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1. INTRODUCTION

I,N recent years, in addition to the wide range of inves-
tigations of the behavior of paramagnets in variable
magnetic fields, there has also been successfully de-
veloped the study of the absorption of energy from a
sound field by bodies containing paramagnetic particles,
Initially the resonance absorption of sound was treated
theoretically,1 as an analog of paramagnetic resonance.*
Later on there were detailed computations made of the
magnitude of this effect for various types of paramag-
nets3·1 8 (crystals containing ions of the iron group,
rare earth compounds, metals) on the assumption of
different mechanisms of interaction of the paramag-
netic particles with the sound field. The computations
were also extended to nuclear paramagnets.31"33

In a series of papers5 5"5 8 there was given a theoret-
ical explanation of some interesting features of the

*The initiative in starting studies of resonance absorption of
sound is due to Ε. Κ. Zavoiskii, who shortly after the discovery
of paramagnetic resonance proposed to some physicists to study
the theory of this phenomenon and to calculate the possibilities
of observing it experimentally. The first results of the theoret-
ical treatment of this phenomenon and its quantitative estimate
were published by Al'tshuler in 1952·* In this same year,
Kastler1 treated qualitatively the problem of the effect of ultra-
sonics on nuclear paramagnetic resonance. Kastler reported the
unsuccessful attempt to Grievet and Soutif to discover this ef-
fect in 1949.

pulse methods for studying acoustic paramagnetic res-
onance. Some authors5 0"5 1·5 3"5 4 discussed the shape of
the line from acoustic paramagnetic resonance and
calculated the moments of the absorption curves.

The first experimental results on the observation
of acoustic paramagnetic resonance are due to Proctor
and Tanttila,40 who observed the effect on the spins of
Cl35 nuclei in crystals of NaClO3. Later on these in-
vestigations were continued using various experimen-
tal methods and in different substances.41"49 The tran-
sition from nuclear to electron spins was made diffi-
cult by the need to use sound oscillations of much
higher frequency. This problem was successfully
solved in 1959 by Jacobson, Shiren, and Tucker,26

who first observed electron acoustic paramagnetic
resonance due to the spins of manganese ions and
F-centers embedded in a quartz lattice. The continu-
ation of these investigations gave much valuable in-
formation concerning the properties of lattice vibra-
tions and their interaction with the spin system of
paramagnets. Altogether, the first experimental re-
sults on acoustic paramagnetic resonance confirm the
existing theories of the phenomenon, but at various
points there have appeared serious discrepancies
which await their explanation.

In addition to acoustic paramagnetic resonance
there should also be a nonresonant absorption of
sound which is the analog of paramagnetic absorption
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in parallel magnetic fields.64 The problem of nonreso-
nant acoustic paramagnetic absorption was recently
treated theoretically;65·66 it was shown that present
day experimental techniques permit one relatively
easily to observe this effect. Nonresonant paramag-
netic absorption is a maximum at relatively low fre-
quencies, which should significantly simplify its ex-
perimental investigation.

Acoustic paramagnetic resonance appears to have
interesting applications. Kastler60 has proposed to
use the acoustical effect for polarization of nuclei.
Townes et al.59>63 have established the conditions for
the appearance of an acoustical "maser effect," the
achievement of which would make possible the devel-
opment of generators and amplifiers of supersonics.

2. RESONANT PARAMAGNETIC ABSORPTION OF
SOUND

Resonant paramagnetic absorption of sound, or
acoustic paramagnetic resonance, consists in the
selective absorption of sound energy by a system of
magnetic particles which occurs when the quanta of
energy of the sound vibrations become equal to the
intervals between magnetic energy levels. Thus, the
distinction between the acoustic effect and ordinary
paramagnetic resonance consists in the fact that the
variable magnetic field is replaced by a sound field
of the same frequency. In ordinary paramagnetic
resonance, the energy accumulated in the spin system
is transmitted to the lattice vibrations via the mech-
anism of spin-lattice relaxation. Acoustic resonance
consists in the transfer of energy of sound vibrations
of the lattice to the spin system, which occurs once
again because of the existence of a spin-phonon inter-
action. It should, however, be remembered that para-
magnetic spin-lattice relaxation even at the very low-
est temperatures is usually due to a second order
process, namely, combination scattering of phonons.
The resonance absorption of ultrasound is obviously
a one-phonon process.* The energy stored in the spin
system after sound absorption will, by virtue of re-
laxation processes, be transferred back to the lattice
in exactly the same way as under conditions of ordi-
nary paramagnetic resonance.

Let us find the general expression for the coeffi-
cient of paramagnetic resonance absorption of sound.3

The probability per second that a paramagnetic par-
ticle undergoes a transition between magnetic levels
a and /3, absorbing one quantum of the lattice oscilla-
tions, is equal to

л
A*. Ρ =

2 я

β, ηω-1>|2, (2.1)

where (α, ηω |3Cs_p | β, η ω - 1) is the matrix element
of the Hamiltonian for the spin-phonon interaction, η ω

is the number of phonons with the resonance frequency

•In paramagnets there will also be a combination scattering
of sound, but the magnitude of this effect is very small.

ω, and ρ ω = ω2ν/2π2ν3 is the spectral density of longi-
tudinal or transverse plane polarized phonons propa-
gating in a crystal of volume V with velocity v. If the
sound vibrations are almost monochromatic, with a
mean spread of frequency equal to Δω, then the in-
tensity of the sound wave, that is the energy passing
per second through unit area, is equal to I = ΙωΔω,
where Ι ω = νρωηωΚω/ν.

Let us assume that the interval Δω is much smaller
than the line width of paramagnetic resonance absorp-
tion Ш\/2,. Then the energy of the sound waves absorbed
per second per unit volume of the paramagnet, which
contains N particles, at temperature Τ is equal to

kT
g((u)d<u = 1. (2.2)

Here g(oj) gives the shape of the absorption line. The
factor Βω/kT determines the difference in occupation
numbers of the pair of magnetic levels, and thus deter-
mines the excess of absorption acts over acts of emis-
sion of phonons. From (2.1) and (2.2) we get for the
sound absorption coefficient

ff«.i = T = | - S / W I ( a ' MJ*?!S-p|P, na-i)\K (2.3)

The calculation of matrix elements of the spin-phonon
interaction requires a knowledge of the structure of
the energy levels of the magnetic particles and the
mechanism responsible for the coupling of the spin
system to the lattice vibrations. In the following para-
graphs we shall deal with the computation of the sound
absorption coefficient for different types of paramag-
nets. The overwhelming majority of studies of para-
magnetic properties have been on crystals whose para-
magnetism is due to ions of the iron group. We shall
deal in most detail with the acoustic effect in such
crystals. We note that all the computations have been
carried out without taking into account local disturb-
ances of the lattice vibrations resulting from the in-
jected paramagnetic ions.

3. CRYSTALS CONTAINING IONS OF THE IRON
GROUP

The ions of the iron group usually are introduced
in a crystal lattice so that they are in an octahedral
surrounding of identical diamagnetic particles—mole-
cules of water, oxygen ions, etc. Therefore the crys-
talline electric field acting on the paramagnetic ion
consists of a strong component having cubic (octa-
hedral ) symmetry and a weak component of lower
symmetry (cf. reference 4). Except for special
cases, the crystalline field is weaker than the forces
which cause the formation of the paramagnetic ion
term, but is stronger than the spin-orbit interaction
of the electrons. Because of this, the orbital motion
is suppressed, and paramagnetism in first approxima-
tion has purely spin form. The calculation of the en-
ergy levels of the paramagnetic ion is accomplished
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using the following Hamiltonian:

^ion = Жй + f\ +

where λ is the spin-orbit coupling constant, β is the
Bohr magneton, S and L are the spin and orbital angu-
lar momenta, Η is the strength of the external mag-
netic field. In formula (3.1), ЗСд is the Hamiltonian of
the free ion, including all interactions which do not de-
pend on the spin variables; Τ is the energy of the ion
in the crystalline electric field for the case of a rigid
lattice; the third term is the operator of the spin-orbit
coupling; the fourth and fifth terms are the energy in
the external magnetic field of the spin and orbital an-
gular momenta respectively. If we do not make the
assumption of a rigid lattice and take into account the
changes which are produced by the sound, then in place
of (3.1) we have, for a paramagnetic ion interacting
with lattice vibrations, the following Hamiltonian:

The Hamiltonian describing the lattice vibrations has
the form

(3.3)

where a£, and a^ are the operators for creation and
annihilation of phonons of frequency ω, having the
properties

ηω... > =

ηω . . > = n i / 2 | . . . η ω - (3.4)

By I . . . η ω . . . ) we denote the eigenfunctions of the
phonon system. The third term in the Hamiltonian,
V- TQ, which represents the difference in energy of
the ion in the crystalline electric field with a vibrating
and a rigid lattice, couples the spin of the paramag-
netic ion to the lattice vibrations. Here we assume
that the main role in the spin-phonon interaction is
played by the Kronig-Van Vleck mechanism, t which
consists in the following: the vibrations of the lattice
modulate the electrostatic interaction of the paramag-
netic ion with the neighboring diamagnetic particles,

as a result of which there is a periodic variation of
the orbital motion of the electrons which, for the most
part to be sure, is "frozen in." The periodic changes
in spin-orbit coupling lead to a reorientation of the
electron spin with respect to the external magnetic
field.

For further computations we expand V in the nor-
mal coordinates Q of the octahedral complex:

T = Ta+ 2 ^ p ( ? p + ..., (3.5)
V

where Τρ = 8V/9Qp are certain functions of the coor-
dinates of the 3d-electrons which have been calculated
by Van Vleck.5* We can limit ourselves to the linear
terms in the expansion in Qp, since we are interested
only in one-phonon processes. If we expand Qp in the
normal coordinates of the whole crystalline lattice,
then regarding T-7\ as a perturbation we obtain for
the matrix element of the spin-phonon interaction op-
erator in which we are interested6

(a, — 1 ) · = ο

(3.6)

Here k, η = χ, у, ζ, u = n^iKai/dW2 ) 1 / 2 sin φ · R,
d is the density of the crystal, φ is a phase constant,
R is the equilibrium distance from the nucleus of the
paramagnetic ion to the nearest diamagnetic particle.
The coefficients a p are determined by the direction
cosines \ m and Ф т of the velocity and polarization
of the sound wave:

+ λ,,Φ, - 2λ2Φ2),

αβ = (λ,,Φζ+λ2Φ.,). J (3.7)

Finally,

h
(θ Ι -τ/ΰρ I f> <f I x f c | o>

i>L
— -οο) ( β ) — -Со)

(3.8)

where by Eo and | 0) we mean the energy and wave
function of the ground orbital level, while the energies
Ej, Ej, and the functions | i ) , | j ) , refer to excited or-
bital states. The complicated expressions (3.8) are
obtained because in the ground state the orbital mag-
netic moment is equal to zero, and one must use higher

*LS=LS.
tWe shall consider later on other relaxation mechanisms,

which are significant in certain cases.

approximations of perturbation theory. We note that in
(3.6) we have not taken into account the Zeeman split-
ting of the higher orbital levels, which gives significant
additional terms which are linear in the spin variables.

*Here we also include *°l, which was not included in refer-
ence 5; but in cases where the symmetry of the crystalline field
at the paramagnetic ion is lower than cubic and the lowest orbital
level in the cubic field is a triplet, it may give a contribution to
the spin-phonon interaction.
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If we substitute (3.6) in (2.3) and average over
phases,* then we obtain for the coefficient of sound
absorption

β

σ α , β = ^ ω I 2J ap \ a I eftρ Ι Ρ) Ι , ν*·*/

where Ρ = ffNR2g(w)/kTv3d, and 3Cp is a certain com-
bination of spin operators which in general is different
for different ions.

The representation of the coefficient of sound ab-
sorption as a function of matrix elements of certain
spin operators is very convenient for the following
reason: the experimental investigation of the spectrum
of paramagnetic resonance makes it possible to estab-
lish the form of the so-called spin Hamiltonian. Find-
ing the eigenvalues and eigenfunetions of this Hamilto-
nian gives a system of spin energy levels and enables
one to calculate the probability of magnetic dipole
transitions between them. By means of these same
eigenfunetions, by calculating the matrix elements of
the spin operators 5Cp, we can easily compute the co-
efficient of resonance absorption of sound for each
pair of spin levels.

In the following we shall establish the form of the
operators 3Cp for all possible configurations of 3d-
electrons. Here we shall divide the ions into two
groups, depending on whether the system of spin
levels is a Kramers doublet (effective spin S' = V2)
or a multiplet (S' > У2). The point is that in the first
case no electric fields can eliminate the degeneracy
of the energy level, and consequently changes in the
crystalline field due to the sound vibrations are less
effective than in the second case.

