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I. INTRODUCTION

].. Formulation of Problem, Initial Data

The use of artificial satellites and space rockets to
investigate the structure and properties of the outer
ionosphere and the interplanetary medium has intensi-
fied the interest in effects arising in the vicinity of
bodies moving in a plasma. It is very important to
take these effects into account in the planning and in-
terpretation of various experiments made with satel-
lite-borne instruments. The questions connected with
the interaction between moving bodies and a plasma
are in themselves unique and, from various points of
view, in themselves of theoretical interest.

The main feature of the motion of bodies in the
upper atmosphere and in interplanetary and cosmic
space is that it takes place in a highly rarefied medium,
where the particle mean free paths A are large com-
pared with the characteristic dimensions of the body
Ry. This can be seen from Table I, which lists the
main physical parameters of the ionosphere and of the
interplanetary gas. Theusual methods of hydrodynamics
or aerodynamics cannot be employed to describe the
phenomena that occur in the vicinity of a body in such
a rarefied medium. It becomes necessary here to use
kinetic theory, which takes account of the fact that the
plasma is not a continuous medium but an aggregate
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of individual molecules, atoms, electrons, and ions.

Neutral particles, that is, molecules or atoms, in-
teract only with the surface of the body. Reflection of
the incoming stream creates an excess of particles in
front of the body, where a ‘‘condensation’” region is
produced (see Fig. 2). Behind the body, to the con-
trary, a “rarefaction’’ region is produced, since the
moving body ‘‘sweeps’’ the particles, as it were, and
they cannot fill this region behind the body immediately.
The length of the rarefaction region obviously increases
with the velocity v, of the body like v,/v,, where
vy = (2kT/M)Y? is the mean thermal velocity of the
molecules.

The charged particles—electrons and ions—interact
not with the surface of the body alone, for their motion
is greatly influenced by electric and magnetic fields.
The electric field is produced both by the charge of
the body itself and by the space charge created in the
plasma due to the difference between the electron and
ion concentrations.

Inasmuch as under ionospheric conditions the veloc-
ity of the body v, is usually much larger than the
thermal velocity of the ions and much smaller than
the thermal velocity of the electrons (see Tables I
and II), the character of their response to the electri~
cal field is essentially different. The electron distri-
bution is completely determined by the electric field
under these conditions. On the other hand, the in-
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fluence of the electric field on the ions is not decisive,
since the energy of the particles incident on the body
‘greatly exceeds their thermal energy, Mv% > kT, and
exceeds consequently the potential energy of the ion
in the electric field, since ep ~ kT. More important
is the influence of an external (the earth’s) magnetic
field, which holds back the ions and prevents the filling
of the rarefied region. The character of the filling and
the dimensions of the rarefaction region depend essen-
tially on the angle between the velocity of the body v,
and the magnetic field H,.

The dimensions of the rarefaction region greatly
exceed the dimensions of the body itself. In other
words, the ‘‘trail’’ stretches a long distance behind
the body. This can lead to a considerable scattering
of electromagnetic waves by the electron-density dis-
turbances in such a trail. It is important, of course, to
know the character of the interaction of the plasma
particles, and also the corpuscular radiation and light,
with the surface of the body. These questions have
been investigated very little up to now, and an all-out
primarily experimental investigation is still needed.
The interaction of the particles and of the radiation
with the surface of the body greatly depends on the
surface material. In the theoretical calculations it is
assumed, for the sake of being definite, that the par-
ticles interact with the surface in very simple manner—
they are either absorbed or reflected. Such important
processes as damage to the surface by collision with
the particles ( see (262738 ) or by the corpuscular radi-
ation ( knocking out of the electrons from the surface
by the light—photoeffect), etc, are neglected. The role
of all these processes in the formation of the distrubed
zone is not clear at the present time.

The particles reflected from the body can in prin-
ciple heat and even ionize the gas in front of the body.
It is easy to verify, however, that the heating of the
gas can be neglected if the molecule mean free path
is sufficiently large. In fact, the summary energy of
the particles reflected within a time At from the sur-
face of the body is obviously equal (in order of magni-
tude) to Epef ~ Mvh-ngR? - vAt, where n, is the par-
ticle density, M the particle mass, and R the dimension
of the body. These particles scatter without collision
over a distance on the order of the mean free path A.
Consequently, they are slowed down within a cylinder
of volume V ~ A%*vjAt. The total number of particles
in this volume is nyV ~ ngA’veAt. The mean particle
energy in the gas ahead of the body is therefore in-
creased by the collisions with the reflected particles
by an amount A€ ~ Mv4R?/AZ. At sufficiently large
mean free paths [ A > (vy/vy) R1] this change in
energy is small, A £ < kT. For bodies whose dimen-
sions are on the order of 1 meter, the condition
A > (vy/vy) R is well satisfied in the ionosphere at
altitudes exceeding 200 km.

The ionization of the gas ahead of the body, due to
collisions with the reflected particles, is also insigni-
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ficant, inasmuch as the velocity of the reflected mole-
cules and ions is only of the order of the velocity of
the body, that is, ~10° cm/sec. It is much smaller
than the velocity of the electrons in the atoms, so that
the probability of ionization by collision with a re-
flected particle is negligibly small.* Analogously, the
additional ionization ANy due to fast electrons emitted
from the surface of the body under the influence of the
incident ultraviolet radiation from the sun is also small.
Actually, ANs =~ 0gen(S/hv)a,At, where o ~ 10717 cm?
is the effective cross section for the ionization by slow
electrons, S/hy ~ 1011 —102 is the flux of quanta in the
incident radiation from the sun, a, ~ 107 is the co-
efficient of emission of electrons from the surface of
the body, and At = Ry/v, ~ 10™* sec. We therefore
have everywhere in the ionosphere ANy < 107!—1 elec-
tron/cm?.

A very important problem is that of excitation of
waves by the body. Inasmuch as the body moves in the
medium with supersonic velocity, it can in principle
excite both sound waves and ionic plasma waves, that
is, it can give rise to Cerenkov radiation. In an iso-
thermal plasma, however, all these modes are very
strongly attenuated if the wavelength is of the order of
or shorter than the mean free path. They cannot there-
fore exert a noticeable influence on the processes oc-
curring near the body. Sound waves with a wavelength
much larger than the molecule mean free path can be
radiated by the body, as recently calculated by Doku-
chaev 3], The condition A > A, which limits the
length of the sound wave, is satisfied in the ionosphere
only for waves with frequency of several cycles and
below. Electronic plasma waves are generally speak-
ing not generated by the body, since its velocity is
much lower than the thermal velocity of the electrons,
and consequently the velocities of the corresponding
waves are also much lower. To be sure, the scattering
of the electric field of the body by the inhomogeneities
of the medium could play an important role here and
could lead to a certain weak excitation of plasma or
even electromagnetic waves [22J, It must be borne in
mind that the presence of the earth’s magnetic field
makes the question of the spectrum of the excited
waves and their attenuation much more complicated;
in particular, it may turn out that the motion of the
body along the direction of the magnetic field exhibits
special features. Therefore, until a consistent theory
is developed, it is hardly possible to draw any quali-
tative conclusions regarding this matter.

The investigation of the stability of the perturbed
zone near a body moving in a plasma, as in ordinary
hydrodynamics, reduces to an investigation of the char-
acter of development of small deviations from equilib-

*The larger values obtained in (3] for the additional ionization
are due to the erroneous assumption that the cross section for the
ionization is equal to the gas-kinetic value ¢ ~ 107** cm?®. In point,
apparently, o does not exceed 10™° cm? (there are no exact data).




Table I. Plasma Parameters

\
Hel‘;g‘l:‘t z, l n, cm™ !\ N, cm™ ; T, °K E A,. cm A,, i+ €M v,, sec™? Vo neir sec-! Vi sec*! I v, ;.cm/sec ue,cm/sec
o 1 i
Tonosphere
200 F(2-=5) 1010 | (3--50)- 106 AR -800 8108 : 9-103 i 9-100 1.6-10%8 8 | 7104 13107
300 | a-iov o= _) ) w‘ 1000 . 105 7408 9101 3108 15 Pogoor 17107
400 | 5-108 1 (Hh— 1()’ 1500 7108 " 1,6-10% 1,6-10-1 1.4-103 i 7 ; 105 1 2.0-107
700 6.108 ! (27), 1P l 2000 5-107 1,3-10% 3:10°3 2.102 ; 1 o 1.6-108 2.6-107
1000 108 i 108 | “000 1 8-108 8-105 f 2:10-¢ | 40 1 0.2 i2-108 3.0-107
3000 1@ | 7 4000 2401 1 310 1079 14 0.4 | 23108 | 3.6.107
Interplanetary gas
(34} R, 0@F) L 30 | 5 108Q) | — t 3-109 — 10-2 51074 2. 108 4107
00- R o) | 10 |
Cosmic space
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Notation: n, cm=? — concentration of neutral particles; N, cm™® — concentration of electrons or ions; T —temperature; Ap —mean free path
of neutral particles; Ae,i—mean free path of electrons or ions; R, —radius of the earth; vy —number of collisions between neutral particles;
Ve, n+i— number of collisions between electrons and ions or neutral particles; Vjj’—number of collisions between ions; vy j —mean thermal
velocity of neutral particles or ions; ve —mean thermal velocity of electrons.

Table II. Plasma Parameters
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300 ! 0.4% 7.7-108 } 1.6-10% | 5.6-108 | (1 .8-8).107! 0.14-0.7 0 3—2).10-3 0.15 11
400 s | 0.40 71008 1.8-102 | 5.5-102 | (4—7)-107 | 0.2—0.4 20 | (1—9)-103 0.1 10
700 | I 0.33 L6 2102 8108 |(2.5—4)-107| 0,7-0.4 | 16(?) (0,3—1)-10-1 0.2 6
1000 l ‘ 0.33 | 5.8-108 102 1.8.107 1.2 14—16 l ~1 0.3 5
3000 0.16 ! 3108 90 2.5-108 1.5-108 4 | 7 ~10% 1.8 4
Interplanetary gas
3 —4)-Ry] 6-105 | (0.5—1.5)-1072(0.9—3)-105| 55 3.6-10 108 30 1 o (7 0.2 0.3
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Cosmic space
— ] 10 10-5 1 2402 {5.5.1072] 5.,5.107 | 5.6.104 | 700 | 1 | < () | 0.003 | 0.03

Notation: v, — velocity of satellite or rocket movins away from the earth, Ho — earth’s magnetic field; wy — Larmor frequency of the elec-
trons (eH/mc); wg — frequency of plasma oscillations 47Ne?/m; D — Debye radius V kT/47Ne?, M, —average molecular weight of neutral par-
ticles or ions; Qy — Larmor frequency of ions (eH/Mjc); oy — Larmor radius of ions (vi/QH).
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rium; the region under consideration is unstable if
these deviations increase with time, and stable if arbi-
trary disturbances damp out. This question also calls
for a special analysis. However, there are grounds for
assuming that the perturbed region is stable.

1t is important to emphasize that with changing alti-
tude in the ionosphere, and particularly on going over
to interplanetary or cosmic space, the characteristic
parameters of the plasma in which the body moves
change appreciably, as is seen from Tables I and II.
The character of the phenomena occurring in the vicin-
ity of the moving body changes accordingly; for ex-
ample, in the part of the ionosphere near the earth, up
to a height of several thousand kilometers, the satellite
velocity is on the order of 10° cm/sec, while the ion
and molecule velocities are on the order of 10° cm/sec.
We deal here, consequently, with fast supersonic motion
of the body. However, with increasing distance from the
surface of the earth, owing to the increase in tempera-
ture and decrease in the mean mass of the particles,
their velocity increases to an order of 10 cm/sec;
the velocity of the body, to the contrary, decreases,
so that v, and v, become equal and even the inverse
condition vy « v, may set in (see Tables I and II).
The character of this phenomenon, naturally, depends
greatly on the extent to which the earth ‘‘drags’’ its
surrounding gas shell at large distances from the
earth. Further, in the ionosphere the dimensions of
the bodies are always large compared with the Debye
radius. Under such conditions the factor most impor-
tant to the distribution of the electric field and the
charged particles in the vicinity of the body is the
Debye screening. In interplanetary and interstaller
gas the Debye radius is already comparable with the
dimensions of the body ( see Table 1I). Therefore the
conditions in the vicinity of the body, and consequently
also the structure of the disturbed zone in the lower
layers of the ionosphere and in its remote regions,
should differ greatly.

Thus, the problems that arise in the examination of
effects in the vicinity of satellites and rockets in the
ionosphere and interplanetary gas are greatly varied
in their general formulation and encompass a large
branch of plasma physics. We plan to cast light here
on a much narrower circle of problems, pertaining
essentially to the motion of bodies in regions of the
ionosphere not too far from the earth. The body veloc-
ities are much larger under these conditions than the
mean thermal velocity of the ions and the molecules,
and the dimension is much larger than the Debye ra-
dius. In Chapter II we consider the perturbations pro-
duced by such a body in the medium, while in Chapter
III we calculate the scattering of the radiowaves by
the ‘‘trail’’ of the medium. Finally, in Chapter IV we
discuss the particle fluxes in the vicinity of the body,

a problem of interest in itself and also important to
the analysis of the results of soundings of the ionos-
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phere. This problem, as well as the problem of inter-
action between a plasma and a slowly moving body,
will be considered in a separate article.

2. Brief Summary of the Literature

In the present article we report essentially the re-
sults obtained in 1", 1t is therefore of interest to
dwell here briefly on the contents of other published
papers devoted to these or allied problems.

In one of the earliest papers devoted to a theoretical
consideration of the effects due to motion of a body in
a plasma ( Jastrow and Pearse [9]), an attempt was
made to obtain only a qualitative description of the ex-
pected phenomena. The distribution of the potential
around a rapidly moving body was assumed to be
spherically symmetrical with the electrons having a
Boltzmann distribution around the body and the ion
density equal to the undisturbed value. We show later
on, however, that in fact the potential distribution
around the body is far from spherical, and the ion
concentration is highly disturbed.

A similar problem was solved more rigorously by
Kraus and Watson [103, They used the kinetic equation
to calculate in first approximation of disturbance
theory the ion density distribution and the electric po-
tential around a small point-like charge moving in the
ionosphere, that is, a weakly charged body with dimen-
sions much shorter than the Debye radius. In the ion-
osphere, on the other hand, as was already noted above
the opposite case is of importance, where the Debye
radius is much smaller than the dimensions of the
body. In addition, as will be shown below, the second-
order terms ( with respect to the charge of the body),
omitted by the authors, turn out to be more important
at large distances than the first-order terms. There-
fore the results of (197 are generally incorrect for
large distances from the body. In particular, at large
distances the disturbances of the density decrease as
1/1%, and not as 1/r’ as would follow from (197,

Several papers essentially analogous to [10] were
published by Rand [!!]. His calculations were carried
out for a two-dimensional case, that is, for a thin
weakly charged wire. The results of L'1] can be signi-
ficant in an analysis, say, of phenomena near moving
satellite antennas. Interesting from the methodological
point of view is the author’s attempt to generalize his
results to a large body by considering the disturbance
produced by the sharp edge of the body. However, the
character of the assumptions made in these calculations
remains unclear. Chopra and Singer [12] caleulated the
deceleration force of the body, under the assumption
that the main contribution is made by that region of
space where the satellite has a pure Coulomb field.
This may be true at the highest altitudes. In the ionos-
phere, the main contribution is made by the field of
the ‘‘trail’’ of the body, where the distribution of the

?
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potential has nothing in common with a Coulomb distri-
bution. * Greifinger [1¢] considered the motion of a
point-like charge in a plasma in a magnetic field by
the same method as Kraus and Watson and neglecting,
furthermore, the thermal motion of the ions.

Davis and Harris [34 integrated numerically the
equations of motion of the ions near the body simul-
taneously with the equation for the electric potential.
They neglected the thermal motion of the ions and the
magnetic field. Such an approximation is incorrect,
at any rate for large distances from the body. In addi-
tion, at small distances behind an absorbing body the
electron distribution may be far from equilibrium, un-
like the assumptions in [341, Nonetheless, this paper
is of considerable interest, for only by using numerical
methods is it possible to take a consistent account of
the influence of the electric field on the motion of the
ions near the body.

An interesting mechanism for the disturbance of
the plasma around the body was considered recently
by Getmantsev and Denisov (37 The point is that near
the antennas of a rocket or a satellite there is produced
a sufficiently strong high-frequency electromagnetic
field which influences greatly the concentration of the
electrons and ions. The authors have calculated the
plasma disturbances near an antenna mounted on a
resting or slowly-moving body.

