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INTRODUCTION

' ERENKOV radiation in a medium limited by bound-
ary surfaces exhibits a number of characteristic fea-
tures that do not appear in unbounded media. The first
work in which dielectric boundary effects were consid-
ered in Cerenkov radiation was published in 1947. At
that time the theory of Cerenkov radiation in infinite
media had already been well developed and the appli-
cation of this phenomenon for various physical purposes
was being considered. The earliest proposed applica-
tion was the use of the Cerenkov effect for the genera-
tion of ultrashort radio waves (V. L. Ginzburg,182 1947).
This proposal has, in recent years, stimulated the in-
vestigation of a large number of boundary-value prob-
lems: Cerenkov radiation in a channel cut into a re-
fractive medium,189 the radiation produced by a charge
moving over a plane interface between two media,118'
272,329,307,364,171,260 etc S e v e r a l y e a r s a g 0 y. L V eksler
proposed the so-called coherent technique for accel-
eration of charged particles.407 Certain versions of
this method are based on the entrainment of a charged
particle by electron plasma bunches, a process which
is essentially an "inverse" Cerenkov effect. Esti-
mates of the acceleration efficiency require the solu-
tion of various boundary-value problems.64'58"63 Bound-
ary-value problems in Cerenkov theory have also been
treated in connection with controlled thermonuclear

•The Cerenkov Effect in Infinite Media and in Crystals
(Parts I and II) appeared in Usp. Fiz. Nauk 62, 201 (1957).

reactions (stabilization of the current in high-current
discharges310 and Cerenkov radiation of magnetoacous-
tic waves309). Boundary-value problems in Cerenkov
theory are also important in connection with the theory
of linear accelerators and waveguide systems.1'8"14'317'
353,205,206

A number of workers have been concerned with the
design of Cerenkov generators for millimeter and sub-
millimeter radio waves.279"281·52'314 The large number
of experiments carried out in recent years52'279"281'114'
115,274,313-315,324 i n ( u c a t e t n a t Cerenkov generation of
radio waves is engaging the attention of research
workers to an ever increasing degree. It is obvious
that the design of Cerenkov counters is also intimately
involved with boundary-value problems in Cerenkov
radiation.

It will be evident from this brief survey that many
boundary-value problems in Cerenkov radiation theory
have already been solved.

The present review is devoted to an analysis of the
characteristic features of the radiation field of a charge
moving in a bounded or semi-bounded medium. This
paper is a continuation of a review article65 in which
Cerenkov radiation in infinite media was considered.
The same numbering system is used for the equations
in both papers.

The problems that arise when boundary conditions
are taken into account can be classified as stationary
and nonstationary problems. Stationary problems are
those in which the field produced by the charge moves
as a whole with the velocity of the charge, that is to
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782 Β. Μ. BOLOTOVSKII

say, all fields depend solely on the argument x-vt.

A typical example is the motion of a charge along the

axis of a cylindrical channel in a dielectric.

In nonstationary problems the field does not move

with the same velocity as the charge. An example of

a nonstationary problem is the motion of a charge

from one medium into another, with the resultant pro-

duction of transition radiation. We shall be interested

in stationary problems only.

Ш. CERENKOV RADIATION IN THE PRESENCE OF
BOUNDARIES

Ш. 1. Boundary Conditions

The field produced by the motion of a charge in a

refractive medium is given by the usual system of

Maxwell equations

rotE=-- i-4?- , divB = O,

(III.l)*= μΗ.

Here, as usual, we regard in the coordinate repre-

sentation the quantities e and μ as operators that r e -

duce to functions of frequency ω and wave vector к
in the Fourier representation. In other words, if

(E; D; H; B ) = ̂  (Ек ш;

then

and

Н к , ш ; Вк, ω)

<o)Ek

dk άω,

ω) H
k | ( 0.

(ΠΙ.2)

(IIL3)

The quantities e and μ can be different functions of

frequency ω (and wave vector k) on the two sides of a

boundary separating two media. Unless otherwise spe-

cified we assume below that e and μ are functions of

frequency ω only.

The fields must satisfy the usual boundary condi-

tions at each boundary.

Consider a boundary separating two media. We de-

note one medium by the subscript " 1 " and the second

by " 2 " . The normal to the boundary surface η is

directed from medium 1 into medium 2. The electric

field Ε and magnetic field Η satisfy the following

conditions at the boundary:

[n, E2 - EJ = 0, [η, H2 - Щ = 0 (III.4)t

(it is assumed that there are no surface currents at
the boundary). These conditions express the continuity
of the tangential components of Ε and Η across the

boundary surface. In addition to these conditions there

*rot = curl.
t[n, Ε,-Ε,]

are the continuity conditions on the normal components

of the induction vectors:

(n, D2 - Dj) = 0, (n, B2 - Bj) = 0. (III. 5)

It will be shown below that all these conditions are

not necessary when the boundary is a geometrically

simple one. However, all six boundary conditions

must be used for complicated curved surfaces. In

many cases it is convenient to use the approximate

boundary conditions given by M. A. Leontovich. The

use of the Leontovich boundary conditions in Cerenkov

radiation theory was first proposed by A. I. Morozov,

who also estimated the errors that arise when these

conditions are used to determine the field of a moving

charge.308

The Leontovich conditions * apply for media in which

the absolute magnitude of the complex refractive index

η =V~e/7 is large (by virtue of a large complex dielec-

tric constant e or a large complex permeability μ).

The following condition is satisfied approximately at

the interface between such a medium and a vacuum:

yiEt=\i^Ht, (III. 6)

where e and μ are the dielectric constant and mag-

netic permeability of the medium while Et and Щ are
the tangential components of the electric and magnetic
fields.

In addition to being simple these boundary condi-
tions are useful in that we can proceed without deter-
mining the fields inside a medium with high values of
n; on the other hand, the presence of the medium is
taken into account by the boundary conditions at the
interface.

The condition (III.6) is an exact one for waves nor-
mally incident on the interface, but is approximate for
waves that are incident upon the interface at an angle

, 2
φ; the correction is of order where η =

is the refractive index of the medium. It is easy to

show that for Cerenkov radiation.

Consider a point charge moving uniformly in

vacuum parallel to the boundary of a medium with a

high value of refractive index n, which we assume

to be real. Suppose that Cerenkov radiation is ex-

cited in the medium. The radiation wave vector is

directed inward to the medium and forms an angle

θ with the normal to the surface; this angle is given

by

sin 6 = ~ .

Knowing θ we can determine the angle φ (the angle

of incidence of the radiation at the interface). It is

evident that sin φ = 1//3. The fact that sin φ is

ηχ(Ε,-Ε,) etc.
*L. A. Vainshtein, Электромагнитные волны (Electromag-

netic Waves) Soviet Radio Press, 1957.
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greater than unity indicates that there is no radiation
in the vacuum. This value of sin φ gives the relative
magnitude of the correction term when the approxi-
mate boundary conditions (Ш.6) are used:

sin2 φ
η2

Thus, the validity of the Leontovich conditions in
Cerenkov radiation problems is limited by the condi-
tion

ι 1
βΊ " Ι2 Ι εμ Ι « I- (Ш. 7)

For motion near a curved surface the er ror arising
from the use of (III. 6) is of order

h
J j ·) *_ t (III. 8)

where h is the distance of the field source from the
surface while Rj and R2 are the principal radii of
curvature.

It follows from (III. 7) and (III. 8) that the Leontovich
boundary conditions apply for charge velocities appre-
ciably greater than the phase velocity of light in the
medium through which the charge moves [if the me-
dium is not transparent (III. 6) applies if the absorption
is strong].

In the nonrelativistic case the problem of finding
the field of a moving source can be simplified still
further by expanding the field in powers of β = v/c:

Ε = E<0) + βΕαι + βΈ<2> + . . . ,
Η = Η"" + βΗ(1> + βΉ<2) + . . . (ΠΙ. 9)

To be specific we consider the motion of a charge
near a surface at which (ΙΠ.6) is satisfied. It can be
shown that at this surface

(III. 10)

where Е ц ' and E^o> are the normal and tangential
components of the vector E.

It is evident from (III. 10) that the electric field
"bulges" out of the medium when μ » e and enters
the medium almost normally when μ « e. Thus, La-
place's equation can be solved with the boundary con-
ditions E£0) = 0 or E^0) = 0; then, E ( 1 ) , H ( 1 ) and the
radiated power can be found from (III. 6).

Ш.2. Radiation of a Charge Moving Along the Axis of
a Cylindrical Dielectric-Filled Channel

Suppose that an isotropic medium of dielectric con-
stant e2 and permeability μ2 contains a circular cy-
lindrical channel filled with a medium of dielectric
constant ej and permeability μ4 (Fig. 1). The motion
of a charge along the axis of such a channel was ana-
lyzed in 1947 by V. L. Ginzburg and I. M. Frank. 1 8 9

Some seven years earlier, in 1940, the problem of a
charge moving along the axis of a channel in a dielec-
tric was posed by L. I. Mandel'shtam in his remarks

FIG. 1

at the defense of the doctoral dissertation of P. A.
Cerenkov. Mandel'shtam noted that a charge moving
along the axis of an empty channel in a dense medium
(small channel radius, i.e., smaller than the wave-
length of the Cerenkov radiation in the medium) can
lose energy by Cerenkov radiation. This remark was
extremely important because it indicated that the pro-
duction of Cerenkov radiation of wavelength λ is due
to that region of the medium which is at least a dis-
tance λ from the particle path; the region of the me-
dium in direct proximity to the path of the charge does
not make an important contribution.

