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1. INTRODUCTION

IMMEDIATELY after the discovery of the Mossbauer
effect (cf. '-1>2-'), there were discussions in the litera-
ture of the possibility of testing the general theory of
relativity by using this effect. The experiments of
Pound and others ^2"4^ showed that under laboratory
conditions one can observe the influence of the gravi-
tational field on the frequency of a photon, and that the
magnitude of the effect is in agreement with the p r e -
dictions of the theory (cf. the paper of Sherwin'-5-').
The question arises: just what is being tested in the
Pound experiments ? In order to test a theory we must
first agree on what features we regard as already
established and which ones we question. The situation
is simplest when the experiment must distinguish be-
tween two theories which give different predictions. In
that case we look for an answer to a "yes-no" question,
and there are usually no ambiguities in the interpreta-
tion of the experiments.

The problem is more complicated in the case of the
general theory of relativity. There is no other theory
which can combine the special theory of relativity with
the gravitational field. The general theory of relativity
is connected by a such a strong logical chain to other
branches of physics that any test of it reduces in the
last analysis to a test of the conclusions of the special
theory or even simply to a test of the law of conserva-
tion of energy. Since the actual experiments are not
very accurate, it is obvious that a rigorous test of the
equivalence (locally, at a given point and a given in-
stant of time) of the gravitational field and an acceler-
ation is not possible. For this reason, within the group
of crude experiments now available, one can (as has
been done in the literature) give an explanation on the
basis of other theories. In this sense the general the-
ory of relativity is distinguished from the unlimited
number of other theories by its internal structure and
theoretical completeness and by its better agreement
with experiment.

A good example of a test of the general theory of
relativity which has led to a great deal of discussion
is the experiment of Pound. These experiments could
be interpreted as a test of one of the equations of the
theory of gravitation—the Schwarzschild central field
equation. Let us discuss these experiments in some-
what more detail than has been given previously, and
see what direct conclusions can be drawn from the re-
sults without using other considerations which enter
in constructing a theory of gravitation. We first recall

the fundamental property of the Schwarzschild solution,
which describes the nature of the gravitational field of
a material body (for more detail, see ^6>7^).

2. THE SCHWARZSCHILD SOLUTION

The metric of a spherically symmetric field, which
at large distances gives the Newtonian attraction, is
usually written in the form

_2Ф

--r 2 dfi 2 . (2.1)

Here <p(r) is the Newtonian potential /cM/r, r2dfi is
the surface element on the sphere, a) The metric in
the form of (2.1) chooses the time coordinate so that
the coefficients are independent of time; b) the scale
is chosen so that the area of the sphere is always equal
to 4тгг2, while the radius of the sphere is always less
than r. We point out that dr differs from the Euclid-
ean line element by an amount of order 1/c2. Setting
cp ~ gh, where h is the height above the Earth's sur-
face, we get (р/с2 ~ gh/c2. Under laboratory condi-
tions, h ~ 10 m, (р/с2 ~ 10~15. A quantity of this same
order also gives the difference in rate of clocks at dif-
ferent points.*

We note that in the metric (2.1) the coordinate r is
still not given a definite meaning, since there is no in-
dication of how to measure it or to compare it with the
usual Euclidean coordinate.

The coordinate r appears in the argument of the po-
tential (p(r). If we stop with terms of order 1/c2, it
is irrelevant how we define r, and we can take the
Euclidean value for r. But if we are interested in ef-
fects of higher order, the question of the determina-
tion of distances requires special treatment.

The spatial metric can be changed by a coordinate
transformation. It is convenient to use the so-called
isotropic metric, obtained from (2.1) by the substitu-
tion

r = /-1A + ^ - ^ , (2.2)

where r 0 = кМ/с2 is the gravitational radius of the
source, so that (р/с2 = r o / r . With the variable rb the
metric becomes

(2.3)

*On the surface of the sun, cp ~ 2 x 10"6. This number also
gives the accuracy of the astronomical experiments (cf. M).
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In this metric the magnitude of the line element does
not depend on direction, in accordance with the usual
measurement of length using a rigid measuring rod.
We note that the velocity of light in both metrics de-
pends on the coordinates:

= c 2 ( l - ^ = (2.4)