A considerable number of papers is devoted to an
investigation of magnetic phenomena caused by a body
moving in a conducting medium., However, all the
papers published on this topic are based on a macro-
scopic magnetohydrodynamic analysis., The applicabil-
ity of their results to the motion of rockets and satel-
lites in the upper ionosphere and in interplanetary
medium is therefore doubtful.

II. STRUCTURE OF DISTURBED REGION IN THE
VICINITY OF A BODY MOVING RAPIDLY IN A
PLASMA

3. Initial Equations

All the problems solved here call for a kinetic anal-
ysis, since the mean free path A of the particles is
much larger than the linear dimension R, of the body.
The distribution function of the neutral particles is
determined by the kinetic equation

of 1 oU of

of _
7+v7~—~—-—_0.

or M or ov (2'1)

Here f =1f(r, v, t) is the distribution function of
the neutral particles ( molecules, atoms), M their
mass, and U=TU(r, t) the potential energy of inter-
action between the particles and the surface of the
body. If the body moves uniformly with velocity v,
then U=U(r - vit). In this case it is convenient to
consider the problem in a coordinate system fixed in

*We do not have paper [*2], and we make use of its brief sum-
mary in the review of Chopra.[?]

the moving body. The particle distribution is then
stationary and described by the equation

v 1 U o

o M or ou_

(2.2)

where u=v + vj. Itis necessary to take into account
the fact that in the coordinate system fixed in the
body, the latter experiences a flux of particles with
velocity — v,. This means that at large distances
from the body (as r — «), where the motion of the
particles is not disturbed, we have a Maxwellian dis-
tribution function

fotwy=no (i ) exp{ — o0}
Here n, is the undisturbed density of the neutral par-
ticles and T their temperature. We note that the in-
teraction between the particles and the surface of the
body can be described either by stipulating a special
form of the potential U(r), or by introducing definite
boundary conditions for the distribution function on
the surface of the body. For example, if all the par-
ticles colliding with the body are absorbed, then the
boundary condition for the distribution function on the
surface of the body S has the form

f(ro, u)S = Ot

if n-v > 0, where n is the outward normal to the sur-
face.

The electrons and ions interact not only with the
body but also with the electric and magnetic fields in
the plasma. In the coordinate system fixed in the
body, the equations for the distribution functions of
these particles have the form

of
va—{(
v (e S B ) L w0

Here fe(r, u) and f;(r, u) are the electron and ion
distribution functions, e is the charge of the ion (we
assume for simplicity that the ions are singly charged),
m and M, are the masses of the electron and the ion,
¢ = @{(r) is the potential of the electric field, and H
is the magnetic field. At infinity the functions f; and
fe have the form (2.3).

The magnetic field in (2.4) and (2.5) can be regarded
as specified ( in the ionosphere, H is the earth’s mag-
netic field). To the contrary, the electric field is it-
self due to the difference in the concentration of the

(2.3)

ef0, LIUN_ ‘g, u]}%:o, (2.4)%

m or m or

(2.5)

electrons and the ions in the disturbed zone. It is de-
fined by the Poisson equation
ag=dne( {fo(r watu—{f, waw). (2.6

At infinity ¢ — 0 and the boundary condition for the
potential ¢(r) on the surface of the body depends on
the type of the surface (dielectric, metal) and on the

*H,ul =H x u.
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charge of the body itself. By finding the solution of
{2.2) for neutral particles or of the system (2.4) —(2.6)
for charged particles, we solve completely the problem
of the disturbances produced by the body in the plasma.

4, Disturbances of the Neutral-particle Concentration

The distribution function f of the neutral particles
is conveniently represented in the form

f(r' u)=j1(r, u)+.f2(r’ ll),

where f;(r, u) is the distribution function of the par-
ticles that experience no collisions with the body;

f,(r, u) is the distribution function of the particles re-
flected from the body and depends on the form of the
surface and on the character of the particle reflection.
We shall consider usually a rapidly moving sphere of
radius Ry. In this case the most important is the rar-
efaction region, which extends over a long distance
from the body.

a) Rarefaction region behind a rapidly moving body
of arbitrary shape. By virtue of the fact that the veloc-
ity of the particle stream incident on the body is much
larger than the thermal velocity, collisions between
the particles and the surface of the body during the fill-
ing of the rarefied region have low probability. There-
fore away from the body these collisions are of little
significance, that is, f =~ f;,. This means also that the
specific shape of the body is insignificant at consider-
able distances from the body in the rarefied zone: what
is important is only the maximum cross section of the
body in the plane perpendicular to the incoming stream.
Consequently, in approximate calculations, we can re-
place the body by its cross section; for example, the
spherical surface considered above can be replaced
by a round disc of radius R located at the point z = 0.

We note first that the thermal motion of the par-
ticles in the direction of the z axis, parallel to the
velocity v, is of little importance because v, >
We can therefore assume that all the particles move
in the z direction with identical velocity v,. Then the
problem of determining the particle density in the rar-
efied zone becomes actually a dimensional one: it is
merely necessary to determine how the particles fill
in the course of time an empty region equal to the
cross section of the body in the plane (x, y), perpen-
dicular to the direction z of the motion of the body.
Account must then be taken of the fact that during this
time t all the particles move as a unit a distance vt
in the z direction, that is, one must change over by
means of the simple substitution t = z/v, to the coordi-
nate system that moves together with the body.

The distribution function of the particles in the
(x, y) plane has thus at the initial instant of time the

M M (uf+ul)
| i exp [~ G

form
N e,
VY Uy, Uy =3 . . R :
(20 i Uty ! if the point(x, y) lies outside S
| 0, if (x, y) lies inside S,

(2.7m

(2.8)

kT/M.
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where S is the cross section of the body. At any other
instant of time the distribution function describing the
free motion of the particles has the form

uy; By =f[z(z, u,, 1),

where (Xy, ¥y) is the point where the particle has been
located at the initial instant of time if it is situated at
the instant t in the point (x, y) and has a velocity
(vx, vy); £(..., 0) is the distribution function at the
initial instant of time, given by (2.8). It is easy to
verify directly that this expression satisfies (2.2) out-
side the body.

Naturally,

flx, ¥ ug Yol uys B); Uy uy; O],

To=2—u,t, Yo=y—uyt,

’ u
v%):f&zu?—:z, y——v—:z; U, uy; 0>.
(2.9)

In the last expression the time t has already been re-
placed by z/v,. Integrating now the distribution func-
tion (2.9) with respect to the velocity, we can obtain
the particle density in the disturbed zone

Sf(x yu
=(2y Sf(xm?/o,

In the integral (2.10), the variables uy and uy are re-
placed by xy=x — uxz/vy and y, =y ~ uyz/v,, that is,
the integration is carried out over the initial coordi-
nates of the particles. By virtue of the properties of
the initial function, the integration in (2.10) is actually _
carried out only over regions outside the cross section
of the body. The same integral taken over the cross
section of the body is obviously equal to the disturbance
of the particle density An =ny — n, inasmuch as the in-
tegral over the entire region is equal to ny,. Thus

/ 2 > (dwodyof<xo’ Yo, S O)

Mo} (& — o)t - (y— yo)zj
2kT Fid

v
FLe ¥t Uy

z
(o0 s » U—J i,

2 g, LY gy, 0) dzydy,. (2.10)

An(z, y, z 2 Uo»

Muv}
=Ny 5 T S dzydy, exp [

Moj 22 ty" J % dxy dy,
8

Mo
=N 5T P | — ok T 2

[ MUZ xd + y§ —2xor—2y0y ]

z2

X exp (2.11)

This expression for the perturbed molecule density
has a form which is very simple and convenient to
integrate. This integration will be carried out below
for cases when the cross section of the body in a plane
perpendicular to the direction of motion is a circle or
a rectangle. In addition, a simple expression will be
obtained for the disturbances of the particle concen-
tration in the case of an arbitrary cross section, an
expression correct at sufficiently large distances from
the body.
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Body of circular cross section. Assume that the
cross section of the body is a circle of radius R;. Of
course, this is also the cross section of the spherical
body considered above.

In calculating An we change over in the integral
(2.11) to polar coordinates ¢ and p, = \/XZ + y0 If,
furthermore, we measure the angle ¢ from the (x, y)
direction, so that xgx + y;y =p,p cos ¢, we obtain in
place of (2.11)

noMuvi Rox
v

e \ eodes dg

h

An (x,
2nkTz?

Y, 2)=

. eXP {

2 Moz~
eXp [ . z> 2KT J
Qo QQO Muj
( ) e ] T
Ru TL(Z:
z V 26T
() S
')le A
1)

Q ZMvu
kT

)
J

= 2n, exp tdte= "1,

(e=l/x2+y2‘, z>0). (2.12)

On the axis, that is when p = 0, the integral in (2.12)
can be evaluated, and we obtain simply

M00[R>]
kT \_ 2z ’

At large distances from the body, when

() (e

n=n0exp[— (2.13)

we get

Ml 7 R,

o=~ (7))

that is, the disturbances decreases in proportion to
1/2%.

The function n(p, z)/n, behind the body, given by
formula (2.12), is shown in Fig. 1 for v Mv2 /2kT = 8.
It is seen from the figure that a large ‘‘rarefaction
region’’ is produced behind a rapidly moving body.
Thus, in the case considered here n(0, z) = 0.5n,
even for z =~ 10R,.

Body of rectangular cross section. Let us consider
now a body of rectangular cross section with dimen-
sions 2Rx and 2Ry. This case is less realistic, but
in the presence of a magnetic field calculations of the
ion perturbation for a rectangle lead to simpler ex-

Begr £ azf#-as#%#"”»"

\Eléé—:—y’b T_BTTE BB 22 B,
I

e 4

FIG. 1. Curves of constant ratio n(p, z)/n, behind a spherical
body in the rarefaction region (VMvZ/2kT =

pressions. In this case the integration in expression
(2.11) can be readily carried out, and we obtain

An(z, y, z)
R R
Y v (2 —20)* L (y —yo)® Mo}
R e
R R
M z—Ry o/ Mo} z+ R, Mo
T4 (D< z zkf)‘q)< z szo)(
YRy o ag YRy Mot
X‘(D sz> (D( zuﬂ‘ (2.14)

Here, as before, z > 0 and

is the probability integral.

Disturbances at large distances from a body of arbi-
irary cross section. Formula (2.11) enables us to ob-
tain a simple expression for the perturbation of the
particle concentration at large distances behind a
body of arbitrary cross section. In fact, at large z
the argument in the exponential term of the integral
in (2.11) is always small and the term itself is conse-
quently close to unity. We therefore have at large z

sM Mpp oty
An (2, y, 7) = L0 Mof =y j

SkT P | T O

S (2.15)

On the z axis, that is, at x =y = 0, the perturbation
has the form

SMe2

AR =0y

(2.16)

The physical meaning of this expression is clear: the
region S perturbed by the body melts away uniformly
with velocity ~v kT/M, that is, after a time t=2z/v;
it spreads out into a circle of radius VvkT/M(z/vy).
Thus, at large distances from the body the perturba-
tion of the density decreases as 1/z%.

b) Region of condensation ahead of a rapidly moving
body. We consider now the region of ‘‘condensation,”’
that is, we determine the excess concentration ny, due
to the presence in the medium of additional particles
reflected from the surface of the body. We assume
for simplicity that the surface of the body is a sphere
of radius Ry.

Specular reflection. We assume first that the par-
ticles are specularly reflected upon striking the sur-
face of the body. Then the number of excess particles
in a small volume dV,_near an arbitrary point {p, z)
(Fig. 2a) is equal to the number of particles in a cor-
responding small volume dV,_ in the incoming stream,
and consequently ny(p, z) = nodeo/deZ. Taking it
also into account that the velocity is not changed by
elastic collision of the particle with the body, we find
that the ratio of the volumes is equal to the ratio of
their cross sections:
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FIG. 2. a) Illustrating
the derivation of the par-
2k, ticle concer.ntration i.n the
““condensation’’ region.
b) Curves of constant
ratio n(p, z)/n, in the
‘‘condensation’’ region
ahead of the body in the
case of specular reflec-
tion from the surface of

dVOo __ 00400
av_, ~ edl

where dp; and dI are shown in Fig. 2a. All these
quantities are expressed by elementary geometry in
terms of p, z, Ry, and the angle 6, (the angle between
the normal to the sphere at the point of collision and
the z axis; see Fig. 2a):

0, = R, sin 8;, doy,= R, cos 6,d0,,

2@(1——s1n36 )

T sin20,

de,.

We then obtain

RE sin?0; cos? 6
ny=ny—g —p——, (2.17)
@ 4 _eginsg,
Q
and the total concentration of the particles in the
‘‘condensation region’’ is

n(e, 2) =ny+ny (e, 2).

The angle 6; can be expressed here in terms of p and
z with the aid of the relation

2z cos 0, + 20sin 0, — i 6 = R,.

As p — 0, that is, near the z axis, the expression
for n, becomes quite simple

(2.18)

the body (VMv3/2kT =8).

1 (0, 2) = A s, (0, z)_nouﬂ2z B)2>. (2.19)
Itis clear therefore that the density of the particles in-
creases noticeably ahead of the body. The variation
of the particle concentration in the ‘‘condensation’
region, calculated from formula (2.17) for different

p and z, is shown in Fig. 2, where we see that n/n, =2
near the surface of the body, n/n; = 1.5 at a distance
0.2R;, and n/ny=1.1 at a distance Ry. With increas-
ing distance from the surface of the body, the concen-
tration disturbances decrease more rapidly in the
‘‘condensation’’ region than in the ‘‘rarefaction”
region.

Diffuse reflection. Let us assume now that the
molecules are diffusely scattered upon colliding with
the surface of the body, that is, that the surface is
very rough, so that the particles are reflected at any
angle with equal probability.

Arguments analogous to those given above for the
case of specular reflection lead to the following ex-
pression for the additional density n, in the case of
diffuse reflection:

=To (5,

ny(Q, z)
arccos 70__
RZ T Lo cos 0’ sin 0, 40
=ny5t \d 149 y
" o § q" é EEEY TR
(2.20)
where*
c0s B’ = c0s0,c050 +5in 0, sinBcos g, 6 =arcig ,S ,
1 0<0'<F,
D®)= .
0 5 <0 <

This expression for ny in the case p = 0 (that is, on
the z axis) greatly simplifies:

20, z)_noR {Ro 1TZ (Ho +2 )1 z+R

It follows therefore that the additional concentration
n, ahead of the body is always larger in diffuse than
in specular reflection. Thus, at large z (z > R() we
have n, ~ nR,/z)?/2 in the case of diffuse reflection
and n, ~ ny(R,/z)*/4 in the case of specular reflec-
tion. However, the concentration of the particles
changes most appreciably near the surface of the body
(for AR < Ry). Here

(2.21)

2R,

n
=5~ In S

where AR =Vp? +z2 - R, is the distance from the
surface of the sphere. As z — Ry, — 0 the concentra-
tion increases logarithmically and can become con-
siderably larger than ng.

The concentration of reflected particles near the
surface of the body increases even more strongly in
the presence of accommodation. In this case the con-

*arctg = tan"'.
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centration of the reflected particles increases in addi-
tion by a maximum factor vg/vy.

In the rarefaction region, as indicated above, the
role of the reflected particles is not important. There-
fore formulas (2.12) and (2.13) (see also Fig. 1) re-
main in force regardless of the character of reflection
of the particles from the surface of the body.

c) Concentration of neutral particles around a
sphere moving with arbitrary velocity. In the present
section we present without proof formulas for the con-
centration of neutral particles around a sphere with
arbitrary velocity. Although in this case we can no
longer state that the rarefaction region contains only
particles that do not collide with the body, and that on
the forward side the blocking of the particles by the
body is insignificant, it is nevertheless convenient to
represent n, as before, in the form

no=ny -t N,

The expression for n; can be obtained here directly
from geometrical considerations, by recognizing that
the body sweeps in velocity space a region corre-
sponding to the angle subtended by the sphere at the
given point. We ultimately obtain

710 2) =1y %AZ—TY/Z Ii sin 6 do iozﬂ dv
aresin I/QO—HZ— 0
R Gl ==/
‘i;”"v.—qfﬁsme)_ (2.22)
If the body moves rapidly, that is, vy > v kT/M, then

the previously obtained formula (2.12) follows from
(2.22) at distances z such that p/z and Ry/z

< ¥kt /Mv2 .* The value of n; depends, as in the
case of a rapidly moving body, on the character of re-
flection of the molecules from the surface of the body.
The calculations reduce here, roughly speaking, to an
averaging of formulas (2.17) and (2.20) over the di-
rections of the particles incident on the body. We
thus have in lieu of (2.20)

ny (0, 2) =1y <2_T1[Wﬁ>3/2 2§‘ do § sin 6 dO §sz do
8

. Ro 0
arcsin
V2§22

R} 20 aind B
. —7— cos? 0’ sin* 6
Mgy TS
sin?0 —sin 0 sin3 6’ o
V&+2

The angle ¢’ in formula (2.23) is given by

B +2cos (04+0")sin 6’ +sin@=0.

