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IN recent years a great deal of theoretical and experi-
mental work has been devoted to the problem of diffu-
sion of plasma in a magnetic field. The interest in this
subject is stimulated primarily by the ever widening
investigation of containment and heating of a plasma in
a magnetic field, carried out in connection with the
problem of controlled thermonuclear fusion (cf. |:1’3]);
this subject is also of interest in connection with re-
search on astrophysical plasma research, [47%]

A number of books on plasma physics“"m'”:I treat
various aspects of the theory of diffusion in a magnetic
field and present certain experimental results. How-
ever, a systematic survey of the present state of re-
search in diffusion does not exist. The present work
has been undertaken to fill this gap; we present the
theory of diffusion in a stable plasma and review the
important experimental research on diffusion in a
magnetic field.*

1. THEORY OF COLLISIONAL DIFFUSION

The effect of a magnetic field on diffusion of charged
particles in a gas and on their motion in an electric
field was noted as far back as the early work of Town-
send. 1] In this and later work[*-1%] an approxima-
tion method based on mean free paths was used to
analyze the directed motion of charged particles in a
natural gas. A more detailed analysis of transport
processes involving charged particles in a neutral gas,
which was based on the solution of the kinetic equation
and the averaged equations of motion, was given in
[16-211  The results of these investigations were used

to treat ambipolar diffusion in a weakly ionized
gas, [20,21,22]

*It should be noted that many experiments have revealed the
existence of various forms of plasma instabilities. Problems con-
cerning the theory of stability are not considered in the present
review (cf. [“]).
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A great deal of work has been devoted to the inves-
tigation of transverse transport processes in a mag-
netic field in a fully ionized gas. These transport
processes were investigated by means of the averaged
equations of motion for the charged particles, [8:23-25]
by means of the kinetic equation, "26~%] and by methods
based on analysis of the displacement of individual par-
ticles. 1397391 In this work the collective Coulomb in-
teractions of the charged particles were, in most
cases, treated as independent two-body collisions with
a maximum interaction range equal to the Debye radius.
A special investigation using methods of quantum field
theory demonstrated the validity of this analysis in
treating transport processes. [40,41]

In a number of papers[#~45] diffusion across a
magnetic field in a highly ionized gas has been ana-
lyzed under conditions for which collisions between
charged particles and neutral particles as well as
charged particles with each other were both important.

We shall not dwell here on the various approaches
used in the theoretical analysis of transport processes
in a magnetic field. To obtain general relations giving
the diffusion rate arising from density gradients in ar-
bitrary magnetic fields we shall make use of the sim-
plest method, that based on the solution of the approx-
imate equations of motion for the charged particles.
We shall also consider transverse diffusion in strong
magnetic fields in detail and, on the basis of an analy-
sis of particle displacements caused by collisions, ob-
tain expressions for the diffusion fluxes. In order to
avoid complications in the presentation we shall neg-
lect diffusion caused by temperature gradients (ther-
mal diffusion).

1. Diffusion Theory Based on the Particle Equations
of Motion

1. Averaged equations of motion. The averaged
equation of motion for the charged particles can be
written as follows:
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Here, Zge is the charge, my is the mass, uy is the

mean (directed) velocity, ny is the density, py is the

+(uaV) g | =

pressure, mgy %cg_ is the momentum change due to

collisions (friction force) (all quantities refer to a
particle of type a)t and E and H are the electric
and magnetic fields. For a Maxwellian distribution
of random particle velocities the pressure po is
given by

Po= naTu (1 2)

(Ty is the temperature in energy units).
As is well-known, (1.1) can be derived from the ki-
netic equation (cf. [6]). In the general case the last
5

term mgy —E:ltﬁ can be determined only by integration

Uy
of the kinetic equation. The quantity mg Bt can de~

pend on the magnetic field as well as the densities and
temperatures of the various particles. As an approx-
imation, however, the friction force can be given by
the relation [8:23:2¢]

dug,
Mo~

= — Mg 2 Vap (Ug — Up). (1.3)

®
Each of the terms on the right side determines the
averaged change in the momentum of a particle of
type a per unit time resulting from collisions with
particles of type B. It is reasonable to assume that
the friction force due to collision between particles
of type @ and B is proportional to the relative veloc-
ity of these particles. The quantity vop is an effec-
tive collision frequency. As a consegquence of mo-
mentum conservation in the collisions the following
relation holds between vgg and vpg:

RaMaVep = NMpVaa- (1.4)

In what follows we shall be concerned with station-
ary or quasi-stationary processes, in which case

ou,
ot

P du,,

< | 1.5)

so that we can neglect the first term on the left side of
the transport equation. Further, we assume that all
perturbations, i.e., gradients in density and electric
field, are small so that the quadratic terms (uy,V)u,
on the left side of (1.1) can also be neglected. This
procedure is valid if the directed velocity of the par-
ticles is much smaller than the random (thermal)

velocity:
—
g & ‘/;nf .
o
*[“aH] = ug x H.

tQuantities referring to the electrons are denoted by the sub-
script a = e, quantities referring to ions by the subscript a =i,
and neutral particles by a = n.

(1.8)
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This inequality is obviously the criterion for the dif-
fusional nature of the transport process.

Making use of the simplifications given above and
(1.2) and (1.3), we write (1.1) in the form of an equa-
tion expressing equilibrium between the electric force,
the Lorentz force, the pressure gradient (per par-
ticle), and the effective friction force:

Vita

(1

u H
ZoeE 4+ Zge [ ] — T — Mg 2 vag (g —ug)=0. (1.7)

®

In (1.7) the temperature is assumed to be constant
and is taken outside the gradient operator since ther-
mal diffusion effects are not treated.

The system of equations (1.7) written for all the
plasma particles allows us to determine the directed
velocities, that is to say, this system is used to solve
the problem of directed particle motion.

2. Directed motion of charged particles in a neutral
gas. We first consider the motion of charged particles
ina weakly ionized gas, in which case collisions of
charged particles with each other are not important;
that is to say, the electron-neutral and ion-neutral
collision frequencies are much higher than the elec-
tron-ion collision frequency:

(1.8)

Under these conditions the transport equations (1.7)
for the different charged particles are independent of
each other and assume the form

Ven >>Vei’ Vin » Vie-

(1.9

H A
ZoeE - Zue[u"c 1 7, 8 gVantia = 0.
a

Here, vgn is the frequency of collisions between par-
ticles of type @ and neutrals; it is evident that at low
ionization the directed velocity of the neutrals is much
smaller than the directed velocity of the charged par-
ticles.

Taking the projection of the vector equation (1.9) in
the direction of the magnetic field we find an expres-
sion for the longitudinal directed velocity

Ug)f = —-Dau -I—uauEn,
I Z.e (1.10)
U= ven T gy

(uy)i» Ej|, Viing are the projections of the correspond-
ing vectors in the direction of the magnetic field).

The projection of (1.9) on the plane perpendicular
to the magnetic field can be used to determine the
transverse components of the directed velocity—the
transverse component of the velocity in the direction
of the density gradient and the electric field u;, and
the velocity perpendicular to the magnetic field and
the density gradient ur:

V
gy = ——Da_L +P'(1_LEJ_1 ]l
T Z N
D) = = yBael = ———————— of { 111
MoVan <1+ Van> uun<1+ ‘Van J
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cT, [bVr,] ¢'[hE
W T == i aV2 — ! VL . (1.12)
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o

Here, E| and V|n are the projections of the vectors
E and Vn on the plane perpendicular to the magnetic
field; h is a unit vector in the direction of the mag-
netic field; wy is the Larmor frequency

=|Za|el-£

o (1.13)

The motion of the particles in the direction of the
density gradient and the electric field is described by
the longitudinal and transverse diffusion coefficients
Dy and D, and the corresponding mobilities uy
and ug). These quantities are related by the Einstein
relation

=}

D

Zalt ol
Baj Moy

all

T
= ﬁ . (1.14)

The difference between the magnitudes of D, and
Dy (or pgy and ugy)) is responsible for the aniso-
tropic transport effects in the presence of the mag-
netic field.

We note that in strong magnetic fields (wgy > vgn)
the motion in the direction perpendicular to the density
gradient and electric field is determined by the drift
velocity of the charged particles.

Using the equations of motion we have obtained ap-
proximate expressions for the flux of charged par-
ticles in a neutral gas. We now compare these ex-
pressions with more exact expressions obtained for
certain cases by means of the kinetic equation.

The kinetic equation can be integrated to describe
the motion of electrons in a gas only when elastic col-

lisions between electrons play the most important role.

The analysis leads to the following expression for the
diffusion coefficient: [20]

UVen
2 2z Je
we+vVen

. 1
Dey= 5 S o=t () dv, Dey =5 S (v)dy, (1.15)

v) (v)
where v is the electron velocity, fo(v) is the velocity
distribution function

Vin= U8 (0), SE= | 0, (0, 8) (1 —cos §)dQ,  (1.16)
@
Vgn is the ‘‘diffusion’’ collision frequency, sg‘n is the
momentum transfer coefficient, ogn(v,#) is the dif-
ferential cross section for scattering of electrons by
neutrals, and the integration in (1.15) is carried out
over the entire electron velocity space.

The expressions in (1,15) and (1.10)—(1.11) coin-
cide when the electron-ion collision frequency vgy is
independent of velocity. If v&, depends on velocity, a
correspondence can be obtained between the formulas
by introducing certain averaged collision frequencies
in (1.10) and (1.11). In this case, the quantity vepn that
appears in D| is found to depend on magnetic field.

Nonetheless, the general dependence of the diffusion
coefficients on magnetic field given by (1.11) is ap-
proximately correct if the dependence of vy on v is
not too strong.

The kinetic equation that describes the motion of
ions in a neutral gas can be integrated easily if the
effective cross section for ion-neutral collisions
varies inversely with their relative velocity, ojp
~ 1/v (it is assumed that only elastic collisions are
important).[18] In this case, integration of the kinetic
equation yields expressions for the flux which coincide
with (1.10)—(1.12), where the effective collision fre-

. quency is given by

(1.17)

Vin = e ﬂ 0,4, (0, ) (1—cos §) dQ.
()

3. Ambipolar diffusion of charged particles in a
weakly ionized gas. The neutrality of the plasma is
conserved in the diffusion of charged particles (this
statement holds if the dimensions of the inhomogene-
ous region are much larger than the Debye radius).
The neutrality condition for a plasma consisting of
electrons and ions of charge Ze is

ny=2n;. (1.18)

The expression in (1.18) relates the fluxes flowing
into each volume element

V (ru,) = ZV (nyu;). (1.19)

In many cases (1.19) is responsible for the absence of
any electric current in the direction of the density
gradient, i.e., it is responsible for the balance between
the corresponding components of the directed veloci-
ties of the electrons and ions

Uelj = Ui, W) =Wy . (120)

This relation holds, for example, for diffusion in a
dielectric chamber (discussed in greater detail in
Sec. 3 of Part I).

We note that (1.18) and (1.19) do not impose any
limitations on the particle flux in the direction per-
pendicular to the density gradient [it is evident that
V(nuT) = 0]. This follows because this flux causes
no change in the particle density. The diffusion regime
for which (1.20) holds is called ambipolar diffusion.

We now consider ambipolar diffusion in a weakly
ionized gas, where the basic mechanisms are electron-
neutral and ion-neutral collisions (ven > vei, Vin
>» vie). In this case the directed electron and ion
velocities are given by (1.10)—(1.12). Substituting
these relations in (1.20) and taking account of (1.18)
we determine the space-charge electric field required
to maintain ambipolar diffusion:*

*The irrotational electric field given by (1.21) and (1.22) can
exist if the density distribution is a product of functions that de-
pend on the longitudinal and transverse coordinates n = n (r,)

x ny ().
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EJ_—( il De_L)V_L" _ [ Zv,,VinT, J (1.22)
(p‘z_]_ p'e_]_) ne [1 ] "Jeml j
VenVin

The approximate relations in (1.21) and (1.22) as
well as the following relations, (1.23)—(1.25), are ob-
tained under the assumption that mjvin >» Zmevep,
mjvin > Te/Timeven; these conditions are sabisfied
in almost all cases since mj > me.

It is evident from (1.21) that the longitudinal elec-
tric field associated with ambipolar diffusion tends to
accelerate the diffusional motion of the ions and to re-
tard the motion of the electrons. In weak magnetic
fields the transverse electric field also accelerates
the ion diffusion; in strong fields, in which the ion dif-
fusion coefficient is larger than the electron coefficient,
the electric field changes sign.

Using (1.10), (1.11), (1.21), (1.22) we find the ambi-
polar diffusion rates for electrons and ions

v
Uen = Uin = —Dau H:‘e
Do Tit2Te  Tit2T,, (1.23)
= mivin+ZmeVen  miVin
Vi ng
U | =wi) = — Da_l_ 'L
D T; +ZT T;+2T,
eL= _I_Zmemg mi(l)iz maiv; <1+ W@ ) ’
MyVin 4 ZM Ven - Ver T Vin i VenVin
(1.24)

The quantities Dy and Dg) introduced here are
called the longitudinal and transverse coefficients of
ambipolar diffusion.

Using (1.12) and (1.22) it is not difficult to find the
particle velocities in the direction perpendicular to the
density gradient in ambipolar diffusion:

o(Ti 42T )hVn,)
ZeH (1+"“"Vm <1+”e" )ne
cmeVen(Ti+2T) [han]

venvm (1)1.
Z%eHmivin ( I T
eWi V in

Ue TR —

(1.25)

Wi A~

These velocities determine the density of the diamag-
netic current which accompanies ambipolar diffusion

_e(Ti+2T,)
ZH(i , VenVin >
D

4. Diffusion in a fully ionized gas. We now treat dif-
fusion in a fully ionized gas consisting of electrons and
ions of charge Ze.

We note that each volume element in a fully ionized
gas (if VH L H) is subject to only two forces: the
pressure gradient V(pj + pe) and the magnetic pres-
sure gradient V(Hz/ 8r), which are perpendicular to
the magnetic field. Diffusion, i.e., uniform motion of
the gas, can obtain when these forces are in equilib-

[h¥r,] (for v,, € ®,).
(1.26)

J=Zenu; —enu,~
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rium. For this reason the notion of longitudinal diffu-
sion in a fully ionized gas is, in general, not meaning-
ful: if a pressure gradient exists the longitudinal mo-
tion of the plasma is an accelerated motion. The trans-
verse diffusion of a fully ionized gas can be treated
meaningfully in terms of equilibrium of the gas as a
whole:

HZ
~ 9+ P) =V (5 )- (1.27)
The magnetic field in the diffusion region can be taken
as uniform only if the kinetic pressure is much smaller

than the magnetic pressure:
p= B g, (1.28)

The transverse directed motion of the electrons and
ions is given by (1.7)

B+ LBl 7 T v (u,—u) =0, (1.29)
.29
ZeE 4 2ol _ Ti%~mlv,e(u u,)=0.

In finding the common solution of these equations
we must keep in mind the neutrality condition (1.18)
and the relation between the collision frequencies (1.4).
Solving the system in (1.29) it is an easy matter to find
the directed particle velocities. The electron and ion
velocities are the same in the direction of the density

gradient:
T, +
L] D_[_ = (

that is to say, the diffusion of a fully ionized gas across
a magnetic field is ambipolar regardless of the mag-
nitude of the electric field in the plasma. There is no
particle flux in the direction of the electric field.

The electron and ion velocities in the direction per-
pendicular to the density gradient and the field are
given by

Vyne

, (1.30)

1
-Z“Ti>\’ei
we =uij = —Dj oF
e

U, T= -~ [hE]

L]

cT [h¥Vn,]
e

T [hvnzl
ng

uiT = — - [BE]+ 4 (1.31)
These velocities determine the electron and ion drift
that exists regardless of electron-ion collisions.

The density of the diamagnetic current in a fully
ionized gas is

j=nee (Wit —u7) = 5 (T; + 2T,) [hVr,].  (1.32)

The relations in (1.30)—(1.32) coincide with the cor-
responding expressions obtained from the kinetic anal-
ysis when we > vei 20301 if the effective electron-ion
collision frequency is taken to be

4 V PR Ze2 17y
Ve = (me

(L is the Coulomb logarithm [GJ).

(1.33)
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a highly iVin e n miVin[1+ e®i J ZH[i—]— entVei) mJ en,
ionized gas (Ven-FVei) Vin [CACH T; W0
ZT o (Von~t Vei) Vin
R W3
" (Von b Vei) Vin |
5. Ambipolar diffusion in a highly ionized gas. We p fq. T De®;
- : — — e ZT o (VeitVon) Vin ) ¥V1%e
now consider diffusion in a gas containing electrons, E, = — e et b "en/ 7o = (1.38)

positive ions of one kind, and neutral particles, when
the collision frequencies for collisions between the
charged particles and between the charged and neutral
particles are comparable (highly ionized gas). In this
case the equations in (1.7) become

cE —‘Fe[u—(’H]_l_T &L“e"!_mevei (ue"ui) ’YT' MV = 07
Te (1.34)
ZeE—l—Ze (u:H} Ti%-—mivie (u; —u,) —m;v;u; =0,

Here we have taken account of plasma neutrality and
the relation between the collision frequencies (1.4). As
before, it is assumed that the directed velocity of the
neutrals is much smaller than the directed velocity of
the charged particles.

