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1. INTRODUCTION

JZJVERY process in a gaseous system proceeding with
finite velocity involves a perturbation of the equilib-
rium distribution functions. This perturbation can af-
fect to varying degrees the translational, rotational,
vibrational, and other degrees of freedom.

This review will try to throw light on a set of prob-
lems involving distortions of the equilibrium energy
distribution in the vibrational degrees of freedom.
Until recently, these problems had been taken up only
in studying ultrasonic dispersion. However, the situa-
tion has already changed considerably.

First of all, advances in high-velocity aerodynamics
have aroused practical interest in the study of the
structure of shock waves; in many respects, this s truc-
ture depends on processes of vibrational relaxation.
The development of experimental methods to study the
state of a gas following a shock-wave front permits us
to study the process of vibrational relaxation under
conditions far different from those in ultrasonic fields.
On the other hand, it has been found in chemical kinet-
ics that a number of reactions produce vibrationally-
excited molecules, or proceed by way of intermediate
vibrationally-excited states. An example of the latter
reaction is the thermal dissociation of molecules. Non-

equilibrium distributions in the vibrational energy arise
in such reactions; under conditions found in practice,
they can have an appreciable effect on the kinetics of
process. Finally, various external influences, such as
electric discharges or photolysis, also involve the ap-
pearance of vibrationally-excited molecules having
non-equilibrium distributions.

In the theoretical study of such phenomena, two
types of problems arise: first, the problem of the
probability of the various elementary processes in the
system, which may be solved by methods of quantum
or classical mechanics; and second, the problem of
the statistical characteristics of the system, which
amounts to solving the appropriate gas-kinetic equa-
tions.

This article will be fundamentally concerned with
statistical distributions and their interrelation with
the kinetics of the macroprocesses.

Of course, in this field of phenomena the systems
of practical interest will naturally be those in which
finite perturbations appear in the equilibrium distr i-
bution functions. This is the principal difference be-
tween the problems discussed here and the analogous
problems in the theory of dissipative processes, as
are taken into account in the equations of hydrodynam-
ics by using transfer coefficients (viscosity, heat con-

47



48 A. I. O S I P O V a n d E. V. S T U P O C H E N K O

ductivity, etc.) . The molecular-kinetic basis of these
dissipative processes is in the infinitesimally small
perturbations of the equilibrium distribution which
completely determine the values of the transfer coeffi-
cients. In phenomena such as thermal dissociation,
small deviations from the Boltzmann distribution would
have only a slight influence on the kinetics of the proc-
ess. To a considerable extent, this determines the
method of solving the problems. The method must
give a correct description of the finite deviations from
statistical equilibrium.

The non-equilibrium systems studied here and the
problems they involve are naturally divided into two
groups. The first consists of systems having an ini-
tial non-equilibrium distribution, in which a process
establishing the equilibrium takes place. The second
consists of systems with a steady-state or quasi-
steady-state (but not equilibrium) distribution estab-
lished under the influence of perturbing factors that
are constant or slowly varying in time. Such pertur-
bations can formally be considered to be quasi-steady-
state particle sources, either positive or negative.
Section 2 treats the processes of establishment of vi-
brational equilibrium in a system having an initial non-
equilibrium distribution. Section 3 will discuss the
distribution of vibrational energy in systems contain-
ing particle sources.

2. VIBRATIONAL RELAXATION

2.1. Introduction. The process of establishment of
equilibrium in the vibrational degrees of freedom (vi-
brational relaxation) is of interest in many fields of
physics. In particular, we must take it into account in
determining the thickness of shock waves in diatomic
gases, in studying the absorption spectra of the prod-
ucts of flash photolysis, in the theory of dispersion of
ultrasonic waves, in analyzing chemiluminescence
spectra, in combustion theory, etc. In addition, vibra-
tional relaxation occurs as an independent stage in such
complex processes as the thermal dissociation of dia-
tomic molecules or the establishment of a quasi-steady-
state energy distribution in systems containing positive
particle sources. In these examples, vibrational relax-
ation is a rapid process. Consequently, a quasi-steady-
state distribution in the vibrational energy is established,
and is determined at each given instant of time by the
values of the slowly-varying parameters, such as the
(non-equilibrium) composition of mixtures or the
strength of sources, etc. In this sense, we can refer

to the distribution as being synchronized with these
parameters.

The given examples show the convenience of dis-
cussing separately the processes of vibrational r e -
laxation in systems under non-equilibrium initial con-
ditions.

2.2. Gas-kinetic equations. We begin with the sim-
plest case, that of vibrational relaxation in a system

of diatomic molecules present in small concentration
in an inert monatomic gas. The process of vibrational
relaxation in such a system is brought about by the in-
teraction of the diatomic molecules with the molecules
of the monatomic gas. We can neglect the interaction
of the diatomic molecules with each other.

This interaction results in an energy exchange be-
tween the vibrational and translational degrees of free-
dom of the colliding molecules. The system of equa-
tions describing the vibrational relaxation is a system
of balance equations for the number of molecules in
each vibrational level. If we denote as x n ( t ) the con-
centration of molecules in the n-th vibrational level,
this system of equations has the form

« = 0,1,2..., (2.1)

where Pjj is the probability of transition of a mole-
cule from the i-th to the j- th vibrational level on col-
liding with an atom, and Z is the number of collisions
which the molecule undergoes per second. It is as-
sumed that Z is independent of the vibrational state
of the molecule. This latter condition is not strictly
satisfied, but we may assume it, since in most prac-
tical cases, the amplitude of the vibrations of the atoms
in a molecule is small in comparison with the mean
distance between the atoms in the molecule. In deriving
the system (2.1), the relative translational motion was
considered classically. This is no limitation, since
in cases of practical interest, the density and temper-
ature of the system have values such that we can neg-
lect the quantum corrections involving the finite wave-
length of the de Broglie waves. It is assumed in de-
riving Eqs. (2.1) that the vibrational motion can be
considered independently of the other types of internal
motion: rotational, electronic, etc. Thus we avoid the
question of strict derivation of the gas-kinetic equa-
tions for particles having internal degrees of freedom.

2.3. Transition probabilities. Before we solve sys-
tem (2.1), we must express the transition probabilities
P n m in more concrete form. The probabilities P n m

are determined by the following equation:

(2.2)

where /u is the reduced mass of the colliding mole-
cules, and Pnm( v ) * s *-пе probability of transition of
the molecule from the n-th to the m-th vibrational
state on collision with an atom moving with a relative
velocity v. The value of p n m ( v ) can be calculated
quantum-mechanically by solving the Schrodinger
equation describing the collision process. In line with
what has been said above, the relative motion of the
colliding molecules is considered classically in this
problem. Such a calculation of Pnm by this method
has been performed in ti-3]< in this review, we
merely portray the conclusions qualitatively, touching
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only those points which will be es sent ia l to the follow-
ing argument .

The p r o c e s s of t r a n s f o r m a t i o n of t rans la t iona l into
vibrat ional energy on coll is ion takes p lace for m o s t
molecules without change in t h e i r e lect ronic s t a t e s .
This l a t t e r fact p e r m i t s us to neglect the e lectronic
d e g r e e s of freedom and cons ider the molecule a s an
osc i l l a tor . As a f i rs t approximation, the effect of r o -
tation on the probabi l i t ies Pnm is commonly neglected.
However, we m u s t take it into account in d i scuss ing a
n u m b e r of p r o b l e m s : t h e r m a l dissociat ion, v ibrat ional
re laxat ion in diatomic g a s e s , e tc . The t i m e for e s t a b -
l i shment of equil ibrium over the rotat ional d e g r e e s of
freedom i s of the o r d e r of s e v e r a l free-flight t i m e s .
Hence, in d i scuss ing vibrat ional re laxat ion, the q u e s -
tion pract ica l ly does not a r i s e of the per turbat ion of
rotat ional equi l ibr ium. The fact that we can t r e a t the
problem of the v ibrat ional-re laxat ion p r o c e s s sepa-
ra te ly is based on the l a r g e difference in re laxat ion
t i m e s for the rotat ional , v ibrat ional, and e lect ronic
d e g r e e s of f reedom.

Since we cons ider the r e l a t i v e motion of the col l id-
ing p a r t i c l e s f rom the c la s s ica l viewpoint, we can d e -
s c r i b e the p r o c e s s of coll is ion of an osc i l la tor with an
atom a s the effect of an external force on the osc i l la tor .
F o r m o s t of the molecules studied, the t i m e of action
of the force on the osc i l la tor , or the coll is ion t i m e т,
is considerably longer than the per iod w" 1 of the c h a r -
a c t e r i s t i c v ibrat ions of the osc i l la tor .

According to the genera l theory of adiabatic i n v a r i -
ants , the probabil i ty of t rans i t ion of an osc i l l a tor from
one quantum s tate to another owing to such a coll is ion
will be s m a l l . Hence, we can u s e per turbat ion theory
to d e t e r m i n e pnm ( v ) .

In the s imples t one-dimensional c a s e , the Schrod-
inger equation descr ib ing the col l is ion p r o c e s s has the
form

ih^=yiam(t)Vhm(r(t))expib

(2.3)

Equation (2.3) i s a r e p r e s e n t a t i o n in t e r m s of the e i -
genfunctions of the unperturbed Hamiltonian of the
molecule . V^mi r ( t ) ) is the m a t r i x e lement of the
potential of the i n t e r m o l e c u l a r interact ion, and r ( t )
i s the c l a s s i c a l t r a j e c t o r y for the re la t ive motion of
the c e n t e r s of gravity of the colliding p a r t i c l e s .

In the f i r s t - o r d e r approximation of the per turbat ion
theory, the probabil i ty P n m ^ v ) * s g i v e n by the e x p r e s -
sion

Vnm(r(t))expib>n;ntdt\\ (2.4)

We can simplify Eq. (2.4). The v ibrat ion amplitude
of the a t o m s in the molecule in the lower vibrat ional
levels is smal l in c o m p a r i s o n with the r a d i u s of i n t e r -
m o l e c u l a r interact ion. Hence, we can expand V ( r , x )
in a power s e r i e s in ( x - x e q U j i ) , w h e r e x is the in-

t r a m o l e c u l a r coordinate, and r e t a i n only the l inear
t e r m . In such a c a s e ,

dV

(2.5)

We can neglect the constant t e r m V(r , 0) , s ince it
does not affect the probabil i ty of the t rans i t ion . We
can e s t i m a t e the value of t h e integra l in (2.4) by the
method suggested in И . We shall t r e a t the t ime t
a s a complex var iab le , and move the path of i n t e g r a -
tion upward from the r e a l axis into the upper half-
plane. We shall shift the path of integrat ion upward
so as to by-pass any s ingular point in the integrand.
H e r e , a s ingular point c o r r e s p o n d s to a value t t such
that

Vvm(rVl))=°°- (2.6)

The major p a r t of the integral a r i s e s from the i m m e -

diate neighborhood of the s ingular point. Hence,

(2.7)

w h e r e

t = —2itv

The value of т o r t 4 i s given by the condition (2.6).
The value of т can be e s t imated approximately from
the following cons idera t ions , and i s the c h a r a c t e r i s t i c
t i m e constant for the p r o b l e m di scussed . Using the
two c h a r a c t e r i s t i c quantit ies enter ing into the theory
of coll is ion, the velocity v p r i o r to coll is ion and the
r a d i u s a of i n t e r m o l e c u l a r interact ion, we can c r e a t e
only one combination having the d imens ions of t i m e ,
i .e . , т ~ ( a / v ) . An exact calculat ion of the t i m e T

for an exponential interact ion potential V = У о е ~ а т

gives a value т = 2ir/av.