4. IONS WITH EFFECTIVE SPIN S' > %

The theory of acoustic paraeaagnetic resonance for
ions of this type has been treated in references 3, 7,
and 8. The computations show that for all ions with
S' > У2 the spin operators 3Cp have the following form:

3V, = YJ ε8 (SI + SI-

The values of the parameters ejj will be established
later for each kind of ion. We note that in obtaining
formulas (4.1) from the general expression (3.6) for
the Hamiltonian of spin-phonon interaction, we have
neglected the term proportional to λ/Ш since it is
small compared to the term proportional to λ2 over
the whole range of practically applicable magnetic
fields.

In obtaining (4.1) it was assumed that the coordinate
axes x, y, ζ coincide with the tetragonal axes of the
octahedron. Such a choice of coordinate axes is con-

venient if the field of lower symmetry is tetragonal.
If, however, it has trigonal symmetry, then it is more
convenient to go over to a new system of coordinates
x', y', z' with the z' axis along the trigonal axis of
the octahedron and the y' axis located in the xOy plane.
Now the operators take the form:

не,

se

\/^%[{Sx.

= j / ~ ε;

. + sx.sz.) - (S*y. - si.)],

-η^.),

.SV. + SV.SX.) + (SV.SZ. + SZ,

- - si)+(sz.sx. + sx.sz.)].

(4.2)

One must remember that, because of the rotation of
the coordinate axes, the coefficients ap in the funda-
mental formula (3.9) must be replaced by coefficients
ap, which are given as follows:

α; = j / - | (λχ.Φχ. + λυ.φυ. + λζ.φζ.),

<= ] / |

α',= - | / j [λχ.Φχ.- ХуФу, + γ2(λζ,φχ. + λ*.φζ.

a'i = - у 4 (λ*<Φχ< + ν φ ι / ' - 2λζ,Φ2-),

) + λυ.Φζ. + λζ,Φυ.],

- γ2 (λχ.φχ, - λυ.Φυ.)].

(4.3)

We proceed to consider individual ions.
1) 3d2 3 F, V3+. The successive splittings of the or-

bital levels by the strong field of cubic symmetry and
the weak field of tetragonal or trigonal symmetry are
shown in Fig. 1. States arising in the field of cubic
symmetry are classified according to the irreducible
representations of the octahedral group, Γ^ in the
notation introduced by Bethe.9 Since δ « Δ, we can
restrict ourselves to considering that the level Γ 4

FIG. 1. Diagram showing suces-
sive splitting of an F-term in a strong
electric field of cubic symmetry and
a weak field of tetragonal or trigonal
symmetry.

•Such an averaging is admissible if the length of the sound
wave is much smaller than the linear dimensions of the crystal.
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alone participates in the spin-phonon interaction. The
computations show that

„ _ _ . _ 15/6

(4.4)

where e is the elementary charge, e' is the effective
charge of the diamagne_tic particle which is nearest to
the paramagnetic ion, r2, and rf, are the mean square
and mean fourth power of the distance of the 3d-elec-
tron from the nucleus of the paramagnetic ion.

2) 3d 3 4 F, V2+, Cr3*; 3d 8 3 F, Ni2+. The diagram of
the splitting of orbital levels is obtained by inverting
the picture shown in Fig. 1. The lowest orbital level
is the singlet Γ 2 . The computations give:

25

« 4 = - ε Ι = ε5 =

2.

(4.5)

3) 3d4 5D, Cr2*, Mn3+. The picture of the splitting
of the orbital levels is shown in Fig. 2. The computa-
tions lead to:

" f " ' V λ8 У з 3 ι25 3
~ 7 V R% ) \ . Δβι A -R2 + 12 R*

)

(4.6)

It should be remembered that a field of trigonal sym-
metry does not split the doublet Γ 3 , and therefore the
crystalline field has a lower symmetry, because of the
Jahn-Teller10 effect. We shall not consider this case.

4) 3d6 5D, Fe2*. The pattern of splitting of the or-
bital levels is obtained by inverting the picture shown
in Fig. 2. In a cubic field the lowest orbital level is
the triplet Г5. The computations give:

. - β · - e - ε ' - - 1

ε; = ε5 = ε; = εβ = ε;

_ 2

η = 0.

(4.7)

Let us consider some general conclusions which
follow from these results for resonance absorption of
sound in crystals containing ions with S' > l/2.

Because of the quadratic dependence of 3Cp on the
spin variables, the selection rule for allowed transi-

FIG. 2- Diagram showing the
successive splitting of a D-term in
a strong electric field of cubic
symmetry and a weak field of tetra-
gonal symmetry.

tions between spin levels under the action of sound has
quadrupole character for ions with half-integral S.
For example, the transition Μ = - V2 — Μ = V2

 i s

much less probable than the transition - V2 — %
(M is the magnetic spin quantum number). In the
approximation which we are using, since we have
neglected in the Hamiltonian (3.6) the term which is
proportional to H, the probability of the transition
— У ι — У2 * s z e r o .

To a high degree of accuracy we may assume that
the matrix elements < о; | ЭСр | yS) do not depend on fre-
quency ω, and therefore, according to (3.9), the co-
efficient of sound absorption is σ ~ ω2. From (3.9) it
also follows that the coefficient σ is inversely propor-
tional to the temperature Τ of the crystal; this is valid
if the differences in occupation of the levels a and β
have the same dependence on T.

The spin variables appear to the fourth power in
the expression for σ. Therefore simply because of
the magnitude of the spin, the absorption resulting
from the ions Fe2 +, Cr2+ may be greater than in
crystals with Ni2+ ions by a whole order of magnitude.
But the coefficient σ will, for the most part, be deter-
mined by the nature of the splitting of the ground en-
ergy level of the paramagnetic ion in the crystalline
field and by the magnitude of the spin-orbit coupling.
Thus, for example, because of the fact that for Cr3+

and Ni2+ ions in a cubic field the lowest orbital level
is a singlet, the coefficient σ may be several orders
of magnitude smaller than for other ions. In Table I,
which is taken from reference 8, we give the results
of approximate numerical estimates of σ, which are
made for identical values of N, v, etc. for all the ions.

The velocity of propagation of the sound is very im-
portant since σ ~ 1/v3. Already for this reason the
absorption of longitudinal and transverse sound waves
will be different. This difference can be much more
important if we look at the values of a p which, accord-
ing to (3.7) and (3.9), determine the dependence of σ
on the direction of propagation and the polarization
character of the sound wave. We must, however, re-
member that the expressions given in (3.9) for a p are
obtained on the assumption that the neighborhood of the
paramagnetic ion is octahedral.

The coefficient σ can change markedly as a function
of the direction of the magnetic field H, but to exhibit
this dependence without detailed computation is difficult,
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Table I. Coefficient of sound absorp-
tion for ions with S' > %.

σ = Α(ω2/4π2Τ) χ 10"19 cm" 1

Configura-
tion and

term of ion

d23F
d**F
d**D
d^D
d*sF

Spin

1
3/ 2

2
2
1

Ion

уз*
Сгз+, V2*

Cr**, Mn 3 t

Fe2*
Ni 2 *

A

10е

1
106
10е

10'

since it is determined by the eigenfunctions of the
spin Hamiltonian.

5. EFFECT ON Ni2+ IONS IN AN MgO CRYSTAL

As an example, we give a detailed computation of
the sound absorption coefficient σ for Ni2+ (S = 1)
ions, which isomorphically replace some of the Mg2+

ions in the cubic lattice of the MgO crystal. In this
case the spin-Hamiltonian has a completely simple
form:11

Ji?a = gPHS, (5.1)

since a crystalline field of cubic symmetry does not
split the energy levels of particles with S < 2. The
energy Ejy[ of the spin levels in the magnetic field Η
is equal to

(5.2)

We restrict ourselves to the following special cases:
a) field Η parallel to the tetragonal axis of the crystal,
and b) field Η parallel to the trigonal axis.

a) H II Oz. In this case, according to (4.1), the
Hermitian spin operators 3Cp have the following non-
zero, non-diagonal matrix elements:

= —j e2 V(S+M)(S+M-i)(S-M+i)(S-M+2),

= | - ε4 V(S+M) (S + M-1) (S-M+l) (S-M+2),

(5.3)

Then

=y=-e«. (5.4)

In the further computation of the coefficient σ we shall
consider the cases of sound waves propagating along
the field and perpendicular to it. In order to indicate
the direction of the sound wave and its polarization,
we shall put two superscripts on the coefficient σ. Sub-

stituting the quantities (5.4) in (3.9) and using (3.7), we

get non-zero values of σ^'ο in the following cases:

1. Transition - 1 ^ 1 (ΔΜ = 2):

σ _ , •

(5.5)

As we see, sound absorption occurs if the direction of
propagation and the polarization of the wave are per-
pendicular to the magnetic field H.

2. Transition 0 — ± 1 (ΔΜ = 1):

ftXZ rrZX

0, ±1 ~°0, ±1
(5.6)

For this transition one has absorption only of trans-
verse waves whose direction of propagation or polari-
zation is parallel to the magnetic field H.

Let us proceed to a numerical estimate of σ. From
the value of the splittings in the crystalline field11

Δ = 14800 cm"1, At = 8600 cm"1, it follows that
ee'/R2 ~ 3.27 x 10"3 erg-cm"1; for the Ni2+ ion in
an MgO crystal, λ = -245 cm"1. Using the radial
functions of 3d-electro_ns of a free ion of Ni2^_ one
can easily calculate12 r2 = 0.31 χ 10"16 cm2, rj = 0.29
χ 10"32 cm4. From x-ray structure data13 it is known
that R = 2.1 χ 10"8 cm, and consequently the density
of the crystal is d = 3.5 g-cm"3.

.If we set N ~ 1.5 χ 1019 ion/cm3, g(aj) ~ 1/ω1/2

~ 10"8 sec, and assume for the longitudinal vibrations
vi = 3 χ 105 cm-sec"1, and for the transverse vibra-
tions vt = 2 χ 105 cm-sec"1, then for Τ = 300° К we
have:

σϊ*!, ! = 0^,1= 5,5· 10-21ω2,

σϋ"Ί, 1 =σϋ Ι

1 ι 1 =0.5.10-"ω* >

(5.7)

b) Η II Oz'. For the matrix elements of the oper-
ators 3Cp (4.2), we have, using (5.3):

» = - ^ п г B2-

W8"
- 8 4 ,

(5.8)

Substituting these values of (a \ ЗСр | β) in (3.9), we
find non-zero coefficients in the following cases:

1. Transition - 1 — 1 (ΔΜ = 2):

-Z'X' JX-'Z" y'Z' _2'y ' ^ η /

G-l, 1 = σ _ ι , 1 —O-i, 1 = σ - 1 , 1 = -gf^(e2"

2. Transition 0 — ± 1 (ΔΜ = 1):

(5.9)
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X'JC' „y'V „χ'ίί' y'x· 2

ao, ±i = σ ο , ±1 = σ ο , ±1 = σ ο , ±1 = -g-

<*i i = < z i i = 4" Ρ (2e2 + e4)
2 ω2,

< ' i i = < " i i = 4-̂ P (2ε2 - ε4)
2 ω2.

(5.10)

Numerical evaluations for the same parameter val-

ues as in a) give

ι = 1.05·10-21ω2,

ι = 1,03· ΙΟ"21 ω2,

, = σϋΤ, ι = σίΧ,, = 5.6 • ΙΟ"2» ω2,

(5.11)

We see that in the case of a magnetic field directed

along the trigonal axis one can have absorption of both

longitudinal and transverse waves for all transitions.

6. IONS WITH EFFECTIVE SPIN S' = %

The theory of acoustic paramagnetic resonance for

ions of this type has been treated in references 3, 7,

and 8. In Sees. 3 and 4 we have seen that the operators

3Cp in which we are interested consist of two parts:

1) a term linear in the spin variables S^ and propor-

tional to the small quantity w = 2/Ш = 2Ka)/g, and
2) a term quadratic in the Sjj and proportional to
λ » w. For ions with S' > У2 we neglected the linear
term. But for the case of S' = У2 the matrix elements
of quadratic combinations of the spin components are
equal to zero, so that for ions considered in this para-
graph we must include the term proportional to w.

First we consider ions with S = S' = У2. From the
calculations it follows that if the field with lower
symmetry is tetragonal, then

.Mx = w4 (1XSX + lySy), SV* = WE, {lxSy + lySx),

M2 = we2(lySy-lxSx), £teb

(6.1)

Μ г = у i ««*, (ijsx+iysy), m*

If the field of lower symmetry is trigonal,

[ Vx-Sy + lyS*) - 2/2V

1 [ (lv,Sy. - lx.Sx.) -

| [ {ix.sy.+ iy,sx

(6.2)

(3.9) should be replaced by coefficients ap [cf. (4.3)].