The common solution of (1.34) determines the ve-
locities ue and uj. We do not write the complicated
expressions that result here. Equating the velocity
components of the electrons and ions in the direction
of the density gradient it is easy to find the ambipolar
velocity of the particles and the electric field respon-
sible for the ambipolar diffusion. The longitudinal and
transverse components of these quantities are

v n, T;--2T,
wy= — Dy I,le ) Da”:_ﬁ-v;ﬁ (1.35)
T, Vu"v
Ej=— gy (1.36)
Vir, T;+2ZT
up= Doy ¢, Day = e (1.37)

mivin L 1+<vei+'ven)v;n‘]

W4 n,
1 ) J e
¢ [ +(Vei+ven) Vin

We also give the formula for the current density in
ambipolar diffusion (vep < we)
c(Ti+2T¢) Vn,

ZH [1 | Vn(Vem—V n)
Q)Bml

j= n.e (llrr ——ue—r) = — (1.39)
The relations in (1.35)—(1.39) are obtained under
the assumption that mjvj, > meven. A kinetic analy-

sis of diffusion in a plasma consisting of electrons,
ions, and neutrals is given in 4] for the case in which
the “‘diffusion’’ electron-neutral and ion-neutral colli-
sion frequencies are velocity independent and the in-
equality mevej << mjvin is satisfied. The expressions
for the ambipolar diffusion rate and electric field given
in 143 are approximately the same as the expressions
given above if vep, Vin, and vej are taken from (1.16),
(1.17), and (1.33).

6. Summary of results. In Table I we summarize
the formulas for the longitudinal and transverse diffu-
sion coefficients, the electric field responsible for
ambipolar diffusion, and the diamagnetic current of
charged particles. The conditions for which the for-
mulas apply are also given. These conditions follow
from the inequality in (1.6), according to which the
directed velocity of the particles must be much smaller
than the thermal velocity if diffusion motion is to oc-
cur. In order to introduce (1.6) explicitly we have used
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the formulas given above for the components of the
directed velocity uj, uj, and ut (the electron and
ion temperatures are assumed to be of the same order
of magnitude). In the table, the quantities I ~ n/[V|n|
and 1| = n/|V)n| are the characteristic scale sizes of
the inhomogeneous region of the plasma; Aj = (1/vin) x
V2Tj/mj and Ae = (1/vep)V 2Te/me are the mean
free paths; pj = (1/w;)V2Ti/mj and pg = (1/ we)x
2Te¢ /me are the Larmor radii for the ions and elec-
trons respectively.

2. Transverse Diffusion in a Strong Magnetic Field

1. Fundamental relations. In this section we treat
the transverse diffusion of charged particles in strong
magnetic fields; in strong magnetic fields the ions and
electrons execute many revolutions about the magnetic
force lines in the time interval between collisions and
.the Larmor radii of the particles are much smaller
than the characteristic scale sizes, i.e.,

O, 5 Vo, @ 2V, 0 < 1y, 0 < 1. (2.1)

Under these conditions the effect of particle collisions
on the motion can be treated as a small perturbation.
In the absence of collisions the motion of charged
particles in a magnetic field can be conveniently re-
garded in terms of rotation at the Larmor frequency
about the guiding centers. The coordinates of the guid-
ing center and the particle coordinates are related by

' lel
Ry = 1o+ Qa; Qa=‘Za—eH [wah]. (2.2)
Here, Ry is the radius vector of the guiding center,
ry is the radius vector of the particle, py is the
Larmor radius and wy is the rotation rate.

The guiding centers themselves can move with ar-
bitrary velocity along the magnetic field (wy) ). Fur-
thermore, in a transverse electric field the guiding
centers drift with velocity

ui = 5 [Eh]. (2.3)
Thus, the vector velocity of the particle is given by
the sum

Vo= Wq | — Wg - Uy (2.4)

The rotational velocity of particles, the longitudinal
velocity, the rotational phases ¢ and the transverse
coordinates of the guiding center R; (in the presence
of a transverse electric field, the coordinate along this
field) are integrals of the motion. In the absence of
collisions the particle distribution function can be an
arbitrary function of the integrals of motion. We as-
sume that the function describing the distribution in
velocity w is Maxwellian with a density depending on
the transverse coordinates of the guiding center:*

*It is easily shown that dw; dw,d¢ = %dwxdwydwz =-‘%’-dw. »

Fe= Z Fag, Top= na( AXog) —
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Fq (Rai» Wa |, Wy, (P) dwaﬁj_ dwa;;d(P:na( a_L).fa( )dwm
’”a(vu uF)"
T 2Ta
a(Va) = <ZnT )
(2.5)

The distribution in (2.5) leads to the familiar expres-
sion for the mean particle drift velocity under the ef-
fect of a density gradient

ugy = wna(RaL)fa(wa)dwa—Z s V7l (2.6)

The displacement of the guiding centers (correspond-
ingly, the displacement of the particles themselves)
across the magnetic field in the direction of a density
gradient or an electric field is a result of collisions.
Under the assumptions made above the particle flux
can be found from the theory of random fluctuating
motion developed by Chandrasekhar, [12,46]

We take the OZ axis along the magnetic field and
the OX axis in the direction of the density gradient.
The flux of guiding centers through the plane X = const
is given by the obvious relation

AX
Pe=5 { S d(AX) \ X' (o (X~ X)Wo(X — X', AX)
)

— g (X + XYW (X + X', —AX)]), (2.7)

where Wy (X, AX) is the probability that in a time At
a guiding center located at point X will be displaced
by a distance AX. The quantity At extends over many
collisions but is such that the mean displacement is
appreciably smaller than the characteristic scale size
(1/vy « At « I*/p%vy). Inthis case we can write
ngWy as an expansion

1o (X = X )Wo (X — X', AX) = ng (X)Wq (X, AX)

, 0
— X' S5 (naWa). (2.8)
Substituting (2.8) in (2.7), integrating over X’, and av-
eraging over the velocities of particles of type a we

find the following expression for the flux:

Yo=ng (AX(Z) ~— ”a((AXa)2>] (29)

Qa\’[

Here, the symbol (...) denotes summation over colli-
sions per unit time and averaging over velocity:

(AXo)= { (AX)WL(Xo, AX) d(AX). (2.10)
The averaging process is carried out for a fixed value
of Xa.

If the gas contains many particle types, the trans-
verse flux of particles of each type in the direction of
the density gradient can obviously be written in the
form of a sum of fluxes associated with collisions of
particles of the given type with particles of all other
types:

2 aX [na((AXgp)?)] (2.11)
B)
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(AXqp is the displacement of a particle of type o as
a result of collisions with particles of type ). Hence,
in what follows we treat separately diffusion across
the magnetic field associated with different kinds of
collisions.

When the particle Larmor radius is much greater
than the interaction range the magnetic field has es-
sentially no effect on the collision. In these cases the
collision changes the velocity of the charged particle
by an amount Avg; in accordance with (2.2) and (2.4)
the displacement of the guiding center is then given by

AR, = [Aveh],
[Avgy | _ macAvg, .
ARy o AX,= 7.8 (2.12)

In collisions in which the relative change of trans-
verse velocity is appreciable the guiding center is dis-
placed by a distance of the order of the Larmor radius
(Fig. 1).

Summation of the displacements due to collisions of
particles of type a with particles of type 8 and aver-
aging over velocity yield

(AXep) = oy | Falva)dve | mp (Xi)fp () dvp

(Va) (v8) (2.13)

x \ (Ave,)ooug (v, 9) dQ,
@)

where v = | vq —vg| is the relative velocity.

FIG. 1

The collision integral is computed in the usual
way: [19]

{ (Avay) vo0g (v, ®) a2 = — (2.14)

™

v, USap
af
mc—i—’m.B y !

sip = S 0ag (v, ®) (1 — cos B) dQ. (2.15)
(o)

In the integrals in (2.13) it is convenient to change

from the velocity variables v and vg to the veloci-

ties

muTﬁ"a‘*‘mBTavB

meTg+mgTy (2.16)

V=Vq— Vg, Vo=

Substituting (2.14) in (2.13) and taking account of (2.16)
we find

(AXqg) = —

s § ave § avtatve) fo (ve) mg (Xp) voy st (0).
(vo) ) (2.17)
Here, uqp is the reduced mass

mmﬁ

l"aﬁﬁm +m

(2.18)

In (2.17) we substitute expressions for the distribution
functions (2.5) in which collisions are neglected inas-
much as collisions have very little effect on the motion
of the charged particles for the conditions being con-
sidered [cf. (2.1)].

The expression for ((AXyp )2y is obtained in simi-
lar faghion:

2
(AX )% =§_Z”:ﬂ2—62* ng S dvog dvfa(Va) fa (Vg) UPsas (0)-

ac2H? 0 ™

° (2.19)

In this expression we have neglected the variation in
ng under the integral sign, i.e., in a change of coordi-
nate by an amount of the order of the Larmor radius.
Substituting the Maxwellian distribution function in the
integral in (2.19) it is an easy matter to reduce it to
the form*

© uuBU2
8 3/
(AXog)®) =23 “aizz ng (?maﬂ ) * v"’s e T gy,
(2.20)
_ m, Ty —}—mﬁT

Using (2.11), (2.17), and (2.20) we can determine the
fluxes associated with collisions between particles of
different types.

2. Diffusion caused by collisions between charged
particles and neutrals. As before, we assume that the
density of neutral particles is independent of coordi-
nates and that the velocity distribution is Maxwellian.

Under these conditions, (2.17), which describes the
displacement of charged particles of type « caused by
collisions with neutrals, is reduced to the following
form after substitution of (2.5):

_ Ban??

3/
AXon = S v s;n(&)e ZTan dv. (2.22)
b

4np4mc2nnE Han
3Z,eHT,, \ 2aT

We shall be interested here only in terms propor-
tional to the first power of E (the drift velocity ug
is assumed to be small compared with the thermal
velocity Vv Tq /mgy )

The relations in (2.11), (2.20), and (2.22) yield an
expression for the transverse flux of charged particles
caused by collisions with neutrals:

r Z Von T onVan 9
an ~— 2 2 2
m,wk mgol 60X

(2.23)

neeE  —

in which the effective collision frequency vgp is given
by
uagv“‘
8] 5/
Ban u‘"‘ > ’ Szﬁsag e “Fdo. (2.24)

3y nmg

Von =

*In obtaining (2.20) we have assumed v = w in (2.5), taking
account of the fact that the drift velocity ug is much smaller than
the thermal velocities V Ty/m4 and V T,B/mﬁ
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It should be noted that (2.23) and (2.24) can be simpli-
fied for electrons since mg < my and [cf. (2.21)]

Ton~T,,

Wep =M.

The ion temperature can be taken equal to the temper-
ature of the neutral gas:

T,~T,, T.~T,.

n?

A complete equilibration of energy between ions and
atoms of comparable mass occurs within a few colli-
sions. In this time period the ion is displaced by sev-
eral Larmor radii, that is to say, by a distance appre-
ciably smaller than the characteristic scale size [cf.
(2.1)]. Hence, we may assume that thermal equilibrium
obtains between the ions and atoms during the diffusion
time.

The relation in (2.23) gives the corresponding val-
ues for the diffusion coefficients and the directed ve-
locities of the particles:

T.v,
o
Dan = g m;l = Vungas
(2.25)
Zavan / mye N,
Up :Am P ek = - Van \Z—aEH) Uur

The physical meaning of these expressions is clear.
The diffusion coefficient is equal to half the mean
square displacement of the particle per unit time.
Inasmuch as the particle is displaced by a distance of
the order of the Larmor radius pg in each collision
(cf. Fig. 1 ), the diffusion coefficient must be of order
VoanPh (2.25).

In accordance with (2.12) (cf. Fig. 1) the displace-
ment of the particle in the direction of the electric
field is determined by the change of velocity in the
perpendicular direction AXy = (mgc/ZgeH)Avgy.
Correspondingly, the mean velocity in the direction of
the field must be proportional to the number of colli-
sions and the mean velocity in the direction perpendic-
ular to the field (AXy) = ~vgn(mge/ZgeH)vqy as
given by (2.25).

The relation in (2.23) can also be used to determine
the rate of ambipolar diffusion caused by collisions of
charged particles with neutrals; this has been done in
an earlier section. In the case of a gas consisting of
electrons, one kind of positive ion, and neutrals, the
relation that determines the ambipolar diffusion rate
is obtained by equating I'ey and (1/Z)Tjp:

r an ¢
U, = nan = - Dala_X [} ])Q_L i S

a

(2.26)

In this case the electric field is given approximately by

E. ~ Ti Bn,,

o ok (2.27)

3. Diffusion caused by collisions of charged par-
ticles with each other.[35] When the effect of colli-
sions of charged particles with each other is impor-

V. E. GOLANT

tant in diffusion, the time for exchanging energy be-
tween charged particles of different types is found to
be much smaller than the diffusion time. For example,
equilibration of energy between electrons and ions re-
quires mj/me collisions.* This same number of col-
lisions is required for the electrons or ions to diffuse
a distance of the order of the ion Larmor radius pj as
a result of collisions. The relation in (2.1) indicates
that the characteristic scale sizes of the plasma are
appreciably greater than this so that thermal equilib-
rium must be established between the charged particles
during the diffusion time. Using this result, we assume
below that the temperatures of charged particles of
different kinds are the same:

To=Tp=Teg="T. (2.28)

We now use (2.17) to determine the mean displace-
ment in collisions of charged particles AXyg. In the
calculation we must take account of the coordinate de-
pendence of the density of particles of type 8

on
ng (Xp) = ng (Xa) 4 (Xp— Xa) 55 (2.29)

The difference in coordinates Xg—X¢ in a collision
(for a fixed value of Xy ) is, in accordance with (2.2),
(2.4), and (2.16),
"lU.ml (L
%)

”Lﬁwuﬂ
Xp—Xo= ol ( o

e mgng Clgg .
_E(U‘W uru)<éﬁ ) -1 ¢ (Z "‘ﬁ

The quantity AXyp can be computed easily by substi-
tuting (2.29) and (2.30) in (2.17). In (2.29) we omit
terms proportional to the second or higher derivatives
of the density since the change of density within a
Larmor radius is small; thus (AXyg) is

(2.30)

, 4npuﬁcl
(AXup) =7 g 3Z et H? (z - /ﬁ>
o Hap'?
BnB op \ 72 S TR
X 5% ot \ Vs (v)e do. (2.31)
)

The relations in (2.11), (2.20), and (2.31) give an ex-
pression for the diffusion flux caused by the collisions
between charged particles:
-on Z, n, on
- Vap? e e Ta 7B
F“r’ - m Wi\ 0X Zﬁ Ilr; X ) ’
in which vgg is given by (2.24). Substituting the Ruth-
erford cross section in (2.24) and (2.15) we obtain vqg
in explicit form:

(2.32)

_ 423 Zjet (2 >1paﬂ;
Vyg = — .

(2.33)

-Ln
Sm, T 3z B

Here, L is the Coulomb logarithm
*¥Here we consider near collisions, which cause the electron

velocity to tum through an angle =7/2, or an aggregate of remote
interactions equivalent to a near collision.
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L —1nPmax
2 min
‘ T N\l
Pnax = Ta =\ gome ’
pp=— for r, > r
" (!"aﬂT)]/2 " ¢

Ppin=7To=

re= o \ZaZy| for r >, (2.39)

If (2.33) is taken into account the diffusion flux (2.23)
can be written in the form

4 / 2Tgg \Vo cle? 1 Ong 1 ng
Lop = “?< s a2 Lnanﬂzp<zﬂz—ax ~Zar-5x )
(2.35)

It should be noted that collisions of charged particles
lead to an ambipolar flux in the direction of the density
gradient regardless of the electric field. As follows
from (2.35):

ZQFQB = — Zﬁr‘ﬂq_. (2.36)

4. Effect of collisions of like charged particles on
plasma diffusion across a magnetic field. [35,33] It is
evident from (2.35) that collisions of like particles
cannot lead to a diffusion flux proportional to the den-
sity gradient, i.e.,

Tea=0. 2.37)

In some work (for example, in [6]) this effect is at-
tributed to the fact that the ‘‘center of gravity of the
guiding centers’’ is not displaced in collisions of like
particles. This explanation is unsatisfactory, however,
since diffusion can occur even if the position of the
center of gravity of the particles remains fixed.*

It has been pointed out in [, that in collisions of
like particles the diffusion flux, defined as the mean
square displacement, is balanced by a flux in the op-
posite direction proportional to the mean displacement.
It is not difficult to understand the origin of this flux.
As is evident from Fig. 2, in the collision of particle 1
with the same particle 2 the guiding center of particle
1 is displaced in the direction of particle 2 (along the
curve I). In the presence of a density gradient the
collisions are more frequent in the direction in which
the density is greater. Hence, collisions of like par-
ticles lead to a mean displacement and, correspond-
ingly, to a particle flux in the direction of increasing
density. This flux balances the usual diffusion flux
in the direction of lower density. Complete compen-
sation of the fluxes is obtained from (2.35) if the
calculation is carried out with an accuracy up to the
first spatial derivative of the density.

Calculations which take account of higher deriva-
tives of the density allow us to determine the diffusion
rate caused by collision of like particles.[%] The ex-
pression for the diffusion flux is

*We note from (2.35) that the diffusion flux caused by collisions
of particles of different mass, in which the center of gravity of the
guiding centers is displaced, can also vanish (for example, if
Zy==2g ng=np).
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In accordance with (2.35) and (2.38) the ratio of the
ion flux due to ion-ion collisions to that caused by
electron-ion collisions is of order (if n;j ~ ng)

Tig .