The average over the t h e r m a l ve loci t ies [ see Eq.
(2.2)] has been calculated in C3,4]> w n e r e a n analytical
express ion for Pnm was der ived. We m u s t note the
following essent ia l fact. The integrand of (2.2), as we
can eas i ly see, has a s h a r p maximum, whose posit ion
is d e t e r m i n e d by the condition that the a rgument (шт
+ ^v 2 /2kT) of the exponential be a min imum. F r o m
this condition, we can find the value of the velocity
( v * ) corresponding to the m a x i m u m of t h e integrand:

* _ / 2 л * Т ш п т у
V Jta ) ' (2.8)

The major contribution to the integra l in (2.2) c o m e s
from the region of the v a r i a b l e s in the neighborhood
of v*. Hence,

exn — со —— =

where

2кТ 2аЧТ ) ~ 2 Ш ' его* '

(2.9)

(2.10)

In the t e m p e r a t u r e range of p r a c t i c a l i n t e r e s t ,
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= 5—10 for various gases. ^ Thus, the only collisions
which are important in determining the transition prob-
ability Рщп, and hence, in transforming translations!
into vibrational energy, are those of particles whose
velocities are on the tail of the Maxwell distribution.
Consequently, the relaxation characteristics at ordi-
nary temperatures give information on high-energy
collisions, i.e., the collisions which are typical of a
gas at a temperature xT.

We can draw the following conclusions from Eq.
(2.9). Since the probability depends exponentially on
the energy transferred, the only transitions practi-
cally allowed are those between adjacent levels; this
rule holds independently of the model of the molecule.
For a harmonic-oscillator model in the present ap-
proximation, it is exact, since for a harmonic oscil-
lator, the x n m differ from zero only when m = n ± 1.
We see from Eq. (2.9) that In P n m T" 1 / 3 . This
fact is the basis of the experimental verification of
the theory of vibrational relaxation. All of the above
considerations have been based on the semi-classical
method of calculating transition probabilities given
in M . A quantum-mechanical calculation of the tran-
sition probabilities is given in [*>5>*]# The equivalence
of the expressions for the transition probability ob-
tained by using the semi-classical and the consistently
quantum methods has been shown in EMU. it is inter-
esting to note that one can also derive a correct ex-
pression for the average energy taken up by an oscil-
lator in a single collision with an atom from purely
classical considerations t 8 . 9 " 1 1 ] , up to now, we have
considered only the case шт » 1. However, in fast
collisions with heavy molecules or molecules in upper
vibrational levels, the opposite condition is satisfied:
шт « 1 . In particular, шт « 1 for collision of I2 and
He molecules in the gaseous state at room tempera-
ture. The transition probability РПщ for шт « 1 can
be calculated by using Eq. (2.3). t12^ When шт « 1,
the exponential in Eqs. (2.3) can be replaced by unity.
Then, the system of equations (2.3) can be solved ex-
actly; here the transition probability Pnm is written
in the form

(2.11)

where ^p(x) is the wave function of a molecule in the
p-th vibrational state, and kn = /uv/K. Equation (2.11)
can also be derived in a consistently quantum-mechan-
ical manner. E13>u]

An analysis of Eq. (2.11) shows that in collisions
under strongly non-adiabatic conditions (шт « 1), not
only the adjacent.vibrational levels, but also the follow-
ing levels can be excited. We can simplify Eq. (2.11).
In particular, when k n x m e a n « 1, where x m e a n is
the mean amplitude of vibration of the atoms in the
molecule, the exponential in (2.11) can be expanded in
series. Keeping only the first non-zero term, we have

n (v) = I k x I2 (2 12)

This case occurs, e.g., in the collision of I2 with He
in the gas mixture at temperatures no higher than
1000°K.

For a harmonic oscillator, x n m differs from zero
only when m = n ± 1. Hence, under the conditions con-
sidered here, the only practically allowed transitions
are those between adjacent levels, even in non-adia-
batic collisions. The physical interpretation of this
conclusion is obvious. The condition k n x m e a n « 1
limits the energy of relative motion to values permit-
ting the excitation of only one vibrational quantum.
When averaged over the Maxwell distribution, Eq.
(2.12) takes the form

where

10 Ьи> м '
L

м

(2.13)

(2.14)

Here ц is the reduced mass of the colliding particles,
and M is the reduced mass of the molecule.

Thus, the transition probabilities for collision of
atoms with molecules have been calculated only in the
two limiting cases (шт » 1, and шт « 1). Calcula-
tions of the probabilities Pnm(v) for arbitrary values
of шт would require the use of numerical methods, and
have not been carried out thus far.

2.4. Vibrational relaxation in an isothermal system.
Relaxation equations. If we consider only one-quantum
transitions, we can write the system of equations de-
scribing the process of vibrational relaxation of dia-
tomic molecules occurring as a minor constituent in
a monatomic gas, according to Sees. 2.2 and 2.3, in
the form

~Ji"^1 ** Vn*UnXn*l "n,n*lxn

(» = 0, 1, 2,

(2.15)

Here (2.15) is a linear system with constant coeffi-
cients. The coefficients Pnm. which are functions of
the temperature, may be considered constant, since
under these conditions the process of vibrational r e -
laxation takes place isothermally.

The solution of the system (2.15) determines the
functions x n ( t ) , and permits us to follow the behavior
of the molecules in each of the vibrational levels. This
formulation of the problem is rational, and will be dis-
cussed in detail in Sec. 2.5.

However, in many practical problems, we are not
interested in the distribution function, but in the be-
havior of certain macroscopic characteristics, in par-
ticular the vibrational energy. Such a formulation of
the problem is characteristic of relaxation hydrody-
namics.
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The relaxation equation for the vibrational energy
may be derived from system (2.15) without solving the
latter. ^ Let us consider the model of a harmonic
oscillator. In this case

K , i , J 2 = (re + l)Kol 2 , and «п Л,п = ш

independently of the number n. The transition proba-
bility may be written in the form of Eq. (2.13):

Л..1,„=(п+1)Лв. w h e r e ^о1 = Ло«-9- (2-16)

and в = fia>/kT. The latter condition involves the Max-
wellian distribution of velocities of the colliding mole-
cules, and is based on the principle of microscopic
equilibrium.

By taking Eq. (2.16) into account, we can write the
system (2.15) as follows:

E(t)-E0=[E(0)-Ea]e- (2.20)

dxn

2, (2.17)

We now multiply Eq. (2.17) by Bom, and sum over
all values of n. After some simple transformations,
we obtain the following equation:

dt

where E = nw2nxn(t) is the vibrational energy, and

flu)

is the equilibrium value of the vibrational energy
E 0 (T) .

Thus, the relaxation equation for the vibrational
energy has the form

where

(2.18)

(2.19)

This is the general form of the relaxation equation for
any physical quantity in a state not deviating far from
equilibrium. In the case of the harmonic-oscillator
model, this equation is correct for all deviations from
the equilibrium state.

Equation (2.19) determines the vibrational relaxa-
tion time. This characteristic of the relaxation proc-
ess is one of the most important characteristics in the
theory of the phenomena associated with the establish-
ment of equilibrium over the vibrational degrees of
freedom.

From the mathematical viewpoint, the total vibra-
tional energy is one of the normal coordinates of sys-
tem (2.17). £15^ The other normal coordinates do not
have such an obvious physical meaning, and as is shown
in E15], they relax considerably more rapidly.

The solution of Eq. (2.18) is exponential in form:

and depends only on the total vibrational energy at the
initial instant of time. The way in which the molecules
are distributed among the vibrational levels for a
given value of the total vibrational energy has no effect
on the relaxation process.

This latter fact is a characteristic of the harmonic-
oscillator model. '-16-' For an anharmonic oscillator,
the process of vibrational relaxation depends both on
the way in which the molecules are distributed among
the vibrational levels, and on the initial value of the
vibrational energy, l-17^ When subject to such a depend-
ence, the relaxation of the vibrational energy will gen-
erally no longer obey Eq. (2.18). However, in most
practical cases (vibrational relaxation in Shockwaves
and in the propagation of ultrasonic vibrations), the
process of relaxation of the vibrational energy is quite
accurately described by Eq. (2.18). This is true of all
processes in which molecules in the lowest vibrational
levels play the predominant role, since the role of an-
harmonicity then is insignificant.

The relaxation time determined by Eq. (2.19) is a
quantity which can be directly measured experimen-
tally. At present, there are some tens of experimental
studies in which the temperature-dependence of т has
been studied for various gases. A very large mass of
data on the behavior of т at high temperatures has been
obtained by studying vibrational relaxation in shock
tubes. A detailed bibliography of these studies has
been given in C183. We shall cite the results on oxy-
gen. Vibrational relaxation in this gas has been stud-
ied over a wide temperature range. In particular, in
[ 1 9 ] the temperature range was 1200—7000°K.

Figure 1, taken from '-19-', shows the relation of
т ( 1 - е ~ е ) to T" 1 / 3 . When plotted logarithmically, this
relation becomes linear, in agreement with the conclu-
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sions of Sec. 2.3. Lest we give the impression of
chance agreement between the theoretical and experi-
mental results, we present here as a summarized dia-
gram Fig. 2, in which Z v ib = 1/Pio is plotted as a
function of WT* for various gases. We see from Fig. 2
that the relation of Z v ib to шт* on a logarithmic scale
is basically linear; the small deviations from linearity
can be explained, e.g., by taking into account the tem-
perature-dependence of the pre-exponential factor in
P l o , C26] or by assuming a dependence of the param-
eters of the intermolecular interaction potential (which
approximate the true molecular interaction) on the en-
ergy of the colliding particles.

The existence of a linear relation between In ZVjb
and CJT* confirms the hypothesis that the mechanism
of excitation of vibrations for most of the molecules
studied is adiabatic. An exception to this rule is
apparently NO (in its ground electronic state) and
other radicals. For NO, the experimentally-observed
vibrational relaxation time turns out to be considerably
less than those of N2 and O 2 . [ 2 o : i

Two different explanations have been given for this
difference. In tlo>2°3 the anomalously short vibrational
relaxation time of NO is ascribed to the attractive
forces manifested in the formation of dimers. Calcu-
lations on this basis give good agreement with the ex-
perimental data. This difference is attributed in ^213
to the participation of the electron cloud of NO in the
transformation of translational into vibrational energy.
In particular, it was shown that with non-adiabatic ex-
citation (in the sense of a change in the electronic
state of the colliding pair of NO molecules during the
collision process ), electronic transitions can occur
between the states that develop from the initial state,
which is degenerate at infinite distance. When the fre-
quencies of the electronic transition and of the nuclear
vibrations are equal, a peculiar resonance appears,
which gives rise to rather large cross-sections for
excitation of vibrations. A calculation on this basis
also gives good agreement with the experimental data.

However, there is one principal distinction between
these theories: they predict different temperature-
dependences of the vibrational relaxation time т. Thus,
in the former case, the temperature dependence is fun-
damentally given by Eq. (2.9), i.e.,

_^
Inт(1-е- 9 ) — Т 3,

while in the latter case, In т (1 - e " e ) ~ e o/kT, where
e0 ~ 1000—2000°K. This fact can be used to test the
cited theories experimentally. However, the existing
experimental data^ 2 0 ' 2 2^ are almost exclusively for
two particular temperatures. There exists as yet no
measurement of the vibrational relaxation time of NO
(in the ground electronic state) over a broad tempera-
ture range.*

The case of vibrational relaxation of I2 in an I2-He
mixture is also of interest. As has been noted in Sec.
2.3, although ^-He collisions at temperatures above
room temperature take place under highly non-adiabatic
conditions (шт « 1), the only transitions practically
allowed are those between adjacent vibrational levels.
By using the method developed in this section, and ap-
plying Eq. (2.14), we can derive the following expres-
sion for the vibrational relaxation time of I2 in I2-He
mixtures: ^

№ £ < * — • >

The value of т found is valid approximately from room
temperature to 1000°K. Under these conditions, 1 — e"^
~ в = Kai/kT. Hence, TZ ~ 2(д/М). That is, it is
practically independent of temperature. However,
there are as yet no experimental data on vibrational
relaxation of I2 in I2-He mixtures under conditions
in which the derived formula can be applied.