Suppose that a charge moves through a transparent
medium and that the Cerenkov radiation conditions are
satisfied. We remove the medium near the path of the
charge so that the charge now moves in a narrow chan-
nel in a vacuum. The fact that a charge moving in vac-
uum close to a medium radiates as though it were mov-
ing through the medium is of extreme importance from
the practical point of view because it offers the possi-
bility of generating Cerenkov radiation without polari-
zation (Bohr) radiation; the latter is responsible for
most of the energy loss of a charge in a continuous
medium.

a) Let us analyze the problem quantitatively. Sup-
pose that a point charge q moves with velocity ν along
the axis of a cylinder of radius a. The cylinder is filled
with a medium e t and μ1 while the external region is a
medium e2 and μ2. The electromagnetic field produced
by the charge is determined from Maxwell's equations
(III.l). We start with the equation for the potentials A
and φ (1.6). This approach simplifies the calcula-
tions since the symmetry of the problem means that

A = —^ v<p (1.9). We could use the potential equations

(1.8), in which the longitudinal field is separated from
the transverse field, but the calculations would be more
complicated in this case. 6 4 We introduce a cylindrical
coordinate system r, φ , and z, with the z-axis along
the axis of the cylinder and write φ (rz - vt) in the
form (1.33):

Φ(ω, A = — εμφ. (III. 11)

The following equation is then obtained for Φ (ω, г ) :

The values of e and μ inside the channel (r < a) are
ej and μ1 respectively; the values outside the channel
are e2 and μ2. The solution of (III. 12) is
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Φ (ω, г)
ω>0

Γ sfc
for r < a,

(— VК v
1 — ε μ 6 s

for г
(ΠΙ

ιΛ

> α

.13)

Here, Ko and Ιο are Bessel functions of imaginary ar-
gument. The complex conjugates of all quantities are
taken when the sign of ω is reversed. When r < a the
coefficient of Ко is determined by the singularity in
the right side of (III. 12). The coefficients α, η and γ
must be determined from the boundary conditions at
r = a. It is immediately clear that γ must vanish be-
cause I,) increases exponentially with r. The two re-
maining coefficients are determined from two boundary
conditions; these boundary conditions may be conven-
iently taken as the continuity conditions on E z and Ηφ
at the interface. When these conditions are satisfied
all the remaining boundary conditions are automatic-
ally satisfied. The continuity conditions on the com-
ponents E z and Ηφ reduce to continuity conditions on
the two quantities

(1-εμβ2)Φ(ω, r) and

at r = a. We introduce the notation

(III. 14)

Matching the fields then gives the following formula
for Φ (ω, г) :

Φ (ω, г) — (ΠΙ. 15)

where

1

i (*i«) К, (*,а
г (*,о)

ε2 1 - β ι μ ι β »
(III. 16)

Equations (III.ll, 14—16) together with (1.9) com-
pletely determine the field produced in the medium by
the moving charge. The equations were first given in
this form by A. G. Sitenko.360

The field in this problem can also be determined
approximately through the use of the Leontovich bound-
ary conditions (Ш.6). When this procedure is used we
avoid the necessity of computing the coefficient η,
which gives the field outside the channel. The boundary
condition (III. 6) gives an equation for a immediately
and we have

For convenience, we write ej = 1, μ1= 1, e2 = e, and
M2 = β- When εμβ2 — » the approximation obtained by
means of the Leontovich boundary conditions coincides
with the exact expression for α (III. 16). Thus the
Leontovich boundary conditions can be used far beyond
the Cerenkov threshold.

Equation (III. 15) indicates that the nature of the field

is determined by the quantity k1>2 = —V 1 - €μ/32 . The

Cerenkov condition is not satisfied in a medium in
which this quantity is real and the field is essentially
made up of monotonic nonradiating modes. However,
if the Cerenkov condition is satisfied inside or outside
the channel, the field in the medium in which the con-
dition is satisfied is given by a superposition of cylin-
drical waves; the charge then loses energy by radia-
tion of these waves.

We now determine the energy loss of the charge.
The energy loss of the charge per unit length of path
is determined by the retardation force exerted on the
charge by the field produced by the charge

vt
r->0 = U Re Ι μχ (ω) (1 - [Ко (к, r m l n )

(Vmin)] ίω da>, (III. 17)

where a is given by (III. 15). The quantity r m j n is the
minimum average distance to the field source for which
classical electrodynamics still holds. We assume for
simplicity that both media (inside and outside the chan-
nel ) are transparent.

b) Analysis of (111.17) indicates that the charge loses
energy in several frequency ranges.

Energy is lost at the discrete frequencies at which
the dielectric constant of the medium in the channel
vanishes. This is the Bohr polarization energy lost in
the production of a longitudinal field. This polariza-
tion loss is given by the expression

dW ?*

2<o
de(co)

da>

"•0

irmin\ ΛνΊηΙΐΛ ° ^ ~

/μβ/ι (Μ) - '/«(1 - β2) Ό (Μ)

(III. 18)
The summation is taken over all frequencies ω 8 for
which £ι(ω8) = 0. The second term in the square
brackets is due to the presence of the boundary. As
the channel radius a increases, this term approaches
zero as exp [ — 2ajsa/v] and (III. 18) becomes the ex-
pression for the Bohr loss of a particle in an infinite
medium. As far as the Bohr losses are concerned,
the medium inside the channel may be assumed to be
infinite when the channel radius is of the order of or
greater than the maximum value of ν/ω 8. The medium
then shields the longitudinal field and the charge does
not "feel" the boundary.
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c) Energy losses due to Cerenkov radiation also
occur. In this case the field and loss spectrum depend
primarily on which of the two media satisfies the
Cerenkov radiation condition. We consider various
possible cases.

We first consider the case where the Cerenkov con-
dition is not satisfied inside the channel but is satisfied
outside the channel. This case corresponds to the in-
equality

*ϊ > 0; kl < 0 < 1; β2μ2β
2 > 1). (III. 19)

This problem is the one suggested by L. I. Mandel'-
shtam and was analyzed by Ginzburg and Frank. In
moving along the axis of the channel the charge radi-
ates into the outer medium. The energy losses are
given by the expression

dz

The integral is taken over the frequency interval for
which the inequalities in (III. 19) are satisfied. This
formula is obtained from (III. 17) as follows. When
(III. 19) is satisfied the first term in the rectangular
brackets under the integral in (III. 17) can be neglected
since it does not make a contribution to the real part
of the integral. We can write r m j n = 0 in the second
term. This procedure yields (III.20).

The integral in (111.20) can be given in another form.
Only the imaginary part of the coefficient a (ω) makes
a contribution to the real part of the integral. It can
be shown that Im α(ω) is related to the factor η (ω),
which determines the field outside the channel [ cf.
(111.15, 16)]:

Ima(o>)= _ ^ |

Thus, we have

(ΠΙ.20')8 Л р 2 < 1 , ε2μ2β*>1.

Equation (Ш.20') differs from the expression for
Cerenkov losses in an infinite medium characterized
by e2 and μ2 by the factor |η (ω)| 2 under the integral.
In the spectral interval under consideration, where
(111.19) is satisfied, the coefficient η (ω) (ΙΙΙ.16) is

H{2 )(s2a) where s2 = - V

complex because k2 is imaginary. Hence, the func-
tions Ko(k2a) and Ki(k2a) become Ho2)(s2a) and

2 - 1 and H^2) and HJ2)

are Hankel functions.
The factor η approaches unity as the channel ra-

dius approaches zero. Hence, the Cerenkov radiation
of a charge moving in a narrow channel is essentially
the same as that in an infinite medium characterized
by e2

 an^ M2- If the presence of the channel is not to
affect the radiation spectrum the following inequalities
must be satisfied:

V c l . * 2 α«1 (*2 = i£2), (ΠΙ.21)

The case being considered (k| > 0 and k̂  < 0) is
very important from the point of view of theory. When
a charge moves in a medium in which the Cerenkov ra-
diation is not satisfied it radiates into the medium
where the condition is satisfied and the radiation in-
tensity falls off sharply with increasing distance be-
tween the particle trajectory and the boundary between
the two media.

The quantities st>2 are the radial components of the
Cerenkov radiation wave vectors in the first and second
media respectively. If the Cerenkov condition is not
satisfied then s is imaginary and the field falls off ex-

ωponentially with a decay factor — is = к = — V1 — εμ/ϊ2 .

As a increases the functions I0(k ta) and ^ j )
grow exponentially (as e k l a ) . Hence | η ( ω ) | 2 dimin-
ishes as e" 2 k i a and the radiation more or less van-
ishes when the channel radius a is appreciably
greater than l/2kx (Fig. 2). This result was used by
Schonberg to check the theory of Cerenkov losses in a
transparent medium against experiment.211 Schonberg
and Huybrechts were unacquainted with the work of
Ginzburg and Frank, which had been carried out five
years earlier, and repeated the calculations of Ginz-
burg and Frank (although for another purpose). We
may note that even in 1958, eleven years after publica-
tion of the work by Ginzburg and Frank, another paper
appeared350 in which the work reported in reference
189 was repeated.

If kt = 0, as when a charge moves in vacuum with
the velocity of light, the factor | η (ω) | 2 does not fall

The function Ιη(ω)Ι' for , /tttgj32»>
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off exponentially as the channel radius increases, but
is proportional to

Here we may note an interesting analogy. If an ex-
tended charged beam moves in a continuous medium
the Cerenkov radiation losses are described by (III.20')
except that | η (ω )|2 is replaced by the square of the
modulus of the form factor describing the charge dis-
tribution in a bunch. Thus, in a sense the introduction
of a channel is equivalent to the smearing out of a point
charge radiating in a continuous medium.

d) We now consider the case where the Cerenkov
condition is satisfied both inside and outside the chan-
nel. In this case

*; < o, ι ι,
[kt and k2 are defined in (III. 14)].

The Cerenkov loss integral (III. 17) now becomes

> 1

(Ш.22)

where the integration extends over all frequencies for
which the Cerenkov condition is satisfied both inside
and outside the channel.

The integral in (Ш.22) is obtained from (ΠΙ.17) as
follows. Since kj = — Isj,

*o (*ι Ό = γ Η? (s, г) = f [/„ (Sl r) + iN0 К г)], (Ш.23)

where H^1' is the Hankel function, Jo is the Bessel
function, No is the Neumann function. Since we are
interested in the real part of the integral (Ш.17) we
can neglect the term N0(s, r ) ; however, it is then for-
mally possible to take the limiting case r m i n — 0,
which gives (111.22) directly.