T, (2.39)

[

(o) of
me .l_

It has been noted in reference 35 that under certain
conditions the ion flux due to ion-ion collisions (2.39)
can become important. However, as is evident from
(2.38), collisions of like particles result in different
diffusion rates for the electrons and ions (the ions
diffuse more rapidly). For this reason a charge sep-
aration arises in the plasma and a transverse electric
field is produced; in the general case this field is not
uniform. (3 The drift velocities of the colliding par-
ticles are different in the inhomogeneous electric field
(since their guiding centers become spatially sepa-
rated). As a result of the collisions there arises a
‘“friction force’’ which is proportional to the mean
relative drift velocity and is directed along this ve-
locity (i.e., perpendicular to both the electric and
magnetic fields). The friction force produces a par-
ticle drift parallel to the electric field. This drift is
in opposite directions for particles of opposite charge.
Thus, the inhomogeneous electric field changes the
particle flux associated with collisions and can lead
to ambipolar diffusion mode, i.e., the absence of an
electric current in the direction of the gradients. It
is shown in [3?] that the electric field responsible
for ambipolar diffusion in a gas consisting of electrons
and singly charged ions is of order

E = ell
L
(the field distribution is determined by the condition
that the transverse current vanishes). The ratio of
the ambipolar diffusion flux, which is proportional to
the higher density derivative (T'1y to the flux propor-
tional to the density gradient (Tl) is of order

(2.40)

0}

.1_21_

TiI

T (2.41)

Thus, the ambipolar flux, which is proportional to
the higher density derivative, that is to say, the flux
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caused by like-particle collisions is negligibly small
and need not be considered under the present condi-
tions [cf. (2.1)].

5. Effect of collisions of ions with different charges
on diffusion. If a plasma contains ions of different
charge, collisions between these ions can have an im-
portant effect on transverse plasma diffusion, [:37]
Each collision of this kind leads to an appreciable
change in ion momentum, that is to say, to a displace-
ment of the guiding center of the ion by a distance of
the order of the Larmor radius; on the other hand, the
collision of an ion with an electron leads to a much
smaller displacement of the ion, since the relative
change of ion momentum in this case is of the order of
the ratio of electron mass to ion mass.

The effect of collisions between ions with different
mass can be estimated from (2.35). Given the same
relative values of the particle density gradients

1 o 1 on
= Ze__- '—é) the ratio of the diffusion flux of
ng X ng 98X

ions with charge Zgye caused by collisions with ions of
charge Zge to the flux caused by collisions with elec-
trons is

(2.42)

mymg Jl/, Zg(Zg—2Z,) ng

I‘GB
r [ (mg+mg) mg (Zg+Dne

ae
This ratio can be large even if ng < ng, i.e., even if
there is only a small number of impurity ions with
charge different from that of the primary ions; this
result follows because the ion masses my and mg
are much larger than the electron mass me.

In a plasma containing two kinds of positive ions
collisions result in diffusion fluxes in opposite direc-
tions for ions of different charge [cf. (2.36)]. For the
same relative density gradients it follows from (2.35)
that the ions with lower charge diffuse in the direction
of lower density (the usual diffusion direction) where-
as the ions with the higher charge diffuse in the direc-
tion of increasing density.

When the ions are formed in the central part of the
plasma volume and the ion densities diminish toward
the periphery, the ion diffusion for both kinds must
also be directed toward the periphery of the volume in
the stationary state. This result means that a station~
ary density distribution cannot have the same relative
gradients for both ion species. It is evident that the
ions with higher charge will be concentrated in the
central region of the volume to a greater extent than
those with the smaller charge.

As an example we consider the diffusion of multiply
charged impurity ions of type « in a plasma consisting
of singly charged ions and electrons (it is assumed
that n, < nj ® ng=n). The diffusion flux of the im-
purity ions is given by (2.35)

Fa=rai+rus= _%:eT’ znpui )llz {[ a]nn u. ar’l);n
() [ 2 tae ). a0

GOLANT

The second term in the curly brackets is much smaller
than the first since mg « ugj. Hence, the following in-
equality must be satisfied if the flux of impurity ions is
to be directed in the direction of diminishing density:
dlnn,
X

Zaalnn .

et (2.44)

this result means that the variation of impurity density
with coordinate must be faster than nZa. This inequal-
ity is responsible for the sharp drop in the density of
multiply charged impurity ions toward the periphery

of the plasma volume,

6. Diffusion in a strong magnetic field that affects
particle collisions. Up to this point we have considered
diffusion for cases in which the magnetic field had no
direct effect on the collisions, that is to say, the Lar~
mor radii of the particles were much greater than the
interaction range.

In strong magnetic fields, however, the interaction
range of the charged particles (Debye radius) is com-
parable with the Larmor radius of the electrons or
greater and we must take account of the effect of the
field on particle collisions. An analysis of the diffu-
sion of charged particles with the effect of the mag-
netic field on collisions taken into account is given
in [31,38] *

As before, the diffusion flux caused by collisions
can be determined from (2.11). However, the quanti-
ties (AXppg) and ((Axaﬁ)z) in this expression must
now be computed taking account of the effect of the
magnetic field on particle motion. In carrying out the
calculations we assume that the interaction of the
charged particles is described by a Coulomb potential
with cutoff at the Debye radius.

It is convenient to introduce the notion of an impact
parameter p to characterize collisions in a strong
magnetic field.

Relating the particle displacement in a collision
AXyp and the impact parameter, we can obtain the
average value (AXqgg) from the obvious relation

(AXo) = { § dpidp,  1(va)dva § £ (o) avomg (Xp)v(AXep),
(2) Vo) ) (2.45)

where p; and p, are the projections of the impact
parameter on mutually perpendicular axes in the plane
perpendicular to the relative velocity v.

The quantity ( AXQB )? is defined in similar fashion.
The calculation of (AXqyg) and ((AXgg)?) and the
corresponding diffusion flux for an arbitrary effect of
magnetic field on collisions is difficult. Hence, we
shall treat two limiting cases. In the first case the
motion of one of the particles participating in the col-

*In [**] an attempt is also made to treat diffusion in a magnetic
field that affects collisions. However this wotk contains an error:
the authors start from the unjustified assumption that the total par-
ticle pressure is constant, neglecting the magnetic pressure (this
work is discussed in greater detail in [“]).
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lision is strongly ‘‘magnetized’’ while the motion of
the second is essentially unaffected by the magnetic
field. This case is realized in electron-ion collisions
when pe < p < pj. In the second case the motion of

both particles participating in the interaction is ‘“mag-

netized’’ (electron-electron collisions for pe < p and
electron-ion and ion-ion collisions for pj < p).

7. Electron diffusion caused by electron-ion colli-
sions for pe << p « pj. In a collision in which the im-
pact parameter is much greater than the Larmor ra-
dius the electron drifts in the electric field of the ion
(Fig. 3). The transverse displacement of the guiding
center of the electron due to the collision is

AR, = — & S [Foh) de = Zic g Virhldt, (2.46)
where Fgj = — ZiezrV( r) is the force exerted on the
electron by the ion, r is the radius vector from the
ion to the electron,

V(r):ria for r<ry V(=0 for r>rs (2.47)
N on
%@ww:::'f AR
P <~ P
i i
FIG. 3

Since the mean thermal velocity of the ions is much
smaller than the mean electron velocity we first con-
sider the electron drift, taking the ions to be fixed.
Furthermore, inasmuch as the mean electron energy
in the present case is much greater than the interac-
tion energy in the collision (since the Larmor radius
Pe is much greater than the radius of the ‘‘strong in-
teraction’’ rg) we assume that the longitudinal elec-
tron veloecity is unchanged. It follows from (2.46) that
the projection of the trajectory of the electron guiding
center on the plane XY is the arc of a circle whose
center lies at the ion site (cf. Fig. 3). The arc length
traversed by the guiding center during the collision is
determined [in accordance with (2.46)] from the re-
lation

Se= ZHi & V(r)dz (r=VP*+2). (2.48)

It is evident from Fig. 3 that the vector representing
the displacement of the guiding center is

h H
AR&:%—L—“_ - (2.49)
where we have taken account of the fact that
(2.50)

Se o, Qe Te o4
P Pp<<’

the direction of the vector p is from the ion to the
electron.

The relations in (2.49) and (2.50) give the electron
displacement in the direction of the gradients

AX,= 5

Q V() de—L _SPe_ (2.51)

2 eEH T,

[ { weram]'.

In computing (AXe) from (2.45) we must take ac-
count of the variation of ion density within the interac-
tion region (this variation is assumed to be small)

ang

n, (X) =1, (X,)— p. %

(2.52)

The relative velocity in the integrals in (2.45) is ob-
viously the longitudinal velocity of the electron v
= | vgg |. Calculations making use of (2.45) and (2.51),
taking account of (2.52) and (2.5), lead to the following
result:

1/2 c’e’

(MXy=( BV L LIS, (2.53)
L,=In ﬁ:j‘: . (2.54)
mev2
-5 d
r=2{¢ 2T (2.55)
)
In similar fashion we find the quantity

(AX,)?) =2 ( B e i L L Zin, (2.56)

The calculation is carried out up to terms propor-
tional to 1/H? (terms proportional to higher powers
of 1/H are omitted). The resulting error is of order
pe/p-

The integral over velocity Ly diverges at the lower
(zero) limit. This divergence arises because in the
analysis given here the time of the electron-ion inter-
action increases without limit as the longitudinal ve-
locity of the electron diminishes. Actually, the inter-
action time is bounded. It cannot be greater than p/vil,
where vj| is the transverse component of ion velocity.

When vgyz < vj| the ion leaves the interaction region
before the electron. Another limitation is due to the
longitudinal acceleration of the electron in the colli-
sion process. Near the ion the longitudinal velocity
of the electron cannot be smaller than a quantity of

order
_(eEN\Y2_ (T 1/a
Y= (pm =7 ( P )
However, since the integral Ly diverges logarithmic-
ally we can replace the exact expression by a ‘‘cutoff’’
integral with limiting velocity v, equal to ve or Vj.
Thus

(2.57)

L o In 2: for —"m—mi— < % , (2.58a)
= n—2= — —
v mZ  for L<Mi (2.580)

;7-: (pmaxpmm)l/2

The expressions for (AXel) and ((AXg)?) have
been obtained under the assumption that the ion re-
mains fixed. The existence of a directed ion velocity
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caused by a pressure gradient leads to an additional
directed electron displacement AXgly. The magnitude
of this displacement can be determined from the Ein-
stein relation between the diffusion and mobility con-
stants of the particle. In order to apply the Einstein
relation we must convert to a reference system in
which the ions are at rest. With respect to the labora-
tory system this system moves with a velocity equal to
the directed velocity of the ions ujg [cf. (2.6)]. An
electric field arises in the moving system; this field
is given by
E=tiu =10, B,=yp -3, E,=E=0.(259
Under the effect of the weak electric field, in collisions
the colliding electrons are displaced along the electric
field and the mean displacement per unit time is pro-

portional to the field strength:

(AXq1)=pE. (2.60)

The electron mobility u can be determined from
the Einstein relation

p=—-D. (2.61)

As is well known, the diffusion coefficient in this
relation is determined by the mean-square displace-
ment:

= 2 {(AX)®). (2.62)

Using (2.59)—(2.62) we obtain an expression for the
mean electron displacement due to the directed ion
motion:

(AXerr) = — 5 — == ((AX,)%). (2.63)

A more detailed analysis of the electron displace-
ment caused by the relative transverse motion of the
electron and ion is given in 3] where it is shown
that the mean displacement (AXgyr) is determined
primarily by electrons with low longitudinal velocities.
Thus, any deviation from the Maxwellian distribution
in the region of low longitudinal velocities can lead to
a significant change in (AXy11) and to a corresponding
change in the particle diffusion flux,

The relations in (2.53), (2.56), and (2.63) determine
the quantities (AXe) and ((AXe)?) ((AXe) is obtained
by summing {AXel) and (AXe]r)). Using these ex-
pressions and (2.11) we obtain the following expressions
for the electron flux in the direction of the density gra-
dient caused by electron-ion collisions for pe << p:

2em, \l/z c2e? » 1 0n 1 an;
T, = _( T°> S Ll 2, (2o St G )
(2.64)

8. Ion diffusion caused by electron-ion collisions
for pe < p < pij. When pj > p the effect of the mag-
netic field on the ion motion can be neglected. An im-
portant result of the collision for an ion in this case is
the change of ion velocity. In accordance with (2.12)

V. E. GOLANT

the transverse displacement of the ion guiding cen-
ter is

ARy, = (2.65)

e ¢
i [Avh] = 220 \ (Fhae.
The integral on the right side of (2.65) determines the
moment of the force acting on the ion in the collision
process. A comparison of (2.65) and (2.46) shows that
the ion and electron displacements are related by
ARei L

Z (2.66)

AR,y =

The relation between the averaged and summed
(over collisions) displacements (AXje) and (AXgi)
can be determined from (2.45):

1
{(AX;p) = — Z (AX,) (n,—n,) (2.67)
(the density nj in the expression for {AXej) must be
replaced by ng).
In accordance with (2.45) and (2.66) the relation be-
tween ((AXje)?) and ((AXei)?) is

(AKX = Zr (AKX (mom).  (2.68)

Using (2.11), (2.67), (2.68), (2.53), (2.62), and (2.56)
it is an easy matter to determine the ion diffusion flux
in the direction of the density gradient caused by ion
collisions with electrons:

2nm
r(c = - ( T <

A oy
ng X

1 on, \ _ 1
+Zig 55 )=z Ter
(2.69)

It is evident from (2.64) and (2.69) that collisions of
electrons with ions lead to an ambipolar diffusion flux
regardless of the strength of the electric field when
Pi > D > pe just as in the case peg > p.

9. Diffusion caused by collisions in which p < p
for both colliding particles. In collisions in which
Pk < p for both particles the particles drift in the
direction perpendicular to the magnetic field and the
line that connects them. The drift trajectories of the
guiding centers are shown in Fig. 4. In collisions of
particles with like sign the guiding centers drift in a
circle around each other (Fig. 4a). This motion re-
sults in a mean displacement in the direction of the
density gradient. Particles with equal and opposite
charge drift along lines that are perpendicular to the

\Y/2 c2e?
—1—12— LpLoneni

Foc
J " on .‘F“" oH
AR 4R
P P
f LR
‘F x tF’a
a) b)

FIG. 4
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impact parameter (Fig. 4b). In these collisions there
is no mean displacement parallel to the density gra-
dient.

The transverse displacement of the guiding centers
of particles of type « that collide with particles of
type B is determined by the drift velocity:

c i

S V (rag) [ragh] dt. (2.70)
Since the particle interaction is assumed to be weak
(cf. page 172) the components of the vector rog di-
rected from the guiding center of particle § to the
guiding center of particle a are

Sa(t) = Z:T S [Fogh] dt =

Tof = Pa+ Sax— Spxs  YaB = Py Say— Spy»  Zap = U,1. (2.71)

Since the drift displacement is much smaller than the
impact parameter s < p [cf. (2.50)], in computing the
particle displacement by means of (2.70) and (2.71) we
use successive approximations. In the second approxi-
mation [ i.e., carrying out the calculation to terms pro-
portional to (s/p)?] we obtain the following expression
for the particle displacement:

Py \ Vi)

-—c0

px[ iV(raB)dz]’.

—c0

Zﬂec
AXap = Sa(w) = m—

1 25 (Zg+Zg)
A%t

H2? 2.72)

This expression can also be used, as in the other
cases, to compute the quantities (AXypg) and
((AXyp )?) and the diffusion flux:

27hog \ 12 22 1 6n
e

a
Ly ) annﬁzﬂ(z‘5 —Zg L TR

ng e

(2.73)
The coefficient Ly in (2.73) is determined from
(2.58b).

It is evident from (2.73) that the diffusion flux
caused by collisions of like particles vanishes when
p < p just as when p > p; the flux due to the mean
displacement in the direction of the density gradient
balances the diffusion flux due to the mean-square dis-
placement in the direction opposite to the gradient. As
in the case p >» p, the flux vanishes only when the cal-
culation is carried out for the first density derivative.
Taking account of the higher derivatives and the in-
homogeneous electric field (ef. page 170) results in
a nonvanishing flux associated with like-particle col-
lisions.

In a plasma consisting of electrons and ions of one
kind the ratio of the ambipolar diffusion flux (propor-
tional to the higher derivatives in density ) to the flux
proportional to the density gradient (caused by elec-
tron-ion collisions) is of order[39]

T a? i}
T for e.<p<en (2.74)
rII

- ____Pm";‘{’m'“ for o, < p. (2.75)
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Thus, the contribution due to like-particle collisions
is unimportant.

10. Summary of results. In Table II we summarize
the expressions for the transverse flux of charged par-
ticles (in the direction of the density gradient) caused
by various kinds of collisions (the formulas are writ-
ten in vector form).

The expressions for the flux due to collisions be-
tween charged particles are defined for the three cases
characterized by the different ratios of Debye radius

(rq) to mean Larmor radii of the electrons and ions
pe and pj.

When pe >» rq the diffusion flux is determined by
(2.35).

When pj > rq > pe the diffusion flux caused by
electron-ion collisions is the sum of the flux due to
collisions for which p < pe [this flux is determined
from (2.35)] and the flux due to collisions with p > pe
[this flux is determined by (2.64) and (2.69)].

When rd > pj the diffusion flux of electrons and
ions is obtained by summing the fluxes for the three
ranges of p (p < pe, Pe <P < pi, p >pj) determined
from (2.35), (2.64), (2.69), and (2.73).