An important point is that the difference in the metric
occurs only starting with terms ~ c~4. It then follows
that in experiments whose accuracy does not permit
determination of terms of order c~4 one can get no
information about the spatial curvature of the space,
and all the effects are described phenomenologically
as a change in the light velocity. It also follows that
more precise experiments should also include the
measurement of geometrical lengths and angles. Ex-
periments of this type are the measurement of the de-
flection of light in the field of the sun and the motion
of the perihelion of Mercury. (In both experiments
one measures angles.) We note that in measuring the
deflection of a light ray one measures a null interval,
and in the experiment one determines only one quan-
tity (the light velocity). For a planet the two effects-
curvature of space and the change in mass with veloc-
ity, give different contributions (this is related to the
fact that ds 2 * ( ) ) , and the experiments on the per i-
helion motion together with others give information on
the geometry of space in the neighborhood of the sun.

3. THE FREQUENCY OF A QUANTUM IN A GRAVI-
TATIONAL FIELD

The usual derivation of the change in frequency in
a gravitational field reduces to the following. We start
from the fact that: 1) the number of vibrations of a
quantum between two events is independent of the ob-
server; 2) the frequency of radiation or the internal
properties of a radiating system which is at rest rela-
tive to the observer and located at the same place as
the observer are independent of the location. This
means that we are assuming that the effect of a gravi-
tational field on the properties of nuclei and atoms is
negligibly small. More precisely, we are assuming
that the Planck constant does not depend on the gravi-
tational field and that the whole dependence comes
from the dependence of the mass-energy of the system
on its coordinates.

Under these assumptions the product wAt will be
an invariant. Setting cp = 0 and w = o>0

 o n the surface
of the Earth, we can write the formula for the fre-
quency corresponding to the potential <p:

(3.1)

(3.2)

in the metric (2.1), or in the form

in the metric (2.2). The difference between formulas
(3.1) and (3.2) is caused by the different choices of the
coordinate r . It is convenient to write both formulas
in a common form:

(3.3)

In the metric (2.1), <p coincides with the Newtonian
potential <p = — rp/r, while in the isotropic metric

<P= -
( '+*)•

(3.3')

which differs from the Newtonian potential by terms of
order c~4.

The form (3.3) is convenient because in it the poten-
tial serves as a natural coordinate, almost equal to the
reciprocal of the distance (in units of r 0 ) . For discus-
sion of experiments it is convenient to change the defi-
nition slightly, writing (3.3) in the form

so that

(3.4)

(3.5)

Using formula (3.4), one can in principle associate a
potential ф with each point in space. If we introduce
in place of ф the reciprocal ф~1, we can use it as a
coordinate differing from r only by terms of order
с" 4 .

From these remarks it is clear that an experiment
which measures the shift in frequency can give infor-
mation about the space metric only if space measure-
ments have already been done. To order c~2 these
distance measurements can be made in the Euclidean
approximation; to order c" 4, they must include terms
up to c" 2 . The determination of corrections of higher
order already requires the inclusion of the gravita-
tional radiation (of order c~5), and the whole problem
becomes very complicated, even theoretically.

Now let us go on to experiments using the Mossbauer
effect. The experiments of Pound and Rebka, and Cran-
shaw, Schiffer, and Whitehead consisted in comparing
the frequency of the photon radiated by an excited Fe 5 ?

nucleus when it is located at a height of about 10 m
above the Earth's surface with the resonance frequency
which can be absorbed by an unexcited Fe 5 7 nucleus at
the surface of the Earth. The comparison was done by
absorbing the photon in a target moving at such a veloc-
ity that the Doppler shift just compensated the change
in frequency due to the gravitational field.

Let us try to treat the observed effect starting only
with the conservation laws, and see what must be added
to these laws for a complete description of the experi-
ment.

First we must use a system which has at least two
quantum states (iron nucleus), which serve as clocks
whose frequency, for an observer at the same location
in space, is independent of the position of the system.
It is obvious that experiments of this type could not
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have been done with water clocks of the kind used by
Galileo in the first experiments on gravitation; the
rate of such clocks decreases as they are raised above
the Earth's surface. One cannot see how the experiment
could be done if instead of a quantum source one had a
classical dipole such as a radio antenna. In such a
case it would be difficult to determine what is meant
by the statement that the final state of the receiver is
the same as the initial state of the radiator.

