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I. INTRODUCTION

1 . Formulation of Problem, Initial Data

The use of artificial satellites and space rockets to
investigate the structure and properties of the outer
ionosphere and the interplanetary medium has intensi-
fied the interest in effects arising in the vicinity of
bodies moving in a plasma. It is very important to
take these effects into account in the planning and in-
terpretation of various experiments made with satel-
lite-borne instruments. The questions connected with
the interaction between moving bodies and a plasma
are in themselves unique and, from various points of
view, in themselves of theoretical interest.

The main feature of the motion of bodies in the
upper atmosphere and in interplanetary and cosmic
space is that it takes place in a highly rarefied medium,
where the particle mean free paths Л are large com-
pared with the characteristic dimensions of the body
Ro. This can be seen from Table I, which lists the
main physical parameters of the ionosphere and of the
interplanetary gas. The usual methods of hydrodynamics
or aerodynamics cannot be employed to describe the
phenomena that occur in the vicinity of a body in such
a rarefied medium. It becomes necessary here to use
kinetic theory, which takes account of the fact that the
plasma is not a continuous medium but an aggregate

of individual molecules, atoms, electrons, and ions.
Neutral particles, that is, molecules or atoms, in-

teract only with the surface of the body. Reflection of
the incoming stream creates an excess of particles in
front of the body, where a "condensation" region is
produced (see Fig. 2). Behind the body, to the con-
trary, a "rarefact ion" region is produced, since the
moving body "sweeps" the particles, as it were, and
they cannot fill this region behind the body immediately.
The length of the rarefaction region obviously increases
with the velocity v0 of the body like vo/vn, where
v n = (2kT/M)1/>2 is the mean thermal velocity of the
molecules.

The charged particles—electrons and ions—interact
not with the surface of the body alone, for their motion
is greatly influenced by electric and magnetic fields.
The electric field is produced both by the charge of
the body itself and by the space charge created in the
plasma due to the difference between the electron and
ion concentrations.

Inasmuch as under ionospheric conditions the veloc-
ity of the body v0 is usually much larger than the
thermal velocity of the ions and much smaller than
the thermal velocity of the electrons ( see Tables I
and II), the character of their response to the electri-
cal field is essentially different. The electron distri-
bution is completely determined by the electric field
under these conditions. On the other hand, the in-
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fluence of the electric field on the ions is not decisive,
since the energy of the particles incident on the body
greatly exceeds their thermal energy, MVQ » kT, and
exceeds consequently the potential energy of the ion
in the electric field, since eip ~ kT. More important
is the influence of an external (the earth's) magnetic
field, which holds back the ions and prevents the filling
of the rarefied region. The character of the filling and
the dimensions of the rarefaction region depend essen-
tially on the angle between the velocity of the body v0

and the magnetic field Ho.
The dimensions of the rarefaction region greatly

exceed the dimensions of the body itself. In other
words, the " t r a i l " stretches a long distance behind
the body. This can lead to a considerable scattering
of electromagnetic waves by the electron-density d is-
turbances in such a trail . It is important, of course, to
know the character of the interaction of the plasma
particles, and also the corpuscular radiation and light,
with the surface of the body. These questions have
been investigated very little up to now, and an all-out
primarily experimental investigation is still needed.
The interaction of the particles and of the radiation
with the surface of the body greatly depends on the
surface material. In the theoretical calculations it is
assumed, for the sake of being definite, that the par-
ticles interact with the surface in very simple manner—
they are either absorbed or reflected. Such important
processes as damage to the surface by collision with
the particles (see [26,27,38] ^ o r ^y the corpuscular radi-
ation (knocking out of the electrons from the surface
by the light—photoeffect), etc, are neglected. The role
of all these processes in the formation of the distrubed
zone is not clear at the present time.

The particles reflected from the body can in prin-
ciple heat and even ionize the gas in front of the body.
It is easy to verify, however, that the heating of the
gas can be neglected if the molecule mean free path
is sufficiently large. In fact, the summary energy of
the particles reflected within a time At from the su r -
face of the body is obviously equal (in order of magni-
tude ) to £ r ef ~ MVQ • n0R

2 • v0 At, where n0 is the par-
ticle density, M the particle mass, and R the dimension
of the body. These particles scatter without collision
over a distance on the order of the mean free path Л.
Consequently, they are slowed down within a cylinder
of volume V ~ A2v0At. The total number of particles
in this volume is n0V ~ n0A

2V(|At. The mean particle
energy in the gas ahead of the body is therefore in-
creased by the collisions with the reflected particles
by an amount AS ~ Mv2

nR
2/A2. At sufficiently large

mean free paths [ A » (v o /v n ) R ] this change in
energy is small, Д % « kT. For bodies whose dimen-
sions are on the order of 1 meter, the condition
Л » (v o /v n ) R is well satisfied in the ionosphere at
altitudes exceeding 200 km.

The ionization of the gas ahead of the body, due to
collisions with the reflected particles, is also insigni-

ficant, inasmuch as the velocity of the reflected mole-
cules and ions is only of the order of the velocity of
the body, that is, ~106 cm/sec. It is much smaller
than the velocity of the electrons in the atoms, so that
the probability of ionization by collision with a r e -
flected particle is negligibly small. * Analogously, the
additional ionization ANf due to fast electrons emitted
from the surface of the body under the influence of the
incident ultraviolet radiation from the sun is also small.
Actually, ANf <* <jen(S/hu)avAt, where <je ~ 10~ncm2

is the effective cross section for the ionization by slow
electrons, S/hy ~ 10 u —1012 is the flux of quanta in the
incident radiation from the sun, av ~ 10"1 is the co-
efficient of emission of electrons from the surface of
the body, and At = RQ/VQ ~ 10"4 sec. We therefore
have everywhere in the ionosphere ANf < 10"1—1 elec-
tron/cm 3 .

A very important problem is that of excitation of
waves by the body. Inasmuch as the body moves in the
medium with supersonic velocity, it can in principle
excite both sound waves and ionic plasma waves, that
is, it can give rise to Cerenkov radiation. In an iso-
thermal plasma, however, all these modes are very
strongly attenuated if the wavelength is of the order of
or shorter than the mean free path. They cannot there-
fore exert a noticeable influence on the processes oc-
curring near the body. Sound waves with a wavelength
much larger than the molecule mean free path can be
radiated by the body, as recently calculated by Doku-
chaev ^6^. The condition X » A, which limits the
length of the sound wave, is satisfied in the ionosphere
only for waves with frequency of several cycles and
below. Electronic plasma waves are generally speak-
ing not generated by the body, since its velocity is
much lower than the thermal velocity of the electrons,
and consequently the velocities of the corresponding
waves are also much lower. To be sure, the scattering
of the electric field of the body by the inhomogeneities
of the medium could play an important role here and
could lead to a certain weak excitation of plasma or
even electromagnetic waves ^2 2^. It must be borne in
mind that the presence of the earth's magnetic field
makes the question of the spectrum of the excited
waves and their attenuation much more complicated;
in particular, it may turn out that the motion of the
body along the direction of the magnetic field exhibits
special features. Therefore, until a consistent theory
is developed, it is hardly possible to draw any quali-
tative conclusions regarding this matter.

The investigation of the stability of the perturbed
zone near a body moving in a plasma, as in ordinary
hydrodynamics, reduces to an investigation of the char-
acter of development of small deviations from equilib-

*The larger values obtained in t35] for the additional ionization
are due to the erroneous assumption that the cross section for the
ionization is equal to the gas-kinetic value a ~ 10"" cm3. In point,
apparently, о does not exceed 10"40 cm2 (there are no exact data).
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rium: the region under consideration is unstable if
these deviations increase with time, and stable if arbi-
trary disturbances damp out. This question also calls
for a special analysis. However, there are grounds for
assuming that the perturbed region is stable.

It is important to emphasize that with changing alti-
tude in the ionosphere, and particularly on going over
to interplanetary or cosmic space, the characteristic
parameters of the plasma in which the body moves
change appreciably, as is seen from Tables I and II.
The character of the phenomena occurring in the vicin-
ity of the moving body changes accordingly; for ex-
ample, in the part of the ionosphere near the earth, up
to a height of several thousand kilometers, the satellite
velocity is on the order of 106 cm/sec, while the ion
and molecule velocities are on the order of 105 cm/sec.
We deal here, consequently, with fast supersonic motion
of the body. However, with increasing distance from the
surface of the earth, owing to the increase in tempera-
ture and decrease in the mean mass of the particles,
their velocity increases to an order of 106 cm/sec;
the velocity of the body, to the contrary, decreases,
so that v0 and v n become equal and even the inverse
condition v0 « vn may set in (see Tables I and II).
The character of this phenomenon, naturally, depends
greatly on the extent to which the earth " d r a g s " its
surrounding gas shell at large distances from the
earth. Further, in the ionosphere the dimensions of
the bodies are always large compared with the Debye
radius. Under such conditions the factor most impor-
tant to the distribution of the electric field and the
charged particles in the vicinity of the body is the
Debye screening. In interplanetary and interstaller
gas the Debye radius is already comparable with the
dimensions of the body (see Table II). Therefore the
conditions in the vicinity of the body, and consequently
also the structure of the disturbed zone in the lower
layers of the ionosphere and in its remote regions,
should differ greatly.

Thus, the problems that arise in the examination of
effects in the vicinity of satellites and rockets in the
ionosphere and interplanetary gas are greatly varied
in their general formulation and encompass a large
branch of plasma physics. We plan to cast light here
on a much narrower circle of problems, pertaining
essentially to the motion of bodies in regions of the
ionosphere not too far from the earth. The body veloc-
ities are much larger under these conditions than the
mean thermal velocity of the ions and the molecules,
and the dimension is much larger than the Debye r a -
dius. In Chapter II we consider the perturbations pro-
duced by such a body in the medium, while in Chapter
III we calculate the scattering of the radiowaves by
the " t r a i l " of the medium. Finally, in Chapter IV we
discuss the particle fluxes in the vicinity of the body,
a problem of interest in itself and also important to
the analysis of the results of soundings of the ionos-

phere. This problem, as well as the problem of inter-
action between a plasma and a slowly moving body,
will be considered in a separate article.

2. Brief Summary of the Literature

In the present article we report essentially the r e -
sults obtained in ^"7^. It is therefore of interest to
dwell here briefly on the contents of other published
papers devoted to these or allied problems.

In one of the earliest papers devoted to a theoretical
consideration of the effects due to motion of a body in
a plasma (Jastrow and Pearse ^ ) , an attempt was
made to obtain only a qualitative description of the ex-
pected phenomena. The distribution of the potential
around a rapidly moving body was assumed to be
spherically symmetrical with the electrons having a
Boltzmann distribution around the body and the ion
density equal to the undisturbed value. We show later
on, however, that in fact the potential distribution
around the body is far from spherical, and the ion
concentration is highly disturbed.

A similar problem was solved more rigorously by
Kraus and Watson ^10^. They used the kinetic equation
to calculate in first approximation of disturbance
theory the ion density distribution and the electric po-
tential around a small point-like charge moving in the
ionosphere, that is, a weakly charged body with dimen-
sions much shorter than the Debye radius. In the ion-
osphere, on the other hand, as was already noted above,
the opposite case is of importance, where the Debye
radius is much smaller than the dimensions of the
body. In addition, as will be shown below, the second-
order terms (with respect to the charge of the body),
omitted by the authors, turn out to be more important
at large distances than the first-order terms. There-
fore the results of'-10] are generally incorrect for
large distances from the body. In particular, at large
distances the disturbances of the density decrease as
1/r2, and not as 1/r3 as would follow from [ 1 0 ] .

Several papers essentially analogous to^10^ were
published by Rand^11^. His calculations were carried
out for a two-dimensional case, that is, for a thin
weakly charged wire. The results of ^u^ can be signi-
ficant in an analysis, say, of phenomena near moving
satellite antennas. Interesting from the methodological
point of view is the author's attempt to generalize his
results to a large body by considering the disturbance
produced by the sharp edge of the body. However, the
character of the assumptions made in these calculations
remains unclear. Chopra and Singer ^12^ calculated the
deceleration force of the body, under the assumption
that the main contribution is made by that region of
space where the satellite has a pure Coulomb field.
This may be true at the highest altitudes. In the ionos-
phere, the main contribution is made by the field of
the " t r a i l " of the body, where the distribution of the
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potential has nothing in common with a Coulomb distri-
bution. * Greifinger ^16^ considered the motion of a
point-like charge in a plasma in a magnetic field by
the same method as Kraus and Watson and neglecting,
furthermore, the thermal motion of the ions.

Davis and Harris t 3 4 ^ integrated numerically the
equations of motion of the ions near the body simul-
taneously with the equation for the electric potential.
They neglected the thermal motion of the ions and the
magnetic field. Such an approximation is incorrect,
at any rate for large distances from the body. In addi-
tion, at small distances behind an absorbing body the
electron distribution may be far from equilibrium, un-
like the assumptions in^ 3 4^. Nonetheless, this paper
is of considerable interest, for only by using numerical
methods is it possible to take a consistent account of
the influence of the electric field on the motion of the
ions near the body.

An interesting mechanism for the disturbance of
the plasma around the body was considered recently
by Getmantsev and Denisov '-37-'. The point is that near
the antennas of a rocket or a satellite there is produced
a sufficiently strong high-frequency electromagnetic
field which influences greatly the concentration of the
electrons and ions. The authors have calculated the
plasma disturbances near an antenna mounted on a
resting or slowly-moving body.

A considerable number of papers is devoted to an
investigation of magnetic phenomena caused by a body
moving in a conducting medium. However, all the
papers published on this topic are based on a macro-
scopic magnetohydrodynamic analysis. The applicabil-
ity of their results to the motion of rockets and satel-
lites in the upper ionosphere and in interplanetary
medium is therefore doubtful.

II. STRUCTURE OF DISTURBED REGION IN THE
VICINITY OF A BODY MOVING RAPIDLY IN A
PLASMA

3. Initial Equations

All the problems solved here call for a kinetic anal-
ysis, since the mean free path Л of the particles is
much larger than the linear dimension Ro of the body.
The distribution function of the neutral particles is
determined by the kinetic equation

Uf . U] ± UU df n

orдг М от 3v ( 2 Л )

H e r e f = f ( r, v, t ) i s t h e d i s t r i b u t i o n f u n c t i o n of

t h e n e u t r a l p a r t i c l e s ( m o l e c u l e s , a t o m s ) , M t h e i r

m a s s , and U = U ( r , t ) t h e p o t e n t i a l e n e r g y of i n t e r -

a c t i o n b e t w e e n t h e p a r t i c l e s a n d t h e s u r f a c e of t h e

b o d y . If t h e b o d y m o v e s u n i f o r m l y w i t h v e l o c i t y v 0 ,

t h e n U = U ( r - v o t ) . In t h i s c a s e i t i s c o n v e n i e n t t o

c o n s i d e r t h e p r o b l e m in a c o o r d i n a t e s y s t e m f ixed in

t h e m o v i n g b o d y . T h e p a r t i c l e d i s t r i b u t i o n i s t h e n

s t a t i o n a r y a n d d e s c r i b e d by t h e e q u a t i o n

дт M or du * \ ̂  • ̂  /

w h e r e u = v + v 0 . It i s n e c e s s a r y t o t a k e i n t o a c c o u n t

t h e f a c t t h a t in t h e c o o r d i n a t e s y s t e m f ixed in t h e

b o d y , t h e l a t t e r e x p e r i e n c e s a f lux of p a r t i c l e s w i t h

v e l o c i t y — v 0 . T h i s m e a n s t h a t a t l a r g e d i s t a n c e s

f r o m t h e b o d y ( a s r —• °°), w h e r e t h e m o t i o n of t h e

p a r t i c l e s i s n o t d i s t u r b e d , w e h a v e a M a x w e l l i a n d i s -

t r i b u t i o n f u n c t i o n

м
3/2exp

/ Ми*
\ 2kT (2.3)

'0\"->-"0'K2nkT J Х'^\~~ШГ

H e r e n 0 i s t h e u n d i s t u r b e d d e n s i t y of t h e n e u t r a l p a r -

t i c l e s and T t h e i r t e m p e r a t u r e . We n o t e t h a t t h e i n -

t e r a c t i o n b e t w e e n t h e p a r t i c l e s and t h e s u r f a c e of t h e

b o d y c a n be d e s c r i b e d e i t h e r b y s t i p u l a t i n g a s p e c i a l

f o r m of t h e p o t e n t i a l U ( r ) , o r by i n t r o d u c i n g d e f i n i t e

b o u n d a r y c o n d i t i o n s f o r t h e d i s t r i b u t i o n f u n c t i o n on

t h e s u r f a c e of t h e b o d y . F o r e x a m p l e , if a l l t h e p a r -

t i c l e s c o l l i d i n g w i t h t h e b o d y a r e a b s o r b e d , t h e n t h e

b o u n d a r y c o n d i t i o n f o r t h e d i s t r i b u t i o n f u n c t i o n o n t h e

s u r f a c e of t h e b o d y S h a s t h e f o r m

/ ( r o , u ) s = 0,

if n • v > 0, w h e r e n i s t h e o u t w a r d n o r m a l t o t h e s u r -

f a c e .

T h e e l e c t r o n s and i o n s i n t e r a c t n o t o n l y w i t h t h e

b o d y b u t a l s o w i t h t h e e l e c t r i c a n d m a g n e t i c f i e l d s in

t h e p l a s m a . In t h e c o o r d i n a t e s y s t e m f ixed in t h e

b o d y , t h e e q u a t i o n s f o r t h e d i s t r i b u t i o n f u n c t i o n s of

t h e s e p a r t i c l e s h a v e t h e f o r m

LEE.') L-[fl, u ] ) - ^ = 0 , ( 2 . 4 ) *
n or J me L ' J oil

Mi 1 Э£/Mi if e d<f 1 Э £ / \ , _ е _ г „ „ / о *

H e r e f e ( r , u ) a n d f i ( r , u ) a r e t h e e l e c t r o n and i o n

d i s t r i b u t i o n f u n c t i o n s , e i s t h e c h a r g e of t h e ion ( w e

a s s u m e f o r s i m p l i c i t y t h a t t h e i o n s a r e s i n g l y c h a r g e d ) ,

m a n d M o a r e t h e m a s s e s of t h e e l e c t r o n a n d t h e ion,

<p = tp( r ) i s t h e p o t e n t i a l of t h e e l e c t r i c f ie ld, a n d H

i s t h e m a g n e t i c f i e l d . At in f in i ty t h e f u n c t i o n s fj a n d

fe h a v e t h e f o r m ( 2 . 3 ) .

T h e m a g n e t i c f i e ld in (2.4) a n d (2.5) c a n b e r e g a r d e d

a s s p e c i f i e d ( i n t h e i o n o s p h e r e , H i s t h e e a r t h ' s m a g -

n e t i c f i e l d ) . T o t h e c o n t r a r y , t h e e l e c t r i c f i e ld i s i t -

s e l f d u e t o t h e d i f f e r e n c e in t h e c o n c e n t r a t i o n of t h e

e l e c t r o n s a n d t h e i o n s in t h e d i s t u r b e d z o n e . It i s d e -

f i n e d by t h e P o i s s o n e q u a t i o n

(г, u ) d 3 u - ^ / t ( r , u ) d 3 u ) . (2.6)

At infinity cp —• 0 and the boundary condition for the
potential cp( r ) on the surface of the body depends on
the type of the sur face ( d i e l e c t r i c , m e t a l ) and on the

*We do not have paper LI2J, and we make use of its brief sum-
mary in the review of Chopra. I13] * [ H , u ] = H x u .
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charge of the body itself. By finding the solution of
(2.2) for neutral particles or of the system (2.4)—(2.6)
for charged particles, we solve completely the problem
of the disturbances produced by the body in the plasma.