Thus the formulas in the table can be used to deter-
mine the diffusion flux of charged particles across a
magnetic field in a plasma with various components.
Using these formulas it is an easy matter to obtain
[cf. (2.26)] the ambipolar flux of charged particles in
a plasma consisting of electrons, ions of one kind, and

neutrals (ng = Znj):
FeLZFen+Fe{= —DaJ_V_Lne’ (2.76)
I‘i_]. = Fia + Fl.i = _Dalv_Lni’ (2'77)
Do =% Z 1 me2 (Ve - Ver), (2.78)
Zle'n;
= (27\:)' ————1/0 = A, (2.79)
( ra -

In . for r;< g

J ° B (2.80a)
A= ln —|— 1n ln @ for Q. ryg <L 0;,
— (2.80b)
: 2 j—

In—”—}—fln l —i——i’—lni—dln(r—"% for ry>o;;
Lo L _ (2.80c)

= is the smaller of the quantities % and @ )
0 e (3

We have introduced here the ambipolar diffusion co-
efficient Dy determined by the effective electron-
neutral collision frequency (2.24) and electron-ion
collision frequency (2.79). In this calculation it is
assumed that the electron and ion temperatures are
the same [cf. Eq. (2.28)].

3. Solution of Certain Diffusion Problems

We present below the solutions of a number of
boundary-value problems involving the diffusion of
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Table II
Type of flux
c*m, T v
Flux of charged par- T, =— e ean "aVan E
ticles causeg bypc;l- an ZeerH? V1 “+ ZyeH? et

lisions with neutrals

Fluxes caused by col-

Zﬂuaﬂ e
(=~

1
X (Zﬂn_ VJ_"a

lisions of charged aﬂ_
particles with
e>rq
Pet=2iT;p=—

X (Zi—’; V_Lne—l-Ti- V_Lni)

c’e’

( > n nﬂZB
__Zan—ﬁ VJ_"B) ,

/3 ¢202
g 2nme> /2 c2e? (l rd nan;;

Fluxes caused by col-
lisions of electrons
and ions with

Pei=ZiPie= —<

2nm, N\ /2 c2e?
HT

lisions of charged
particles with

ey

u<rako; ( i Qa +In o ln n.n;Z
Qe ”0

z 1 v 1 v X —7;3 _mn o

X i h J_ne+n_i 1), A, r
()2
-———’—_———(equal to the smaller of the quantities)

¢
Fluxes caused by col- Tee=0,

rei=zirie=—(

g ra 1. (ragi)
In @ 4 In = ln—T—>

2:-:;1‘1‘3
Top=— ( T

(ra0)"?
Te

2ntm,\1/2 c’ez 4 —e m;

Mg

ln

Qi

1 1
X ngniZ; (Zif VJ."e“'n—i Von)

/‘
1 202
/208 (41 1
Q

1 1
) ngngZy <Z”"_a vV ng—2Z, Y V_Lnﬁ>

(particles o and 3 are jons)

plasma in a magnetic field. These solutions are re-
quired for the analysis of the experimental results.
1. Diffusion equations and boundary conditions.
In this section we consider a plasma consisting of
electrons, singly charged ions, and neutral particles.
It is assumed that the electron and ion temperatures
remain unchanged in the diffusion process (constant
in space and time).
The change in plasma density (n =nj = ng) is de-
termined by the diffusion flux of charged particles
(I' = nu), and by volume ionization and recombination
processes:

an én
7“”““—‘5_:- (3.1)

Because of the plasma neutrality condition it is evident
that the electron and ion fluxes are related by the ex-
pression

VF, = VI,. 3.2)

The change in the density of charged particles due
to volume processes 6n/6t can be written as a sum

dn 2
6‘ =2zZ;n —an®,

(3.3)
in which the first term gives the ionization rate and the
second the electron-ion recombination rate. The mean
ionization rate z and the recombination coefficient «
are assumed to be independent of density. In (3.2) we
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have neglected the change in plasma density due to
electron capture by neutral particles and the subse-
quent ionic recombination. For this reason the results
obtained with (3.1) and (3.3) apply for the analysis of
the diffusion in gases with small effective cross sec-
tions for the formation of negative ions (for example,
in electropositive inert gases).*

We now apply the diffusion equation (3.1) to three
cases.

a) Diffusion of charged particles in a weakly ionized
gas in a chamber with dielectric walls. When the
plasma is contained by dielectric walls the electron
and ion fluxes must be the same at all parts of the wall.
For this reason we seek a solution of (3.1) and (3.2) for
which the electron and ion fluxes in the direction of
the density gradient are the same over the entire
volume:

Tey=Tyy  Tep=Ti, (3.4)

that is to say, the diffusion is ambipolar (cf. page 164).
In (3.1) we substitute (1.23) and (1.24) which give the
ambipolar diffusion flux, thereby obtaining the ambi-
polar diffusion equation

on

(,)—t—DaH—a—z-——-D _LAJ_n—~zn (35)
9’n  9* o s .
Here, Ajn = e + -a—yz-; it is assumed that recombina-

tion is unimportant in the weakly ionized gas.

The ambipolar diffusion equation (3.5) also applies
if a current flows through the plasma provided the
electron and ion fluxes can be written as a sum of
‘‘current’’ components (vanishing divergence) and
¢«‘diffusion’’ components related by (3.4).

The electric field distribution in ambipolar diffu-
sion is given by (1.21) and (1.22)

_Dv Dp|| 1 on

D, —D
, — il 7% 1 vin.
Pig = Hey » 92

By —Wpy B (3.6)

The condition for the existence of a potential elec-
tric field (VXE = 0) that follows from these condi-
tions is

lnn
dzx oz

2inn .
= 5y 6z =07 3.7)

it follows that ambipolar diffusion can occur in a mag-
netic field only if the spatial distribution of the density
can be written as a product of longitudinal and trans-
verse functions:

n(z, y, 2)=ny(z)ny (=, y). (3.8)

In what follows we shall consider only distributions
of this kind.
According to (3.6) the potential of the dielectric

*We note that the results obtained in this section can be general-
ized to the case in which electron capture is important. We do not
give the appropriate relations here in order to avoid complicating the

paper.
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walls of the chamber containing a plasma in a magnetic
field is nonuniform. In a strong magnetic field the
walls perpendicular to the magnetic field are charged
negatively (since the electron diffusion coefficient
along the magnetic field is much greater than the ion
diffusion coefficient) whereas the walls parallel to the
field are charged positively (the transverse electron
diffusion coefficient is much smaller than the ion co-
efficient).

b) Diffusion of charged particles in a weakly ionized
gas in a chamber with conducting walls. If the chamber
walls are highly conducting the wall potentials are
equalized; the electric field distribution in the volume
is changed and the ambipolar diffusion mechanism no
longer operates. This effect was first noted by Simon,
[41,48] who called it the short circuit effect. The anal-
ysis of diffusion of a weakly ionized gas in a chamber
with conducting walls is carried out by means of equa-
tions obtained by substituting the flux expressions
(1.10) and (1.11) in (3.1) and (3.2):

£
ot

a%n

—Deu [ 9% + 5 T Bz (nEz)]

——DeJ_[A_I_n—i—TL-V_L(nE)]:zin, (3.9)

Dy [

=Dy [

%n

023 + 7 T Bz (flE )] +De_1_ [Aln‘f-——V_L(TLE)]

%‘Te—iz‘(n&)] + Dy [A.L"'—“ﬂ'v_l_("'E)] )
(3.10)

These equations must be supplemented by the specifi-
cation of the equipotential condition at the walls (i.e.,
the plasma boundaries).

In what follows we seek solutions of (3.9) and (3.10)
assuming, as in the case of ambipolar diffusion, that
the components of electric field are proportional to
the components of the density gradient:

1 on 1
En R E_L=§;VLn

(3.11)

If we assume that the boundary density of the plasma
is constant the equipotential condition leads (in con-
trast with the case of ambipolar diffusion) to the re-
sult that the coefficient ¢ is the same in the expres-
sions for E, and E|.*

Substituting (3.11) in (3.9) and (3.10) we have

— Dy (1 +-:T«ee—§> %

(1485 ) (D 5+ Doy

=<1—§-7§;)<Dm';2—z';+Di_LAln>.

—D,y (1+4-8) A_Ln_—_zin(, |
3.12

(3.13)

*Within reasonable limits a variation in the boundary density is
not important since the wall potential is a logarithmic function of
boundary density (3.11).
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These equations will be used to analyze diffusion in
chambers with metal walls.

¢) Transverse diffusion in a strong magnetic field.
In analyzing transverse diffusion we assume that the
plasma density is independent of the z coordinate,
which is along the magnetic field. In this case the
diffusion can be ambipolar regardless of the conduc-
tivity of the walls containing the plasma. In accord-
ance with (1.22) the potential at any point in transverse
ambipolar diffusion is determined uniquely by the
plasma density. For this reason the wall potentials
are not affected by the conductivity. Substituting the
expression for the ambipolar diffusion coefficient
(2.78) in (3.1) we obtain an equation that describes
transverse diffusion in a strong magnetic field:

% — D5,V (1 +yn)V nl=zn—an?, (3.14)
In (3.14) the quantity D} is the ambipolar diffusion
coefficient associated with collisions of charged par-
ticles and neutrals (the ‘‘linear’’ part of the diffusion
coefficient )

yn=_tt, (3.15)

en

while Dgj = ynD}| gives the diffusion coefficient asso-
ciated with electron-ion collisions. In accordance with

(2.79), the factor vy is a logarithmic function of density.

This weak dependence of v on n will be disregarded
below.

In order to obtain a unique solution for the above
equation we must establish the boundary values of the
plasma density. The density close to absorbing walls
in the absence of a magnetic field has been treated by
a number of authors (cf. reference 49). In [%9] the
effect of a transverse magnetic field on the boundary
conditions has been analyzed for certain particular
cases. We shall not present the results of this work.
We indicate only that in general, if the criteria for the
application of the diffusion analysis (cf. Table I) are
satisfied the plasma density close to an absorbing wall
is appreciably smaller than the density in the central
regions. Thus, in solving the diffusion equations (3.5),
(3.12), (3.13), and (3.14) we take the density at the
boundaries (close to the chamber walls) to be zero:

Npound= 0. 3.16)

2. Stationary plasma diffusion. It is well-known
that stationary transverse diffusion in a weakly ionized
gas can be realized in a ‘‘long’’ positive column in a
discharge in which the magnetic field is directed along
the axis. In this case (3.5) becomes

z; _
AJ_n+ba—J_n_0. (3.17)
The density distribution is determined by the nonnega-
tive solution of (3.17) that vanishes at the boundaries.
(Such a distribution is called a diffusion distribution. )
We must observe the characteristic relation
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Dy

i A%'

z (3.18)

which represents a balance condition, i.e., the balance
between the rates of production and removal of charged
particles. The quantity Ay is of the order of the trans-
verse dimensions of the plasma container and is called
the diffusion length. For a plasma container of cylin-
drical shape the diffusion distribution and the diffusion
length are given by the expressions

().

where J; is the Bessel function and a is the chamber
radius.

The quantities z; and D,, are uniquely related to
the electron temperature. For this reason (3.18) can
be used to calculate the temperature. Since the elec-
tron temperature in the positive column of a discharge
is determined by the longitudinal electric field, we can
also compute this field as well as the stationary plasma
density, which is inversely proportional to the electric
field.

As the magnetic field increases the necessary elec-
tron temperature and longitudinal electric field both
diminish because of the reduction in the diffusion co-
efficient (cf. Fig. 14). Correspondingly the plasma
density for a fixed discharge current increases.

Thus, by determining experimentally the magnetic
field dependence of the electron temperature, the elec-
tric field, and/or the plasma density in the positive
column of a discharge one can obtain an idea of the
effect of the magnetic field on transverse diffusion. It
should be noted that the quantities Tg, Ez, and ny vary
relatively slowly as Dg] changes. When Dy varies
by a factor of 2 or 3 the quantities E, and n; vary by
10—30%.

3. Diffusion from the plasma of a stationary dis-
charge. If the active discharge region only occupies
part of the volume of the discharge chamber charged
particles diffuse out of this region. At some distance
from the active region of the discharge the electron
temperature will drop to a value at which gas ioniza-
tion ceases. Below we consider certain particular
cases of the diffusion of charged particles from a
stationary discharge into a region in which there is
no ionization.

a) Weakly ionized gas; dielectric chamber; boundary
of the active region of the discharge parallel to the
magnetic field (Fig. 5). For this case (8/8t =0, z{ =0)
the diffusion equation (3.5) assumes the form

A a

0= 2 405"

(3.19)

Doy 3o+ DatA 1 n=0. (3.20)
We present a solution of this equation of the class
in (3.8) which vanishes at the boundaries. and increases

monotonically from the boundary to the center of the
volume, If the boundary of the diffusion region and the
chamber walls are plane this solution is
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FIG. 5. Diagram of the discharge volume. I) Active region of the
discharge; II) diffusion region.

n(x, z)= Asin%sinh [%l/ Da (a.l—-x)] . (3.21)

Dgy

If vDy) /Dat ﬂde‘}_) > 1, the hyperbolic sine can
be replaced by the exponential:

x

n(z,2)~Bsin e L, (3.22)
d Doy
s = n l/ Da[l * (3.23)

This solution gives the transverse reduction in density
if the longitudinal distribution at the boundaries of the
active region of the discharge is sinusoidal (sin 7z/d).
For other boundary distributions, at a sufficiently
large distance from the boundaries of the active region
X =—a4
( —

S1
similar to (3.22) will be obtained.

A similar technique is used to find the solution of
(3.20) for the case in which the boundaries of the active
discharge and the chamber are both cylindrical. If
(ag—r) » s, (r—ay) > s) this solution is of the
form

> 1) one expects that a density distribution

nz e ‘L
n(r,z)=Bsin— v

Thus, the plasma density falls off exponentially at a
sufficiently large distance from the boundary of the ac-
tive region of the discharge and the walls of the cham-
ber. The characteristic density decay length s) (the
length in which the density is reduced by a factor of e)
is of the order of the distance through which the
charged particles can diffuse across the magnetic field
in one lifetime. The relation (3.23) for s| can be writ-
ten as follows.

(3.24)

s1=VDartns = ?‘317. 3.25)

The charged-particle lifetime in this case is equal
to the time of longitudinal diffusion.

b) Weakly ionized gas; metal chamber; plasma
boundary parallel to the magnetic field. As we have
indicated, the ambipolar diffusion mechanism (in a
magnetic field) does not operate in a chamber with
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conducting walls. Diffusion from a plasma in a sta-
tionary discharge for this case was considered by
Simon[¢7,48] by means of (3.9) and (3.10). In the anal-
ysis given by Simon the terms containing the trans-
verse electric field E] are neglected in these equa-
tions. It has been pointed out by Zharinov (511 ang
Tonks %27 that this procedure is not justified. It is
evident that the terms containing E| (3.9) and (3.10)
are of the same order as the terms describing the
transverse diffusion. A correct analysis has been
given in [%2) for the case of diffusion from the plasma
of a stationary discharge in a magnetic field (plane
geometry ) for boundary conditions corresponding to
dielectric walls and metal walls, However, the re-
sults obtained in this work apply only if the ratio of
longitudinal to transverse chamber dimensions lies
within certain limits.

Diffusion in a chamber with metal walls can be ana-
lyzed easily by means of (3.12) and (3.13). To describe
diffusion from the plasma in a stationary discharge
(8/8t = 0, zj = 0) these equations are written in the
form

(1+%§) (De“?—z'; +DeLA_Ln> =0,
(1-%5} (Dﬂ. r DA )=0.

There are two possible classes of solutions for
(3.26); these correspond to positive and negative po-
tentials at the metal walls. In most cases the walls
must be charged negatively since the electrons reach
the walls more rapidly than the ions. In these cases
(3.26) reduces to the following:

(3.26)

Diu%+Du_ALn=0, (3.27)

T
E=—7 (3.28)
In accordance with (3.11) the electric field is given by:

T.Vn
T Ten

E= (3.29)
It is evident [cf. (1.10) and (1.11)] that the field dis-
tribution given by these relations indicates zero elec-
tron flux over the entire diffusion region. The elec-
trons are ‘‘trapped’’ in this region because of the
negative potential at the walls.* The distribution of
charged particle density is given by (3.27), which de-
scribes ion diffusion. This equation is the same as
(3.20). Hence, the expressions obtained above (3.21)—
(3.25) can be applied to the case at hand if the ambi-
polar coefficients are replaced by the coefficients for
ion diffusion. In particular, the characteristic density

*We note that the total number of electrons and ions reaching an
insulated metal wall must be the same in a stationary mode. How-
ever, in this case the electrons must move to a wall outside the
region being considered — in the region of the active discharge or
to the boundary of the diffusion region.
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decay length for diffusion in a metal chamber is given
by [ef. (3.23) and (3.25)]

d D'_|_
s1=VDi =~ I/'E:‘”—

c) Weakly ionized gas; dielectric chamber; boundary

(3.30)

of the active region of the discharge perpendicular to
the magnetic field (Fig. 6). For the case of cylindri-
cally symmetric boundaries the solution of (3.20) of
interest here is

— r i Da_L (d—z)
n(r, 2)=AJ, () sinh [I/Taﬁ —AT] (3.31)

or, when (d—z) > Ay VDy) /Dgy
n(r,2z)=BJ, (l—) e_ n,

D,
Sy = l/ alt AO*‘V—DGHT_L (T_L.._. Al) .

In this case the characteristic length s| is determined
by the distance through which the charged particles
can diffuse along the magnetic field in one lifetime (the
time for transverse diffusion).

(3.32)

(3.33)

r H
— 1 — FIG. 6. Diagram of the
70 - 2 discharge volume. I) Active
A Y SR ———
. =20 region of the discharge; II)
d ’ diffusion region.

By measuring the quantity s|; one can obviously de-
termine the ratio Dy /Dy). It should be noted that in
a strong magnetic field the length s can be much
greater than the transverse dimensions of the chamber.