Equation (111.22) can be simplified by means of the
relation

(ΙΠ.24)

which applies in the frequency region considered. The
loss integral then assumes the form

(Ш.25)

This expression is superficially similar to (ΙΠ.21), the
expression for losses in the other frequency region,
where €1μίβ

2 < 1 and ί.2.μφζ > 1. However, this simi-
larity is not a true one because the dependence of the
factor |τ?(ω)|2 on the channel radius a is different
in the frequency region for which (III. 19) applies. Spe-
cifically, | η (ω )|2 does not vanish as a —* °°.

The physical picture of the effect is as follows
(Fig. 3). Cerenkov radiation is excited in the first me-
dium. It propagates at an angle i?t with the velocity,
where cos t^ = l/nt/3. This radiation is incident upon

FIG. 3

the channel boundary at an angle ψχ= — — ι
2

so that

(111.26)

In passing through the boundary the Cerenkov wave
is refracted in accordance with the familiar relation

whence

(111.27)

(Ш.28)

Consequently, the refracted radiation propagates at an
angle i?2 to the velocity, where cos i>2 = 1A2/3· tt w i l l
be evident that if the radiation propagates at the
Cerenkov angle in the first medium it also propagates
at the Cerenkov angle in the second medium, after be-
ing refracted.

We now give the expression for the factor | β (ω )\2

when the channel radius is large (sja » 1, s2a » 1):

This factor oscillates about the value

By choosing the channel radius or the parameters of
both media we can enhance the radiation intensity in
a narrow frequency range.

e) We now consider the case where the Cerenkov
condition is satisfied inside the channel (k\ < 0; €1μ1/3

2

> 1) but is not satisfied outside the channel (k2. > 0,
е2Мг£2 < 1)· In this case the energy loss (ΙΠ.17) be-
comes

dW

~dz"~ < Ι Π · 3 0 >
In the frequency range under consideration, where

k\<0, kl>0,

we can write α(ω), (ΙΙΙ.16), in the form

> ) 1
a) Κ, (*,α)+*Λ (*ι«) *Ί (*»«) J "

(111.31)
Substitution of (III. 31) in (III. 30) yields the following
expression for the loss:
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dz
( Ι Π · 3 4 ) *

. o r

(111.32) — ι ·-!—f+ля- -arotg-g. / g
It is evident from the last formula that the only con-

tributions to the loss come from the poles of the inte-
grand. The integrand is purely imaginary and the con-
tribution to the real part can come only from the resi-
dues at the poles.

The poles of the integrand are given by

D (ω) = Bs1J1 (Sla) Ko (kta) + k2J0 (Sla) Кл (k2a) = 0. (III. 33)

The frequencies for which this equation is satisfied
form a discrete Cerenkov spectrum.

The origin of the discrete Cerenkov spectrum can
be understood on the basis of certain observations made
by Frank149 (cf. also reference 64).

If the Cerenkov condition is satisfied both inside
and outside the channel, then it follows from (Ш.27)
and (III. 2 8) that the Cerenkov wave emitted by the
charge satisfies the radiation condition in the second
medium after refraction at the channel boundary. Sup-
pose now that the Cerenkov condition is not satisfied in
the second medium. Equation (III.28) then shows that
the sine of the angle of refraction is greater than unity.
This corresponds to the case of total reflection, which
is well-known in optics. Since the Cerenkov condition
is not satisfied in the outside medium, the Cerenkov
wave emitted by the charge is reflected back into the
inside medium when it reaches the boundary; it then
travels to the other boundary, where it is again re-
flected, and so on; thus, the wave "travels" inside the
channel by multiple reflection. Under these conditions
waves emitted earlier interfere with waves emitted at
later times. Suppose that a charge at point A on the
channel axis radiates a Cerenkov wave (Fig. 4). The

FIG. 4

radiated light travels to point B, is reflected, travels
to point C, is again reflected, and then intersects the
path of the charge at point D, at the same angle at
which it was emitted. During this time the charge
travels to point D and emits another Cerenkov wave
at this point. These two waves will reinforce each
other if the difference in path length is an integral
number of wavelengths. If this condition is not satis-
fied the waves cancel each other. Hence, the radiation
spectrum must be a discrete one.

If the channel radius is large (s ta » 1, k2a » 1),
Eq. (111.33) for the radiation frequency assumes the
relatively simple form

(111.35)*
The first term on the left is proportional to the

phase change of the Cerenkov ray along the path ABCD
while the right-hand side gives the phase jump due to
total reflection at the channel boundary.

The dispersion equation (III.33) indicates an inter-
esting feature of Cerenkov radiation in a channel. Con-
sider two cases of particle radiation in a channel. In
both cases let the particle velocity be close to the ve-
locity of light (jS = 1) and let the Cerenkov condition
be satisfied inside the channel. In one case we assume
that the outside medium is a vacuum (e 2 = 1, μ2 = 1);
in the second we assume that it is an ideally conducting
metal (e 2 = i°°). It is evident from the dispersion
equation (III. 33) that the radiation spectrum is deter-
mined by the same condition in both cases

0. (III. 36)

This result indicates that it is not necessary to
silver cylindrical Cerenkov counters used for detecting
relativistic particles (β = 1): the emitted light is es-
sentially totally reflected without silvering. It will be
obvious that this remark applies when the trajectory
of the fast radiating particle in the cylindrical Ceren-
kov counter is close to the counter axis.

The particle energy losses due to Cerenkov radia-
tion in the case under consideration are due to the
residues at the poles of the integrand (111.32). We de-
note the numerator of the fraction in the integrand in
(111.32) by Α (ω):

Α (ω) = Bs1N1 (sxa) Ko (A,o) - k2N0 (sp) K, (k2a). (III. 37)

The Cerenkov loss of a particle in the frequency range
of interest is then given by

dw ω,, (ΙΙΙ.38)

where D' is the derivative of the function D (ω) de-
fined by (111.33), ω 8 is the s-th root of Eq. (111.33), and
μ1 8 and e l s are the values of μ4(ω) and e^ui) at
ω = ω 8 . The summation is taken over all frequencies
for which radiation is excited inside the channel but
not excited outside the channel.

The wave outside the channel decays exponentially
because the Cerenkov condition is not satisfied in the
outside medium [cf. (III. 15)]. Thus, the Poynting flux
through a cylindrical surface coaxial with the channel
in the external medium is zero. This does not mean
that the charge loses no energy by radiation. It sim-
ply means that the radiation does not penetrate into
the outside medium. For this reason, the presence

*tg = tan; arctg = tan"1.
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of a boundary makes the determination of the energy
loss by the radiation flux an extremely complicated
problem compared with the case of a uniform medium.
One must take account of the possible reflection and
refraction at the boundary. Neglect of these effects
can lead to erroneous conclusions. This would appear
to be the reason for the incorrect statement given in
reference 360 that the particle energy losses due to
radiation can be determined from the radiation flux
outside the channel. This erroneous approach to the
determination of the loss led the authors of reference
189 to the incorrect conclusion that there is no radia-
tion loss when et/32 > 1 and ε2β

2 < 1.
The cases of Cerenkov radiation in a channel ana-

lyzed here are characteristic of all stationary bound-
ary-value problems of this kind.

Ш.З. Motion of a Point Charge Parallel to the Axis
of a Channel in a Dielectric

The case in which the charge moves parallel to the
axis of a channel and at a distance r0 from it has been
considered in reference 63. In this case the field pro-
duced by the particle is not axially symmetric. The
radiation conditions are exactly the same as in the
preceding case, where the charge moves along the
channel axis. Specifically, if the radiation condition
is satisfied both inside and outside the channel the
radiation is excited in the first medium and then en-
ters the second medium after being refracted at the
boundary. The radiation spectrum is continuous in
this case. If the radiation condition is satisfied only
inside the channel, the radiation is excited in the first
medium and experiences total reflection at the channel
boundary. Thus the radiation does not enter the second
medium, but propagates along the channel axis. In this
case the radiation spectrum is discrete. Finally, when
the Cerenkov condition is not satisfied inside the chan-
nel but is satisfied outside the channel the radiation is
excited only in the second medium and its intensity
falls off exponentially with increasing distance between
the particle and the boundary surface. (If the channel
radius is a and the distance of the particle from the
axis is r0 the distance of the particle from the chan-
nel boundary is a - r0.)

It is evident from the above considerations that the
basic features of the radiation process are not changed
if the particle trajectory is displaced from the channel
axis. There is one new effect, however, when the par-
ticle trajectory is displaced from the channel axis.
First, the angular distribution of the radiation is no
longer isotropic. The particle field can be expanded
in harmonics of the form

φ= « i m < p
г, o>)da>,

r, ω)άω,

where m is a whole number and φ is the angle be-
tween the radius vector to the particle and the radius
vector to the point of observation (Fig. 5). We do not
give the expressions for Ф т and a m here, but refer
the reader to the original work.63 It follows from the
geometry of the problem that the field is symmetric
with respect to the plane passing through the channel
axis and the line of motion of the particle. For this
reason only cos πιφ terms appear in (III.39).

ЩГ*+

;. ^ •._

FIG. 5

The lack of axial symmetry means that the charge
is subject to a force that tends to deflect it from its
linear path in addition to a retarding force. It is clear
from the symmetry of the field that this force can only
have a radial component and that the ψ component
must vanish.

The radial force that arises when the charge is dis-
placed from the channel axis can act to focus the
charged particle, i.e., it can act as a restoring force
tending to return the particle to the axis.

Equation (ΠΙ.39) can be analyzed to find the fre-
quency regions in which a charged particle moving
near the channel axis experiences a focusing force.
It is shown in reference 63 that the radial force acting
on the charge is (μι = 0, μ2 = 1)

m = 0 —со

X /•„)«*».
(111.40)

where a m = 1 when m = 0, a m = 2 when m = 1,2,...
and \ιτα is a complicated function that depends on the
properties of the inside and outside media and the chan-
nel radius a. The radial force can be a focusing force
in certain regions and a defocusing force in others. The
resultant sign of the radial force depends on the inte-
gral over all frequencies; to determine this sign we
must know the dispersion properties of both media.