Figures 1 and 2 compare only the trend with varying
temperature of the experimental and theoretical curves
for т = T ( T ) . However, the numerical theoretical r e -
sults differ from the experimental by about an order of
magnitude. We can hardly expect a better agreement of
results at present. In fact, the existing theoretical cal-
culations are subject to a practical difficulty involving
the lack of exact information on the intermolecular-
interaction potential, and in particular, on the value of
a, in addition to the general defects (neglect of anhar-
monicity, approximate means of taking into account the
rotational excitation in calculating P 1 0 in the three-
dimensional case, etc.). The existing data permit us
to determine a. with an accuracy of 200—300%. Е24П
This accuracy is inadequate, since a 10% change in a
can under certain conditions alter the value of т by
an order of magnitude. M This sensitivity of т to the
value of a permits us to formulate the converse prob-
lem, and determine the value of a from known experi-

*Recently-performed experiments L65] have confirmed the exist-
ence of a non-adiabatic mechanism of interaction on NO molecules
in the vibrational-relaxation process.
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mental values of т. This problem is of great impor-
tance, since it formulates a method permitting us to
determine the characteristics of the intermolecular-
interaction potential in an energy range which has been
poorly studied up to now. In fact, the intermolecular-
interaction potential is rather well known in the energy
range up to 1000°K, where there are numerous data on
transfer coefficients, and in the energy range correspond-
ing to several thousand degrees, where there are data ob-
tained by the molecular-beam method. ^

The intermediate energy range, which is important
in calculating the transfer properties of high-tempera-
ture gases, has remained unfilled. The study of vibra-
tional relaxation permits us to some extent to fill this
gap. The data thus obtained on the intermolecular-
interaction potential (Fig. 3) fit well with the results
of studies in the ranges of small and large energies.
[26,27]

2.5
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1,5

0.5

FIG. 3. Potential energy of
the O2-O2 interaction as calcu-
lated: (1) from vibrational-re-
laxation data, and (2) from vis-
cosity data.

\

2.0 2.5 3.0 3.5 r,A

Thus, the study of vibrational relaxation gives us
information not only on the mechanism of energy ex-
change in molecular collisions, but also permits us to
answer a number of related questions, in particular,
such as that of the intermolecular interaction.

2.5. Vibrational relaxation in an isothermal system.
Distribution of the molecules over the vibrational lev-
els. By studying vibrational relaxation by optical meth-
ods, in particular ultraviolet absorption, ^18-' one can
measure the number of molecules in the different vi-
brational levels. Here the question arises of deriving
a complete solution of the system of equations in (2.15)
describing the distribution of the molecules over the
individual vibrational levels.

Before we take up the methods of deriving the gen-
eral solution, let us discuss a particular solution of
great practical interest. Just as in the preceding
Sec. 2.5, we shall consider only a harmonic-oscillator
model. That is, we shall study the system of (2.17).
The system of (2.17) has a solution of the form

x U) = ( 1 — e-o (OVe-mHO, (2.21)

We can convince ourselves of the correctness of
the solution (2.21) by substituting it into (2.17). Then
the system of equations (2.17) is reduced to one equa-
tion determining the function

The solution of the equation obtained has the form

0 (0 = In
Г - -e T(l — e (2.22)

where т is the time of vibrational relaxation deter-
mined by Eq. (2.19), and ^ 0 = i?(0).

The physical meaning of the equation obtained is
obvious. We assume that at the initial instant of time
the distribution function of the molecules over the vi-
brational levels has the form of a Boltzmann function
with a temperature different from that of the surround-
ing monatomic gas. That is to say, xo( 0) = (1 - e"^o)

е~
пА). Then the vibrational-relaxation process will

take place in such a way that the distribution function
will keep its original form, but vary only in the vibra-
tional temperature. In other words, the process of
vibrational relaxation obeys the law of conservation
of the form of the distribution function when the initial
distribution is a Boltzmann distribution. An analogous
situation is also observed in the relaxation of the t rans-
lational degrees of freedom in a gas consisting of mole-
cules obeying the Maxwellian statistics, ^283

The particular solution (2.21) of the system (2.17)
was first discovered in ^29-', and has been widely used
in practical calculations. t30>31^ However, we must em-
phasize that the law of conservation of the form of a
Boltzmann distribution is valid only in a system of har-
monic oscillators.

The general solution of the system (2.17) can be
sought by ordinary methods. System (2.17) is a system
of linear differential equations with constant coefficients.
Hence, its solution can be written in the form

xn (0 = 2 anm e Vm'

3 that, as applied to the system of

where t?(t) is a known function of the time independ-
ent of n. This latter fact is important.

It is shown in
(2.17),

where the I n ( m ) are the Gottlieb polynomials.
Thus, the general solution of the system (2.17) has

the form
_mt

I » ( ' ) = 2 a m ' , , N ( ; T . (2.23)

where т is the relaxation time [see Eq. (2.19)], and
the a m are determined by the initial conditions.

An essential peculiarity of the solution (2.23) is
the fact that the longest relaxation times, which essen-
tially determine the trend in time of the x n ( t ) , coin-
cide with the relaxation time of the vibrational energy.
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Solution (2.23) is not always convenient for practical
calculations. Hence, often several other forms of the
solution derived by the generating-function method are
u s e d . ™

Let

Then, by multiplying (2.17) by z n , and summing over
all values of n, we obtain an equation for G ( z , t ) :

( 2.24)

where к = zP 1 0 .
The solution of Eq. (2.24) has the form

G(*.0 = ;
/ • ( z - l ) e * ee-(z-ee

( 2 . 2 5 )

where G0(y) is an arbitrary function defined by the
initial conditions G 0(z) = G(z,0) = Sz n X n (O).

In certain cases of practical interest, we can limit
ourselves to studying the simpler special solutions,
rather than using the general expressions (2.23) or
(2.25). From this viewpoint, we shall study the proc-
ess of vibrational relaxation in oxygen in the experi-
ments of Norrish et al. !-32^

In these experiments, vibrationally-excited oxygen
molecules with a distribution favoring the eighth level
were obtained by flash photolysis of chlorine dioxide
in the presence of large amounts of nitrogen. By meas-
uring the intensity of the oxygen absorption band corre-
sponding to the sixth vibrational level at various in-
stants of time after cessation of the illumination, they
determined the lifetime of oxygen molecules in the
sixth vibrational level. The lifetime was found to be
inversely proportional to the initial C1O2 pressure,
which was varied from 0.25 to 0.75 mm Hg, and was
practically independent of the nitrogen pressure (145—
730 mm). The latter result shows that the fundamental
process leading to deactivation of the oxygen is the
transfer of energy in the collisions of oxygen molecules
with one of the molecules produced by the decomposition
of chlorine dioxide. According to Norrish's estimates,
this molecule could be chlorine monoxide (CIO). If we
know the lifetime of the oxygen molecules and the
mechanism leading to deactivation, we can try to de-
termine the probability of transformation of the vibra-
tional energy of the oxygen in a collision with a mole-
cule of chlorine monoxide.

The system of equations describing the process of
vibrational relaxation of an oxygen molecule in the
sixth vibrational level has the form

dt ~ n.ii-1 a'

% J = Z (/»„,„_! Xn - />„_!, „_2 *„_,),at

and can be derived from (2.15) by dropping all terms

d e s c r i b i n g p r o c e s s e s o f e x c i t a t i o n o f o x y g e n m o l e -

c u l e s .

U n d e r t h e g i v e n c o n d i t i o n s ( T = 2 8 8 ° K , n = 6 — 8 ) ,

i t i s v a l i d t o d r o p t h e s e t e r m s , s i n c e t h e p r o b a b i l i t y

o f e x c i t a t i o n P n , n + i = P n + i , n e " A E n ' n + l / k T i s a b o u t a

t h o u s a n d t i m e s s m a l l e r t h a n t h e p r o b a b i l i t y o f d e a c t i -

v a t i o n . T h e l a t t e r c o n d i t i o n m a k e s i t p o s s i b l e t o r e d u c e

t h e i n f i n i t e s y s t e m o f e q u a t i o n s o f ( 2 . 1 5 ) t o a s y s t e m o f

t h r e e e q u a t i o n s . S y s t e m ( 2 . 2 6 ) d e s c r i b e s t r a n s i t i o n s

b e t w e e n l e v e l s w h i c h c a n b e c o n s i d e r e d e q u i d i s t a n t i n

t h e f i r s t a p p r o x i m a t i o n , a n d w e c a n u s e ( 2 . 1 6 ) t o f i n d

P n m - H o w e v e r , w e m u s t r e m e m b e r t h a t i n t h i s c a s e

t h e q u a n t i t y P l o c h a r a c t e r i z e s t h e t r a n s i t i o n p r o b a b i l -

i t y f o r a n o s c i l l a t o r h a v i n g a v i b r a t i o n a l q u a n t u m e q u a l

t o t h e m e a n v i b r a t i o n a l q u a n t u m o f t h e o x y g e n m o l e c u l e

f o r t h e g i v e n l e v e l s . Z i n E q . ( 2 . 2 6 ) i s e q u a l t o t h e

n u m b e r o f c o l l i s i o n s o f o x y g e n m o l e c u l e s w i t h c h l o r i n e

m o n o x i d e m o l e c u l e s p e r s e c o n d . S i n c e t h e c o n c e n t r a -

t i o n o f C I O m o l e c u l e s v a r i e s d u r i n g t h e p r o c e s s o f v i -

b r a t i o n a l r e l a x a t i o n , Z i s a f u n c t i o n o f t i m e . T h i s

f u n c t i o n i s e a s i l y f o u n d : Z = Z 0 [ C l O ] . T h e c o n c e n t r a -

t i o n o f C I O v a r i e s , o w i n g t o t h e r e a c t i o n C I O + C I O

— C l 2 + O 2 , t h e r a t e c o n s t a n t o f w h i c h i s k n o w n :

d [ClO]/dt = - к [CIO]2. Hence, [CIO] = c0 / (1 + cokT),
where CQ is the initial concentration of CIO. If we
know Z as a function of time, we can easily integrate
the system of equations and find x 6 ( t ) :

where

(2.27)

We can find P 1 0 and P 6 5 from Eq. (2.27), using the
known values of the concentration c 0 and the corre-
sponding lifetimes. Pg5 is approximately 2.5 x 10~3.
According to Norrish's estimates, P 6 5 ~ 5 x 10~4. In
calculating P 6 5 , Norrish started with the following
concepts. He considered that the process of deactiva-
tion of an oxygen molecule in the sixth level can be de-
scribed by the equation

If we know the time-dependence of the concentration
[CIO] as well as the lifetime of the oxygen molecule,
we can find k' and estimate P 6 5 . This estimate will
be very rough, since it is based on an equation for the
reaction rate not in accord with the system (2.26).

The result which we have obtained is also qualita-
tive in nature. This involves the fact that in Norrish's
experiments ^32^ the exact form of the initial distribu-
tion of the molecules over the vibrational levels was
not known. This latter fact, which was noted in ^34^,
hinders any exact theoretical calculation.

2.6. Vibrational relaxation in an isolated system.
Gas-kinetic equations. Thus far, in the systems dis-
cussed the diatomic molecules were present in low
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concentration in a monatomic gas. The study of vi-
brational relaxation in pure diatomic gases is also of
practical interest. In such a system, besides the t rans-
formation of translational into vibrational energy, the
processes of energy transfer among the vibrational
and rotational degrees of freedom, as well as exchange
of vibrational energy, are also essential.