In %3] the diffusion equation (3.5) has been analyzed
for the more complicated case in which the plasma
density at the boundary of the active region varies pe-
riodically in time. The reduction of the mean density
in time as well as the phase variation in the density
oscillation along the length of the chamber are again
determined by the ratio of the diffusion coefficients
Dal /Dajl.*

d) Transverse diffusion in a highly ionized gas in a
strong magnetic field. When diffusion is due primarily
to collisions between charged particles, transverse
diffusion from a stationary plasma is described by
(3.14), where we take 3n/8t =0, zj =0, yn » 1:

*After the present review was written a paper by Golubev and
Granovskif ['*] was published describing an experimental investi-
gation of diffusion in a cylindrical chamber with fixed and periodi-
cally varying density at the boundary of the diffusion region. In
this work a probe was used to determine the density distribution
along the length of the chamber. The results of the investigation
include data on the diffusion of charged particles in helium and
argon plasmas at magnetic fields up to 1500 Oe. These results
verify the possibility of using the method of investigating diffusion
proposed by the authors in {s2]
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- yD 1A (n?)—an?=0. (3.34)

The solution of this equation for a cylindrical boundary
(vanishing at r = ay) can be written in the form

AT ) () o

'YD Dez (3.36)

s} =

fr>»sj, ag—r >s| (i.e., at large distances from
the axes and from the walls of the chamber), the re-
lation in (3.35) can be simplified by making use of the
asymptotic form of the Bessel functions

r

T
e

The characteristic length s; is the effective length
for transverse diffusion in one recombination lifetime
of the particles.

4. Diffusion in the afterglow. In this section we con-
sider plasma decay which occurs after the ionization
source is turned off (for example, at the end of a
pulsed discharge) in a cylindrical chamber with axis
parallel to the magnetic field. The analysis is carried
out for the later stage of decay, where the equilibrium
temperature of the charged particles is approximately
that of the surrounding medium and no gas ionization
takes place (zj=0).

a) Weakly ionized gas; dielectric chamber. The
equation describing the density variation in the after-
glow is obtained from (3.5):

an
a-Lrar ) 0.

The solution of this equation of class (3.8) that van-
ishes at the walls of the cylindrical chamber (z = 0,d
and r = a) can be written in the form

)
r . Rz
7 )sn

fk ) %o=2.405, %, =5.520, x,=8.653, ...

n(r)~BL___, (3.37)

an Daz_n

7t Vel gz (3.38)

Dg| | Dgym2

~(ZeL s o
n(r,z, t)= 2 Age Ak @
R

Ay = (3.39)

Here, kk is the root of the Bessel function Jy(kk)
=0 and k increases with increasing root number,

The coefficients Ax are determined by the initial
transverse density distribution (the longitudinal dis-
tribution is assumed to be sinusoidal). If the initial
distribution is a diffusion distribution (3.19) only one
term appears in the sum in (3.39):

i
n(r,z, ty=ne *J, <L> sin X%, (3.40)
Ao d
11 1 1 _Day 1 _ Dy
T—T—_L ay T__!__A_E’" o —ar (3.41)

In this case the spatial distribution does not change in
time while the plasma decays exponentially. The decay
time constant 7 is determined by the diffusion coeffi~
cients. For an arbitrary initial transverse density dis-
tribution the diffusion distribution (3.40) is established
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in a time of several 7] after plasma decay starts; this
follows because the terms in the series (3.39) corre-
sponding to higher-order distributions (terms with
k > 0) decay more rapidly than the main term.

b) Weakly ionized gas; metal chamber. Plasma de-
cay in a metal chamber is described by equations ob-
tained from (3.12) and (3.13):

e D (1+£58) T (14£8) L2 >
an

——Diu<1—T o 1J.<1"“‘§> rar<
(3.42)

o

It is not difficult to find the solution of this set in
the form of a diffusion distribution (3.40).[%] This
distribution is established a rather long time after the
start of plasma decay. Substituting (3.40) in (3.42) and
solving the systems of equations for 7 and ¢ [in ac-
cordance with (3.11) the quantity ¢ determines the po-
tential of the metal walls] we find

T
fi‘{"rﬁre
=TT (3.43)
H_TT:
. Te T
T, fi—l—;:—f . (3.44)

The quantities Te and 7i denote the effective time
for ‘“free’’ (i.e., not affected by space charge) diffu-
sion of electrons and ions:

1 De]_ De”:ﬁ:2 i . Dil_ Dmn:

o =hs +—— = et (3.45)

The rate of free diffusion for particles of each type
is, by (3.45), equal to the sum of the rates for longi-
tudinal and transverse diffusion. Correspondingly, the
effective diffusion time (7e, 7i) is determined for each
particle by the faster process. In turn, the plasma de-
cay constant is determined by the larger of the quanti-
ties T¢ or T (when Tg ~ Tj).

It should be noted that the flux distributions for the
electrons and ions at the chamber walls are not gener-
ally the same. Thus, when Djg(n?/d?*) > D¢ /A},

Dy i(n%/d?*) <« Dyj/A} (this is the case in a strong mag-
netic field with d > a) the electrons diffuse along the
magnetic field to the end walls while the ions diffuse
across the fields to the side surface of the chamber.
The currents arising in this process are short-cir-
cuited through the metal walls of the chamber.

We have treated diffusion decay in a plasma bounded
by metal on all sides. When only part of the surface
bounding the plasma is metal (the ends or side surface,
for example) the solution of the decay equation is dif-
ficult.

¢) Transverse diffusion in a highly ionized gas.
Plasma decay occurring as a result of diffusion across
a strong magnetic field and recombination is described
by an equation derived from (3.14):

on s 18

=D 5 ) —ant. (3.46)

)—{— Dal_'(9_‘<rn'2{l—
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If there is appreciable ionization, in which case both
diffusion due to electron-ion collisions and recombina-
tion are important, the decay equation (3.46) is non-
linear. In this case it is convenient to characterize
the plasma decay by a time constant defined in terms
of the mean density over the cross-section:

S T,
dlnnfdt '
S n(r)rdr.

0

(3.47)

§

(3.48)

We note that because of the nonlinearity the quantity T
depends on density, that is to say, the plasma decay is
not exponential.

Equation (3.36) cannot be solved in general form. In
[54], through the use of a series of limiting cases, it
has been possible to find an approximate solution of
the equation which evidently describes the last stage
in plasma decay. In solving (3.46), as a first approxi-
mation it is assumed that the right side of the equa-
tion is independent of coordinates. A method of suc-
cessive approximations is then used to obtain a more
accurate solution.

In Fig. 7 we show the radial distribution of density
obtained by the approximate solution in various cases.

The curve marked 1 holds when nonlinear processes
are unimportant (yn «< 1, an « D%J_ /a%) and gives an
idea of the convergence of the method. The density
distribution obtained in the second approximation does
not differ greatly from the diffusion distribution (3.19),
which is an exact solution of the equation (dashed
curve).

The curve marked 2 gives the density distribution
for the case in which the basic electron-removal proc-
ess is diffusion due to electron-ion collisions (yn > 1,
a < yD‘fa /a?). In this case the plasma decay constant
is given by

Dei | (3.49)

When diffusion due to electron-ion and electron-neutral
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collisions is important but recombination is not, the
density distribution in plasma decay is given by the
curve marked 1 rather than curve 2. The reciprocal
time constant in this case can be approximated by the
sum of the values corresponding to the limiting cases:

1 5.8 3.8%
'-'-'(T) =7{Dg_(_ +FDei

(3.50)

(the accuracy in this approximation is better than 20%).

In a highly ionized gas, in which diffusion caused by
electron-neutral colisions is unimportant (yn > 1),
and the basic processes for the removal of electrons
are nonlinear diffusion and recombination, one finds
that a time independent radial distribution is estab-
lished. As is evident from the figure (curve 3), even
with an appreciable recombination effect ( aaz/'yD°aJ_
= 4,5) the distribution does not differ greatly from the
nonlinear diffusion distribution (curve 2). To an ac-
curacy of 10% the plasma decay constant for aaz/yDoal
< 5 can be approximated by

4385t oan

T2y

(3.51)

When both linear diffusion and recombination are im-
portant the described method cannot be used to find the
solution of (3.46). In [%5] an approximate analysis is
given for this case which takes account of longitudinal
diffusion; this analysis is based on an average of the
decay equation taken over the volume. In taking an
average of the equation it is assumed that the spatial
distribution of density is a diffusion distribution
[Eq. (3.40), curve 1 in Fig. 7]. Hence the solution
applies if recombination is not important. The plasma
decay constant obtained as a result of this solution in
the case in which longitudinal diffusion is unimportant
is

2 =28 py; +14an. (3.52)

In the general case in which all three of the elec-

tron-removal processes considered here are important
(linear diffusion, nonlinear diffusion, recombination)
the radial density distribution must obviously be given
by a curve lying between the curves marked 1 and 3 in
Fig, 7 (if aaz/'yDoa_L < 5). Correspondingly, an approx-
imate expression for the reciprocal of the plasma de-

cay constant can be obtained by combining (3.49)—(3.51):

1 1 1 1 1 1

T To Tei Tr (fOI' Tr < 1.5 Tei ) ! (3.53)
1 58D 1 _ 38D 1 -
e L =, o =1.2an (3.54)

II. EXPERIMENTAL INVESTIGATION OF THE DIF -
FUSION OF CHARGED PARTICLES IN A WEAKLY
IONIZED GAS IN A MAGNETIC FIELD

4. Diffusion of Electrons in a Neutral Gas

Before discussing experimental investigations of
the diffusion of a plasma across a magnetic field, we

V. E. GOLANT
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FIG. 8. Diagram of the experimental devices.

summarize the experimental data on transverse diffu-
sion of electrons in a neutral gas.

The diffusion spreading of an electron beam passing
through a gas parallel to a magnetic field was investi-
gated in early work by Bailey. ®] It was established
in this work that the transverse diffusion of electrons
in hydrogen at pressures of 2—16 mm Hg and magnetic
fields below 800 Oe is described accurately by (1.11).

A more detailed investigation was carried out by
Bickerton.[¥'] A diagram of the apparatus is shown
in Fig. 8. In this device the electrons emitted by the
thermionic cathode K move in a uniform electric field
through a small aperture O, entering a cylindrical dif-
fusion chamber. The transverse diffusion of the elec-
trons takes place in the chamber, whose axis coincides
with the direction of the magnetic field. The increase
in the transverse dimension of the electron beam in the
time the electrons move from the input aperture to the
collector is given by the approximate relation

Ar% V[-*De_[_'r = ‘/4De-l-ui”
e

(d is the chamber length, ug) is the longitudinal ve-
locity of the electrons in the electric field).

By measuring the ratio of current to an annular col-
lector Coll, and to the central collector Colly, which
gives the beam spreading, it is possible to determine
ugli /Del. In Fig. 9 we show the results of the deter-
mination of this quantity in helium at low currents; at
low currents the space charge has no effect on electron
motion. These data were obtained under conditions for

4.1

60
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FIG. 9. Dependence of ug;/De; on H. E/p = 10 V/cm'mm Hg;
1) p = 0.5 mm Hg;. 2) 1 mm Hg; 3) 2 mm Hg.
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which there was no electron emission from the collec-
tor, which could distort the measured result. The ex-
perimentally determined dependence of ug| /De) (in
helium and hydrogen) on magnetic field (ug| /Del

~ H?) and pressure (ug|/Dej ~ 1/p) is in good
agreement with the theoretical relation given in (1.10)
and (1.11):

(eE
Y| _ 3 eE [ 0,0\? 3 ) 2 Q22
D _> (Ven>

micp (for @, > Ven)

4.2)

(ﬁe is the mean electron energy).

An investigation of transverse diffusion of electrons
at lower pressures and higher magnetic fields has been
carried out by Zhilinskii, Terent’ev, and the author. A
diagram of the apparatus is shown in Fig. 8b. In this
scheme the electrons, which are first accelerated,
pass through an aperture and then reach the diffusion
chamber, in which there is no electric field. In the
chamber the electrons reach the collector by diffusing
along the magnetic field. During the longitudinal dif-
fusion the electron beam spreads to dimensions of
order

r=r,+Ar, ArmVZEle/ZcF Do (4.3)
Measurement of the transverse current distribution
by means of a sectionalized collector makes it possible
to determine the ratio of longitudinal to transverse dif-
fusion coefficients. The measurements were carried
out in helium. The electron energy was kept below 10
eV in order to eliminate inelastic electron collisions.
The lower limit on the pressure is given by the condi-
tion Ay < d, which must be satisfied if the electron
motion is to be diffusional. The highest pressure is
determined by the condition that the electrons must
suffer small energy losses during the diffusion time

The results of measurements of the ratio of the dif-
fusion coefficients for helium pressures ranging from
0.01 to 0.12 mm Hg in magnetic fields up to 2000 Oe
are shown in Fig. 10. In this same figure we show the
theoretical curve computed from (1.10) and (1.11):

? 2H2
VE T m2evE

ell

D

B, = 44

In these calculations it is assumed that ven/p = 2.5
x 10° sec™! mm Hg (it is well known that the collision
frequency for electrons and helium atoms is essentially
constant for energies ranging from 2 to 15 eV). It is
evident from the curve that the experimental results
are in good agreement with the theoretical predictions
for both the dependence of the ratio Dgji /Dgj on H
and p as well as the absolute values.

Thus, the experimental data indicate that the diffu-
sion of electrons across a magnetic field in a neutral
gas (in the absence of a transverse electric field and
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with low space charge) can be described accurately

by the familiar theoretical formulas. We note, how-
ever, that when there is a transverse electric field or
when space charge is important the transverse elec-
tron motion becomes more complicated. For instance,
in static magnetrons at low gas pressures one observes
unstable electron motion, strong oscillations, and noise
(cf. £58]),

5. Diffusion of Charged Particles from a Plasma in a
Discharge with a Thermionic Cathode

The first experimental data on diffusion of charged
particles in a magnetic field were obtained in studies
of ion sources published in 1949, (53] A diagram of
the experiments described in [%9] is given in Fig. 11.
Between the thermionic cathode K and the anode A
there is a stationary discharge at low gas pressure
(10*—10"? mm Hg). The plasma moves along the
lines of force of the magnetic field and passes through
an aperture into the cavity of a graphite anode block.
The size and shape of the primary plasma region in
the cavity I are determined by the size and shape of
the anode aperture (in the experiments described here
the aperture is a narrow slit while the cavity in the
anode is a rectangular parallelepiped). The charged
particles of the primary plasma diffuse to the periph-
ery of the anode cavity. By measuring the density dis-
tribution of charged particles in a plane perpendicular

FIG. 11. Diagram of the ex- Aol ]
perimental device. % L]
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to the magnetic field one can, as shown in Sec. 3 of

Part I, obtain information on the transverse diffusion
coefficient. The density distribution is measured by
means of a movable probe P. In order to reduce the
effect of the magnetic field on the probe measurements -
the plasma density is determined from the ion current
to the probe (the probe is maintained at a negative po-
tential with respect to the plasma).

The results of the measurements were used to de-
termine the characteristic density decay length s| for
several modes of operation in argon and hydrogen at a
pressure of approximately 103 mm Hg and a magnetic
field of 3000—4000 Oe. Bohm compared the experimen-
tal values of s| with the results of calculations based
on the assumption of ambipolar particle motion and
concluded that the transverse diffusion rate was ap-
proximately two orders of magnitude greater than that
corresponding to ambipolar diffusion across the mag-
netic field. (%] The discrepancy was explained by
Simon. [%4%:48] Simon showed that equalization of the
potential at the boundaries of the plasma means that
diffusion in the volume bounded by the conducting walls
is not ambipolar. As we have shown in Sec. 3 of Part I,
the conducting walls must be charged to a negative po-
tential of order (kTe/e)1n (n/npoypd.) in order for the
electron flux in the diffusion region to vanish (i.e., the
conducting cavity must be a potential well for the elec-
trons).

This description is verified by measurements of the
distribution of anode current described in a paper by
Zharinov.[%) The measurements were carried out
with a probe that was moved close to the end surface
of the anode (a cylindrical device similar to that
shown in Fig. 11 was used). It was established, in
accordance with the considerations given above that
the electron flow to the anode is much smaller than
the ion flow outside the region of primary plasma.

If the electron flux vanishes the density distribution
of the plasma is determined by ion diffusion. The char-
acteristic length s; is determined, in accordance with
(3.30), by the distance over which ions can diffuse dur-
ing one lifetime:*

sp=VDijty, = ;fl;—m . (5.1)
Substituting (1.10) and (1.11) for the ion diffusion co-
efficients and assuming that w > vj,, we have
=2 Vin
oW

§1 (52)
This relation applies if the longitudinal ion motion is a
diffusion motion, i.e., if Aj < d. When Aj >d the ion
lifetime is determined by the ion thermal velocity

dV 2m;

VT (for T; = T,), (5.3)

Ti“ =

*We note that the formulas used in [*’] and [4*] differ from (3.30)
by a factor V2. This results from the fact that Simon has neglected
the transverse electric field in his calculations {cf. page 178).
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and s) is given approximately by

2T \ Vs (vind)'/2
SJ_ g -m_{ ———

@4

Measurements of the dependence of s] on magnetic
tield [7+48] have been carried out in order to verify the
interpretation given by Simon. The measurements
were carried out in a cylindrical anode block made of
metal using the arrangement shown above (Fig. 11).
Most of the results were obtained in a chamber filled
with nitrogen at a pressure of 107°—5 x 107 mm Hg
in magnetic fields of 2000—14000 Oe. The ionization
in the primary plasma was less than 1%. A typical de-
pendence of s| on H is shown in Fig, 12. It is evident
from (5.1) that this dependence is in agreement with
the theory; it corresponds to an inverse quadratic de-
pendence of the transverse diffusion coefficient on
magnetic field (D] ~ 1/H?). Measurements were also
carried out to determine the dependence of s| on ni-
trogen pressure. When Aj «<d (Aj <6 cm, d =26 cm)
a linear dependence of s on pressure is observed, in
accordance with (5.2); when Aj =d (Aj =~d=6cm) it
is found that s| ~ Vp [cf. (5.4)].