We consider in greater detail the case in which the
Cerenkov condition is satisfied inside the channel but
not outside. The radiation is discrete in this case, as
we have already indicated. The frequencies at which
radiation is produced are harmonics characterized by
the number m (the angular dependence of this har-
monic is given by the factor exp [imcp ]) and are de-
termined by the dispersion equation:

(ΙΙΙ.39)
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± ΥΤ=Ϊ& a) J'm (± VW=1 a)

W=1 a")K'm(J Vi^^a

When m = 0 this dispersion equation coincides with
(111.33) for the case of motion of a particle along the
axis of the channel. Thus, when the particle trajectory
is displaced from the channel axis, in addition to the
frequencies corresponding to the case of motion along
the axis, there are additional frequencies, at which
field harmonics characterized by m * 0 are radiated.

The radiation spectrum of a charged particle mov-
ing parallel to the axis of a channel is also character-
ized by the same interesting feature as the radiation
spectrum for motion along the axis. Specifically, if
the velocity of the particle is close to the velocity of
light (/3 = 1) the same radiation spectrum is obtained
if the outside medium is vacuum (e2 = 1, Дг = 1) o r a

metal (e2 = i°°). Hence, the radiation spectrum of
relativistic particles is the same in silvered and un-
silvered Cerenkov counters. It is assumed that the
counter is cylindrical in shape and that the particle
moves parallel to the axis.

Displacement of the particle trajectory from the
channel axis affects the magnitude of the loss. This
effect is of particular importance when the radiation
wavelength becomes comparable with the channel ra-
dius . If the radiation wavelength is much smaller than
the channel radius, as is usually the case in Cerenkov
counters, the dependence of radiation loss on particle
displacement is important only when the distance from
the particle trajectory to the edge of the channel is of
the same order of magnitude as the radiated wave-
length.

Ш.4. Radiation of a Dipole Moving Along the Axis of
a Cylindrical Channel

The radiation of a point charge moving along the
axis of an empty channel in a dielectric possesses an
important feature: as the channel radius becomes van-
ishingly small the Cerenkov radiation becomes the
same as that in a continuous medium.

On the other hand, the radiation of more complex
systems such as electric or magnetic dipoles is not
characterized by this property. It has been pointed
out by V. L. Ginzburg and V. Ya. Eidman181 and by
L. S. Bogdankevich60 that the dipole radiation in a
channel exhibits important differences from the radi-

ation in a continuous medium, even when the channel
radius is arbitrarily small. The reason can be under-
stood on the basis of the following considerations.

A charge moving along the axis of a cylindrical
channel is subject to a force qE z (z = vt, r = 0). The
work done by the charge against this force then gives
the energy loss due to Cerenkov radiation. Since E z

is continuous at the interface then, when the channel
radius is small, E z at the axis does not differ greatly
from Ez at points lying close to the channel boundary
in the outside medium. Thus, at small values of the
channel radius the radiation of a charge moving along
the channel axis is determined completely by the prop-
erties of the outside medium.

Now suppose that a point electric dipole rather than
a point charge moves along the channel axis (magni-
tude and direction of the dipole moment given by the
vector p); the radiation losses of the dipole are de-
termined, as in the case of the charge, by the force
exerted on the dipole by the field produced by the di-

pole. This force is given by (pV) E z = Pr~r-^ + P z - ^ >
or oz

where E z is the component of the dipole field along
the channel axis while p z and p r are the projections
of the dipole moment on the ζ axis and in the plane
perdicular to the channel axis. It is evident that E z

and 9Ez/9z are continuous at the edge of the channel.
On the other hand 9EZ /Эг goes through a discontinuity
at the edge of the channel. Thus, if the dipole moment
is oriented along the channel axis the dipole radiation
losses in a narrow channel are the same as in a con-
tinuous medium characterized by e2. In contrast, if
the dipole moment has a radial component, when the
channel radius becomes vanishingly small the radia-
tion losses do not approach the value which would ob-
tain in a continuous medium characterized by e2.

Let us consider this effect in greater detail. Sup-
pose that a point object having an electric dipole mo-
ment ρ and a magnetic moment m moves in a medium
characterized by a dielectric constant e (ω). We first
consider the case in which the medium is continuous,
then the motion of dipoles in a narrow channel, and
then compare the two cases. We assume below that
the magnetic moment m and the electric moment ρ
are perpendicular to the dipole velocity, since this is
the case in which a vanishing channel radius does not
give the field of a moving dipole in a continuous me-
dium. To be specific we also assume that the vectors
ρ and m are mutually perpendicular.

To compute the field in the medium produced by a
source with electric moment Ρ = ρδ (χ — vt) and mag-
netic moment Μ = mo (x-vt) we must solve Max-
well's equations with the external current j and the
current density p; these quantities are given by the
well-known relations

j = crotM+-^-, Q=-divP. (111.42)

The solution of Maxwell's equations with sources of
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this kind is obtained in the usual fashion. Having de-
termined the field we can find the dipole energy loss
due to Cerenkov radiation. We compute the Poynting
flux through a cylindrical surface surrounding the di-
pole trajectory, thereby obtaining the following expres-
sion for the energy loss per unit length:

dW ι — ^ - ) 1 ]««·*»· СШ.43)

Suppose that the radiation source is a dipole having
a magnetic moment m0 in the system in which it is at
rest. In the laboratory system the moving dipole will
have an electric moment in addition to its. magnetic
moment. If the effect of the medium is neglected the
electric dipole moment produced by the motion of the
magnetic dipole m0 can be written in the form

p = | [v,m 0 ] .

Substitution of this relation in (111.43) gives

2(ΐ-,ΐΥ-Γΐ-βΤ)(ΐ

(Ш.44)

(Ш.46)
This expression was obtained by I. M. Frank in 1942;144

it is noteworthy that the integrand, which gives the ra-
diation intensity at frequency ω, does not vanish at
the radiation threshold. However, the total energy
loss and the range of radiated frequencies do vanish
as the radiation threshold is approached: β2 —• 1/e.

If the effect of the medium is now considered, i.e.,
the fact that the magnetic moment is "permeated" by
the medium, we find that the moving magnetic dipole
now has an electric moment.

P=y[v, m]. (111.46)

Substitution of this relation in (Ш.43) gives an expres-
sion for the Cerenkov radiation loss that differs from
(111.45):

The two formulas for the radiation loss of a magnetic
dipole (Ш.45) and (ΙΠ-47) are perfectly compatible be-
cause, as we have indicated above, they apply to differ-
ent situations.

The radiation of point dipole moments moving along
the axis of a circular channel of finite radius has been
considered by L. S. Bogdankevich.'0 We limit ourselves
here to the limiting case of small channel radius. If
k r l a « 1 and k r 2a « 1, where a is the channel radius,
while k r l and k r 2 are the radial components of the ra-
diation wave vector inside and outside the channel, the
radiation field in the outside medium is obtained from
the dipole field in a continuous medium by the substi-
tution

Correspondingly, the radiation energy loss is now
written in the form:

dW 1 2e2

(Ш.49)

It is evident from this formula that the radiation of an
electric dipole (m = 0) in a narrow channel is 4e2/
(e t + e 2) 2 times greater than that of a dipole in a con-
tinuous medium. We again emphasize that all of these
considerations refer to the case in which the dipole is
perpendicular to the channel axis. When the dipole is
oriented in the longitudinal direction the radiation in a
narrow channel is the same as in a continuous medium.

The magnitude of the radiation loss for a dipole
moving in a narrow channel can be found easily by
means of the reciprocity theorem (Ginzburg and
Eidman191).

Suppose that a point electric dipole ρ moves along
the axis of a channel in a dielectric. The field pro-
duced by this dipole outside the channel is denoted by
E. We now place an additional dipole moment
Pj exp Ι-ΐωί] outside the channel at the point x0. The
field produced by this dipole inside the channel is de-
noted by E(. The reciprocity theorem then states that

С - i — ζ

^ ρΕ,ω (0, 0, ζ) e " dz = ΡιΕω(x0), (Ш.50)
where ρ exp [ ϊωζ/ν ] is the Fourier component of the
moving dipole moment density p 6 ( x ) o ( y ) 6 ( z - v t )
and Ε 1 ω and Ε ω are the Fourier components of the
fields Ex and E. If the dipole ρ is oriented along the
channel axis the factor E l z appears alone in the inte-
grand. In a narrow channel this factor has the same
value as in a continuous medium because the tangential
components of Ε are continuous across the boundary.
Consequently, the value of the total integral is the
same in a channel and in a continuous medium. It fol-
lows that the field Ε ω on the right side of the equation
is the same in a continuous medium and in a narrow
channel.

Suppose now that the dipole ρ is perpendicular to
the channel axis. In this case, the field component E r ,
perpendicular to the channel axis, appears in the inte-
grand in (Ш.50). ш a narrow channel this value dif-
fers by a factor of — from the field in the out-

e i + e2
side medium'*1 or, what is the same thing, from the
field in the absence of a channel. Hence, the presence

2€o

of a channel makes the left side of the equation —
times larger, where €t and e2 are the dielectric con-
stants of the media inside and outside the channel. The

2е.
(Щ.48)

*W. R. Smythe, Static and Dynamic Electricity, McGraw-Hill,

N. Y., 1950.
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right-hand side of the equation is increased by the same

factor, that is to say, the field of the moving dipole Ε ω

is increased by the presence of the channel. The mag-

netic field in the wave zone is proportional to the elec-

trie field so that the radiated energy is -.

times greater.

III. 5 Cerenkov Effect in Periodic Linear Structures

a) General theory. In order for a uniformly moving

particle to radiate under stationary conditions its ve-

locity must be greater than the phase velocity of the

radiated wave. This condition can only be satisfied

when the phase velocity of the electromagnetic wave

is smaller than the velocity of light in vacuum. Elec-

tromagnetic waves of this kind are called slow waves.

As an example we consider a simple waveguide of cir-

cular cross section. The phase velocity of electro-

magnetic waves propagating along the axis of an empty

waveguide is greater than the velocity of light in vac-

uum. For this reason it is impossible to excite Ceren-

kov radiation in an empty waveguide. On the other

hand, if the waveguide is filled with a dielectric the

phase velocity is smaller than the velocity of light in

vacuum when

In the absence of the charge the field equations in

the structure have solutions which can be written in

the form A^(r)e i u ) ? v t (A is the vector potential). The

index λ denotes all the parameters that characterize

the various electromagnetic waves that can propagate

in the periodic structure with no charge present.