The process of transformation of rotational into
vibrational energy is in itself improbable, in view of
the large difference between the energies of the vi-
brational and rotational quanta. A simultaneous t rans-
formation of rotational and translational into vibra-
tional energy, or vice versa, could be significant. In
this case, ^35^ the probability of loss or gain of a v i -
brational quantum becomes several times greater than
the analogous probability that one would calculate with-
out taking the transformation of the rotational energy
into account. Such a calculation was made in ^35^, and
showed that the transformation of the rotational energy
leads to a three- to fivefold increase in the probability
of vibrational excitation in O2 in O2-O2 collisions, as
compared with O2-Ar collisions. The experimental
data, which were obtained over the wide temperature
range 1200—7000°K, ^ show that the vibrational r e -
laxation time of O2 in the O2— O2 case is about five
times shorter than that in O2-Ar mixtures. Thus,
although the processes of transformation of rotational
into translational energy do not change the general pic-
ture of the relaxation phenomena discussed in Sees.
2.3—2.5, they can lead only to an increase in the t ran-
sition probabilities, or a decrease in the relaxation
time.

The processes of vibrational exchange lead to a
fundamental change in the picture of establishment of
equilibrium. This and the next section are concerned
with elucidating the role of these processes in the e s -
tablishment of equilibrium. For harmonic oscillators,
the transformation of translational into vibrational en-
ergy takes place, as was shown above, by one-quantum
transitions, in which the transition probabilities Pn,n+i
are determined by the Landau-Teller formula. In the
collision of oscillators, in addition to the processes
discussed above, vibrational energy is also transferred
from one oscillator to another. As will be shown be-
low, these processes are also one-quantum in type.
The probability of transfer of a vibrational quantum
from an oscillator in the (m + l ) - s t state to an oscil-
lator in the n-th state will be denoted by Qj£ni'im-

The set of equations describing vibrational relaxa-
tion in an isolated system of oscillators is a set of bal-
ance equations for the numbers of molecules in each
vibrational level, just as in the case of the isothermal
system (Sec. 2.2).

In the notation adopted in Sec. 2.2, this system of
equations has the following form:

( 2 & t V , U + 1 ) * „ _ , - ( 2

, 2 ...,

where

(2.28)

- | ^ J d t i . (2.29)

The notation is the same as in Sec. 2.3: qmhmi+1(v)
is the probability of transition of oscillators from the
state (n, m) to the state (n —1, m + 1) on collision
with a relative velocity v. The value of qn

a
n?i+1(v) is

calculated by quantum-mechanical methods. The calcu-
lations of q are given in Ee>12].

We shall merely sketch the conclusions here. Just
as in Sec. 2.3, we shall consider the simplest one-
dimensional case. In order to determine the t rans i -
tion probabilities, we can conveniently use the Schrod-
inger equation written in a representation in terms of
the eigenfunctions of the unperturbed Hamiltonian of
the molecule. In this representation, the Schrodinger
equation practically coincides with the system (2.3).
The only difference is the fact that the index к char-
acterizes the state of two independent molecules,
rather than that of one molecule. The index к is ac-
tually a double index k(n, m). In addition, the quan-
tity Kwkm, which corresponds to the difference in
vibrational energies before and after collision, is
zero in the transfer of vibrational energy between two
identical oscillators. In this case, Eq. (2.3) is sim-
plified, and the expression for the transition probabil-
ity (2.4) takes the form

i J Vnm(r(t))dt

Vnm(r) = тг).
(2.30)

Just as in Sec. 2.3, V(r,x 1 ,x 2 ) can be expanded in a
power series in (xt-x^equi i) and ( x 2 - x 2 > e q u i i ) . The
term responsible for exchange of vibrational quanta is
х1х2(Э2У/Эх1Эх2). In this case,

(2.31)

Since

X2) = V (r — XJXJ —

where Xx is the distance of a colliding atom from the
center of gravity of its molecule, then

jx, дх.
(2.32)

By substituting Eqs. (2.32) and (2.31) into (2.30), we
obtain an equation for the transition probability

dt^ ^ {•* П - 1 , П ^ ? г - 1 ^ 7 1 , 7 1 - 1 ^ 1 1 <7 ip) \ J/Jj ( 2 . 3 3 )
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where d2V/dR2 ~ v o/a 2, a is the radius of intermolec-
ular interaction, and Vo ~ MV2/2. The integration in
(2.33) is limited to a time of the order of the duration
of the collision, i.e., a/v. If we take into account the
fact that Хщп differs from zero only if m = n ± 1, we
obtain

qllnn\~+\ = {nl + i)n,q1Q, (2.34)

where q10 ~ 1/(WT) 2 (OJT » 1), w being the frequency
of the oscillator.

We see by comparing (2.34) with (2.7) that the prob-
ability of exchange of vibrational quanta is considerably
greater than that of transformation of a vibrational
quantum into translational energy. This statement is
valid for шт » 1, which is the condition for applica-
bility of perturbation theory in the form discussed
here. As шт -— 1, the value of p 1 0 becomes of the
order of q10. The averaging of q10 over the Maxwell
velocity distribution is not difficult, and has been per-
formed in ^ .

In calculating the probabilities q, we do not have
to use the perturbation theory (2.30). The system of
equations determining the probabilities of exchange of
vibrational quanta can be solved exactly by using the
method which was used in solving Eq. (2.3) under the
condition UIT « 1. The probabilities of exchange of
vibrational quanta thus obtained are analogous to (2.11),
and go over into (2.34) when шт « 1. Hereinafter,
however, all we shall need is Eq. (2.34). When we take
into account Eqs. (2.34) and (2.16), the system of equa-
tions (2.28) is simplified, and can be written in the form

ZQ10{(n+l)(l+a)xn.1-[(n

owing to the elementary events of exchange of vibra-
tional quanta. During the second slow stage, which
occurs with the relaxation time т2, the translational
and vibrational degrees of freedom interact, with the
result of establishment of a single equilibrium dis-
tribution.

The establishment of equilibrium in the first rapid
stage (i.e., at times t « т 2) is described by the fol-
lowing system of equations derived from (2.35) by
neglecting the terms of the order of тг/тг in the latter:

~df

+ n (1 + a)] xn + naxn_l],

w = 0, 1, 2, (2.35)

where a ( t ) = 2 n x n ( t ) is the total number of vibra-
tional quanta at the instant t of time.

2.7. Vibrational relaxation in an isolated system.
Distribution of the molecules over the vibrational
levels. In the general case, the solution of the non-
linear system of equations of (2.35) involves consider-
able difficulties. However, in this problem we are
aided by the fact that Q10 » P l o . £36-38] W e s e e f r o m

studying system (2.35) that the establishment of equi-
librium in the vibrational degrees of freedom involves
two relaxation times, Tt ~ 1/ZQ1O and т2 ~ 1/ZP1O.
Here, in accordance with what has been said, т2 » т4.
The latter inequality permits us to distinguish two
stages in the process of establishment of equilibrium.
During the first rapid stage, which occurs with the r e -
laxation time т1 ( the vibrational degrees of freedom
behave as an isolated system, practically unconnected
with the translational motion. This stage results in
establishment of a quasi-steady-state distribution,

[(n + 1) a + n (1 + a)] xn

n = 0, 1, 2, . . . (2.36)

The value of a in (2.36) is constant to an accuracy of
terms of the order of т^/т^. In fact, if we multiply
(2.35) by n and sum over all values of n, we obtain
after simple transformations

dt
(2.37)

If we neglect the terms of the order of T J / T 2 in (2.37),
we obtain, in the same approximation as in (2.36), the
equation

- a — 0, or a = const.

The latter result is obvious, since during the first
rapid stage, the vibrational degrees of freedom (in
this approximation) behave like an isolated system.

Thus, system (2.36) is a system of linear equations
coinciding in form with the system studied in Sec. 2.4.
The general solution (2.36) has the form of (2.23), or
can be derived from (2.25). However, the solution of
practical interest is the steady-state solution of the
system, which is appropriate to times Tj « t « т2.

The steady-state solution, as we can easily see,
has the form

where

(2.38)

(2.39)

Thus the first rapid stage in the isolated system of
oscillators results in establishment of a quasi-steady-
state Boltzmann distribution with a temperature deter-
mined by the initial supply of vibrational quanta, but
independent of the form of the initial distribution func-
tion of the oscillators over the vibrational levels.

The second slow stage of the process of establish-
ment of equilibrium is described by the system of
complete equations. Here, according to what has been
said, the solution is sought in the form of (2.39), where
90 is now an unknown function of time. We can easily
see that, with such a choice of solution, the last paren-
thesis on the right-hand side of (2.35) becomes iden-
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tical ly z e r o , and the following sys tem of equations for

determining x n ( t ) i s left:

dt
2, . . . (2.40)

The s y s t e m (2.40) differs from the analogous sys tem
(2.17) in that the value of в, and hence also of P l o ,
a r e functions of t i m e . The form of these functions
can be found by solving (2.37).

Thus, t h e es tabl i shment of equi l ibr ium in the v i b r a -
tional d e g r e e s of freedom in an isolated s y s t e m of o s -
c i l l a t o r s takes p lace a s follows. F i r s t , in a per iod of
t i m e of t h e o r d e r of ти a quas i - s teady-s ta te Boltz-
mann dis t r ibut ion is establ ished, with a t e m p e r a t u r e
determined by the initial number of v ibrat ional quanta,
but independent of the o ther initial conditions. In th i s
p r o c e s s , the fundamental e lementary event which o c -
c u r s in the coll is ion of o s c i l l a t o r s is the exchange of
v ibrat ional quanta; h e r e the total n u m b e r of v ibrat ional
quanta r e m a i n s pract ica l ly constant. After the q u a s i -
s teady-s ta te Boltzmann dis tr ibut ion has been e s t a b -
l ished, the e lementary p r o c e s s e s of energy t r a n s f o r -
mation of t rans la t ional into vibrat ional motion init iate
the relat ively slow evolution of the quas i- s teady-s ta te
Boltzmann dis t r ibut ion into an equi l ibr ium s t a t e . In
this s tage, the dis tr ibut ion function r e m a i n s always a
Boltzmann function, but i t s p a r a m e t e r v a r i e s from the
initial value #o to a final value corresponding to the
t e m p e r a t u r e in a s tate of complete equil ibrium.

At t e m p e r a t u r e s considerably lower than the c h a r -
a c t e r i s t i c t e m p e r a t u r e , the difference between Q 1 0 and
P 1 0 amounts to s e v e r a l o r d e r s of magnitude. Thus, the
cited s tages in the p r o c e s s of e s tab l i shment of equi l ib-
r i u m can be observed exper imental ly . A p r a c t i c a l ex-
ample in which one can follow the f i rs t s tage of the e s -
tabl i shment of equi l ibr ium i s given by the exper iments
of Cashion and Polanyi, Пзэ,40Ц w j j 0 studied the infrared
emiss ion of v ibrat ional ly-excited HC1 molecules formed
in a s y s t e m consis t ing of atomic hydrogen and chlor ine .
In t h e s e exper iments , which w e r e conducted at r o o m
t e m p e r a t u r e , it was found that the HC1 molecules have
a Boltzmann dis t r ibut ion with a v ibrat ional t e m p e r a t u r e
of 2700°K. This phenomenon can be explained within the
framework of the ideas which have been p r e s e n t e d h e r e .

In the e x p e r i m e n t s under d i scuss ion, t h e v ibra t ion-
al ly-excited HC1 molecules formed in the exchange r e -
action H + Cl 2 — HC1 + Cl lost t h e i r v ibrat ional e n -
ergy through spontaneous e m i s s i o n and col l i s ions with
the molecules of the surrounding g a s . We shall con-
s ider only the p r o c e s s e s of energy t r a n s f e r in co l l i -
sions of HC1 molecules with one another .