The absolute values of s; obtained in the experi-
ments described in [*8) and in the first experiments [%%]
are of the same order of magnitude as the theoretical
values. One does not expect a better correspondence
since the effective collision cross section and the ion
temperature are only known approximately.

Investigations of the density distribution of charged
particles diffusing from a stationary plasma have also
been described in (9], The difference in this work is
the fact that diffusion was studied in a long chamber
(1.2—1.5m) and that an appreciable part of the lateral
surface of the chamber was made of glass. A rigorous
analysis of diffusion in such a ‘‘mixed’’ chamber sur-
face is difficult. It is probable, however, that the
boundary conditions at the side walls have little effect

(5.4)

FIG. 12. The de-
. pendence of 1/s; on H.

l/S.L’ rel. units




DIFFUSION OF CHARGED PARTICLES IN A PLASMA IN A MAGNETIC FIELD

when 8) « a and that the results of the meagurements
of the diffusion length can be compared with (5.2) and
(5.4).

Measurements carried out in nitrogen and hydrogen
at a pressure of 10°3 mm Hg showed that the length s|
is inversely proportional to the magnetic field H (up
to values of 3500 Oe). The order of magnitude of s is
in agreement with that given by (5.2). The quantity s
was also determined in H,, He, N,, Ne, Ar, and Kr
at p= 10" mm Hg. However, it is difficult to inter-
pret the low pressure measurements since s) is of
the order of ion Larmor radius and the conventional
diffusion theory does not apply.

Thus, the experimental data available at the present
time concerning the density distribution in a plasma
diffusing across a magnetic field from a discharge with
a thermionic cathode are in satisfactory agreement
with collisional diffusion theory.

It should be noted that these data do not yield infor-
mation on the transverse motion of the electrons be-
cause under the conditions of these experiments
(chamber with conducting walls) the density distribu-
tion is determined completely by an ion diffusion. L51]

A number of experiments have revealed anomalous
effects in the plasma in a discharge with a thermionic
cathode; these can be attributed to changes in the na-
ture of the transverse motion of the charged particles
in the magnetic field.

As far back as the first experiments described by
Bohm [%%] it was established that the ratio of electron
saturation current (to the probe) to ion saturation
current in a strong magnetic field is much greater
than the expected value (in these experiments the
collecting surface of the probe was perpendicular to
the magnetic field). This led to the belief that the
transverse motion of the electrons is more rapid than
a diffusion motion. In fact, however, this assumption
was not justified completely since the analysis of the
electron branch of the probe curves in the magnetic
field was very approximate.

A further investigation of probe characteristics in
a plasma in a discharge with a thermionic cathode has
been carried out by Zharinov. [81,62) In these experi-
ments apertures were cut into the end of the anode and
the volt-ampere characteristics were measured by
probes located beyond these apertures. With increas-
ing magnetic field (up to some critical value) the
ratio of electron saturation current to ion current was
observed to diminish monotonically. At the critical
magnetic field this ratio increased suddenly; simulta-
neously, strong oscillations were observed in the probe
current. Systematic measurements of the critical mag-
netic field were carried out in hydrogen, nitrogen, and
helium in the pressure range 10-2—10~3 mm Hg. It was
found that the critical field increases approximately
linearly with pressure; at a pressure of approximately
5 x 1072 mm Hg this field is approximately 500 Oe for
H, and approximately 1500 Oe for N, and He.
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Comparison of the currents to different probes (of
the phases of the current oscillations) shows that fields
greater than some critical field cause the formation of
one or two plasma ‘‘tongues’ and that these tongues
rotate about the axis of the discharge. As the mag-
netic field increases the period of rotation is reduced.
Similar effects are described in$”. The authors of
this work observed rotation of an arc in different
gases, Hy, He, N,, Ar, Kr, and Xe at pressures of
10™4—10"" mm Hg in the anode cavity (the pressure
in the space between the cathode and anode was
maintained at approximately 107 mm Hg). The au-
thors of (8] report no observation of arc rotation at
anode cavity pressures of 107 mm Hg. A special
method has been developed by Elizarov and Zharinov
to make it possible to study in detail the formation
and rotation of plasma formations. 164 In this work the
end surface of the anode is a fine metal grid. The flux
of electrons or ions passing through the grid is trans-
formed into a light flux. The electrons are accelerated
by short voltage pulses and strike a luminescent screen,
causing it to emit. In the ‘‘ion conversion’’ mode the
ions are accelerated and eject secondary electrons
from the grid; these electrons are then accelerated
toward the luminescent screen. In these measure-
ments the discharge was formed by pulses with lengths
up to 1 millisec. By photographing the emission from
the luminescent screen at different ‘‘probe pulse’’ delay
with respect to the initiation of the discharge it was
possible to determine the distribution of plasma den-
sity over the anode cross section during the time in
which the plasma formations were in the rotating state.
Preliminary results published at the present time in-
dicate that the shapes of the plasma formations and
their motion are extremely complicated.

It should be noted that the results of investigations
of ‘““anomalous’’ behavior of a discharge with a ther-
mionic cathode described in [81784] are quite contra-
dictory. The mechanism responsible for the rotation
of the plasma formation is not known. No relation has
yet been established between the observed effects and
various plasma transport effects.

In a recently published paper Guest and Simon[#%]
have tried to relate the observed anomalous behavior
to a helical plasma instability similar to the positive
column instability considered earlier by Nedospasov
and Kadomtsev (page 186). The helical instability can
be caused by a longitudinal current in the diffusion re-
gion (as noted above, in diffusion in a metal chamber
the ion current to the periphery is not compensated by
the electron current).

It is not yet clear whether this mechanism can serve
as an explanation for the anomalous diffusion of plasma
from a discharge with a thermionic cathode, since no
detailed comparisons are available of the conditions
necessary for the formation of the instability and the
experimental data.
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6. Diffusion in a Low-Pressure Arc

In many modes of operation of a low-voltage arc
(gas pressures of 0.1—10 mm Hg) ionization occurs
primarily at the cathode (cf. [66:67]), The plasma den-
sity distribution in the space between the cathode and
anode is determined by the diffusion of charged par-
ticles from the region contiguous to the cathode. If it
is assumed that the temperature of the charged parti-

“cles is constant over the entire volume (outside the
ionization region) the results of the analysis in Sec. 3,
Part I can be applied. It follows from this analysis
that at some distance from the cathode the plasma den-
sity must fall off exponentially toward the anode. The
characteristic density decay length in a cylindrical
discharge chamber (dielectric) with magnetic field
along the axis is given by (3.33):

s C Dy
= 2505 D, -

Nedospasov (%3] has reported experimental data on
the plasma density distribution between the cathode and
anode of a low-voltage argon arc in a longitudinal mag-
netic field. These data have been obtained by measuring
the ion current to a wall probe that could be moved along
the side wall of the discharge chamber. These results
were used to determine the characteristic length sy
and the ratio of the longitudinal and transverse diffu-
sion coefficients Dy /Day [cf. (6.1)]. The ratio
Da| /Day as a function of magnetic field is given in
Fig. 13. It is evident from the curve that the experi-
mental dependence obtained with magnetic fields below
1000 Oe at argon pressures of 0.25—1 mm Hg is in
good agreement with the theoretical function obtained
from (1.23) and (1.24):

(6.1)
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7. Diffusion in the Positive Column

We have indicated above (cf. page 177) that the
basic characteristics of the positive column—electron
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FIG. 13. The dependence of Dy/D,; on H. +—~p =0.25 mm Hg;
x —p=0,7mm Hg; e—p = 1.0 mm Hg.
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temperature, density distribution, maximum density,
and longitudinal electric field, are determined by the
diffusion of charged particles to the side wall of the
discharge chamber. Hence, by studying these charac-
teristics in the presence of a magnetic field along the
discharge axis one can obtain information concerning
the transverse diffusion of charged particles.

Probe measurements of the characteristics of the
positive column of a discharge in helium at low mag-
netic fields (up to 400 Oe) have been reported by
Bickerton and Engel.t®] The measured results were
found to be in good agreement with the diffusional
theory for the positive column. As the magnetic field
increases the electron temperature and longitudinal
electric field are reduced while the plasma density
increases. These results have been verified by other
workers. Vagil’eva and Granovskii have carried out
a direct measurement of the diffusion coefficient in
the positive column. "] Using probes (ion character-
istics ) these workers determined the plasma flux to
the side wall and the density gradient close to the wall.
The ratio of these quantities is equal to the diffusion
coefficient. The variation in the transverse diffusion
coefficient in helium at magnetic fields of 500—1000 Oe
(pressures of 0.07—1 mm Hg) corresponds to that
given by (1.24). ‘

However, the behavior of a positive column cannot
be described in terms of diffusion associated with par-
ticle collisions if the field becomes too high. As the
magnetic field increases a critical value is reached at
which the particle loss rate increases. Simultaneously
one observes strong oscillations and noise. This effect
was first reported by Lenhert[™J and investigated in
detail by Lenhert and Hoh, [*2-74] Granovskii and his
colleagues, L8] Allen et 21[%:7"] and a number of other
authors. ['8:80] We present here a brief review of the
experimental results.

In [1-14] gpg [16~77] the subject of investigation was
the positive column in a long discharge (2.4—4.1m)
located in a uniform magnetic field. The cathode and
anode were outside the magnetic field. The potential
difference between identical probes located at different
points in the plasma was measured and used to deduce
the longitudinal electric field. The results of the meas-
urements in helium for a chamber radius of 1 cm are
shown in Fig. 14 by the solid curves. In this same fig-
ure the dashed curves represent the theoretical curves
calculated under the assumption that diffusion is due to
collisions. *

At low magnetic fields the theoretical and experi-
mental curves are found to be in agreement. There
are certain discrepancies that can be attributed to the
uncertainties in the values of the collision cross sec-

*The theoretical curves are plotted for the case in which the
plasma contains only the atomic ion He'. The presence of molecu-
lar ions does not affect the calculations greatly.
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FIG. 14, The longitudinal electric field as a function of
magnetic field, 1) p =0.45 mm Hg; 2) 0.9 mm Hg; 3) 1.8 mm Hg.

tions used in the calculations. At some critical mag-
netic field Hgp, however, the longitudinal electric field
in the positive column starts to increase. This behav-
ior indicates the enhanced loss of charged particles
from the plasma. The enhanced rate of loss of charged
particles at magnetic fields beyond the critical value

is also verified by measurements of the ion current to
wall probes. [14,75] ‘

At high magnetic fields (4,000—6,000 Oe) the longi-
tudinal electric field (and consequently the rate of loss
of particles from the plasma) is found to be of the
same order as that with no magnetic field and remains
fairly constant.

The increased longitudinal electric field at H > Her
is accompanied by a sharp rise in the noise intensity.
The values of the critical magnetic fields given by the
minimum in the E(H) curves and the rise in noise in-
tensity are found to coincide.

In Fig. 15, using the data of [ and [*8] we show
the dependence of Hgpr on helium pressure for several
values of chamber diameter. It is established that Hep
increases slightly as the discharge current is increased
but that it changes relatively little as the length of the
discharge region in the magnetic field is varied from
0.5 to 4m. We have only given the results for helium.
However, similar data have been obtained in investiga-
tions of the positive column in discharges in hydrogen,
nitrogen, neon, argon, and krypton, [13,74,76,77]

The anomalously rapid loss of particles from the
plasma in the positive column has been explained by
Kadomtsev and Nedospasov, [81] who have shown that
this loss can be associated with the presence of insta-
bilities of the positive column in the magnetic field.
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FIG. 15. The dependence of H.ra on pa. 1) Calculated from the
formula given in [®]; 2) experimental curve using the data of [7¢],
a=0.9-1.3 cm; 3) experimental curve from the data of [’3]; a=0,75
cm.

This work considers a helical distortion of the
pinch.* The growth of the perturbation is inhibited by
diffusion since the diffusion flux to the wall is found
to be largest where the pinch is closest to the wall,

At the same time the helical distortion in the magnetic
field subjects the pinch to a force parallel to the wall.
This force is associated with the azimuthal component
of current produced in the distortion. As the magnetic
field increases, this force, which tends to increase the
distortion, is also increased, while diffusion, which in-
hibits the perturbation, is reduced. Hence an instabil-
ity arises at some critical value of the magnetic field.
Calculations based on formulas given in [81] for Her
for this instability (cf. Fig. 15) are in good agreement
with the results of an experimental investigation of this
quantity in the positive column.t

The helical perturbation of the positive column pre-
dicted by Kadomtsev and Nedospasov has been observed
directly in magnetic fields greater than the critical
value in [ and ["") | The authors of these papers
have successfully photographed a time-resolved pat-
tern of the emission from a pinch in two projections.
These photographs indicate clearly a right-handed
screw distortion of the pinch. An additional verifica-
tion has been given by measurements of the positive
column in the presence of a high-frequency field. L8]

*The observed anomalies have been attributed by Hoh[*?] to an
instability in the boundary layer between the plasma and the wall
(not associated with the discharge current). This interpretation can
not explain all the observed effects. Judging by later papers, [#2:84]
the author himself has abandoned it and supports the picture that a
helical instability arises in the column, as suggested by Nedospasov
and Kadomtsev.

TThe theoretical curve in Fig. 15 is plotted from data kindly fur-
nished to the author by A. V. Nedospasov. These same data have
been used in a paper by Vdovin and Nedospasov,['*} which was
published after the present review was written, and which contains
calculations of H for helium, hydrogen, neon, argon, and mercury
and contains an analysis of the appropriate experimental data.
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A field at a frequency of 4 Mc was applied to a special
solenoid inside of which the discharge chamber was
located. In the presence of additional ionization caused
by the high-frequency electric field it was found that
the fixed electric field required for maintaining par-
ticle balance in the positive column was reduced. Cor-
respondingly, the electron density was higher for a
given discharge current. Hence, in distortion of the
pinch the stabilizing effect of the diffusion is enhanced
and Hep is increased. The experiments verified the
predicted increase of Hgp.

The authors of (813 have not only obtained criteria
for the development of the helical instability, but have
also considered the growth of the instability at values
of H close to Hgr. The analysis yields the oscillation
frequency of the pinch and the rate of anomalous diffu-
sion associated with these oscillations. The results
are found to be in agreement with experiment.

At fields much higher than Hgy the pinch is capable

of supporting many kinds of oscillations simultaneously;

in this case the oscillations become irregular. A the-
ory for the development of this kind of instability has
been given by Kadomtsev Ces] by analogy with the the-
ory of turbulent convection of a liquid. This theory
predicts that the turbulent diffusion rate of a plasma
should be independent of magnetic field when H > Hgy.
This and other predictions of the theory are in agree-
ment with the experimental results.

Thus, the anomalous rate of loss of charged par-
ticles from a positive column in a strong magnetic
field and the observed oscillations and noise can be
attributed to a helical instability of the pinch.

8. Diffusion in an Oscillating-Electron (Penning)
Discharge

A diagram of the oscillating-electron (Penning)
discharge is shown in Fig. 16. In this discharge the
electrons oscillate between the two electrodes K or
between the cathode and a reflector (connected elec-
trically ) as long as displacements across the mag-
netic field do not cause them to strike the anode A.
The ratio of plasma density at the periphery of the
discharge (close to the lines of force of the magnetic
field that intersect the anode) to the density at the
center ny/n, serves as a measure of the rate of dif-
fusion of plasma across the magnetic field. This ratio
has been investigated by a number of French workers
under various experimental conditions. [86-88) The
plasma density was measured with probes (ion cur-
rent to the probe).

FIG. 16. Diagram of the
X oscillating-electron discharge
(Penning discharge).
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The measurements of ny /ny for a cold-cathode
Penning discharge in hydrogen are shown in Fig. 16.
At low magnetic fields the ratio ng /ny diminishes
monotonically with increasing field and increases with
pressure. This variation correlates with the change
in diffusion rate caused by collisions. However, at
some critical field Hep the ratio na /ng starts to
grow; in the ‘‘supercritical’’ mode ngy /n, diminishes
as the pressure is increased. The value of Hgp in-
creases as the pressure is increased and as the radius
is reduced and remains essentially constant as the dis-
charge current is varied by a factor of 10. Intense
noise is observed at fields somewhat greater than the
critical field. Measurements with an external receiver
indicate that the low-~frequency oscillations are accom-
panied by noise at frequencies of approximately 1000
Mc. The variation of noise amplitude is approximately
the same as the variation of ny /ng. Similar effects
have been observed in a Penning discharge with a ther-
mionic cathode in a fairly large device {length approx-
imately 1m). The anomalous variation of ny /ny and
the appearance of intense noise at magnetic fields
greater than some critical value evidently indicates

the formation of an unstable state of the Penning dis-
charge; this state is characterized by enhanced trans-
verse transport of particles. The nature of this anom-
alous behavior is not clear.

It is reported in (81 and (%] that a Penning dis-
charge is subject to ingtabilities associated with an
anisotropic electron velocity distribution and with
electric fields in the plasma. However, an analysis
for the mechanism responsible for these instabilities
is still lacking.