Suppose that the structure is periodic in the ζ di-

rection (along which the cells are arranged) and that

the period is I. The equations for the A^ are then

equations with periodic coefficients (along the ζ axis).

It is convenient to write λ in terms of two parameters,

к and s; к is a continuous parameter associated with
the propagation of a wave along the structure and de-
termined from the solution of equations with periodic
coefficients

ω >
γτ=ι

(Ш.51)

(ω 0 is the cutoff frequency of the empty waveguide and

e is the dielectric constant of the material that fills

the waveguide). Cerenkov radiation can be excited in

this case. However, it is not essential that the wave-

guide be filled completely with the dielectric. An empty

cylindrical channel can be left close to the axis of the

waveguide, giving a waveguide partially filled with di-

electric. Slow waves can also propagate in a waveguide

of this kind and radiation is produced if the velocity of

the charged particle moving through the waveguide is

greater than the velocity of the slow waves.

The phase velocity in a waveguide can be made

smaller than the velocity of light in vacuum without

the use of dielectrics; for instance, this condition can

be achieved if suitably located metal i r ises are inserted

in the waveguide. A charged particle moving with uni-

form motion in a system of this kind with velocity

greater than the phase velocity will radiate in the

same way as a charged particle moving in a dielectric.

This radiation can be determined simply in the case

of a linear periodic structure; such a structure is es-

sentially a periodic array of identical unit cells coupled

to each other by the apertures through which the

charged particle moves. The field of a charge moving

through a linear periodic structure was first analyzed

in a paper by A. I. Akhiezer, G. L. Lyubarskii and Ya.

B. Fainberg.8»9 We follow their treatment.

Consider a linear periodic structure of period I.

This can be an iris-loaded waveguide, a corrugated

waveguide, or a smooth waveguide (in the last case

= κ, s); (111.52)

a\ is a periodic function of the ζ coordinate (along

which the cells are arranged) with period I, while the

quantity к lies between —π/I and +π/ί. The index s

denotes the remaining discrete parameters that char-

acterize the wave. The function a^ is normalized so

that

(Ш.53)
Vi

where Vj is the volume of a single cell. The functions
characterized by different values of the parameters
λ = (κ, s) are orthogonal to each other and form a

complete set.

The field produced by a charge moving along the struc-

ture can conveniently be written as an expansion

Α=2?λ(<)Αλ(Γ), (ΙΙΙ.54)
λ

where q\(t) is a function of time still to be deter-

mined. Since A^(r) is a solution of the field in the

structure in the absence of charges the expansion can

only describe the transverse part of the vector poten-

tial. However this is sufficient for our purposes since

we are interested in the radiation field only.

The coefficients q\(t) obey the equation

(111.55)

where Nc is the total number of cells and VN is their

volume. If a point charge q moves with uniform mo-

tion along the ζ axis with velocity v, the " f o r c e " term

ίχ on the right side of (ΠΙ.55) is simplified and assumes

the form

0, 0, vt), (III. 56)

where we have written χ = у = 0 and ζ = vt.

Using (111.52) we can write (III.56) in the form

0, vt), (111.57)

where the function a \ z ( 0 , 0, vt) is periodic with pe-

riod I in the only nonvanishing term in the argument.

We expand a\ z in a Fourier ser ies :
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2πίη 2nin
(z)e~ 'dz. (III.58)

Finally, substituting the expression for f̂  in (III.55)
we obtain the following equation for the field component
q\(t) due to the uniformly moving point charge:

(111.59)

What we have derived is an equation for a linear
oscillator driven by an external force. The frequency
spectrum Ω κ η of the external force is given by

2jtn"\

-j-J v.
(III. 60)

A given field component q\(t) is excited only at reso-
nance, that is to say, if the spectrum of the exciting
force f̂  contains frequencies ω^ that coincide with
natural frequencies of the oscillator. Growth of q^
indicates that a given harmonic of the field Αχ is
radiated. Thus, the radiation condition can be written

s tois = £«„ = (Ш.61)

The condition (III.61) can be satisfied by various com-
binations of the quantities s, n, and к. The signifi-
cance of this condition is clear. Equation (III.58) gives
the electromagnetic field (III.52) in terms of a sum of

waves with wave vectors kK n = к + —j—. The condi-
tion in (111.61) gives the relation between the wave vec-
tor kK n and the frequency of the radiated wave ωχ.

It follows that the projection of the phase velocity of

the radiated wave on the axis of the system, given by

the ratio w^/kKn, must coincide with the particle

velocity.
The condition in (111.61) assumes a simple form

when a charge radiates in a medium composed of
periodic layers if the alternating layers have approx-
imately the same dielectric constant.392"394 In this

ω ι—
case, as an approximation we can write к = — ve cos £,

where e is the value of the dielectric constant averaged
over the period; in this way we obtain

-!ϊ-(1-ν1β сое*) = •-*=•.

The case η = 0 corresponds to Cerenkov radiation
while η * 0 corresponds to higher order radiation.

The energy of the electromagnetic field is

(i) = ̂  2

If radiation is produced then Η (t) is proportional to t
when t —* °°. The general formula for radiation inten-
sity is of the form (particle radiation energy loss per
unit time)

II (t)
~~ 4c2 \ Zi

η, λ'
dx

η, λ"

(III. 62)

where λ' represents the set of quantities к' and s'
that satisfy the equation ωχ - пка = 0 while λ" rep-
resents the quantities satisfying the equation ωχ + Ω κ η

= 0.
The radiation energy loss can be determined in an-

other way. Having determined q^ from (III.59) we can
find the vector potential A, (111.54), of the field pro-
duced in the periodic structure by the moving charge.
The radiation energy loss is determined from the force
exerted on the charge by the radiated field. The radia-
tion intensity is

/ = lim-

where

(III. 63)

It is not necessary to know all the components of the
vectors A^ of the free field to determine the radiation
loss. A knowledge of the projection of A\ in the direc-
tion of the particle velocity is sufficient.

b) Radiation of a charge in an iris-loaded waveguide.
As an example of the application of this theory we con-
sider the Cerenkov radiation in an iris-loaded wave-
guide. Consider a waveguide of circular cross section
with radius a (Fig. 6). Suppose that this waveguide
contains thin irises with apertures of radius b sep-
arated by a distance I along the axis of the waveguide.
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This system may be regarded as a chain of cylindrical
resonators of length I and radius a. The resonators
are mechanically connected end to end and are elec-
trically coupled to each other by apertures of radius b
cut into the ends. Finding the waves that can propagate
in such a linear periodic structure is a complicated
problem. This problem was treated approximately by
V. V. Vladimirskii* for the case of weak coupling be-
tween the resonators, i.e., aperture radius b much
smaller than the resonator radius a (or, what is the
same thing, iris aperture much smaller than the ra-
dius of the waveguide). Under these conditions it may
be assumed as a rough approximation that each reso-
nator oscillates at approximately the natural oscilla-
tion frequency it would have as a closed resonator. The
oscillation of each successive resonator is shifted in
phase with respect to that of the proceeding resonator
by the same amount φ. Thus, when the resonators are
coupled (apertures between the resonators ) an elec-

*V. V. Vladimirskii, J. Tech. Phys. (U.S.S.R.) 17, 1269,
1277 (1947).
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tromagnetic wave travels along the resonators chain;

the wavelength of this wave can be expressed simply

in terms of the phase shift between the oscillations in

adjacent resonators:

ψ
(III. 64)

where I is the length of the resonator (distance be-

tween i r i ses) and к is the wave vector. The condition

λ » I must be satisfied if a wave is to be propagated.

Actually, it cannot be assumed that the natural os-

cillations are excited in each resonator of the chain.

Because the resonators are coupled the allowed fre-

quencies in such a system become frequency bands

rather than narrow lines. The lower limit of each fre-

quency band is the natural oscillation frequency of a

closed resonator. To summarize, because the reso-

nators are coupled each natural frequency becomes a

frequency band. The width of each band increases with

aperture radius and the bands can overlap.

The lowest band, which starts with the fundamental

natural frequency of a closed cylindrical resonator

ω0 = ομί/Ά Ιμί is the first root of the Bessel function

J 0 (x)] is determined approximately by the relation

= ωο[1

where the quantity

Ь3

J* ( μ ι )

(III. 65)

(III. 66)

is the degree of coupling between the resonators. The

quantity a is assumed to be small so that the lowest

band does not overlap the next band a « 1.

The dispersion equation (III.65) for a wave propagat-

ing along a chain of coupled resonators (i.e., a wave

traveling along an iris-loaded waveguide) is an expan-

sion in powers of b/a and is accurate to higher orders

of this parameter. The phase velocity and group veloc-

ity of the wave described by (ΠΙ.65) are given with this

same accuracy. The phase velocity of the wave is

в= £ = -!£-[! + α (1-сое xi (Ш.67)

Since the absolute magnitude of к is smaller than π/Ι

the phase velocity of a wave in an iris-loaded wave-

guide satisfies the inequality

я
(III. 68)

the wavelength increases with phase velocity. The

group velocity of the wave is given by

(III. 69)

The group velocity first increases with к and then

diminishes when к = π/21.

Now assume that a charged particle moves along

the axis of the iris-loaded waveguide. The energy lost

in excitation of a wave in the lowest frequency band can

be determined by using the general theory given above.