4. Disturbances of the Neutral-particle Concentration

The distribution function f of the neutral particles
is conveniently represented in the form

/(r, u) = A(r, u) + /2(r, u), (2.7)

where ft ( r , u) is the distribution function of the par-
ticles that experience no collisions with the body;
f2 ( r, u) is the distribution function of the particles r e -
flected from the body and depends on the form of the
surface and on the character of the particle reflection.
We shall consider usually a rapidly moving sphere of
radius RQ. In this case the most important is the r a r -
efaction region, which extends over a long distance
from the body.

a) Rarefaction region behind a rapidly moving body
of arbitrary shape. By virtue of the fact that the veloc-
ity of the particle stream incident on the body is much
larger than the thermal velocity, collisions between
the particles and the surface of the body during the fill-
ing of the rarefied region have low probability. There-
fore away from the body these collisions are of little
significance, that is, f « ft. This means also that the
specific shape of the body is insignificant at consider-
able distances from the body in the rarefied zone: what
is important is only the maximum cross section of the
body in the plane perpendicular to the incoming stream.
Consequently, in approximate calculations, we can r e -
place the body by its cross section; for example, the
spherical surface considered above can be replaced
by a round disc of radius Ro located at the point z = 0.

We note first that the thermal motion of the par-
ticles in the direction of the z axis, parallel to the
velocity v0, is of little importance because v0 » VkT/M.
We can therefore assume that all the particles move
in the z direction with identical velocity v0. Then the
problem of determining the particle density in the r a r -
efied zone becomes actually a dimensional one: it is
merely necessary to determine how the particles fill
in the course of time an empty region equal to the
cross section of the body in the plane (x, y), perpen-
dicular to the direction z of the motion of the body.
Account must then be taken of the fact that during this
time t all the particles move as a unit a distance vot
in the z direction, that is, one must change over by
means of the simple substitution t = z/v0 to the coordi-
nate system that moves together with the body.

The distribution function of the particles in the
(x, у) plane has thus at the initial instant of time the
form

y. uy,
м exp[ M (ul

• ] •2kT
у) l ies outside S

0, if (x, у) l ies inside S, (2.8)

where S is the c r o s s sect ion of the body. At any other
instant of t ime the distr ibution function descr ib ing the
free motion of the p a r t i c l e s has the form

у; ux
t)=f[xo(x, и., t), ya(y, иц, t); ux. 0],

w h e r e ( x 0 , y 0 ) i s t h e p o i n t w h e r e t h e p a r t i c l e h a s b e e n

l o c a t e d a t t h e i n i t i a l i n s t a n t of t i m e if i t i s s i t u a t e d a t

the instant t in the point (x, у) and has a velocity
( v x , Vy); f ( 0 ) i s t h e d i s t r i b u t i o n f u n c t i o n a t t h e

y

i n i t i a l i n s t a n t of t i m e , g i v e n b y ( 2 . 8 ) . It i s e a s y t o

v e r i f y d i r e c t l y t h a t t h i s e x p r e s s i o n s a t i s f i e s (2.2) o u t -

s i d e t h e b o d y .

N a t u r a l l y ,

У, ^z; и=, иу; о ) .

(2.9)

n (x, y, z) = ^ / (^x, y; ux, uy; —^ duxduy

In the last expression the time t has already been r e -
placed by z/v0. Integrating now the distribution func-
tion (2.9) with respect to the velocity, we can obtain
the particle density in the disturbed zone

0 ) dxodyo. (2.10)

In the integral (2.10), the variables u x and Uy are r e -
placed by x0 = x — u xz/v0 and y0 = у — Uyz/v0, that is,
the integration is carried out over the initial coordi-
nates of the particles. By virtue of the properties of
the initial function, the integration in (2.10) is actually
carried out only over regions outside the cross section
of the body. The same integral taken over the cross
section of the body is obviously equal to the disturbance
of the particle density Дп = n0 - n, inasmuch as the in-
tegral over the entire region is equal to n0. Thus

hn.(x, y, z) = (-^-

dx»

y0;

vl (x — x.

z J

~y ) 21
— J

Mvl
2kT -]\

2hT
(2.11)

This express ion for the per turbed molecule density
has a form which is very s imple and convenient to
integra te . This integration will be c a r r i e d out below
for c a s e s when the c r o s s section of the body in a plane
perpendicular to the direct ion of motion is a c i r c l e o r
a rectangle . In addition, a s imple express ion will be
obtained for the d i s turbances of the p a r t i c l e concen-
tra t ion in the c a s e of an a r b i t r a r y c r o s s section, an
expres s ion c o r r e c t at sufficiently large d i s tances from
the body.
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Body of circular cross section. Assume that the
cross section of the body is a circle of radius Ro. Of
course, this is also the cross section of the spherical
body considered above.

In calculating Дп we change over in the integral
(2.11) to polar coordinates ip and p 0 = Vx2 + y2. If,
furthermore, we measure the angle <p from the (x, y)
direction, so that XQX + yoy = pop cos<p, we obtain in
place of (2.11)

exp -M - f - coscp

tdte-'4n

C f / 1 1C f

(2.12)

On the axis, that is when p = 0, the integral in (2.12)
can be evaluated, and we obtain simply

(2.13)

At large distances from the body, when

Mv\

we get

2kT

that is, the disturbances decreases in proportion to
1/z2.

The function n(p, z )/n0 behind the body, given by
formula (2.12), is shown in Fig. 1 for VMv2/2kT = 8.
It is seen from the figure that a large "rarefaction
region" is produced behind a rapidly moving body.
Thus, in the case considered here n(0, z) = 0.5n0

even for z =* 10R0.
Body of rectangular cross section. Let us consider

now a body of rectangular cross section with dimen-
sions 2RX and 2Ry. This case is less realistic, but
in the presence of a magnetic field calculations of the
ion perturbation for a rectangle lead to simpler ex-

FIG. 1. Curves of constant ratio n(p, z)/n0 behind a spherical
body in the rarefaction region (VMvJ/2kT = 8).

pressions. In this case the integration in expression
(2.11) can be readily carried out, and we obtain

An(x, y, z)

dxodyoexV [ _
2kT J

Ф ( *^3* i/MA V Ф ('ЛЬ л/MA Л
\ z V 2kT J ^\ z V 2kT J

Here, as before, z > 0 and

is the probability integral.
Disturbances at large distances from a body of arbi-

trary cross section. Formula (2.11) enables us to ob-
tain a simple expression for the perturbation of the
particle concentration at large distances behind a
body of arbitrary cross section. In fact, at large z
the argument in the exponential term of the integral
in (2.11) is always small and the term itself is conse-
quently close to unity. We therefore have at large z

(2.15)

On the z axis, that is, at x = у = 0, the perturbation
has the form

C* If 7,2t — Y) ._ "_ (2.16)

The physical meaning of this expression is clear: the
region S perturbed by the body melts away uniformly
with velocity ~VkT/M, that is, after a time t = z/v0

it spreads out into a circle of radius V kT/M ( z/v 0).
Thus, at large distances from the body the perturba-
tion of the density decreases as 1/z2.

b) Region of condensation ahead of a rapidly moving
body. We consider now the region of "condensation,"
that is, we determine the excess concentration n2, due
to the presence in the medium of additional particles
reflected from the surface of the body. We assume
for simplicity that the surface of the body is a sphere
of radius Ro.

Specular reflection. We assume first that the par-
ticles are specularly reflected upon striking the sur-
face of the body. Then the number of excess particles
in a small volume dVp near an arbitrary point (p, z)
(Fig. 2a) is equal to the number of particles in a cor-
responding small volume dVp in the incoming stream,
and consequently n 2 (p, z) = nodVpo/dVpz. Taking it
also into account that the velocity is not changed by
elastic collision of the particle with the body, we find
that the ratio of the volumes is equal to the ratio of
their cross sections:
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a) FIG. 2. a) Illustrating
the derivation of the par-
ticle concentration in the
"condensation" region,
b) Curves of constant
ratio n(p, z)/n,> in the
"condensation" region
ahead of the body in the
case of specular reflec-
tion from the surface of
the body (VMvj|/2kT =8).

b)

Co<*Qo
Qdl

where dp 0 and dl are shown in Fig. 2a. All these
quantities are expressed by elementary geometry in
terms of p, z, Щ, and the angle 0 t (the angle between
the normal to the sphere at the point of collision and
the z axis; see Fig. 2a):

We then obtain

sin 26,

sin2 6, cos' 9, (2.17)

and the total concentration of the particles in the
"condensation region" is

re(Q, z) = no + n2(Q, z).

The angle вх can be expressed here in terms of p and
z with the aid of the relation

2z cos 0! + 2C sin 0, - s l ig- = Ro. (2.18)

As p — 0, that is, near the z axis, the expression
for n2 becomes quite simple

It is clear therefore that the density of the particles in-
creases noticeably ahead of the body. The variation
of the particle concentration in the "condensation"
region, calculated from formula (2.17) for different
p and z, is shown in Fig. 2, where we see that n/n0 = 2
near the surface of the body, n/n0 = 1.5 at a distance
0.2R0, and n/n0 = 1.1 at a distance Ro. With increas-
ing distance from the surface of the body, the concen-
tration disturbances decrease more rapidly in the
"condensation" region than in the "rarefact ion"
region.

Diffuse reflection. Let us assume now that the
molecules are diffusely scattered upon colliding with
the surface of the body, that is, that the surface is
very rough, so that the particles are reflected at any
angle with equal probability.

Arguments analogous to those given above for the
case of specular reflection lead to the following ex-
pression for the additional density n2 in the case of
diffuse reflection:

«2 (6. z)

arccos —_
cos 6' sin 9] d9.

^

where*
cos 6' =

(2.20)

ineisin9coscp1, 6 =

О — <? ft' <? я

T h i s e x p r e s s i o n f o r n 2 in t h e c a s e p = 0 ( t h a t i s , o n

t h e z a x i s ) g r e a t l y s i m p l i f i e s :

It follows therefore that the additional concentration
n2 ahead of the body is always larger in diffuse than
in specular reflection. Thus, at large z (z » Ro) we
have щ « n 0(R 0/z) 2/2 in the case of diffuse reflection
and n2 » n o (R o /z) 2 /4 in the case of specular reflec-
tion. However, the concentration of the particles
changes most appreciably near the surface of the body
(for A R « Ro). Here

where AR = Vp2 + z2 — Ro is the distance from the
surface of the sphere. As z — Ro — 0 the concentra-
tion increases logarithmically and can become con-
siderably larger than n0.

The concentration of reflected particles near the
surface of the body increases even more strongly in
the presence of accommodation. In this case the con-

*arctg = tan"
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centration of the reflected particles increases in addi-
tion by a maximum factor vo/vn.

In the rarefaction region, as indicated above, the
role of the reflected particles is not important. There-
fore formulas (2.12) and (2.13) (see also Fig. 1) r e -
main in force regardless of the character of reflection
of the particles from the surface of the body.

c) Concentration of neutral particles around a
sphere moving with arbitrary velocity. In the present
section we present without proof formulas for the con-
centration of neutral particles around a sphere with
arbitrary velocity. Although in this case we can no
longer state that the rarefaction region contains only
particles that do not collide with the body, and that on
the forward side the blocking of the particles by the
body is insignificant, it is nevertheless convenient to
represent n, as before, in the form

The expression for щ can be obtained here directly
from geometrical considerations, by recognizing that
the body sweeps in velocity space a region corre-
sponding to the angle subtended by the sphere at the
given point. We ultimately obtain

Xexp
— M

2kf

kT
(2.22)

If the body moves rapidly, that is, v0 » V kf/M, then
the previously obtained formula (2.12) follows from
(2.22) at distances z such that p/z and R0/z
« \/ kT/Mv* .* The value of n2 depends, as in the
case of a rapidly moving body, on the character of r e -
flection of the molecules from the surface of the body.
The calculations reduce here, roughly speaking, to an
averaging of formulas (2.17) and (2.20) over the di-
rections of the particles incident on the body. We
thus have in lieu of (2.20)

«• (e. sin e de

• cos 2 6' s in 2 9'

X exp i — 2kT s i n 2 8 — s i n 9 s i n 3 9 '
J i ,

- . ( 2 . 2 3 )

VQ2

T h e a n g l e 9' i n f o r m u l a ( 2 . 2 3 ) i s g i v e n b y

|_2 c o s ( 8 + 9 ' ) s in 6 ' + s i n 6 = 0. ( 2 . 2 4 )

*We n o t e t h a t a different c r i te r ion for t h e a p p l i c a b i l i t y of for-

m u l a s ( 2 . 1 1 ) - ( 2 . 1 7 ) i s g iven e r r o n e o u s l y in M , namely Ro/z

« V k T / M v J .

5 . I n f l u e n c e o f M a g n e t i c F i e l d o n t h e I o n - c o n c e n t r a t i o n

D i s t u r b a n c e

T h e s y s t e m ( 2 . 4 ) — ( 2 . 6 ) , w h i c h d e s c r i b e s s i m u l t a -

n e o u s l y t h e d i s t r i b u t i o n o f t h e i o n s , e l e c t r o n s , a n d

e l e c t r i c f i e l d i n t h e p l a s m a , i s r a t h e r c o m p l i c a t e d .

I t c a n b e s o l v e d o n l y b y a l l o w i n g f o r s p e c i f i c c o n d i t i o n s

t h a t m a k e c e r t a i n s i m p l i f i c a t i o n s p o s s i b l e . I n p a r t i c u -

l a r , a s c a n b e s e e n f r o m ( 2 . 4 ) — ( 2 . 6 ) , t h e e q u a t i o n s f o r

t h e e l e c t r o n a n d i o n d i s t r i b u t i o n f u n c t i o n a r e c o u p l e d

b e c a u s e t h e m o t i o n o f t h e c h a r g e d p a r t i c l e s i s i n -

f l u e n c e d b y t h e e l e c t r i c f i e l d , w h i c h i n t u r n d e p e n d s

o n t h e c o n c e n t r a t i o n d i s t r i b u t i o n o f t h e s e p a r t i c l e s .

A t t h e s a m e t i m e , i n t h e c a s e o f a r a p i d l y m o v i n g b o d y ,

v 0 » V k T / M a n d t h e e n e r g y M V Q / 2 of t h e i o n s i n c i d e n t

o n t h e b o d y i s l a r g e c o m p a r e d w i t h t h e t h e r m a l e n e r g y

k T . T h e p o t e n t i a l e n e r g y o f t h e i o n i n a n e l e c t r i c f i e l d ,

r e s u l t i n g f r o m t h e d i s t u r b a n c e i n t h e p l a s m a , i s , a s

w i l l b e s h o w n , o n l y s o m e w h a t h i g h e r t h a n t h e t h e r m a l

e n e r g y . W e m u s t t h e r e f o r e e x p e c t t h e i n f l u e n c e o f t h e

e l e c t r i c f i e l d o n t h e i o n m o t i o n t o b e n e g l i g i b l e i n f i r s t

a p p r o x i m a t i o n . I n t h i s a p p r o x i m a t i o n E q . ( 2 . 5 ) , w h i c h

d e s c r i b e s t h e d i s t r i b u t i o n o f t h e i o n s , c a n b e s o l v e d

i n d e p e n d e n t l y of ( 2 . 4 ) — ( 2 . 6 ) . A s o l u t i o n w i t h a c c o u n t

of t h e i n f l u e n c e o f t h e e l e c t r i c f i e l d o n t h e i o n m o t i o n

w i l l b e o b t a i n e d b e l o w i n t h e a p p r o x i m a t i o n l i n e a r i n

t h e f i e l d .

If w e d i s r e g a r d t h e m a g n e t i c f i e l d , t h e n t h e m o t i o n

o f t h e i o n s d o e s n o t d i f f e r a t a l l f r o m t h e m o t i o n o f

t h e n e u t r a l p a r t i c l e s , c o n s i d e r e d i n t h e p r e c e d i n g

s e c t i o n . I n t h i s c a s e , c o n s e q u e n t l y ,

j (r) = n (r)
( 2 . 2 5 )

T h e e x p r e s s i o n s f o r n ( r ) / n 0 a r e g i v e n a b o v e . T h u s ,

t h e p r o b l e m c o n s i s t s o n l y o f t a k i n g a c c o u n t o f t h e i n -

f l u e n c e o f t h e e x t e r n a l c o n s t a n t m a g n e t i c f i e l d o n t h e

m o t i o n o f t h e i o n s . W e c o n s i d e r h e r e o n l y t h e c a s e of

a b o d y m o v i n g r a p i d l y i n a p l a s m a .

I n t h i s c a s e t h e p r e s e n c e o f a m a g n e t i c f i e l d H i n -

f l u e n c e s a p p r e c i a b l y o n l y t h e d i s t r i b u t i o n o f t h e i o n s

i n t h e s h a d o w of t h e b o d y . T h e m a g n e t i c f i e l d i n t h e

c o n d e n s a t i o n z o n e i s p r a c t i c a l l y i n s i g n i f i c a n t . I n d e e d ,

t h e v e l o c i t y o f t h e p a r t i c l e s r e f l e c t e d i n t h i s z o n e i s

o f t h e s a m e o r d e r a s t h e v e l o c i t y v 0 o f t h e b o d y .

T h e r e f o r e t h e i r L a r m o r r a d i u s , ~vo/uft, i s v e r y l a r g e

a n d if t h e r a d i u s o f t h e b o d y R o « v o / f i i i ' t n e n t n e m a g -

n e t i c f i e l d b e g i n s t o c o m e i n t o p l a y o n l y a t d i s t a n c e s

w h e r e t h e p a r t i c l e d e n s i t y i s p r a c t i c a l l y e q u a l t o N i 0 .

S i n c e t h e c o l l i s i o n s b e t w e e n t h e p a r t i c l e s a n d t h e s u r -

f a c e o f t h e b o d y c a n b e n e g l e c t e d i n t h e s h a d o w z o n e ,

o n l y t h e m a x i m u m t r a n s v e r s e c r o s s s e c t i o n o f t h e

b o d y i n a p l a n e p e r p e n d i c u l a r t o t h e d i r e c t i o n o f m o t i o n

i s i m p o r t a n t i n t h e c o r r e s p o n d i n g c a l c u l a t i o n s . S t a r t -

i n g f r o m t h i s , t h e e q u a t i o n f o r t h e d i s t r i b u t i o n f u n c t i o n

of t h e i o n s i n t h e p r e s e n c e o f a c o n s t a n t m a g n e t i c f i e l d

c a n b e w r i t t e n i n t h e f o r m

дт H ] - g - (2.26)
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with the usual boundary condition

/z=0

= V 2nkT 2kT
0,

- j > if (х, у) is outside S,
if (x, y) is inside S,

where S is the transverse cross section of the body.
The characteristic equations for (2.26) are, as is

well known, the equations of motion of the ions; they
have the form

dv
1ft = v, (2.27)

where the time t is a free parameter.
Let us choose the z axis, as usual, along the direc-

tion of motion of the body, the у axis perpendicular to
the (H, v0) plane, and the x axis in the (H, v0) plane,
perpendicular to the v0 direction.

