 0 )5 i n d = S a b s =
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which give the power of the induced emission and the
absorbed power, have no direct classical analogs.

It must be pointed out that the classical theory of
radiative processes is usually constructed for the ex-
ample of the harmonic-oscillator model. This is the
simplest model, but at the same time a very limited
one. A number of effects in the interaction of oscilla-
tors with the field disappear when we go over to this
model. In particular, the harmonic-oscillator model
is quite useless for the treatment of radiative proc-
esses induced by the field. The reason for this is a
specific feature of the harmonic oscillator, the fact
that the energy levels are equidistant. Meanwhile
there have been almost no general treatments in
classical theory of the interaction between the radi-
ation field and nonlinear oscillators (whose fre-
quency depends on the energy). For this reason,
and also because of the recent interest in the problem
of quantum generators based on the use of induced
emission (masers and lasers) , a special treatment
of the question of the role of induced emission in the
classical theory is justified.

In Sees. 2—6 we develop the classical theory of
radiative processes and bring out some specific fea-
tures of the behavior of classical systems as com-
pared with quantum systems. A detailed comparison
of the classical and quantum theories is made in Sec. 7.
In this section, and also in Sec. 8, it is shown that under
certain conditions classical systems can strengthen in-
cident radiation instead of absorbing it.

2. RADIATIVE PROCESSES IN CLASSICAL THEORY

Let us consider the interaction of a classical oscil-
lator with the electromagnetic field. We shall here in
general take an oscillator to mean any system capable
of emitting and absorbing electromagnetic waves: for
example, a harmonic oscillator, an anharmonic oscil-
lator, a rotator, and so on. For definiteness let the
oscillator be a particle of charge e and mass m in a
potential well U(r) . The interaction of such an oscil-
lator with the electromagnetic field is described by
the equation of motion of the charge in the field and
the Maxwell field equations, with the current in the
right members of these equations being that given by
the motion of the charge. For the derivation of this
system of equations, and also for all of the further
treatment, it is convenient to start from Hamilton's
equations.

The Hamiltonian function for the oscillator and the
electromagnetic field treated as interacting can be
written in the form

H •=? Новс+Н {-\-H', (2.1)

w h e r e H o s e a n < 3 Hf a r e t h e H a m i l t o n i a n s f o r t h e f r e e

o s c i l l a t o r a n d t h e f ie ld , a n d H ' i s t h a t f o r t h e i n t e r a c -

t i o n b e t w e e n t h e m . W e c o n f i n e o u r s e l v e s t o t h e n o n -

r e l a t i v i s t i c a p p r o x i m a t i o n . T h e H a m i l t o n i a n of t h e

free oscillator is

(2.2)

L e t t h e f i e l d b e c o n c e n t r a t e d i n s o m e f i n i t e v o l u m e

V, w h i l e t h e o s c i l l a t o r i s a t t h e p o i n t R = 0 a n d i t s d i -

m e n s i o n s a r e s m a l l i n c o m p a r i s o n w i t h t h e w a v e l e n g t h

o f t h e r a d i a t i o n . T h e n ( c f . e . g . , ^2>i^)

) = - i 2 (Pi <, +"With
k , 0 = l , 2

^ 2
к, 0=1, 2

(2.3)

( 2 # 4 )

where Q^, P^ are "canonically conjugate" field vari-
variables; the index ц consists of the wave vector к
and the polarization direction ejjp; e ^ p is the unit
vector of the polarization. The expressions for the
vector potential A and the electric field strength E
in terms of Q^ and Рд are as follows:

A.(r, t)=2 | / - £ -

E (r, t) = - 2

k, 0=1,2

U s i n g H a m i l t o n ' s e q u a t i o n s

au
dr

Q» =
dH

P*=~
dH •= - < C n + 2 у-т-^г^р,

w e g e t

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

[ I n a c c o r d a n c e w i t h t h e a p p r o x i m a t i o n u s e d h e r e a f t e r

w e h a v e o m i t t e d f r o m t h e r i g h t m e m b e r o f E q . ( 2 . 1 0 )

a t e r m 2(n/V)i/2 ( e 2 / m ) 2 y Q / x e / i p r o p o r t i o n a l t o e 2 . ]

T h e e q u a t i o n s o f m o t i o n ( 2 . 9 ) , ( 2 . 1 0 ) t o g e t h e r w i t h t h e

f i r s t o f t h e e q u a t i o n s ( 2 . 8 ) a l l o w u s t o f i n d t h e f i e l d i n

t h e v o l u m e V . L e t u s a l s o f i n d t h e i n c r e a s e p e r u n i t

time Нд of the energy of the /i-component of the field
owing to the interaction with the oscillator. The quan-
tity Нц is expressed in terms of a Poisson bracket:

_ r-£ e p . .

In a n a n a l o g o u s w a y w e e a s i l y g e t f o r t h e i n c r e a s e

p e r u n i t t i m e o f t h e o s c i l l a t o r e n e r g y H O s c o w i n g t o

i n t e r a c t i o n w i t h t h e f i e l d :
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The quantities (2.11), (2.12) can be expressed in
terms of the electric field strength E or the vector
potential A at the point R = 0. For the average in-
crease H o s c of the oscillator energy over a period
of the field we get

The equations of motion (2.9), (2.10) can also be written
in terms of the quantity A^ that appears in Eq. (2.13):

i аи X1 A

t + cô Ap, = -у- ее (вцГ) е^.