The radiation condition (ΠΙ.61) is written as follows:

ω£ = ω* [1 + α (1 - cos κ/)]2 = Ω * η = κ2υ2 (Ш.70)

(in the band η = 0). Assuming that a is small we find

immediately

* = •%-• (Ш.71)

Since | к | < π/Ι, to satisfy the radiation condition it is

necessary that

V > (III. 7 2)

To accuracy of order a, this inequality means that the

particle velocity ν must lie within an interval of pos-

sible wave phase velocities; this interval is given by

(111.68). The normalized function for the lowest fre-

quency band Άχζ can be written

(Ш.73)ay e-«

(This is the eigenfunction for a closed resonator of

radius a and length I, corresponding to the lowest

frequency ω.) When κΐ « 1 the radiation is deter-

mined by b^ 0 :

2c 1 2 . Kl - i - γ
(III. 74)

This quantity is to be substituted in (III. 62), which

gives the radiation intensity for a charged particle in

an iris-loaded waveguide. To use this expression we

dcj
must still compute - — -v. Using (III.65) we easily

Ο/ν

show that

da>
(111.75)

In substituting all these expressions in the final formula

we must use the value of к that satisfies (111.70), i.e.,

κ = ν/ω 0 . In this way we obtain the following expres-

sion8 for the radiation intensity (we have corrected an

error in reference 9 and use the numerical factor 8

rather than 16):

sin 2 (ло1
2v

1 - s i n ——
V V

(111.76)

When a = 0 (chain of uncoupled closed cylindrical

resonators) this expression gives the energy loss due

to radiation of frequency ω0 in a single resonator mul-

tiplied by the number of resonators traversed per unit

time v/l.

Ш.6. Cerenkov Effect in Waveguides

As we have indicated above, a charged particle mov-

ing uniformly in a waveguide can only interact with slow

electromagnetic waves, i.e., waves with phase velocity

smaller than the velocity of light. The simplest "s low"

waveguide is one filled with dielectric. We start with

an analysis of this case.
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a) Waveguide filled with an isotropic dielectric.
First a preliminary remark. The field produced by a
charge in a cylindrical waveguide can be determined
by the method of the preceding section because a
smooth waveguide is actually a particular case of a
linear periodic system (infinite period). However,
it will be more condenient to use the results of Sec.
III. 2, where we have considered the motion of a charge
along the axis of a channel filled with a medium et

cut into a medium e2· When a charge moves in a wave-
guide the outside medium is a metal, i.e., e2 = 4τάσ/ω
— i» (assuming that the metal is ideally conducting).
We use the limiting transition e2 —-i» in (III. 11, 13,
15, 16), obtaining

_
dx

(ΠΙ. 85)

φ =
- (τ—vt) γ

Φ (ω, r)d(u, Α=εμ — φ ,
с

(ΠΙ.77)

where

0, r>a.

while

The expressions given above indicate that the Ceren-
kov condition for a waveguide filled with dielectric is
the usual one, €μβ2 > 1. The radiation frequency spec-
trum is given by the dispersion equation

hence

— 1 '

(III. 80)

(Ш.81)

(ΠΙ.82)

where μο8 is the s-th root of the Bessel function J o .
The Cerenkov loss integral is of the form

The integrand has poles at frequencies for which the
radiation condition (111.81) is satisfied. Taking the
residues at these poles we obtain the energy loss in
the form of a summation over all radiated harmon-
ics 6 4 :

dW
dx

2?»

e (ω8) ω3

(III. 84)
The summation is taken over all harmonics for which
the radiation condition εμβ2 > 1 is satisfied. The en-
ergy loss expression is simplified if the medium is
dispersionless, in which case e and μ are independ-
ent of frequency:

This expression was first obtained by Akhiezer, Lyu-
barskii, and Fainberg.8 If the waveguide radius is
much greater than the radiated wavelength (III.85) be-
comes the well-known formula of Frank and Tamm.

It is also easy to obtain the field in the case of non-
central motion of a charge in a waveguide filled with
dielectric. Suppose that a charge moves parallel to
and at a distance r 0 from the axis of a cylindrical
waveguide. The field of the charge is of the same
form as in non-central motion in a channel (III. 39).
The excitation condition for a harmonic denoted by the
number m is

(111.86)

or

(Ш.87)

where μΐα8 is the s-th root of the Bessel function J m .
The Cerenkov energy loss in the waveguide63 is:

(111.79) ^ L = _ V _
2

ν( μ™ -J·

(Ш.88)

In this formula a = 1 when m = 0 and a = 2 when
m ¥• 0; w m s is the frequency that satisfies the radi-
ation condition (111.87). When r0 — 0, (Ш.88) becomes
(ΙΠ. 84), giving the energy loss for the case of motion
along the waveguide axis. If the waveguide is filled
with a dispersionless dielectric, (ΠΙ.88) assumes the
form

1
dx

.(III. 89)

This expression was given by Muzicar.3 1 7 When r 0

— 0 this expression goes over into (III. 85).
It is evident from (III.88, 89) that the energy loss

vanishes when r 0 — a. This result can be explained
simply. If the charge is close to the wall of the wave-
guide it may be assumed that the charge moves over
an ideally conducting plane. In this case the field is
essentially the sum of the field of the original charge
and the field of its image, taken with opposite sign. As
the true charge approaches the wall, so does its image.
Since the sign of the image charge is the opposite of
the sign of the real charge, the fields cancel and no
energy is radiated. This situation arises when the
distance of the charge from the wall is smaller than
the radiated wavelength.

Equation (III.89) can be used to estimate the loss
as a function of the displacement r 0 (the distance be-
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tween the charge trajectory and the waveguide axis).
It is found that the loss is a maximum when r 0 = 0,
i.e., when the charge moves along the waveguide axis.
This is easily checked by calculating the first and
second derivatives of the loss [expression (III.89)]
at r 0 = 0. The first derivative with respect to r 0

vanishes and the second is negative.
If the charge moves in a waveguide filled with a

dispersionless dielectric and the charge velocity is
greater than the velocity of light in the dielectric there
will be no forces acting on the charge to deflect it from
its rectilinear path. The charge does not " fee l" the
walls of the waveguide because the entire field pro-
duced by the charge trails behind it. Actually, how-
ever, any medium will always exhibit some dispersion.
There will always be waves with phase velocity greater
than the velocity of the charge and these waves result
in the production of a radial force on the charge. This
force can either be a focusing force, directed toward
the center, or a defocusing force.

Φ (ω, /*) =

FIG. 7

The coefficients α, η, and γ are determined from
three boundary conditions; it is convenient to take as
these boundary conditions the continuity of E z and
Ηφ at the edge of the empty channel (r = b), and the
fact that E z must vanish at the surface of the wave-
guide (r = a ) . We shall determine the coefficients a,
η, and γ under more general assumptions than those
above. In particular, we assume the waveguide is filled
with a medium characterized by e t and μχ for r < b
and e2 and μ2

 f o r r > b. Then the field in (111.90) de-
pends on the argument k t r = — V 1 - £^фг г when

r < b and on the argument k2r = — V 1 — ε2μ2/32 r when

b) Waveguide partially filled with an isotropic
dielectric. It is not advisable to fill a waveguide com-
pletely with a dielectric because a particle in such a
waveguide will lose energy by polarization or Bohr
radiation in addition to Cerenkov radiation. The polar-
ization losses are actually responsible for the greater
part of the energy loss and the particle is quickly
brought to a stop. It is much better to investigate
Cerenkov radiation in a waveguide partially filled with
a dielectric. The appropriate theoretical analysis was
first carried out by Abele.1

We consider a circular waveguide of radius a filled
in such a way that there is an empty cylindrical channel
of radius b along the axis (Fig. 7). It is assumed that
the material partially filling the waveguide is isotropic
(dielectric constant e and permeability μ). The field
of a charge moving with velocity ν along the axis of
the waveguide is given by (III. 11), where

r<b,
(ΠΙ. 90)

r>b.

efficients (III. 16), which determine the field in the chan-
nel with et and μΙ in a medium with e2 and μ^ This
limiting case holds for an arbitrarily small absorption
in the outside medium.

The radiation field produced by a particle in a wave-
guide partially filled with a dielectric is similar to that
produced in a channel. The Cerenkov condition can be
satisfied in the medium with e t and μ^ only, in the
medium with e2 and μ2 only, or in both media. In the
first two cases the field falls off exponentially with in-
creasing distance from the boundary in the medium in
which the radiation condition is not satisfied.

The radiation spectrum is discrete in all three
cases.

We now consider the original case in greater detail,
i.e., the case of an empty waveguide partially filled
with dielectric (e 4 = 1, μι = 1). This case is of great-
est interest from the point of view of microwave gen-
eration. If the Cerenkov condition is satisfied in the

r > b. The coefficients α, η , and γ for this case a re : medium with e2 and μ2 the charge loses energy by

jl(a, b, klt кг) — кгК0 (kxb) g t a (а, b, 1ц,

M*«»)
ia, b, klt

γ = - η

where

(A,a)
/ 0(* 2a) '

ι, b, kif k2

(III. 91)

(Ш.92)

wave excitation. Under these conditions the wave
field is concentrated in the region b < r < a.

The energy loss of a particle caused by radiation
1 in a waveguide partially filled with a dielectric is de-
termined in the usual fashion; we find the reaction of
the radiation field on the particle:

dW , ,

r=vl
• 0

When e t = 1, μ4 = 1 and ε2μ2/32

α(ω) assumes the form

as a — «o the functions ft and f2 both become I 0(k 2a)
while the coefficients a and η coincide with the co-

! ) R e \ a(a>)ia>da>.

€2μ2β2>! (ΠΙ. 93)

> 1, the coefficient

/τττο,η
( I I L 9 4 )
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where

while ψι and

: Г.у г 1_р2 1 (III. 95)

are the functions introduced by Abele:

Ψθ = Jl (S2b) No (*2a) — Λ) (S2°) Nl (S2b),

t i = Jo (*»*) #o (V) - Ό (V) ^o (*«6) · (Ш. 96)

The integrand has poles where the denominator of
α (ω) (III. 94) vanishes. The corresponding values of
the frequency give the radiation spectrum in a wave-
guide partially filled with a dielectric. We write the
equation that determines the radiation frequency when
(111.95) holds:

; (111.97)

when kfi « 1, (III. 60) becomes

(III. 98)

However, when s2b « 1 the radiation spectrum is de-
termined by the equation

/„ (s2a) = 0, (III. 99)

in the same way as for a waveguide completely filled
by a dielectric with e2 and μ2. This means that if the
empty channel along the waveguide axis is narrow
enough the radiation spectrum is the same as that of
a waveguide completely filled with a dielectric. In
many respects the situation is reminiscent of the r a -
diation in an empty channel surrounded by an infinite
medium (III.2). It was found in that case, too, that
when the channel radius is arbitrar i ly small the r a d i -
ation pattern is the same as when there is no channel.
The difference between these two cases is the fact that
the spectrum is discrete in the waveguide case. When
kjb » 1, (111.97) assumes the form

^ = $°. (III. 100)

When kjb, k ta, s2b, and s2a a re large compared
with unity, (III. 17) becomes

- = ctgfc2(a — b). (III. 101)*

If dispersion is neglected the frequency spectrum given
by (111.97) is a sequence of increasing values of ω λ

with no limit; the difference between two neighboring
values of ωχ approaches a constant, as indicated by
(III.101). The presence of dispersion introduces a
cutoff at high values of ω.