The solution of the characteristic system (2.27) has
in these coordinates the form

x = x0 + [vl sin a — (vl + t)e) cos a] (• sin a

— ^ = - cos a [sin (QHt — ф) + sin ф],

J=- [cos (Qnt — ф) — cos ф],

z = za — vot + [vx sin a — (vl -j- v0) cos a] t • cos a + ~=- sin a

— q>) + sinq>],

vx = vx sin2 a — (vl + v0) cos a sin a -

vv= — и j_ sin (QHt— (f),

vz= — v0 + Vx sin a cos a

• u^ cos a cos — ф)>

— (vl + v0) cos2
sin a cos a (Од< — (2.28)

H e r e

u±
Y + [v% cos a + (v'z + v0) sin a] 2

i s t h e p r o j e c t i o n of t h e v e l o c i t y u = v + v 0 on a p l a n e

p e r p e n d i c u l a r t o H; sirup = Vy/uj_; a i s t h e a n g l e b e -

t w e e n v 0 a n d Ho; x 0 , y 0 , a n d z 0 a r e t h e i n i t i a l c o o r d i -

n a t e s ; v x , v y , a n d v° a r e t h e i n i t i a l v e l o c i t i e s , a n d

й ц = eH/Mjc is the gyromagnetic frequency of the
ions. It is important that the ion merely rotates freely
in a plane orthogonal to H. Because of this, the total
energy of the particles and the modulus of the p r o -
jection of the velocity on this plane remains constant
in time:

(vz +i>0)
2 + vl + vl = (vl + vof + vf + vf,

v"y + [vl cos a + (vl + v0) sin a]2

= vl + [vx cos a + (vz + o0) sin a]2.

Using these relations and recognizing that the boundary
function fz=0 depends only on the coordinates and on
(v + v 0) 2, we can readily write the solution of (2.26):

f[z, x, y; ) 2 ] = /

и ,
-^=- cos a [sin (QHt — ф) + s inф],

w h e r e t h e p a r a m e t e r t i s d e f i n e d b y t h e r e l a t i o n

{svzt — uj_ sin а Г cos (Q.Ht — 1 —z.

(2.30)

In t h e a b s e n c e of a m a g n e t i c f ie ld, t h e d i s t r i b u t i o n

f u n c t i o n (2.29) c o i n c i d e s , of c o u r s e , w i t h ( 2 . 9 ) . I n t e -

g r a t i n g t h e o b t a i n e d e x p r e s s i o n f o r t h e d i s t r i b u t i o n

f u n c t i o n w i t h r e s p e c t t o t h e v e l o c i t i e s , w e c a n d e t e r -

m i n e t h e ion d e n s i t y i n t h e s h a d o w z o n e . T h e f o r m of

(2.29)

t h e l a t t e r d e p e n d s e s s e n t i a l l y o n t h e a n g l e a b e t w e e n

t h e d i r e c t i o n of t h e m a g n e t i c f i e ld a n d t h e d i r e c t i o n of

m o t i o n of t h e b o d y .

a) M o t i o n of b o d y a l o n g t h e m a g n e t i c f i e ld ( v n II H ) .

We c o n s i d e r f i r s t a s i m p l e c a s e w h e n t h e b o d y m o v e s

a l o n g t h e m a g n e t i c f ie ld H, t h a t i s , w h e n a = 0. We

a s s u m e h e r e t h a t t h e c r o s s s e c t i o n of t h e b o d y i s a

circle of radius Щ. Expression (2.29) for the distri-
bution function then assumes the form

f[z, x, y; (v + v0)
2] =

Mi

f o r

<R0. (2.31)
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Here

"1 = vl = Vvl + v J . (2.32)

We change over to new variables u and <pt, which are
determined by the relations

Ml Sill

(2.33)

Ф ) =
« s in ф!

I n a s m u c h a s

т 7 и аи dq
dvxdvy = J

4 s i n ' #

We introduce the variable у1 = v VMj/2kT and obtain
from (2.31)

4 sin -~—

2QH

aHz

(u cosq>i —

or after integration with respect to <pt

2ехр - — -

2о„ sin

QU da, (2.34)

where p д = (c/eH ) V2kTMj has the meaning of the
average Larmor radius of the ion, and Io is a Bessel
function of zero order of imaginary argument. Recog-
nizing furthermore that v0 » VkT/Mj, we replace v z

everywhere in the curly bracket by — v0 and integrate
with respect to v z . We ultimately obtain

•- 2N0 exp f —

X \ ue~
Ro

da. (2.35)

At small distances from the body we have

and formula (2.35) coincides with (2.12). This confirms
the assumption made above, that the influence of the
magnetic field is insignificant in the near zone (when
z « v Q / i i n ) . W h e n z > V Q / П Ц , t h e i n f l u e n c e o f t h e

m a g n e t i c f i e l d , t o t h e c o n t r a r y , i s v e r y l a r g e . I t i s

obvious from (2.35) that Nj(p, z) is aperiodic func-
tion of z with a period T z = 27ГУ0/Пц.

The character of variation of the ion density in the
shadow zone, of course, depends appreciably on the
relation between Ro and the Larmor radius pjj. If the
dimensions of the body are very large ( Ro » pjj) then
the perturbed zone represents actually a semi-infinite
cylinder of radius Ro, inside of which the ion concen-
tration is zero; the boundary of the cylinder is smeared
over a distance on the order of рд .

For small bodies with Ro « p д, to the contrary,
the ion concentration in the shadow zone changes very
little over the length of the period 27rv0 Д2д.

On the z axis (for p = 0) expression (2.35) as-
sumes a particularly simple form. Here

m (2.36)

F o r the c a s e v0 II H considered here , the d i s t u r b -
ances of the ion concentrat ion

AN; N: (o, z) — No

Ni0 No

along the z axis for p = 0, a r e shown in Fig. 3, while
Fig. 4 shows curves of equal values of N j ( p , z ) / N j 0 .
The corresponding curves are calculated for Ro = р д
and VMv|/2kT = 8. In this case the period of variation
of ANi/N i 0 is equal to 50.24R0.

It must be noted that under real conditions the struc-
ture of the rarefied region behind the moving body is
neither strictly periodic nor semi-infinite. This is
due to the fact that in the derivation of the previous
formulas we took no account of the collisions of the
ions and the electric field. It is understandable that
when the collisions are taken into account the disturb-
ances of the region behind the moving body can have
a strictly periodic structure only up to distances of
order Л[ —the mean free path of the ions. Collisions
lead to a change in the periodicity in z and to a smear-
ing of the effect over distances on the order of A[-

b) Motion of body transverse to the magnetic field
( vn 1 H). If the body moves in a direction perpendicu-

FIG. 3. Variation
of ANi/Nio on the z
axis in the "rarefac-
tion" region of a
spherical body mov-
ing parallel to the
magnetic field.
Dashed curve —the
same for Ho = 0.

W

н„-<?
25 50 75
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FIG. 4. Curves of constant ratio Ni(p, z ) / N j 0 in the "rarefac-

t ion" region of a spherical body when v 01| Ц,, VMi:vJ/2kT = 8,

1-

l a r t o H, t h e n t h e p r o b l e m h a s n o a x i a l s y m m e t r y a n d

t h e e x p r e s s i o n f o r t h e i o n d e n s i t y f o r a b o d y o f c i r c u l a r

c r o s s s e c t i o n h a s a v e r y c o m p l i c a t e d f o r m . S i m p l e r

a n d c l e a r e r f o r m u l a s a r e o b t a i n e d i f t h e c r o s s s e c t i o n

o f t h e b o d y i n a p l a n e p e r p e n d i c u l a r t o t h e d i r e c t i o n o f

m o t i o n i s a r e c t a n g l e w i t h d i m e n s i o n s 2 R X a n d 2 R y .

E x p r e s s i o n ( 2 . 2 9 ) f o r t h e d i s t r i b u t i o n f u n c t i o n a s -

s u m e s i n t h i s c a s e t h e f o r m

f[z,x,y; ( v + v 0 ) 2 ]

Mi \*/

)

M: ( v + v 0 ) » "I .л _
i ^ i L J - i - J , i f R x > \ x - V x t \

and.fi,,:>

0, if Rx < | x - vxt \

iandfi u < y — ^ [cos (&H — q>") — cosq> 1 , (2.37)

where the p a r a m e t e r t is defined by the re lat ion

. Г //-, . \ , sin (Glut — <p)-[-sin<p 1 ,_ _ r t .v,t — Uj_ I cos {biijt — ф) t pr— — = 2 , \ 2 . o 8 )

a n d

T h e s o u g h t ion d e n s i t y in t h e s h a d o w z o n e i s d e t e r -

m i n e d b y i n t e g r a t i n g t h e d i s t r i b u t i o n f u n c t i o n (2.37)

w i t h r e s p e c t t o t h e v e l o c i t i e s . R e c o g n i z i n g t h a t

V k T / M j « v 0 , w e o b t a i n u l t i m a t e l y

N^z, x, y) = Ni0-ANi(z, x, y)

Ф (2.39)

Here, as before, Ф is the probabil i ty integral, р д
= ( c / e H ) V 2MjkT, and the z and x axes coincide with
the d i rect ions of the motion of the body and the m a g -
netic field, respect ively. It is seen from (2.39) that
in the case v 0 1 H considered h e r e the dependence of
N[ on x is s i m i l a r to that when H = 0 [ c o m p a r e with
(2.14)], while the y-dependence changes radical ly b e -
cause of the magnetic field. At s m a l l d i s tances from
the body z « vo/fijj formula (2.39) coincides with
formula (2.14), obtained in the absence of a magnetic
field, as should be the c a s e .

However, when z > v o / f i H , the influence of the
magnet ic field is l a r g e : the second factor in (2.39) is,
as in the c a s e when v 0 II H, a per iodic function of z
with a per iod 27rvo/ftjj.

The distr ibution of the ion concentrat ion in the
shadow zone has , owing to the influence of the magnetic
field, a r a t h e r complicated form. An idea of the c h a r -
a c t e r of the d is turbance of the ion concentrat ion
ANj/Nio can be gained from Figs . 5—7.

The var iat ion of ANj /N o along the z axis for a
body with square c r o s s section, with Rx = R y = p H

and VMv2/2kT = 8, is shown in Fig. 5. T h e d i s t u r b -
ance does not r e m a i n constant, but d e c r e a s e s with d i s -
tance a s 1/z. We r e c a l l h e r e that A N i / N i 0 d e c r e a s e s
with the dis tance like 1/z2 in the c a s e when H = 0
( d a s h e d curved in Fig. 5) , w h e r e a s when H II v 0 the
average variat ion of ANj/Nio does not i n c r e a s e at all
with i n c r e a s i n g d is tance.

U3

07

OS

0.3

- - - HfOП£ U —-
О 10 20 30 40 SO ВО 70 SO 30 100 ПО '//>.

FIG. 5. Variation of ANi/N 1 0 on the z axis in the "rarefac-

t ion" region of a body of square cross section, moving perpendicu-

lar to the magnetic field ( v 0 1 H, \/!ВД/2кТ = 8 , R x = R y = pH).

Figure 6 shows the t r a c e s in the (x, у) plane of the
surface N ^ x , y, z ) / N i 0 = 0.5 for different values of
z, that is, different d i s tances behind the body. We see
from the f igure that this sur face has a r a t h e r i n t e r e s t -
ing s t r u c t u r e ; for example, in the case when р д
= 0.3R x = 0.3Ry the form of the c r o s s sect ion of the
body f i r s t s p r e a d s out, and then again a s s u m e s its in i-
t ia l s h a r p boundaries . This is seen even m o r e c lear ly
in Fig. 7, which shows the genera l form of the surface
N i ( x , y, z ) / N i 0 = 0.8. With increas ing N i / N i 0 the s u r -
face Ni/Nio = const s t r e t c h e s over l a r g e r d i s tances b e -
hind the body; the influence of the magnetic field natural ly,
i n c r e a s e s then. The influence of the magnetic field
becomes s t r o n g e r a lso with d e c r e a s i n g L a r m o r radius
of the ions, m o r e accurately, with d e c r e a s i n g ra t io
Р д / R x o r р д / R y . This is seen, in par t icu lar , from
Fig. 6, where the c r o s s sect ions N i ( x , y, z ) / N o j = 0.5
a r e shown for different ra t ios of the L a r m o r radius to
the dimension of the body. The influence of the m a g -
netic field is completely insignificant when рд/Rj j
= Р д / R y = 3 ( the dashed curves on Fig. 6 show the
s a m e sect ions in the absence of a magnetic f ield), it
becomes noticeable when P f l / R x

 = Р н / К у = 1> a n d is
quite la rge when р д / R x - Р н / % = °-3-
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FIG. 6. Cross sections through the surfaces of
constant ratio Ni/Ni0 = 0.5 in the (x, y) plane in the
"rarefaction" region for different values of z/Rx,
as indicated in the figure. The body has a square cross
section. Dashed curve — the same for Ho = 0.

FIG. 7. Surface of constant ratio Ni/Nio = 0.8 in the
"rarefaction" region of a body of square cross section,
Rx = Ry, for the case when v 0 1 Ho, Ц, Ц x, p H - 0.3Rx.

If the l i n e a r dimension of the body in a direct ion
perpendicu lar to Ho is large, that is, much l a r g e r
than the L a r m o r radius ( R y » p j j ) , then the dis turbed
zone at large d is tances from the body r e p r e s e n t s a
plate in the form of a s t r i p lying in the (x, z) plane,
that is, in the plane (v 0 • H ) :

ЛГ,

( 2 . 4 0 )

The thickness of the plate is somewhat s m e a r e d out
( by an amount p д) and oscillates with a period
2тгуо/Пн- !t follows from formula (2.40), in particular,
that owing to the influence of the magnetic field appreci-
able disturbances in the density are maintained at larger
distances from the body.

c) Arbitrary direction of motion. To calculate the
distribution function in this general case it is con-
venient to integrate (2.29) with respect to the velocity
by changing over from the velocities v x, v v, and v z

to the velocity uj_, defined in accordance with (2.32),
and the velocity Уц, parallel to the magnetic field. In
this case at large distances from the body (z » vo/£2g),
where the influence of the magnetic field is most notice-
able, the following expression holds for the ion concen-
tration:

Nt (x, у, z) = . z sina + xcosa J

-ф \ГШцЦ
2kT i sin a + i cos a

• ! Ф

-Ф -
У 2QH I

( 2 . 4 1 )

I t i s a s s u m e d h e r e t h a t t h e a n g l e a i s n o t v e r y s m a l l

( s i n a > 2 R x / z ) . T h e f o r m o f t h e d i s t u r b e d z o n e i s

i n t h i s c a s e , n a t u r a l l y , r a t h e r c o m p l i c a t e d . O n t h e

w h o l e , t h e l e n g t h o f t h e p e r t u r b e d z o n e i n c r e a s e s w i t h

d e c r e a s i n g a n g l e a l i k e 1 / s i n a . T h e m e a n v a l u e o f

t h e d i s t u r b a n c e o f t h e c o n c e n t r a t i o n o f t h e i o n s f o r

a n y a / 0 d e c r e a s e s i n p r o p o r t i o n t o 1 / z . T h e m o t i o n

o f a b o d y a l o n g t h e m a g n e t i c f i e l d i s i n t h i s s e n s e a

s p e c i a l c a s e .

6 . E l e c t r i c F i e l d A r o u n d a B o d y

B y d i s t u r b i n g t h e d e n s i t y o f t h e e l e c t r o n s a n d i o n s ,

t h e m o v i n g b o d y u p s e t s t h e q u a s i n e u t r a l i t y o f t h e p l a s m a

i n i t s v i c i n i t y . A s a r e s u l t , a n e l e c t r i c f i e l d i s p r o -

d u c e d h e r e , w h i c h i t s e l f i n f l u e n c e s t h e d i s t r i b u t i o n o f

t h e c h a r g e d p a r t i c l e s . T h e r e f o r e , t o f i n d t h e e l e c t r i c

f i e l d i t i s n e c e s s a r y , g e n e r a l l y s p e a k i n g , t o s o l v e E q .

( 2 . 6 ) f o r t h e p o t e n t i a l o f t h e f i e l d s i m u l t a n e o u s l y w i t h

E q s . ( 2 . 4 ) a n d ( 2 . 5 ) , w h i c h d e t e r m i n e t h e d i s t r i b u t i o n

o f t h e c h a r g e d p a r t i c l e s .

O n t h e w h o l e , t h i s s y s t e m o f e q u a t i o n s i s q u i t e c o m -

p l i c a t e d , a n d a c o m p l e t e s o l u t i o n c a n b e o b t a i n e d o n l y

i n t h e r e g i o n o f a p l a s m a w h i c h i s w e a k l y p e r t u r b e d b y

t h e m o t i o n o f t h e b o d y . A n a p p r o x i m a t e s o l u t i o n o f

t h e s e e q u a t i o n s i n t h e r e g i o n o f a s t r o n g l y d i s t u r b e d

p l a s m a i s b a s e d o n t h e f a c t t h a t n e a r t h e b o d y t h e d i s -

t r i b u t i o n o f t h e h e a v y p a r t i c l e s ( i o n s ) i s d i s t u r b e d

e s s e n t i a l l y b e c a u s e o f t h e i r i n t e r a c t i o n w i t h t h e b o d y

i t s e l f , s o t h a t i n f i r s t a p p r o x i m a t i o n t h e i n f l u e n c e o f

t h e e l e c t r i c f i e l d o n t h e m o t i o n o f t h e i o n s c a n b e n e g -

l e c t e d .

W e n o t e t h a t t h e d i s t r i b u t i o n o f t h e c h a r g e d p a r t i c l e s

a n d c o n s e q u e n t l y a l s o t h e e l e c t r i c f i e l d n e a r t h e b o d y

a r e i n f l u e n c e d b y t h e c h a r a c t e r o f i n t e r a c t i o n o f t h e

p a r t i c l e s w i t h t h e s u r f a c e o f t h e b o d y ; a c c o r d i n g l y , t h e



26 A L ' P E R T , G U R E V I C H and P I T A E V S K I I

form of U( r) or the boundary conditions in Eqs. (2.4)
and (2.5) also change. If, for example, all the particles
are elastically reflected from the surface of the body,
then the potential energy U( r ) is as before equal to
infinity on the surface of the body and to zero outside
the body. On the other hand, if the particles are ab-
sorbed upon contact with the surface of the body, for
example the ions become neutralized and the electrons
absorbed, or if the collisions between the particles
and the surface are inelastic, then the corresponding
expressions change; furthermore, in this case there
are added to Eqs. (2.4) and (2.5) terms that describe
the creation and absorption of the particles. New terms
must be added also when account is taken of other ef-
fects on the surface of the body (photoeffect, thermionic
emission, etc.). One can show, however, that sufficiently
far away from the body in the disturbed zone the con-
centrations of the ions and electrons, and consequently
also the electric field, are actually independent of the
character of interaction between the particles and the
surface of the body. It is therefore advantageous to
consider first the simplest case, when all the particles
are reflected from the surface of the body. The in-
fluence of particle absorption will be taken into ac-
count later on.

a) Body reflects elastically particles incident on it-
Electron density. In the conditions of interest to us,
the velocity of the body can always be regarded as
smaller than the thermal velocity of the electrons
v e = V2kT/m. Therefore the disturbances due to the
motion of the body are small and the distribution of
the electrons should be close to equilibrium. Solution
of (2.4) can be sought in the form of a series of suc-
cessive approximations, choosing as the zeroth ap-
proximation the Maxwell-Boltzmann equilibrium dis-
tribution

(2.44)

where

N, = \ /t cPu

is the ion density and No is the undisturbed electron
density. *

Let us rewrite (2.44) in terms of the dimensionless
variables у = e^/kT and x = r/R0:

(2.45)

where A is a certain constant

(2.46)

The next term of the expansion, as can be readily seen,
is V mv2 /kT times smaller than feo, and is neglected
throughout. *

For the electron density we obtain from formula
(2.24), naturally,

(2.43)

Electric field. Equation (2.6) for the potential of
the electric field is now written in the form

*It must be noted that inasmuch as the spreading out of the
disturbance transversely to the magnetic field is hindered when
the disturbed region is very strongly elongated along the magnetic
field, no Maxwell-Boltzmann distribution is established for the
electron distribution function, and the expression for fe(u, r) and
N(r) has a more complicated form. Such a case is realized, how-
ever, only if the body motion is strictly longitudinal, when the
angle a is very small.