In this c a s e , two types of p r o c e s s e s a r e poss ib le :
t r a n s f o r m a t i o n of v ibrat ional into t rans la t iona l energy,
and exchange of v ibrat ional quanta. The probabil i ty of
the f o r m e r p r o c e s s has been calculated in L 4 1 J , and at
r o o m t e m p e r a t u r e is 5.2 x 10~9. A calculat ion of t h e
probabil i ty of the l a t t e r p r o c e s s using the formulas

from m gives a value of 10" 1—10~ 2. Thus, the e s t a b -
l i shment of complete s ta t i s t ica l equi l ibr ium r e q u i r e s
about ( 1 / P 1 O ) = 1/(5.2 x 10" 9 ) ~ 2 x 108 col l i s ions.
However, the es tabl i shment of equil ibrium among the
vibrat ional d e g r e e s of f reedom r e q u i r e s about ( 1/QJO
~ 100 col l i s ions. In t h e s e exper iments , the HC1 m o l e -
cules undergo about 104 col l is ions while they a r e with-
in the cone of observat ion. As we can eas i ly see, this
number is just bracketed between the c h a r a c t e r i s t i c
n u m b e r s of col l i s ions for the f i rs t and second s tages

Thus, in this t i m e interval , which c o r r e s p o n d s to
10 4 col l i s ions, the f i rs t s tage of the p r o c e s s of e s t a b -
l i shment of equil ibrium has a l ready been completed,
but the second stage has not yet s t a r t e d . This explains
the ex i s tence of different t e m p e r a t u r e s for the v i b r a -
tional and t rans la t iona l d e g r e e s of f reedom in the ex-
p e r i m e n t s of C39^. The e s t i m a t e s given a r e qualitative
in n a t u r e , s ince they neglect the p r o c e s s e s of energy
t r a n s f e r in col l is ions with o ther molecules , a s well as
spontaneous emiss ion. However, we m u s t emphas ize
that it would not change the overa l l p i c t u r e of the r e -
laxation phenomenon to take into account t h e s e p r o c -
e s s e s , whose c h a r a c t e r i s t i c t i m e constants a r e longer
than the s h o r t e r t i m e constant in the given p r o b l e m .
Taking t h e s e p r o c e s s e s into account would only affect
the total supply of v ibrat ional energy, which would then
differ from the total v ibrat ional energy of the newly-
formed HC1 molecu les .

3. DISTRIBUTION OF VIBRATIONAL ENERGY IN
SYSTEMS CONTAINING PARTICLE SOURCES

3.1. Introduction. The preceding sect ion d i scussed
the p r o c e s s of es tab l i shment of equi l ibr ium in a s y s -
tem under a r b i t r a r y initial condit ions. If chemical r e -
actions occur in the sys tem, o r it i s subjected to s o m e
externa l influence producing vibrat ional ly-excited
molecules , we cannot justly speak of es tabl i shment of
equi l ibr ium during the per iod while t h e s e factors a r e
acting. As has been stated, t h e s e s y s t e m s may for-
mally be descr ibed a s y s t e m s containing p a r t i c l e
s o u r c e s .

Thus, the p r o b l e m a r i s e s of studying the d i s t r i b u -
tion of v ibrat ional energy in s y s t e m s containing s o u r c e s
of v ibrat ional ly-excited p a r t i c l e s . We v e r y often e n -
counter s o u r c e s of th is s o r t in p r a c t i c e . Thus, for ex-
ample, v ibrat ional ly-excited molecules a r e formed in
e l e c t r i c d i s c h a r g e s in g a s e s , ^42^ in flash photolysis of
gas m i x t u r e s , t 3 2> 2 2J and in exchange reac t ions of the
type A + ВС — AB + С o r A + BCD — AB + CD. ^
Finally, the p r o c e s s of t h e r m a l d issociat ion of m o l e -
cules is a lso formally a s o u r c e o r sink (negative
s o u r c e ) of v ibrat ional ly-excited p a r t i c l e s , C43~45^ e t c .
The p r a c t i c a l i n t e r e s t of t h e s e s y s t e m s i s obvious.
Constant s o u r c e s d i s tor t the equi l ibr ium dis tr ibut ion
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of the energy among the vibrational degrees of free-
dom of the molecules, and this distortion can have a
considerable effect on the behavior of the system.

The study of these systems is also of interest in
that the ordinary perturbation theory cannot be applied
here. In fact, the result of the presence of constantly-
acting perturbations (sources) is that the ordinary
power-series expansion in the perturbation theory con-
tains secular terms which increase with time. This
situation is typical, not only of problems of statistical
kinetics, but is encountered in astronomy in the study
of planetary motion, and also in mechanics in the study
of nonlinear vibrational processes.

In mechanics and statistical physics, methods have
been developed for eliminating these difficulties in-
volving the appearance of secular terms. In the kinetic
problems with which this review is concerned, an addi-
tional difficulty arises. As has been stated, here finite
perturbations introduced by particle " s o u r c e s " are of
interest. Hence, the method of solution must be adapted
to the description of the finite perturbations. However,
this fact is not always properly taken into account.

3.2. Thermal dissociation as a negative source of
vibrationally-excited molecules. We encounter negative
sources of vibrationally-excited particles in reactions
in which the activated molecules are vibrationally -
excited particles. A typical example of such a reaction
is the thermal dissociation of diatomic molecules. As
is known, this reaction results from the transition of
molecules from high vibrational levels to an energy
continuum. C43>45] This section will be concerned with
a discussion of this case.

We shall begin with the simplest problem, that of
thermal dissociation in a system in which the diatomic
molecules are a minor constituent in a monatomic gas.
Here we can neglect the mutual collisions of the disso-
ciating molecules, and consider only the collisions of
the latter with the monatomic gas. In order to esti-
mate the probabilities of transitions of the molecules
from the excited vibrational levels to the continuum,
we can use the Landau-Teller formula (2.9). We see
from Eq. (2.9) that the only practically-allowed transi-
tions are those from the upper vibrational levels to the
continuum. Owing to the small size of the vibrational
quanta for the upper levels, the transitions to the con-
tinuum will be many-quantum transitions. This means
that, in the range of vibrational energies for which the
probabilities of transition to the continuum differ from
zero, the probabilities of many-quantum transitions
between the discrete vibrational levels will also differ
from zero. Thus, the dissociation process can be
schematically represented as a stochastic process of
random walk of the molecules among the vibrational
levels, with a negative source acting on the upper lev-
els. The length of the walk will differ for the different
levels. In the lower vibrational levels, the molecules
can undergo only one-quantum transitions, i.e., jump
to adjacent levels. In the region'of high enough vibra-

tional energies, many-quantum transitions are also
allowed; in this energy region, the probabilities of
transition to the continuum also differ from zero.

For convenience of discussion, we shall schematize
the problem even further. We shall consider that a
molecule will undergo one-quantum transitions up to
the k-th vibrational level, from which it can jump over
to the continuum.

This scheme of dissociation is described by a sys-
tem of gas-kinetic equations analogous to those for vi-
brational relaxation (2.15), with the sole difference
that a negative source will act on the upper level k,
describing the process of decomposition of the mole-
cules into atoms.

If we denote as V2 x^ the concentration of molecules
which have dissociated, the system of equations will
have the form

~df = ' ( ° n » b n ~ " n . » t l 1 п + ° я - 1 , 1 1 1 л - 1 ~ ' ) п , п - 1 ж п ) '

П=0, 1, 2, . . . , fc-1,

"57" = ~ \Pdhxd— "kdxh~\~ "k-1, fc^h-i""-^, k-lxk)'

dxA

(3.1)

where ZP^kx^ is the number of molecules formed per
second by recombination.

In the general case, the solution of the system (3.1)
involves considerable difficulties, since this system
describes two processes, vibrational relaxation and
establishment of dissociation equilibrium. The relax-
ation times of these processes, as has been shown in
[18,46] ̂  a r e qUj£e different, such as to permit a consid-
erable simplification of the solution of the problem.
Since we are interested in the slow process, the estab-
lishment of dissociation equilibrium, the system (3.1)
can be considered on a macroscopic time scale whose
unit of measurement is considerably longer than the
relaxation time of the rapid process.

In such a case, the rapid process is not considered
at all. The essential point thenceforth is only the r e -
sult of this process, which leads to a synchronization
of the initial distribution function with the macroscopic
parameters of the problem.

Thus, on a macroscopic time scale, the solution of
system (3.1) can be sought in the form

xn(t) = x(»(v) + ex\?(v)+..., (3.2)

where v = V2 (dx,j/dt) is the reaction rate, and e is a
small parameter of the order of magnitude of T\/T-I,

where rt is the vibrational relaxation time, and т2 is
the time of establishment of dissociation equilibrium.

This form of solution assumes that at each given
moment of time, there is a certain quasi-steady-state
distribution of molecules, which is determined by the
value of the reaction rate at that moment of time. Thus,
this distribution depends on the time implicitly through
the parameter v, the rate of dissociation.
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In o r d e r to simplify the problem, we shall cons ider
the c a s e in which the total number of v ibrat ional ly-
excited molecu les i s s m a l l in c o m p a r i s o n with the
n u m b e r of molecules in the ground s ta te . Thus we
obtain the condition

dv

n
dv

пфО, d. (3.3)

On substituting Eq. (3.2) into (3.1), and taking (3.3) into
account, we obtain the following sys tem of equations
for de termining x&(v) (we shal l omit the s u p e r s c r i p t
z e r o be low):

(n=l, 2, ..., k),

v=Z(Phdxh-Pdltxd),

w h e r e

dt 2 dt (3.5)

w h e r e <pn c h a r a c t e r i z e s the deviation of the q u a s i -
s teady-s ta te dis tr ibut ion from the equi l ibr ium Boltz-
mann dis t r ibut ion. H e r e , <p0 = 0, while <pn i s not
n e c e s s a r i l y much s m a l l e r than unity. By substituting
(3.8) into (3.4), and taking into account the fact that ,
according to the pr inc ip le of m i c r o s c o p i c equi l ibr ium

* n-i, i
- = g~(en-i—en)

we obtain

(3.4) m o r d e r of m a g n i t u d e , v
D / / k T

(3.9)

Hence, on

T h e r e s u l t s o b t a i n e d u n d e r t h e s e l i m i t a t i o n s a r e
a l s o v a l i d u n d e r m o r e g e n e r a l c o n d i t i o n s , s i n c e t h e
e s s e n t i a l p o i n t s i n v o l v e d a r e t h e b e h a v i o r of t h e d i s -
t r i b u t i o n f u n c t i o n on t h e u p p e r l e v e l s a n d t h e r a t e of
d i s s o c i a t i o n . T h e o n l y d i s t i n c t i o n b e t w e e n t h e m o r e
g e n e r a l c a s e a n d t h a t d i s c u s s e d h e r e i s i n t h e b e h a v i o r
of t h e d i s t r i b u t i o n f u n c t i o n o n t h e l o w e r l e v e l s . H o w -
e v e r , t h e l a t t e r f a c t i s n o t i m p o r t a n t , s i n c e i n b o t h
c a s e s t h i s d i s t r i b u t i o n i s a B o l t z m a n n d i s t r i b u t i o n t o
a h i g h d e g r e e of a c c u r a c y .

If w e a s s u m e t h e u p p e r l i m i t of t h e r e a c t i o n r a t e t o

b e of t h e o r d e r of Z P k ( j x o e " D / k T ( E ^ « D ) , w e o b t a i n

from the condition т 2 » Tj the following condition for

validity of Eq. (3.4):

_ D
Р10>Рме~*т. (3.6)

We should emphas ize st i l l another fact. If, instead
of the expansion in (3.2) we use the ord inary s e r i e s
from per turbat ion theory:

xn (t) = 4,01 (t) + гх%> (t)-}- . . ., (3.7)

we can then analyze only the f irst rapid stage of the
p r o c e s s of es tab l i shment of equi l ibr ium. In fact, in

к
the zero-order approximation, the quantity N = Zyxn(t)

0
is independent of time. The time-dependence of N,
which characterizes the dissociation process, can be
obtained only by taking into account a correction term
proportional to e. Thus we see that the series expan-
sion of (3.7) can be used only in a time interval during
which N varies little from its initial value. This means
that the series expansion of (3.7) is practically inappli-
cable for description of the dissociation process.