We proceed to consider individual ions.

1) 3d1 2D, Ti 3 +. The picture of the splitting of the
orbital levels is inverted relative to the scheme shown
in Fig. 2. Calculations including the contribution to
the spin-phonon interaction of only the levels of the
lowest triplet Γ 5 give

(6.3)

The values of the parameters q for Fe 2 + are

given in (4.7).

2) 3d9 2D, Cu2+. The picture of the splitting of the

orbital levels is given in Fig. 2. The field of trigonal

symmetry does not split the lowest orbital doublet.

Therefore our computations apply only to the tetrago-

nal field of the crystal. The computations show that

ε4 (Cu2t) = -ί- 8t (Cr2*). (6.4)

3) 3dT 4 F , Co2 +. The Co2+ ion is a special case.

The point is that in all crystals investigated up to now,

which contain the Co2 + ion, the effect of the field of

lower symmetry is of the same order as the spin-orbit

interaction. Therefore the system of energy levels of

this ion is a collection of Kramers doublets separated

by intervals ~ 200—300 cm" 1 . Thus, even though the

free ion Co2 + has spin S = 3/2, in a crystal the effective

spin is S' = У2. The computation of the spin-phonon in-
teraction for an arbitrary direction of the magnetic
field is extremely complicated. Calculations made for
a field H, parallel to the tetragonal ζ axis, including

only the Kramers doublet which is closest to the

ground state have shown that the absorption coefficient

of sound is equal to

(6.5)

As already stated in Sec. 4, in the case of a field of

trigonal symmetry, the coefficients ap in formula

where the parameter q ~ 109 cm" 1.

The most characteristic feature of the group of ions

considered in this section is the different frequency de-

pendence of the magnitude of the effect: for ions with

S' > У2, σ ~ ω2; for ions with S' = V2, σ ~ ω4. Aside

from this, these two groups of ions differ very little

from one another. In Table Π we give the results of

approximate numerical calculations8 made for certain

values of N, v , . . . , which are the same for all ions.

7. CRYSTALS CONTAINING IONS OF THE RARE-
EARTH ELEMENTS

The most characteristic feature of the paramag-

netic properties of crystals of this type is the large

contribution to the magnetic susceptibility of both the

orbital and the spin moments, which is explained by

the fact that the crystalline field cannot disturb the

spin-orbit coupling in the electron shells of the r a r e -

earth ions.4 Unlike the ions of the iron group, the

rare-earth ions in most cases do not have a simple

octahedral coordination. The symmetry of the crys-
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Table II. Coefficients of sound ab-
sorption for ions with S' = У2·
σ = Α(ω4/ΐ6π4Τ) χ

Configura-
tion and

term of ion

d12D
d^F
d°*D

Spin

S'=S = 4t
s'=4i, s=4t

ΙΟ" 4 0 cm" 1

Ion

Ti s *
Co2*
Cu2*

A

104
102

1

talline field acting on the rare earth ions usually is
trigonal. In this field, the energy level of a free para-
magnetic ion which contains an odd number of elec-
trons is split into a series of Kramers doublets; if,
however, the number of electrons is even, we get
singlet and doublet sublevels. As an example, we
show in Figs. 3 and 4 the patterns of splitting of the
energy levels of the ions Pr 3 +, Ho3+; Ce3+, Nd3+ in
the ethylsulfates. The intervals Δ between levels are
equal on the average to 10—100 cm"1.

FIG. 3. Diagram of splitting of ground states of Pr3+ and Ho3+

ions in the crystalline field of ethylsulfates.

FIG. 4. Diagram of the splitting of ground states of Ce i + and
Nd'+ ions in the crystalline field of ethylsulfates.

The mechanism of spin-phonon interaction in crys-
tals with rare earth ions has been treated in refer-
ences 14 and 1.5. The lattice vibration, by modulating
the crystalline field, can directly change the orienta-
tion of the magnetic moment of the rare-earth ion,
since in the case considered by us the coupling be-
tween the spin and orbital moments of the electron
shells is stronger than the effect of the crystalline
field.

After preliminary estimates of the magnitude of
resonance absorption of sound by rare earth elements,3

detailed computations were made for the ethylsulfates

of all the rare earth elements.16 It turned out that
there was an enormous difference in the magnitude of
the effect for ions with an even number and for ions
with an odd number of electrons. The point is that in
the case of ions with an even number of electrons, the
degeneracy of the energy levels can be completely
raised by a crystalline field of sufficiently low symme-
try. Therefore in calculations by perturbation methods
the spin-phonon interaction already appears in first
approximation. The coefficient of absorption of sound
associated with transitions between sublevels, which
arise as the result of splitting of a non-Kramers doub-
let by the external magnetic field, is equal to

)2, (7.1)

where α is a numerical coefficient which depends
strongly on the direction of propagation of the sound.
The absorption is maximum for a sound wave moving
perpendicular to the trigonal axis of the crystal; for
sound propagating along the crystalline axis, a = 0.
In Table ΙΠ we give results of computations of the ab-
sorption coefficient σι for a longitudinal sound wave
propagating perpendicular to the crystal axis. For
transverse waves, the absorption coefficient can be
calculated from the formula

(7.2)

where vj and v t r are the velocities of longitudinal and
transverse waves. It should be remembered that for
ions of the type we are considering g^ = 0.15

The possibility of observing acoustic paramagnetic
resonance in the substances we are considering is es-
sentially related to the following facts.

First, the degeneracy of the energy levels of ions
with an even number of electrons is completely re-
moved, because of the Jahn-Teller effect. True, the
Jahn-Teller splitting for the rare earths is small,
being of the order of 0.01—0.1 cm"1, but all the same
to obtain a clearly expressed resonance effect one
needs to use frequencies which are greater than 1000
Me. Secondly, the spin-phonon interaction in rare-
earth compounds is so large that at normal tempera-
tures the paramagnetic resonance lines merge to-
gether completely. Therefore, the measurements must
be carried out at liquid helium temperature; in certain
cases one can use liquid hydrogen temperatures.
Thirdly, for the rare earth ions with an even number
of electrons the lowest level may be a singlet. But
the doublet levels which are of interest for the para-
magnetic resonance effect may be extremely weakly
populated at low temperatures. Thus, for the Eu3+

ion the ground state corresponds to an angular mo-
mentum quantum number 1=0; the first excited level
is 270 cm"1 higher. For ions of the rare-earth ele-
ments with an odd number of electrons, the energy
levels in the crystalline field are Kramers doublets,
so that the matrix elements of the spin-phonon inter-
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Table Ш. Coefficients of absorption of longitudinal sound
waves in ethylsulfates of rare-earth ions with an even

number of electrons σ̂  = Α(ω2/4π·2Τ) χ 10~13 cm"1

Ion

Pr»*

Eu s*

Tb3*

No. of
doublet

1
2
3

1

1
2
3
4

Interval
between
doublet

and ground
state

(in cm*1)

0
170
212

270

7
24
26
50

A

1.7
8;e
1.7

800.7

3.7
10.5
60.8
10.5

Ion

Ho8*

Tms*

No. of
doublet

1
2
3
4
5
6

1
2
3
4

Interval
between
doublet

and ground
state

(in cm"1)

4
47
60

139
141
197

14
26
98

129

A

7,3
15.8

150.1
0
1.5

150.1

5,6
12.0
49.4
13.4

action are different from zero only in the second ap-
proximation of perturbation theory. Thus, the absorp-
tion coefficient σ differs from the value given by for-
mula (7.1) by a factor (Κω/Δ)2. Thus, for Nd8+ the
interval Δ = 170 cm"1 and at Τ = 20° К the calcula-
tions give σ = 3 χ ΙΟ"39 (ω/2π)4 cm"1. The frequency
dependence is the same as for ions of the iron group
with S' = V2. The magnitude of the absorption is ob-
viously very sensitive to the location of the nearest
energy levels. Thus, for cerium ethylsulfate the in-
terval between the lowest two doublets is only 3 cm"1,
which increases the coefficient σ to a value ~ 10"35

(ω/2π)4 cm"1.

The results given in this section of computations
of the acoustical effect are quite crude for the follow-
ing reasons. First, in the calculations one has used a
simplified picture of the normal vibrations of the crys-
tal. A more precise inclusion of the nature of the vi-
brations of the particles surrounding the paramagnetic
ion is difficult to carry out because of the complex
structure of the crystalline unit cell. Therefore, con-
clusions regarding the dependence of the absorption
coefficient on direction and polarization of the sound
waves are extremely rough.

Second, the spin-phonon interaction in many cases
is so large that one is hardly justified in using per-
turbation methods.

8. CRYSTALS CONTAINING PARAMAGNETIC IONS
IN S-STATES

Among paramagnets, those crystals which contain
Mn2+, Fe3 +, Eu2+, Gd3+, Cm5* occupy a special posi-
tion. All these ions are in S-states and therefore the
crystalline field gives rise to extremely small split-
tings of their ground states, usually not exceeding
1 cm"1. The calculations of the value of resonance
absorption of sound have been done for the ions Mn2+

and Fe3 + (S = %) on the assumption that the splitting
of the lowest energy level under the action of the crys-
talline and external magnetic fields is given by a spin-

Hamiltonian of the following simple "cubic" type:3

J^s =-i α [ ^ + SJ + ^ - - ί S (S +1) (3Λ12 + S - 1)]

(8.1)

Just as for the other ions with S' > V2, considered
by us in Sec. 4, the coefficient σ can be calculated
from formula (3.9). The spin operators 5Cp have the
same form (4.1), the expressions for the parameters
ej are very complicated, and we shall not reproduce
them here. The general properties of resonance ab-
sorption of sound which were established in Sec. 4 also
apply to ions in S-states. The magnitude of the effect
can be estimated from the formula

σ = (8.2)

where α is a numerical factor.
The detailed computations show that in a strong

magnetic field g/3H » a, transitions Μ —* — Μ are
forbidden, where the magnetic quantum number is
Μ = У2,

 3/2,
 5/2. Other transitions are possible between

neighboring levels under the influence of transverse
vibrations and between levels with ΔΜ = 2 under the
action of longitudinal waves.

9. THE WALLER MECHANISM

If the orbital magnetism of the atoms is quenched
then, as shown by one of the authors,17 in paramagnetic
materials with large magnetic moments of the atoms
and with a large density of paramagnetic particles the
main role in the spin-phonon interaction may be played
by the modulation by the lattice vibrations of the mag-
netic dipole interactions of the atoms (the Waller
mechanism). Resonance absorption of sound resulting
from this mechanism has been considered in refer-
ence 18.

Let us assume for simplicity that the paramagnetic
particles form a simple cubic lattice, and let the lat-
tice constant be R. Using the usual expression for
the operator of magnetic dipole interaction,
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и„, = ,
3(Sk- (9.1)

and assuming that the sound wave propagates along the
χ axis, we can bring the square of the matrix element
of the spin-phonon interaction, which appears in (2.3),
to the following form:

Ι<α, η

where

auhl

(9.2)

(9.3)

and the summation extends over all paramagnetic par-
ticles. We shall use a representation in which Sj^ and
S;z are diagonal; the corresponding magnetic quantum
numbers are denoted by M^ and Mj. For transitions
with ΔΜ^ = 1, ΔΜ/ = 0, using (9.1) and (9.3), we find
the square of the corresponding matrix element

(Mh, Mt\Uklx\Mk+i, i + y\i)

(9.4)

Carrying out an average over different directions of
propagation of the sound with respect to the crystal
axes, and also over all possible values of M^ and M7,
we find

\{Mh, I l 7
Wsc I

(9.5)

Substituting this expression in (9.2) and then in (2.3)
and considering only the effect of nearest neighbors,
we find for the absorption coefficient

(9.6)

where Z is the number of nearest neighbors of the ion
in the crystal lattice and γ 1 = 253/42.

Our computations apply to the absorption of sound
vibrations propagating perpendicular to the applied
magnetic field. If we make an analogous calculation
for waves parallel to the magnetic field, we obtain the
same expression (9.6), but with a different coefficient
γΝ = 8/21.

For the absorption coefficient due to double transi-
tions (ΔΜ{ς = +1, ΔΜ; = +1), we get

Ι2οΛ (9.7)

where γ^ = 20/7, уц = 20/21. Thus it appears that the
line corresponding to the resonance condition

should have approximately the same intensity as the
ordinary line, whose position is determined by the con-
dition

An estimate of σ from formula (9.6) for MnF2 at a
temperature Τ = 300*Κ, ω^/Ζτ = 108 sec" 1 , gives
σ ~ ΙΟ" 2 1 ω2 cm" 1 .