D = VkT/47re?N0 is the Debye radius. In the ionosphere
A ~ 103—104 (for Ro = 1 meter), that is, quite large.
This means that the characteristic dimensions which
arise in an examination of the disturbances due to
moving bodies in the ionosphere are large compared
with the Debye radius; the Debye screening plays there-
fore a most important role here.

The character of the solution of (2.45) in the pres-
ence of a large parameter A in the right half of the
equation is of course determined by this parameter.
In this case it is convenient to separate two regions:
the region where the concentration of the ions is not
very small, so that ANj( r)/N 0 > 1, and the region near
the body (we shall call it the "region of maximum r a r -
efaction"), where, to the contrary, ANi(r)/N 0 < 1. In
the first region the principal role in (2.45) is played by
the nonlinear term exp y, and the equation can there-
fore be rewritten in the form

(2.47)

A solution of this equation can be readily obtained by
iteration: in the first approximation

— Vi ^ l n j

In the next approximation

- У г = In

i (r) '
(2.48)

ivn
i (r)

Vi(r) (r)
(2.49)

etc. In the first region [ AN} ( r)/N 0 > 1 ] this method
yields good convergence.

In the second region, the region of maximum r a r -
efaction, [ ANj( r )/N 0 < 1 ], the concentration of the
ions is very small and accordingly the role of the ions
is insignificant. In this region, however, the solution

*For simplicity we assume everywhere that the ions are singly
charged, that is, Nj0 = No.
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of (2.47) depends strongly on the electric properties of
the body itself. We assume here that the body is a
dielectric with uncharged surface (since we are con-
sidering the case when all the particles striking the
surface of the body are completely reflected by the
body). Then the solution of (2.47) in the region under
consideration, as can be readily seen, has the form

f-i

(2.50)

where y4 satisfies the equation

— Л г̂/j = exp { — уг (х)} (2.45a)

( ins ide the body, natural ly, &yx = 0 ) . The value of yx

on the boundary of the cons idered region is de termined
by the conditions of matching the solution of (2.50) to
the solution in the f i r s t region. As can be seen from
(2.48), the boundary value y t tu rns out to be only of
the o r d e r of unity. Consequently, Eq. (2.45a) and its
boundary condition do not contain any large p a r a m e t e r s ,
so that it is c l e a r that yx < 1 everywhere in the region
under considerat ion. By virtue of this, in f i rs t approx i-
mation, we can neglect the function yt ( x ) in (2.50), that
i s , we can a s s u m e that in the e n t i r e region of maximum
rarefaction у = - In A. In the same approximation it is
necessary to take into account in the second region
only the first iteration (2.48) for y ( x ) .

Thus, the potential of the electric field has the fol-
lowing approximate form ( accurate to terms of order
1/lnA near the body and with accuracy of order I/A
away from the body)

— In A V i ( r ) A

Ту" ~ Л %
1 •

( 2 . 5 1 )

B y d e t e r m i n i n g w i t h t h e a i d o f t h i s e x p r e s s i o n f o r

t h e p o t e n t i a l t h e d e n s i t y o f t h e e l e c t r o n s ( 2 . 4 8 ) , w e

v e r i f y t h a t i n t h e f i r s t r e g i o n t h e c o n c e n t r a t i o n s o f

t h e i o n s a n d e l e c t r o n s c o i n c i d e ; i n t h e s e c o n d r e g i o n

( n e a r t h e b o d y ) t h e e l e c t r o n c o n c e n t r a t i o n i s o n t h e

o r d e r o f N o / A , w h i l e t h e i o n c o n c e n t r a t i o n i s m u c h

s m a l l e r . T h u s , t h e d i f f e r e n c e i n t h e e l e c t r o n a n d i o n

c o n c e n t r a t i o n s d o e s n o t e x c e e d N o / A a n y w h e r e a n d i s

s m a l l c o m p a r e d w i t h t h e u n d i s t u r b e d c o n c e n t r a t i o n N o .

F u r t h e r , i f w e d i s r e g a r d t h e i n f l u e n c e o f t h e e l e c t r i c

f i e l d o n t h e m o t i o n o f t h e i o n s , f o r m u l a ( 2 . 5 1 ) w i t h a c -

c o u n t o f t h e e x p r e s s i o n s f o r t h e d i s t u r b a n c e s o f t h e i o n

c o n c e n t r a t i o n s , o b t a i n e d i n t h e p r e c e d i n g s e c t i o n , c o m -

p l e t e l y d e t e r m i n e t h e p o t e n t i a l o f t h e e l e c t r i c f i e l d i n

t h e d i s t u r b e d z o n e . T h e d i s t r i b u t i o n o f t h e p o t e n t i a l

i n t h e v i c i n i t y o f a s p h e r i c a l b o d y a n d i n t h e a b s e n c e

o f a m a g n e t i c f i e l d i s s h o w n i n F i g . 8 . S i n c e I n A ~ 1 0

i n t h e i o n o s p h e r e , t h e p o t e n t i a l <p i n t h e v i c i n i t y o f t h e

m a x i m u m r a r e f a c t i o n i s o n e o r d e r o f m a g n i t u d e l a r g e r

t h a n k T / e , t h a t i s , q> ~ 1 v o l t . A h e a d o f t h e b o d y , t o

t h e c o n t r a r y , <p i s o n l y o f t h e o r d e r o f k T / e , t h a t i s ,

<p ~ 0 . 0 5 - 0 . 1 v o l t .

F I G . 8 . D i s t r i b u t i o n o f p o t e n t i a l in t h e v i c i n i t y o f a s p e c u l a r l y

r e f l e c t i n g s p h e r i c a l b o d y i n t h e a b s e n c e o f a m a g n e t i c f i e l d

( V M v * / 2 k T = 8 ) .

b ) B o d y a b s o r b s t h e i n c i d e n t p a r t i c l e s . W h e n a l l

t h e p a r t i c l e s i n c i d e n t o n t h e s u r f a c e o f t h e b o d y a r e

c o m p l e t e l y a b s o r b e d o r n e u t r a l i z e d b y i t , t h e c o n c e n -

t r a t i o n o f t h e i o n s i n t h e r e g i o n o f c o n d e n s a t i o n i s e q u a l

t o t h e c o n c e n t r a t i o n o f t h e i o n s i n t h e i n c o m i n g s t r e a m ,

s i n c e t h e r e a r e n o r e f l e c t e d i o n s . B e h i n d t h e b o d y , i n

t h e r a r e f a c t i o n r e g i o n , t h e c o n c e n t r a t i o n o f t h e i o n s i s

d e t e r m i n e d e s s e n t i a l l y o n l y b y t h e f r e e i n c o m i n g i o n s

i n t h i s z o n e , a n d t h e r e f o r e d o e s n o t d e p e n d o n t h e c h a r -

a c t e r o f i n t e r a c t i o n b e t w e e n t h e i o n s a n d t h e s u r f a c e o f

t h e b o d y .

Let us proceed now to a consideration of the poten-
tial of the electric field ц>. In the analysis of Eq.
(2.45), above, we separated for <p the first region and
the second region—the region of maximum rarefaction.
The boundary separating these regions was determined
by the condition ANj/No = 1; it is shown dashed in Fig.
8. It is easy to verify that the character of the inter-
action of the particles with the surface of the body does
not influence at all the expression for the potential of
the electric field in the first region, where

_ ф = ^ 1 п ^ г . (2.52)

Consequently, the value of the potential <p in the first
region changes only to the extent that the concentration
of the ions changes; this concentration, as we have seen
above, remains essentially in the same form, except
that in front of the body we now have Nj = No and
ер = 0. The electron density in the first region is de-
termined as before by expression (2.43) and, naturally,
coincides with the ion density. *

In the second region, the region of maximum r a r -
efaction, the potential of the electric field can, to the
contrary, change appreciably. In fact, if the particles
incident on the surface of the body are absorbed, then
the potential of the surface itself changes. In this case,
if the surface of the body is a dielectric, the potential

*It must be emphasized that when electrons are absorbed on
the surface of the body their density, strictly speaking, no longer
obeys the Boltzmann distribution (2.43). However, if there is a
sufficiently large negative potential on the surface of the body,
formula (2.43) holds true in any case in those points r where
cp0 - cf>(r) .< -kT/e.
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of t h e f i e ld a t e a c h p o i n t of t h e s u r f a c e i s d e t e r m i n e d

f r o m t h e c o n d i t i o n t h a t t h e c u r r e n t i n t h i s r e g i o n b e

e q u a l t o z e r o ( t h a t i s , t h e n u m b e r of e l e c t r o n s a b s o r b e d

f r o m t h e p l a s m a p e r u n i t t i m e s h o u l d e q u a l t h e n u m b e r

of n e u t r a l i z i n g i o n s a t t h e s a m e p o i n t of t h e s u r f a c e ) .

If t h e b o d y s u r f a c e i s m e t a l l i c , t h e n t h e p o t e n t i a l of

t h e s u r f a c e i s d e t e r m i n e d f r o m t h e c o n d i t i o n t h a t t h e

t o t a l c u r r e n t o n t h e b o d y v a n i s h . F u r t h e r m o r e , o n t h e

b o u n d a r y of t h e c o n s i d e r e d r e g i o n of m a x i m u m r a r e -

f a c t i o n , s h o w n d a s h e d i n F i g . 8, t h e p o t e n t i a l of t h e

f ie ld i s c o n s t a n t a n d e q u a l t o - ( k T / e ) l n A . T h u s , t h e

p o t e n t i a l <p i n t h e r e g i o n of m a x i m u m r a r e f a c t i o n i s

d e t e r m i n e d b y (2.6) w i t h t h e c o n d i t i o n s i n d i c a t e d a b o v e

on t h e b o u n d a r i e s of t h e r e g i o n .

I t i s i m p o r t a n t t h a t t h e d e n s i t y of t h e i o n s i n t h e

r e g i o n u n d e r c o n s i d e r a t i o n i s n e g l i g i b l y s m a l l . L i k e -

w i s e s m a l l i s t h e e l e c t r o n d e n s i t y : i t d o e s n o t e x c e e d

N o /A, s i n c e t h e p r e s e n c e of e l e c t r o n a b s o r p t i o n o n

t h e s u r f a c e of t h e b o d y d o e s n o t i n c r e a s e t h e i r c o n c e n -

t r a t i o n n e a r t h e b o d y i n a n y c a s e . T h e r e f o r e t h e r o l e

of t h e f r e e c h a r g e s i s s m a l l i n t h i s c a s e c o m p a r e d

w i t h t h e i n f l u e n c e of t h e c o n d i t i o n s on t h e b o u n d a r y of

t h e r e g i o n , and c a n b e n e g l e c t e d ; E q . (2.6) i s c o n s e -

q u e n t l y r e w r i t t e n in t h e f o r m

Дф = 0 (2.53)

w i t h b o u n d a r y c o n d i t i o n <p = < p o ( S ) o n t h e s u r f a c e of

t h e b o d y a n d <p = ( k T / e ) l n A o n t h e r e m a i n i n g p a r t

of t h e s u r f a c e of t h e r e g i o n of m a x i m u m r a r e f a c t i o n .

A s o l u t i o n of t h i s e q u a t i o n c a n b e o b t a i n e d n u m e r i c a l l y

o n l y u n d e r s p e c i f i c c o n d i t i o n s , u s i n g o r d i n a r y m e t h o d s

of e l e c t r o s t a t i c s . T h e r e s u l t of t h e c o r r e s p o n d i n g c a l -

c u l a t i o n of t h e p o t e n t i a l <p f o r a m e t a l l i c s u r f a c e u n d e r

t h e c o n d i t i o n s of t h e F l a y e r of t h e i o n o s p h e r e

VMv2 / 2 k T = 8 a n d - ip0 = 0 . 2 5 ( k T / e ) l n A i s s h o w n

i n F i g . 9 . *

U n d e r t h e c o n d i t i o n s of t h e i o n o s p h e r e cp0

( 2 — 3 ) k T / e . In t h e c a l c u l a t i o n of t h e c u r v e s of

F i g . 9 i t w a s a s s u m e d t h a t <p0 ~ - 0 . 2 5 ( k T / e ) l n A ,

s i n c e i n t h e F l a y e r l n A = 10 f o r R o ~ 1 m e t e r ; c o n -

s e q u e n t l y 0 . 2 5 ( k T / e ) l n A ~ 2 . 5 k T / e . I t i s s e e n f r o m

t h e f i g u r e t h a t t h e v a r i a t i o n of t h e p o t e n t i a l <p n e a r t h e

s u r f a c e ( i n t h e r e g i o n of m a x i m u m r a r e f a c t i o n ) h a s

*The potential of a metallic sphere <p0 is determined, as noted
above, from the condition that the total current on its surface van-
ish. The ion current is obviously Ij = eNojrRoV,,, where v0 is the
velocity of the body. The electron current is I e = (l/2)eN077R v̂e

x exp[ecpo/kT]. It is assumed here that the body is negatively
charged with potential cp0, and that the electrons in the plasma
have a Maxwellian distribution. Account is also taken of the fact
that the electrons are absorbed essentially only on one hemisphere
(since the number of electrons in the "rarefied region" is very
small), v e = vakT/шп is the average electron velocity. If we
neglect the photocurrent, thermionic emission, and other processes,
then the potential cp0 of the body is determined simply from the re-
lation Ii = I e ; this yields

kT , kT ,
1 l / —

V nmv,

FIG. 9. Distribution of the potential in the vicinity of a metal-

lic sphere [VMvJ/2kT = 8, cp0 = 0.25(kT/e)ln A ] .

c h a n g e d a p p r e c i a b l y ( c o m p a r e d w i t h t h e c a s e of a r e -

f l e c t i n g s p h e r e ) , a s s h o u l d b e t h e c a s e . T h e m a x i m u m

v a l u e of (p, h o w e v e r , i s a s b e f o r e e q u a l t o ( k T / e ) l n A ;

i t i s a t t a i n e d n o t n e a r t h e s u r f a c e of t h e b o d y , b u t a t

a d i s t a n c e on t h e o r d e r of R o .

T h e i n t e n s i t y of t h e e l e c t r i c f i e ld on t h e s u r f a c e of

t h e b o d y in t h e r a r e f i e d z o n e i s E ~ k T ( l n A ) / e R 0 . T h e

v a l u e of E i s m i n i m a l in t h e — z d i r e c t i o n , o p p o s i t e

t h e d i r e c t i o n of t h e m o t i o n of t h e b o d y ; h e r e

E = 1.3 ( k T / e R g ) l n A . On a p p r o a c h i n g a d i r e c t i o n

o r t h o g o n a l t o v 0 , E i n c r e a s e s a p p r e c i a b l y t o a v a l u e

on t h e o r d e r of k T / e D , w h e r e D i s t h e D e b y e r a d i u s .

In t h e o p p o s i t e s i d e , i n t h e d o u b l e l a y e r o n t h e f o r w a r d

s u r f a c e of t h e body, t h e f ie ld i n t e n s i t y h a s a n o p p o s i t e

s i g n ; a s w a s s h o w n b y G i n t s b u r g ' - 1 9 ^ , i t s a b s o l u t e v a l u e

i s a l s o of t h e o r d e r of k T / e D .

T h e p o t e n t i a l of t h e f i e ld <p r e m a i n s of t h e s a m e

f o r m a l s o in t h e p r e s e n c e of o t h e r c o n d i t i o n s in t h e

s u r f a c e of t h e body; f o r e x a m p l e , if o n l y p a r t of t h e

i o n s o r e l e c t r o n s i s a b s o r b e d , o r if o t h e r p r o c e s s e s

in t h e s u r f a c e of t h e b o d y a r e t a k e n i n t o a c c o u n t , s u c h

a s p h o t o e m i s s i o n , t h e r m i o n i c e m i s s i o n , e t c . O n l y t h e

f o r m of t h e p o t e n t i a l <p in t h e r e g i o n of m a x i m u m r a r -

e f a c t i o n d e p e n d s s i g n i f i c a n t l y on t h e c o n d i t i o n s o n t h e

s u r f a c e . Of c o u r s e , t h i s h o l d s t r u e o n l y if t h e d i m e n -

s i o n s of t h e b o d y a r e m u c h l a r g e r t h a n t h e D e b y e r a d i u s .

c) I n f l u e n c e of e l e c t r i c f i e ld on t h e m o t i o n of t h e

i o n s . In t h e p r e c e d i n g s e c t i o n w e h a v e c a l c u l a t e d t h e

e l e c t r i c f ie ld d u e t o t h e p l a s m a p e r t u r b a t i o n c a u s e d b y

t h e m o v i n g b o d y . It w a s a s s u m e d h e r e t h a t i t i s p o s -

s i b l e to n e g l e c t t h e r e a c t i o n of t h e e l e c t r i c f i e ld on t h e

p e r t u r b a t i o n , t h a t i s , o n t h e m o t i o n of t h e i o n s . A c t u a l l y ,

of c o u r s e , t h i s i s t r u e o n l y in t h e f i r s t a p p r o x i m a t i o n .

I t g o e s w i t h o u t s a y i n g t h a t t h e e l e c t r i c f i e ld i n f l u e n c e s

t h e m o t i o n of t h e i o n s ; h o w e v e r , a s i n d i c a t e d a b o v e ,

o w i n g t o t h e h i g h ion v e l o c i t y r e l a t i v e t o t h e body, t h i s

i n f l u e n c e i s n o t d e c i s i v e f o r t h e p r o b l e m c o n s i d e r e d

h e r e , s i n c e , a s i s c l e a r f r o m t h e r e s u l t s of t h e p r e c e d -

ing s e c t i o n , MVQ » eq>( r ) .

In t h e c o n d e n s a t i o n r e g i o n a h e a d of t h e body, an a c -

c o u n t of t h e i n f l u e n c e of t h e e l e c t r i c f i e ld l e a d s o n l y t o

i n s i g n i f i c a n t c o r r e c t i o n s of t h e o r d e r of k T / M v o . T o

t h e c o n t r a r y , t h e i o n s f i l l ing t h e r a r e f a c t i o n r e g i o n ,

a r e a c t e d u p o n b y t h e e l e c t r i c f i e ld f o r a l o n g t i m e ,

s o t h a t h e r e t h e i n f l u e n c e of t h e f ie ld i s m u c h m o r e
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appreciable. The filling of the rarefaction region oc-
curs, as can be readily understood, only as a result
of thermal motion of the particles in a plane perpen-
dicular to the direction of motion of the body. The
potential energy of the ion in the field, on the other
hand, is of the same order as the energy of thermal
motion. Therefore an account of the influence of the
electric field on the filling of the rarefaction region
with the ions should turn out to be essential in the
general case. A corresponding calculation, carried
out in Sec. 8 of Chapter III for the far region, shows
that the disturbances of the ion density in the rarefac-
tion region decrease to approximately one-half as the
result of the influence of the electric field. In this
case the form of the disturbed " t r a i l " of the body also
changes somewhat. An account of the influence of the
electric field does not change, however, the fundamental
qualitative features of the behavior of the ion concen-
tration in the rarefaction region, as noticed above.