We shall seek a solution of system (3.4) in the form
(3.8)

the lower levels , <pi « 1, but on the upper leve l s cpi
~ 1 (excluding the c a s e of very low t e m p e r a t u r e s ) .
Thus, the dissociat ion p r o c e s s leads to a finite d i s t o r -
tion of the equi l ibr ium dis t r ibut ion of the molecules
over the vibrat ional l eve l s . This d i s tor t ion i s p r a c -
t ical ly confined to the region of v ibrat ional energ ie s
from which the molecule can go over to the energy
continuum. This d i s tor t ion has a considerable effect
on the r a t e of d issociat ion. If we subst i tute (3.8) and
(3.9) into the la s t equation of (3.4), we obtain

1 dxd

2 dt '~

dxd

i=0

k

t=l
or, neglecting recombinat ion,

2 dt

kT

TV = 2 ^ . (зло)
i = 0

Equation (3.10) is also correct for a more general
case than is assumed in condition (3.3). Here we need
only assume that we can specify a region of large vi-
brational energies having a relatively low population
density, but having a negligibly small value of cp at its
lower limit.

In most cases of practical interest, Pkd exp (— e^)
2[(exp €i^1)/Pi-lti] » 1. Hence, we can neglect the
term unity in the curly brackets of (3.10). For com-
parison, we might point out that in elementary collision
theory, in which the distortion of the Boltzmann distri-
bution is neglected, the expression for the dissociation
rate v will have the form of (3.10), but with the term
pkd exP (~ ck) 2 U exp ej_t )/Pj_lti ] taken as negligible
in comparison with unity. The mode of reasoning giv-
ing this result is not the only one, although perhaps it
is the simplest. Analogous results (by several other
methods) have been obtained in E47>48D.

Thus, the distortion of the equilibrium energy dis-
tribution over the vibrational levels caused by the dis-
sociation process has a considerable influence on the
rate of dissociation.
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We shall cite two examples as possible applications
of the results obtained.

1. The fact that the rate of thermal dissociation is
determined by a non-equilibrium distribution of the
molecules over the vibrational levels complels us to
criticize the application of the well-known relation of
statistical thermodynamics

frdis q_ is
— eq_ is

h '. — equilfrecomb
(3.11)

is theu n d e r n o n - e q u i l i b r i u m c o n d i t i o n s . H e r e ,

c h e m i c a l e q u i l i b r i u m c o n s t a n t , w h i l e k ^ i s s o c

k r e c o m b a r e t h e r a t e c o n s t a n t s f o r d i s s o c i a t i o n a n d

r e c o m b i n a t i o n , r e s p e c t i v e l y . I n p a r t i c u l a r , i n t h e

p r e s e n t c a s e o f t h e t h e r m a l d i s s o c i a t i o n o f d i a t o m i c

m o l e c u l e s o c c u r r i n g a s a m i n o r c o n s t i t u e n t i n a m o n -

a t o m i c g a s , t h e r a t e " c o n s t a n t " o f t h e f o r w a r d r e a c -

t i o n d i f f e r s f r o m i t s e q u i l i b r i u m v a l u e . T h i s i n v o l v e s

t h e d i s t o r t i o n o f t h e B o l t z m a n n d i s t r i b u t i o n i n t h e u p p e r

l e v e l s . T h e r a t e c o n s t a n t o f t h e r e v e r s e r e a c t i o n r e -

t a i n s i t s e q u i l i b r i u m v a l u e , s i n c e u n d e r t h e s t a t e d c o n -

d i t i o n s t h i s r e a c t i o n t a k e s p l a c e t h r o u g h t r i p l e c o l l i -

s i o n s o f t h e a t o m s o f t h e d i s s o c i a t i n g g a s w i t h t h e

t h e r m a l - r e s e r v o i r a t o m s , a n d t h e M a x w e l l d i s t r i b u -

t i o n i n t h e v e l o c i t i e s o f t h e s e p a r t i c l e s i s p r a c t i c a l l y

u n a l t e r e d . H e n c e , E q . ( 3 . 1 1 ) d o e s n o t h o l d f o r t h e r e -

a c t i o n b e i n g d i s c u s s e d ; ( 3 . 1 0 ) h a s t h e f o r m v = — k x N ,

w h e r e t h e p r o p o r t i o n a l i t y c o e f f i c i e n t k j d e p e n d s o n l y

o n T ( a n d o n t h e d e n s i t y o f t h e t h e r m a l - r e s e r v o i r

g a s ) . H e n c e w e c a n w r i t e

-г- = л , ( o . i z ;

w h e r e k 2 i s t h e r a t e c o n s t a n t of t h e r e v e r s e r e a c t i o n ,

t h a t i s , k r e c o m D , w h i l e K* i s a q u a n t i t y i n d e p e n d e n t

of t h e c o n c e n t r a t i o n s of t h e r e a c t i n g c o m p o n e n t s .

E q u a t i o n (3.12) h a s t h e s a m e f o r m a s (3 .11) , a n d

p e r m i t s u s t o d e t e r m i n e k t f r o m t h e c o n s t a n t k 2 .

H o w e v e r , (3.12) d i f f e r s i n m e a n i n g f r o m (3 .11) : K* i s

n o t e q u a l t o t h e e q u i l i b r i u m c o n s t a n t , a n d b e s i d e s , w e

m u s t b e a r i n m i n d t h e f a c t t h a t kj i s t h e r a t e c o n s t a n t

f o r d i s s o c i a t i o n a t t h e i n i t i a l i n s t a n t of t i m e , w h e n w e

c a n n e g l e c t t h e r e c o m b i n a t i o n p r o c e s s e s .

T h e p u b l i c a t i o n of s t u d i e s p r e d i c t i n g f r o m t h e o r y

a n a p p r e c i a b l e e f f e c t of t h e d i s t o r t i o n of t h e e q u i l i b -

r i u m d i s t r i b u t i o n f u n c t i o n s o n t h e c o u r s e of c h e m i c a l

r e a c t i o n s C4 3>4 4>4 5J n a s s t i m u l a t e d a n e w t h e d i s c u s s i o n

of t h e o l d q u e s t i o n of t h e a p p l i c a b i l i t y of E q . (3.11) in

s y s t e m s n o t i n c h e m i c a l e q u i l i b r i u m . C 4 9 ~ 5 2 1

2. T h e e x p r e s s i o n found f o r t h e r a t e c o n s t a n t f o r

d i s s o c i a t i o n c a n b e c o m p a r e d w i t h e x p e r i m e n t a l d a t a .

E q u a t i o n (3.10) c a n b e s i m p l i f i e d b y u s i n g s o m e c o n -

c r e t e m o d e l of t h e m o l e c u l e . In p a r t i c u l a r , f o r a n o s -

c i l l a t o r h a v i n g a M o r s e p o t e n t i a l f u n c t i o n i n a t e m p e r -

a t u r e r a n g e a b o v e t h e c h a r a c t e r i s t i c t e m p e r a t u r e , E q .

(3.10) h a s t h e f o r m

In c o m p a r i n g E q . (3.13) w i t h t h e e x p e r i m e n t a l d a t a , w e

m u s t t a k e i n t o a c c o u n t t h e ef fect of t h e r o t a t i o n a l a n d

vibrational degrees of freedom of the dissociating mol-
ecule. The estimates made in ^47Э lead to the appear-
ance in (3.13) of additional factors with values larger
than unity. For the reaction Br 2 + Ar — 2Br + Ar,
which has been studied over a temperature range up
to 2000°K in a shock tube, [ 5 3 ; 1 the dissociation rate
constant has the form

«•dissoc — 5 - 1 0 'L[ -j=- e x p - г— .
\ til J \ til J

T h e e x p e r i m e n t a l v a l u e o f t h e r a t e c o n s t a n t f o r t h i s

r e a c t i o n i s '-53-'

/ C d i s s o c = 6 - 1 0 2
D Л1.97

j

These expressions give values agreeing in order of
magnitude.

3.3. Distribution of vibrational energy in an isolated
system of dissociated molecules. The previous section
discussed the distribution function for the vibrational
energy in the thermal dissociation of diatomic mole-
cules occurring as a minor constituent in a monatomic
gas. The distribution of vibrational energy in an iso-
lated system of dissociating molecules is also of in-
terest.

We shall consider the simplest model of a molecule,
a truncated harmonic oscillator. '-54-' This model has
been used repeatedly in calculations of the rate of dis-
sociation of molecules occurring as a minor constitu-
ent in a monatomic gas. t 5 5 " 5 '^

In calculating the distribution function for the vibra-
tional energy in an isolated system of oscillators, we
must take into account the exchange of vibrational
quanta in the molecular collisions, as well as the trans-
formation of translational into vibrational energy.

The process of dissociation in such a system is de-
scribed by the following equations:

•+ZQltUn+l){i+a)xntl-[(n+l)a

+ n(i+a)]xn + naxn_1},
n = 0, 1, 2, ...,k-i

= ZPW [ke-*xk_,. - to*} + ZQW {kax^ a) xk}

(3.14)

кdissoc '
D 1.5 (3.13)

1where a = ~ Z/ nxn(t), and N(t) is the total number
w n=o

of oscillators. The system (3.14) is analogous to the
equations of (2.35) describing vibrational relaxation in
an isolated system of harmonic oscillators, but differs
from (2.35) in the last equation, which describes the
transition of the molecules to the dissociated state. As
before, we shall assume that the dissociation of the
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molecules arises from the transition of the molecules
from some level к to the continuum. We shall con-
sider only the initial stage of dissociation, and hence
will neglect recombination.

The solution of the nonlinear system (3.14) involves
considerable difficulties. In the general case, the sys-
tem (3.14) describes complex relaxation processes.
First, energy is exchanged between the translational
and vibrational degrees of freedom, and vibrational
quanta are exchanged as well. It is only in the region
of high vibrational energies that these processes very
rapidly establish, to a first approximation, a Boltz-
mann distribution (quite perturbed). The second slow
stage of the process involves the establishment of dis-
sociation equilibrium. In kinetic problems of the type
under discussion, it is the second, slow stage which is
of especial interest.

It is an easier problem to derive the quasi-steady-
state distribution function, which is established as a
result of the rapid process, and which subsequently
changes slowly with the time.

The quasi-steady-state distribution, as was shown
in Sec. 3.2, differs appreciably from a Boltzmann dis-
tribution only in the upper vibrational levels. This is
true even when we take into account only the transfor-
mation of translational into vibrational energy. Hence,
it is all the more valid when we also take into account
exchange of vibrational quanta. On the basis of this
conclusion, we can simplify system (3.14). The quan-
tity a in (3.14) is mainly determined by molecules
occurring in the first few vibrational levels. In the
quasi-steady-state process being discussed, these
levels obey a Boltzmann distribution to a high degree
of accuracy. Hence

| * ( З Л 5 )

Taking (3.15) into account, we can write the system
(3.14) in the following form:

n = 0, 1,2, . . . , k — 1,
1 ZPU \he~ xk_x — hx^} — ZP^Xfr,

where

(3.16)

(3.17)

Thus the nonlinear system (3.14) is reduced to the
linear system (3.16). Formally, we can derive the
equations of (3.16) from system (3.14) by substituting
into the latter x n in the form given by (3.2), and keep-
ing only the zero-order terms.

The system of equations (3.16) coincides in form
with the analogous system derived in Sec. 3.2. The
only difference is that instead of P l o , we have here

P*o = /ЗРщ. The system of equations of (3.16) has been
solved in Sec. 3.2. The solution is of the form

For the molecular model under discussion, in a tem-
perature range lower than or of the order of the char-
acteristic temperature, <pn differs appreciably from
zero only when n RS k.

In particular,

xh —

nP,,

The substitution of P*o for P 1 0 results in the multi-
plication of xk by the factor /3. At temperatures be-
low the characteristic temperature, Q1 0 » P 1 0 , and
hence, /3 » 1. At temperatures of the order of the
characteristic temperature, Q10 ~ P 1 0 , and /3 ~ 1.