In materials with a high density of magnetic ions,
in addition to dipole-dipole interaction there will also
be large exchange forces. The role of these forces in
spin-phonon interaction can be very significant since
they fall off rapidly with distance. However, if the
exchange interaction has the isotropic form 5Cex

= £ ) I(rkZHS£*Sk) then it cannot give rise to tran-
sitions between Zeeman levels through the lattice
vibrations, since the matrix 3Cex is diagonalized
simultaneously with the matrix of the Zeeman energy
g/3H YJ Sgjj. Inclusion of spin-orbit coupling leads to

к
the appearance of anisotropic exchange forces. As-
suming that these forces have the dipole form19

JS?ex =2/(^1)[(SkS l)-3'-kHSkrkl)(S lr f t l)], (9.10)
i

it has been shown in reference 18 that they can in-
crease the values of σ obtained above, which were
due to dipole-dipole interaction alone, by one to two
orders of magnitude.

10. ACOUSTIC PARAMAGNETIC RESONANCE AND
SPIN-LATTICE RELAXATION IN IONIC CRYSTALS

Acoustic paramagnetic resonance and paramagnetic
spin-lattice relaxation are very closely connected with
one another, since both phenomena are the result of
spin-phonon interaction. This relation becomes es-
pecially simple and direct if we consider the relaxa-
tion at sufficiently low temperatures to guarantee a
predominant role for one-phonon processes. In this
section when we speak of spin-lattice relaxation, we
shall assume that it is accomplished by one-phonon
processes.

Let us establish the relation between the time of
spin-lattice relaxation τ and crystal temperature To

and the coefficient of resonant sound absorption σ at
temperature T. First let us assume that S' = У2; then
the probability of absorption of a phonon per second
under the influence of the thermal vibrations of the
lattice is A = 1/2 т. This probability is proportional
to the Debye density of phonon states pi and the aver-
age value of the quantum number n̂  at temperature
To, so that , - ,

0 A = A0QLnit (10.1)

In the expression for pj we include only transverse
- 5(9.8) vibrations, since A ~ ν 5 and the velocity of trans-

fcto = (9.9)

verse waves is much smaller than that of longitudinal
waves.

By the coefficient σ we shall mean the coefficient
of absorption of transverse sound waves averaged over
the different directions of propagation and all possible
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polarizations. The intensity of the sound wave is equal
to I = ΙωΔω, where Ι ω = νρωηωΚω/ν, and ρ ω and η ω

have the same meaning as pj and iij, but refer to
sound vibrations. Furthermore using formulas (2.1),
(2.2), and (2.3), we easily obtain

ΰ = \ LITT -r g( M ) · (10.2)

If S' > V2, and consequently the number of spin levels
is greater than 2, then to each pair of spin levels α, β
there corresponds a certain probability of a spin-
phonon transition A a a and a certain coefficient of
sound absorption σα ο. The relaxation time which is
measured by the method of parallel fields or the re-
laxation times та a obtained by saturating different
lines of paramagnetic resonance are complicated func-
tions of the transition probabilities Ааф. It is there-
fore impossible to establish a simple relation between
the relaxation times τα>β and the coefficients σαφ.
Nevertheless, in the case of S' > У2> formula (10.2) is
approximately valid, in particular if by σ and τ we
mean the average values of the coefficients of absorp-
tion σα>β and relaxation times ταφ.

Because magnetic dipole transitions are not pos-
sible for each pair of spin levels, data concerning
τα,β obtained by the saturation method are in general
insufficient for a unique determination of the quantities
Αα,/3· Besides, the ratios of the probabilities of spin-
phonon transitions are given most accurately by the-
ory, and it is therefore very important to have the
possibility of an experimental determination of these
ratios. From a knowledge of the transition probabili-
ties Ααφ for each pair of spin levels we can also find
the best conditions of polarization of the nuclei by
means of certain dynamical methods, and in particular
we can raise the efficiency of paramagnetic amplifiers
(masers).

In obtaining relation (10.2) we have tacitly assumed
that both the resonance absorption of sound and the
spin-lattice relaxation are due to the same mechanism
of spin-phonon interaction. But it is well known that
the theory of spin-lattice relaxation in ionic crystals
at low temperatures is fraught with difficulties. The
results of measurements of the dependence of relaxa-
tion times on the concentration of paramagnetic ions,
on the intensity of the external magnetic field, and on
temperature, very often are in explicit contradiction
to theoretical predictions. In Van Vleck's opinion20

all these facts can be explained if one assumes that
the energy of exchange between the spins of the ions
and the phonons occurs not directly, but via irregu-
larities of the lattice ("exchange pockets" etc). This
point of view has found a certain amount of experimen-
tal confirmation. Experimental studies of acoustic
paramagnetic resonance, in particular the determina-
tion of the extent to which relation (10.2) is correct,
should be of great importance for clarifying the nature
of spin-lattice relaxation. In this connection it will be

of great interest to get the results of measurements
of the dependence of the coefficient of sound absorption
on the concentration of paramagnetic ions, on the fre-
quency of the sound, and on the temperature of the
crystal.

Kochelaev21·22 pointed out the following two facts,
which may be important both for acoustic paramag-
netic resonance and for processes of spin-lattice
relaxation.

In certain crystals there are separate paramagnetic
complexes, for example, six water molecules with a
paramagnetic ion at the center. The particles within
a complex are coupled to one another much more
strongly than with other atoms in the crystal. Because
of this, the displacement of the paramagnetic ion with
respect to some particle near to it becomes much
smaller than the average value of the relative dis-
placement of neighboring atoms for the whole crystal.
As a consequence, the spin-lattice interaction is re-
duced, and, as the computations show,21 relaxation and
acoustic effects may be reduced by several orders of
magnitude.

Defects of the crystal lattice, which give rise to
scattering of elastic waves, may have a serious influ-
ence on the nature of the spin-phonon interaction. As
computations have shown,22 if the amplitude of the
scattered waves does not depend on frequency, then
elastic vibrations of the lattice due to scattered waves
are coupled more strongly with the spin system than
vibrations which are produced by plane waves. Conse-
quently, in the formulas for the absorption coefficients,
there appears a factor ηΝ~^3ω~2; by η we denote a
parameter which characterizes the lattice defect. For
ions with S' > У2

 ш е dependence of σ on the sound
frequency ω disappears; in the case of S' = V2 this
dependence becomes weaker, σ ~ ω2. We also note
that if acoustic paramagnetic resonance is mainly the
result of absorption of scattered waves, then the de-
pendence of σ on the direction of the incident sound
waves which we have found in the preceding sections
should disappear as a result of averaging over all
possible values of the direction cosines λί·

11. METALS

The study of acoustic resonance on electron spins
in metals is of especial interest. The reason for this
is that the study of absorption of electromagnetic waves
in metals is extremely difficult because of the skin
effect.

The possibility of observing acoustic resonance on
the spins of conduction electrons in metals was con-
sidered in reference 23. As the fundamental cause of
interaction of the spins with the sound field, it is as-
sumed that one has a modulation of the internal crys-
talline field by the sound vibrations, thus influencing
the spins through the spin-orbit coupling. The prob-
lem is solved by investigation of the magnetization Μ
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of an electron gas in the presence of sound

Here p is a single-particle operator for the density of
the electron gas, σ is a Pauli operator, and the inte-
gration extends over the electron momentum space.
The motion of the electrons is described phenomeno-
logically by introducing a time of free flight of the
electrons Ц and a time of paramagnetic relaxation
TSp. After solving the kinetic equation for p, one
easily finds the magnetization Μ which has resonance
character. The width of the resonance line was equal to

(11.2)

where u is the electron velocity. Since the resonance
is noticeable only for ωί^2 « ω, the resonance frequen-
cies must satisfy the condition

J- (H.3)

In particular, for Li and Be in which the time of
paramagnetic relaxation TSp is determined by im-
purities (τ8ρ £ 10~7 sec), at high temperatures
(when tj ~ 10~13—10"u sec) a numerical estimate
gives ω ~ ΙΟ8—109 sec"1. From this we see that the
resonance value of the magnetic field should be small.
This justifies the neglect of quantization of the orbital
motion of the electrons in finding the density operator.
From the conditions of possibility of observation of
the resonance, it also follows that one cannot succeed
in polarizing nuclei by acoustic resonance on the spins
of free electrons for to obtain a significant polariza-
tion one requires strong magnetic fields and low tem-
peratures.

For an estimate of the order of magnitude of the
coefficient of sound absorption near resonance, one
has the following formula:

(11.4)

where Ω is the Larmor frequency, χ is the para-
magnetic susceptibility of the metal, Ag is the differ-
ence in g-factors for the free electron and an electron
in the lattice, a is the lattice constant, and e and u
are the energy and velocity of the electron at the Fermi
surface, and the prime denotes an average over it; q
and к are the wave vectors of the sound and the elec-
tron respectively. A numerical estimate shows that
σ £ 10~5 cm"1. This value for the absorption coeffi-
cient shows that the effect of acoustic resonance on
spins of conduction electrons far exceeds the effect
on nuclei (σ ~ 10"8—10~9 cm 1), which has already
been observed experimentally.

Let us consider the possibility of observing para-
magnetic acoustic resonance in rare-earth metals.18

Paramagnetism of these metals is due to the 4f-elec-
trons which lie deep within the atoms; the effect of
conduction electrons is insignificant. Therefore there

is a great similarity between the magnetic properties
of the rare-earth metals and the salts of these ele-
ments. By comparing theoretical computations with
experimental data on paramagnetic resonance in
metallic cerium, praseodymium, and neodymium, it
was established24 that the atoms of these metals are
three-fold ionized and that the splitting of their energy
levels is determined by an electric field having the
same symmetry as the crystal lattice. In this con-
nection it is reasonable to assume that the spin-phonon
interaction in rare-earth metals is determined by the
same mechanism as in the salts of these elements,
namely by a modulation of the electric field by the lat-
tice vibrations. Therefore the calculation of the co-
efficient of absorption of sound energy is done in the
same way as in Sec. 7. Differences arise only because
of the different symmetry of the crystalline field. Let
us first consider metals having a cubic lattice, which
includes β-cerium, /S-praseodymium, europium, and
ytterbium. Their common property is that the crystal-
line field of cubic symmetry does not completely split
the energy levels of the ions, and there remains a non-
Kramers degeneracy which can be lifted by a field of
lower symmetry. Such a field occurs in particular
v/hen one perturbs the crystal by sound vibrations;
from this it is clear that the spin-phonon interaction
will be different from zero even in the first approxi-
mation of perturbation theory. Therefore the coeffi-
cient of sound absorption in this case will again be
given by formula (7.1).

Let us give as an example a numerical estimate of
the coefficient of absorption of sound in /3-cerium. If
the effective charge e' = e and if we choose the maxi-
mum possible value of a (which corresponds to the
perpendicular orientation of the magnetic field with
respect to the direction of the sound wave), then at
Τ = 300° К we obtain σ ~ 1Ο~18ω2 cm"1.

Let us discuss the possibility of observing the ef-
fect in rare-earth metals with a hexagonal lattice. In
metals whose ions contain an even number of electrons
(α-Pr, Tb, Ho, Pm), the coefficient of sound absorp-
tion may be of the same order of magnitude as in met-
als with cubic symmetry, since some of the energy
levels of these ions retain their twofold (non-Kramers)
degeneracy in an electric field of hexagonal symmetry.
The situation is different for metals whose ions have
an odd number of electrons. In this case the electric
field of hexagonal symmetry causes a complete split-
ting of the energy levels, keeping only the twofold
Kramers degeneracy. Since this degeneracy cannot be
removed by any electric field, the spin-lattice coupling
can manifest itself only in second approximation.
Therefore the resonance absorption of sound in these
metals will be approximately a factor (g/Ш/Д)2

smaller than in metals with a cubic lattice (where Δ
is the splitting of the energy levels in the electric
field). The same also applies to samarium, whose
lattice is tetragonal.
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A special case is that of gadolinium, whose ion is
in an S-state. Spin-lattice interaction in Gd3+ appar-
ently is determined by magnetic and exchange inter-
actions.

12. EXPERIMENTAL INVESTIGATION OF ELEC-
TRONIC ACOUSTIC PARAMAGNETIC RESONANCE

To obtain a clear effect of electronic acoustic para-
magnetic resonance, it is necessary that the resonance
frequencies be much greater than the width of the ab-
sorption line. In most cases achieving this condition
requires the use of hypersonics. At the same time, it
is clear that the magnitude of the effect increases sig-
nificantly at high frequencies. The technique of gener-
ation of hypersonics has as yet not been very well de-
veloped.25 Especial difficulties are the transmission
of hypersonics from a generator to the material under
investigation. Therefore it was natural to try first to
obtain an effect on piezoelectric crystals containing
paramagnetic centers in the form of impurities or lat-
tice defects. Actually the first successful attempts
were on quartz crystals, in which one has detected
resonance absorption of hypersonics on impurity ions
of Mn2+ and in F-centers.26

We note that the difficulties associated with the
need for applying microwave frequencies can be
avoided sometimes if one uses transitions between
spin levels which approach one another (and almost
cross) in large magnetic fields (for example, in the
Cr3+ ion, the transition -% —• +У2)· The possibility
of such experiments has been discussed in reference?.
Up to now, for the experimental study of acoustic para-
magnetic resonance, two methods have been applied:
1) measurement of the absorption coefficient, and
2) measurement of the saturation factor.