- 2.24
| (2.24)

sin 6’

*We note that a different criterion for the applicability of for-
mulas (2.11)~(2.17) is given erroneously in [’], namely R,/z
K VKT/Mv;.

5. Influence of Magnetic Field on the Ion-concentration
Disturbance

The system (2.4) —(2.6), which describes simulta-
neously the distribution of the ions, electrons, and
electric field in the plasma, is rather complicated.

It can be solved only by allowing for specific conditions
that make certain simplifications possible. In particu-~
lar, as can be seen from (2.4) —(2.6), the equations for
the electron and ion distribution function are coupled
because the motion of the charged particles is in-
fluenced by the electric field, which in turn depends

on the concentration distribution of these particles.

At the same time, in the case of a rapidly moving body,
vy > VKT/M and the energy Mv}/2 of the ions incident
on the body is large compared with the thermal energy
kT. The potential energy of the ion in an electric field,
resulting from the disturbance in the plasma, is, as
will be shown, only somewhat higher than the thermal
energy. We must therefore expect the influence of the
electric field on the ion motion to be negligible in first
approximation. In this approximation Eq. (2.5), which
describes the distribution of the ions, can be solved
independently of (2.4)—(2.6). A solution with account
of the influence of the electric field on the ion motion
will be obtained below in the approximation linear in
the field.

If we disregard the magnetic field, then the motion
of the ions does not differ at all from the motion of
the neutral particles, considered in the preceding
section. In this case, consequently,

Ni(r) _ n(r)

Nip g
The expressions for n(r)/n, are given above. Thus,
the problem consists only of taking account of the in-
fluence of the external constant magnetic field on the
motion of the ions. We consider here only the case of
a body moving rapidly in a plasma.

In this case the presence of a magnetic field H in-

fluences appreciably only the distribution of the ions
in the shadow of the body. The magnetic field in the
condensation zone is practically insignificant. Indeed,
the velocity of the particles reflected in this zone is
of the same order as the velocity v, of the body.
Therefore their Larmor radius, ~v,/Qy, is very large
and if the radius of the body R, < v;/Qy, then the mag-
netic field begins to come into play only at distances
where the particle density is practically equal to Nj,.
Since the collisions between the particles and the sur-
face of the body can be neglected in the shadow zone,
only the maximum transverse cross section of the
body in a plane perpendicular to the direction of motion
is important in the corresponding calculations. Start-
ing from this, the equation for the distribution function
of the ions in the presence of a constant magnetic field
can be written in the form

(2.25)

e of
Vaj+TMT[V+V0, H] =0

A

(2.26)
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with the usual boundary condition

f z=0

M; N\ M (V)
- {( okt ) OXP {

2KT »if (x, y) is outside S,
0, if (x, y) is inside S,

where S is the transverse cross section of the body.

The characteristic equations for (2.26) are, as is
well known, the equatiz)ns of motion of the ions; they
have the form

dv

e . dr
7—=M—1:C[V"}—Vo, H], =

=V (2.27)

where the time t is a free parameter.

Let us choose the z axis, as usual, along the direc-
tion of motion of the body, the y axis perpendicular to
the (H, v,) plane, and the x axis in the (H, v;) plane,
perpendicular to the v, direction.

The solution of the characteristic system (2.27) has
in these coordinates the form

z =y + [t sinae — (v 4+ v,) cosal t-sina
Yl

— gy cos¢ [sin(Rgt — @) +sin @],

u
Y=o+ g [cos (Qut — @) —cos g,

N u .
z =24 — Upt + [0} sin a — (0} 4- v,) cos a] t~cosa+§;l; sina

X [sin (Qyt — @) + sin @],
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v, = v} sin?a— (v} + v,) cos asina —u) cosa cos (RQut — @),
v,= —uj sin (Qut —9),

v,= —U,+Uisinacosa
— (024 1,) cos®a+u, sinacosa (Qut — ). (2.28)

Here

uy =V (03)* + [0f cos a+ (v} +v,) sin a]?

is the projection of the velocity u =v + v, on a plane
perpendicular to H; sing = vg,/ul; a is the angle be~
tween v, and Hy; x, y,, and z, are the initial coordi-
nates; vy, v, and v} are the initial velocities, and
Qy = eH/Mjc is the gyromagnetic frequency of the
ions. It is important that the ion merely rotates freely
in a plane orthogonal to H. Because of this, the total
energy of the particles and the modulus of the pro-
jection of the velocity on this plane remains constant
in time:

(0, 4 0o)? + 03+ 0f = (02 + )2 + 08" + 0,
08 4 [0 cos @ + (22 + vp) sin al?
=v} + [v, cos a -+ (v, + v,) sin a]2.

Using these relations and recognizing that the boundary
function f;_, depends only on the coordinates and on
(v + vo)z, we can readily write the solution of (2.26):

flz, z, ys (v4v)]=f [0, z—{u) cosacos(Qut —q)+uv,}t

u
+ ﬁ cos a [sin (Qyt — @)+ sing],

w
Y= gy {008 (Uit — @) —cosgl; (v, 400 +0h+ek |,

where the parameter t is defined by the relation

v,t—u; sina [cos (Qut — )t ——é {sin(Qgt — cp)+sin(p}] =z
(2.30)

In the absence of a magnetic field, the distribution
function (2.29) coincides, of course, with (2.9). Inte-
grating the obtained expression for the distribution
function with respect to the velocities, we can deter-~
mine the ion density in the shadow zone. The form of

fz 2 y; (v4-v,)Y] =
0

(o) exo [ =25 | tor {at gl [oin (9 —o)

+sinq>] }z—i—{y—— g%—[cos (QH :—z—q:r)——cosq)] }2 > Ry;

—i—sincp] }2+_{y—~g% [cos (QH Uz—z—cp>——cos q)]}2< Ru./

(2.29)

the latter depends essentially on the angle o between
the direction of the magnetic field and the direction of
motion of the body.

a) Motion of body along the magnetic field (v, It H).
We consider first a simple case when the body moves
along the magnetic field H, that is, when a = 0. We
assume here that the cross section of the body is a
circle of radius Ry. Expression (2.29) for the distri-
bution function then assumes the form

for {1‘—{—% [sin (QH—:——Q)

(2.31)
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Here
uL=0l=]/m. (2.32)

We change over to new variables u and ¢, which are
determined by the relations

1) cos )_ ucosrp,g:zQH ’
2sin
20y (2.33)
. Qn _using,
uj sin ( 20 > = QHz

2sin
Inasmuch as

u du do,
dv.dv, = o
4sin? —
2wz

We introduce the variable v’ =v v M;/2kT and obtain
from (2.31)

o
N ’ , , 1
Ni(e )= { dotexp{— (o) + o0
2x w
1 u du dp,

® _ng S Qpz

0 Hp 4 sin T,

g
2QH sin z—v—\

% exp (u cos @1 — Q) +u? sin?q,
_— 5 R
(2 sin g.zHZ )
v/

or after integration with respect to ¢,

]Vi (Qv Z) ==

5; _S dolexp [ — (¢, + v2)?]

2
2exp ~~—-Q————-—2
S ey

K g uevuzfo —-ﬁl—g‘—z“l‘ du, (2.34)
R QH

. H
S 9, |
2QH

)
Qyrz

ZHY
20,

sin

where py = {(c/eH) v2kTM; has the meaning of the
average Larmor radius of the ion, and I; is a Bessel
function of zero order of imaginary argument. Recog-
nizing furthermore that v, > v kT/M;, we replace vy
everywhere in the curly bracket by — v, and integrate
with respect to v,. We ultimately obtain

2
N (e, z)=2Ngexp ~—~—~%2;;—2
<2QH sin T )
X { ue=fy [\ du. (2.35)
1”0___ Qy{sin Tv{k
o 2H7
2QH sin 21;0 I

At small distances from the body we have

. Qpyz Quz
sin —HE o 2H
2vy v

for (2.35a)

and formula (2.35) coincides with (2.12). This confirms
the assumption made above, that the influence of the
magnetic field is insignificant in the near zone (when

z < v,/Qy). When z > vy/Qp, the influence of the
magnetic field, to the contrary, is very large. It is
obvious from (2.35) that N;j(p, z) is a periodic func-
tion of z with a period T, = 2mv,/Qy.

The character of variation of the ion density in the
shadow zone, of course, depends appreciably on the
relation between R, and the Larmor radius pp. If the
dimensions of the body are very large ( R; > py) then
the perturbed zone represents actually a semi-infinite
cylinder of radius R, inside of which the ion concen-
tration is zero; the boundary of the cylinder is smeared
over a distance on the order of py.

For small bodies with Ry < pp, to the contrary,
the ion concentration in the shadow zone changes very
little over the length of the period 2mv,/Qy.

On the z axis (for p = 0) expression (2.35) as-
sumes a particularly simple form. Here

., Rz
2 2
4QY sin 30,

N{(0, 2)=Nyexp [——R——] . (2.36)

For the case v; It H considered here, the disturb-

ances of the ion concentration

ANy Mo, AN,

Nio Ny ’
along the z axis for p = 0, are shown in Fig. 3, while
Fig. 4 shows curves of equal values of N;(p, z)/Nj,.
The corresponding curves are calculated for Ry = pg
and v Mv? ¢2/2KT = 8. In this case the period of variation
of ANj /Nw is equal to 50.24R,.

It must be noted that under real conditions the struc-
ture of the rarefied region behind the moving body is
neither strictly periodic nor semi-infinite. This is
due to the fact that in the derivation of the previous
formulas we took no account of the collisions of the
ions and the electric field. It is understandable that
when the collisions are taken into account the disturb-
ances of the region behind the moving body can have
a strictly periodic structure only up to distances of
order Aj—the mean free path of the ions. Collisions
lead to a change in the periodicity in z and to a smear-
ing of the effect over distances on the order of Aj.

b) Motion of body transverse to the magnetic field
(vo 1L H). If the body moves in a direction perpendicu-

FIG. 3. Variation  4M{2)
of ANi/Nio on the z
axis in the ‘‘rarefac-
tion’’ region of a
spherical body mov-
ing parallel to the
magnetic field.
Dashed curve — the ’ 24
same for H, = 0. 2% s0 3 e e
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FIG. 4. Curves of constant ratio Ni(p, z)/N;q in the ‘‘rarefac-
tion’’ region of a spherical body when v, ||H,, \/'ijzo/ZkT =8,

R/pu = 1.

lar to H, then the problem has no axial symmetry and
the expression for the ion density for abody of circular
cross section has a very complicated form. Simpler
and clearer formulas are obtained if the cross section
of the body in a plane perpendicular to the direction of
motion is a rectangle with dimensions 2Ry and 2Ry.

Expression (2.29) for the distribution function as-
sumes in this case the form

Flz 2, y; (Vo)
RN M, 2
[(hm} *Nyexp [ — ZLGANE T if RS jn—og

={andRyt>ry— h% [cos (QH viz—-cp) — cos q>J ‘J ,

0, if R, ,<|z—u.t]

y—-?;%[cos (QHULZ—q)>—-coquH, (2.37)

tandR <

where the parameter t is defined by the relation

vit—uj [cos(QHt—tp)t—— Sin (QHtg:)+Sin(P J =1z, (2.38)
and

uy =Vo @ to), sing=gr.

The sought ion density in the shadow zone is deter-
mined by integrating the distribution function (2.37)
with respect to the velocities. Recognizing that
VKT/M; < v,, we obtain ultimately

Nz, z, y)=N;p—AN;(z, z, y)

. Nio | z—R, ‘/Mivﬁ )_ ¢ z-+Ry Miv¢
_NW_'F'@( 3 kT O —; IET
y—Ry

) y+ Ry
@ . Qusz - P 5 Qyz ’
20y sin o, Qy SIN o, l

Here, as before, ¢ is the probability integral, py

= (c/eH) ¥ 2M{kT, and the z and x axes coincide with
the directions of the motion of the body and the mag-
netic field, respectively. It is seen from (2.39) that
in the case v, L H considered here the dependence of
N; on x is similar to that when H = 0 [compare with
(2.14)], while the y-dependence changes radically be-
cause of the magnetic field. At small distances from
the body z < vy /9y formula (2.39) coincides with
formula (2.14), obtained in the absence of a magnetic
field, as should be the case.

(2.39)

X
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However, when z = vy /Qy, the influence of the
magnetic field is large: the second factor in (2.39) is,
as in the case when v, || H, a periodic function of z
with a period 27vy/Qp.

The distribution of the ion concentration in the
shadow zone has, owing to the influence of the magnetic
field, a rather complicated form. An idea of the char-
acter of the disturbance of the ion concentration
AN;/Njy can be gained from Figs. 5—7.

The variation of ANj /N, along the z axis for a
body with square cross section, with Ry = Ry =py
and v Mv2 /2KkT = 8, is shown in Fig. 5. The disturb-
ance does not remain constant, but decreases with dis~
tance as 1/z. We recall here that AN; /Nj, decreases
with the distance like 1/z° in the case when H =0
(dashed curved in Fig. 5), whereas when H !l v, the
average variation of ANj/Nj, does not increase at all
with increasing distance.

~N
arr T _Hy
1 Il i i slanden, ST S L . A
0 10 20 30 40 & 60 70 % 0 100 M0 Fpa

FIG. 5. Variation of AN;/N;q on the z axis in the ‘‘rarefac-
tion’’ region of a body of square cross section, moving perpendicu-
lar to the magnetic field (v, LH, VM;v;/2kT =8, Ry =Ry = py).

Figure 6 shows the traces in the (X, y) plane of the
surface Nj(x,y, z)/Nj, = 0.5 for different values of
z, that is, different distances behind the body. We see
from the figure that this surface has a rather interest-
ing structure; for example, in the case when pg
=0.3Rx = 0.3Ry the form of the cross section of the
body first spreads out, and then again assumes its ini-
tial sharp boundaries. This is seen even more clearly
in Fig. 7, which shows the general form of the surface
Nj(x,y,2)/Nj, = 0.8. With increasing Nj/Nj, the sur-
face N;j/Nj, = const stretches overlargerdistances be-
hind the body; the influence of the magnetic field naturally,
increases then. The influence of the magnetic field
becomes stronger also with decreasing Larmor radius
of the ions, more accurately, with decreasing ratio
py/Ry or pH/Ry This is seen, in particular, from
Fig. 6, where the cross sections Nj(x, y, z)/Ny; = 0.5
are shown for different ratios of the Larmor radius to
the dimension of the body. The influence of the mag-
netic field is completely insignificant when pg /Ry
=PH/Ry =3 (the dashed curves on Fig. 6 show the
same sections in the absence of a magnetic field), it
becomes noticeable when ppy /Rx =pH/Ry =1, and is
quite large when py /Ry =pg /Ry =0.3.
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FIG. 6. Cross sections through the surfaces of

constant ratio N;/Njo = 0.5 in the (x,y) plane in the
‘‘rarefaction’’ region for different values of z/Ry,

as indicated in the figure. The body has a square cross
section. Dashed curve — the same for H, = 0.

FIG. 7. Surface of constant ratio Ni/N;o = 0.8 in the
‘‘rarefaction’’ region of a body of square cross ‘section,
x = Ry, for the case when v, L H,, H, || x, pyg = 0.3Ry.

If the linear dimension of the hody in a direction
perpendicular to H, is large, that is, much larger
than the Larmor radius (Ry > py), then the disturbed
zone at large distances from the body represents a
plate in the form of a strip lying in the (x, z) plane,
that is, in the plane (v, -H):

T e
—o (L j‘yz[k;’())\ ?:ZZ?;J (2.40)

The thickness of the plate is somewhat smeared out
(by an amount pyy) and oscillates with a period
21vy /Qyg- It follows from formula (2.40), in particular,
that owing to the influence of the magnetic field appreci-
able disturbances in the density are maintained at larger
distances from the body.