(2.14)

(2.15)

This is the required system of equations, which enable
us to calculate f, Ад, and consequently also Hose-

Let the interaction between the oscillator and the
field be turned on at the time t = 0. Up to this time
there were only the free vibrations r < 0 ) of the oscilla-
tor and Ajj0) of the field. We shall solve the equations
(2.14), (2.15) by a method of successive approximations,
i.e., in terms of series r = r < 0 ) + r ( 1 ) + . . . , A^

у r(0>Aii\ Hosc= - 2 Яц. (2.16)

In the g e n e r a l case the free v ibrat ions r ( 0 ) of the
osc i l la tor can b e w r i t t e n in the form of a F o u r i e r
s e r i e s

r"»=2b,cos((o,« + 6,), (2.17)
i

w h e r e OJJ = w0Z = (27r/T)Z, where T i s the per iod and
1= 1 , 2 , . . .

The free field v ibrat ions A^0 ) a r e of the form

A^* = Hyi cos (о0ц£ -\- ф^), (2.18)

w h e r e a^ i s d i rec ted along e^: a^ = a^e^.
When we subst i tute Eqs . (2.17) and (2.18) in the

r ight m e m b e r s of Eqs . (2.14) andj2.15) we can find
r U ) and Ajj1', and then calculate H o s c .

3. SPONTANEOUS EMISSION

Let us begin with an examination of the third term
in Eq. (2.16), the only one that is not zero when there
are no free vibrations of the field, i.e., when A^ = 0.

Substituting Eq. (2.17) in the right member of Eq.
(2.15), we get

. (3.1)

Since Eq. (3.1) contains the resonance factor
11'(ш\х ~ ШЪ > we can set

0); 1

and

<B^ _ ( o | 2 o )^—о

i n t h e s q u a r e b r a c k e t s i n E q . ( 3 . 1 ) . W h e n

w e g e t

we do this

— COS ((йц — (Oj) T
(3.2)

^ + . . . , in which we confine ourselves to the terms
proportional to e, while in Eq. (2.13) we keep the terms
proportional to e2. This is equivalent to the first-order
perturbation theory used in quantum theory to derive
the formulas (1.1), (1.2). It is not hard to show that
Eqs. (1.1) and (1.2) can also be obtained by averaging
the operator (e/c)YjгАц over the wave functions of

the system (atom + radiation field) calculated in first-
order perturbation theory. Thus we have a right to ex-
pect that the approximation we have chosen will lead to
the same results as the taking of the quasi-classical
limit in quantum theory. We accordingly write, by Eq.
(2.13),

Let us sum Eq. (3.2) over ц, i.e., over к and the po-
larization directions ek,p- We can replace the summa-
tion over к by an integration (for V—• °°), setting

«> c h e

1

Z J

к
factor

1 — cos

( •

( %

d k

(2Л) 3 •

— u>i)t

For т -

has the property of the 6 function б
fore

( 3 . 3 )

, - 0 J 7 ) . T h e r e -

Q=l,2

S i n c e

0=1,2

w e f i n a l l y g e t

(3.4)

As is well known, in the classical limit the square
of the absolute value of the matrix element, | fab I2, of
an operator f corresponding to a physical quantity

/ = S /a c o s (w J + a<o).

goes over into V f̂̂ , where a) = ( Е а - Е ь ) / К . This is
the content of the so-called correspondence principle.
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Therefore from a comparison of Eq. (3.4) and (1.3) it
follows that each term of the sum (3.4) is the classical
limit of an expression SSP = Кш jW sP, where oi

4. INDUCED RADIATIVE PROCESSES

i ,

If for some values of ц A^0' ^ 0, then in addition
to the spontaneous emission there are radiative proc-
esses induced by the field. These processes are de-
scribed by the first and second terms in Eq. (2.16). It
must be pointed out that already at this stage there
comes to light some difference between the classical
and quantum-mechanical descriptions of absorption
and induced emission. In quantum theory we can dis-
tinguish these two effects in a quite natural way and
consider them independently, since it follows from
general intuitive ideas that the downward transition
(y—• y", Ey > Ey») is responsible for induced emis-
sion and the upward transition (y —• y', Ey < Ey'), for
absorption. The situation is different in classical the-
ory, since there is no basis for separating out from
the first two terms of the expression (2.16) any parts
responsible only for absorption or only for induced
emission. Thus the absorption and the induced emis-
sion have to be treated together. For this reason we
shall call processes described by the first and second
terms of the expression (2.16) induced radiative proc-
esses. It is easy to see that the same properties of
coherence with the incident field hold for these proc-
esses as in the quantum theory [ for those components
ц(к, e ^ p ) of the unperturbed field that have A^0) = 0,
the first two terms in Eq. (2.16) are zero] .

Let us begin by considering the first term in Eq.
(2.16). Using the fact that for V ^ °°

a^ cos (ay + фм) -> { A (w) cos (at + фв) da,

we write this term in the form

= — [ dt~ ^
0 I

,) \ со) sin
ш)

F o r T—-<*> w e c a n r e p l a c e T~):(CJI— a ) ) ~ 1 s i n ( a j / — ш ) т

b y (тг/т) 5 ( щ - ш ) a n d T~1(UI-U))~1[ 1 - C O S ( W £ - W ) T ]

by ж(ш1 - ш) 6(ui - ш). When after this we integrate
over da), we get

-i 2 r"»A«'= I | - i 2 ш?Ь(А(о>,)со8(в4-фв1). (4.2)

Thus the total increase of the field energy in a large
time т owing to the first term in Eq. (2.16) is

dt- c o s <б< -

and is finite and independent of т. It can be seen from
Eq. (4.3) that this quantity can have either sign, depend-
ing on the phase relation between the free vibrations of
the oscillator and the field, i.e., it is possible for en-
ergy to be transferred from the field to the oscillator,
or, on the other hand, from the oscillator to the field.