Integrating the loss expression (III. 93) we have

dx Σ ι*) Ψο

&) Ψι - ι*) ΨοΙ

(III. 102)

It follows from (III. 102). that the dependence of the r a -
diation intensity in a waveguide partially filled with a

dielectric on the radius of the empty channel is quali-
tatively the same as for an empty channel in an infi-
nite medium. In particular, if the radius of the empty
channel b approaches zero, (Ш.102) becomes (III.85),
which applies for a waveguide completely filled with a
dielectric. Thus, in a waveguide or in an infinite me-
dium, a narrow channel does not affect the intensity of
radiation produced by a charged particle.

If the channel radius is so large that kjb » 1, it is
evident from (III. 102) that the radiation intensity falls
off exponentially (as e * ), again in complete anal-
ogy with the case of an empty channel in an infinite
medium. It should be recalled, however, that in con-
trast with an infinite medium, a channel in a waveguide
yields a discrete radiation spectrum.

Several other features of the radiation in a wave-
guide partially filled with a dielectric are of interest.
S. N. Stolyarov has shown that when a charge moves
in an empty channel parallel to and at a distance r 0 < b
from the axis the energy loss due to radiation is always
greater than for motion along the axis. The minimum
energy loss obtains when the charge moves along the
axis of a waveguide partially filled with a dielectric.

c) Waveguide filled with an anisotropic dielectric.
Anisotropic dielectrics can also be used to retard
electromagnetic waves in a waveguide. We consider
the radiation in a circular waveguide filled with a uni-
axial crystalline dielectric. Let the optical axis of the
dielectric be along the waveguide axis. If the axis of
the waveguide is taken as the ζ axis the dielectric ten-
sor for the material filling the waveguide can be writ-
ten in the form

(III. 103)

The equation for the field potentials in the waveguide
can be obtained from (II.4), where we assume that the
only nonvanishing components a re A z and φ , upon
which we impose the added condition:

Лг = егр<р. (III. 104)

The following equation is obtained for A z (the sub-
script ζ is omitted):

dr*
ал
dr

4 π
/ •

(III. 105)

In deriving this equation we have assumed that the field
produced by the uniformly moving charge depends on ζ
and t in the combination ζ — vt. The equation for φ
can then easily be obtained from (III. 104). The current
density j in the right side of (III. 105) is described in
terms of a point charge moving with velocity v:

/ = qvb (x) δ {y)d(z-vt) = qv^jr δ ( ζ - vt). (III.106)

*ctg = cot. It is convenient to write δ ( r ) in the representation
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п=1 ° ( μ " '

(III. 107)

where a is the waveguide radius. We write δ (ζ - vt)
in the well-known Fourier integral expansion. The so-
lution of (III. 105) is

OO J ( μ Ζ Λ OO i^-(Z-rt)
χ / . . ..л 2? χ ι °̂  " α / С е rftt>

(III. 108)
Using this expression we determine the particle radi-
ation loss

(Ш.109)

It is evident that the radiated frequencies can be ob-
tained by setting the integrand in (HI. 109) equal to
zero. This procedure yields (M. I. Kaganov232)

?7)2E

S _ ν-&'ετ

l

— α*εζ ε , β 2 - 1

The radiation condition becomes

-^ (εΓβ
2 - 1) > 0.

(ΙΠ. 110)

(III. I l l )

This condition is the same as the radiation condition
in an infinite uniaxial crystal (11.23).

Since e r and e z are functions of frequency ω, one
value of μη in (ΠΙ.110), which determines the radia-
tion frequency, can correspond to several values of
ω. Integrating (ΠΙ.109) we have239

4 dz Jeer ι

Γ

The expression is simplified if e r and e z are inde-
pendent of frequency, and the energy loss per unit
length of path becomes

dW

dz

2дг

απ. из)

This quantity diverges in precisely the same way as
the energy loss of a charge due to Cerenkov radiation
in a dispersionless medium. However, it can be used
to obtain a correct result if the summation is termi-
nated at some frequency. We recall that each term in
011.113) gives the radiation intensity at a frequency
ω η determined by (Ш.110).

We now compare (III.113) with (ΙΠ.85), the Ceren-
kov loss in a waveguide filled with an isotropic dielec-
tric. A comparison shows that the use of an aniso-
tropic dielectric makes it possible to change the radi-
ation intensity by a factor e/ez without changing the
particle velocity or the waveguide radius.

It is of interest to investigate the way in which the
energy loss in a waveguide filled with an anisotropic

dielectric depends on the orientation of the optical
axis of the dielectric with respect to the waveguide
axis. This problem has been investigated by L. S.
Bogdankevich for the case of a rectangular wave-
guide.58

Consider a waveguide of a rectangular cross sec-
tion. The sides of the waveguide are 2a and 2b. Sup-
pose that the waveguide is filled with an anisotropic
dielectric. As in the preceding example we consider
a particular anisotropic dielectric, a uniaxial crystal
characterized by two parameters: the dielectric con-
stant along the optical axis (e0) and the dielectric
constant perpendicular to the axis (e^).

The equations for the field potentials due to the
motion of a charge in a rectangular waveguide filled
with an anisotropic dielectric are of the form given
in 01.4) with the additional condition div eA = 0. If
the charged particle moves along the axis of the
waveguide the charge density is

, = qb(x)b(y)d(z-vt)
OO

= o

 Ч-γ V, COS
8nvab ±J

2m+i Л e " 2 άω.

0Π.114)

The field potentials can be determined in the same way
as in part II. These are

da

(kikj

A q χι 2n-|-l 2m-\-l
= ;• >. COS—= П Ж - C O S — ^ r — Я И
2г>са6 ^—l 2α 2 ο 3

X J L (кеЛ-%) J в dco- J
0П.115)

(ΠΙ.112) where e is the dielectric constant operator, Л is an
2

operator connected with e by the relation Л = e — - k2,
С

and к is a vector with components

"'v
2n+l

2a

s = v — e k ; (ΙΠ. 116)
(kek) "

The operators Л and e are diagonal in the coordinate
system corresponding to the principal axes of the orys-
tal and

ϊ. _ _ t. _ _ ϊ. - _

(Ш.117)ω1 • + - ω8

The expressions for the field potentials in the wave-
guide 0Π.115) and 0Π.116, 117) differ from the analo-
gous expressions for an infinite crystal 01.16—19)
only in that the components of the wave vector per-
pendicular to the walls, k x and ky, must assume
discrete values.

Bogdankevich58 has determined the energy loss of
a charge due to radiation in a rectangular waveguide
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filled with an anisotropic uniaxial dielectric. Two
cases have been considered. In the first case the
optical axis of the dielectric is parallel to the wave-
guide axis and parallel to the velocity of the charge.
In the second case the optical axis of the dielectric
is perpendicular to the waveguide axis.

Crystal axis parallel to the waveguide axis. In this
case radiation is produced when the following condi-
tion is satisfied:

-^[ε,β 2 -1]>0, (ΙΠ. 118)

which is the same as the radiation condition in an in-
finite uniaxial crystal with a charge moving along the
optical axis 01.22). Only extraordinary waves are ra-
diated. The ordinary waves are not radiated even when
their phase velocity is smaller than the velocity of the
charge. The ordinary waves are not radiated because
the electric vector of the ordinary wave is perpendic-
ular to the optical axis of the uniaxial crystal and,
thus, to the velocity of the charge (cf. Sec. 11.4). We
note that precisely the same situation arises in an
example we have considered earlier, i.e., radiation
of a charge in a circular waveguide. Only the extra-
ordinary waves are radiated and the radiation condi-
tion 011.111) for these waves is exactly the same as
(III. 118). This result follows because in both cases
the axis of the crystal filling the waveguide is parallel
to the charge velocity.

The energy loss due to radiation of the extraordi-
nary waves can be found from the field potentials
011.115)

dWe

dz ab

(εχβ'-1)ω
. 119)

where cu m n is the radiation frequency, given by the
relation

(Ш.120)

The energy loss relation (ΠΙ.119) becomes particularly
simple if the material filling the waveguide is disper-
sionless, that is, if e0 and e^ are independent of fre-
quency. In this case

dz lab ε»
(Ш.121)

where N is the number of harmonics excited in the
waveguide. It is evident that a charge loses the same
amount of energy in the excitation of each harmonic
in a dispersionless rectangular waveguide.

Crystal axis perpendicular to waveguide axis. Both
ordinary and extraordinary waves are radiated in this
case. The radiation condition is the same as for mo-
tion in an infinite crystal [cf. (П.бЬ)] with the sole
difference that in the waveguide case the components
k x and k v can only assume discrete values.

The frequencies of the radiated ordinary waves
are determined from the equation

'2m + l
4 ~2^~ : (Ш.122)

while the frequencies of the extraordinary waves are
determined from the equation

εχ(ω)[ε0(ω)β'-1]
= 1, (III. 123)

kx and ky are determined by (III. 116).where
The energy losses due to the radiation of ordinary

and extraordinary waves are

сгаЬ

n>°
ω*«(β,β»-1)

dz

dWe

dz

011.24)

The values of o) m n for the ordinary waves are deter-
mined from 011.122) and the values for the extraordi-
nary waves are found from (ΠΙ.123).