We emphasize this point because it is not a trivial
matter that one must use quantum clocks in the general
theory of relativity, a fact which indicates a deep con-
nection between geometry and quanta (cf. Wigner 1 ^).

The experiment of Pound and Rebka is described
schematically as follows.

Before the experiment. The radiator system, having
mass Mo, is at rest at a height corresponding to the
potential ср. At the Earth's surface there is an ab-
sorber system, with mass mt, moving with velocity v.
By a system we mean the nucleus together with all the
equipment (the answer will of course not depend on Mo

and mj).
After the experiment. The system Mo has gone over

into a state with mass M t and (after radiating a quan-
tum) has gotten a velocity u; the system m t has
changed to a state m 0 and changed its velocity by an
amount Av.

Since these are quantum systems, the energy differ-
ence Am is the same for an observer located with the
system. The energy difference for an observer on the
Earth is given by the Newtonian law of gravitation and
is equal to Am on the Earth and Am (1 + cp ) at the
upper level.

If we assume that the masses are large and the ve-
locity changes small, conservation of energy and mo-
mentum gives two equations relating the states of the
system before and after the experiment:

jV = Am-v-\-m1Av.

(3.6a)

(3.6b)

In order to write a third equation we must use one
of the properties of the electromagnetic field. Namely,
in the radiation of an electromagnetic wave there is an
energy transfer equal to the momentum transfer. This
is a consequence of the special theory of relativity and
is verified, for example, in the experiments of Lebedev
on light pressure. It contains no assumptions about the
action of the gravitational field on quanta. Thus the left
sides of (3.6a) and (3.6b) are equal. Neglecting u2 on
the left side of (3.6b) we get a third equation

Am-(l + gh) = M-fi. (3.6e)

From (3.6b) and (3.6c) we immediately get the desired
result:

i.e., the target must move with a velocity gh/c in order
to absorb the light.

We see that the conservation laws in the form of the
special theory of relativity and the quantum nature of
the target (the fact that the universal constants are in-
dependent of the gravitational field) are sufficient for
deriving the formula for the effect.

For comparison we note that if the energy were
transmitted vertically not by an electromagnetic field
but by a nonrelativistic body such as a ball, the answer
would be different. If we ask at what velocity we must
fire a rocket (model of the absorber) in order that the
ball drop and not go up (model of the absorption), the
answer on the basis of the conservation laws will be
Av = 0; this replaces (3.6c), and v = V2gh . This is
precisely the result found by Galileo, who did not know
that only bodies whose velocities are small compared
to the velocity of light fall with the same speed. In ex-
periments with quanta, the velocity does not change
with height, but the frequency changes.

Thus, contrary to the common assertion (especially
in popular articles) the experiments on the Mossbauer
effect test nothing but the law of conservation of energy.
In order for experiments of this type to give more in-
formation about the geometry, it would be necessary
at least to measure the distance between the source
and detector. To do this one must, for example, meas-
ure the time for light to go from the detector to the
source and back. From such an experiment we would
get information about the spatial part of the metric.

These remarks can be illustrated by a geometrical
argument. The measurement of the frequency shift is
simply the establishing of a scale for space axes or for
the time axis, but not the establishing of a correspond-
ence between the scales for the two. It is obvious that
from measurements along the coordinate axes one can-
not determine the curvature of space-time. The meas-
urements of the time of propagation of light can be de-
scribed as measurements of the base of the isosceles
triangle At in the (x, t ) plane. In this triangle we also
know the height (the distance to the source) and the
base angles which are determined by the velocity of
light. Knowing four elements of the triangle (two
angles, the altitude and the base), we can find how
much it differs from a triangle in Euclidean geometry
and calculate the curvature.

It is clear that the frequently discussed experiments
(cf. ^) on the frequency shift using artificial satellites
give no more information than the laboratory experi-
ments, since in this case also we must have a very
precise method for measuring the time of propagation
of the signal.

It remains to emphasize that the question of the ef-
fect of a gravitational field on light was already treated
completely by Einstein in his 1911 paper ^10^ several
years before the appearance of the general theory of
relativity. It is curious that the computation of the de-
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flection of the light in the field of the sun given in this
paper gave a result (0.83*) which is half the correct
value, since this effect is related to the curvature of
the space.
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