Thus, the exchange of vibrational quanta upon col-
lision of molecules in the dissociation process in-
creases the quasi-steady-state population of mole-
cules in the upper vibrational levels, and brings it
closer to the equilibrium value. This increase is
considerable at temperatures below the characteris-
tic temperature, but plays no appreciable role at tem-
peratures above or of the order of the characteristic
temperature.

The physical reason for the increase in the number
of molecules in the upper vibrational levels is obvious.
At low temperatures, energy transfer from the highly-
excited molecules through exchange of vibrational
quanta proceeds more rapidly than energy transfer
involving translation-vibration transition. The rate
of supply of molecules to the upper vibrational levels
is increased, while the probability of transition to the
continuum (Pkd ~ 1) remains unchanged. Thus the
quasi-steady-state population is increased.

In comparing the obtained results with the experi-
mental data, we must bear in mind the fact that the
model being discussed does not take into account an-
harmonicity. Hence, the present results are qualita-
tive in nature as applied to diatomic molecules. How-
ever, in the case of polyatomic molecules whose ther-
mal dissociation involves change of multiplicity, the
interaction potential along the broken bond can be ap-
proximated quite well by a model of formation of a
harmonic oscillator. In particular, this is true of
N2O dissociating to N2 and O. In the latter case we
can state that the dissociation rate in pure N2O will
exceed the dissociation rate of N2O mixed with a
monatomic gas. There are as yet no comparative
experiments of this sort.

3.4. Distribution of vibrational energy in a system
containing positive sources (case of low concentration).
We shall consider the simplest case. We shall assume
that in a system consisting of a monatomic or poly-
atomic gas A, whose internal degrees of freedom do
not participate in the deactivation process, vibration-
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ally-excited molecules of В are generated with a cer-
tain supply of vibrational energy E n 0 . We are to find
the distribution function of the В molecules over the
vibrational levels. We shall consider only conditions
under which the concentration of В molecules is con-
siderably smaller than the concentration of A mole-
cules. E58^ In this case, the mutual collision of A mole-
cules need not be considered.

The vibrational relaxation of the В molecules in the
presence of a source is described by the following sys-
tem of equations:

~dT~

— P

п+1Ж„+'Рп-1, пЖ„-1

n = 0 , l , 2 , . . . (3.18)

where N is the strength of the source, i.e., the number
of vibrationally-excited molecules with energy E n 0

produced per unit time per unit volume; and б^щ is
the Kronecker delta.

The system (3.18) can describe the vibrational de-
activation of molecules also when the vibrational de-
grees of freedom of the surrounding gas participate in
this process. Under these conditions, we must take
certain effective values (Pik)eff f ° r t n e pik- ^ t n e

special case of resonance transfer discussed in the
previous section, (Pik)eff = Pik- The system of equa-
tions (3.18) differs from the analogous system (2.15)
in the presence of the source, whose strength N is
generally a function of time.

In solving system (3.18), we encounter the same
difficulties as in the problem involving dissociation.
In fact, the equations of (3.18) involve two time scales.
One time scale involves the vibrational relaxation
time, while the other involves the characteristic time
constant of the source. Under practical conditions,
these time constants commonly differ greatly from
each other. These facts permit us to simplify the
problem considerably. Just as in the case of dissoci-
ation, we can avoid discussing the process leading to
synchronization of the distribution function with the
acting source, and discuss only the quasi-steady-state
distribution, which is determined by the strength of
the source at the particular instant of time. For sim-
plicity, we shall assume a constant source. The prob-
lem formulated in this way is analogous to the prob-
lems of the distribution of kinetic energy in systems
containing particle sources, t59>60^ where solutions
have been discussed satisfying the condition

dxn _ дг„(0>.
dt ~~ n '

( 3 . 1 9 )

w h e r e x n

0 ) i s t h e n o r m a l i z e d B o l t z m a n n f u n c t i o n . T h i s

m e t h o d c a n b e a p p l i e d t o t h e g i v e n p r o b l e m a s w e l l .

C o n d i t i o n ( 3 . 1 9 ) i m p l i e s t h a t s y s t e m s a r e b e i n g s t u d i e d

i n w h i c h t h e s o u r c e h a s b e e n a c t i n g f o r a s u f f i c i e n t l y

l o n g t i m e . I f w e w e r e t o c l a s s i f y a t e a c h g i v e n m o m e n t

a l l o f t h e e x i s t i n g p a r t i c l e s p r o d u c e d b y t h e s o u r c e i n

t e r m s o f t h e i r a g e , w e w o u l d f i n d i n t h e c o u r s e o f t i m e

t h a t t h e i r d i s t r i b u t i o n w o u l d b e e n r i c h e d o n l y i n " o l d "

m o l e c u l e s hav ing a B o l t z m a n n d i s t r ibut ion. T h i s fact
i s r e f l e c t e d by Eq. (3.19) .

Equat ion (3.19) c a n b e i n t e g r a t e d . Then,

xn(t) = tNx'n) + fn; (3.20)

w h e r e fn i s an unknown funct ion w h i c h w e s h a l l c a l l
the p e r t u r b a t i o n function. ^ 5 8 3 The per turbat ion func-
t i o n fn i s a s s u m e d t o b e independent of t i m e .

Upon subst i tu t ion of Eq. (3.20) into (3.18), w e obtain
the fo l lowing i n h o m o g e n e o u s s y s t e m of a l g e b r a i c e q u a -
t i o n s for d e t e r m i n i n g t h e p e r t u r b a t i o n function:

" » t l , n ' n * l ° « , n - l / n ~ ° n - l . n / n - l )

N
Z

( 3 . 2 1 )

A s o l u t i o n o f t h i s s y s t e m e x i s t s w h e n t h e s o l u t i o n o f

t h e c o r r e s p o n d i n g h o m o g e n e o u s c o n j u g a t e s y s t e m o f

e q u a t i o n s i s o r t h o g o n a l o n t h e r i g h t - h a n d s i d e . T h e

l a t t e r c o n d i t i o n c a n b e w r i t t e n i n t h e f o r m

JL
z

( 3 . 2 2 )

w h i c h , a s w e c a n e a s i l y s e e , i s f u l f i l l e d i d e n t i c a l l y .

I f w e c a r r y o u t t h e d o u b l e s u m m a t i o n , a n d t a k e i n t o

a c c o u n t t h e f a c t t h a t

P —P ,е~Еп+Е"*ъ

we obtain the solution in the form

= [ 4 - 2
e«->. (3.23)

Solution (3.23) i s c o r r e c t only for a s o u r c e descr ibed
by а б-function. The perturbation function for an a r -
bitrary source may be represented as a superposition
of solutions of the type of (3.23), owing to the linearity
of the equations of (3.18).

For performing concrete calculations, it is conven-
ient to select a Morse oscillator as the model. We
shall consider only the lower levels, i.e., the condition
E n 0 « D (where D is the dissociation energy), at low
temperatures ( e " e « 1), and can then write (3.23) in
the form

fn = B(ri)e-^, n<n0,
fn = B(n0)e-»<>, n>n0, (3.24)

where

The e x p r e s s i o n s der ived h e r e p e r m i t us to guess a t the
n a t u r e of t h e per turbat ion in t h e vibrat ional energy d i s -
tr ibut ion caused by t h e p a r t i c l e s o u r c e . In t h e p r e s e n t
approximation, the per turbat ion function fn i s of Bol tz-
mann type in the reg ion n > n 0 , with a false total n u m -
b e r of p a r t i c l e s B ( n 0 ) . In the reg ion n < no, the p e r -
turbat ion function fn differs appreciably f rom the
Boltzmann dis tr ibut ion, and behaves approximately
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like 1/n. Within a period of time of the order of mag-
nitude of the vibrational relaxation time, the distribu-
tion of the particles which have been created is deter-
mined primarily by the perturbation function fn. In
fact, the vibrational relaxation time т = 1/ZP1O, and
hence, for moments of time t > т, the term tNxn

0) in
Eq. (3.20) is of the order of Ne~ n 6 l /ZP 1 0 , which is
considerably smaller than the value of the perturba-
tion function fn (fn ~ N/ZP1 0n, where n & n 0 ) . Thus,
in this approximation, the particle source produces a
finite perturbation which is practically confined to the
region of vibrational energies less than the initial vi-
brational energy of the created molecules.

We should emphasize that the perturbation in the
distribution function for the vibrational energy in this
case resemble in nature the perturbation brought about
in the kinetic-energy distribution by a source of fast
particles acting under analogous conditions. t59.6°3

The results obtained can be applied, for example,
to analyze the experiments of Norrish, E323 who studied
the process of deactivation of vibrationally-excited O2

molecules. In these experiments, the vibrationally-
excited molecules were obtained by flash photolysis
of C1O2 and NO2 in the presence of large amounts of
N2 and other gases. The method of calculating the
transition probabilities from the data of these experi-
ments is given in Sec. 2.5. One of the basic difficul-
ties in the analysis of this study is in determining the
form of the distribution function of the molecules over
the vibrational levels at the moment the flash stops. In
the flash photolysis of C1O2 mixed with N2, the dura-
tion of the flash (т ~ 10 /zsec) was considerably
shorter than the lifetime (~ 500 jusec). Hence, we
can assume to a high degree of accuracy that at the
moment the flash stops, the molecules are still in the
same levels in which they were formed (see Sec. 2.5.)
In these experiments, the molecules were formed pref-
erentially in the eighth level, ^34^ and hence we can take
a 5-function as the initial distribution. In the flash
photolysis of C1O2 mixed with CO2 and N2, the flash
duration (~ 10 iisec) was comparable to the lifetime
(~ 65 Atsec), and hence, within the period of the flash
the molecules could jump to other vibrational levels.
The distribution of the molecules over the vibrational
levels at the moment the flash ceases can be approxi-
mated in this case by Eq. (3.24). By solving the sys-
tem (2.26) under the initial condition (3.24), taking into
account only the O2—Cl2 collisions, we can determine
x6 as a function of time. We can find P l o (O2—CO2)
from the experimental value of the lifetime.* It turns
out that P 1 0 (O2-CO2) = 6 x Ю"5. According to the es-
timates of Norrish, ™ P 1 0 (O 2 -CO 2 ) = 2 x 10"6. From
ultrasonic data, P 1 0 (O 2-CO 2) = 4 x 10"6. All of the
results are for room temperature. Analogously, from

*The found value of P l 0 generally amounts to a lower bound for
the transition probability. However, as was shown in M, the dif-
ference between the upper and lower bounds for P10 is insignificant.

Norrish's experiments one can determine the proba-
bility of transformation of the vibrational energy of
O2 in a collision with an NO2 molecule. '-62-'

However, we must bear in mind the fact that P 1 0 as
determined by the ultrasonic method can differ from
the PJO found by the flash photolysis method.

It was stated in Sec. 2.5 that the value of P 1 0 deter-
mined in Norrish's experiment refers to a certain av-
erage vibrational quantum, which corresponds approx-
imately to the sixth vibrational level. However, in the
ultrasonic experiments, Рщ refers to the vibrational
quantum of the first excited state. In view of the an-
harmonicity of the actual potential curve, these values
of the vibrational quanta will differ among themselves.

3.5. Distribution of vibrational energy in a one-
component system containing positive sources. In the
study of systems containing positive sources of vibra-
tionally-excited molecules, not only is the above-dis-
cussed case of low concentrations of practical interest,
but also single-component systems in which the cre-
ated molecules are identical with the molecules of the
medium.

Thus, for example, in the experiments of Dwyer, '-42-'
vibrationally-excited I2 molecules were generated by
passing an electric discharge through I2 vapor. We
also may encounter an analogous situation when the
concentration of the created molecules is large enough
that we cannot neglect their collisions with one another.

In this case, the problem is considerably more
complicated, since in addition to the energy exchange
between the translational and vibrational degrees of
freedom, we must also take into account the exchange
of energy between the vibrational degrees of freedom
of the molecules under study.