Measurements of the coefficient σ give direct in-
formation concerning spin-phonon interaction. But the
application of this method requires absolute measure-
ments of the loss of acoustic power resulting both from
the resonance effect in which we are interested as well
as from other causes. In order to avoid the difficulties
associated with such measurements Shiren27 recently
proposed the use of double phonon-photon quantum
transitions. The probability of such a double quantum
transition is proportional to the product of the energy
densities of the phonons and photons. From the ab-
sorbed photon energy, whose measurement is simple,
one can deduce the absolute value of the absorbed
sound energy.

In the method of saturating the usual paramagnetic
resonance, which is widely used for measuring spin-
lattice relaxation times, one uses the following for-
mula for the saturation factor q:

(12.D

where N^ - No is the difference in population of lev-
els a and β if the paramagnet is in its equilibrium

state; N a — No is the same quantity under saturation
conditions; Αα ^ is the probability of the transition
α— β under the influence of an rf magnetic field, and
τα,β i s t n e relaxation time characterizing the process
of establishment of equilibrium if it is disturbed by a
change in the populations of levels a and β. By meas-
uring Чаф and Aa>o. one finds τα>β. Formula (12.1)
will also apply to the saturation fator of acoustic para-
magnetic resonance if we understand by A a a the
probability of the transition α-* β under the influence
of sound vibrations. In acoustic experiments (assum-
ing that one knows the relaxation time ταα) one
measures qa^ and thus finds Ααφ. A defect of the
saturation method is the necessity for auxiliary meas-
urements to determine ταβ.

In the majority of the experimental work done up to
now, the saturation factors were measured, or one
simply noted the fact that there was an influence of
sound of the resonance frequency on the ordinary elec-
tron paramagnetic resonance. In the first experiments
on resonance absorption of sound, Jacobsen, Shiren,
and Tucker26 observed the influence of sound, of double
the resonance frequency, generated in a quartz crystal,
on the signals of the ordinary paramagnetic resonance
resulting from impurity ions Mn2+ and from paramag-
netic centers which are formed as a result of irradia-
tion of a quartz crystal by neutrons, electrons, or γ
rays. A partial saturation of the line occurred both
under the influence of longitudinal and of transverse
sound waves.

Mattuck and Strandberg28»6 observed how signals of
ordinary paramagnetic resonance on Cr3+ ions in co-
rundum and MgO and F-centers in quartz were satu-
rated when one applied ultrasonics of frequency 13 Me.
They verified the selection rules established in Sec. 3
on ions of Cr3+ in corundum. For the transition be-
tween sublevels of the Kramers doublet ± %, which is
forbidden under the influence of sound, the applying of
the ultrasonics had no effect to an accuracy of 1% on
the magnitude of the ordinary resonance signal. For
the allowed transitions they succeeded in getting prac-
tically complete saturation by using ultrasonics.

For Cr3+ in an MgO crystal, because of the ab-
sence of any significant fine structure splittings of
the spin levels, saturation of the ordinary resonance
signal under the influence of ultrasonics should have
been achieved very easily. The experimental data
turned out to be in complete contradiction to the pre-
dictions of the theory. From measurements of the
magnitude of the saturation it follows that the spin-
phonon interaction is 107 times smaller than expected.
In the opinion of Mattuck and Strandberg such a
marked discrepancy between theory and experiment
is related to the fact that the introduction of the triply
charged Cr3+ ion in place of the doubly charged Mg2+

ion gives rise to strong local changes of the lattice.
The work of Shiren29 was devoted especially to

testing the validity of the quadrupole selection rules
for Cr3+ ions in corundum and Mn2+ and Fe3 + ions
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in MgO. He generated longitudinal sound vibrations
of frequency 9000 Me in the crystals. For all three
ions the results of the measurements turned out to be
in good agreement with the selection rules.

Tucker,30 by exciting longitudinal vibrations of fre-
quency 9100 Me along the trigonal axis of ruby, studied
the dependence of the absorption coefficient σ on the
orientation of the static magnetic field. The experi-
mental data were in good agreement with the theoret-
ical curves. When the magnetic field was directed
parallel to the trigonal axis of the crystal, there was
no sound absorption, as expected. For this case the
theory predicts that absorption is possible only for
transverse phonons.

In this same work the first absolute measurements
of absorption coefficients were made, showing that σ
= 4 χ 10~2 cm"1 both for the transition 1 — 2 at θ = 20°,
as well as for the transition 3 — 4 at θ = 70° (the lev-
els are numbered from top to bottom, θ is the angle
between the magnetic field and the trigonal axis of the
crystal), which in order of magnitude is in agreement
with the theoretical values of σ given in Table I.

An interesting result was obtained by Jacobsen and
co-workers.26 The value of the spin-phonon interaction
in their acoustic experiments was three orders of mag-
nitude smaller than the magnitude of the coupling of the
spins with phonons observed in low temperature relax-
ation measurements. Apparently spin-lattice relaxa-
tion at low temperature is achieved not by direct proc-
esses, but by some other means, possibly via irregu-
larities of the crystals.20

13. ACOUSTIC PARAMAGNETIC RESONANCE ON
NUCLEI

Resonance absorption of sound occurs not only in
electronic paramagnets, but also in substances having
nuclear paramagnetism. A preliminary estimate of
the coefficients of sound absorption on nuclei was made
by Al'tshuler.1 8 Later detailed calculations of σ were
carried out by Kraus and Tanttila,3 1 Kessel', 3 2 and
Bolef and Menes.3 3

In crystalline nuclear paramagnets the dominant role
in spin-phonon interaction is played by one of the fol-
lowing mechanisms. If the nuclear spin I = V2. the
spin-phonon coupling results from magnetic interac-
tion of the nuclei with the paramagnetic particles. 3 4

The value of the absorption coefficient σ can be esti-
mated from formulas (9.6) and (9.7), if we replace
(gβ)i by (ggn/3/8n)2> where βη is the nuclear magne-
ton and g, g n a re the g-factors of the paramagnetic
atom and the nucleus respectively. Such an estimate
carried out3 5 for protons in CuSO4 · 5H2O gave σ
~ 10"2 3 ω2 at Τ = 1° К, which is an entirely observable
effect, since Bolef and Menes3 3 measured σ ~ 10~9

cm" 1 . In the case of nuclei with spin I > l/2> the coup-
ling of the spin system to phonons is the result of elec-
tric quadrupole interaction of the nuclei with the crys-

talline fields modulated by the lattice vibrations.3 6

The existing theoretical treatment of resonance ab-
sorption of sound via quadrupole interaction refers
only to cubic crystals of the NaCl type, in which most
experimental work has been carried out. The most
general form of the Hamiltonian for quadrupole inter-
action of a nucleus with the internal crystalline elec-
trical field is

к,

(13.1)

= x, y, z, (13.2)

Here eQ is the value of the quadrupole moment, φ
and φ 0 are the potentials of the crystalline electric
field of the vibrating and rigid lattices, ey are the
components of the deformation tensor, SjkH is a
fourth-rank tensor which characterizes the coupling
of the crystal deformation with the electric field
gradient.

In the following, to calculate the components of the
tensor of the electric field gradient, we use a point
model of the lattice. In order to take into account:
1) the amplification of the interaction because of the
large quadrupole moments induced in the electron
shells of the atom by the nuclear quadrupole moment,
2) the reduction of the interaction because of the polar-
ization of the atoms by the crystalline field, 3) the in-
crease of the interaction because of covalent binding
and other effects, we introduce, as usual, an effective
charge ye' for ions surrounding the nucleus under
consideration (e ' is the charge of the ion). The nature
and properties of the factor γ have been discussed in
detail by Cohen and Reif.37 In an ideal rigid cubic lat-
tice VjVk(p = 0 because of the symmetry of the crys-
tal. 3 8 Sound vibrations destroy the cubic symmetry,
and in (13.1) there appear terms different from zero.

Since the deviations of the ions from their equilib-
rium positions are much less than their separations,
VjV]j(p in the presence of the sound can be calculated
by expanding in a series in these displacements and
stopping with linear terms, since only they are r e -
sponsible for the direct processes of interaction of
phonons with the spin system.

One can give the expression for the coefficient of
sound absorption the same form as for crystals with
ions of the elements of the iron group, (3.9). Taking
into account the interaction of the nucleus only with
ions of the first coordination sphere, we get

Ж у = 3ε (/· - / · ) ,
„ + /„/J,

Щ1Ь = 2ε (I J x + IJZ),

(13.4)

' \ а 1
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R is the equilibrium distance from the nucleus to the
nearest ion.

Numerical estimates of the values of σ for the case
of a strong magnetic field applied along the [100] direc-
tion are given in Table IV (cf. reference 32).

Table IV. Coefficient of sound absorption
on nuclei in cubic crystals,

σ = Α(ω2/4π2Τ)γ2 χ 10~22 cm"1

Nucleus

Br'9

Br'9

Br'°
I " 7

Spin

v.3 / 7

Material

LiBr
KBr
AgBr
KI

1.
0,
1.

12.

f,

96
76
5
6

4*

4.2
1.64
3.4

28.6

4
1.96
0.76
1.5

12.9

A

1
0
1

12

96
.76
.5
.6

A

1
0
1

12

.96

.76

.5

.6

Here Ajjj refers to sound which is propagating
perpendicular (parallel) to the magnetic field and po-
larized along the axis I = x, y, z, and absorbed as a re-
sult of transitions Am = ± k. By using the theoretically
computed39 values of γ we obtain: aBr79(KBr) ~ 10"20

ω2 cm"1, ajm(KI) ~ Ю"20 ω2 cm"1. We note that
acoustical investigation of nuclear paramagnets can
be an excellent method for experimentally determin-
ing the factor γ.

The nuclear absorption of sound can be observed
not only on nuclear magnetic levels, but also on the
hyperfine components of singlet electron levels of
paramagnetic ions. The coefficients of sound absorp-
tion in such sublevels have been calculated for the
lowest simple level of Pr 3 + and for the ground level
of Ho3+ in ethylsulfates.16 For Pr 3 +, аг = (vZ/v t)

3a t

~ ΙΟ"21 ω2 cm"1, where absorption occurs only for
sound propagating perpendicular to the crystal axis.
For Ho3+, σι = (vi/vt)3at ~ 10~17 ω2 cm"1, where
there is absorption of transverse waves in the case
where the direction of propagation of the sound is
parallel to the crystal axis, but when the sound prop-
agates perpendicular to the crystal axis the absorp-
tion occurs only for longitudinally polarized waves.
It is interesting to note that the selection rules for
the acoustical effect are the same as for ordinary
paramagnetic resonance.

14. EXPERIMENTAL INVESTIGATIONS OF ACOUSTIC
PARAMAGNETIC RESONANCE ON NUCLEI

In 1955, Proctor and Tanttila40 reported that by
using a long ultrasonic pulse at the resonance fre-
quency corresponding to the quadrupole splitting of
Cl35 nuclei in sodium chlorate (NaClO3), they had
succeeded in reducing the difference in population of
the degenerate spin states (m = ±У2, m = ±3/2, where
m is the magnetic quantum number of the nuclear
spin), which was easily detected by standard methods
of nuclear magnetic resonance. Soon thereafter,
Proctor and Robinson41 completed similar investiga-
tions on the magnetic nuclear levels of Na23 in a
single crystal of NaCl.

The experimental study of the time for nuclear
spin-lattice relaxation as a result of one-phonon
processes apparently have not been done since they
require extremely low temperatures. Experiments
on acoustic paramagnetic resonance permit one to
study one-phonon processes at room temperature.
A series of detailed studies of this type have been
carried out on crystals containing nuclei with large
quadrupole moments. In these experiments there
were great complications because of the difficulty in
determining the density of energy of the ultrasonics
acting on the spin system. Proctor and Tanttila,42

continuing their work with Cl35 nuclei in sodium
chlorate, attempted to estimate the dynamic quadru-
pole coupling factor γ of Kranendonk36 (cf. Table IV),
by using data concerning the time of phonon relaxation
for the determination of the density of sound energy.
The inadequacy of these data, however, did not permit
them to draw any definite conclusions from a compar-
ison with the theory. For Na23 nuclei in a NaCl crys-
tal, Proctor and Robinson43 obtained γ = 1.4, which
almost agrees with Kranendonk's theory, omitting the
anti-shielding effects; an estimate of the absorption
coefficient gave σ ~ 10~10 cm"1.