In particular, we shall show in the present section
that even in a rigorous account of the electric field in
the absence of a magnetic field, the ion-density dis-
turbances decrease far away from the body like ~ l / r 2 ,
which coincides with the results obtained above with-
out account of the influence of the electric field. To
prove this we write down the exact equation (2.5) for
the ion distribution function, with account of the elec-
tric field (when Ho = 0) and the Poisson equation
(2.44)

df 1 д д ,Т1 . n

v -J- — irr 4- -ТГ (U + ew) = 0,

Д ф = -

(2.54)

(2.55)

T h e l a s t t e r m i n (2.55) d e s c r i b e s t h e d i s t r i b u t i o n of

t h e c h a r g e Q o v e r t h e s u r f a c e of t h e s p h e r e . We now

p u t f = f o ( u ) + f ' ( u , r ) , w h e r e f0 i s t h e M a x w e l l i a n

d i s t r i b u t i o n f u n c t i o n ; w e c h a n g e o v e r t o F o u r i e r c o m -

p o n e n t s , t h a t i s , w e m u l t i p l y b o t h e q u a t i o n s b y

e x p ( — iq • r ) ( w h e r e q i s t h e w a v e v e c t o r ) and i n t e -

g r a t e w i t h r e s p e c t t o d 3 r . We o b t a i n in p l a c e of (2.54)

M ou
(2.56)

w h e r e

a n d

r)d3r. (2.57)

and U q a r e d e t e r m i n e d a c c o r d i n g l y ,

hT h e b e h a v i o r of f ( r ) a n d <p( r ) a t l a r g e d i s t a n c e s ,

t h a t i s , a s r — °°, i s d e t e r m i n e d b y t h e b e h a v i o r of

fq a s q — 0. We c a n t h e r e f o r e l e t q a p p r o a c h 0 in

( 2 . 5 6 ) . T h e n t h e l a s t t e r m d r o p s o u t . ( T h e f i r s t t w o

t e r m s m u s t b e r e t a i n e d , s i n c e , a s w i l l b e s h o w n b e l o w ,

f q a n d <pq t e n d t o i n f i n i t y a s q — 0 . ) In t h e t h i r d

t e r m w e c a n a l s o p u t q = 0. T h u s

(2.58)

w h e r e

(2.59)

We now change over to the F o u r i e r components in
(2.55). Then

In a d d i t i o n , in t h e e x p a n s i o n of [ e x p ( e < p / k T ) - 1 ] i n

p o w e r s of <p

лг AT
 e e

N, = ^o W ФЧ +

t h e f i r s t t e r m b e h a v e s l i k e 1/q, a n d t h e r e m a i n d e r

t e n d t o c o n s t a n t v a l u e s , s o t h a t t h e y c a n b e n e g l e c t e d

w h e n q —* 0. T h e r e f o r e , a s q —• 0,

(2.60)

W h e n q « 1 t h e t e r m 47rQ/e c a n b e n e g l e c t e d , i n a s -

m u c h a s J f d 3 u ~ 1/q. T h e r e f o r e ,

~ — Фп = 4 я \ /„ d3u. (2.60а)

Solving (2.58) and (2.60a) s imultaneously, we obtain

i ' qv
q (V

(2.61)

qv
It is seen from (2.61) that as q — 0 the F o u r i e r c o m -
ponents of the ion density a r e proport ional to 1/q.
This means that when account is taken of the e l e c t r i c
field (and consequently a lso the p l a s m a waves), the
ion-density d i s turbances d e c r e a s e as l / r 2 with in-
c r e a s i n g dis tance from the body, so that

where
bN (r) •

Г
n = — .

We s e e t h a t t h e b e h a v i o r of N q a t s m a l l q [ o r , w h a t

i s t h e s a m e , t h e b e h a v i o r of 6 N ( r ) f o r l a r g e

r ( — ° ° ) ] i s d e t e r m i n e d b y t h e v a l u e of J ( u ) , w h i c h

i n a c c o r d w i t h (2.59) i s p r o p o r t i o n a l t o t h e p r o d u c t of

<p by f' a n d d i f f e r s f r o m z e r o o n l y i n t h e s e c o n d p e r -

t u r b a t i o n - t h e o r y a p p r o x i m a t i o n in Q.

III. SCATTERING O F RADIOWAVES BY T H E " T R A I L "

O F A BODY MOVING RAPIDLY IN A P L A S M A

7. F o r m u l a t i o n of the P r o b l e m

In t h e p r e c e d i n g s e c t i o n i t w a s s h o w n t h a t t h e h o m o -

g e n e i t y of t h e p l a s m a i s d i s t u r b e d in t h e v i c i n i t y of a
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rapidly moving body. A "condensation" region appears
in front of the body, and a rarefaction region behind.
This causes an inhomogeneous " t r a i l " of the body to
move together with the body (say an artificial satel-
lite) in the ionosphere, and possibly to scatter the
radiowaves incident on it.

The greatest role in scattering is played by the
"rarefact ion" region, since its dimension along the
direction of motion of the body is considerably larger
than the dimensions of the body itself and may reach
the mean free path of the particles.

It is clear from the very outset that scattering on
the trail may exceed appreciably scattering on the
body itself (for example, on a metal sphere) only if
the linear dimension of the body Ro is shorter than
the wavelength Л, that is,

I > /?„. (3.1)

It is also clear that the closer the frequency of the
scattered wave to the plasma frequency, the larger the
scattering. If the frequency of the wave w is suffi-
ciently close to u>0, special types of effects can occur,
which, however, are not considered here. Inasmuch
as at distances on the order of Ro away from the body
the perturbations of the dielectric constant e are al-
ready small compared with unity, it is natural to use
perturbation theory for the solution of this problem.
Bearing in mind further that real interest attaches to
cases when the frequency of the wave is much larger
than the Larmor frequency of the electrons

we can assume that

and consequently

CO > <DH,

8 = 1 - -

бе = 4ле 2

(3.2)

(3.3)

(3.4)

The condition (3.2) will be needed below only to ensure
the correctness of (3.4).

We can now write down directly from the known
perturbation-theory formula an expression for the
amplitude of the scattered wave at distances that
are large compared with the wavelength Ci*J# Namely

(3.5)

Here Eo is the amplitude of the incident wave, k' the
wave vector of the scattered wave ( I k* | = к = VT u>/c),
e the dielectric constant of the plasma, Nq the Fourier
component of the electron-density perturbation

Nq = \ bN (r) exp ( - iqr) d/V,

(3.6)

к the wave vector of the incident wave, and ф the
scattering angle, that is, the angle between к and k'
( see Fig. 10). We note that inasmuch as the wave-

FIG. 10. Arrangement
of the vectors in space.

length \ enters into (3.6) only through q, condition
(3.1) is actually written more accurately in the form

qR0< l. (3.7)

At the end of this section we present a calculation of
N q without the limitation (3.7). The differential ef-
fective scattering cross section (within a solid-angle
element do) is given by the formula

a = mtV 'v a,") ~NT k* s i u 2 lfi rf0- (3.8)

where ф1 is the angle between k' and Eo, ш\
= 47rNoe

2/m, and No is the undisturbed electron den-
sity.

We thus see from (3.5) that calculation of the effec-
tive scattering cross section for electromagnetic waves
reduces to a calculation of the Fourier components of
the variation of the electron density. In principle, to
obtain Nq we can use the results of the calculation
of N( r ) given in Chapter П. It turns out, however,
that it is more convenient to determine Nq directly
from the kinetic equation. It is possible then to solve
the problem more rigorously and to take into account
the influence of the electric field on the motion of the
ions, something not done in the previous calculation
of N ( r ) .

8. Calculation of the Fourier Components of the Elec-
tron-Concentration Disturbance

We represent the ion distribution function fj(u, r)
in the form

/ > , ! • ) = / > , r)+/ i 0(ll),
N v f Mx Y/2 / MlU (3.9)

where Nio is the unperturbed ion density and M^ the
ion mass. It is clear from the very outset that at
small values of q the large distances from the body
(much larger than Ro) will be significant in the cal-
culation of Nq. At such distances, however, the dis-
turbances of me distribution function f' and the elec-
tric potential cp are small, so that the motions of the
ions will at such distances be described by kinetic
equations that are linearized in f and ср. The body
itself, and also the region around it where the electric
field is strong, can be regarded as point-like and their
presence can be taken into account by adding to the
right half of (2.5) a term with the meaning of the
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" c o l l i s i o n i n t e g r a l " of t h e i o n s w i t h t h e b o d y . S u c h a

t e r m s h o u l d , o b v i o u s l y , b e d i f f e r e n t f r o m z e r o o n l y a t

t h e p o i n t w h e r e t h e b o d y i s s i t u a t e d , t h a t i s , i t s h o u l d

h a v e t h e f o r m

/ ( u ) S ( r ) ,

w h e r e J ( u ) i s s o m e f u n c t i o n of t h e ion v e l o c i t y . We

a s s u m e t h a t t h e b o d y i s a t t h e o r i g i n . T a k i n g t h e f o r e -

g o i n g i n t o a c c o u n t , w e f ind t h a t t h e f u n c t i o n f' s a t i s f i e s

( i n t h e c o o r d i n a t e s y s t e m w h e r e t h e b o d y i s a t r e s t a n d

f d o e s n o t d e p e n d o n t h e t i m e ) t h e e q u a t i o n

A c c o u n t i s t a k e n in (3.10) of t h e f a c t t h a t 9 f o / 9 u

s i m p l y t h e n u m b e r o f i n c i d e n t i o n s w i t h v e l o c i t y

v t ( v , p , cp), t h a t i s

We note that the term J ( u) б ( r ) in (3.10), written
out from simple considerations, coincides actually with
the Fourier transform of the term (2.59) in (2.58), ob-
tained by a rigorous transition to the limit as q — 0.
Of course, account must be taken of the fact that H = 0
in (2.58). From the very form of the initial equation
(3.10) it is obvious that J ( u) plays the role of a
" s o u r c e , " that is, it is equal to the number of ions
which acquire per unit time, as a result of collision
with the body, a velocity u = v + VQ. Later on we also
assume that the surface is metallic and completely
neutralizes, that is, absorbs, all the ions incident on
it. In addition, we introduce an essential approximation,
neglecting the influence of the electric field on J( u),
that is, assuming that J ( u ) is the number of ions
freely impinging on the sphere per unit time, that is,
that

J (u) = nRl | u - v01 /„ = aofor0, (3.11)

where а о is the transverse cross section of the body.
This approximation is justified because MiV^/2 » ecp.
We present also a formula for J ( u ) , valid when ac-
count is taken of the electric field around the body,
but under the condition that the body does not absorb
the particles incident on it, but merely scatters them
elastically. Since J ( u ) d 3 u is the number of particles
which acquire velocity in the interval d3u near the
body, it is clear that u is the collision integral of the
particles with the body.

This enables us, repeating the arguments used to
find the form of the ordinary collision integral, to ob-
tain a formula for J ( u). Let the ion that passes near
a body with impact parameter p and azimuth angle cp
acquire after scattering (owing to interaction with the
surface of the body and the electric field surrounding
it) a velocity v. * Then the initial ion velocity is
v i = v i ( v> P> <P)> where the functions vl (v, p, cp) are
determined by the scattering law, and the number of
ions which acquire during unit time a velocity v is

*We recall that u denotes the velocity in the immobile refer-
ence frame and v in a frame attached to the body.

- Д / i [v, (v, vo

-}•2kT

Account was taken here of the fact that the scatter-
ing is elastic ( | vt | = | v | ) and that the incident ions
have at infinity a Maxwellian distribution in the im-
mobile reference frame. To find J ( u ) it is necessary
also to subtract from this expression the number of
ions with velocity v, knocked out as a result of col-
lision with the body:

2kT

Ultimately

x < exp
(v, Q,
2АГ

e i p

—exp—

< З Л 2 >

w h e r e Vv = v t — v i s t h e c h a n g e i n t h e v e l o c i t y of t h e

i o n u p o n s c a t t e r i n g .

T h u s , J ( u ) c a n b e s i m p l y c a l c u l a t e d if w e k n o w

t h e law g o v e r n i n g t h e s c a t t e r i n g of t h e i o n s by t h e

body, w i t h a c c o u n t of t h e e l e c t r i c f i e ld . Of c o u r s e ,

f o r m u l a (3.12) d o e s n o t e n a b l e u s t o c a l c u l a t e J ( u )

in t h e g e n e r a l c a s e , if f o r n o o t h e r r e a s o n t h a n t h a t

t h e e l e c t r i c f ie ld i t s e l f a r o u n d t h e b o d y i s u n k n o w n .

N o n e t h e l e s s , i t t u r n s o u t t o b e u s e f u l i n t h e a p p r o x i -

m a t e c a l c u l a t i o n s .

T o o b t a i n t h e c o m p l e t e s y s t e m of e q u a t i o n s i t i s

n e c e s s a r y t o add t o (3.10) t h e P o i s s o n e q u a t i o n f o r t h e

p o t e n t i a l (2 .44)

= - 4 я е (3.13)

where the disturbance of the electron density 6N is
connected in the linear approximation with cp, in ac-
cordance with (2.43), by the equation

« л т л г ' Ф (3.14)

T a k i n g t h e F o u r i e r t r a n s f o r m s o f ( 3 . 1 0 ) , ( 3 . 1 3 ) , a n d

( 3 . 1 4 ) , t h a t i s , m u l t i p l y i n g t h e m b y e x p ( - i q • r ) a n d

i n t e g r a t i n g w i t h r e s p e c t t o d 3 r , w e o b t a i n

Here

N4 =

where

/ q (qu) =

k'f

d3r, ф „ =

(3.15)

(3.16)

(3.17)

d3r.
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For small values of q we can neglect in (3.16) the
time proportional to q2, and we obtain in place of
(3.17) and (3.16)

^ ч =
kT (3.18)

Let us consider first the problem neglecting the
magnetic field. This means that we should put H = 0
in (3.15). Then the system (3.15) and (3.18) coincides
with Eqs. (2.58) and (2.60a), and its solution is given
by (2.61), in which J( u) from (3.11) should be substi-
tuted. Then there appears in the numerator and de-
nominator of (2.61) one and the same integral. The
integral has a singular denominator, which, as indi-
cated by Landau ^15^, must be taken by circuiting
around the singularity. To take this into account, it
is necessary to replace q-v by q-v - i6, where
б — + 0. Changing over then from integration with
respect to d3v to integration with respect to d3u
(u = v + v0) and using the formula

(3.19)
у — a — i

we obtain ultimately*

(3.20)

The denominator in (3.20) is connected with an ac-
count of the influence of the electric field on the motion
of the ions. If we neglect this influence, that is, if we
set the denominator equal to unity, and take the in-
verse Fourier transform then we obtain (2.15) as we
should.

We turn now to the case of motion in a magnetic
field. Transforming (3.15) to cylindrical coordinates
in velocity space with an axis along the direction of
the magnetic field, we reduce it to the form

(3.21)

where

q^ and uj_ are the projections of the vectors q and u
on a plane perpendicular to the magnetic field, and /3
is the angle between q^ and uj_.

Equation (3.17) has a solution of the form

The constant с must be chosen such as to obtain a
function that is periodic in (3. Putting с = °° and
t = x + p, we have

fq = - ^ exp [ - i {\ix + у [sin ф + x) - sin p) dx.

Eliminating f '„ and cpq and shifting the origin of the
angle /3, we obtain

± -^ М dx dsu

— i I цх j-2YC0sp sin — i- dx d3u
1 ~ ' J ( 3 . 2 2 )

t h e i n t e g r a l w i t h r e s p e c t t o d 3 u i n t h e d e n o m i n a t o r o f

( 3 . 2 2 ) c a n b e c a l c u l a t e d i n t e r m s o f e l e m e n t a r y f u n c -

t i o n s . I n d e e d , r e p r e s e n t i n g d 3 u i n t h e f o r m

w e o b t a i n

i'2g 1

2kT 9 . 2

 x

dx

- 4 r ) d w

{ i t

kT
q l x ' i q i

Y Л
dx

A s a r e s u l t w e g e t

T-- ^ J (u) cxp [ — i i | X I - | - 2 Y cos P in -̂ - }• dxd3a

( 3 . 2 3 )

S u b s t i t u t i n g n o w J ( u ) f r o m ( 3 . 1 1 ) i n t o ( 3 . 2 3 ) a n d c a l -

c u l a t i n g b y t h e s a m e m e t h o d t h e i n t e g r a l i n t h e n u m e -

r a t o r , w e o b t a i n u l t i m a t e l y

*It can be shown that the denominator in (3.20), due to the ac-
count of the electric field, can be expressed in a simple manner in
terms of the dielectric constant of the plasma with allowance for
spatial dispersion. It is interesting that similar denominators con-
nected with the dielectric constant appear when the magnetic field
and even collision between particles are taken into account. ( 3 . 2 4 )
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If

then the integrand in (3.24) begins to osc i l la te rapidly
when x 2 : 1 . In this case smal l values of x become
important in the integra l . Putting s i n ( x / 2 ) « x/2
and calculat ing the integral with r e s p e c t to dx ( taking
ц to mean \i - i6, б — + 0) we a r r i v e at formula
(3.20). Thus, (3.25) is the condition under which the
influence of the magnetic field can be neglected. We
note that (3.25) is essent ia l ly equivalent to condition
(2.35a) of Chapter II. This can be readi ly verified by
putting q ~ 1/z and q • v0 ~ v o /z. Express ion (3.24)
has a s h a r p maximum when q z — 0 and q • v0 —• 0.
We therefore p r e s e n t without der ivat ion the formula
obtained from (3.24) when

" - l / — < 1 - q ^ « 1

Under t h e s e conditions

A q = -

Г 2 + iay ( У л + 2г" \ е*2 dx ")
о

x e x P —ЦПСГГ- •
(3.25)

w h e r e

У
Mt

2кТ

We s e e t h e r e f o r e t h a t if q z —• 0 a n d | q • v 0 1 / q z < °°,

t h e n Nq b e c o m e s i n f i n i t e in p r o p o r t i o n t o l / q z , w h i c h

i s c o n n e c t e d w i t h t h e s l o w n e s s of t h e d e c r e a s e in t h e

d i s t u r b a n c e s i n t h e m a g n e t i c f ie ld, a s n o t e d i n C h a p t e r

I I . F o r m u l a (3.24) i s o b t a i n e d if c o n d i t i o n (3.7) i s

s a t i s f i e d , t h a t i s , w h e n t h e b o d y c a n b e r e g a r d e d a s

p o i n t - l i k e . We c a n , h o w e v e r , o b t a i n a m o r e g e n e r a l

f o r m u l a , s u i t a b l e f o r q R 0 ~ 1. F o r t h i s p u r p o s e i t i s

n e c e s s a r y t o i n t r o d u c e i n t o t h e r i g h t hal f of e q u a t i o n

(3.10) i n p l a c e of t h e i o n a n d b o d y " c o l l i s i o n i n t e g r a l , "

w h i c h d i f f e r s f r o m z e r o o n l y a t t h e " p o i n t " w h e r e t h e

b o d y i s s i t u a t e d , a t e r m t h a t d e s c r i b e s t h e a b s o r p t i o n

of t h e i o n s b y e a c h s u r f a c e e l e m e n t of t h e b o d y . R e c -

o g n i z i n g t h a t i n u n i t t i m e a u n i t s u r f a c e a b s o r b s

t h e s a m e n u m b e r of i o n s w i t h v e l o c i t y v a s a r e i n c i -

d e n t on it, n a m e l y ,

( s i s t h e n o r m a l t o t h e s u r f a c e , v • s < 0 ) w e f ind t h a t

t h e r i g h t ha l f of (10) a s s u m e s t h e f o r m

0

v 0 r > 0 , I

v u r < 0 . I

(3.26)

Inasmuch as the velocity of the body is much larger
than the velocity of the ions, the ions actually strike
only the front half of the body, which is taken into
account by the l imitation v0 • r > 0. After taking the
F o u r i e r t r a n s f o r m we obtain by s imple calculat ions
from (3.26) that the r ight half of (3.15) is replaced by
the function

л

r
— / о п й 2 - 2 \ sin # cos •& exp {iqRn cos # cos 9}

w h e r e I o i s t h e B e s s e l f u n c t i o n of r e a l a r g u m e n t , and

в is the angle between v 0 and q. We see there fore
that if the finite n a t u r e of the dimension of the body is
taken into account, formula (3.24) is multiplied by the
factor

Ф(qRB, cos9) = 2 \ sin# c o s d e " ' " 0 0 0 ' " 0 0 5 B/a(qR0 sin * sin 0) dtf.