¢) Arbitrary direction of motion. To calculate the
distribution function in this general case it is con-
venient to integrate (2.29) with respect to the velocity
by changing over from the velocities vy, Vy, and v,
to the velocity uj, defined in accordance with (2.32),
and the velocity v/, parallel to the magnetic field. In
this case at large distances from the body (z > vy/Qg),
where the influence of the magnetic field is most notice-
able, the following expression holds for the ion concen-

tration:
2)=N, {1-%]@ (

—® ‘/M v =R,
2kT zsma+zcosa

—o ¥\
( 2pq sin g;‘;l: ]

Mv3 x— Ry )
2kT zsina--zcosa

)‘ 1(1) _y—Ry
’ 2gp sin - — QHZ
Uy

(2.41)

Ni (.75, ?/7

It is assumed here that the angle « is not very small

(sin @ > 2Ry /z). The form of the disturbed zone is

in this case, naturally, rather complicated. On the
whole, the length of the perturbed zone increases with
decreasing angle « like 1/sin o. The mean value of
the disturbance of the concentration of the ions for

any o # 0 decreases in proportion to 1/z. The motion
of a body along the magnetic field is in this sense a
special case.

6. Electric Field Around a Body

By disturbing the density of the electrons and ions,
the moving body upsets the quasineutrality of the plasma
in its vicinity. As a result, an electric field is pro-
duced here, which itself influences the distribution of
the charged particles. Therefore, to find the electric
field it is necessary, generally speaking, to solve Eq.
(2.6) for the potential of the field simultaneously with
Eqgs. (2.4) and (2.5), which determine the distribution
of the charged particles.

On the whole, this system of equations is quite com-
plicated, and a complete solution can be obtained only
in the region of a plasma which is weakly perturbed by
the motion of the body. An approximate solution of
these equations in the region of a strongly disturbed
plasma is based on the fact that near the body the dis-
tribution of the heavy particles (ions) is disturbed
essentially because of their interaction with the body
itself, so that in first approximation the influence of
the electric field on the motion of the ions can be neg-
lected.

We note that the distribution of the charged particles
and consequently also the electric field near the body
are influenced by the character of interaction of the
particles with the surface of the body; accordingly, the
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form of U(r) or the boundary conditions in Egs. (2.4)
and (2.5) also change. If, for example, all the particles
are elastically reflected from the surface of the body,
then the potential energy U(r) is as before equal to
infinity on the surface of the body and to zero outside
the body. On the other hand, if the particles are ab-
sorbed upon contact with the surface of the body, for
example the ions become neutralized and the electrons
absorbed, or if the collisions between the particles

and the surface are inelastic, then the corresponding
expressions change; furthermore, in this case there
are added to Egs. (2.4) and (2.5) terms that describe
the creation and absorption of the particles. New terms
must be added also when account is taken of other ef-
fects on the surface of the body (photoeffect, thermionic
emission, etc.).
far away from the body in the disturbed zone the con-
centrations of the ions and electrons, and consequently
also the electric field, are actually independent of the
character of interaction between the particles and the
surface of the body. It is therefore advantageous to
consider first the simplest case, when all the particles
are reflected from the surface of the body. The in-
fluence of particle absorption will be taken into ac-
count later on.

a) Body reflects elastically particles incident on it.
Electron density. In the conditions of interest to us,
the velocity of the body can always be regarded as
smaller than the thermal velocity of the electrons

=v2kT/m. Therefore the disturbances due to the
motion of the body are small and the distribution of
the electrons should be close to equilibrium. Solution
of (2.4) can be sought in the form of a series of suc-
cessive approximations, choosing as the zeroth ap-
proximation the Maxwell-Boltzmann equilibrium dis-
tribution

foo (0, T) =N, (ka exp { el (2.42)
The next term of the expansion, as can be readily seen,
5 v mv% /KT times smaller than fgy, and is neglected
throughout. *

For the electron density we obtain from formula
(2.24), naturally,

N (1) =Noexp {22} (2.43)

Electric field. Equation (2.6) for the potential of
the electric field is now written in the form

*It must be noted that inasmuch as the spreading out of the
disturbance transversely to the magnetic field is hindered when
the disturbed region is very strongly elongated along the magnetic
field, no Maxwell-Boltzmann distribution is established for the
electron distribution function, and the expression for f¢(u,r) and
N(r) has a more complicated form. Such a case is realized, how-
ever, only if the body motion is strictly longitudinal, when the
angle a is very small.

One can show, however, that sufficiently

Ag(r)= — 4neN, (gj%r)—exp [%D . (2.49)

where

N,(r)= S f, d%u

is the ion density and N; is the undisturbed electron
density. *

Let us rewrite (2.44) in terms of the dimensionless
variables y = ep/kT and x = r/Ry:

Ay = ——A{iv—%—exp y} , (2.45)
where A is a certain constant
2 R Ry \2
A= 1N _( 0) =2.1.10 0(_1;0) (2.46)

=V kT/4me2N, is the Debye radius. In the ionosphere
A ~10°—10* (for R, =1 meter), that is, quite large.
This means that the characteristic dimensions which
arise in an examination of the disturbances due to
moving bodies in the ionosphere are large compared
with the Debye radius; the Debye screening plays there-
fore a most important role here.

The character of the solution of (2.45) in the pres-
ence of a large parameter A in the right half of the
equation is of course determined by this parameter.

In this case it is convenient to separate two regions:
the region where the concentration of the ions is not
very small, so that ANj(r)/N; > 1, and the region near
the body ( we shall call it the ‘‘region of maximum rar-
efaction’’), where, to the contrary, AN;(r)/Ny<1. In
the first region the principal role in (2.45) is played by
the nonlinear term exp y, and the equation can there-
fore be rewritten in the form

—y= ‘“{ (2.47)

NO
IACREC Axy} '
A solution of this equation can be readily obtained by
iteration: in the first approximation

N .
—u g (2.48)
In the next approximation
— Y= n [ Ny
N 0
Ni(r)—=2 A lnN ®
=In Do Mo No
=1In Ni‘zr)—ln [1 A Ay lani(r)J" (2.49)

etc. In the first region [AN;j(r)/N; > 1] this method
yields good convergence.

In the second region, the region of maximum rar-
efaction, [ AN;(r)/N, < 1], the concentration of the
ions is very small and accordingly the role of the ions
is insignificant. In this region, however, the solution

*For simplicity we assume everywhere that the ions are singly
charged, that is, Nj, = N,.
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of (2.47) depends strongly on the electric properties of
the body itself. We assume here that the body is a
dielectric with uncharged surface (since we are con-
sidering the case when all the particles striking the
surface of the body are completely reflected by the
body ). Then the solution of (2.47) in the region under
consideration, as can be readily seen, has the form

—y=InA+y (), (2.50)
where y; satisfies the equation
—Agy=exp{—y (z)} (2.45a)

(inside the body, naturally, Ay, = 0). The value of y,
on the boundary of the considered region is determined
by the conditions of matching the solution of (2.50) to
the solution in the first region. As can be seen from
{2.48), the boundary value y; turns out to be only of

the order of unity. Consequently, Eq. (2.45a) and its
boundary condition do not contain any large parameters,
so that it is clear that y; <1 everywhere in the region
under consideration. By virtue of this, in first approxi-
mation, we can neglect the function y, (x) in (2.50), that
is, we can assume that in the entire region of maximum
rarefaction y = — In A, In the same approximation it is
necessary to take into account in the second region

only the first iteration (2.48) for y(x).

Thus, the potential of the electric field has the fol-
lowing approximate form (accurate to terms of order
1/In A near the body and with accuracy of order 1/A
away from the body)

N (r)

kT N
“ln = LA »1
R e Nir) N, 7o
—¢(r) ={ o (2.51)
| #7 10 4 il g1
L€ Ny

By determining with the aid of this expression for
the potential the density of the electrons (2.48), we
verify that in the first region the concentrations of
the ions and electrons coincide; in the second region
( near the body) the electron concentration is on the
order of Ny /A, while the ion concentration is much
smaller. Thus, the difference in the electron and ion
concentrations does not exceed Ny /A anywhere and is
small compared with the undisturbed concentration Nj.

Further, if we disregard the influence of the electric
field on the motion of the ions, formula (2.51) with ac-
count of the expressions for the disturbances of the ion
concentrations, obtained in the preceding section, com-
pletely determine the potential of the electric field in
the disturbed zone. The distribution of the potential
in the vicinity of a spherical body and in the absence
of a magnetic field is shown in Fig. 8. Since InA ~ 10
in the ionosphere, the potential ¢ in the vicinity of the
maximum rarefaction is one order of magnitude larger
than kT/e, that is, ¢ ~ 1 volt. Ahead of the body, to
the contrary, ¢ is only of the order of kT/e, that is,

@ ~ 0.056—0.1 volt.

27

£/,

4
LAl

s

FIG. 8. Distribution of potential in the vicinity of a specularly
reflecting spherical body in the absence of a magnetic field
(VMvy/2kT = 8).

b) Body absorbs the incident particles. When all
the particles incident on the surface of the body are
completely absorbed or neutralized by it, the concen-
tration of the ions in the region of condensation is equal
to the concentration of the ions in the incoming stream,
since there are no reflected ions. Behind the body, in
the rarefaction region, the concentration of the ions is
determined essentially only by the free incoming ions
in this zone, and therefore does not depend on the char-
acter of interaction between the ions and the surface of
the body.

Let us proceed now to a consideration of the poten-
tial of the electric field ¢. In the analysis of Eq.
(2.45), above, we separated for ¢ the first region and
the second region—the region of maximum rarefaction.
The boundary separating these regions was determined
by the condition AN;/N; =1; it is shown dashed in Fig.
8. It is easy to verify that the character of the inter-
action of the particles with the surface of the body does
not influence at all the expression for the potential of
the electric field in the first region, where

;
¥,

N (2.52)

—@= k%‘ In
Consequently, the value of the potential ¢ in the first
region changes only to the extent that the concentration
of the ions changes; this concentration, as we have seen
above, remains essentially in the same form, except
that in front of the body we now have N; = Ny and
¢ = 0. The electron density in the first region is de-
termined as before by expression (2.43) and, naturally,
coincides with the ion density. *

In the second region, the region of maximum rar-
efaction, the potential of the electric field can, to the
contrary, change appreciably. In fact, if the particles
incident on the surface of the body are absorbed, then
the potential of the surface itself changes. In this case,
if the surface of the body is a dielectric, the potential

*It must be emphasized that when electrons are absorbed on
the surface of the body their density, strictly speaking, no longer
obeys the Boltzmann distribution (2.43). However, if there is a
sufficiently large negative potential on the surface of the body,
formula (2.43) holds true in any case in those points r where
po = @(r) < -kT/e.
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of the field at each point of the surface is determined
from the condition that the current in this region be
equal to zero (that is, the number of electrons absorbed
from the plasma per unit time should equal the number
of neutralizing ions at the same point of the surface).
If the body surface is metallic, then the potential of
the surface is determined from the condition that the
total current on the body vanish. Furthermore, on the
boundary of the considered region of maximum rare-
faction, shown dashed in Fig. 8, the potential of the
field is constant and equal to — (kT/e)InA. Thus, the
potential ¢ in the region of maximum rarefaction is
determined by (2.6) with the conditions indicated above
on the boundaries of the region.

It is important that the density of the ions in the
region under consideration is negligibly small. Like-
wise small is the electron density: it does not exceed
Ny /A, since the presence of electron absorption on
the surface of the body does not increase their concen-
tration near the body in any case. Therefore the role
of the free charges is small in this case compared
with the influence of the conditions on the boundary of
the region, and can be neglected; Eq. (2.6) is conse-
quently rewritten in the form

Agp=0 (2.53)

with boundary condition ¢ = ¢,(8S) on the surface of
the body and ¢ =(kT/e)InA on the remaining part
of the surface of the region of maximum rarefaction.
A solution of this equation can be obtained numerically
only under specific conditions, using ordinary methods
of electrostatics. The result of the corresponding cal-
culation of the potential ¢ for a metallic surface under
the conditions of the F layer of the ionosphere
VMv? /2kT =8 and — ¢, = 0.25(kT/e)InA is shown
in Fig. 9. %

Under the conditions of the ionosphere ¢,
~ —(2—3)kT/e. In the calculation of the curves of
Fig. 9 it was assumed that ¢, =~ — 0.25(kT/e) InA,
since in the F layer InA =10 for Ry ~ 1 meter; con-
sequently 0.25(kT/e)InA ~ 2.5kT/e. It is seen from
the figure that the variation of the potential ¢ near the
surface (in the region of maximum rarefaction) has

*The potential of a metallic sphere ¢, is determined, as noted
above, from the condition that the total current on its surface van-
ish.  The ion current is obviously I; = eN,#R:v,, whete v, is the
velocity of the body. The electron current is I, = (1/2)eN,,7-rR;ve
X exp[ecpo/kT]. It is assumed here that the body is negatively
charged with potential ¢,, and that the electrons in the plasma
have a Maxwellian distribution. Account is also taken of the fact
that the electrons are absorbed essentially only on one hemisphere
(since the number of electrons in the ‘‘rarefied region’’ is very
small), ve = V8kT/7m is the average electron velocity. If we
neglect the photocurrent, thermionic emission, and other processes,
then the potential ¢, of the body is determined simply from the re-
lation I; =1.; this yields
2kT
nmug

AT B KT
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FIG. 9. Distribution of the potential in the vicinity of a metal-
lic sphere [VMvZ/2kT =8, ¢, = 0.25(kT/e)InA].

changed appreciably (compared with the case of a re-

flecting sphere), as should be the case. The maximum
value of @, however, is as before equal to (kT/e) InA;
it is attained not near the surface of the body, but at

a distance on the order of R,.

The intensity of the electric field on the surface of
the body in the rarefied zone is E ~ kT(1InA)/eRy. The
value of E is minimal in the — z direction, opposite
the direction of the motion of the body; here
E =1.3(kT/eRy)InA. On approaching a direction
orthogonal to vy, E increases appreciably to a value
on the order of kT/eD, where D is the Debye radius.
In the opposite side, in the double layer on the forward
surface of the body, the field intensity has an opposite
sign; as was shown by Gintsburg [1%7, its absolute value
is also of the order of kT/eD.

The potential of the field ¢ remains of the same
form also in the presence of other conditions in the
surface of the body; for example, if only part of the
ions or electrons is absorbed, or if other processes
in the surface of the body are taken into account, such
as photoemission, thermionic emission, etc. Only the
form of the potential ¢ in the region of maximum rar-
efaction depends significantly on the conditions on the
surface. Of course, this holds true only if the dimen-
sions of the body are much larger than the Debye radius.

c) Influence of electric field on the motion of the
ions. In the preceding section we have calculated the
electric field due to the plasma perturbation caused by
the moving body. It was assumed here that it is pos-
sible to neglect the reaction of the electric field on the
perturbation, that is, on the motion of the ions. Actually,
of course, this is true only in the first approximation.
It goes without saying that the electric field influences
the motion of the ions; however, as indicated above,
owing to the high ion velocity relative to the body, this
influence is not decisive for the problem considered
here, since, as is clear from the results of the preced-~
ing section, Mv3 > eq(r).

In the condensation region ahead of the body, an ac-
count of the influence of the electric field leads only to
insignificant corrections of the order of kT/MV%. To
the contrary, the ions filling the rarefaction region,
are acted upon by the electric field for a long time,
so that here the influence of the field is much more
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appreciable. The filling of the rarefaction region oc-
curs, as can be readily understood, only as a result

of thermal motion of the particles in a plane perpen-
dicular to the direction of motion of the body. The
potential energy of the ion in the field, on the other
hand, is of the same order as the energy of thermal
motion. Therefore an account of the influence of the
electric field on the filling of the rarefaction region
with the ions should turn out to be essential in the
general case. A corresponding calculation, carried
out in Sec. 8 of Chapter III for the far region, shows
that the disturbances of the ion density in the rarefac-
tion region decrease to approximately one-half as the
result of the influence of the electric field. In this
case the form of the disturbed ‘‘trail’’ of the body also
changes somewhat. An account of the influence of the
electric field does not change, however, the fundamental
qualitative features of the behavior of the ion concen-
tration in the rarefaction region, as noticed above.

In particular, we shall show in the present section
that even in a rigorous account of the electric field in
the absence of a magnetic field, the ion-density dis-
turbances decrease far away from the body like ~ 1/r2,
which coincides with the results obtained above with-
out account of the influence of the electric field. To
prove this we write down the exact equation (2.5) for
the ion distribution function, with account of the elec-
tric field (when Hy, = 0) and the Poisson equation
(2.44)

(2.54)

e
Ap= —/me{g fd"u—NoekT}—B%é(r—HO), (2.55)

The last term in (2.55) describes the distribution of
the charge Q over the surface of the sphere. We now
put £ =f3(u) + £'(u, r), where f; is the Maxwellian
distribution function; we change over to Fourier com-
ponents, that is, we multiply both equations by

exp { — iq-r) (where q is the wave vector) and inte-
grate with respect to d3r. We obtain in place of (2.54)

N Ay - 1 .
iqvfq — ],% 5{',0 4Pq— Gap S iq, (Uq, +e9q)) d°q
iq o]
'%F&Uq:o' (2.56)
where
u=v-|v,
and
fo= S e=i9r f (u, r) dor. (2.57)
¢4 and U, are determined accordingly.