Jennings, Tanttila, and Kraus44 avoided the diffi-
culty of finding the sound energy density by restricting
themselves to a determination of the ratio of the
strengths of dynamical quadrupole couplings of Na and
I nuclei in a single crystal of Nal. They found ут/у^а
= 10.9. Taylor and Bloembergen45 determined the den-
sity of sound energy of a wave in a crystal of NaCl by
measuring the magnitudes of displacements produced
by the sound wave. They obtained a serious discrep-
ancy with the simple point model, not taking into ac-
count anti-shielding factors: γ = 5 for Na and γ = 9
for Cl.

All the experiments cited above were based on
measurements of the degree of saturation due to the
ultrasound. Menes and Bolef46 first carried out direct
measurements of the coefficient of absorption of en-
ergy from an ultrasonic wave of resonance frequency
by nuclei of In l l s in a single crystal of InSb. The ab-
sorption of sound in the sample results in a change of
its mechanical Q-value, which is determined from the
change in the electrical impedance of the generator of
sound waves. For the absorption resulting from tran-
sitions Am = ±1 and Am = ±2, the observed depend-
ence of the absorption on the direction of propagation
of sound was in good agreement with the theoretical
predictions. Continuing their investigations,33 they
measured the coefficients of absorption σ on nuclei
of I1 2 7 in KI and Br78 in KBr: σι = 1.4 χ 10"8 cm' 1,
σ Β Γ = 0.6 χ 10"9 cm"1. This enabled them to deter-
mine the factors γ = 38 for I1 2 7 and γ = 26 for Br79.
The values obtained, as one sees immediately by com-
parison with the data of Sec. 13, are much smaller than
the theoretical values.

By making a series of measurements of absorption
coefficients for the same nucleus I1 2 7 in different
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crystals (Csl, Rbl, KI, Nal), Menes and Bolef47 came

to the conclusion that the values of the factors γ ob-

tained by them can be explained as follows: Because

of the overlapping of the iodine ion with neighboring

atoms, there is a significant admixture of states

arising from a transition of an electron in the outer

p-shell to excited levels. This assumption also gives

a good explanation of the data concerning the chemical

shift.

Interesting work using resonance absorption of

sound was carried out by Abragam and Proctor.*8»49

These authors carried out an extensive study of the

concept of temperature of a spin system. For this

purpose, in order to prove experimentally the applic-

ability of the concept of spin temperature to nuclei

with equidistant magnetic levels, it was necessary to

destroy the Boltzman distribution of populations of

these levels. This cannot be done by using a varying

magnetic field, since it acts equally on all neighboring

levels. The application of ultrasound, which enables

one to act on levels with Am = ±2, destroys the equi-

librium distribution. As the measurements showed,

equilibrium is reestablished over the spin-spin re-

laxation time T2, which speaks in favor of the ap-

plicability of the concept of spin temperature.

15. SHAPE OF THE ACOUSTIC PARAMAGNETIC

RESONANCE LINE

In investigating acoustic paramagnetic resonance,

as in any other resonance phenomenon the sources of

information are the location of the absorption line, its

intensity, and its shape. The spectra and line intensi-

ties from acoustic resonance have been discussed in

detail above. Let us now proceed to look at the shape

of the absorption curve.

If the incident sound wave is monochromatic and the

lifetime of the phonons in the material is not too small,

the shape of the acoustic paramagnetic resonance line

is determined by those same causes as in ordinary

magnetic resonance. The distinction consists in the

fact that although the system of energy levels is the

same in both cases, the properties of acoustic pertur-

bations giving rise to transitions between these levels

are different. In this connection the study of the ab-

sorption line shape for acoustic paramagnetic reso-

nance can give additional information concerning the

structure of the spin system.

In ideal crystals the main quantity determining the

shape of the acoustic resonance line is spin-spin in-

teraction. This problem was studied in references 50

and 51. Let us consider a system of identical inter-

acting spins in the presence of a constant magnetic

field directed along the ζ axis. The Hamiltonian of

such a system has the following form:

SK s-s = .

The second term on the right is the Hamiltonian of the

spin-spin interactions which includes magnetic dipole-

dipole and exchange interactions. Let us assume that

the magnitude of the magnetic field Η is so large that

3CS_S can be treated as a perturbation on the Zeeman

energy operator 3CZ. In the absence of spin-spin in-

teractions all of the levels of the spin system a r e

equidistant. When one includes 3CS_S each Zeeman

energy level is converted to a band whose width is

determined by the magnitude of the spin-spin in ter-

action. In principle the shape of the absorption curve

can be found by calculating its moments, where for

symmetr ic curves all the odd moments a r e equal to

zero. We shall find the second moment of the curve

which, at least in order of magnitude, determines the

width of the absorption l ine. Since we a r e interested

in the shape of a definite line lying at a definite f re-

quency ω 0 = ng^H/K (n = 1, 2 , . . . ) , we should take

into account in the spin-phonon interaction operator

3Cs_p only the par t which gives r i se to transit ions be-

tween the energy bands noted above, which a r e sepa-

rated by a distance ng/3H from one another. We shall

denote this par t of the operator by 3Cs_p.

Since the probability of transit ions between a pa i r

of levels of the spin system, ρ and q, under the in-

fluence of ultrasound is proportional to | (p |3C s _p|q) | 2 ,

we get

V
ZJ
p, q (15.2)

Here ρ and q run through the labels of the energy

levels in the bands between which the transit ions oc-

cur. Formula (15.2) can be written in a form which

is m o r e compact and convenient for computation:

( ω 2 ) = -
sp (Be <a?s-P — (15.3)

The tilde means that we include in the Hamiltonian 3C

only the par t which commutes with 5CZ. We emphasize

that if the Hamiltonian 3C is not cut off in this fashion,

formula (15.2) cannot be represented in the form (15.3)

and will r e p r e s e n t a mean squared frequency of an ab-

sorption curve including all the satell i te peaks, which

a r e separated from the line in which we a r e interested

by frequencies which a r e multiples of ω/η. The mean

square deviation of the absorption frequency from the

center of the line (or, what is the same thing, the s e c -

ond moment of the curve divided by its area, i .e., the

reduced moment) is

(15.4)

)>
α, β

α, p = у, ζ. (15.1)

which, as we have mentioned, characterizes the width

of line. However, the width of the line cannot be deter-

mined uniquely from ((Δω)2); to do this we must make

some assumption concerning the shape of the absorp-

tion curve. For example, for a Gaussian curve the

width of the line at half maximum is given by
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(15.5)

The specific form of the spin-phonon interaction oper-
ator depends on the type of paramagnet.

In the case of spin S = У2, the Hamiltonian of the
spin-phonon interaction in its general form can be
represented as a linear function of the spin projection
operators Sx, Sv, S z . Obviously the resonance fre-
quency for absorption of ultrasound will be the same
as in ordinary paramagnetic resonance. It is not dif-
ficult to see that the width of the line of resonance ab-
sorption of ultrasound will in this case also coincide
with the width of the magnetic resonance line.

In the case of spin S > V2, for the majority of para-
magnets the Hamiltonian of the spin-phonon interaction
is a quadratic function of the spin projection. The most
general form of the spin-phonon interaction in this
case is the following:

(15.6)+ в* (S'zsL + sisi) + cs'+s'+ + c*sL sL],

where Ŝ . = S x ± iS^ and А, В, С, are linear functions
of the operators for creation and annihilation of pho-
nons. The absorption lines lie at frequencies g/Ш/К
and 2g/3H/K. A computation using formulas (15.3) and
(15.4) for the line at frequency g/3H/fi (corresponding
to the transition ΔΜ = ± 1) gives the following result
for the second moment of the absorption curve:

[5 (P& +
(15.7)

If the spin-spin interactions are determined by mag-
netic dipole-dipole and isotropic exchange interactions,
then

P& + J>£ = - g'Prj? ( 1 - 3 cos*8ik) + 2Jjh,

РЙ = ̂ PVji (1 - 3cos2 β,») + Jjh, (15.8)

where Jjk is the exchange integral, and fljk is the
angle between г-^ and the ζ axis.

The second moment for the line at frequency 2g/3H/K
is equal to

4 ^ i* £ iH (15.9)

In reference 51 formulas were also obtained for the
fourth moment of the absorption curve, but we shall
not bother to give them here because of their com-
plexity.

From formulas (15.7) and (15.9), taking account of
(15.8), we arrive at the following important conclu-
sions:

a) When only magnetic dipole-dipole interactions
are present, the second moment of the line of para-
magnetic resonance absorption for the transition
| ΔΜ | = 2 is twice as large as the second moment of
the line of magnetic resonance absorption (cf. refer-
ence 52). For the transition | ΔΜ | = 1 the second

moment of the absorption curve is the same in both
cases.

b) The second moment of the curve of acoustic
paramagnetic resonance depends on isotropic ex-
change interactions, in contrast to the case for mag-
netic resonance.

This last point gives one hope that a study of the
shape of the acoustic resonance line will give addi-
tional information concerning the properties of ex-
change interactions. In particular, in acoustic reso-
nance the well-known effect in magnetic resonance of
exchange narrowing of the absorption line is absent
(or is small).

As already stated, all the formulas given above
apply only for the case where all the spin levels are
equidistant. However, this is not the case, with rare
exceptions, in electronic and nuclear paramagnets with
a non-cubic lattice. In this connection, in reference 53
there was recently calculated the second moment for
the absorption curve resulting from transitions be-
tween Zeeman levels shifted as a result of the action
of the crystalline field of axial symmetry (magnetic
field directed along the symmetry axis). The reduced
second moment of the absorption curve for the transi-
tion Μ = Μ + 2 is

+ i) - Μ (Μ - ί)]*

(15.10)

In the case of the transition | ΔΜ | = 1, <(Δω)2)
for nonequidistant levels always coincides with the
formula for magnetic resonance. We note that if the
resonance lines caused by the fine and hyperfine
structure of the level are not resolved (as a result
of spin-spin interactions), then this may be regarded
as an additional cause of line broadening. This ques-
tion has still not been investigated in acoustic reso-
nance.

In non-ideal crystals there may be a spread in
values of the crystal field constants from atom to
atom, which gives rise to a broadening of the reso-
nance line. This effect was investigated theoretically
in reference 54. It was assumed that the cause of the
spread in values of the field constant is the presence
of dislocations in the crystal. It was shown, in par-
ticular, that if the width of the line is determined by
dislocations, then the ratio of the second moments of
the ultrasonic (transition ΔΜ = 2) and magnetic reso-
nance for spins S = s/2 and S = % are equal respec-
tively to δ(3/2) = % and δ(5/2) = %

As yet only very little experimental data have been
obtained concerning the line width of paramagnetic
acoustic resonance (Table V).

From the available data one can conclude that in
most cases the line width is apparently determined

4 (Pi {4 (M +
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Table V

Paramagnetic
particle

Na" in Nal
рт in Nal
Na" in NaCl
Mn2+ in quartz
F-centers in
quartz

Transi-
tion

AM = 2
AM = 2
AM = 2

AM = 1

ω1/2/2π
(in kc)

4.65

4.49
4

3000
10»

Litera-
ture

44

4 1

43

28

2β

by lattice defects. In particular the experimental
ratio of the squares of the widths of acoustic and mag-
netic resonances do not contradict the theory [ό(3/2)
= 1.7 in reference 43 and δ(%) > δ(%) in reference
33 ]. Such a comparison can be made only when the
shapes of the curves of acoustic and magnetic reso-
nance coincide, which cannot of course be guaranteed
beforehand.

In connection with the material presented, it is of
great interest to investigate the line shape in crystals
with a minimum number of defects.

16. PULSE METHODS FOR INVESTIGATING ACOUS-
TIC PARAMAGNETIC RESONANCE

Paramagnetic resonance absorption of sound in the
stationary state, as we have mentioned, is the analog
of ordinary paramagnetic resonance. In recent years
there have been discovered and widely investigated
effects of magnetic induction and spin echoes, which
result from irradiation of a paramagnet by pulses and
by electromagnetic fields of definite duration. A study
of these effects gives important information concern-
ing the kinetics of magnetization and the structure of
the spin system. There is unquestionably interest in
the examination of the possibilities of observing simi-
lar effects with pulse application of ultrasonics to
paramagnets and the understanding of their properties
by this method. This problem has been treated theo-
retically in papers 55—58.