9. Diffusion in the Afterglow

We have presented above the results of a number of
experiments in which anomalously rapid motion of
charged particles across the magnetic field was ob-
served. In most cases the observed anomalous behav-~
ior is associated with the presence of a current in the
plasma or with a highly directed motion of the charged
particles. For this reason, special interest, as far as
diffusion theory is concerned, attaches to investigations
of diffusion in the afterglow; these measurements can
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FIG. 17. The dependence of n,/n, on H. 1) p = 0.016 mm Hg;
2) 0.024 mm Hg; 3) 0.03 mm Hg; 4) 0.021 mm Hg; 5) 0.025 mm Hg;
6) 0.03 mm Hg.
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be carried out under conditions in which the plasma is
essentially in equilibrium.

The first experiments on plasma decay in a magnetic
field were carried out by Bostick and Levine in a to-
roidal chamber. (8] However, the magnetic field is not
uniform in this geometry and plasma diffusion is, to a
considerable degree, masked by the toroidal drift.
Nonetheless, we shall consider [8%] since these results
have been frequently used in the analysis of transverse
plasma diffusion,

The investigation was carried out in a metal toroidal
vacuum chamber of rectangular cross section. This
chamber served simultaneously as a resonator excited
at two separate frequencies in the 10-centimeter region.
A pulsed discharge was produced in the gas in the
chamber by introducing high-frequency power at one of
the resonance frequencies. In the time interval between
pulses a measurement oscillator was used to measure
the shift of the resonant frequency of the second reso-
nance. Under proper conditions the frequency shift
should be proportional to the mean plasma density
(cf. L90] ). This technique was used to determine the
density variation in the decaying plasma and the time
constant for plasma decay 7. The value of 7 in helium
increased approximately linearly as the pressure was
increased from 0.05 to 0.35 mm Hg. As the magnetic
field was varied from 160 to 1400 Oe the measured
time constant went through a peak. The presence of
this peak has been interpreted by many workers as
evidence for ‘‘anomalous’’ transverse diffusion.* This
interpretation is unconvincing because it does not take
account of the effect on plasma decay due to the toroidal
drift associated with the inhomogeneity of the magnetic
field. Indeed, the relatively weak dependence of the
plasma decay rate on magnetic field (as H is in-
creased by a factor of 8—10, 7 does not vary by more
than 1.5—2 times) as well as the reduction in decay rate
at increased pressure, reported in 891, are character-
istic of toroidal drift of charged particles in a neutral
gas. It thus appears that the results reported in (891
can be attributed to toroidal plasma drift. In any case,
the data reported in this work can hardly give informa-
tion on transverse diffusion in magnetic fields greater
than 200—300 Oe because at these fields the diffusion
rate is smaller than the toroidal drift rate.

Investigations of plasma decay in a uniform mag-
netic field have been carried out by both probe and
microwave methods. Granovskil and his colleagues
[81-93] have investigated plasma decay by means of
probes. The plasma was produced in cylindrical glass

*QOther arguments for anomalous effects are sometimes based
on the oscillations in plasma decay observed in [2]. However, it
is not stated clearly in [*] under what conditions the oscillations
are observed. For example, it is not clear whether or not there is a
current through the plasma in the oscillation period. Moreover, a
correlation is not established between the observed oscillations
and the plasma decay rate.
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chambers 23 cm in diameter by a pulsed high-fre-
quency discharge or by a thermionic-cathode discharge.
The variation in ion current to probes (Ip) introduced
into the discharge was measured between pulses. Using
the slope of the Ip = f(t) curves these workers deter-
mined the plasma decay time constant in the initial
stage 7, (immediately after the discharge pulse) and
in the later stages 7; (several hundred microseconds
after the pulse). The measurements were carried out
at plasma densities greater than 10°—10' cm 73,

The dependence of 7 on magnetic field in helium
and argon for several cases obtained in (91 ang [93] ig
shown in Fig. 18. The change in time constant is small
at magnetic fields greater than 500—1000 Oe. The sat-
uration of these curves can be attributed to volume
processes for the removal of charged particles such
as electron-ion recombination and electron capture by
electronegative impurity molecules with subsequent
ion recombination. To evaluate the effect of volume
processes the authors of [92] getermined the ratio be-
tween the total number of particles arriving at the
chamber surface (as measured by the ion current to
all probes) and the initial number of charged particles
(estimated by the ion current to the probes in the cham-
ber volume). The results of these measurements indi-
cate a marked effect due to volume processes for the
removal of charged particles in the decay of a helium
plasma under the conditions of these experiments.
Thus, the T(H) curves reflect plasma diffusion only
at low magnetic fields (500—1000 Oe). The qualitative
behavior of these curves is in agreement with diffusion
theory in this region. However, a quantitative com-
parison is difficult since the plasma parameters are
not completely determined. In a magnetic field the
plasma density can only be determined to within an
order of magnitude by probe measurements. At the
initial stages of plasma decay the electron and ion
temperatures are both unknown. Appropriate choice
of parameters can provide agreement between experi-
mental values of T and the calculated values.

The above considerations indicate that the experi-
mental results reported in 913 and %] do not contra-
dict diffusion theory; on the other hand, these results
are inadequate for quantitative verification of the
theory.
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The application of microwave methods [90] makes it
possible to study plasma decay at densities from 10—
108 to 102—10!% cm™ (plasma decay in helium was
studied ). In this section we consider only the experi-
mental results that have been obtained at low densities,
in which case collisions between charged particles are
unimportant.

Zhilinskii and the author (%-%] ysed a waveguide
technique to investigate plasma decay in a magnetic
field. A cylindrical glass chamber (inner diameter
1.6—2.0 cm, length 110 cm ) was placed in a cylindri-
cal waveguide (Fig. 19a). The helium plasma was pro-
duced by current pulses 1—2 usec in length. The time
variation of the phase shift of 3 cm waves propagating
through the plasma was determined in the time interval
between pulses. The magnitude of this shift is deter-
mined by the mean electron density. Characteristic
curves showing the variation of density on a semi-
logarithmic scale are given in Fig. 20. It is evident
from the curve that plasma decay is exponential at
densities below 10°—10'° cm ™3, This means that non-
linear processes, such as diffusion caused by electron~
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FIG. 20. Variation of charged particle density in the plasma
afterglow. p = 0.08 mm Hg; 1) H = 300 Oe; 2) 450 Ce; 3) 650 Oe;
4) 1000 Oe; 5) 1500 Oe; 6) 2000 Oe.
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ion collisions and recombination, are unimportant.
Simple estimates indicate the establishment of thermal
equilibrium between the electrons, ions, and neutrals
and the establishment of a diffusion radial distribution
in the early stages of plasma decay. This result is
verified by the uniform behavior of decay curves at
different initial densities. Thus, the slope of the

1ln n(t) curves at low densities can, in accordance
with (3.41), be used to determine the ‘‘linear’’ coeffi-
cient for transverse diffusion:

A} 1 1dn a
?L=T—'i‘, ‘q=_n‘7' AO:W' (9.1)

In Fig. 21 are shown the results of the determina-
tion of the diffusion coefficient reported in [9¢] gng [95]
at magnetic fields up to 2500 Oe and helium pressures
of 0.02—1 mm Hg.

Plasma decay has been investigated by a resonator
method by Guzhova and Syrgii.[%] A chamber contain-
ing the plasma was extended through the aperture in the
end walls of a cylindrical 3-centimeter cavity (cf. Fig.
19b). The plasma density was deduced from the shift in
the resonant frequency during decay. The decay con-
stant was determined for magnetic fields up to 1200 Ce
and helium pressures of 0.08—0.32 mm Hg.

Ganichev, Zhilingkii and the author, using a reso-
nator method (Fig. 19b), have determined the plasma
decay constant in helium at pressures of 0.08—1.5 mm
Hg, magnetic fields up to 6000 Oe, and chamber diam-
eters of 0.4—1 cm.
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FIG. 21. The dependence of D, on H. Experimental points —
curve 1: e —p =0.025 mm Hg, a=0.8 emls]; curve 2: e—-p=10.08
mm Hg, a=0.8 cml®s]; +—p=0.08 mm Hg, a=0.7 cml®); A~
p =0.08 mm Hg, a=0.05 cm; curve 3: m~p = 0,35 mm Hg, a = 0.8
em[®]; o-p = 0.32 mm Hg, a=0.7 cml®®); curve 4: A—p = 0.08 mm
Hg, a=0.8 cml®); V_p=1.5mm Hg, a=0.5cm; o—p= 1.5 mm Hg,
a = 0.2 cm. Theoretical curves: 1"—p = 0.025 mm Hg; 4°—0.8 mm Hg.
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It is evident from Fig. 21 that the results of various
investigations of plasma decay in helium for discharge
chamber diameters of 0.4—2 cm are all in good agree-
ment. To an accuracy of 30—40%, the diffusion coeffi-
cient obtained in these experiments can be approxi-
mated by the empirical formula

Dy =64 24P (9.2)

2 1

where D is given in cm®sec”
Hg.
On the other hand, it follows from (1.24) that the co-

efficient for ambipolar diffusion due to collisions is

, Hin Oe and p in mm

o _(TedTy __1,5:10"p [ cm?
Day = mea?  ven = i [SE:']

(9.3)

In computing Doa_L it is assumed that Te = Tj = 300°K,
Ven = 2.5 x 108p sec™!, we > ven. A comparison shows
that only one of the terms in the empirical formula
corresponds to the theoretical predictions. The ex-
perimental plasma decay rate is appreciably greater
than the theoretical value, especially at low pressures.
The reason for this discrepancy has not been estab-
lished.* The component of decay rate that is independ-
ent of magnetic field may possibly be due to volume
removal processes. However, there is an important
factor in the diffusion coefficient that falls off rapidly
with magnetic field and is only weakly dependent on
pressure. It would appear that we are dealing here
with a diffusion mechanism that is independent of
electron-neutral collisions. The effective ‘‘collision
frequency’’ for this mechanism is about 10% sec™l.

Alikhanov, Demirkhanov, and their coworkers have
investigated plasma decay in a glass chamber of large
diameter (2a =7 cm, d =70 cm).[%"] The entire
chamber was located inside a cavity resonator (cf.
Fig. 19c). The gas discharge was excited at one of
the resonance frequencies. The density of the decay-
ing plasma was deduced from the frequency shift of
the other resonance. The results of measurements of
the plasma decay constant in helium at pressures of
0.025-—0.2 mm Hg and magnetic fields up to 6000 Oe
are in agreement with the theoretical values. Because
of the relatively small value of the length-diameter
ratio of the discharge chamber (d/2a = 10) transverse
plasma diffusion at magnetic fields greater than 100—
500 Oe is masked by the longitudinal diffusion. The
data of [%"3 indicate that the transverse plasma diffu-
sion rate in a large-diameter chamber is in agreement
with the theoretical value at magnetic fields smaller
than several hundred oersteds.

All of the results given above have been obtained in
dielectric discharge chambers. The effect of metal
surfaces on plasma decay has been studied in [%¢1, A
copper tube 110 cm long and approximately 2.0 cm in
diameter was located inside a glass discharge cham-

*It is possible that part of the discrepancy is due to differences
between the electron temperature and the temperature of the gas.
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FIG. 22. The dependence of 1/7 on H. The experimental points:
1) in a tubular chamber consisting of insulated metal rings, p = 0.25
mm Hg; o—uniform magnetic field; A —tube ends outside the field;
2) glass chamber without metal tubes, p = 0.035 mm Hg; 3) chamber
with a solid metal tube, uniform magnetic field, p = 0.08 mm Hg; 4)
chamber with a solid metal tube with ends outside the field, p = 0.08
mm Hg. The dashed line indicates the calculated curve for decay in
a metal chamber with p = 0.08 mm Hg.

ber. This tube served as a waveguide, by means of
which the plasma density was measured during decay.
The measured values of the plasma decay constant at
low densities are shown in Fig. 22, In a uniform mag-
netic field the decay rate in the presence of a metal
tube is found to be approximately the same as in the
chamber without metal. In order to simulate the decay
of a plasma bounded on all sides by conducting surfaces
these workers introduced a nonuniform magnetic field.
The length of the solenoid producing the magnetic field
was reduced so that the ends of the chamber (with the
metal tube ) were outside the solenoid; in this way the
lines of force of the magnetic field were made to inter-
sect the metal surface. As is evident from Fig. 22, in
this case there is a marked reduction in the decay con-
stant at high magnetic fields. Replacing the solid metal
tube in the chamber by a tube consisting of insulated
metal rings (each 10 cm in length) resulted in the dis-
appearance of these effects. This result indicates that
the change in plasma decay constant in a metal tube is
due to the equalization of the potentials at the plasma
boundaries, i.e., the short circuit effect. It is difficult
to carry out a quantitative comparison of the experi-
mental results with the theory of diffusion in a metal
chamber given in Sec. 3 of Part I because the mecha-
nisms responsible for the accelerated diffusion in the
dielectric tube are not clear. The diffusion coefficient
in the metal chamber can be computed if one assumes
that the effective electron collision frequency increases
in the magnetic field and then determines this frequency
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from experiments on diffusion in the dielectric chamber,
using (3.43), (3.45), (1.10), and (1.11). The results of
these calculations are in agreement with the experimen-
tal data.

III. EXPERIMENTAL INVESTIGATIONS OF THE DIF-
FUSION OF CHARGED PARTICLES IN A HIGHLY
IONIZED GAS IN A MAGNETIC FIELD

10. Decay of a Dense Plasma in a Magnetic Field

Nonlinear processes, such as diffusion due to
electron-ion collisions, and recombination, play an
important role at high plasma densities. Hence, by
measuring plasma decay rates under these conditions
it is possible to obtain information concerning diffusion
due to electron-ion collisions.

We consider first the data obtained in [%] ang 54
from measurements of the plasma decay rate in helium
by a waveguide method. A diagram showing the method
of measurement has been given above (cf. Fig. 19a)
together with the results of investigations at low plasma
densities (in which case the predominant mechanism is
linear ), which indicate that the plasma decay is expo-
nential. At plasma densities above 10°—10! cm™3 the
reciprocal decay time constant

(10.1)

increases noticeably with density (cf. Fig. 20). The
effectiveness of the nonlinear processes can be char-
acterized by the quantity A(1/7) =1/ —1/7; (7p is
the decay time constant at low densities). Analysis of
the plasma decay curves shows that this quantity varies
approximately in direct proportion to the plasma den-
sity at magnetic fields of 300—2000 Oe. In Fig. 23 we
show the dependence of A(1/7) on magnetic field at
f=2x 10" ¢cm™ for helium pressures of 0.02—0.8
mm Hg. It is evident that the nonlinear correction to
the decay rate for a fixed plasma density is essentially
independent of the pressure of the neutral gas. The
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FIG. 23. The dependence of A(1/7) on H. Experimental points:
V_p = 0.025 mm Hg; x—0.05 mm Hg; o—0.08 mm Hg; o—0.35 mm
Hg; ©—0.8 mm Hg. Theoretical curves: —— —(1/Tej + 1/7¢); ~—~
—1/7e; (we assume a = 3 x 10” cm*/sec, T = 300°K, A =8, a=0.8
cm).
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FIG. 24. Radial distribution of charged particles. a)H=0; 1-
t = 0.3 msec, 2-0.5 msec, 3-0.65 msec; b) H= 2000 Oe; 1-
t = 0.4 msec, 2—0.65 msec, 3—-0.9 msec (t is taken from the ter-
mination of the discharge current pulse). The calculated curves
are shown by the dashed lines.

curve in Fig. 23 can be analyzed by means of (3.53):

A()=Aototil Ly

3.8D,; 1 -
2Tet | — & 1.2an.
Tei

2
¢ T (10.2)

The dependence of A(1/7) on magnetic field is found
to be weak at magnetic fields greater than 1500 Oe.
This evidently means that diffusion is masked by re-
combination. By determining the recombination coef-
ficient (@ = 3 x 1079 cm? sec™!) from the curve in
Fig. 23, it is an easy matter to determine ﬁei by
means of the formula given above. Values of Dg; for
magnetic fields of 500—1000 Oe are given in Fig. 25.
In accordance with the theory, 6ei varies in propor-
tion to the mean density (in the range 5 x 10%—10!!
cm~3) and as the inverse square of the magnetic field.

A ‘‘free space’’ microwave method has been used by
Anisimov, Vinogradov, Konstantinov and the author fes]
to investigate plasma decay at high densities. The
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FIG. 25. The dependence of D.; on fi. 1—H =500 Oe, 2—
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from [*¢], the solid curves are obtained using Eq. (2.78) assuming
T = 300°K, A =8.




DIFFUSION OF CHARGED PARTICLES IN A PLASMA IN A MAGNETIC FIELD

plasma in these experiments was produced by a pulsed
induction or electrode discharge in a cylindrical glass
chamber 8.0 cm in diameter filled with helium. The
density of the decaying plasma was measured by si-
multaneous microwave ‘‘probing’’ at three frequencies.
By determining the phases of the reflected waves at
several frequencies below the cutoff frequency it is
possible to determine the positions of the reflection
regions corresponding to these frequencies (i.e., the
regions of critical density for each frequency. [%%]
The phase of the transmitted wave was used to find the
mean density. Thus, these data could be used to deduce
the spatial distribution of charged particles* (Fig. 24).
These data were verified by measurements of the dis-
tribution of emission from the plasma. In the absence
of a magnetic field the dengity distribution is essen-
tially a diffusion distribution, described by the Bessel
function. In a magnetic field of 1000—2000 Oe, the den-
sity distribution is flattened because of nonlinear ef-
fects. The distribution corresponds to the results of
the approximate calculation given in Sec. 3 of Part I.