The average rate of energy transfer is zero, how-
ever, when we average over a sufficiently large time
interval т. The expressions (4.2), (4.3) also give zero
when averaged over the phases 6; of the oscillators.
This shows that the role of the first term in Eq. (2.16)
in induced radiative processes depends essentially on
the physical statement of the problem. When we con-
sider the interaction with the field of oscillators with
fixed energy E and arbitrary phases, the first term in
Eq. (2.16) is equal to zero and all the induced radiative
processes are described by the term

(4.4)

We note that it is just this statement of the problem
that corresponds to the quantum-mechanical formulas
for S i n d and S ^ 8 given above, since S i n d is the av-
erage of the induced radiation (per unit time) over
an ensemble of oscillators with the energy Ey, and
Sabs is the average of the absorption over an ensemble
of oscillators with the energy Ey'.

We therefore proceed to the calculation of the ex-
pression (4.4). In Sec. 8 we shall look into the role of
the first term in Eq. (2.16) in the interaction of oscil-
lators with the field, and the conditions under which it
becomes important.

5. HARMONIC OSCILLATOR

Let us begin with the treatment of the simplest case,
that of the harmonic oscillator.

Setting т ^ Э и / Э г = a^r in Eq. (2.14), we get

= - £ - afsin к (5.1)

In the case of interest,
(3.1) and (3.2)],

a>o [ compare with Eqs.

and

- s i n -2 )

0

Let a light beam Ifc Aw ДО = 2У Чс о А ш д о f a l 1

on the oscillator. Let us sum Eq. (5.2) over the values
of ц(к,р) which correspond to this beam. Replacing
the summation over к by an integration and repeating
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the a rguments used in the derivation of (3.4), we get 6. ANHARMONIC OSCILLATOR

S r Vdk ша

3 (2я)» c* "
0=1,2 0=1,2

0=1. 2

F o r i sotropic radiat ion

(5.4)

к„АО. (5.5)

(5.6)

The sign of this express ion, unlike that of the quan-
tity (4.2), does not depend on the phase re la t ion b e -
tween the v ibrat ions of the osc i l la tor and of the field.
It follows from Eq. (2.13) that the t i m e average of the
i n c r e a s e of the osc i l la tor energy descr ibed by the ex-
p r e s s i o n (5.6) is posi t ive. In other words, the h a r -
monic osc i l la tor always absorbs radiat ion.

To br ing out the r e a s o n for this , let us see what
quantum theory gives for the harmonic osci l la tor .

The energy levels of the h a r m o n i c osci l lator, given
by the formula

En = (5.7)

a r e equidistant, i .e., separated by equal intervals Йш0.
If we place an osci l la tor which is in its level n in the
light beam IfcAw ДО, two types of induced radiat ive
p r o c e s s e s a r e poss ible : the t rans i t ion n —* n + 1, a c -
companied by absorption, and the t rans i t ion n —• n — 1 ,
accompanied by induced emiss ion.

In accordance with Eqs . (1.1), (1.2) the probabi l i t ies
of these t rans i t ions a r e

ДИ7.,

where

(5.8)

(5.9)

O b v i o u s l y t h e o n l y a c t u a l l y o b s e r v a b l e q u a n t i t y i s

t h e t o t a l e n e r g y t r a n s f e r r e d t o t h e o s c i l l a t o r ( p e r s e c -

o n d ) a s t h e r e s u l t o f b o t h p r o c e s s e s . T h i s q u a n t i t y i s

g i v e n b y

i - Д ^ п . n - . ) = - (5.10)

Thus quantum theory leads to just the s a m e s o r t of r e -
sult as c las s ica l theory [ c o m p a r e Eqs . (5.10) and
(5.6)]; a harmonic osc i l la tor always absorbs radiat ion,
independently of what energy level it is in. This fact is
due to a specific feature of the sys tem of energy levels
of the harmonic o s c i l l a t o r — t h e fact that they a r e equi-
distant and that the probabil i ty for t rans i t ions n — n + 1
is l a r g e r than that for t rans i t ions n — n — 1 . T h e r e -
fore it is natura l that for the harmonic osc i l la tor the
c las s ica l theory also gives only absorption.

F o r a s y s t e m w i t h n o n e q u i d i s t a n t l e v e l s , i n t h e g e n -

e r a l c a s e t h e t r a n s i t i o n s у — у ' ( u p w a r d ) a n d y — • y "

( d o w n w a r d ) w i l l c o r r e s p o n d t o d i f f e r e n t f r e q u e n c i e s

из' = ( E y ' - E y ) / K and ш" = ( E y - E y » ) / K .

Therefore in quantum theory it follows that for such
a sys tem t h e r e will be absorption at the frequencies
w' and induced e m i s s i o n at the frequencies w". T h e r e -
fore it i s interes t ing to find out what c la s s ica l theory
gives for the anharmonic osc i l la tor .

F o r an a r b i t r a r y anharmonic potential U ( r ) one
cannot find the explicit form of r ( 1 ) by integrating
Eq. (2.14). Therefore calculations of the s a m e type
as those we have made for the harmonic osc i l la tor
a r e possible only in p a r t i c u l a r specia l c a s e s . N e v e r -
the les s , by using a somewhat different way of ca lcu-
lating the quantity (4.4) we can get a genera l formula
valid for any nonl inear sys tem (cf. e.g.,'-6 '8-').

To make the point of this method c l e a r it i s helpful
to r e f e r to the example of quantum m e c h a n i c s . The
general formulas (1.1), (1.2) for the probabi l i t ies of
radiat ive t rans i t ions a r e valid in all c a s e s to which
perturbat ion theory can be applied, independently of
whether or not the Schrodinger equation can be in-
tegrated for the unperturbed sys tem. Everything s p e -
cific to the unperturbed sys tem is included in the m a -
t r i x e lements d a D . In c la s s ica l mechanics a lso t h e r e
exis t s a method of smal l per turbat ions of the very
same kind, which allows us to make al l the ca lcula-
tions in genera l form without choosing concrete p r o p -
e r t i e s for the unperturbed system, and all the r e s u l t s
a r e expres sed in t e r m s of c h a r a c t e r i s t i c s of the un-
perturbed motion. This method was widely used in
atomic physics in the y e a r s preceding the development
of quantum m e c h a n i c s .