" (3.27)

When qRo — 0, as can be readi ly noted, Ф ( qR0, cos в )
— 1. If the angle 9 i s c lose to ?r/2, then we can put
cos 9 = 0 in (3.27), and

Ф(дВ„, 0) = 2 i ^ . (3.28)

Let us c o n s i d e r now the der ivat ion of N q with a c -
count of the col l i s ions between p a r t i c l e s . F o r this
purpose it is n e c e s s a r y to introduce into the init ial
equations the integral of col l i s ions between the ions
t h e m s e l v e s and between the ions and other p a r t i c l e s .
We confine ourse lves for this purpose to introducing
an effective number of col l i s ions v, expres sed in t e r m s
of the coll is ion integra l Y in the form

y = _ V ( / - A -

(3.29)

Such a form of the coll is ion integral does not affect
the law of p a r t i c l e conservation, s ince J Yd3u = 0. If

we add (3.29) in (3.15), then we obtain in place of (3.24)
as an end r e s u l t a formula for Nq in the form

йя I \ e x p

e x p

kT i 1
dx J

(3.30)

B i n . -
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which is used as the basis for further calculations.

9. Effective Cross Section for the Scattering'by the
Trail of the Body

Substituting (3.30) into (3.8) with account of (3.27),
we find that the differential effective scattering cross
section (that is, the intensity of the wave scattered in
a given direction) is

(3.31)x Fs(a, p, у, в)|Ф(«Д„ cos6) |2.

Here ipi is the angle between the electric field E and
the wave vector of the scattered wave к'; ^ ^2>

 a n <^
<p are angles which determine the direction of the in-
cident and scattered waves relative to the body (see
Fig. 10); naturally, the total effective scattering cross
section is

o. (3.32)

where do is the solid-angle element in the scattering
direction.

In formula (3.31) we have

Р. У. 6) = , (3.33)

and

= p-6 { cos ax exp { - f>x - yx2 + 6 cos x} dx, (3.34)
о

•'., — e~6 \ sisiuaxcxp { — :} dx, (3.35)

where

= I) (cos #! sin d2 + sin Oj cos ft2 cos cp) = b cos 9;

b = qvo/flH> a n d the vector q = к' - к is directed along
the bisector of the angle between the wave vectors к
and k', or, what is the same, between the rays SO and
OE, which join points of radiation and observation S
and E with the point О where the body is located.
The vector q lies in the plane of SO and OE, with

n 2 | - , (3.36)

and the angle ф between к and k' is determined as in
Fig. 10. The angles ^ and ^ 2

 a r e determined in
terms of the scalar products (v0 • H) and (q • H) by
the formulas

/v H ^ all
qil

(3.37)

T h u s , d-\ i s t h e a n g l e b e t w e e n t h e d i r e c t i o n of t h e

m a g n e t i c f i e l d H a n d t h e v e l o c i t y v 0 . T h e a n g l e £2

b e t w e e n q a n d t h e n o r m a l O R to Ho , l y i n g in t h e

p l a n e ( q H 0 ) , i s p o s i t i v e o r n e g a t i v e if t h e v e c t o r q i s

t u r n e d c l o c k w i s e o r c o u n t e r c l o c k w i s e , r e s p e c t i v e l y ,

r e l a t i v e t o OR; <p i s t h e a n g l e b e t w e e n t h e p l a n e s

(v0H0) and (qH). The remaining notation assumed
in the formulas is:

P QH . Y 2 2' q. (3.38)

T h u s , t h e e f f ec t i ve s c a t t e r i n g c r o s s s e c t i o n i s d e -

s c r i b e d by a c o m p l i c a t e d func t ion F 3 , t h e a n a l y s i s of

w h i c h c a n b e c a r r i e d ou t on ly if n u m e r i c a l c a l c u l a t i o n s

a r e u s e d . T h e t a b u l a t i o n of i ^ q R o , a) d o e s no t e n t a i l

g r e a t d i f f i cu l ty .

W e s h a l l h e n c e f o r t h c a l l F 3 t h e s c a t t e r i n g func t ion .

T h e t a b u l a t e d s c a t t e r i n g f u n c t i o n s (3 .33) f o r d i f f e r e n t

values of a, /3, y, and б have made it possible to as-
certain the character of the behavior of this function
with altitude, wavelength, temperature, and direction
of motion of the body.

The main feature of F 3 ( a , p, у, б) is its oscilla-
ting character. The maxima and minima of F 3 corre-
spond to definite values of a. For the values of the
parameters a, b, and /3 used by us, F 3 displays in
addition to the principal maximum another six or
eight maxima and six or eight minima, located sym-
metrically about the principal maximum when # j = 0.
The principal maximum of F 3 [ which we also call the
maximum of zeroth order ( 0) ] corresponds to the
value

ao = O. (3.39)

The side maxima and minima [we denote them (± 1
max), (± 2 max), . . . and (± 1 min), (± 2 min), . . .
respectively ] occur (when •$• t = 0) for the values

а ш м ~ ± 1 . 2 2 , ±2.18, ±3,15, ±4,23 |
amin =^ ± 0.73, ±1.70, ±2.91, ±3.86. j

(3.40)

The principal maximum of F 3 ( a 0 = 0) has the
largest value when $x = 0 or £z = 0. For other values
of ^i or ^2> F3( a3 =0) can be smaller than the max-
imum of the first order of F3 ( a m a x = ± 1.22). In the
case when •^•i = 0, that is, when the velocity of the
body v0 and the magnetic field Ho are collinear,
F3 ( a = 0) is always much larger than the side maxi-
ma, which decrease as their number increases. The
number of observed side maxima depends essentially
on j3 and y, which determine the convergence of the
integrals (3.34). On Fig. 11 we show for illustration
two F3( a) curves for ^l = 0 or ^ 2 = 0 respectively,
calculated for a = 1, /3 = 0.06, and b = 14.

If ^ ! = 0 (v0 II Ho), then F 3 ( a ) does not depend on
cp. Therefore the surface F3( a, <p) is formed in this
case as the result of rotation of the curves shown in
Fig. 11 about the axis v0 (o r Ho). The corresponding
three-dimensional representation of F3(t>2> ф) f ° r

i*i = 0 (H o II v0) (Fig. 12) shows the intersections of
the surface F 3 ( ^ 2 , <p) and the planes ц> - 0 and
cp = тг/2. In Fig. 12 the angle д-г is laid off directly
along the vertical axis v0, for owing to the rapid vari-
ation of F 3 (,? 2 ) the construction of the corresponding
surface in polar coordinates is difficult. It is seen
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5 cc

FIG. 11. Variation of the function F3(a) for а = 1, /3 = 0.06,
b = 14, z = 300 km, and Л = 30 meters, for cp = 0. The maxima
and minima of different order are marked in the figure: (0), (±1 max),
(±1 min), (+2 max), (±2 min), etc.

ч(г-9)
FIG. 12. Three-dimensional representation of the function

F3(i?2, cp) in the case when v0 || Ho ( ^ = 0) (a = 1, b = 14, /3 = 0.06).
The sections are in the planes cp = 0 and cp = n/%

f r o m F i g . 11 and 12 t h a t F 3 v a r i e s r a p i d l y a s a f u n c -

t i o n of t h e a n g l e £2 ( o r o f t n e a n g l e ^ f o r a f ixed

v a l u e of $i). In t h i s c a s e t h e w i d t h of t h e p r i n c i p a l

a n d s i d e m a x i m a i s of t h e o r d e r of a f r a c t i o n of a

d e g r e e o r of o n e o r two d e g r e e s . Wi th i n c r e a s i n g

i n t e n s i t y of t h e p r i n c i p a l m a x i m u m , w h i c h c o r r e s p o n d s

to an i n c r e a s e in a and a d e c r e a s e in j3 ( a n i n c r e a s e

in t h e h e i g h t of t h e i o n o s p h e r e ) , i t s w i d t h d e c r e a s e s

a n d s i m u l t a n e o u s l y i t s r a t i o t o t h e m a x i m u m of t h e ±

f i r s t and o t h e r o r d e r s d e c r e a s e s . In F i g . 1 1 , w h e r e

the F 3 ( a) a r e p l o t t e d in a l o g a r i t h m i c s c a l e , t h e

r a p i d c h a n g e s of t he s c a t t e r i n g func t ion a r e s t r o n g l y

s m o o t h e d o u t .

T h e s y m m e t r y of t h e func t ion F 3 ( a ) r e l a t i v e t o

t h e a n g l e ^ 2 * s d i s t u r b e d w h e n t h e d i r e c t i o n of t h e

v e l o c i t y v 0 d o e s no t c o i n c i d e w i t h HQ ( ^ * 0 ) . In

t h i s c a s e a d e p e n d s on t h e a n g l e cp b e t w e e n the p l a n e s

( v 0 H ) and ( q H ) , and s i n c e t h e c o n d i t i o n a = 0 i s

s a t i s f i e d f o r a s p e c i f i e d v a l u e cp * ir/2 and a n e g a t i v e

v a l u e of ^ 2 , t h e p r i n c i p a l m a x i m u m d r o p s b e l o w t h e

p l a n e t^2 = 0. In t h i s c a s e t h e l i n e m a d e up of t h e

p r i n c i p a l m a x i m a on t h e F 3 ( ] ? 2 , cp) s u r f a c e i s no l o n g e r

a c i r c l e l y ing in t h e p l a n e S-i = 0 , a s in t h e c a s e w h e n

t?! = 0, bu t r e p r e s e n t s a n o n - p l a n e c u r v e of e l l i p t i c

t y p e , c r o s s i n g the p l a n e ^ 2
 = 0 w h e n cp = 7r/2 and

37Г/2. At these two points the zero-order maximum
has the same values as in the case when ^i = 0. The
character of the variation of F3(£2><P= 0)when1? l= 0
can be traced on Fig. 13, where the calculations have
been carried out for a = 1, b = 14, and /3 = 0.06. The
three-dimensional plot of F3(,?2> <p) *п two mutually
perpendicular planes is shown in Fig. 14.

For an analysis of the effective scattering cross
section, the scattering function F 3 has been calculated
for three heights in the ionosphere, z = 300, 400, and
700 km. For these values of z and for v0 = 8 km/sec
and known ionospheric data'-8-', the values obtained for
the first factor of (3.31) in the curly brackets are
listed in Table III. The third factor of (3.31) depends
principally on the ratio RQ/Л and is calculated for
•3-х = £2 ~ (p = 0. In this case we have

Ф,=

(ЫЩ

An analysis of the formula for Ф3 shows that the over-
all course of Ф3(47гН0/Л.) changes little for other values
of the angles.
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FIG. 13. Variation of the function F3(#2) with a = 1, b = 14,
/3 = 0.06 (z = 300 km, Л = 30 meters), cp = 0 and dl = 1° and 5°.
The maxima and minima of different order (0), (+1 max), (±2 max),
etc. are marked in the figure.
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Table IV. 2, •»!) for х=зо m, Ф=О

FIG. 14. Three-dimensional plot of the function F3(#2,cf>) in the
case when ^ Ф 0 (a = 1, b = 14, /3 = 0.06). Sections through the
planes cp = 0 and cp = w/2.

T a b l e III. V a l u e s of

1 /* (0 "\ * _R*u 2

—j; [ —— ) : Sin2 ibi
16 V c J о

N, У l o i r

\ ^ z, km

Во, m ^ ^

0.5
1
2
3

Day

300

1.8-10-2
0.3
4.8

24

400

1.2-10-2
0.2
3.2

16

700

1.2-10' 3

2-10-2
0.32
1.6

300

6-Ю-»
103

1.6-10-2
8-10-2

Night

400

1.2-10-3
2-10-2
0.32
1.6

700

1.8-10-'
3-10"3

4.8-10-2
0.24

It i s s e e n f r o m t h e f o r e g o i n g t h a t w h e n v 0 II H o

( i ? i = 0 ) t h e p r i n c i p a l m a x i m u m of t h e e f f e c t i v e s c a t -

t e r i n g c r o s s s e c t i o n l i e s i n t h e d i r e c t i o n of t h e " s p e c u -

l a r r e f l e c t i o n " of t h e w a v e f r o m t h e d i r e c t i o n of t h e

e a r t h ' s m a g n e t i c f i e l d . In t h i s c a s e t h e b i s e c t o r of

t h e a n g l e ( k k ' ) , n a m e l y t h e v e c t o r q, c o i n c i d e s w i t h

t h e n o r m a l t o H o . O n t h e o t h e r h a n d , if ^ = 0, t h e n

t h e v e c t o r q i s t u r n e d r e l a t i v e t o t h e n o r m a l t o H o

b y a n a n g l e ± S-i, d e t e r m i n e d f r o m e q u a t i o n (3.31) w i t h

a = 0 f o r s p e c i f i e d v a l u e s of $y a n d (p. T h u s , q m a k e s

in this case an angle ( ж/2 ± $2)
 w i t n Щ'> f o r example,

when ^ ! = 5° and cp = 0, the principal maximum will
be directed along the vector k', chosen in such a way
that the vector q makes an angle (7r/2 — 5°) with Ho.
The position of the maxima of higher order, that is,
the angles ^ 2 through which they are turned, are de-
termined from the corresponding values of o m a x ; for
example, when <p = 0, d-\ = 0, and b = 14 as used in
the calculations, the principal maximum and the max-
ima of orders ± 1, 2, 3 correspond to values of the
angles

± 5°, ± 9°, ± 13° (3.41)

\ . z, km

* , < \

0
0.02
0.03
0.05
0.1
0,2
0.3
0.5
1.0
2.0
3.0
4.0
5.0
6.0
7,0
8,0
9.0
9.5

10
11
12
12.5
13
14
15
16
17
17,5
18
19
20

300

53 ..46
—

49.20
39.72
22.44
12.98
5.44
1,32
0 17
0.015
0.85
9.39
0.88
0.18
0.22
0.89
0,83
0.53
0,25
0.19
0.187
0.18
0.16
0.12
0.10

0.077
0.071
0.062
0.054

Ol= 0

400

134,4

103.2
60,86
23.10
11.30
4.20
0.94
0.10
0.011
0.67

13.18
1.44
0.10
0.18
0.98
1.15
0,70
0,25
0,19
0.20
0.21
0.19
0.14
0.11
0.091
—
0.078
0.007
0.058

700

1535
613.9
355.1
150.7
40.8
10.31
4.56
1.58
0.32
0.019
0.037
0.56
3.18
0.28
0.025
0.14
0.45
0.62
0.53
0.21
0.18

0.24
0.25
0.20
—

—

—

# 2 =0

300

53,46
—
—
—
—
—
—

5.39
1.30
0,17
0.013
0.98

10.26
0.77
0.18
0.26
2.48
0.78
0.45
0.23
0.10
0.32
0.28
0,16
0.12
0.088
0.091
0.080
0.072
0.062
0.054

400

134.4

23.07
—

4.14
0.92
0,099

7.8-10-3
0.69

12.61
0.61
0.11
0,053
5.31
1,05
0.52
0.22
0.046
0.89
0.47
0.19
0.13
0.086
0.16
0.020
0,16
0.070
0,057

700

1535
—
—

10.0
4.42
1.53
0.31
0.018
0.023
0.68
3.41
0.19
0.010
0.10

28.9
1.57
0.47

—

• - Г ; ( + 4°, - 6 ° ) ; ( •10°); ( + 12°, - 1 4 ° ) .

(3.42)

and when S-\ = 1° (<p = 0, b = 14) the maxima of the
same orders correspond to the angles

A n i d e a of t h e c h a r a c t e r of v a r i a t i o n s of F 3 ( A . , £ t , ^2> z )

a s f u n c t i o n s of t h e a n g l e s ^ a n d ^ 2 , t h e h e i g h t z , and
the wavelength Л can be obtained by examining Tables
IV—V; for a wavelength A. = 30 meters and heights
z = 300, 400, and 700 km respectively for i?j = 0
( H o II v 0 ) the behavior is illustrated in Figs. 15—18
( i n Fig. 18 z = 300 km and ^ = 5°).

A change in the temperature, T and accordingly in
the number of collisions v naturally brings a change
in a and /3 ( s e e w ) . Some ofthe data in Table VI give
an idea of the changes in F3 due to the change in T.

The results of the calculation of the effective c r o s s
section a in the principal maximum for different wave-
lengths and spheres with radii Ro = 0.5, 1, 2, and 3
meters are shown in Table VII and in Fig. 19. The
same table gives the ratio of a ( ^ t = 0, ^ 2 = 0) to the
total effective cross section cr0 of an ideally conduct-
ing sphere. In analyzing a/cr0 we must keep in mind
that inasmuch as a is the differential effective cross
section, this ratio diminishes by a factor 4тг the ef-
fect of increase in scattering by the " t ra i l , " as com-
pared with CT0. However, since cr is large only in a
narrow region of angles, and the sphere scatters
practically isotropically, the time of action of the
scattering of a metallic sphere at the point of obser-
vation is appreciably larger.