The behavior of f{r) and ¢(r) at large distances,
that is, as r — «, is determined by the behavior of
fq as ¢ — 0. We can therefore let q approach 0 in
(2.56). Then the last term drops out. (The first two
terms must be retained, since, as will be shown below,
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f’q and ¢ tend to infinity as ¢ — 0.) In the third
term we can also put q = 0. Thus

Y e 0fy .
iqviy— 0 iqg, = J (u), (2.58)
where
1 . P ‘77:11 d3qy
J(u)=5r S iqy (Uq, +€Pa,) 55 (omp (2.59)

We now change over to the Fourier components in
(2.55). Then

X in ¢R,
Q{6 (r—Ryyemivrar = e 0150

In addition, in the expansion of [exp (e@/kT) — 1] in
powers of ¢

e 2 as
Nq=Noﬁ(Pq+ﬁ‘T? S (qu%—ql(?z)l'a"}‘-”

the first term behaves like 1/q, and the remainder
tend to constant values, so that they can be neglected
when q¢ — 0. Therefore, as q — 0,

4N e
kT

4nQ sinqRy
€ qi,

g = 4 Sf;d3u+ legf;,dau#"_}.

(2.60)
When g << 1 the term 47Q/e can be neglected, inas-

much as ffqd3u ~ 1/q. Therefore,

4ruN e

I =4 { fydu, (2.60a)

Solving (2.58) and (2.60a) simultaneously, we obtain

(. 1{ Lo,
Ne= 1\ fo dPu= ' . 2.61
q ) f(I 14 S q (vq:vo) Jo d% ( )

It is seen from (2.61) that as ¢ — 0 the Fourier com-
ponents of the ion density are proportional to 1/q.
This means that when account is taken of the electric
field (and consequently also the plasma waves), the
ion-density disturbances decrease as 1/1‘2 with in-
creasing distance from the body, so that

1 1
Loeiar d3g ~
p elar g3g =

o (1)~ { s,

where

r
n=—,

s=4qr, -

We see that the behavior of Nq at small q [or, what
is the same, the behavior of SN(r) for large

r(— «)] is determined by the value of J(u), which
in accord with (2.59) is proportional to the product of
@ by f' and differs from zero only in the second per-
turbation-theory approximation in Q.

III. SCATTERING OF RADIOWAVES BY THE ‘“TRAIL”
OF A BODY MOVING RAPIDLY IN A PLASMA
7. Formulation of the Problem

In the preceding section it was shown that the homo-
geneity of the plasma is disturbed in the vicinity of a
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rapidly moving body. A ‘‘condensation’’ region appears
in front of the body, and a rarefaction region behind.
This causes an inhomogeneous ‘‘trail’’ of the body to
move together with the body ( say an artificial satel-
lite) in the ionosphere, and possibly to scatter the
radiowaves incident on it.

The greatest role in scattering is played by the
‘“‘rarefaction’’ region, since its dimension along the
direction of motion of the body is considerably larger
than the dimensions of the body itself and may reach
the mean free path of the particles.

It is clear from the very outset that scattering on
the trail may exceed appreciably scattering on the
body itself (for example, on a metal sphere) only if
the linear dimension of the body R; is shorter than
the wavelength A, that is,

L > R, (3.1)

It is also clear that the closer the frequency of the
scattered wave to the plasma frequency, the larger the
scattering. If the frequency of the wave w is suffi-

" ciently close to w,, special types of effects can occur,
which, however, are not considered here. Inasmuch
as at distances on the order of R; away from the body
the perturbations of the dielectric constant € are al-
ready small compared with unity, it is natural to use
perturbation theory for the solution of this problem.
Bearing in mind further that real interest attaches to
cases when the frequency of the wave is much larger
than the Larmor frequency of the electrons

o > oy, (3.2)
we can assume that
e =1 AN (3.3)
and consequently
de= — T 5N (3.4)

The condition (3.2) will be needed below only to ensure
the correctness of (3.4).

We can now write down directly from the known
perturbation-theory formula an expression for the
amplitude of the scattered wave at distances that
are large compared with the wavelength [l Namely

ro el (3.5)
T mol It

K KE]] N

Here E; is the amplitude of the incident wave, k' the
wave vector of the scattered wave (| K | =k =Ve w/e),
€ the dielectric constant of the plasma, Ng the Fourier
component of the electron-density perturbation

No={ 6N (x) exp (— igr) d°r,

q=K —k |qi=2ksin-Y (3.6)
k the wave vector of the incident wave, and { the
scattering angle, that is, the angle between k and k’

(see Fig. 10). We note that inasmuch as the wave-
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FIG. 10. Arrangement
of the vectors in space.

length A enters into (3.6) only through g, condition
(3.1) is actually written more accurately in the form

qR, < 1. (3.7

At the end of this section we present a calculation of
Ng without the limitation (3.7). The differential ef-
fective scattering cross section ( within a solid-angle
element do) is given by the formula

1 /oy \§ INq?

16m2e? {\ @ AT

o= k% sin?y, do, (3.8)
where y; is the angle between k' and E;, w}

= 47Nge?/m, and N, is the undisturbed electron den-
sity.

We thus see from (3.5) that calculation of the effec-
tive scattering cross section for electromagnetic waves
reduces to a calculation of the Fourier components of
the variation of the electron density. In principle, to
obtain N, we can use the results of the calculation
of N(r) given in Chapter II. It turns out, however,
that it is more convenient to determine Nq directly
from the kinetic equation. It is possible then to solve
the problem more rigorously and to take into account
the influence of the electric field on the motion of the
ions, something not done in the previous calculation
of N(r).

8. Calculation of the Fourier Components of the Elec-
tron-Concentration Disturbance

We represent the ion distribution function fi(u, r)
in the form

fifu, )=
=N,/

% I (u, r)+ftn u),

M; /2 Miu?
Z:TT) T2%T >
where Nj, is the unperturbed ion density and M; the
ion mass. It is clear from the very outset that at
small values of q the large distances from the body
(much larger than R,) will be significant in the cal-
culation of N,. At such distances, however, the dis-
turbances of the distribution function f’ and the elec-
tric potential ¢ are small, so that the motions of the
ions will at such distances be described by kinetic
equations that are linearized in f’ and ¢. The body
itself, and also the region around it where the electric
field is strong, can be regarded as point-like and their
presence can be taken into account by adding to the
right half of (2.5) a term with the meaning of the

flO( (3.9)
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‘‘collision integral®’ of the ions with the body. Such a
term should, obviously, be different from zero only at
the point where the body is situated, that is, it should
have the form

J (u) 8 (),

where J(u) is some function of the ion velocity. We
assume that the body is at the origin. Taking the fore-
going into account, we find that the function f’ satisfies
(in the coordinate system where the body is at rest and
f’ does not depend on the time) the equation

af’ af’ o
L (w—v,) +£Miic[uH]+];eTfou£=J(u)6(r), (3.10)

Account is taken in (3.10) of the fact that of,/du
= — Mifou/kT.

We note that the term J(u)s(r) in (3.10), written
out from simple considerations, coincides actually with
the Fourier transform of the term (2.59) in (2.58), ob-
tained by a rigorous transition to the limit as q — 0.
Of course, account must be taken of the fact that H =0
in (2.58). From the very form of the initial equation
(3.10) it is obvious that J(u) plays the role of a
‘“‘source,”’ that is, it is equal to the number of ions
which acquire per unit time, as a result of collision
with the body, a velocity u = v + v,. Later on we also
assume that the surface is metallic and completely
neutralizes, that is, absorbs, all the ions incident on
it. In addition, we introduce an essential approximation,
neglecting the influence of the electric field on J{u),
that is, assuming that J(u) is the number of ions
freely impinging on the sphere per unit time, that is,
that

J(u)=nR}|u—vy|fy=0ufy (3.11)

where ¢, is the transverse cross section of the body.
This approximation is justified because Mjv3/2 > eg.
We present also a formula for J(u), valid when ac-
count is taken of the electric field around the body,
but under the condition that the body does not absorb
the particles incident on it, but merely scatters them
elastically. Since J(u)d®u is the number of particles
which acquire velocity in the interval d’u near the
body, it is clear that u is the collision integral of the
particles with the body.

This enables us, repeating the arguments used to
find the form of the ordinary collision integral, to ob-
tain a formula for J(u). Let the ion that passes near
a body with impact parameter p and azimuth angle ¢
acquire after scattering ( owing to interaction with the
surface of the body and the electric field surrounding
it) a velocity v.* Then the initial ion velocity is
vy =vi(V, p, 9), where the functions v;(v, p, ¢) are
determined by the scattering law, and the number of
ions which acquire during unit time a velocity v is

*We recall that u denotes the velocity in the immobile refer-
ence frame and v in a frame attached to the body.
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simply the number of incident ions with velocity
vi({V, p, @), that is

edodoun, (%)a/g exp { —M; ¥y (;,;TQ’ Pt Yol

Account was taken here of the fact that the scatter-
ing is elastic (|v;|=]v|) and that the incident ions
have at infinity a Maxwellian distribution in the im-
mobile reference frame. To find J(u) it is necessary
also to subtract from this expression the number of
ions with velocity v, knocked out as a result of col-
lision with the body:

M;
ededpen, ( kT

3/2 exp {

— M; (V4 v)?
2kT } :
Ultimately
M; 3/
T =T (v4v,) =np (i )"*v { e dedy

— v 2
% {exp Miv, (;];79» P)+vol®

exp

—M; (vv)?
2kT

—to (o { ododg {exp Mol e @y} (39

where Vv = v; — v is the change in the velocity of the
ion upon scattering.

Thus, J(u) can be simply calculated if we know
the law governing the scattering of the ions by the
body, with account of the electric field. Of course,
formula (3.12) does not enable us to calculate J(u)
in the general case, if for no other reason than that
the electric field itself around the body is unknown.
Nonetheless, it turns out to be useful in the approxi-
mate calculations.

To obtain the complete system of equations it is
necessary to add to (3.10) the Poisson equation for the
potential (2.44)

Ag = —4ne{Sj’d3u—6N}, (3.13)
where the disturbance of the electron density 6N is
connected in the linear approximation with ¢, in ac-
cordance with (2.43), by the equation
P

o (3.14)
Taking the Fourier transforms of (3.10), (3.13), and
(3.14), that is, multiplying them by exp( — iq-r) and
integrating with respect to dr, we obtain

8N =N,

. a .
Lq(u—»vo)fq+—MPTU[UH]7{%+7€Ffthurpq=J(u). (3.15)
Here
ggq = 4ne | %fq @u—Ng}, (3.16)
Nﬂ
Ny =227 Pa, (3.17)
where

folqu) = \.f’e*iq' d’r, @q= Qcpe““" d?r.
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For small values of q we can neglect in (3.16) the
time proportional to 4%, and we obtain in place of
(3.17) and (3.16)

kT
Nq=qud3u, Qq =

~or Na (3.18)
Let us consider first the problem neglecting the
magnetic field. This means that we should put H=0
in (3.15). Then the system (3.15) and (3.18) coincides
with Eqs. (2.58) and (2.60a), and its solution is given
by (2.61), in which J(u) from (3.11) should be substi-
tuted. Then there appears in the numerator and de-
nominator of (2.61) one and the same integral. The
integral has a singular denominator, which, as indi-
cated by Landau 153 must be taken by circuiting
around the singularity. To take this into account, it
is necessary to replace q-v by q-v — i5, where
8 — + 0. Changing over then from integration with
respect to d®v to integration with respect to dPu
(u=v+vy) and using the formula

T o= VA [ g e
Sy—_mdyzztn<LT—Sey dy)e“, (3.19)
N 0
we obtain ultimately *
M v: \V/ J'—Ii a‘ _
/qu —nRin,
! 1 —a? { rx2d1+'a Va ,—a
—ae .\ 1 2 e
G
M;
a=v Vi,
(3.20)
-
19}

The denominator in (3.20) is connected with an ac-
count of the influence of the electric field on the motion
of the ions. If we neglect this influence, that is, if we
set the denominator equal to unity, and take the in-
verse Fourier transform then we obtain (2.15) as we
should.

We turn now to the case of motion in a magnetic
field. Transforming (3.15) to cylindrical coordinates
in velocity space with an axis along the direction of
the magnetic field, we reduce it to the form

’

oy .
S =l veosB o= BB, (8.2
where
_ 92—, _ (’]u' o &l
R= " Ve Ty =g

o 14 i J
B @ﬁ% 7 () foty — 55

*It can be shown that the denominator in (3.20), due to the ac-
count of the electric field, can be expressed in a simple manner in
terms of the dielectric constant of the plasma with allowance for
spatial dispersion. It is interesting that similar denominators con-
nected with the dielectric constant appear when the magnetic field
and even coilision between particles are taken into account.

q) and u are the projections of the vectors q and u
on a plane perpendicular to the magnetic field, and 3
is the angle between q, and u; .

Equation (3.17) has a solution of the form

B
fy = eituprvsmB) { B (g) o=ituitvsind gy,
The constant ¢ must be chosen such as to obtain a
function that is periodic in 8. Putting ¢ = © and
t=x + 3, we have
fe= _-% exp[—i{uz -+ y[sin (B +z)—sin B} B(z-+P)dz
!
Eliminating f’y and ¢g and shifting the origin of the
angle B, we obtain

i ( J (u) exp[ i {ux+2y cosﬁsin%} ] dz dPu

Ng= . - :

qve o . C . .ox

24-i T\ Ty exp i ux -2y cos P sin - d d3u

S £ 5 1\/ [ { 2 }J (3.22)
the integral with respect to d®u in the denominator of
(3.22) can be calculated in terms of elementary func-
tions. Indeed, representing d®u in the form
dugujdujdp we obtain

e {2

L)q " 3/,
17 M; 2
o sin- }du:u duy df = <"n1\1>

s M;
2n 1:7

. (!zil 7 q\'“
z

(u +U1)

dz

|8u c{/‘.8

X exp[ " 92 qisin“’%} Bexp — < )
‘-' 7/
- M
> 4 u
X 5 exp(——-l@‘i——iu )du
- 0
fes)

(quz - 4gd sin? —f:) } dx

blll iv* ’
Z
MQg /‘T)

. % ex iqvy KT
- p{ on ¥ Iagy,

(W =u) +2q;
As a result we get

1 T .z
on S J (u) exp [—z {p:l:Al—Zycosﬁsm?} J dx d3u

Ng=

kT

c(

. iqv

2= p ~ v, exp{ LI — SEaET
§ (

<(]§x2 A#4qi sin2%>} dx
(3.23)
Substituting now J(u) from (3.11) into (3.23) and cal-

culating by the same method the integral in the nume-
rator, we obtain ultimately

No= — RN,

fqun SR 292 2 gin? }d
expig® )MQH (qzxﬁéq in \ z

2/

.y, kT

Qn © 7 iMOR

. c . X
g2z 4qi sin? 7)} dx

(3.24)
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If
M;

qvy IC qQve > 1,

Qu
then the integrand in (3.24) begins to oscillate rapidly
when x = 1. In this case small values of x become
important in the integral. Putting sin(x/2) ~ x/2
and calculating the integral with respect to dx (taking
4 to mean 4 —id, 6 — + 0) we arrive at formula
(3.20). Thus, (3.25) is the condition under which the
influence of the magnetic field can be neglected. We
note that (3.25) is essentially equivalent to condition
(2.35a) of Chapter II. This can be readily verified by
putting q ~ 1/z and q- v, ~ vy/z. Expression (3.24)
has a sharp maximum when q;, — 0 and ¢q-vy — 0.
We therefore present without derivation the formula
obtained from (3.24) when

ARV
Qu M;
Under these conditions

<1, Fh<t.

No=

xRy, N, [: \
gz )11

(]/ W+Zl\€x2dx> °f

)]

X ia1<]/n-}—2zsexzdx> i

ot )]

—q% kT

il q% kT
X exp ]ﬂing

L
MOty

\ —ik
where
vy M;

“= V omr

We see therefore that if g, — 0 and |q-v,l /gy < «,
then N, becomes infinite in proportion to 1/q,, which
is connected with the slowness of the decrease in the
disturbances in the magnetic field, as noted in Chapter
II. Formula (3.24) is obtained if condition (3.7) is
satisfied, that is, when the body can be regarded as
point-like. We can, however, obtain a more general
formula, suitable for qR; ~ 1. For this purpose it is
necessary to introduce into the right half of equation
(8.10) in place of the ion and body ‘‘collision integral,”’
which differs from zero only at the ‘‘point’’ where the
body is situated, a term that describes the absorption
of the ions by each surface element of the body. Rec-
ognizing that in unit time a unit surface absorbs

the same number of ions with velocity v as are inci-
dent on it, namely,

— fo (¥ +¥,) (v8) & fo (u) (v,8)
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(s is the normal to the surface, v.s8 < 0) we find that
the right half of (10) assumes the form

— o V—;’ra S{r— Ry v > U, ]

(3.26)
0 vr < U.