It is essent ia l ly a prototype of the quantum-mechan-
ical per turbat ion theory (a detailed exposition of the
method can be found in B o r n ^ ) .

The method cons i s t s of the use of success ive a p -
proximat ions to integrate the Hamilton equations w r i t -
ten in t e r m s of action and angle var iab les I, w. These
eanonically conjugate var iab les have a very r e m a r k -
able p r o p e r t y : expressed in t e r m s of I and w the
Hamiltonian depends only on the P s , while the angular
var iab les a r e l inear functions of the t ime, and any
single-valued function of the coordinates and momenta
is per iodic in the w ' s .

P r e c i s e l y these p r o p e r t i e s of the v a r i a b l e s I and w
a r e very convenient in the solution of a number of p r o b -
l e m s by the method of success ive approximations.

Let us proceed to the proof of our formula (on this
cf. a lso M ) . F o r s implici ty we shall confine ourse lves
to the t r e a t m e n t of an osc i l la tor with one degree of
freedom.

In the Hamiltonian H o s c of the unperturbed osc i l l a-
tor we change from the var iab les p, r to new canonic-
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ally conjugate variables, the action variable I and the
angle variable w. These variables have the property
that H o s c depends only on I:

1 = - ~дШ~ = °- I== c o n s t

,

(6.2)

where 2п/ш0 = T is the period of the motion. Suppose
that beginning at time t = 0 the oscillator is acted on
by the perturbation

H'= ~ w p A = — w (6.3)

whereas for t < 0 they satisfy Eqs. (6.1), (6.2). We de-
note the unperturbed values satisfying Eqs. (6.1), (6.2)
by I< 0 ), w<0). In solving Eq. (6.4) we shall confine our-
selves to the first approximation in the perturbation.
In this case we can substitute in Eq. (6.3) the unper-
turbed value of p/m

(6.5)

write H' in the form

# ' = у 2 ш< (e*bi)a»sin2nta/0)cos (a^t + <рд)

/n

for the perturbed system the variables I and w satisfy
the equations

/ = —

b 1 E 1 - ( 6 - 6 ) w e n a v e dropped terms corresponding to
combination frequencies, which do not give any contri-
bution to the final expression for the energy trans-

^- , (6.4) ferred. Substituting Eq. (6.6) in the first of the equa-
tions (6.4), we get

И,!

I n t h e s e c o n d o f t h e e q u a t i o n s ( 6 . 4 )

dHosc со ^ ja^ _ 1 _ да^ д 7 ( 6 8 )

S u b s t i t u t i n g E q s . ( 6 . 6 ) , ( 6 . 8 ) , a n d ( 6 . 7 ) i n t h i s e q u a t i o n ,

w e g e t

COS ( б , — Cfy) — COS [(CO(— CO,, ~" Ф 1 "1
J

cos(a,—«pj —cos[(fi>i — « o * + 6 i — q > u
й -

We can now calculate f(1)

r<" = i ^ д/ + £ £ д . = - A/ 2 ^ («A) «n K I + e.)

(6.Ю)

U s i n g t h e o b v i o u s r e l a t i o n

со,,) t sin (со/—о
d sin (со,- ay) t

and t h e n a v e r a g i n g E q . (6.11) o v e r t h e t i m e , w e g e t

±

9CO, d 1 —

Replacing the summation over к by an integration
and using Eqs. (3.3), (5.4), we get finally

(6.9) !

(6.13)

t h e d e r i v a t i v e o f t h e i n t e n s i t y j w i t h

, dl _ dl du>

'IE ~ l a ~d~E '

S u b s t i t u t i n g E q s . ( 6 . 1 0 ) a n d ( 6 . 9 ) i n E q . ( 4 . 4 ) a n d a v e r -
. , , s- , . . . . , . , . e e . I n t h e c a s e o f t h e h a r m o n i c o s c i l l a t o r [ f r e q u e n c y

aging over the phases 6i, <pi, we obtain without diffi- ^ * * ^ ^ u 2 / o / 2чт=ч л * i
,/" . , ,. independent of E, and b^ = (2/maj'1)EJ the formula

culty the r e s u l t \ , , 'J (6.13) takes the form

T 2 r("A™ = - "S- 2 Щш К (e|J»«)] «»^>i <ci*b»)'"n

m°Lm'"'' i. у ^ i ^ = _ tev 7 , . ( 6

ne' -sri ащ 2 . 2 , , , 2

V.,1

' fC0s(C0j — С 0 ц ) « sin(C0l—СОц]

m—

Apart from a factor У3 this formula is the same as
Eq. (5.6). The factor % is due to the fact that Eq.

( 6 } ( 4 ) b e e n y e d f oscillator with one
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degree of freedom, whereas Eq. (5.6) corresponds
to an oscillator with three degrees of freedom.*

If the intensity does not depend on the frequency,
dl/dE = 0, the formula (6.13) takes the form

(6.15)

Obviously the sign of the quantity (6.15) depends on the
sign of the derivative, i.e., on whether the quantity
u)jb| increases or decreases as the energy of the sys-
tem increases. It is not hard to show that for quite a
number of nonlinear systems Eq. (6.15) gives absorp-
tion, and not induced emission, at all frequencies щ.

We shall show this for the examples of a particle
in a field U(x) = a | x | 1 , where q > 0, and of a rigid
rotator.

From the definition of bj it follows that

a
a>,b! = jgi co0 [\ cos Zco0i (x) d(x)]\ (6.16)

where

t(x) =
~[E-U{y)]> (6.17)

a is the turning point given by the condition ^
E - U ( y ) = 0. Substituting Eq. (6.17) in Eq. (6.16) and
making the change of variables

we get

(6.18)

For all values of I the expression (6.18) is positive.
Consequently, again according to Eq. (6.15) the field
energy decreases at all frequencies u>i, i.e., only ab-
sorption by the oscillator is possible, and not induced
emission.