In general, this process has already been discussed
in a previous section (Sec. 3.4), in which it was as-
sumed that the molecules of the medium have internal
degrees of freedom. However, there is an essential
difference between the present problem and the previ-
ous one, in which the vibrational energy distribution
was studied in a system whose molecules are products
of a reaction, but where we were not interested in the
perturbation of the equilibrium in the surrounding
medium.

In the problems discussed in this section, we can-
not distinguish the surrounding medium from the r e -
action products. Hence, we are interested in the over-
all distribution of the vibrational energy of the mole-
cules of both the reaction products and their collision
partners.

We shall discuss the simplest case, a system of
harmonic oscillators containing a constant source gen-
erating vibrationally-excited oscillators having energy
Eno-

The equations describing the relaxation in this sys-
tem are analogous to those for vibrational relaxation
in an isolated system of harmonic oscillators (2.35),
and differ from the latter in including the constant
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source. In our notation, this system of equations has
the form

(3.25)

where Z = Ъ$>, р = 2 x n ( t ) , Zo is the number of col-
lisions per unit time per unit volume which a certain
molecule makes with the others when the latter have
a concentration p = 1, and

The solution of the system (3.25) in the general case
is difficult, since it is non-linear and inhomogeneous.
However, just as in the previous cases, we are aided
by the fact that the relaxation process described by
the system (2.35) is characterized by relaxation times
which differ considerably. First, there are two char-
acteristic time constants т4 ~ 1/ZQ1O, and т2 ~ 1/ZP1O,
whose meanings have been explained in Sec. 2.7. Be-
sides, the system (3.25) possesses another character-
istic time constant т3 involving the source. Since or-
dinarily т3 » т2, Tt, we can consider the source to be
constant. Since in such problems we are interested
only in the quasi-steady-state distribution brought
about by the source, we can avoid studying the rapid
process of "synchronization" of the distribution func-
tion with the characteristics of the source, assuming
this process to have been completed.

Then, we can seek the distribution function x n ( t )
in the form

x<n"(Q, (3.26)

The series expansion is carried out in terms of a
parameter of smallness e, which is the dimensionless
strength of the source N/ZpQ10.

We shall take as the normalization conditions:
p = 2х<°\ and a = (1/p ) 2nx£0). To begin, we shall
consider the case

neglecting here the second curly bracket in Eq. (3.25).
In the zero-order approximation, we obtain the

equation

L (a, e, xn) = ZQ

(3.27)= 0 (n = 0, 1, 2,

where da/dt and dp/dt are of the order of e. In fact,
we can easily derive from Eq. (3.25) the following:

da N

dt
= N.

(3.28)

The solution of the system (3.27), taking into account
the normalization conditions, has the form

e-#) e-"«

where

«-»=.
l + a

Thus, in the zero-order approximation, a Boltzmann
distribution is established in the system with a tem-
perature determined by the supply of vibrational quanta
existing at the given moment of time. The quantity a,
which determines the temperature of the system, is a
function of time, and can be found by solving system
(3.28).

The equations of the first-order approximation have
the form

дх^~> da
da dt dt Q, W в = 0, 1,2, . . .

(3.29)

The condition for solvability of system (3.29), which
has the form

| ( l _ e - * ) e - » # _ e n B o

(3.30)

is satisfied identically, as can be easily seen.
The solution of (3.29) is obtained by direct summa-

tion, and can be written in the form

,-o

"o+l
n> n0.

The normalization constant x0 can be assumed to
be zero or determined from the condition that B(n)
should always be positive. We note that the result of
(3.30) is analogous to that in the corresponding prob-
lem of the perturbation of the kinetic-energy distribu-
tion in systems containing particle sources. С63.64]

We can easily see that an analogous expression can
also be derived when

In this case, Q l o must be replaced by some effec-
tive value Qeff, such that

We can appreciate the meaning of this substitution by
referral to Sec. 3.3. When the source is weak enough
and a « 1, Eq. (3.31) becomes considerably simpler
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in form:

When n и n0 >

(<2io V. я 0, п<п„.

(3.31)

in a g r e e m e n t w i th the a n a l o g o u s e x p r e s s i o n d e r i v e d in

t h e p r e v i o u s s e c t i o n ( S e c . 3.4) .

We note that the per turbat ion introduced by the p a r -
t ic le s o u r c e can be finite in the region of higher e n e r -
g ies (n ~ щ). This does not contradict the s e r i e s ex-
pansion (3.26), s ince in any c a s e the number of p a r -
t i c l e s c r e a t e d p e r unit t i m e will be s m a l l e r than the
n u m b e r of m o l e c u l a r col l i s ions in the s a m e t i m e i n -
terva l ( the condition N « /oZQ10 or e « 1 ) .

The example d i s c u s s e d h e r e i s to a c e r t a i n extent
analogous to the conditions of N o r r i s h ' s exper iment, ^32-'
and can be rea l ized in p r a c t i c e .

We a l so encounter p r o b l e m s of th i s type in d e t e r -
mining the dis t r ibut ion function for the vibrat ional en-
ergy in a homogeneous sys tem at the moment of c e s -
sation of an e l e c t r i c a l pu l se . Such p r o b l e m s a r i s e in
the exper imenta l determinat ion of the l i fetime of v i -
brat ional ly-exci ted molecu les . ^4 2J The t h e o r e t i c a l
calculat ion i s simplified in this c a s e , s ince dp/dt = 0.

1 C . Z e n e r , P h y s . Rev. 38, 277 (1931).
2 L . Landau and E. T e l l e r , Phys . Z. Sowjetunion 10,

34 (1936).
3 E . E. Nikitin, Optika i Spektroskopiya 6, 141 (1959).
4 R . Schwartz and K. Herzfeld, J . Chem. P h y s . 22,

767 (1954).
5 J . M. Jackson and N. F . Mott, P r o c . Roy. Soc.

(London) A137, 703 (1932).
6 Schwartz, Slawsky, and Herzfeld, J . Chem. P h y s .

20, 1591 (1952).
7 С Zener , P r o c . Cambridge Phi l . Soc. 29, 136

(1933).
8 Ya. I. F r e n k e l ' , Usp. F iz . Nauk 20, 84 (1938).
9 D . Rapp. J . Chem. P h y s . 32, 735 (1960).

1 0 R. E. T u r n e r and D. Rapp, J . Chem. Phys . 35,
1076 (1961).

1 1 J . G. P a r k e r , P h y s . Fluids 2, 449 (1959).
1 2 A. I. Osipov and E. V. Stupochenko, Izv. AN SSSR,

s e r . fiz. 24, 992 (1960), Columbia Technical T r a n s l .
p . 996.

1 3 A. I. Osipov, Vestnik MGU, No. 4, 45 (1958).
1 4 A. I. Osipov, Nauchnye Doklady Vysshei Shkoly,

Ser. F i z . , No. 4, 149 (1958).
1 5 V. A. Solov'ev, Akust. Zh. 7, 337 (1961), Soviet

P h y s . Acoust ics 7, 269 (1962).
1 6 Shuler, Weiss, and Anderson, J . Chem. Phys .

(in p r e s s ) .
1 7 E. E. Nikitin, DAN SSSR 124, 1085 (1959).
1 8 S. A. Losev and A. I. Osipov, Usp. F iz . Nauk 74,

393 (1961), Soviet P h y s . Uspekhi 4, 525 (1962).
1 9 M . C a m a c , J . Chem. Phys . 34, 448 (1961).

F . Robben, J . Chem. Phys . 31, 420 (1959).
E. Nikitin, Optika i Spektroskopiya 9, 16 (1960).

2 2 B a s c o , Cal lear , and N o r r i s h , P r o c . Roy. Soc.
(London) A260, 459 (1961).

2 3 A. I. Osipov, DAN SSSR 143, 1392 (1962).
2 4 K. F . Herzfeld and T. A. Litovitz, Absorption

and Dispers ion of Ultrasonic Waves, Academic P r e s s ,
New York (1959).

25

26,
I. Amdur, Planet-Space Sci. 3, 228 (1961).

'N. A. Generalov and S. A. Losev, DAN SSSR 148,
552 (1963).

2 7 M c C o u b r e y , Milward, and Ubbelohde, T r a n s .
Faraday Soc. 57, 1472 (1961).

28A. I. Osipov, Vestnik MGU, No. 1, 13 (1961).
2 9 E. W. Montroll and К. Е. Shuler, J . Chem. Phys .

26, 454 (1957).
3 0 N . A. Generalov, Vestnik MGU, No. 2, 51 (1962).
3 1 N. A. Generalov, DAN SSSR 148, 373 (1963).
3 2 Lipscomb, N o r r i s h , and Thrush, P r o c . Roy. Soc.

(London) A233, 455 (1956).
33
34 i

A. I. Osipov, Kinetika i Kataliz (in p r e s s ) .

N. Basco and R. G. W. N o r r i s h , Can. J . Chem. 38,
1769 (1960).

3 5 E. E. Nikitin, DAN SSSR 132, 395 (1960).
3 6 A. I. Osipov, DAN SSSR 130, 523 (1960), Soviet

P h y s . Doklady 5, 102 (1960).
3 7 A. I. Osipov, Zhur. F iz . Khim. 35, 1524 (1961).
3 8 К. Е. Shuler, J . Chem. Phys . 32, 1692 (1960).
3 9 J . K. Cashion and J . C. Polanyi, P r o c . Roy. Soc.

(London) A258, 529 (1960).
4 0 A. I. Osipov, Z h u r . F i z . Khim. 36, 1798 (1962).
4 1 F . W. deWette and Z. I. Slawsky, Phys ica 20, 1169

(1954).
42
43,

R. J . Dwyer, J . Chem. P h y s . 7, 40 (1939).

E. V. Stupochenko and A. I. Osipov, Zhur. Fiz .
Khim. 33, 1526 (1959).

44
45,

E. E. Nikitin, DAN SSSR 135, 1442 (1960).

' E . V. Stupochenko and A. I. Osipov, Zhur . F iz .
Khim. 32, 1673 (1958).

4 6 S. A. Losev and N. A. Generalov, DAN SSSR 141,
1072 (1961).

47E. E. Nikitin, DAN SSSR 119, 526 (1958).
4 8 В . Widom, J . Chem. Phys . 34, 2050 (1961).
4 9 E. E. Nikitin and N. D. Sokolov, DAN SSSR 124,

366 (1959).
5 0 E . E. Nikitin, Kinetika i Kataliz 4(1) (1963).
5 1 O . Rice, J . Chem. P h y s . ( in p r e s s ) .
52H. P r i t c h a r d , J . Phys. Chem. 65, 504 (1961).
5 3 H. B. P a l m e r and D. F. Hornig, J . Chem. Phys .

26, 98 (1957).
5 4 A. I. Osipov, DAN SSSR 137, 833 (1961).
5 5 E. E. Nikitin, DAN SSSR 116, 584 (1957), Soviet

Phys . Doklady 2, 453 (1958).
5 6 E. Montroll and K. Shuler, Advances Chem. Phys .

1, 361 (1958).
5 7 K. Shuler, J . Chem. P h y s . 31, 1375 (1959).
5 8 A. I. Osipov, Vestnik MGU, No. 2, 41 (1962).
5 9 E. V. Stupochenko, J E T P 19, 493 (1949).



66 A. I . OSIPOV and E . V. S T U P O C H E N K O

60 E. V. Stupochenko, DAN SSSR 67, 447 (1949). 6 SE. V. Stupochenko, DAN SSSR 67, 635 (1949).
61V. N. Kondrat'ev, Kinetika khimicheskikh gazovykh M E . V. Stupochenko, Vestnik MGU, No. 8, 57 (1953).

reaktsii (Kinetics of Chemical Gas Reactions), M., AN 65K. L. Wray, J. Chem. Phys. 36, 2597 (1961).
SSSR (1958); Engl. Transl., U.S. Atomic Energy Com-
mission, Oak Ridge (1962). Translated by M. V. King

62 A. I. Osipov, DAN SSSR 139, 351 (1961). 3