It is seen from these data that the differential ef-
fective cross section of the principal maximum cr( 0, 0)
of the " t r a i l " of a satellite can greatly exceed in the
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Table V. F3 (t>2> M in the vicinity of the principal
maximum for £l = 0 and cp = 0

z, km
\ i., m

«" \

0
0.02
0.03
0.05
0.1
0.2
0.3
0.5
1.0

30

53.46

49.20
39.72
22.44
12.98
5 44
1.32
0.47
0.17

20

11.07

9.75
7.16
3.16
1.83
0.68
0,11

0,031

15

4.82
—

3,96
2.58

0.51
0.61
0.01
0.03
0.48

4 00

10

1:72

0,080

0.016
0.020

0.016

30

134.4

103.2
6(1.86
23.10
11.30
4.20
0.94
0.31
0,10

20

31.05

20.54
10.2
3.36
1.55
0,52
0,074
-

3.6- К Г 3

15

14,10

7.71
3.27

0.42
0.12
0.005
0.027

10

5,20

0.0B3

0.1)
0.017

0.010

700

30

1535
613.9
355.1
150.7

40.8
10.3
4.56
1.58
0.34

0.019

20

479,3

25.3
6.58
1.63
0.70
0.22
0.027

8-НГ 5

0.027

15

241.3

8.67
2.20

0.056
0.001
0.023

Fi№

a

'0)

J
m

1

—

1A

too

•SO

FIG. 18. Depend-

T ; } h ? T t 2 ? ° l e n c e o f F 3 ( ^ , c p = 0 )
on u2 for A = 30 meters,

F,(tJ 2 , cp = 0) on i>2 for
A = 30 m e t e r s , dl = 0, and
z = 300 km.

V ч

FIG. 16. The same
as Fig. 15 but z = 400 km.

5°, and z = 300 km.

Table VI. Values of the pr inc ipa l maximum of

F 3 ( i? ! , -3-1, = 0) for different values of the t e m p e r a t u r e

T at Л = 30 meters and z = 300 and 400 km.

T. deg

fti-=5°

800

2=300km

53.46
10,26

1660

14,0'»
4.12

L'OUO

9.67

1С

134
12

00 2000

2=400 km

.4

.61
3 8 . 1 4

3 . 1 6

ISO3

Ю3

5Ю3

1
1

1
1

1

j
1
1
\
\
" \

FIG. 17. The same as Fig.

15 but z = 700 km.

о at

daytime, and in many cases also at night, the effective
cross section of the metallic sphere a0, and may
reach many tens or even hundreds of square meters.
However, inasmuch as these values correspond to
only one wave direction, in estimating the true scat-
tering effect it is necessary to take account also of
the width of the corresponding lobe. The scattering
increases with height in the region 400—700 km,
varying with the wavelength approximately exponenti-
ally as exp ( — 1/Л); in practice cr is small when
Л < 15. We note here that scattering from the "trail"
depends generally speaking little on the properties and
form of the body itself and on the character of its sur-
face, being determined only by the velocity of the body
and its linear dimension p0. At the same time, scat-
tering from the body itself depends appreciably on its
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Table VII. Differential effective cross section er(m2)
of the " t r a i l " in the direction of the principal maxi-

mum; <TO( IT) is the effective cross section of a
metalic sphere*

X, m 20 15

0.5

1
0
/о
о

а/сг0

о
0/<То

о/а0

0,97
1380

15
350
210

72
810

28

0,20
47

3
14
35

3
98

1

0.08
7
1
1.6

10
0.3

18
0.3

1,60
2290

26
Ю0

350
120

1420
50

0.36
90

,.6
25
65

5
184

0.2
14
2
3

20
0.

ЗЕ
0.5

1,
2400

30
630
400
134

1620
58

,; о
I н;о

8
36

100
79

280

.6

2.8

0.3
22
А
'5

34
1.2

60
0.83

0.5

1

2

3

0
0/0,,

а
о/о,,

0/оо

о
а/о0

3-Ю-'
4.3
0.05
1
0.7
0,24
2,7
0.1

0.2

0,05
0.1

3-10' 3

0.3
-10' 8

2-10-1
0.02

З-10-з
0.014
0.03

2.4-Ю-з
0.06

7-10-*

0
229

2
6(7
35
12

140
5

2

6

0,04
9
0.61
2.5
6.5
0.5

18
0.2

0.02
1.1
0.2
0.3
2.0
0.06
3,5
0.05

0.3
373

4.С
96
61
20

240
8.Г

8-10-2:'

57- 3

3.61
0.6
0,8

15 5.3
1.21 0.2
.1 | 9
0 .6 ! 0.8

•Because of an arithmetical error in [ 6 ] , the original table had incorrect values of
о for z = 700 km. This error has been corrected here.

O, m'

' g ^ t ~ ~ T L J F I G ' 1 9 > D e P e n d e n c e o i

-,_j—Jj j i jjj e f fect ive c r o s s sec t ion

о during the day on the

wavelength for altitudes

z = 300, 400 and 700 km

and for sphere radii Ro = 1,

2, and 3 meters.

p r o p e r t i e s . In t h i s r e s p e c t a s m o o t h m e t a l l i c s p h e r e

i s o p t i m a l f o r s c a t t e r i n g b y a b o d y i n t h e i n v e s t i g a t e d

w a v e l e n g t h r a n g e . O t h e r b o d i e s , of a n a l o g o u s d i m e n -

s i o n b u t w i t h d i f f e r e n t s u r f a c e c h a r a c t e r , h a v e c o n -

s i d e r a b l y s m a l l e r v a l u e s of cr0. W e n o t e a l s o t h a t t h e

relative effect of scattering by an inhomogeneous for-
mation, that is, the ratio ст/сго, increase rapidly with
decreasing radius of the sphere Щ. Indeed, when

1
and — -

0n
a n d w h e n Q0 —> со

a ~ R a n d

• 0 .

1 0 . C h a r a c t e r o f t h e F i e l d o f t h e S c a t t e r e d W a v e a t

t h e P o i n t o f O b s e r v a t i o n

I n c o n c l u s i o n l e t u s c o n s i d e r t h e o v e r a l l p a t t e r n o f

t h e e f f e c t o f s c a t t e r i n g a t t h e p o i n t o f o b s e r v a t i o n a n d

l e t u s s u m m a r i z e t h e c a l c u l a t i o n r e s u l t s g i v e n a b o v e .

A s s u m e t h a t t h e b o d y m o v e s l o n g i t u d i n a l l y , t h a t i s ,

the velocity vector is close to the direction of the per-
manent magnetic field Ho, and the vector к of the in-
cident electromagnetic wave is normal to Ho ( or v 0 ) .
Then the surface of revolution formed by the field
of the scattered wave around the vector v0 (or Ho)
has many lobes and its principal lobe is directed
along the normal v 0 ( o r Ho), while the side lobes are
symmetrical with respect to the principal lobe. The
angular aperture filled with several lobes amounts to
not more than 15 or 20° to the normal to Ho. With
further increase in the angle ^ 2 , the intensity of the
field of the scattered wave decreases monotonically.
Thus, in some point near the earth's surface, the fol-
lowing picture will be observed as the body approaches.
Firs t the scattering field increases monotonically, after
which bursts of intensity occur, corresponding to the
positive side maxima (+ 2 max, + 1 max), to the prin-
cipal maximum (0) , and to the negative maxima ( — 1
max, - 2 max, . . . ) , after which the field again de-
creases monotonically. Inasmuch as the effective
scattering cross section is sufficiently large only in
the principal and one of the two side maxima, practi-
cally the field of the scattered wave is sufficiently in-
tense at the point of observation only for several in-
stants. Let us estimate, for the sake of being definite,
the corresponding effect when the body passes at an
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Table VIII. C h a r a c t e r i s t i c s of intensity b u r s t s produced at the

point of observation by a wave s c a t t e r e d by the " t r a i l " of

a sa te l l i te in a p l a s m a during the day ($x = 0 , v0 II H o ) .

z, km

300

400

700

300

400

к, т

30

30

30

20

20

Bursts data

R, m

1

2

3

1

2

2

1
2

1
2

Number
of lobe

(0)
(±1 max )

(0)
(±1 max )

(0)
(±1 imax )

(0)
(±1 max )

(0)
(±1 max )

(0)
(0)

(0)
(0)

(0)
(0)

о
о<Г

1 7 5
3 5

3 6
7

14
2 . 8

2 9 3
2 9

6 0
6

29
6

6 . 8
1 . 4

1 2 . 7
2 , 6

81, s e c

0.6

1
0 . 8

1 . 2
1 . 0

0,4

0 . 8
0 , 4

0 . 1 5

0 . 2 5

0 . 2 5

6r, k m

5

8

9

3.5

6 . 5
3 . 5

1.2

2

2

At, s e c

3.4

3,4

3.4

4.5

4.5

—

alt i tude z ~ 400 km. In this c a s e и = 350 m 2 in the
pr inc ipa l maximum at a body rad ius p 0 = 2 m e t e r s and
a wavelength Л = 30 m e t e r s , while the width of the
pr incipal lobe, defined as corresponding to a d e c r e a s e
in a to a value a0, is 5 ^ 2 ~ 0.6°. Therefore during
the t ime that the pr incipal lobe covers the dis tance
бг ~ z6^2 ~ 4 km pas t the point of observation, that
i s , dur ing a t ime 6t ~ 6r/v 0 ~ 0.5, the average inten-
si ty of the s c a t t e r e d wave at the point of observat ion
is determined from the value и ~ 170 m 2 , s ince CF(S-I)
v a r i e s approximately l inear ly in this interval of ^ 2 -
The f i r s t two side m a x i m a (± 1 max) a r e s t i l l suffi-
ciently intense, s ince и is c o m m e n s u r a t e with cr0.
The h i g h e r - o r d e r lobes a r e a l ready difficult to o b -
s e r v e against the genera l background of s c a t t e r i n g by
the body itself.

We s e e that the effect of s c a t t e r i n g at the point of
observat ion manifests itself in the form of b u r s t s .
The durat ion and the re lat ive intensity of the effect as
a whole will change for different body dimensions,
c h a r a c t e r , and sur face form, depending on the s e n s i -
tivity of the i n d i c a t o r s .

If the motion of the body is not along the magnetic
field, but at not too large an angle to it, then the s u r -
face is formed by a scat tered-wave field of m o r e c o m -
plicated form. The surface e lements produced by each

of the lobes become curved. However, the g e n e r a l
c h a r a c t e r of the field s t r u c t u r e n e a r the e a r t h ' s s u r -
face r e m a i n s the s a m e . The quantitative changes, how-
ever, can be appreciable . Thus, if the t r a n s m i s s i o n
and recept ion points—the r a y s OS and OE ( s e e Fig.
10)—lie in the s a m e plane as v0 and Ho (cp = 0 o r тг),
a l a r g e r n u m b e r of lower-intensi ty identical lobes is
observed. On the o t h e r hand, if the r a y s OS and OE
lie in a plane perpendicular to the ( V0HQ ) plane (cp
= 7r/2 o r Зтг/2), then the field will be the s a m e as for
v 0 II H o , and the pr incipal maximum will r e m a i n of the
s a m e magnitude. Consequently, it the t r a n s m i s s i o n of
the main beam and the reception of the s c a t t e r e d field
o c c u r in a plane n o r m a l to ( v 0 H 0 ) , then the effect of
s c a t t e r i n g at the point of observat ion is not s m a l l e r
than the effect in the c a s e of longitudinal motion of
the body.

In conclusion, Table VIII l i s ts , for different heights
of the ionosphere and for different wavelengths, data
on the s c a t t e r i n g b u r s t s o c c u r r i n g on the e a r t h ' s s u r -
face during the flight of the body, when the intensity of
the field exceeds o r is c o m m e n s u r a t e with the s c a t -
t e r e d field from a meta l l ic s p h e r e of suitable s ize . In
the table <5r and 6t = 6r/v 0 a r e the width of the i l l u m -
inated a r e a and the durat ion of the effect at the point
of observation, while Д г and At = Дг/vo a r e the d i s -
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tance between the centers of the individual areas illum-
inated by the scattered field and the time intervals be-
tween the successive bursts at the point of observation.

It follows from table VIII, that one passage of the
body produces at the point of observation scattered-wave
bursts that repeat at intervals of several seconds, the
duration of each burst being of the order of and less
than one second. Naturally, such a situation occurs
only when the body is beamed by a plane wave in one
direction. If, however, the path of the body is beamed
from several points (S t , Бг, S3, . . . ) at different angles,
then several scattered waves will be observed (Fig. 20)
at different angles in one point ( E) near the earth's
surface, and the " l i fet ime" of the scattering effect
will increase appreciably.

2kT
(3.38')

Antenna aperture

J»

FIG. 20. Schematic diagram of the scattering field for a body
irradiated from different points.

11. Effective Scattering Cross Section in the Absence
of an External Magnetic Field

Let us consider, for the sake of completeness, the
results of the calculation of the effective cross section
when there is no external constant magnetic field in
the plasma (H o = 0). The corresponding formula is
obtained in this case by taking the limit as Ho — 0
in (3.31). We can then put v = 0 in (3.31), for in the
absence of a magnetic field the account of the colli-
sions influences little the effective scattering cross
section. As a result a( 9 ) has the form

where

~ if exp ( - 2 i | cos2 6 )+ [bxW (i, cos б)]2

-^- if cos 9 exp ( —26f cos2 6) + [l~b1 cos QW (Ьг cos 9)]2

W (S) = е'г dt,

(3.37')

cos в = q • vo/( qv0), and, in addition to the notation used
above,

For the ionosphere heights used above, namely 300,
400 and 700 km, we obtain b t = 9.8, 8.6, and 6.2, respec-
tively.

The dependence of the function F (b t , 9 ) on the
angle 9 between the velocity v0 and the vector q, di-
rected along the bisector of the angle between the
wave vectors of the incident and scattered waves к
and k', is listed for these values of b t in Table IX
and in Fig. 21. The value of F ( b t , 9) corresponding
to some angle 9 characterizes here the intensity of
the scattered wave in the direction k' for a specified
direction of the incident wave k. Thus, the field of
the waves scattered by the moving body represents a
smeared out "specular reflection" of the incident
wave from the direction of the velocity v0, so that the
three-dimensional scattering diagram is a double-hump
surface of revolution.

The axis of revolution of this surface is the velocity
v0. The function F (bj, 9) has a minimum for strictly
specular reflection, that is, for the vector k' ( 9 = тг/2)
such that q 1 v0. The half-width of the cross section
of this surf ace is ~ Д9/2, if it is measured from the di-
rection 9 = vr/2 and determined from the value of 9
for which F (b 1 ( 9) « 10"1 F ( b t , 9 ) m a x , varies at
different altitudes in the following fashion:

z, km 300

18

400

20

700

30

We see that the width of the lobe increases with in-
creasing height. Variation of the height z is accom-
panied by variations of F ( b 1 ; 0 ) m a x , F ( b t , тг/2), and
Д 0 т а х / 2 , that is, the angle between the direction of
the maximum F( Ь4, 9) and the direction of F( b 1 ; 7r/2)
vary as shown in Table X.

For the indicated values of F (b t , 9 ) m a x and
F ( b t , 7г/2) we obtain from (3.36) the values of the ef-
fective cross section in the direction of maximum
scattering, showing that only for bodies of small di-
mension does the effective scattering cross section a
exceed the corresponding value a0 for the scattering
by the sphere itself. For example, when Л. = 30 m
and z = 300 km, for a sphere of radius RQ = 0.5 m,
we have c r m a x ~ 5 x 10~3 m2 and сг т а х /сго ~ 7> t n a t

is, an inhomogeneous formation scatters more than a
sphere, and even for Ro = 1 m we get c r m a x ~ 2
x 10~2 m2 and a m a x / j 0 ~ 0.5, so that the sphere
scatters more than the " t r a i l " of the body. We note
in conclusion that with decreasing dielectric constant
e of the plasma we get, as follows from (3.36), cr( 9)
« 1/e. Therefore the scattering should increase
noticeably if the body is situated in a region where e
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Table IX. Dependence of the function Ffbj, 0) on the angle в
at different heights of the ionosphere.

8, deg

0
10
20
30
40
50
60
05
70
72
74
76

2=300 km

1,07
1,05
1,16
1,37
1,77
2,55
4,37
6,37

10,56
12,83
19,08
29,30

;=i00 km

1,02
1,08
1,18
1,39
1,80
2,70
4,80
6,59

11,26
15,05
21,50
34,86

2=700 km

1,06
1,09
1,20
1,43
1,86
2,79
5,17
8,66

17,70
25,84
37,80
50,04

9, deg

78
80
81
82
83
84
85
86
87
88
89
90

z=300 km

50,88
95,70

120,1
135,6
133.4
121,0
106,8
93,4
62,5
79,8
76,6
75,4

2=4 00 km

61,20
98,25

108,35
108,74
100,89
90,26
80,86
73,09
67,39
63,77
61,50
60,79

z=700km

54,60
50,18
46,09
43,00
39,48
37,06
34,83
33,00
31,75
30,87
30,35
30,18

FIG. 21. Dependence of the scattering function F ( b l ( в) on the
angle в for different values of b t (z = 300, 400, 700 km) when
H n = 0 .

Table X

z, km

F(bu f)

300

135.6
75.4

8

4 00

108.8
60,1

8

700

54.6
30.2

12

i s c l o s e t o z e r o . T h i s c a s e , h o w e v e r , c a l l s f o r s p e c i a l

c o n s i d e r a t i o n and i t i s h a r d l y p o s s i b l y t o d r a w a n y

q u a n t i t a t i v e c o n c l u s i o n s a b o u t t h e b e h a v i o r of a i n

t h e r e g i o n e — 0 w i t h o u t f u r t h e r a n a l y s i s .

1 2 . D i s t u r b a n c e s B r o u g h t About by a P o i n t - l i k e B o d y

L e t u s c o n s i d e r t h e d i s t u r b a n c e p r o d u c e d b y a b o d y

w i t h d i m e n s i o n s m u c h s m a l l e r t h a n t h e D e b y e r a d i u s .

S u c h a p r o b l e m w a s c o n s i d e r e d b y K r a u s a n d W a t s o n

^ 1 0 ^ . We h a v e m e n t i o n e d t h a t t h e i r r e s u l t s a r e i n c o r -

r e c t a t l a r g e d i s t a n c e s f r o m t h e body, b e c a u s e t h e y

h a v e c a r r i e d o u t t h e c a l c u l a t i o n o n l y in f i r s t a p p r o x i -

m a t i o n , t h a t i s , t h e y left o u t t h e t e r m J ( u ) and r e -

t a i n e d t h e l a s t t e r m i n ( 2 . 6 0 ) .

We c a r r y o u t t h e c a l c u l a t i o n s w i t h F o u r i e r c o m p o -

n e n t s . We f i r s t o b t a i n , f o r s m a l l q —-0, a n e x p r e s -

s i o n f o r t h e F o u r i e r c o m p o n e n t s of t h e i o n o r e l e c t r o n

c o n c e n t r a t i o n ( a t d i s t a n c e s l a r g e c o m p a r e d w i t h t h e

D e b y e r a d i u s t h e s e q u a n t i t i e s c o i n c i d e ) .

L e t u s c a l c u l a t e J ( u ) w i t h t h e a i d of ( 3 . 1 2 ) . If t h e

c h a r g e of t h e b o d y i s s u f f i c i e n t l y s m a l l , t h e m a i n c o n -

t r i b u t i o n t o t h e i n t e g r a l w i t h r e s p e c t t o d p i s m a d e b y

v a l u e s of p m u c h s m a l l e r t h a n t h e D e b y e r a d i u s . At

s u c h d i s t a n c e s w e h a v e a p u r e l y C o u l o m b f i e l d . If t h e

c h a r g e i s s m a l l , t h e n t h e i o n s c a t t e r i n g a n g l e i o n £,

t h a t i s , t h e a n g l e b e t w e e n v a n d v t , i s a l s o s m a l l a n d

g i v e n by t h e f o r m u l a

JQc
Mtv* ( 3 . 3 9 ' )

w h e r e Q i s t h e c h a r g e of t h e b o d y .