A second and extremely characteristic example is
the rigid rotator. We assume for simplicity that the
rotator consists of a particle with charge e and mass

*For simplicity we confine ourselves in what follows to the
treatment of the oscillator with one degree of freedom.

m revolving around a fixed axis at the distance R. In
this case the rotation frequency is connected with the
energy by the relation

1 r , m№ „
= y / c o 2 = — t o 2 (6.19)

where I is the moment of inertia of the rotator. There-
fore the sum over I in Eq. (6.15) reduces to a single
term, for which

со J L (mb«) = 2co = R'JL («•) = A ,

and Eq. (6.15) goes over into the expression obtained
earlier for the absorption by a harmonic oscillator.

At the same time, in quantum theory the energy
levels of such a rotator are given by the formula

„ ft2*2 , n ± 2 ' (6.20)

and thus are not equidistant. The frequency that cor-
responds to the transition |k |—• | k | —1 is OJ"
= (K/2I)(21 к | - 1), and that for the transition | k |
-» | k | + 1 is ш' = (K/2I)(2|k | + 1 ) , which is not
equal to w". Therefore there must be induced emis-
sion at the frequency ш" and absorption at ш', with

(6.21)

Many examples can be given of other systems for
which quantum theory gives absorption at some fre-
quencies and induced emission at others, whereas in
classical theory, in the framework of our formulation
of the problem, only absorption is possible. The cause
of this fact, which is due to general properties of clas-
sical motions, and also the conditions under which a
classical system can amplify radiation, will be brought
out in the following section.

7. THE PASSAGE FROM QUANTUM THEORY TO THE
LIMIT OF CLASSICAL THEORY

As is well known (cf. e.g., '-5-'), in the quasi-classi-
cal approximation in quantum mechanics what corre-
sponds to motion along a trajectory is a wave packet
formed by the superposition of a large number of
closely spaced stationary states. We denote by n the
average value of the quantum number which labels
these stationary states. Then the average value of an
operator F over such a wave packet can be written in
the form (cf. M )

(7.1)

In the limit the expression (7.1) must coincide with the
classical quantity F ( t ) . Since F ( t ) is a real quantity,
it follows from Eq. (7.1) that in the quasi-classical
limit
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w h e r e o i 0 i s t h e f r e q u e n c y o f t h e c l a s s i c a l m o t i o n , a n d

I = 1, 2 , . . . i s t h e n u m b e r o f t h e h a r m o n i c . F r o m t h i s ,

h o w e v e r , i t c a n b e s e e n t h a t i n t h e c l a s s i c a l l i m i t t h e

e n e r g y l e v e l s o f a n y s y s t e m a r e e q u i d i s t a n t .

W e c a n a l s o a r r i v e a t t h i s s a m e r e s u l t i n a d i f f e r e n t

w a y . I n t h e q u a s i - c l a s s i c a l a p p r o x i m a t i o n t h e e n e r g y

l e v e l s a r e d e t e r m i n e d b y t h e B o h r q u a n t i z a t i o n r u l e

( 7 . 3 )

C a l c u l a t i n g t h e d i f f e r e n c e b e t w e e n t h e e n e r g y l e v e l s

n + Дп and n by means of Eq. (7.3), we easily get

( 7 . 4 )

where

dx and a>0 = -iw-

are the period and frequency of the classical motion.
For К — 0

2л An = <в0 Дга. (7.5)

Consequently, шП)П_г — шо1, Шп+1,п ~" ш<^> a n d t n e

difference Шц+^n — Wn,n-Z. being proportional to R,
goes to zero. It can be seen from this that in the quasi-
classical limit the energy levels of any system are
equidistant. According to Eq. (7.4), in the general case
OJ0 is a function of the energy. Therefore the distances
fiu>o between adjacent levels are different for different
values of E. But in any arbitrarily small, but finite,
energy range ДЕ there is a very large (infinite for
Й —• 0) number of levels, at distances which are equal
up to terms proportional to K2.

Thus the situation that arises is the same as in the
case of the harmonic oscillator. At any natural fre-
quency щ there will always be transitions n —• n + I
(absorption) and n—• n-Z (emission), and conse-
quently the only observable quantity is the difference
of the energies absorbed and emitted, not each amount
separately.

Let us now see how the formulas of quantum theory
for radiative processes behave on passage to the limit
of classical theory. For definiteness we assume that
the incident radiation is isotropic and of natural polar-
ization. In this case the formulas (1.4) lead to the fol-
lowing expressions for the power spontaneously emitted
SSP, the induced emission S*n^, and the absorption
gabs..

(7.6)

(7.7)

(7.8)

In these equations | r n > n ' | 2 is to be understood as the
value averaged over all transitions between the degen-
erate states a and a' which belong to the levels n and

n': | r n > n , | 2 = ( l / g n ) E l r a , a ' l 2 .
a,a'

To go to the classical limit in these formulas we
must let ft— 0 and replace 4 | г П ) П ± г | 2 by | t y | 2 [see
discussion of Eq. (3.4)].

As a result of this passage to the limit the formula
(7.6) for SSP, which does not contain Й, goes over into
the previously obtained formula (3.4) of classical the-
ory. On the other hand the quantities S a b s and S i n d

increase without limit as К —• 0. This shows that each
of these quantities has no physical meaning by itself in
the classical theory. At the same time the difference
of these quantities

•% ~ abs nind

- «».«-il'».»-il l 7K,»-i)] (7.9)

remains finite, in accordance with Eq. (7.2). Thus the
only quantities which can appear in the classical the-
ory and actually be observed are SSP and S = S a D S

- S i n d .
Multiplying and dividing the right member of Eq.