The plasma decay constant is determined from the
time variation of the mean density. The plasma decay
rate becomes independent of magnetic field at values
greater than 1000—1500 Oe. The decay curves in this
region are in good agreement with the curves obtained
in investigations of plasma decay in strong magnetic
fields (H = 30,000 Oe) on the American B-1 Stella-
rator. [1%]  Ag shown in (1907 and (19 the curves re-
flect recombination caused by collisions of an ion with
two electrons.

The diffusion time constant at magnetic fields below
1000 Oe can be determined by subtracting the recombi-

nation rate from the total decay rate 1/74 = 1/7 — 1/7y.

The dependence of this constant on magnetic field and
density is in agreement with theory.

The results of measurements of the nonlinear diffu-
sion coefficient are shown in Fig. 25. In the same fig-
ure we show the calculated values of ﬁei obtained from
(2.78). In the calculations the temperature and Coulomb
logarithm are taken to be T = 300°K and A = 8 respec-
tively. At plasma densities of 5 x 10°—5 x 10! cm™3
(2.80) yields Coulomb logarithm values A = 2.5—7. It
should be noted, however, that A is small and the
Debye radius and the Larmor radius of the electrons
are approximately the same for the experimental con-
ditions described here; hence (2.80) can only give A
with an accuracy of several units. Thus, the agreement
between the experimental values of 1331 and the theo-
retical values may be regarded as satisfactory.

It follows from the results of L% and (%) that at
plasma densities of 5 x 10°—5 x 10! cm~3 and magnetic
fields up to 1500 Oe the nonlinear part of the diffusion
coefficient is in good agreement with the theory of dif-
fusion based on electron-ion collisions.

*A trapezoidal distribution was assumed in the analysis of the
experimental data.
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11. Diffusion in a Quiescent Cesium (Potassium)
Plasma

Surface ionization can be used to produce a plasma
in gases that possess a low ionization potential. This
technique of accumulating ions makes it possible to
obtain a quiescent plasma with a high degree of ioni-
zation in a magnetic field. A description of appa-
ratus designed to produce such a plasma is given in
[102]; the results of measurements of diffusion across
a magnetic field made with this apparatus are given in
[103] ,pg [104]

A diagram of the device is shown in Fig. 26. The
source of charged particles consists of two tungsten
plates W heated to 2300°K. An atomic beam of cesium
or potassium from the source S is aimed at the cen-
tral part of the plates. The ions produced as a result
of surface ionization are contained by the magnetic
field for a long time period in the central volume
(between the plates). The heated tungsten plates also
serve as electron sources. The number of emitted
electrons is automatically maintained at a fixed value
because the plasma remains neutral over the entire
volume, with the exception of sheaths with widths of
the order of the Debye radius at the hot plates.

The walls of the chamber are maintained at a low
temperature (approximately —10°C) to reduce the
number of neutrals in the volume. The plasma density
in the central volume and the degree of ionization are
determined by the intensity of the neutral flux. At den-
sities of 1019 ¢cm ™3 the ionization is approximately 40%;
at densities of 10'2 ¢m ™ the ionization is greater than
99%.

The apparatus is useful for studying diffusion in a
magnetic field since the plasma it produces is essen-
tially in equilibrium. Because of the high degree of
ionization the diffusion due to charged-particle colli-
sions is the only important diffusion mechanism (ven
<« Vei). Data on transverse plasma diffusion is ob-
tained by means of a small movable probe (diameter
0.025 ¢cm ) which measures the radial density distri-
bution. The difficulty in these measurements is the
fact that the variation of density must be measured
within the limits of the small transverse dimensions
of the tungsten plates (approximately 1.4 cm).

It should be noted that the longitudinal density dis-
tribution is uniform since the charged particles strik-

FIG. 26. Diagram showing the device used for obtaining a quies-
cent plasma. I) Region of plasma formation; II) region of transverse
diffusion.
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ing the hot tungsten surface are almost completely re-
flected. Consequently there is no longitudinal diffusion.
Under these conditions, as shown in Sec. 3 of Part I,
the characteristic density decay length s] depends on
the ratio of the transverse diffusion coefficient to the
recombination coefficient (3.36}

Dt

s = = - (11.1)
Substituting (1.30) for Dgj in (11.1) we find
s =5 ) el (11.2)

Under the experimental conditions described here the

electron Larmor radius is smaller than the Debye ra-
dius (pe < rg); hence, in computing the collision fre-
quency vej the Coulomb logarithm is determined from
(2.80b).

The results of measurements of the characteristic
length 1/s| in cesium are given in Fig. 27. Analogous
results were obtained for potassium. It is evident
from the curve that 1/s| is approximately proportional
to H. Consequently, the transverse diffusion coefficient
Dej is inversely proportional to the square of the mag-
netic field, as it should be.

The absolute values of the diffusion coefficient can-
not be found from measurements of s; [cf. (11.1)]
since the value of the recombination coefficient is not
known precisely. If one uses (11.2), obtained under the
assumption that the plasma diffusion is due to electron-
ion collisions, one can then determine the value of the
recombination coefficient a from the experimental
data. It is found that a increases with density (~ al/ 2)
and is approximately 3 x 10719 cm3/sec at @ ~ 5 x 101!
cm™. The order of magnitude of this value is in agree-
ment with a direct estimate of o and with the results
of measurements carried out under other conditions.
Some error may be due to the inaccuracy in the density
measurements and the plasma temperature determina-
tions. The dependence of & on n is also in agreement

\
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FIG. 27. Dependence of 1/s, on H. e—n=2.5x 10" cm™, x—
3x 10" cm™; +-5x 10* cm™,
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with the theoretical predictions concerning recombina-
tion in ion collisions with two electrons (three-body
collisions). The observed correspondence of the data
indicates that the order of magnitude of the transverse
diffusion coefficient Dgj is given correctly by the theo-
retical formula (2.78).

12. Diffusion with Current Flowing Through a Plasma

In recent years the behavior of a highly ionized
plasma in a magnetic field has been investigated in
many experiments connected with the problem of con-
trolled thermonuclear fusion. However, in almost all
of these experiments the lifetime of the charged par-
ticles was much less than the diffusion lifetime. In
various cases the lifetime was limited by hydromag-
netic plasma instabilities, the loss of particles along
the lines of force of the magnetic field, volume proc-
esses (cf. [1]). We limit ourselves here to a brief
presentation of certain experimental results obtained
with toroidal plasma devices with strong longitudinal
magnetic fields under conditions such that the danger-
ous hydromagnetic instabilities caused by the plasma
current are inhibited.

The most detailed investigations of particle life-
times have been carried out in the American B-1 and
B-3 Stellarators. [1%-197] 1 thege devices the dis-
charge chamber is a torus that is ‘‘folded’’ into a
‘“figure eight’’ in order to.compensate for the toroidal
particle drift. The plasma is produced in an external
magnetic field (up t0-40,000 Oe) parallel to the cham-
ber axis. In these experiments the gas is ionized and
the plasma is heated by means of a longitudinal elec-
tric field (0.05—0.3 V/em). The maximum longitudi-
nal current through the plasma is chosen so as to avoid
the instability associated with the helical deformation
of the plasma pinch characterized by low values of m
(m characterizes the azimuthal symmetry of the per-
turbation); that is to say, the maximum current is
limited by the Kruskal-Shafranov condition (cf. [11).

The plasma density is measured during ionization
and ohmic heating. The measurements are carried out
by observing the phase shift of microwaves transmitted
through the plasma; these measurements are carried
out with 8-millimeter and 4-millimeter interferom-
eters. Typical curves showing the variation of the
plasma parameters in hydrogen are shown in Fig. 28.
In the first stage (up to the point at which the density
reaches a maximum) the gas is being ionized. At the
time corresponding to maximum current (I) the gas
in the chamber is almost completely ionized. This fol
lows from the appreciable weakening of the emission
of the hydrogen Hg line. The diminution in plasma
density after the peak is due to the loss of charged
particles from the plasma (a large part of these par-
ticles are evidently absorbed by the walls). Analyzing
the curve showing the variation in density on the basis
of reasonable assumptions concerning the ionization
and dissociation of hydrogen molecules and the nature
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of the recycling of gas from the walls, the authors of
[196] and (1973 have determined the time constant for
particle loss from the plasma in the ionization stage,
and in the stage in which the density diminishes 7.

The quantity 7 is found to be 3 or 4 orders of magni-
tude smaller than the diffusion time across the mag-
netic field calculated on the basis of collisions between
charged particles. In order to ascertain whether this
effect was due to instabilities caused by higher-order
helical instabilities of the pinch (high m) experiments
were carried out with auxiliary stabilizing windings

(m = 3). The stabilizing windings had very little effect
on T. The measurements have shown that 7 increases
with increasing magnetic field (7 ~ VH according to
[106] and 7~ H according to [1%%)) and that it dimin-
ishes as the effective radius of the chamber is reduced
(according to [19] 7~ a?). The dependence of T on
electron temperature was determined by making meas-
urements in the ‘‘constant’’ electron temperature re-
gime. The temperature was held constant (actually,
the conductivity ) by programming the voltage source
in a suitable way. The quantity 7 is found to be pro-
portional to Te. On the basis of measurements of 7
in hydrogen at an initial pressure of 1074—1073 mm Hg,
plasma density 1012—10% ¢cm ™3, electron temperature
2—20 eV, magnetic fields of 5000~40,000 Oe and a
pinch diameter of 1—4 cm, the authors of [107] pave
obtained the following empirical formula for the anom-
alous diffusion coefficient:

2
D =

T cm?
~ 2.10%4 =&
sec > 21007 (

sec

(12.1)

(where Tg is in eV and H is in kOe).

We note that the results of different measurements
are rather contradictory so that the empirical formula
for Dy is a very approximate one.

Anomalous diffusion has also been observed by
Yavlinskii and his coworkers in experiments on a
toroidal device called Tokomak-2.L1%8] At an initial
hydrogen pressure of 5 x 1074—5 x 107 mm Hg, a
plasma density of approximately 108 em=3, a longitud-
inal magnetic field of about 6000 Oe, a longitudinal
electric field of 0.1—0.25 V/cm and a pinch diameter
of 20 cm, the charged particle lifetime was found to be
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FIG. 29. Curves showing the variation of plasma current and
density.

approximately 600 usec. This value is of the same
order of magnitude as that given by the empirical
formula above.

Experiments have been carried out on the B-1
Stellarator in order to ascertain the minimum plasma
current at which anomalous diffusion arises.[1%] The
investigations were carried out after the discharge
current was turned off (afterglow) in a magnetic field
of 18 kOe. As shown in [1003, the plasma decay under.
these conditions is determined by volume recombina-
tion of electrons and ions (cf. the preceding section).
A longitudinal electric field (frequency 20 kc and am-
plitude 0.01—0.03 V/cm) was induced in the decaying
plasma. Characteristic curves showing the variation
of plasma current and plasma density in helium at a
pressure of 6 x 10" mm Hg are given in Fig. 29. At
first the plasma is heated (as shown in [19] jn the
plasma afterglow Te ~ 0.1 eV). Hence the recombi-
nation rate is reduced and the plasma conductivity,
and correspondingly the current through the plasma,
are increased. There is a critical current at which
the decay rate increases sharply.* In [1%1 this in-
creased decay rate is associated with the onset of
anomalous diffusion. It has been established that the
critical current is approximately proportional to the
plasma density in the range 3 x 101—3 x 1012 cm =3,
The critical current density for a plasma density of
approximately 1012 em™ and a helium pressure of
2x 107*—4 x 107 mm Hg is approximately 0.2—0.3
A/em?, Similar results were obtained in argon and
hydrogen.

Thus, in a highly ionized plasma a longitudinal cur-
rent gives rise to an anomalously high loss of particles
across the magnetic field, that is to say, anomalous
diffusion.

*The reduction in plasma current at the end of decay is probably
due to a reduction of plasma conductivity which, in this period, is
due to collisions of electrons with neutrals.
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A number of authors propose that the anomalous
diffusion is due to various plasma instabilities—the
excitation of ion waves (119111 and the formation of a
current-convective instability associated with the tem-
perature gradient. 1121 At the present time the avail-
able data are not adequate for choosing between these
explanations. The origin of the anomalous diffusion is
as yet unexplained.

CONCLUSION

An analysis of the experimental results has shown
that in many cases the diffusion of charged particles
across a strong magnetic field is much faster than that
predicted by collisional diffusion theory.

The results of experiments on diffusion in the pres-
ence of a plasma current or a highly directed particle
motion (in the positive column, in the Penning dis-
charge, in a highly ionized plasma carrying current)
are found to be in accord with theory only at low mag-
netic field. As the magnetic field is increased there is
a critical value at which the diffusion rate increases.
Simultaneously the plasma exhibits intense oscillations
indicating the onset of an instability.

In experiments in which the plasma is essentially in
equilibrium (plasma afterglow in a uniform magnetic
field, quiescent current-free plasma in cesium or po-
tassium ), increasing the magnetic field leads to a
monotonic reduction in the diffusion rate that is in
approximate agreement with the collisional theory
(Dj ~ 1/H?). However, in a number of experiments
on plasma decay at low collision frequencies the meas~
ured transverse diffusion coefficient has been found to
be significantly larger than the expected value, as
though there were some effective collision frequency
larger than the calculated value by about 10% sec™ . It
should be noted that in no experiment has diffusion
been observed to be smaller than that which would be
calculated on the basis of a collision frequency of
10"—108 sec1.

The anomalously rapid transport of plasma particles
across a magnetic field (anomalous diffusion) observed
in the various experiments has been associated with
various instabilities, and with oscillations and plasma
noise.

As far back as 1948, in order to explain the results
of investigations on diffusion of charged particles from
a stationary low-pressure plasma, Bohm proposed the
existence of an anomalous mechanism for the transport
of particles across a magnetic field due to plasma os-
cillations.*[%¥] The plasma oscillations produce alter-
nating electric fields. The drift of charged plasma
particles in these fields (in the plane perpendicular
to the magnetic field) results in ‘‘collisionless’’ par-

*As we have indicated (page 183) the results of measurements
of the density distribution for diffusion in a stationary plasma de-~
scribed by Bohm[*°] can be explained without recourse to anomalous
diffusion.
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ticle diffusion. Without derivation, Bohm gave the fol-~
lowing expression for the coefficient of anomalous dif-
fusion across a magnetic field due to oscillations:

T
Dy = 16eH °

Although this formula has not been justified, it is
frequently used in the analysis of experimental results.

In various experiments the anomalous effects have
been explained by making certain assumptions as to
the nature of the instabilities, some of which we have
touched upon in the appropriate sections of this review.

We have noted that in one case at least there has
been success in identifying uniquely the instability
causing the anomalous diffusion. The screw ‘‘current
convective’’ instability described by Nedospasov and
Kadomtsev %] arises in the positive column. The de-
velopment of this instability at high magnetic fields
leads to the onset of a turbulent plasma state charac-
terized by a broad oscillation spectrum. The difficulty
in analyzing diffusion associated with a developed in-
stability of this kind is that it is necessary to solve a
system of nonlinear equations. Kadomtsev has formu-
lated a theory of turbulent diffusion in the positive
column on the basis of an analogy with turbulent motion
in fluids. (%] The results of this theory are in agree-
ment with the experimental data.

We may mention two other papers in which the co-
efficient of anomalous diffusion associated with the
development of instabilities has been estimated. Each
paper treats a fully ionized gas in the presence of a
discharge current. Spitzer[m] has estimated the co-
efficient for anomalous diffusion associated with the
excitation of ion acoustic waves. The expression for
the diffusion coefficient is found to be approximately
the same as the expression given by Bohm. Kadomtsev
has obtained a relation for the diffusion coefficient in
a developed current-convective instability associated
with the temperature gradient in a fully ionized plasma.
(2] g yet, the results of these papers have not been
compared uniguely with the experimental data.

Several authors have tried to formulate a descrip-
tion of anomalous diffusion that does not depend on the
actual form of the instability.

Ecker[113] hag attempted to calculate anomalous
diffusion by introducing a higher electron-ion collision
frequency into the diffusion equation. Taylor has car-
ried out an investigation with the purpose of establish-
ing the limits on the anomalous diffusion coefficient.
L114,115] Thig author concluded that the coefficient for
transverse diffusion of ions in a fully ionized gas can-
not exceed the Bohm coefficient by more than a factor
of 4. Yoshikawa and Rose 1] tried to establish a re-
lation between the diffusion coefficient in a turbulent
plasma, the intensity of the oscillations, and the mean-~
square density fluctuations on the basis of rather gen-
eral assumptions as to the nature of the turbulent
motion. We shall not stop here to consider these papers
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in detail. We note only that these investigations cannot
predict the conditions for which anomalous diffusion
should arise.

In connection with the problem of the conditions re-
quired for the onset of anomalous diffusion special in-
terest attaches to the so-called universal instabilities,
i.e., instabilities that are not associated with the flow
of current through the plasma, but which can arise by
virtue of small gradients in density or temperature.
One such instability has been reported in a theoretical
paper by Rudakov and Sagdeev. [H1] These investiga-
tors have shown that for certain definite relations be-
tween the density and temperature gradients
[V{(InT)/vV(lnn) >2 or V(InT)/V(lnn) < 0]
oblique ion acoustic waves are excited in a plasma.

An analysis of effects associated with the finite Larmor
radius of the ions has been given by Kadomtsev and
Timofeev,[m’] Galeev, Oraevskii, and Sagdeev,[m] and
Mikhailovskii and Rudakov, (122] who have shown that
this instability can arise with a more realistic relation
between the temperature and density gradients

[V(lnn) >V(ln T)].

The investigation of the criteria for the development
of the universal plasma instability and the determina-
tion of the diffusion coefficient associated with this in-
stability is, at the present time, one of the most impor-
tant problems in the experimental and theoretical work
on transport processes in plasma.
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