L e t u s e x p a n d t h e r i g h t ha l f of (3 .12) in p o w e r s of

^ , r e t a i n i n g t e r m s ~ £2. Such a n e x p a n s i o n i s p o s s i b l e

if t h e t e r m s c o n t a i n i n g J- in t h e e x p o n e n t of (3 .12) a r e

s m a l l , w h i c h l e a d s t o t h e c o n d i t i o n

( 3 - 4 0 / )

This condition should be satisfied at any rate for
p _< 1/D, which imposes the following condition on the
charge:

E x p a n d i n g and i n t e g r a t i n g w i t h r e s p e c t t o dtp, w e

o b t a i n

/ = 2nf0V0 { g + -Jgfr [ЬУ - (VOV)«] j J V (Q) Q dQ.

The integral in the right half of (3.42) diverges loga-
rithmically. At large p the integral must be cut off
at p ~ D, and at small ones it must be cut off at those
values of p, for which condition (3.40) ceases to be
satisfied, that is, when

Qe

ultimately

MtkT

(3.43)

(3.43')
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We have assumed here a pure Coulomb field up to
distances p ~ p t , for which the dimension of the body
should satisfy the condition

0 < e i = 7 ^ W ( 3-4 4 )

Substituting (3.43) in (2.61) and (3.23) we obtain
after transformations, without a magnetic field and in
a field, respectively,

(3.45)

(3.46)

Here v t^ is the vector obtained by rotating v0^
through an angle - x/2 (the expression in the curly
brackets in the numerator of (3.46) is the same as in
the denominator). Expressions (3.45) and (3.46) are
proportional to the square of the charge of the body.
They can therefore not be obtained in first perturba-
tion-theory approximation in Q (which was used, for
example, by Kraus and Watson). These expressions
are contained, of course, in the second perturbation-
theory approximation. Formulas (3.45) and (3.46)
hold true only for the very smallest values of q. At
large q it is necessary to add to them the terms given
by the first perturbation-theory approximation, that is,
the expression

Q/e
(3.47)

in the absence of a magnetic field and
Q/f

^ J exp [i ^ * _ 2 ^ l |

(3.48)
in a magnetic field. If q is not small compared with
1/D, then the expressions for the electron and ion
concentrations begin to differ somewhat. We have
written out here the expressions corresponding to
the electron concentration.

To obtain 6N( r) in coordinate space it is necessary
to take the inverse Fourier transform. We shall notdo so
here. We note merely, that in the region where (3.45)
is valid 6N(r ) decreases like 1/r2, as it should. In

the region of applicability of (3.47), as shown i
6N ~ 1/r3 (for r » D). Expressions (3.46) and (3.48)
lead to a very complicated dependence of 6N on the
coordinates.

IV. PARTICLE FLUX IN THE VICINITY OF THE
BODY

13. General Remarks

The disturbances produced in a plasma by a moving
body cause particle fluxes to differ from those in the
unperturbed plasma. The determination of the particle
flux through an arbitrarily oriented elementary area
in the vicinity of the body is essential for the interpre-
tation of the results of various sounding measurements.

The calculation of the neutral-particle flux iiv en-
tails no principal difficulties and is made difficult in
many specific cases only by the complexity involved
in calculating the corresponding integrals. Inasmuch
as the trajectories of motion of the neutral particles
remain straight lines, since there is no potential field
to influence their motion, there is no need at all for
solving the kinetic equation to calculate the particle
flux, and it is enough to start from the geometrical
picture of the motion of the particles, with account of
the occultation of the body and the reflection of the
particles from its surface. Such a method of calcula-
tion leads to the same result as the solution of the
kinetic equation, and is more convenient.

To calculate the ion and electron flux it is necessary
to solve the corresponding kinetic equation. This is
particularly essential for the near region surrounding
the body. The influence of the electric field is large
here and the trajectories of the motion of the charged
particles are strongly bent, while in many cases they
can become in general finite. The scale of this zone
is determined by the double layer produced around the
body, that is, by distances from its surface on the order
of the Debye radius D. On the other hand, the influence
of the electric field outside the double layer, particu-
larly in front of a rapidly moving body, is not so im-
portant, since, as we have seen above, the energy of
the ion and the electric field e<p{ r ) does not exceed
in general the average thermal energy of the particles
kT. Therefore the trajectories of motion of the ions
do not change appreciably here. Ahead of the body the
flux NjV of the charged particles, in the case when
Ro » D, can apparently be determined with sufficiently
high accuracy from the formulas derived for neutral
particles. This statement, of course, calls for a more
rigorous proof. Naturally, if for some reasons the
body is strongly charged, so that e<p :> MiV0

2, it is
necessary to carry out the calculations with the at t rac-
tion potential of the body itself already taken into ac-
count. The repulsion potential always influences
strongly the flux of the particles, independently of the
ratio RQ/D- Thus, the problem of the calculation of
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the flux NfV ca l l s for specia l analys i s , p a r t i c u l a r l y
under conditions when the dimensions of the body a r e
smal l o r c o m m e n s u r a t e with the Debye r a d i u s . In
this c a s e the ordinary approaches to the calculation of
the p a r t i c l e flux, based on the formulas for the neutra l
p a r t i c l e s o r on theoret ica l calculat ions of the flux for
the charged p a r t i c l e s , where the corresponding p r o b -
lem has not yet been studied in sufficient detai l ( for
example, using L a n g m u i r ' s formulas '-17 2 1 -') may lead,
a s is known from the l i t e r a t u r e ( s e e [28-33,23-25,39] >
to i n c o r r e c t r e s u l t s . Such a c a s e is rea l ized a p p a r -
ently, on going over to interp lanetary media, where
D > RQ and the velocity of the sa te l l i tes and space
rockets can be of the s a m e o r d e r as o r s m a l l e r than
the t h e r m a l velocity of the p a r t i c l e s .

In the next section we give the r e s u l t s of ca lcu la-
tions of the flux of neutra l p a r t i c l e s for s e v e r a l c a s e s
of p r a c t i c a l i n t e r e s t . Taking the foregoing into con-
s iderat ion, the formulas obtained can be used, by
e x e r c i s i n g c e r t a i n caution, for the calculation of the
flux N^v. These formulas, as well as those for the
fluxes of the charged p a r t i c l e s analyzed by Kagan and
Р е г е Г ^ 2 8 " 3 1 ^ , show that the formulas employed in the
l i t e r a t u r e for the analysis of the r e s u l t of sounding
m e a s u r e m e n t s a r e suitable only in a l imited n u m b e r
of c a s e s . We shall expound on this in g r e a t e r detai l
in a s e p a r a t e a r t i c l e .

14. Flux of Neutral Particles in the Vicinity of a

Rapidly Moving Body

Naturally, the calculation of the flux of the p a r t i c l e s
m u s t be c a r r i e d out for each p a r t i c u l a r case, that is,
for a specified location of the probe in the vicinity of
the moving body. Depending on the position of the
probe re la t ive to the body and depending on the r e f l e c -
ting p r o p e r t i e s of the sur face of the body itself, the
magnitude of the par t ic le flux will change. An idea of
the genera l p r o p e r t i e s of the flux can be obtained by
solving p a r t i c u l a r p r o b l e m s . We give below the r e -
sul t s of the calculation of the flux on a spher ica l s u r -
face of a probe of radius r, located n e a r the sur face
of a la rge specular ly-ref lect ing s p h e r e of radius
Ro > r . We shal l a s s u m e for s impl ic i ty that the axis
joining the c e n t e r s of the s p h e r e and the probe is p a r -
allel to the motion of the body. We calculate separa te ly
the fluxes p e r unit sur face nv for c a s e s when the
s p h e r i c a l sur face is located in front of and behind the
s p h e r e .

a) Flux on a probe in front of a s p h e r e . It is seen
from Fig. 22 that it is poss ible to cons ider two regions
on the sur face of the s p h e r e r . In one region ( a r c
ABC on Fig. 22) only p a r t i c l e s which experienced no
coll is ion with the sphere, or the " d i r e c t " p a r t i c l e s ,
a r e incident; in the second region ( APC ) t h e r e e n t e r
both d i r e c t p a r t i c l e s and p a r t i c l e s reflected from the
s p h e r e .

FIG. 22. Illustrating the determination of the particle flux.

The p a r t i c l e flux density in the f i rs t region ABC is
calculated in e lementary fashion. The p a r t i c l e flux
density in the second region was calculated by us s e p -
ara te ly for the " d i r e c t " and " r e f l e c t e d " p a r t i c l e s
only at the s y m m e t r i c a l l y located point P of i n t e r -
sect ion of the r e a r surface of the probe with the O P
axis . The calculation of the flux density on the e n t i r e
sur face of the probe in the region APC leads to c o m -
plicated integra ls , which call for n u m e r i c a l calculation.

The p a r t i c l e flux density in an a r b i t r a r y point of
the f i r s t region ABC is obviously equal to

y \ d v y e (4.1)

where f0 ( v) is the Maxwellian dis tr ibut ion function
(3), and v n = V2kT/M is the t h e r m a l velocity of the
p a r t i c l e s .

It follows from (4.1) that

- М Л cos* во-. Г Па ( Vn -(—
(nv) = ~ < - ~ e \ » "

W h e n v 0 c o s i ? 0 / v n > : >

m u l a

( 4 . 2 )

t h i s l e a d s t o t h e o b v i o u s f o r -

( 4 . 3 )

In formula (4.2) Ф(х) is , as usual, the probabil i ty i n -
t e g r a l .

Point P is s t ruck by the " d i r e c t " and " r e f l e c t e d "
p a r t i c l e s . Assuming that the mean free path of the
p a r t i c l e s is Л » Ro, we neglect, as usual, the col l is ions
between the p a r t i c l e s and the dis turbed region in the
vicinity of the s p h e r e . Then the p a r t i c l e s s t r ik ing P,
whose velocit ies make with the OP axis an angle S-
g r e a t e r than 9, t rave l past the sphere—the " d i r e c t "
p a r t i c l e s — and the p a r t i c l e s whose velocit ies make an
angle •$• < в with the O P axis s t r i k e P after being
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reflected from the surface of the sphere—the " r e -
flected" particles (see Fig. 22). Accordingly, the
particle distribution function f( v) has the following
values

2я

cosflsinft

w h e r e

r + B 0 s i n 6 '

•v, (4.11)

( 4 . 1 2 )

2 якТ J exp L 2kT J < T

(4.4)

Then we have at the point P for the flux density of the
" d i r e c t " p a r t i c l e s

2л 2

\= \J dcp \ c o s d s i n d f t \ v3dvf0{\ + v 0 ) ,

о е

and for the reflected p a r t i c l e s

2Я

( n v ) 2 = ^ d(f ^ c o s ft

b

(4.6)

w h e r e f2 a n d t h e l i m i t s o f t h e i n t e g r a l w i t h r e s p e c t t o

£ c a l l f o r a s p e c i a l d e t e r m i n a t i o n . T h e f u n c t i o n f2

d e p e n d s o n t h e c h a r a c t e r o f t h e r e f l e c t i o n o f t h e p a r -

t i c l e s f r o m t h e s u r f a c e o f t h e s p h e r e . If t h e c o l l i s i o n s

o f t h e p a r t i c l e s w i t h t h e s p h e r e a r e e l a s t i c , t h a t i s ,

t h e m o d u l i o f t h e i r v e l o c i t i e s b e f o r e a n d a f t e r r e f l e c -

t i o n f r o m t h e s u r f a c e o f t h e s p h e r e a r e e q u a l , t h e n

i n a s m u c h a s t h e n u m b e r of p a r t i c l e s d o e s n o t c h a n g e

u p o n r e f l e c t i o n . H e r e d 3 r i s t h e v o l u m e w h i c h i s o c -

c u p i e d b y t h e p a r t i c l e s a f t e r r e f l e c t i o n b y t h o s e p a r -

t i c l e s w h i c h o c c u p i e d a v o l u m e d 3 r t b e f o r e r e f l e c t i o n .

I t f o l l o w s f r o m ( 4 . 7 ) t h a t

C a l c u l a t i o n s a n a l o g o u s t o t h o s e c a r r i e d o u t i n S e c . 4 b ,

s h o w t h a t

Л-j _ sin2 6 • cos2 Э'-sin 2 !
~d57~~sTn2d — sin" -sin 6- ( 4 . 9 )

w h e r e

= — 2 s i n 9 ' . c o s ( f l + e ' ) — s i n G - s i n 6 ' . ( 4 . 1 0 )

I n a s m u c h a s t h e s p h e r e h a s a f i n i t e r a d i u s r , p a r t o f

t h o s e p a r t i c l e s , w h i c h f o r a p o i n t - l i k e s p h e r e w o u l d

r e a c h t h e s u r f a c e o f t h e s p h e r e a n d w o u l d b e r e f l e c t e d

f r o m i t , n o w n o l o n g e r r e a c h t h e s u r f a c e o f t h e s p h e r e ,

s i n c e t h e y a r e o b s c u r e d b y t h e s p h e r e . I n o r d e r t o

t a k e i n t o a c c o u n t t h i s o c c u l t a t i o n , i t i s n e c e s s a r y t o

c o n s i d e r t h e t r a j e c t o r i e s o f t h o s e p a r t i c l e s , w h i c h i n

t h e c a s e o f a p o i n t - l i k e p r o b e w e r e r e f l e c t e d f r o m t h e

s p h e r e a n d s t r u c k t h e p o i n t P .

A s a n e n d r e s u l t w e d e t e r m i n e d t h e l i m i t s o f t h e

integral (4.6) with r e s p e c t to •&, and the express ion for
the flux density of the reflected p a r t i c l e s at the point
P becomes

F r o m ( 4 . 5 ) w e o b t a i n f o r t h e d i r e c t p a r t i c l e s b e h i n d

t h e s p h e r e

( 4 . 1 3 )

( 4 . 5 ) o r f o r v o ( c o s 0 ) / v n » 1

T h e i n t e g r a l ( 4 . 1 1 ) , w h i c h d e t e r m i n e s t h e f l u x o f

t h e r e f l e c t e d p a r t i c l e s c a n i n g e n e r a l b e e v a l u a t e d

o n l y n u m e r i c a l l y . H o w e v e r , f o r c a s e s o f p r a c t i c a l

i n t e r e s t , w h e n

a ~ 2 ^
1 r 2 — s i n e

l — s i n eo r

a < — < cos i
v

( 4 . 1 5 )

t h e c o r r e s p o n d i n g c a l c u l a t i o n s o f ( 4 . 1 1 ) b y t h e s a d d l e -

p o i n t m e t h o d y i e l d

s i n 2 9 -(~\
(nv), = nnva -г; :—r- e
\ n o o 2—smt)

(4.16)

F r o m f o r m u l a s ( 4 . 1 3 ) , ( 4 . 1 4 ) , a n d (4.16) w e s e e t h a t

t h e flux of t h e d i r e c t p a r t i c l e s o n t h e r e a r s u r f a c e of

t h e p r o b e i s m u c h s m a l l e r t h a n t h e flux of t h e r e f l e c t e d

p a r t i c l e s . T h e flux of t h e r e f l e c t e d p a r t i c l e s i s c o m -

m e n s u r a t e h e r e and in m a n y c a s e s w i t h t h e flux of t h e

d i r e c t p a r t i c l e s on t h e f o r w a r d s u r f a c e of t h e s p h e r e

a n d d e p e n d s e s s e n t i a l l y on t h e o c c u l t a t i o n of t h e b o d y

b y t h e p r o b e .

b) F l u x on a p r o b e b e h i n d a s p h e r e . T h e c a l c u l a t i o n

of t h e p a r t i c l e f lux o n a s p h e r i c a l p r o b e l o c a t e d b e h i n d

a s p h e r e l e a d s t o t h e fo l lowing r e s u l t s : f o r t h e d i r e c t

p a r t i c l e s b e h i n d t h e p r o b e , t h a t i s , i n a r e g i o n a n a l o g o u s

t o t h e r e g i o n i n f r o n t of t h e s p h e r e ( s e e F i g . 2 2 )

_ ф ( J ^ t l Jh^zc

a n d f o r t h e d i r e c t p a r t i c l e s in f r o n t of t h e s p h e r e a t t h e

p o i n t P

(irv) , = —-»-=• vH cos2 9 exp Г — (-^-

e x p -

( 4 . 1 8 )

In b o t h c a s e s w h e n v o ( c o s 9 ) / v n » 1 t h e p a r t i c l e f l u x

i s s m a l l , s i n c e i t i s p r o p o r t i o n a l t o t h e f a c t o r

e x p [ - ( v o / v n ) 2 ] .
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For the reflected particles at the point P we ob-
tain an integral analogous to (4.11). In the limiting
case when v0 ( cos в )/vn » 1 and v0 (sin в )/vn » 1,
that is, when the angle at which the sphere is seen
from the point P is not small, we have

(4.19)

Comparison of formulas (4.17)—(4.19) shows that the
flux of reflected particles on a spherical probe placed
behind a sphere is less than the flux of direct par-
ticles, and that the main contribution to the flux density
is given in this case by the flux of the direct particles
at the point P.

V. CONCLUSION

In the present article we considered the results of
theoretical investigations of the interaction of moving
bodies with a rarefied plasma. Principal attention was
paid to the case when the velocity of motion of the body
is much larger than the thermal velocity of the neutral
particles and ions, while the dimensions of the body
are sufficiently large compared with the Debye radius.
Such conditions are realized in the motion of artificial
satellites of space ships in the ionosphere or in the
interplanetary medium closest to the earth. Although
this case has been on the whole quite thoroughly
investigated, many problems still call for further anal-
ysis. It is necessary to take into account primarily the
influence of the electric field on the motion of the ions
in the near zone behind the body. Another very im-
portant problem is that of the magnetic perturbations.
In the problem involving the scattering of radiowaves
by the " t r a i l " of the body, it is of special interest to
know how strongly the effective cross section increases
in the resonant region, when e — 0. Many other un-
investigated problems, occurring in the analysis of
phenomena in the vicinity of a moving body, have been
mentioned in the Introduction.

In the lower layers of the ionosphere it is necessary
to take already into account the fact that the dimension
of the body becomes comparable with the particle mean
free path. Under these conditions an interesting prob-
lem is that of heating and additional ionization of the
plasma, destruction of the surface of the body, and
radiation of waves. At very large distances from the
earth's surface, the dimensions of the body may be-
come comparable with the Debye radius, and the veloc-
ity of the body in a definite region can be smaller than
the thermal velocity of the particles. The character
of different perturbations brought about by the body
under such conditions also calls for a special analysis.

Thus, the interaction between a moving body and a
plasma leads to unique and exceedingly varied effects.
The perturbations caused by the body are very appreci-
able, so that the physical state of the region surround-

ing the body differs strongly from the state of the
unperturbed medium.

The results obtained show that the phenomena in
the vicinity of satellites or space ships in the ionos-
phere or in interplanetary medium must be taken into
account when processing the results of experimental
investigations whose purpose is to obtain data on the
state of the unperturbed medium. This is particularly
important in the analysis of the results of measure-
ments with the aid of various types of probes. Failure
to take these effects into account may lead to appreci-
able e r r o r s .

All-inclusive experimental and theoretical investi-
gations of the structure of the perturbed region in the
vicinity of moving bodies in a plasma is of great inter-
est. These investigations make it possible, in parti-
cular, to develop the most effective methods for the
investigation of the properties of media through which
satellites and space ships travel.
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