(7.9) by a>i and using the fact that for Й —• 0

Ипч-i, n I rn, TUI l a/ ( a w , n—«>n, n-i) 1 rn, n-ila /(Mn,n-i)

w e g e t

( 7 . 1 0 )

T h u s i n t h e q u a s i - c l a s s i c a l l i m i t t h e d i f f e r e n c e S ;

= g a b s _ s i n d g o e s o v e r i n t o t h e f o r m u l a ( 6 . 1 3 ) o f t h e

c l a s s i c a l t h e o r y . If t h e i n t e n s i t y i s i n d e p e n d e n t o f t h e

f r e q u e n c y , E q . ( 7 . 1 0 ) i s t h e s a m e a s E q . ( 6 . 1 5 ) . It i s

c o n v e n i e n t t o w r i t e t h e l a s t f o r m u l a i n t h e f o r m

w h e r e

( 7 . 1 1 )

( 7 . 1 2 )

T h i s q u a n t i t y i s n o n e o t h e r t h a n t h e c l a s s i c a l l i m i t

o f t h e d i f f e r e n c e o f t h e a b s o l u t e v a l u e s o f t h e o s c i l l a -

t o r s t r e n g t h s fn,n+Z a n d fn,n~Z ° f t h e t r a n s i t i o n s . S i n c e

2/7}
( 7 . 1 3 )In, n' = ~̂ ~~ ш п, n' I inn' I ,

i n t h e c l a s s i c a l l i m i t

l / n . » * i l - l / » . n - i | - * / i - ( 7 . 1 4 )

T h e o s c i l l a t o r s t r e n g t h s f ^ ' o f t h e t r a n s i t i o n s

o b e y t h e s u m r u l e

2 /»»• = 23 (I /„, „•! I - 1 /n. n - i I) = 1- ( 7 - 1 5 )

C o n s e q u e n t l y

( 7 . 1 6 )
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According to Eq. (7.16) the sum of the Ŝ  over all f r e -
quencies a t which radiat ive p r o c e s s e s a r e poss ible
( i .e . , over all I) i s g r e a t e r than z e r o . Thus a s the
overal l r e s u l t t h e r e is always absorption. If the s y s -
tem i s such that radiat ive p r o c e s s e s a r e poss ib le a t
only one frequency, then again S > 0. S is then d e t e r -
mined by the s a m e formula as in the c a s e of the h a r -
monic osc i l la tor . An example of such a sys tem i s the
rigid r o t a t o r considered above. As for the individual
t e r m s of the s u m s (7.15) and (7.16), the problem of
the i r s igns is a difficult one in the g e n e r a l c a s e . The
condition (7.16) does not impose any r e s t r i c t i o n s on
the signs of the individual t e r m s in the sum. Still, as
was a l ready stated in the preceding section, c o n s i d e r -
ation of a number of concrete examples with very dif-
ferent p r o p e r t i e s shows that for a wide c las s of s y s -
t e m s Sj > 0, i .e., absorpt ion o c c u r s at all f requencies

Thus at l eas t for osc i l l a tor s of th is genera l type the
quantum and c l a s s i c a l t h e o r i e s lead to essent ia l ly dif-
ferent r e s u l t s . A quantum-mechanical osc i l la tor in
the level Ey absorbs radiat ion at frequencies ш-у'у
( E y ' > Ey) and gives induced emiss ion, i .e., in tens i-
fies the radiat ion, at frequencies Wyy"(Ey» < E y ) .

In the c la s s ica l theory t h e r e is just one harmonic
corresponding to each p a i r of f requencies Wy'y and
Wyy", and an osc i l la tor with the energy E = Ey ( e n -
ergy of the free v i b r a t i o n s ) absorbs radiat ion at all
the h a r m o n i c s щ.

It does not, however, follow from what has been said
that induced emiss ion, and thus also amplification of
radiat ion, a r e a l together imposs ible in the c l a s s i c a l
theory. The point is that the r e s u l t s obtained above
for osc i l l a tor s with a fixed energy cannot be c a r r i e d
over to the c a s e of an ensemble of o s c i l l a t o r s d i s t r i b -
uted over a range of e n e r g i e s . In p a r t i c u l a r , in the
genera l case the absorption at the Z-th harmonic by
o s c i l l a t o r s with energ ie s in the r a n g e E, E +ДЕ i s
not given by

E+AE
St(E)N(E)dE. (7.17)

As will be shown below, this is again due to specific
features of the quas i-c las s ica l motion.

Let us cons ider an assembly of osc i l l a tor s with a
quas i-c las s ica l ( i . e . , a lmost equidistant) energy s p e c -
t rum, with the distr ibution over the energy levels given
by occupation numbers N m . We then find the a b s o r p -
tion power A Q a ° s corresponding to t rans i t ions m
— m + 1 and the induced-emiss ion power ДО/П(^ c o r -
responding to t rans i t ions m —• m — 1, in the frequency
range ш, w+Дсо. The quantit ies A Q a ° s a n c i i d
can be found by summing N m S | b

) S n + 1 and
over al l levels m for which Wm+i,m and Шщ,т-1
are contained in the n a r r o w range of f requencies. We
denote by the indices к and k' the lowest and the high-
e s t levels for which the frequencies wk+i,k and

in the interval OJ, ш+Аш (Fig. 1).

FIG. 1. Scheme of transitions im-
side the interval ДЕ.

Then the total i n c r e a s e of the energy of the osc i l l a tor s
p e r unit t ime resu l t ing from the two p r o c e s s e s will be
given by

m—h m=fc-bi

= - 2 ( A ^ - i V ^ S ^ V , .
171=4+1

Substituting in this formula the express ion (7.7) and
replac ing the occupation n u m b e r s N m by N ( E m )
fiwo(Em), w h e r e N ( E ) is the energy dis tr ibut ion func-
tion of the o s c i l l a t o r s , we get in the quas i-c las s ica l
l imi t

dE

and

w h e r e

Е+ЛЕ

( 7 . 1 8 )

= co, coo (E + Д £ ) = to + Дш.