Here we shall show how, as a result of the influence
of ultrasonic pulses, the magnetization of a paramag-

netic crystal is changed. Suppose that the spin system
of a paramagnet is described by the Hamiltonian 3C0.
At the moment of switching on of the ultrasonic gen-
erator (t = 0), the density matrix of the system is
given by the usual canonical distribution

(16.1)

(16.2)

"Spexp( — &eolkT) '

and the magnetization of the crystal is equal to

<M(0)>-SP[e(0)M],

where Μ is the operator for the magnetic moment of
the sample. The further change of the density matrix
in time is given by the equation

af P)+(з*ео

= -[e. (Wo+S&s-p)], (16.3)
where 3Cs_p again is the Hamiltonian for the interac-
tion of the spin system with the sound field; the mag-
netization M(t) is determined by the formula (16.2)
with the appropriate density matrix p(t). To solve
the problem it is convenient to go over to the inter-
action representation. We introduce a density matrix

ρ (t) = exp (-£- Q' W e x P ( - Τ (16.4)

It is not difficult to show that p'(t) satisfies the equa-
tion

• s-p

where

(16.5)

(16.6)

The formal solution of equation (12.5) is

ρ' (/) = exp (-f Ж'ш+ t ) ρ' (0) exp ( - ±- S€ 's.p t ) . (16.7)

Now using (16.1), (16.4), (16.7) and the property
Sp (AB) = Sp (BA), we get the following formula for
the magnetization of the paramagnet t seconds after
the switching on of the sound generator:

Sp | e x p ( — сй?„ДГ) exp ( — -i- <й?'8.р * V ' expi -i- <a?'s-

Spexp( — (16.8)

where M' = exp I - -3Cot 1 Μ exp ~5C0t\ " I \ " /
Let us apply this general formula to the case of

nuclear paramagnets. We shall consider the case
where the Zeeman levels of an individual spin are
equidistant. (This means that in the absence of the
sound field the gradient of the electric field at the
nucleus is equal to zero, i.e., we are restricting our-
selves to cubic crystals.) Suppose that a longitudinal
sound wave propagates along the [110] direction; we
choose it as the x' axis (in this case we do not get
simultaneously a wave with transverse polarization).

Then the operator for interaction with the sound field
of the spin system of a layer of matter of thickness
much less than the wave length and situated perpen-
dicular to the direction of propagation of the sound
is given for cubic crystals on the basis of (13.1) by
the following expression:

SV s-p (t) = h cos (ωί) Υ (coj (I'y'li + li-1'y.) + ω2 (ΐζ, — /£)};

(16.9)
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Here we have introduced the usual notation for the com-
ponents of the tensor S ^ : S u = βχχχχ, S44 = S y z y z ,
and the unprimed coordinate axes are drawn along the
cubic axes of the crystal. The magnetic field vector
(j| z') makes an angle θ with the [110] direction. The
summation extends over all nuclei in the particular
layer of matter. Assuming that the spin-spin interac-
tions are small compared to the Zeeman energy,

L- = - ω0* Σ 4 · , (16.10)

where γ 0 is the gyromagnetic ratio and Η the magnetic
field intensity. It is not difficult to see that if the sound
frequency is equal to the Larmor frequency ω0, then
only the first term in the Hamiltonian (16.9) (with fac-
tor a^) can give r i se to resonance transitions; if, how-
ever, ω = 2ω0 then only the second term (we denote
them by 5Cj and 3C2 respectively) can give resonance.
Therefore in each of these cases we can substitute in
formula (16.8) in place of 5Cs_p = ЗС4 + 3C2 only the r e s -
onant part (either 3Cj or 3C2). It should be noted that
when we go over from Щ and 3C2 to operators in the
interaction representation, 3CJ and 3C2 are operators
which are independent of time plus additional terms
which oscillate in time with a frequency which i s a
multiple of the Larmor frequency; these latter terms
will be ineffective for pulse lengths t 0 » 2π/ω0 and
can be rieglected.

A specific calculation for the cases 1 = 1 and I = 3/2

leads to the following result for the macroscopic mag-
netization of the layer of matter after the passage of
an ultrasonic pulse of duration t 0 (in the first non-
vanishing approximation in the quantity ξ = hy0H/kT
for the components of M):

Spin I = 1:

(Μ)ω
{ ξ sin (соЛ) [х'„ cos (ω,ί) - у» sin (ωοί)] +

(16.11)

Spin I = %:

(Μ)ω = ω ο = ^ У 6 {ξ sin (1/ЗсоЛ) К cos (ωοί) - у'я sin (ω,ί)]

+ JL-[c

(Μ)ω = 2 ω ο = Nyhlz'o [cos (/3a>st0) + 1 ] .

(16.12)

Here N is the number of nuclei in the particular sam-
ple volume, xj, yj» A a r e vtait vectors along the x', y',
z ' axes. From formulas (16.11) and (16.12) we see
that:

a) As a result of the action of the sound pulse with
frequency ω = ω0> there appear in the x'y' plane os-
cillating components of the macroscopic magnetic mo-
ment, i.e., we get an effect of free magnetic induction
which can be investigated by standard methods.

The maximum value of the amplitude of the induc-
tion signal is reached if the duration of the pulse t 0

satisfies the relation ω ^ 0 = π/2 for 1 = 1 and
νΊΓω^ο = π/2 for I = 3/2 (see below concerning the
order of magnitude of the effect). The ultrasonic
pulse at frequency ω = 2ω0 does not excite oscillating
components of the magnetization vector.

b) The ultrasonic pulse at both frequencies (ω 0 and
2ω0) results in a change of the z' component of the
macroscopic magnetic moment. Curiously, for integer
spin, 1 = 1 , the extremal values of the components
<MZ/) and <Mx/>, <My/) are not reached simultane-
ously. In the case of half-integral spin, I = 3/2, this phe-
nomenon does not occur.

c) If the spin-spin relaxation time T 2 is sufficiently
long, then one can have a spin-echo effect produced as
usual by two pulses of definite duration (cf. in this con-
nection references 57 and 58). We should immediately
make the following remark. The nuclear induction sig-
nal cannot last indefinitely, its duration being limited
principally by the spin-spin relaxation time T 2. There-
fore in order to succeed in observing a signal we must
impose another requirement on the duration of the
sound pulse: t 0 « T2. The shape of the drop-off of the
decaying induction signal was investigated theoretically
in reference 56.

An important question ar ises concerning the order
of magnitude of the effect. From formulas (16.12) and
(16.13) we see that the amplitude of the nuclear induc-
tion signal A s produced by the ultrasound is less than
the amplitude for the usual effect A^j for two reasons:
First of all, A s is proportional to ξ2 whereas Aj^ is
proportional to ξ; secondly, because of the fact that
e0 « ωΒ cos (qx)/v, where В is the amplitude of the
sound vibrations and q is the wave vector, in sum-
ming the effect over all sample layers it turns out that
the components of the macroscopic vector in neighbor-
ing antinodes of the standing sound wave are rotated
in opposite directions and the total signal is equal to
zero. For this last reason only those layers of mate-
rial can be effective whose thickness is I < l/q. A
rough estimate shows that if Адо refers to induction
on Br 7 9 nuclei in KBr observed at room temperature
and in a field of Η = 3000 oe, then in order for A s

~ A M we must have Τ = 1.4° К and Η = 10,000 oe
(for the same number of nuclei).

However, one can avoid these difficulties. In ref-
erence 58 it was shown that if one uses two pulses,
one at frequency w0 and the other at 2ω0, then A s ~ ξ,
i.e., the first reason for the small signal is removed.

One can get rid of both difficulties in studying the
effect of ultrasonic pulses on paramagnets by follow-
ing the change in (M z>) , 5 6 This change can be de-
tected if we flip (M z '> with a variable magnetic field
pulse through an angle π/2, which results in a preces-
sion of <Mz/> in the x'y' plane, and consequently pro-
duces a signal in the pick-up loop.
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Finally, there remains for us to discuss what infor-
mation can be obtained by such experiments. The most
interesting results which have so far been obtained in
experiments on observation of sound resonance in para-
magnets using a continuous method of operation are
measurements of the magnitude of spin-phonon inter-
action. However, these measurements can be made
only with an accuracy determined by the shape of the
absorption curve and, if there is saturation of the mag-
netic resonance by the sound, with an accuracy of the
order of the spin-lattice relaxation time. In observing
the signal from free induction caused by an ultrasonic
pulse, the magnitude of the spin-phonon interaction is
measured independently of any parameters, by deter-
mining the duration of the pulse t0 for which the in-
duction signal has its extreme value. In addition, one
gets further information concerning the spin-system
structure by studying the shape of the curve of decay
of the induction signal.

Of course, it is not possible beforehand to guess all
the possible applications of this method, since the ef-
fect considered here has as yet not been detected ex-
perimentally. One can, however, hope that this will be
done in the near future.

17. DOUBLE RESONANCE. POSSIBLE APPLICATIONS
OF ACOUSTIC PARAMAGNETIC RESONANCE

Everybody knows the extensive use that has been
made of double paramagnetic resonance. First, it
makes possible a very great increase in sensitivity
of radiospectroscopic measurements; second, it has
also made possible the proposal of new dynamical
methods for polarization of nuclei; third, it has led to
the production of low-noise, paramagnetic amplifiers
(masers). The application of the method of double
resonance is possible if the paramagnetic particles
have more than two spin levels. A simple case of
three spin levels is shown in Fig. 5. We say that we
have double resonance if the paramagnet is subjected
to the action of oscillating fields at two resonance fre-
quencies; for example, ω31 and ω32. The existence of
resonant paramagnetic absorption of sound opens the
possibility of applying both combined magnetoacoustic
double resonce (where one of the oscillating fields is
magnetic and the other acoustic), as well as double
acoustic resonance (where both of the oscillating
fields are acoustic).

Combined double resonance has been used in prac-
tice in some of the experiments described in Sees. 12
and 14. The idea of these experiments is simple: the
change in occupation of level E3 occuring as the re-

1 £з

FIG. 5. Diagram of double resonance.

suit of resonance absorption of sound of frequency u>31

is observed by detecting the usual paramagnetic reso-
nance at frequency ω32. The usefulness of this method
consists in the fact that while magnetic dipole transi-
tions are often allowed only between neighboring spin
levels, under the action of ultrasonics one also has
allowed double transitions. This latter fact makes it
very convenient to use ultrasonics for obtaining
"maser-effects."59 The necessary condition for this
effect is a negative resonance absorption, resulting
when the population of a certain spin level can be made
greater than the population of any lower-lying level.
For example, if we saturate the transition E3 — Ej,
then we obtain either N3 > N2 or N2 > Nt. The sound
field can be a very convenient "intensifier," enabling
one easily to obtain saturation of the transition E3 — E t.

Kastler60 proposed the use of double magnetoacous-
tic resonance for polarization of nuclei in metals. Un-
fortunately, as the detailed investigation showed (cf.
Sec. 11), this idea is not feasible. However, in non-
metallic paramagnets orientation of nuclear spins by
using resonance absorption of sound is entirely pos-
sible. The advantages of such a method of orientation
of nuclei have as yet not been studied.

Because of the possibility of negative resonance ab-
sorption of sound, in principle we can have, in addition
to the usual (photon) maser effect, the occurrence of
a phonon maser effect. Obtaining a photon maser ef-
fect would make possible the production of generators
(and amplifiers) of coherent sound vibrations in the
region of microwave and even higher frequencies.
According to Townes59 the condition for production
of a phonon maser effect can be found as follows.

Let us assume that the system of spins is in a state
with a negative temperature, where the excess of spins
in the upper level is n. The spins relax via one-phonon
processes with a lifetime τ = το/(ήρ + 1), where ήρ
is the average quantum number of the lattice oscillator,
and T0 is the relaxation time of the spins for a lattice
temperature equal to zero. Then the rate of increase
in number of phonons Np with frequencies ω to
ω + Δω is given by the equation

dNlP (17.1)

where ρ ω is the number density of lattice oscillators
and Tp is the lifetime of a phonon of frequency ~ ω.
Obviously in order that dNp/dt be positive it is nec-
essary that one satisfy the condition

(η,Ρ+1) _ >. ΟωΔωηρ (17.2)

For kT » Κω this relation, which is the condition for
the occurrence of a maser effect, takes the form*

·£,

•Note added in proof. Relation (17.3) is the condition for the
generation of sound. Analogously, one can obtain the condition
for sound amplification, which has the form о„о/ац > (—qa я)"1;
here а„ = 1/ντρ is the coefficient of absorption of sound as-
sociated with nonmagnetic losses.
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(17.3)

If (17.3) holds, the number of phonons with frequency
ω will increase so long as no important non-linear ef-
fects appear.* The question of the possibility of pro-
ducing a sound maser is treated in detail in papers
61—63.