Inasmuch as the velocity of the body is much larger
than the velocity of the ions, the ions actually strike
only the front half of the body, which is taken into
account by the limitation vy-r > 0. After taking the
Fourier transform we obtain by simple calculations
from (3.26) that the right half of (3.15) is replaced by
the function

— fotRE 2\ sin ¥ cos & exp LigR, cos ¥ cos 0}

S ]

1, (qR, sind sin0) ¥,

where I, is the Bessel function of real argument, and
0 is the angle between v, and q. We see therefore
that if the finite nature of the dimension of the body is
taken into account, formula (3.24) is multiplied by the
factor

I
9

D (gR,, cosh)= \ sin® cos OB Or R Sin B sin 0) dO.
a

(3.27)
When qR; — 0, as can be readily noted, ¢ (gqR,, cos§)
— 1. If the angle 6 is close to /2, then we can put
cosd =0 in (3.27), and

11 (‘IR()) )

s (3.28)

® (¢gR,, 0)=

Let us consider now the derivation of Nq with ac-
count of the collisions between particles. For this
purpose it is necessary to introduce into the initial
equations the integral of collisions between the ions
themselves and between the ions and other particles.
We confine ourselves for this purpose to introducing
an effective number of collisions v, expressed in terms
of the collision integral Y in the form

CRNCEATED

= (- S\ fau) (3.29)

Such a form of the collision integral does not affect
the law of particle conservation, since f Yd®u = 0. If

we add (3.29) in (3.15), then we obtain in place of (3.24)
as an end result a formula for Nq in the form

- 2 2 L
T )M QZH (q 22 - 471_ sin )}dx

fes]
TRIN U, T iqvy—v
2t o S
Ng=
fos]
94 iqvy—2v g ox { iqvy —v
' Qu AR QH
[

(3.30)

kT o L, T \]r
AL SN (RS- 190 S S P 2 X
0% <q1x {497 sin 5 ) dx
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which is used as the basis for further calculations.
9. Effective Cross Section for the Scattering by the
Trail of the Body

Substituting (3.30) into (3.8) with account of (3.27),
we find that the differential effective scattering cross
section ( that is, the intensity of the wave scattered in
a given direction) is

ot 9 0) = {55 (%)%
By v, 8)| D (gR,, cos )2

4 Rn”o

sin® P, }

X Fy(a (3.31)
Here y; is the angle between the electric field E and
the wave vector of the scattered wave k'; $;, #,, and

@ are angles which determine the direction of the in-
cident and scattered waves relative to the body (see
Fig. 10); naturally, the total effective scattering cross
section is

o= S o (9, O, @) do, (3.32)

where do is the solid-angle element in the scattering
direction.
In formula (3.31) we have

- I i Cullih
Fs (@ B ve ) = g —ary g @F—gpEe e (3:33)
and
Fy=e¢%\ cosarexp{ —Pz —yz2+8cosz}dz, (3.34)
i}
Fya=ed % sinazexp{ — Pz — yz® 4+ dcosz}dz, (3.35)
0
where

a= ‘g—v;) = b (cos B sin ¥, + sin ¥, cos P, cos @) = beos 0;

b = qvy/QH, and the vector q =k’ — k is directed along
the bisector of the angle between the wave vectors k
and k’, or, what is the same, between the rays SO and
OE, which join points of radiation and observation S
and E with the point O where the body is located.

The vector q lies in the plane of SO and OE, with

m" sin? —‘pv (3.36)

w?
q’ =/1*‘;:'/ 1 —

and the angle § between k and k'’ is determined as in
Fig. 10. The angles ¢; and #; are determined in
terms of the scalar products ( vy -H) and (q - H) by
the formulas

(Va o)

ol (3.37)

cos B =

Thus, &, is the angle between the direction of the
magnetic field H and the velocity vy. The angle ¢,
between ¢ and the normal OR to H,, lying in the
plane (gH,), is positive or negative if the vector q is
turned clockwise or counterclockwise, respectively,
relative to OR; ¢ is the angle between the planes

(VOHO) and (qH).
in the formulas is:

The remaining notation assumed

kT

d=acos’ ¥y, a=-—r5-q. (3.38)
iy

5:5"1;, y:%s’m”}%

Thus, the effective scattering cross section is de-
scribed by a complicated function Fj, the analysis of
which can be carried out only if numerical calculations
are used. The tabulation of ®(qRy, a) does not entail
great difficuity.

We shall henceforth call F; the scattering function.
The tabulated scattering functions (3.33) for different
values of o, B, v, and 6 have made it possible to as-
certain the character of the behavior of this function
with altitude, wavelength, temperature, and direction
of motion of the body.

The main feature of F3 (o, B, v, §) is its oscilla-
ting character. The maxima and minima of F; corre-
spond to definite values of «. For the values of the
parameters a, b, and § used by us, F; displays in
addition to the principal maximum another six or
eight maxima and six or eight minima, located sym-
metrically about the principal maximum when 4 = 0.
The principal maximum of Fj [which we also call the
maximum of zeroth order (0)] corresponds to the
value

ay=0. (3.39)

The side maxima and minima [we denote them (+ 1
max), (£ 2 max), ... and (£ 1 min), (£ 2 min), ...
respectively] occur (when ¢, = 0) for the values

amax ™~ 4+ 1.22, + 248, + 3.15, + 4,23 ]
+0.73, +1.70, 4+ 2.91, +3.86, |

The principal maximum of Fy( o = 0) has the
largest value when #; =0 or ¢, = 0. For other values
of 44 or ¢y, F3( a3 =0) can be smaller than the max-
imum of the first order of Fy(amax =+ 1.22). In the
case when ¢; = 0, that is, when the velocity of the
body v, and the magnetic field H; are collinear,
F3(a =0) is always much larger than the side maxi-
ma, which decrease as their number increases. The
number of observed side maxima depends essentially
on 3 and vy, which determine the convergence of the
integrals (3.34). On Fig. 11 we show for illustration
two F3(a) curves for $; =0 or &, = 0 respectively,
calculated for a=1, 8 =0.06, and b = 14,

If 8, =0(vy !l Hy), then F3(a) does not depend on
¢. Therefore the surface F3(a, ¢) is formed in this
case as the result of rotation of the curves shown in
Fig. 11 about the axis v, (or Hy). The corresponding
three-dimensional representation of F3(8,, ¢) for
#4 =0 (Hy Il vp) (Fig. 12) shows the intersections of
the surface Fj({.$,, ¢) and the planes ¢ =0 and
¢ =n/2. In Fig. 12 the angle ¢, is laid off directly
along the vertical axis v,, for owing to the rapid vari-
ation of F3(¢,) the construction of the corresponding
surface in polar coordinates is difficult. It is seen

(3.40)

Umin ™
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FIG. 11. Variation of the function F,(a) for a =1, 8 = 0.06,
b =14, z = 300 km, and A = 30 meters, for ¢ =0. The maxima
and minima of different order are marked in the figure: (0), (+1 max),
(+1 min), (¢+2 max), (+2 min), etc.

9(p=0)

FIG. 12. Three-dimensional representation of the function
Fy(3,, ) in the case when v, || H, (8, = 0) (a = 1, b = 14, 8 = 0.06).
The sections are in the planes ¢ =0 and ¢ =#/2.

from Fig. 11 and 12 that Fy varies rapidly as a func-
tion of the angle 4, (or of the angle #; for a fixed
value of $,). In this case the width of the principal
and side maxima is of the order of a fraction of a
degree or of one or two degrees. With increasing
intensity of the principal maximum, which corresponds
to an increase in « and a decrease in $ ( an increase
in the height of the ionosphere), its width decreases
and simultaneously its ratio to the maximum of the +
first and other orders decreases. In Fig. 11, where
the F;(a) are plotted in a logarithmic scale, the
rapid changes of the scattering function are strongly
smoothed out.

The symmetry of the function F3(a) relative to
the angle §, is disturbed when the direction of the
velocity vy does not coincide with Hy (¢4 = 0). In
this case « depends on the angle ¢ between the planes
(vH) and (qH), and since the condition o = 0 is
satisfied for a specified value ¢ = 7/2 and a negative
value of 4, the principal maximum drops below the
plane 3, = 0. In this case the line made up of the
principal maxima on the F3(+#,, ¢) surface is no longer
a circle lying in the plane ¢, = 0, as in the case when
#¢ = 0, but represents a non-plane curve of elliptic
type, crossing the plane 4, = 0 when ¢ =7/2 and
37/2. At these two points the zero-order maximum
has the same values as in the case when ¢$; = 0. The
character of the variation of F3(#,,¢ = 0)when ${=0
can be traced on Fig. 13, where the calculations have
been carried out for a =1, b =14, and 8 = 0.06. The
three-dimensional plot of F3(#,, ¢) in two mutually
perpendicular planes is shown in Fig. 14.

For an analysis of the effective scattering cross
section, the scattering function F; has been calculated
for three heights in the ionosphere, z = 300, 400, and
700 km. For these values of z and for v, = 8 km/sec
and known ionospheric data [8], the values obtained for
the first factor of (3.31) in the curly brackets are
listed in Table III. The third factor of (3.31) depends
principally on the ratio Ry/A and is calculated for
$1 =383 =@ =0. In this case we have

{J} é’;{ja) }2
D, = 4nRy /A :

An analysis of the formula for &; shows that the over-

all course of &3(47Ry/A) changes little for other values
of the angles.

Al)
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FIG. 13. Variation of the function F(J,) with a=1, b =14,
B =0.06 (z = 300 km, A = 30 meters), ¢ =0 and ¢, = 1° and 5°
The maxima and minima of different order (0), (+1 max), (22 max),
etc. are marked in the figure.
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FIG. 14. Three-dimensional plot of the function F,(%,, ¢) in the
case when 4, #0 (a=1, b = 14, 8 = 0.06). Sections through the
planes ¢ =0 and ¢ = /2.

Table III. Values of

1/ oy \* Riv}
() “gr s
H

z, km Day Night }
Rg» m 300 l 400 700 300 400 ' 700 ;
|

0.5 1.8-10°2 |1.2-10°2 {1.2.1073| 6-1075 [1.2.10-3 |1.8-107¢ |

1 0.3 0.2 2.1072 103 21072 3-103 ‘

2 4.8 3.2 0.32 1.6-1072 0.32 4.8-1072

3 24 16 1.6 8-1072 1.6 0.24 ‘

It is seen from the foregoing that when v, Il H;
(44 =0) the principal maximum of the effective scat-
tering cross section lies in the direction of the ‘‘specu-
lar reflection’’ of the wave from the direction of the
earth’s magnetic field. In this case the bisector of
the angle (kk’), namely the vector q, coincides with
the normal to H,. On the other hand, if 4, = 0, then
the vector q is turned relative to the normal to H,
by an angle + #,, determined from equation (3.31) with
a = 0 for specified values of $; and ¢. Thus, g makes
in this case an angle (7/2 = ¢,) with Hy; for example,
when $; = 5° and ¢ =0, the principal maximum will
be directed along the vector k', chosen in such a way
that the vector q makes an angle (7/2 — 5°) with H,.
The position of the maxima of higher order, that is,
the angles g, through which they are turned, are de-
termined from the corresponding values of ay,,y; for
example, when ¢ =0, ¢, =0, and b = 14 as used in
the calculations, the principal maximum and the max-
ima of orders + 1, 2, 3 correspond to values of the

angles
Vomax = 0°, £5° £9°, £+ 139, (3.41)

and when ${ =1° (¢ =0, b =14) the maxima of the
same orders correspond to the angles
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Table IV. F;(8,, %) for 2=30m, ¢=0

z, km G1=10 Bg =0
G2, O 300 ’ 400 700 300 400 700
0 52,46 | 134,4 1535 53,46 134.4 1535
0.02 — — 613.9 -— — —
0.03 — — 355.1 - — —
0.05 49.20 | 103.2 150.7 — — —
0.1 39.72 60,86 40.8 — — —
0.2 22.44 23.10 10,31 — 23,07 10.0
0.3 12,98 11,30 4.56 — — 4,42
0.5 5.4 4,20 1.58 5.39 4.14 1.53
1.0 1,32 0.94 0.32 1.30 0.92 0.31
2.0 0.17 0.10 0.019 0,17 0,099 0.018
3.0 0.015 0.011 0.037 0.013 |7.8.1073 0.023
4.0 0.85 0.67 0.56 0.98 0.69 0.68
5.0 9.39 13.18 3.18 10.26 12.61 3.41
6.0 0.88 1.44 0.28 0.77 0.61 0.19
7,0 0.18 0.10 0.025 0.18 0.11 0.010
8,0 0,22 0.18 0.14 0.26 0,053 0.10
9.0 0.89 0.98 0.45 2.48 5.31 28.9
9.5 0.83 1.15 0.62 0,78 1.05 1.57
10 0.53 0,70 0.53 0.45 0.32 0.47
1 0.25 0,25 0.21 0.23 0.22 —
12 0.19 0.19 0.18 0.10 0.046 —
12.5 0.187 0.20 — 0.32 0.89 —
13 0.18 0.21 0.24 0.28 0.47 —
14 0.16 0.19 0.25 0.16 0.19 —
15 0.12 0.14 0.20 0.12 0.13 —
16 0.10 0.1 — 0.088 0,086 —
17 — 0.091 — 0.091 0.16 —
17.5 0.077 — — 0.080 0.020 —
18 0.071 0.078 - 0.072 0.16 —
19 0.062 0.067 — 0.062 0.070 —
20 0.054 0.058 — 0.054 0,057 —
Bomas 1% (445 —6) (48, —10% (412, — 1)
(3.42)

An idea of the character of variations of Fy(A, 84, 89, 2)
as functions of the angles ¢, and ¢,, the height z, and
the wavelength A can be obtained by examining Tables
IV—V; for a wavelength A = 30 meters and heights

z =300, 400, and 700 km respectively for $,; =0

(H, Il vy) the behavior is illustrated in Figs. 15—18

(in Fig. 18 z =300 km and &, = 5°).

A change in the temperature, T and accordingly in
the number of collisions v naturally brings a change
in a and B (seel®]). SomeofthedatainTable VI give
an idea of the changes in Fy due to the change in T.

The results of the calculation of the effective cross
section ¢ in the principal maximum for different wave-
lengths and spheres with radii R, = 0.5, 1, 2, and 3
meters are shown in Table VII and in Fig. 19. The
same table gives the ratio of ¢{#; =0, 8, = 0) to the
total effective cross section ¢, of an ideally conduct-~
ing sphere. In analyzing ¢/¢, we must keep in mind
that inasmuch as ¢ is the differential effective cross
section, this ratio diminishes by a factor 4= the ef-
fect of increase in scattering by the ‘‘trail,”’ as com-
pared with ¢,. However, since ¢ is large only in a
narrow region of angles, and the sphere scatters
practically isotropically, the time of action of the
scattering of a metallic sphere at the point of obser-
vation is appreciably larger.