B y r e p e a t i n g t h e s e s a m e a r g u m e n t s i n t h e g e n e r a l

case of t r a n s i t i o n s m — m+l, m —*• m —I, we can get
an analogous express ion for the tota l i n c r e a s e of e n -
ergy of the osc i l la tors p e r unit t ime corresponding to
the Z-th h a r m o n i c :

E+AE

( 7 . 1 9 )

where

L e t u s c o m p a r e t h i s e x p r e s s i o n w i t h E q . (7 .18) . We

i n t e g r a t e E q . (7.19) b y p a r t s . U s i n g E q s . (7 .11), (7 .13),

w e g e t

E+AE Е+ДЕ

д ^ ==_i^!fL/(<a)(o?b?iV I + \ 'Sl(E)N(E)dE.
E I (7.20)

This expression agrees with Eq. (7.17) only when the
first term in Eq. (7.20) is zero at the end points of the
interval E, Е + Д Е . In the genera l case AQi is not
equal to the express ion (7.17), and in p a r t i c u l a r can
be of the opposite sign. As can be seen from Eq. (7.19),
the sign of AQi i s determined by the sign of the d e r i v -
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ative O/8E)(a>zN). If (8 /8E) (wjN) < 0, then AQi > 0,
and consequently there i s absorpt ion by the osc i l l a to r s .
If, on the other hand, (3/8E)(a>zN) > 0, then AQi < 0.
This means that the osc i l la tors lose energy and a m -
plify the incident radiat ion. Thus a sys tem of c l a s s i ca l
osc i l l a to r s can e i ther absorb o r amplify incident r a d i -
ation, depending on the sign of (8 /9E) (o ; /N) . The con-
dition (8 /8E) (wjN) > 0 i s completely equivalent to the
condition for inverted populations N m > N m _^ (o r
Nm+Z > Nm ) in quantum theory, s ince the quanti t ies
which correspond to the occupation numbers N m in
the quas i -c l a s s i ca l l imit a r e

N (£m) ftcoo ( £ J = 4 - N (EJ щ (Em).

If N ( E ) v a r i e s with E much fas ter than does wj
then we can r e p l a c e (9/8E)(w/N) by w/(8N/8E). In
this c a s e the sign of AQi i s ent i re ly determined by
the form of the distr ibution function N ( E ) . F o r
(8N/8E) < 0 t h e r e i s absorption, and for (8N/8E) > 0
there is induced emiss ion.

What we have just said is graphical ly i l lus trated in
Fig. 2. In the frequency range Да^ which c o r r e s p o n d s
to the energy range ДЕ Х we have (9N/8E) > 0, AQi
< 0, and consequently the incident radiat ion i s a m p l i -
fied. In the frequency range Аш2 (the energy range
Д Е 2 ) we have (8N/9E) < 0, Qj > 0, i .e. , t h e r e i s a b -
sorption, Finally, in the range Лш (the energy range
Д Е ) t h e r e a r e frequencies at which radiat ion is a b -
sorbed, and a l so frequencies at which the radiat ion i s
amplified. The express ion (7.19), which in this case
a g r e e s with (7.17), d e s c r i b e s the total effect. The
s m a l l e r the width of the d is t r ibut ion N ( E ) , the s m a l l e r
the energy ranges for which (8N/8E) i s l a r g e r and
s m a l l e r than z e r o , and the m o r e difficult it i s to d i s -
tinguish the frequency range in which induced e m i s s i o n
o c c u r s . In the c a s e of а б-function dis t r ibut ion it i s
obviously impossible to distinguish frequency ranges
corresponding to absorpt ion and to induced emiss ion.
When in Eq. (7.19) we s e t N = N 0 6(E - E o ) and i n t e -
g r a t e over an a r b i t r a r i l y s m a l l range ДЕ containing
the point E o we get

It is for this reason that in our treatment of an en-
semble of oscillators all having the same energy we
did not get any induced emission.

We also note that since Awt ~ (dcoi/dE)AElt when
we have a given distribution function N(E) the range
of frequencies Да>1 in which induced e m i s s i o n o c c u r s
will be s m a l l e r if the anharmonici ty is s m a l l e r , i .e.,

N(£)

FIG. 2. Example of a distri-
bution function N(E) with par-
ticular portions corresponding
to induced emission and to ab-
sorption.

if the energy dependence of the frequency щ i s weaker .
Therefore the s m a l l e r the anharmonici ty the h a r d e r it
is to dist inguish a frequency range in which induced
emiss ion can be observed.

F o r the harmonic osci l la tor the only quantity which
can be observed o r calculated in the theory i s the i n -
tegrated effect, s ince in this c a s e the frequency does
not depend on the energy and in Eqs . (7.19) and (7.20)
the integrat ion m u s t be extended over the interval
0, °o. Then the f irst t e r m in Eq. (7.20) is z e r o [ b ( 0 )
= 0, N(°°) = 0 ] , and s ince S ( E ) does not depend on E
the formula (7.20) gives

CO
Д<? = S ^ N {E) dE = SN > 0,

where N is the total number of o s c i l l a t o r s .
Thus under specific conditions both quantum and

class ica l s y s t e m s have to equal d e g r e e s the capacity
to amplify incident radiat ion instead of absorbing it.
The differences exist ing between the effects for quan-
tum and c la s s ica l s y s t e m s (for example, for a 6-
function dis t r ibut ion) a r e ent ire ly due to specific fea-
t u r e s of t h e i r energy s p e c t r a .