18. NONRESONANT PARAMAGNETIC ABSORPTION
OF SOUND

So far we have considered the most interesting type
of paramagnetic absorption of ultrasonics—acoustic
paramagnetic resonance. There is also another im-
portant aspect of this phenomenon—the nonresonant
paramagnetic absorption of sound. The reasons for
this absorption are, from the thermodynamic point of
view, relaxation processes both of the spin system as
well as between it and the thermal oscillations of the
lattice. If we extend the analogy between paramagnetic
absorption of sound and of an electromagnetic field,
then the relaxation absorption of sound in a paramag-
net is the analog of the well-known phenomenon of ab-
sorption of electromagnetic energy for parallel ori-
entation of a constant and a variable magnetic field.64

First let us consider the absorption of sound in a
paramagnet resulting from interaction of the spin sys-
tem with the thermal vibrations of the lattice. The
theory of this problem was developed by Kochelaev.65

We shall make the computation in a semi-phenomeno-
logical manner following his paper.

We shall consider a small volume V of a crystal,
whose linear dimensions are much smaller than the
sound wave length. We may then assume that the
crystal deformation is constant over its extent; this
volume should, however, contain a sufficiently large
number of atoms so that one can have a macroscopic
description. Let us assume that this volume of the
paramagnet can be divided into two subsystems which
interact weakly with one another—the spin system and
the thermal lattice vibrations. We assume that equi-
librium in the spin system is established instantane-
ously. In other words, the time for intra-spin relaxa-
tion T S shall be much smaller than the time of spin
lattice relaxation τ, and ωτΒ « 1. Furthermore, as
shown in reference 65, we may neglect the deviation
of the lattice from thermodynamic equilibrium in the
presence of the sound field, and we can also neglect
thermal conductivity of the spin system.

In the presence of the sound field the state of the
spin system, taking into account all the preceding
statements, can be characterized completely by the
temperature T, the value of the magnetic field H,
and the components of the deformation tensor of the

•Noted added in proof. Recently Tucket" reported on a phonon
maser, by means of which he has succeeded in obtaining amplifi-
cation of hypersonics of frequency ~ 10ш cps by using synthetic
ruby as the working material.

crystal. If the vibrations are longitudinal, then the
number of components of the deformation tensor can
be reduced to one:

ε = e0cos(qz) exp (ίωί) = ε' exp (— ϊ'ωί). (18.1)

The work done by the spin system when the external
parameter e is changed is:

= F(T, (18.2)

Here ψ is the free energy of the spin system in the
presence of the external magnetic field, and F is the
generalized force corresponding to the coordinate e.
If e is small, we may assume that the deviation of the
state of the spin system from equilibrium is negligible.
Therefore all the equations can be written in the linear
approximation in the small quantities e, ξ = F - Fo,
θ = Τ - To (where Fo and To are the equilibrium val-
ues of F and T). The dissipative properties of the
spin system are conveniently described by introducing
a "sound susceptibility of the spin system" by the fol-
lowing equation:

ζ = ξ/ε = ζ' - ίζ", (18.3)

where £' and ξ" are real. It is easily seen that damp-
ing of the sound wave in the paramagnetic, resulting
from the dissipative properties of the spin system, is
determined by the imaginary part of £. One can also
see that the energy absorbed per unit time is

—
2

Expanding F in a series in powers of θ and e
using the heat balance equation, we find

dT δε

(18.4)

and

(18.5)

Here Сд is the specific heat of the spin system in unit
volume of the paramagnet and Φ = ψ/ν.

In order to express £" in terms of known quantities,
we must find the explicit form of (Φχ ε ) 0 · By definition,

ψ= -Arin[Spexp( — S&/kT)]. (18.6)

The Hamiltonian of the spin system, because of the
smallness of the parameter e, can be written as a
power series in e:

3 , \ ^

= ZJ
(18.7)

Further expanding (18.6) in powers of 1/kT and using
(18.4) and (18.5), we get the coefficient of absorption
of sound in the first non-vanishing approximation in e
and 1/kT, after averaging over the whole volume of
the crystal:

(18.8)

where 77 is the number of possible states of the spin
system. This formula solves our problem. Let us
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make it more specific for some typical paramagnets.
First let us consider paramagnets whose magnetic

particles have a spin S > V2· We make the calculation
for salts of elements of the iron group, whose ions are
located in an octahedral surrounding where the crystal-
line field has a weak trigonal component. The Hamil-
tonian for such a spin system in the absence of sound
has the form:

> = Σ + SyHy)

4 D (si+si+sir ]+ (18.9)

Here D is the splitting of the spin levels in the elec-
tric field of a crystal of trigonal symmetry, 5CS_S is
the Hamiltonian for spin-spin interaction. The oper-
ator 3Cje is the Hamiltonian for spin-phonon interac-
tion [cf. formulas (3.6), (4.1), and (4.5)]. Substituting
these operators in (18.8), we obtain

AN1
ω2τ
-ω* т*

= 2. ΙΟ"3 [AS2 (S + Ι) 2 - 3S {S + Ι)] 2

(18.10)

where e4 is defined in (4.4)—(4.7) for the correspond-
ing ions, and λ χ , λ ν, λ ζ are the cosines of the angles
between the direction of propagation of the sound and
the coordinate axes. From this formula it follows that:

a) One should observe a strong anisotropy in the
sound absorption coefficient. (In particular, σ takes
on its maximum value if the sound propagates along
the trigonal symmetry axis of the crystalline field,
and goes to zero if it is directed along a cubic axis.)

b) The absorption coefficient is proportional to the
square of the fine structure constant of the spin levels.
This result apparently is a general one for all para-
magnets .

c) With increasing magnetic field, sound absorption
disappears. This is also a general result if the fine
structure constants a re not small.

Let us make a numerical estimate of the absorption
coefficient for chromium-potassium alums. If the
sound is directed along the trigonal symmetry axis of
the crystalline field of one of the nonequivalent Cr 3 +

ions (in the unit cell of alums there are four non-
equivalent ions and the trigonal symmetry axes of the
electric field are directed along the space diagonals
of the cube) and we use ω = 2π·χ 107 cps, Τ = 300°К
and (4.5), then we obtain σ ~ 10"5 cm" 1 .

In the case of S = V2

 t n e Hamiltonian 3C0 consists
solely of the Zeeman energy operator and 3CS_S. Using
the explicit form of the operator for spin-phonon inter-
action (3.6) and (6.1), we obtain for a crystal with para-
magnetic ions in an octahedral surrounding with a weak
component of a crystalline field of tetragonal symme-
try:

тзсн

(18.11)

Here e2, for example, in the case of Cu2 +, was deter-
mined in (6.4), while ax, ay, az are the direction
cosines of the external magnetic field. The spin-spin
interaction is included here by introducing a local
magnetic field distributed in Gaussian fashion, with
a constant effect field equal to K. We see that in the
case of S = V2 sound absorption increases with in-
creasing magnetic field intensity (for Η —• °°, σ ~ H 2 ).

We estimate σ for copper salts. Let Η = 104 oe,
ω = 2π χ 107 cps, Τ = 300° К, ( \ х - \ у ) = 1, (ах-ау)
= 1. Then σ ~ 10"4 cm" 1 .

The estimates given here show that this effect can
easily be detected. The dependence of σ on the mag-
nitude of the magnetic field enables one to separate
paramagnetic absorption of sound from other effects.

Let us go on to consider nonresonant paramagnetic
absorption of sound resulting from intraspin relaxa-
tion.6 8 The calculation from the very start will be car-
ried out quantum mechanically. For simplicity we
choose the case where the spectrum of the spin sys-
tem is determined solely by the spin-spin interactions
(magnetic dipole-dipole and isotropic exchange inter-
actions ). Again we consider a small volume of the
paramagnet. The energy of the sound field absorbed
by the spin system of this volume in a transition be-
tween levels ρ and q is proportional to the quantum
of energy Κω = E p - Eq, the difference in population
of these levels Κω/kT (we assume kT » Κω) and the
corresponding transition probability. Assuming all
this, we write the coefficient of absorption of the
ultrasound, averaging over the whole volume of the
crystal:

(18.12)

/(ω)Δω= У, \{P\S>es. •
Δω *

The summation is extended over a small interval of
the spectrum of the spin system, but one which con-
tains a large number of discrete levels. It is not dif-
ficult to see that the moments of the function ί (ω)
can be expressed in terms of Sp 3C|_p, Sp 3€s_p, etc.
Since we are interested only in the order of magnitude
of the effect, we shall limit ourselves to calculating
the zero'th and second moments of ί(ω). Assuming
that ί (ω) is a Gaussian, we obtain the following for-
mula for the coefficient of absorption of sound (where
the vibrations are polarized longitudinally) for spin
S> У2 [cf. (3.6), (4.1), and (4.5)]:

) - 3]И = ̂  Ί£ )

(18.13)
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< = (ω2) = (18.14)

The maximum of the absorption lies in the frequency
region w m a x = ν^ω 0 . An important consequence of
this formula is that w m a x depends on the isotropic
exchange interactions, whereas w m a x for the absorp-
tion of an electromagnetic field does not depend on
them. The numerical estimate of σ for MgO with Ni2+

impurities gives (concentration 1%): a> m a x ~ 109 cps,
σ ~ ΙΟ"5 cm"1.

We note that with increasing magnetic field Η the
absorption due to spin-spin interactions disappears.
As a result, the effect will be small in salts whose
magnetic particles have a spin S = У2, since in this
case the spin-phonon interaction itself is proportional
to H.

Experimentally there has as yet been no investiga-
tion of nonresonant paramagnetic absorption of sound.
These experiments could give valuable information
concerning the magnitude of spin-phonon interaction
and concerning the structure of spin systems. Besides,
the carrying out of such experiments is much simpler
than the observation of resonance; in particular, one
does not require such high sound frequencies.

19. CONCLUSION

We have treated paramagnetic absorption of sound
in the principal types of paramagnets and discussed
the available experimental data. Throughout we have
pointed to the analogy between the effects considered
here and the action on paramagnets of radiofrequency
electromagnetic fields. From the presentation we see
that all the fundamental effects which are produced in
paramagnets by an electromagnetic field (resonance,
spin induction and echoes, relaxation phenomena),
which have already received extensive and intense
application to the investigation of materials, can also
be carried out using sound fields. We may assert that
paramagnetic absorption of sound is possible in almost
all substances in which paramagnetic absorption of rf
electromagnetic fields has been observed. We have
not touched on questions of semi-conductors, crystals
with color centers, solid free radicals, and gases and
liquids. As for the first two materials, effects are
possible in them (they have been observed on F-
centers26) as is indicated by the existing theory of
spin lattice relaxation.87 There is no information
concerning spin-phonon interactions in solid free
radicals since, in experiments on the saturation of
paramagnetic resonance, the spin-phonon part does
not manifest itself, but one sees only the coupling of
the spins with the reservoir of energy of exchange in-
teraction. The investigation of paramagnetic absorp-
tion of sound in this kind of material will give a funda-
mental answer concerning the type of spin-phonon
coupling in it. Liquid and gaseous paramagnets oc-
cupy a special position since the effect of paramag-'

netic absorption of sound in them will probably be
small.35 The reason for this is that the change in
interaction of a given particle with its surroundings
comes mainly not from sound vibrations, but from
diffusion displacements. For example, in water with
a sound strength of I = 1 watt/cm2 and frequency
ω = 6π χ 107 sec"1, the amplitude of the vibrational
motion is As ~ 2 χ 10~7 cm, whereas the diffusion
displacement is Ад ~ 3 χ 10"6 cm.

Of course, acoustic paramagnetic resonance will
probabily not be so widely applied as ordinary para-
magnetic resonance, since to demonstrate it experi-
mentally is more complicated. Nevertheless, the in-
vestigation of paramagnetic absorption of sound may
give additional information concerning the properties
of materials which are difficult or impossible to ob-
tain from experiments on absorption of an electromag-
netic field. This applies primarily to the question of
the properties of spin-phonon interaction. The point
is that this interaction is usually investigated by meas-
uring times for spin-lattice relaxation. However, such
a method gives little information concerning spin-
phonon interactions because of the great difficulty in
theoretical interpretation of the measurements, espe-
cially as the measured time is, as a matter of fact,
the time for establishment of equilibrium of the dis-
tribution of populations of levels of the spin system,
which generally speaking is not necessarily deter-
mined by the interaction of the spins with the lattice
vibrations. Obviously in studying the interaction of
spins with a sound field the spin-phonon interaction
is investigated directly. There are very great possi-
bilities in studying acoustic resonance on electron
spins in metals, since such experiments with an elec-
tromagnetic field are extremely difficult because of
the skin effect. Further possibilities of acoustic para-
magnetic resonance are indicated by the fact that tran-
sitions produced by a sound field are subjected to dif-
ferent selection rules than those stimulated by electro-
magnetic fields. Finally, by comparing the absorption
coefficients in a paramagnet of sound and of an electro-
magnetic field, one can conclude that as a rule effects
due to sound are several orders of magnitude greater.
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