It is seen from these data that the differential ef-
fective cross section of the principal maximum (0, 0)
of the ‘‘trail’’ of a satellite can greatly exceed in the
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Table V. F;(8y, A) in the vicinity of the principal

maximum for 4; =0 and ¢ =0
z, km 300 404 | 700 ‘
\ A, m ’ \
N so | 20 | a5 | 10 | 30 ‘ 20 15 | 19 30 20 15
]
az\ {
0 53 46[11 07 4‘82]112 )134.4 31.05 (14,10 (5,20 | 1535 !479.3 \241.3 &
0.02 | — | — | — | = | — — — | — ] 613.9 — —
;003 | — | — } — 10,080 — | — — 10,063 335.1 — —
L 0.05 14990 9.75 [3.96] — [103.2 {2054 | 7.7 | — | 150.7 | 25.3 | 8.67
01 [39.720 7.6 2 58) — | 60.86; 10.2 3.27 | — 40.8 6.58 | 2.20
0.2 12244 306 — | — j 2300 3.36 1 — | — | 0.3 | 1.63) —
0.3 12,98 1.83 |0.51] — \ 11,30, 1.55 | 0.42 | — 456 0701 —
0.5 5.44] 0.68 | 0.6110.0161 4.200 0.52 | 0.12 0.1 1.58 | 0.22] 0.056
P10 1232 011 10.0110.0200 0.950 0,074 1 0.0050.017)  0.34 | 0,027, 0.001
Us o Lo o ol S et = oo — | = s | olozs
2 0.17‘ 0,031]0.48 "0.()'16 ().1()13.6-1t)‘3‘ — l0.0101 0.019 0.027] —
| ‘ :
58y, =0, ] £ (0. p=0)
|
57 10)(+1 max)
_ @
“ FIG. 18. Depend-
FIG. 15. Dependence of
ence of F,(J,, ¢ =0)
Fy(3,, ¢ =0) on 9, for
30 a 320 eters. . -0, and on U, for A = 30 meters,
z;SOOmkmejr’ o ¢, =5° and z = 300 km.
v T (-1 max) (+2 max)
e/ AU
\ / 7 7 7 : w0
e ;7;
a F 0 '7.5'
%2 Table VI. Values of the principal maximum of
) F3 (&4, 83, = 0) for different values of the temperature
5% 40 T at A = 30 meters and z = 300 and 400 km.
100
F1G. 16. The same T, deg ’ 800 i 1660 ‘ 2060 1000 2000 l
o as Fig. 15 but z = 400 km. —s00km o0k l
e/
i B, =0° | 53.46 14.04 \ 9.67 | 1344 | 38.14
¥, =5° \ 10,26 442 — 12,61 3.16|
70 |
- '}z’ - -
Fy (3, p=0) daytime, and in many cases also at night, the effective
150° cross section of the metallic sphere ¢, and may
reach many tens or even hundreds of square meters.
However, inasmuch as these values correspond to
only one wave direction, in estimating the true scat-
tering effect it is necessary to take account also of
v the width of the corresponding lobe. The scattering
FIG. 17. The same as Fig. increases with height in the region 400—700 km,
15 but z = 700 km. varying with the wavelength approximately exponenti-
ally as exp (- 1/A); in practice ¢ is small when
5o’ A < 15. We note here that scattering from the ‘‘trail”’
{ depends generally speaking little on the properties and
{ form of the body itself and on the character of its sur-
i\ face, being determined only by the velocity of the body
N and its linear dimension p,. At the same time, scat-
7w @ 4 4 W5 tering from the body itself depends appreciably on its

—
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Table VII. Differential effective cross section a(mz)
of the ‘“trail’’ in the direction of the principal maxi-
mum; o,(7) is the effective cross section of a
metalic sphere*
z, km 300 400 (‘ 700 \
Ry, m| A, m 30 l 20 ] 15 3 1 © 20 13 30 : 24 ) 15 g
IR
05| o 0,97 0.20] 0.08 1,60 | 0.36 0.2 ‘ 1,8 0.6, 0.3
6/0, | 1380 (47 7 2290 90 (14 ‘2400 P10 22
1 G 15 3 1 26 5.8 ] 2 30 1 8 4
> 6/3, | 350 14 1.6 5% 25 3 1630 [ 3 :'5
a2 g 210 35 10 350 65 20 400 100 |3 |
oloy | T2 3 0.3 120 5 0.6 |134 | 79 | 1.2
¢ 810 98 18 1420|184 {35 {1620 1280 {60
6/o, | 28 1 0.3 50 2 0.5| 58 | 2.8 0.83
i | 1
| \
o5 | o | 3140 |7.1071] 2.107 0.2 | 0,04 0.02) 0.3/8-107%4.10°2
c/o, 4.3 | 0.2 0,02 229 9 141373 | 2 | 3.61
-1 o 0.05 [ 1072 | 3-1073 2.6 | 0.61) 0.2 4.6 1.3; 0.6
) G/0, 1 0.05] 0.014 60§ 2,57 0.3] W | 57 ;08
]2 2 o 0.7 | 01 0.03 35 \ 6.5 2.0 61 | 15 f 5.3 |
! a/0, 0.24 3-10°3/2.4-1073 | 12 0.5 ] 608 20 | t.2] 0.2
3 o 2.7 l 0.3 | 0.06 140 18 3.5 240 51 |9
6/0, 0.1 [4-1078] 7-107¢ 5 0.2] 0.05, 8.5 0.6' 0.8 |
/ | ! i }
I
*Because of an arithmetical error in [5], the original table had incorrect values of ’
; 0 for z=700 km. This error has been cotrected here.
g, m? 10. Character of the Ffeld of the Scattered Wave at
o’ the Point of Observation
In conclusion let us consider the overall pattern of
the effect of scattering at the point of observation and
P let us summarize the calculation results given above.
ES j =7 = = FIG. 19. Dependence of Assume that the body moves longitudinally, that is,
! 7/ 4 ; [«;5‘:: the effective cross section  the velocity vector is close to the direction of the per-
et / : /4@0‘&@ o=1m ¢ during the day on the manent magnetic field Hy, and the vector k of the in-
i i Pz i : : s :
15 et e ,,g'f?é{r_i: wavelength for altitudes cident electromagnetic wave is normal to H, (or v,).
. ,; e i s B ?200’ 430 and 11790};‘“‘ . Then the surface of revolution formed by the field
R ;" an:’;:l :t:;a 1R =4 of the scattered wave around the vector v, (or Hy)
’ has many lobes and its principal lobe is directed
! along the normal v,(or H;), while the side lobes are
symmetrical with respect to the principal lobe. The
angular aperture filled with several lobes amounts to
pe not more than 15 or 20° to the normal to H,. With

20

B
S

.__;.)"m

9

properties. In this respect a smooth metallic sphere
is optimal for scattering by a body in the investigated
wavelength range. Other bodies, of analogous dimen-
sion but with different surface character, have con-
siderably smaller values of oy. We note also that the
relative effect of scattering by an inhomogeneous for-
mation, that is, the ratio o/o,, increase rapidly with
decreasing radius of the sphere R;. Indeed, when

2n R
Bl RS
G~

1
o~Riand I~ oo

G, 3 '

and when g, —- oo
g,~ R}, o~R and

o .t o

—_— A~ ——

a, Vi

further increase in the angle #,, the intensity of the
field of the scattered wave decreases monotonically.
Thus, in some point near the earth’s surface, the fol-
lowing picture will be observed as the body approaches.
First the scattering field increases monotonically, after
which bursts of intensity occur, corresponding to the
positive side maxima (+ 2 max, + 1 max), to the prin-
cipal maximum (0), and to the negative maxima ( — 1
max, — 2 max, ...), after which the field again de-
creases monotonically. Inasmuch as the effective
scattering cross section is sufficiently large only in
the principal and one of the two side maxima, practi-
cally the field of the scattered wave is sufficiently in-
tense at the point of observation only for several in-
stants. Let us estimate, for the sake of being definite,
the corresponding effect when the body passes at an
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Table VIII, Characteristics of intensity bursts produced at the
point of observation by a wave scattered by the ‘‘trail’’ of

a satellite in a plasma during the day (¢, = 0, vy Il Hy).

39

Bursts data
z, km A, m
‘g‘f“?::er 7% 6, sec | 6r, km At, sec
300 30 1 ©) 175 0.6 5 _
(+1 max ) 35 — . 3.4
2 © 36 1 8 _
(+1 max ) 7 0.8 — 3.4
3 © 14 1.2 9 _
(£1 max ) 2.8 1.0 — 3.4
400 30 1 0 293 0.4 3.5 _
{+1 max ) 29 — — 4.5
2 (0) 60 0.8 6.5 —
(&1 max ) 6 0.4 3.5 4.5
700 30 1 ©) 29 — — —
2 () 6 0.15 1.2 —
\

300 20 1 ) 6.8 — _ _
2 () 1.4 0.25 2 —

1

\ ‘ 1
400 20 1 ) 12.7 — _ _
2 ) 2.6 0.25 2 -

I {

altitude z ~ 400 km. In this case ¢ = 350 m® in the
principal maximum at a body radius py = 2 meters and
a wavelength A = 30 meters, while the width of the
principal lobe, defined as corresponding to a decrease
in ¢ to a value oy, is 08y ~ 0.6°. Therefore during
the time that the principal lobe covers the distance

or ~ 2849 ~ 4 km past the point of observation, that
is, during a time 8t ~ 6r/vy ~ 0.5, the average infen~
sity of the scattered wave at the point of observation
is determined from the value ¢ ~ 170 m?, since o($;)
varies approximately linearly in this interval of .
The first two side maxima (+ 1 max) are still suffi-
ciently intense, since ¢ is commensurate with o.
The higher-order lobes are already difficult to ob-
serve against the general background of scattering by
the body itself.

We see that the effect of scattering at the point of
observation manifests itself in the form of bursts.

The duration and the relative intensity of the effect as
a whole will change for different body dimensions,
character, and surface form, depending on the sensi-
tivity of the indicators.

If the motion of the body is not along the magnetic
field, but at not too large an angle to it, then the sur-
face is formed by a scattered-wave field of more com-
plicated form. The surface elements produced by each

of the lobes become curved. However, the general
character of the field structure near the earth’s sur-
face remains the same. The quantitative changes, how-
ever, can be appreciable. Thus, if the transmission
and reception points —the rays OS and OE ( see Fig.
10)—1lie in the same plane as v, and Hy (¢ =0 or =),
a larger number of lower-intensity identical lobes is
observed, On the other hand, if the rays OS and OE
lie in a plane perpendicular to the (viH,) plane (¢
=n/2 or 3n/2), then the field will be the same as for
vy Il Hy, and the principal maximum will remain of the
same magnitude. Consequently, it the transmission of
the main beam and the reception of the scattered field
occur in a plane normal to ( vgH,), then the effect of
scattering at the point of observation is not smaller
than the effect in the case of longitudinal motion of

the body.

In conclusion, Table VIII lists, for different heights
of the ionosphere and for different wavelengths, data
on the scattering bursts occurring on the earth’s sur-
face during the flight of the body, when the intensity of
the field exceeds or is commensurate with the scat-
tered field from a metallic sphere of suitable size. In
the table 6r and 6t = 6r/v, are the width of the illum-
inated area and the duration of the effect at the point
of observation, while Ar and At =Ar/v, are the dis-



40

tance between the centers of the individual areas illum-
inated by the scattered field and the time intervals be-
tween the successive bursts at the point of observation.

It follows from table VIII, that one passage of the
body produces at the point of observation scattered-wave
bursts that repeat at intervals of several seconds, the
duration of each burst being of the order of and less
than one second. Naturally, such a situation occurs
only when the body is beamed by a plane wave in one
direction. If, however, the path of the body is beamed
from several points (5, S, S;, ...) at different angles,
then several scattered waves will be observed (Fig. 20)
at different angles in one point ( E) near the earth’s
surface, and the ‘‘lifetime’’ of the scattering effect
will increase appreciably.

ky

I— Antenna aperture

S S, £ Sy

Receiver

FIG. 20. Schematic diagram of the scattering field for a body
irradiated from different points.

11, Effective Scattering Cross Section in the Absence
of an External Magnetic Field

Let us consider, for the sake of completeness, the
results of the calculation of the effective cross section
when there is no external constant magnetic field in
the plasma (H; = 0). The corresponding formula is
obtained in this case by taking the limit as Hy — 0
in (3.31). We can then put v =0 in (3.31), for in the
absence of a magnetic field the account of the colli-
sions influences little the effective scattering cross
section. As a result o(6) has the form

o(0)= {%}(%)‘M} F (b, 8)®(qR,, cos0), (3.36")

q2
where

- b exp (— 203 cos® 6)+ [, (by cos O)]2 1
F by, 0)== , |
% b? cos 0 exp ( — 2b% cos? 0) +[1— b, cos OW (b, cos 0)]2 L

s

W (S)=e-5" Q e’ dt,

0 )
(3.37")

cos@ =q-vy/(qvy), and, in addition to the notation used
above,
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b2 Mo}
bi:—zm:ﬂ%. (3.38")
For the ionosphere heights used above, namely 300,
400 and 700 km, we obtain b; = 9.8, 8.6, and 6.2, respec-
tively.

The dependence of the function F(by, 6) on the
angle 6 between the velocity V, and the vector g, di-
rected along the bisector of the angle between the
wave vectors of the incident and scattered waves k
and K’, is listed for these values of by in Table IX
and in Fig. 21. The value of F(by, 9) corresponding
to some angle § characterizes here the intensity of
the scattered wave in the direction k' for a specified
direction of the incident wave k. Thus, the field of
the waves scattered by the moving body represents a
smeared out ‘‘specular reflection’ of the incident
wave from the direction of the velocity vy, so that the
three-dimensional scattering diagram is a double~hump
surface of revolution.

The axis of revolution of this surface is the velocity
vy. The function F (by, ) has a minimum for strictly
specular reflection, that is, for the vector kK’ (9 = n/2)
such that q L v;. The half-width of the cross section
of this surface is ~ A8/2, ifitis measured from thedi-
rection 9 = 1/2 and determined from the value of ¢
for which F (by, 8) ~ 107! F(by, 8) jyax. varies at
different altitudes in the following fashion:

400 ’ 700 '

30

N
|
|

1 18 20

We see that the width of the lobe increases with in-
creasing height. Variation of the height z is accom-
panied by variations of F(by, 8) pax, F(by, 7/2), and
A Byax /2, that is, the angle between the direction of
the maximum F(by, §) and the direction of F(by, 7/2)
vary as shown in Table X.

For the indicated values of F (by, 6)p, 45 and
F(by, 7/2) we obtain from (3.36) the values of the ef-
fective cross section in the direction of maximum
scattering, showing that only for bodies of small di-
mension does the effective scattering cross section ¢
exceed the corresponding value o, for the scattering
by the sphere itself. For example, when A = 30 m
and z = 300 km, for a sphere of radius Ry = 0.5 m,
we have oypax ~ 5 %1073 m* and 0,44 /0¢ ~ 7, that
is, an inhomogeneous formation scatters more than a
sphere, and even for Ry =1 m we get oypgx ~ 2
x 107 m*® and O max /90 ~ 0.5, so that the sphere
scafters more than the ‘‘trail”’ of the body. We note
in conclusion that with decreasing dielectric constant
€ of the plasma we get, as follows from (3.36), o(9)
~ 1/e€. Therefore the scattering should increase
noticeably if the body is situated in a region where ¢




EFFECTS PRODUCED BY AN ARTIFICIAL SATELLITE 41

Table IX. Dependence of the function F(b,,

6) on the angle 6

at different heights of the ionosphere.

8, deg | =300 km 2=400 km | z=700km || 8, deg |z=300km | 2=400 km | z=700km

0 1,07 1,02 1,06 78 50,88 61,20 54,60
10 1,05 1,08 1,09 80 93,70 98,25 50,18
20 1,16 1,18 1,20 81 120,1 108,35 46,09
30 1,37 1,39 1,43 82 135,6 108,74 \ 43,00
40 1,717 1,80 1,86 83 133.,4 100,89 1 39,48
50 2,55 2,70 2,79 84 121,0 90,26 37,06
60 4,37 4,80 5,17 83 106,8 80,86 34,83
65 6,37 6,59 8,66 86 93,4 73,09 | 33,00
70 10,56 11,26 17,70 87 \’ 62,5 67,3 | 31,75
72 12,83 15,05 25,84 88 79,8 63,77 30,87
T4 19,08 21,50 37,80 89 76,6 61,50 30,35
76 29,30 34,86 50,04 90 73,4 60,79 30,18

| | i

FIG. 21. Dependence of the scattering function F(b,, ) on the
angle 6 for different values of b, (z = 300, 400, 700 km) when
H, = 0.

Table X.
P z, km ~] 300 | 400 ; {
| F(by, Ohnax | 135.6 | 108.8 4.6 |
' F(by, 7) 75,4 60,1 30.2 \
\‘ o L | &

is close to zero. This case, however, calls for special
consideration and it is hardly possibly to draw any
quantitative conclusions about the behavior of ¢ in

the region € — 0 without further analysis.

12. Disturbances Brought About by a Point-like Body

Let us consider the disturbance produced by a body
with dimensions much smaller than the Debye radius.
Such a problem was considered by Kraus and Watson
(197 We have mentioned that their results are incor-
rect at large distances from the body, because they
have carried out the calculation only in first approxi-
mation, that is, they left out the term J( u) and re-
tained the last term in (2.60).

We carry out the calculations with Fourier compo-
nents. We first obtain, for small q —0, an expres-
sion for the Fourier components of the ion or electron

concentration ( at distances large compared with the
Debye radius these quantities coincide).