8. CLASSICAL THEORY FOR AN ENSEMBLE OF
OSCILLATORS DISTRIBUTED OVER ENERGY

It now r e m a i n s for us to obtain the g e n e r a l formula
(7.19) for the i n c r e a s e of energy AQi of an ensemble
of osc i l l a tor s not by making a passage to a l imit from
quantum theory, a s we did in the preceding section,
but ent i re ly within the f ramework of a c las s ica l t r e a t -
ment. Let us cons ider the Z-th-harmonic absorpt ion
of radiat ion in the frequency range ш, ш+Аш by an
ensemble of o s c i l l a t o r s . It i s obvious that the a b s o r p -
tion will be due to osc i l l a tor s with energ ies in the
range E, Е + Д Е , where w/(E) = ш and о ^ ( Е + Д Е )
= ш+Aw. The change of the energy of the osc i l l a tor s
p e r unit t ime owing to the absorption cons is t s of two
p a r t s . F i r s t , t h e r e is a change of the distr ibution func-
tion in the range ДЕ, and second, a c e r t a i n number of
osc i l l a tor s leave this range, and consequently cease to
take p a r t in the absorption at frequencies in the range
w, ш+Дш. The energy of an osc i l la tor which leaves
the interval ДЕ through the upper boundary will t h e r e -
after r e m a i n equal to E +ДЕ, and that of one leaving
through the lower boundary, to E. Therefore

E '
(8.1)

w h e r e j ( E ) i s the flux in the energy space . The d i s -
tr ibution function N ( E ) and the flux j ( E ) in the e n -
ergy space can be expressed in t e r m s of the c o r r e -
sponding quantit ies in phase space, N ( g ) and j ( g )
(g is a phase v o l u m e ) :

i(g)- (8.2)
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The distribution function in this problem satisfies В = Г — Y (6£2) = 3 2 л 6 е " ptfj (to ). (8.12)
the Fokker-Planck equation* \ дЕ У З с

(8.3)

( 8 . 1 3 )

It can be seen from Eqs. (8.11) and (8.12) that a
and j3 satisfy the relation

Since N(g) and j(g) are connected by the equation
of continuity

,„ .•. Therefore we have by Eqs. (8.5) and (8.13)

/ = - 4 P 4 ^ - (8.i4)

- * * - • •

it follows from Eq. (8.3) that

(8.5)

The quantities a and j3 in Eqs. (8.3) and (8.5) can
be expressed in terms of the mean increment of g and
the mean square increment of g per unit time:

a = (Sg), 6 = (6g2). (8.6)
Since

the calculation of the quantities (8.6) reduces to the
calculation of averages of the energy transfer 6E, the
squared energy transfer 6E2, and so on.

As is well known

(8.7)

where T is the period of the motion. The quantity
(6E) has been calculated earlier—see Eq. (6.13).

In the calculation of <6E2) it suffices to use only
the first term in Eq. (2.16), since it is the only one
that gives a contribution ~ e 2.

Accordingly,

\
/ ' (8.8)

Performing the integration over dt and averaging over
the phases of the free vibrations of the oscillator and
the field, we get

1 —COS ((0(—0 (8.9)

Repeating the arguments used for the derivation of
Eq. (3.4) and using Eq. (5.4), we get for the case of
isotropic radiation

(8.10)

Thus we have

(8.11)

*We tecall that the Fokker-Planck equation in the general case
must be written in precisely the form (8.3). It is only in certain
special cases that this equation goes over into a corresponding
equation for N(E),

{aN (E)aN (E) - т l p i V = a

L e t u s r e t u r n t o t h e e x p r e s s i o n ( 8 . 1 ) . U s i n g E q s .

( 8 . 4 ) a n d ( 8 . 1 4 ) a n d i n t e g r a t i n g E q . ( 8 . 1 ) b y p a r t s , w e

g e t

Е+ДЕ Е+ДЕ

[

(8.15)ЭЕ dN

S i n c e a c c o r d i n g t o E q s . ( 8 . 2 ) a n d ( 8 . 7 ) w e h a v e

E q u a t i o n (8.15) f i n a l l y g i v e s

_4nV
3c

Е+ДБ,

o),b?/((D1)gi-(co, iV);rf£. ( 8 . 1 6 )

This is the general formula for the absorption in
the frequency range Дш, and is exactly Eq. (7.19). A
detailed discussion of this formula is given in the pre-
ceding section. We note once more that according to
this formula a system of classical oscillators can
either absorb or amplify incident radiation, depending
on the sign of the derivative (3/ЭЕ) (o^N).

It can be seen from the derivation of Eq. (8.16) that
in the general case the induced processes are deter-
mined both by the mean energy (6E) transferred to
an oscillator and by the mean square fluctuation ( 6 E 2 ) .
It is essential that contributions to these processes
come from both the first term and the second term in
Eq. (2.16).

We note that in the quantum theory of radiative proc-
esses there are no expressions analogous to the first
term in Eq. (2.16). This is due to the fact that the av-
erage value of the operator f is equal to zero for any
stationary state. As has already been pointed out, how-
ever, in the quasi-classical approximation of quantum
mechanics a stationary state of a system by no means
gives the motion of the particle along a definite trajec-
tory (cf. e.g., &]). What corresponds to motion along
a trajectory in the quasi-classical approximation is a
superposition of a large number of closely spaced sta-
tionary states, i.e., a wave packet ф = YJ Cn^n. For

n
s u c h a w a v e p a c k e t t h e a v e r a g e v a l u e o f f i s i n d e e d

d i f f e r e n t f r o m z e r o , a n d i s o f j u s t t h e f o r m n e c e s s a r y

to get the expression (е/с)Х/Г<0)А?,0).
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In conclusion we shall show that the formula (8.16)
allows us to obtain the Rayleigh-Jeans distribution di-
rectly from the equality of the absorbed energy
and the quantity

E+AE

of energy emitted by an ensemble of arbitrary non-
linear oscillators in a state of thermodynamic equi-
librium.

Since in this case

and consequently

, *[<«,„(£)#(£)] c o --±

lt follows from Eqs. (3.4) and (8.16) that

E+AE , e1 E+AE
kT--

From this we get

(8.17)
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