Let us calculate J (u) with the aid of (3.12). If the
charge of the body is sufficiently small, the main con-
tribution to the integral with respect to dp is made by
values of p much smaller than the Debye radius. At
such distances we have a purely Coulomb field. If the
charge is small, then the ion scattering angle ion 3§,
that is, the angle between v and v, is also small and
given by the formula

Mo S Ve (3.39)
where Q is the charge of the body.
Let us expand the right half of (3.12) in powers of
&, retaining terms ~ &%, Such an expansion is possible
if the terms containing ¢ in the exponent of (3.12) are
small, which leads to the condition
Mo} Qe

O~ e L

V M kT © (3.40")

This condition should be satisfied at any rate for
p < 1/D, which imposes the following condition on the
charge:

Q1 4y,

vVirar v © (3.41")

Expanding and integrating with respect to d¢, we
obtain

M3, M;

T = 2nfyo { G i = (v | | 820 e de.

(3.42)
The integral in the right half of (3.42) diverges loga-
rithmically. At large p the integral must be cut off
at p ~ D, and at small ones it must be cut off at those
values of p, for which condition (3.40) ceases to be
satisfied, that is, when

e~ 0= Vszo (3.43)
ultimately
. 4122 Rp 1 M;
J(u)—_—MikT folIIEE{EHZkT[Uu (vuZ]}

(3.43")
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We have assumed here a pure Coulomb field up to
distances p ~ py, for which the dimension of the body
should satisfy the condition

R, <<= Vﬂ%ﬁ .

Substituting (3.43) in (2.61) and (3.23) we obtain
after transformations, without a magnetic field and in
a field, respectively,

(3.44)

1 2nQ%3n Rp
Ne=——— i, In = [75 — (vou)?]
9 v} (2K3T3M;) 72 @

X [(1 — 2a%) (Vﬁ +2i § ex? dx) e—at | 2ia]
3

X {2—2(1 (§ w2dx—-il/2—;’—>e—“2]—‘
i [

211Q%32ng ¢ Ry . —>
NQ—WI S [MQ‘ZS <q2x +q 4 sin? 5

(3.45)

- (qzvozx-i-quuZ sin L)exp{. . .}dx]

\ exp{ ™o _ M QZ <q2x -+ 4q7 sin? >} dx
(3.46)

xf2+t

Here v;; is the vector obtained by rotating vg,
through an angle - x/2 (the expression in the curly
brackets in the numerator of (3.46) is the same as in
the denominator). Expressions (3.45) and (3.46) are
proportional to the square of the charge of the body.
They can therefore not be obtained in first perturba-
tion-theory approximation in @ (which was used, for
example, by Kraus and Watson). These expressions
are contained, of course, in the second perturbation-
theory approximation. Formulas (3.45) and (3.46)
hold true only for the very smallest values of q. At
large q it is necessary to add to them the terms given
by the first perturbation-theory approximation, that is,
the expression

Qle
2(Dg)2+-2—~2a (R exzdx-—i—‘g—i> e

0

(3.47)

in the absence of a magnetic field and
Qe

- 2MQ2 (q‘;’x +492 sin2 - )}dz
(3.48)

in a magnetic field. If q is not small compared with
1/D, then the expressions for the electron and ion
concentrations begin to differ somewhat. We have
written out here the expressions corresponding to
the electron concentration.

To obtain 6N{(r) in coordinate space it is necessary
totake the inverse Fourier transform. We shallnotdoso
here. We note merely, that in the region where (3.45)
is valid 6N(r) decreases like 1/1%, as it should. In

2 (Dq)e +2+zq 0 S exp {i %’z
U

the region of applicability of (3.47), as shown in [103,
6N ~ 1/1 (for r > D). Expressions (3.46) and (3.48)
lead to a very complicated dependence of 6N on the
coordinates.

IV. PARTICLE FLUX IN THE VICINITY OF THE
BODY

13. General Remarks

The disturbances produced in a plasma by a moving
body cause particle fluxes to differ from those in the
unperturbed plasma. The determination of the particle
flux through an arbitrarily oriented elementary area
in the vicinity of the body is essential for the interpre-
tation of the results of various sounding measurements.

The calculation of the neutral-particle flux nv en-
tails no principal difficulties and is made difficult in
many specific cases only by the complexity involved
in calculating the corresponding integrals. Inasmuch
as the trajectories of motion of the neutral particles
remain straight lines, since there is no potential field
to influence their motion, there is no need at all for
solving the kinetic equation to calculate the particle
flux, and it is enough to start from the geometrical
picture of the motion of the particles, with account of
the occultation of the body and the reflection of the
particles from its surface. Such a method of calcula-
tion leads to the same result as the solution of the
kinetic equation, and is more convenient.

To calculate the ion and electron flux it is necessary
to solve the corresponding kinetic equation. This is
particularly essential for the near region surrounding
ihe body. The influence of the electric field is large
here and the trajectories of the motion of the charged
particles are strongly bent, while in many cases they
can become in general finite. The scale of this zone
is determined by the double layer produced around the
body, that is, by distances from its surface on the order
of the Debye radius D. On the other hand, the influence
of the electric field outside the double layer, particu-
larly in front of a rapidly moving body, is not so im-
portant, since, as we have seen above, the energy of
the ion and the electric field e p(r) does not exceed
in general the average thermal energy of the particles
kT. Therefore the trajectories of motion of the ions
do not change appreciably here. Ahead of the body the
flux ﬁl_vt of the charged particles, in the case when
R, > D, can apparently be determined with sufficiently
high accuracy from the formulas derived for neutral
particles. This statement, of course, calls for a more
rigorous proof. Naturally, if for some reasons the
body is strongly charged, so that e > Mjvy}, it is
necessary to carry out the calculations with the attrac-
tion potential of the body itself already taken into ac-
count. The repulsion potential always influences
strongly the flux of the particles, independently of the
ratio Ry/D. Thus, the problem of the calculation of
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the flux NF calls for special analysis, particularly
under conditions when the dimensions of the body are
small or commensurate with the Debye radius. In
this case the ordinary approaches to the calculation of
the particle flux, based on the formulas for the neutral
particles or on theoretical calculations of the flux for
the charged particles, where the corresponding prob-
lem has not yet been studied in sufficient detail ( for
example, using Langmuir’s formulas fir21]) may lead,
as is known from the literature ( see [28-33,23-25,397

to incorrect results. Such a case is realized appar-
ently, on going over to interplanetary media, where

D > R, and the velocity of the satellites and space
rockets can be of the same order as or smaller than
the thermal velocity of the particles. ,

In the next section we give the results of calcula-
tions of the flux of neutral particles for several cases
of practical interest. Taking the foregoing into con-
sideration, the formulas obtained can be used, by
exerciging certain caution, for the calculation of the
flux 1\757- These formulas, as well as those for the
fluxes of the charged particles analyzed by Kagan and
Perel’ (28~ 31], show that the formulas employed in the
literature for the analysis of the result of sounding
measurements are suitable only in a limited number
of cases. We shall expound on this in greater detail
in a separate article.

14, Flux of Neutral Particles in the Vicinity of a
Rapidly Moving Body

Naturally, the calculation of the flux of the particles
must be carried out for each particular case, that is,
for a specified location of the probe in the vicinity of
the moving body. Depending on the position of the
probe relative to the body and depending on the reflec-
ting properties of the surface of the body itself, the
magnitude of the particle flux will change. An idea of
the general properties of the flux can be obtained by
solving particular problems. We give below the re-
sults of the calculation of the flux on a spherical sur-
face of a probe of radius r, located near the surface
of a large specularly-reflecting sphere of radius
R, > r. We shall assume for simplicity that the axis
joining the centers of the sphere and the probe is par-
allel to the motion of the body. We calculate separately
the fluxes per unit surface nv for cases when the
spherical surface is located in front of and behind the
sphere.

a) Flux on a probe in front of a sphere. It is seen
from Fig. 22 that it is possible to consider two regions
on the surface of the sphere r. In one region (arc
ABC on Fig. 22) only particles which experienced no
collision with the sphere, or the ‘‘direct’’ particles,
are incident; in the second region ( APC) there enter
both direct particles and particles reflected from the
sphere.

—
- ‘“Direct’?

v
/7
~  particles

“‘Reflected’” Vd
particles -y
s

'

Vo
FIG. 22. lllustrating the determination of the particle flux.

The particle flux density in the first region ABC is
calculated in elementary fashion. The particle flux
density in the second region was calculated by us sep-
arately for the ‘‘direct’’ and ‘‘reflected’’ particles
only at the symmetrically located point P of inter-
section of the rear surface of the probe with the OP
axis. The calculation of the flux density on the entire
surface of the probe in the region APC leads to com-
plicated integrals, which call for numerical calculation.

The particle flux density in an arbitrary point of
the first region ABC is obviously equal to

¢ _2_};:7 [0 oy gy, +0,)2]
x\ du,e ,

—oo

oo

S du,

-—co

[ IRV

oo
& dv,u,
b

(4.1)

where f;(v) is the Maxwellian distribution function
(3), and vy =V 2kT/M is the thermal velocity of the
particles.

It follows from (4.1) that

L Un

() =3 ﬁe_(?’{)zww"*%"““’o[“@(u"*cvof_%)]}'

(4.2)

When v, cos §/vp > 1 this leads to the obvious for-
mula

(nv) > nyu, cos &,. (4.3)

In formula (4.2) &(x) is, as usual, the probability in-
tegral.

Point P is struck by the ‘‘direct’’ and ‘‘reflected’’
particles. Assuming that the mean free path of the
particles is A > R, we neglect, as usual, the collisions
between the particles and the disturbed region in the
vicinity of the sphere. Then the particles striking P,
whose velocities make with the OP axis an angle $
greater than 9, travel past the sphere—the ‘‘direct”
particles— and the particles whose velocities make an
angle ¢ < 9 with the OP axis strike P after being
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reflected from the surface of the sphere—the ‘‘re-
flected”’ particles ( see Fig. 22). Accordingly, the
particle distribution function f(v) has the following
values

F(v)

3
M \Z M 2 n
<oy =ne (ggr ) exp [ -Gt 0 <0 <y
f2(%) <0, (4.4

Then we have at the point P for the flux density of the
““‘direct’’ particles

2n

(-[F)lzgdfp

..

0

(4.5)

DLl Q

cos 9 sindd | o dufy (v +,),
5

and for the reflected particles
2n

(av), = g de S cos® do % vfy (Vv +v,) do, (4.6)
0 .

where f, and the limits of the integral with respect to
# call for a special determination. The function f,
depends on the character of the reflection of the par-
ticles from the surface of the sphere. If the collisions
of the particles with the sphere are elastic, that is,
the moduli of their velocities before and after reflec-
tion from the surface of the sphere are equal, then

f2 (vr) d%0 d3r = f, (v +v,) dPu d®ry, (4.7)

inasmuch as the number of particles does not change
upon reflection. Here &r is the volume which is oc-
cupied by the particles after reflection by those par-
ticles which occupied a volume d’r, before reflection.
It follows from (4.7) that

d? a3y
o -

fatvr)du=f (v+v,) d

Calculations analogous to those carried out in Sec. 4b,
show that

(4.8)

d, _ sin?0-cos?0’-sin® 0’
&% T sin? ¢ —sin 9-sin 0-sin3 @’ ’ (4.9
where
sin®= —2sin0'.cos (¢ +0')—sin6.5in6’.  (4.10)

Inasmuch as the sphere has a finite radius r, part of
those particles, which for a point-like sphere would
reach the surface of the sphere and would be reflected
from it, now no longer reach the surface of the sphere,
since they are obscured by the sphere. In order to
take into account this occultation, it is necessary to
consider the trajectories of those particles, which in
the case of a point-like probe were reflected from the
sphere and struck the point P.

As an end result we determined the limits of the
integral (4.6) with respect to ¢, and the expression for
the flux density of the reflected particles at the point
P becomes

2n n—a oSy
(nv), = \ do S cos ¥ sin S d a 2 fo (V4 vo) du, (4.11)
o
where ¢ ¢
sing= T fosin®’ (4.12)
z+4r

From (4.5) we obtain for the direct particles behind
the sphere

(nv), = 3 n}}i Uncos2eexp.[ _ <%>2J‘
1y, c0s? 6 exp [ — <Z—z>2sin26] ; [1 (D<Uo:):s‘e )]
(4.13)

or for vy(cos §)/vy > 1

oz (s) e[ -(2))

The integral (4.11), which determines the flux of
the reflected particles can in general be evaluated
only numerically. However, for cases of practical
interest, when

(nv), ~ (4.14)

1 r 2—sin@ Un
0~ 5 T sino >>v_<<1
or (4.15)
a<(ﬂ<cos 0,
Yo

the corresponding calculations of (4.11) by the saddle-
point method yield

(nv)e = Ryt o _sin0
From formulas (4.13), (4.14), and (4.16) we see that
the flux of the direct particles on the rear surface of
the probe is much smaller than the flux of the reflected
particles. The flux of the reflected particles is com-
mensurate here and in many cases with the flux of the
direct particles on the forward surface of the sphere
and depends essentially on the occultation of the body
by the probe.

b) Flux on a probe behind a sphere. The calculation
of the particle flux on a spherical probe located behind
a sphere leads to the following results: for the direct
particles behind the probe, that is, in a region analogous
to the region in front of the sphere ( see Fig. 22)

. Upr2
sin? @ —(;‘1) a2
n

(4.16)

‘u,’-; cos? 9
nyv, c03 0 vy cos G noLy ‘T
—meE (o) [y R
(4.17)
and for the direct particles in front of the sphere at the
point P

M1=

— , £ \?
(nv)‘:v—lyl;i v, c0s® 0 exp { -—(\%) ]

-+ 147, 00536% [1»&@(—;}% cos&))] exp {

— <,Dg>

In both cases when vy(cos 8)/vy, > 1 the particle flux
is small, since it is proportional to the factor
exp [ - (vo/vn)z] .

sz()J
(4.18)
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For the reflected particles at the point P we ob-
tain an integral analogous to (4.11). In the limiting
case when vy(cos 8)/vp > 1 and vy(sing)/vy > 1,
that is, when the angle at which the sphere is seen
from the point P is not small, we have

. —l::‘i”@_ Uj\ - . _l/.U“ - \21 9
(DV)y = 011<U0)C0599xp[ (g, sin 0/ I (4.19)

Comparison of formulas (4.17)—(4.19) shows that the
flux of reflected particles on a spherical probe placed
behind a sphere is less than the flux of direct par-
ticles, and that the main contribution to the flux density
is given in this case by the flux of the direct particles
at the point P,

V. CONCLUSION

In the present article we considered the results of
theoretical investigations of the interaction of moving
bodies with a rarefied plasma. Principal attention was
paid to the case when the velocity of motion of the body
is much larger than the thermal velocity of the neutral
particles and ions, while the dimensions of the body
are sufficiently large compared with the Debye radius.
Such conditions are realized in the motion of artificial
satellites of space ships in the ionosphere or in the
interplanetary medium closest to the earth. Although
this case has been on the whole quite thoroughly
investigated, many problems still call for further anal-
ysis. It is necessary to take into account primarily the
influence of the electric field on the motion of the ions
in the near zone behind the body. Another very im-
portant problem is that of the magnetic perturbations.
In the problem involving the scattering of radiowaves
by the ‘“trail’’ of the body, it is of special interest to
know how strongly the effective cross section increases
in the resonant region, when € — 0. Many other un-
investigated problems, occurring in the analysis of
phenomena in the vicinity of a moving body, have been
mentioned in the Introduction.

In the lower layers of the ionosphere it is necessary
to take already into account the fact that the dimension
of the body becomes comparable with the particle mean
free path. Under these conditions an interesting prob-
lem is that of heating and additional ionization of the
plasma, destruction of the surface of the body, and
radiation of waves. At very large distances from the
earth’s surface, the dimensions of the body may be-
come comparable with the Debye radius, and the veloc-
ity of the body in a definite region can be smaller than
the thermal velocity of the particles. The character
of different perturbations brought about by the body
under such conditions also calls for a special analysis.

Thus, the interaction between a moving body and a
plasma leads to unique and exceedingly varied effects.
The perturbations caused by the body are very appreci-
able, so that the physical state of the region surround-
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ing the body differs strongly from the state of the
unperturbed medium.

The results obtained show that the phenomena in
the vicinity of satellites or space ships in the ionos-
phere or in interplanetary medium must be taken into
account when processing the results of experimental
investigations whose purpose is to obtain data on the
state of the unperturbed medium. This is particularly
important in the analysis of the results of measure-
ments with the aid of various types of probes. Failure
to take these effects into account may lead to appreci-
able errors.

All-inclusive experimental and theoretical investi-
gations of the structure of the perturbed region in the
vicinity of moving bodies in a plasma is of great inter-
est. These investigations make it possible, in parti-
cular, to develop the most effective methods for the
investigation of the properties of media through which
satellites and space ships travel.
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