It is evident from (III. 124) that when dispersion can
be neglected the terms under the summation sign do
not depend explicitly on o) m n . This situation can be
exploited to obtain a simple expression for the total
radiation loss. Suppose that e0 and εχ are independ-
ent of frequency; furthermore, suppose that for some
choice of m and η the radiation conditions are satis-
fied for both the ordinary and extraordinary waves.
In this case the total energy loss due to radiation of
ordinary and extraordinary waves is written in the
form

dw
dz ' 2ab ε ,

0П.125)

where Ν' is the number of pairs (m, n) for which the
radiation conditions are satisfied for both kinds of
waves. It is evident from the last relation that the
total loss is the same for each harmonic (m,n). In
this case the loss due to radiation of ordinary waves
in each harmonic is proportional to

, η ) , 0П.126)

while the loss due to radiation of extraordinary waves
is proportional to

8 X
(Ш.127)

with the same proportionality constant. The total ra-
diation in a given harmonic is proportional to l/e^,
as follows from 011.125). It is evident from 011.126,
127) that only the extraordinary waves are radiated
in the cross section of the waveguide in the xz (ky = 0)
plane while only the ordinary waves are radiated in
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the cross section of the waveguide in the yz (k x = 0)
plane. A similar situation obtains for an infinite me-
dium (II. 6b). This effect is due to the nature of the
polarization of the electric vector.

III. 7. Field of a Charged Particle Moving Parallel to
the Boundary Between Two Media

We consider the field of a point charge that moves
with constant velocity parallel to a plane boundary
separating two media. The simplest case of this kind
is the one in which the charge moves in vacuum paral-
lel to and over a semi-infinite plane dielectric. This
particular problem is also of great interest for vari-
ous radiophysical purposes, primarily problems in-
volving the generation of microwaves. The first qual-
itative estimates of the radiation produced in this case
were carried out1 8 2 '1 8 3 for just this purpose; these
analyses were then carried out in greater detail.

The problem of a charge moving over a plane
boundary is, in many respects, similar to the prob-
lem of a charge moving in a channel, which we have
considered earlier.

a) We consider the general case of motion of a
charge moving along a boundary. The charge is de-
noted by q, the velocity by v, and the distance of the
charge from the boundary by d. Suppose that the
charge moves in medium 1 (e^ μ4) at a distance d
from a plane boundary with medium 2 (e2, μ2) (Fig. 8).

V///////////,V////////////Z'.у////////////////////////////////

Charge moving
away from observer

FIG. 8. In the figure at the left the χ axis is vertical and
the у axis is horizontal.

The solution of this problem was obtained by V. E.
Pafomov,329 who also investigated a number of par-
ticular cases in detail.* The case in which medium 1
is a vacuum (e1 = 1, μ4 = 1) has been considered ear-
lier by a number of authors: Danos,116 Linhart,272 and
Motz. Investigations of various aspects of this problem
have been published by Sitenko and Tkalich364 and by
Garibyan and Mergelyan.171 The method used by Danos
is the simplest and will be used below.

We introduce a Cartesian coordinate system with
the ζ axis along the line of motion of the charge. The
χ axis is normal to the boundary so that the equation
of the boundary plane is χ = — d. The field in this
problem is made up of the field of a charge in an in-

*The author is indebted to V. E. Pafomov for this private
communication.

finite medium and the fields due to the presence of
the boundary.

Maxwell's equations for the field potentials in the
first medium are:

απ. 128)

In the second medium, on the other side of the bound-
ary, we take Φο = Aoz = 0.

The solution of (III. 12 8) can be conveniently written
in the form

_ qi С ά/ίν

where

.= /(«

(III. 12 9)

. 130)

is the projection of the wave vector к along the χ
axis.

It is evident that the solution of (ΠΙ.129) is the same
as the expression for Az and φ given in the first part of
this work [cf. (1.49—52)]. The difference in form is
due to the fact that we must satisfy the boundary con-
ditions in the plane χ = - d , parallel to the yz plane;
hence it is convenient to write all Fourier coefficients
as functions of ky and k z = ω/ν alone.

The potential corresponding to the homogeneous
Maxwell equations is

12ад1+в1х+куу+-^ U-»!))f f j l j /1
\\dkvd(uai(kv>

for χ > — d and

С С dky .
A = A2 = {ky> ω )

απ. i3i)

СП. 132)

for χ < - d .
Here At describes the field in the first medium

due to the presence of the boundary while A2 describes
the field in the second medium. We impose the follow-
ing obvious requirements on At and A2:

div Aj = 0, div A2 = 0. (III. 133)

Further, since At and A2 represent solutions of
the homogeneous Maxwell equations we can write

<Ρι = Ψ2 = °-
The boundary conditions then yield the following

expressions for a^ky, ω) and a2(ky, ω):

' κ " ωε! L (μιέΓ2+μ2«Ί)(ει£2 +
 ε2£ι) gi J '

д _ /с2 ( 1 ^ Μ Ί 6 1 ~ Γ H-2S2J _ j

l. 134)
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(ΠΙ. 135)

The fields were computed by other methods in refer-
ences 364 and 171. The formulas which have been ob-
tained completely determine the fields produced by the
moving charge in both media. The field in the first
medium is determined by the potentials φ$ and Ao

+ At [cf. (III. 129—134)] while the field in the second
medium is determined by the vector potential A2.

The structure of the solution can be easily under-
stood if we consider the analogous behavior of a light
wave incident on a boundary between two media. The
potentials Ao and φ describe the "incident" field,
the potential Aj describes the "reflected" field, and
the potential A2 describes the "refracted" field.

If the substitutions ej = 1, μ1 = 1, and μ2 = 1 are
made we obtain the Danos solution for motion of a
charge in vacuum.*

We now consider briefly certain particular cases
of the motion of a charge over a boundary separating
two media. Both media are assumed to be transparent.

b) First let us consider the frequency range for
which the Cerenkov condition is satisfied in the sec-
ond medium but is not satisfied in the first:

< 1, (ΙΠ. 136)

This case is of most interest for Cerenkov generation
of microwaves.

The expressions describing the field are a sum of

plane waves of the form exp {i [ gx + kyy + — (ζ - vt)]}

where g = g t = у (ε1μ1/32 - 1) — - ky in the first

medium while g = g2 = у (ε2μ2/32 - 1) — - ky in the

second medium. The quantity gj is purely imaginary
in the present case. This means that when the dis-
tance from the boundary is large the waves are damped
exponentially in the first medium, i.e., there is no ra-
diation in the first medium. Radiation is produced in
the second medium at those values of ω and ky for
which the projection of g2 (the wave vector) on the
χ axis is real. This condition gives

2 - l ) . 0Π.137)

As in the case of a continuous medium, the wave
vectors for a given frequency ω lie on the surface of
a cone whose opening angle is determined by the
Cerenkov condition. However, in contrast with the
case of an infinite medium the electric vector of the

*There is an obvious error in the paper by Danos:1 1 0 in
Eq. (66), the factor I should not appear in the numerator of the
expression for B z .

radiated wave does not lie in the plane containing the
particle velocity and the wave vector. Instead the pro-
jection of the wave vector on the xy plane forms an
angle φ with the negative χ axis:

t,Cf φ = η— = . (ΙΠ. 1 3 8 )

The projection of E2(ky, ω) on the xy plane makes an
angle φ ' * φ with the negative χ axis:

Ex α2χ
(III. 139)

Since gx is pure imaginary in the case at hand (III. 139)
indicates that the wave is elliptically polarized. The
direction of polarization is reversed when the sign of
ky is changed. This is to be expected because the
field is symmetric under reflection in the xz plane.
When ky approaches zero the elliptically polarized
wave degenerates into a linearly polarized wave. The
wave whose wave vector lies in the xz plane (ky = 0).
is also polarized in the xz plane ( E y = 0). This is
evident from (Ш.135).

We now find the energy loss of a charge moving
parallel to the interface. The energy loss of the
charged particle per unit path can be computed from
the work done by the moving charge against the reac-
tion force due to the field:

dW = qE: x=0

z=vl

1 = 0

z=vt

Ζην ) J elgl

— σ e2iaid

ω δ ι
gx~| 1

J J
Ш1.140)

In the case considered here the integration over ω
extends over the range for which the two inequalities
£\μφ2 < 1 and €2μ2/32 > 1 are satisfied: the region of
integration over ky is determined by (ΠΙ.137).

The first term in the curly brackets under the in-
tegral can be neglected in the present case. This term
describes the energy loss of a charge in an infinite
medium ej and μ1 and does not make a contribution
to the Cerenkov loss because the Cerenkov condition
is not satisfied in the first medium (polarization
losses are considered below). Hence, in the fre-
quency range of interest the loss integral is

£f = _ i l Re ί [ dkv

dz л J J ω

Τι) Sx Sl^igi+^gi J

The integration over ω is limited to positive values
and is bounded by the inequalities €2μ2/32 > 1, £\μφζ < 1,

and ky < ~2 — 1). When these inequalities are
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satisfied radiation is generated in the second medium
but not the first. In the usual way, the symbol Re de-
notes the real part of a quantity.

We consider the radiation energy loss in the par-
ticularly simple case et = 1, μχ= 1, μ2 = 1, and e2 = e.
When the real part of the integrand is taken (III. 141)
assumes the form

dW 2? 2 Γ da> „
—г- — \ —cf/ί e

g2-\-ez
. 142)

where

= g, = / ρ W - 1) - = / p (1 - P' K
(III. 143)

It is convenient to replace the variable k y by an-
other variable, the angle φ , formed by the negative
χ axis and the projection of the radiation wave vector
in the xy plane. It is evident that

αΐΐ.144)

Then (III. 142) can be written in the form

dW 2?2

9>
ω>0

COS2
C 0 S

2 (III. 145)

Equation (ΠΙ. 145) gives the Cerenkov radiation energy
of a particle moving in vacuum above a dielectric. The
integrand is proportional to the intensity of the radia-
tion at frequency ω at an angle φ in the xy plane.
The region of integration is given by the inequalities.

We now consider in greater detail the features of
the radiation in this, the simplest case. As in a con-
tinuous medium the wave vectors of the radiated waves
form a conical surface. The axis of this surface is
parallel to the charge velocity. The angle between the
axis and the generatrices of the cone is given by the
familiar relation cos •& = 1/VT β. However, radiation
is generated in the second medium only, i.e., the
Cerenkov wave-vector surface is actually only half
of a conical surface. Moreover, the radiation in-
tensity is not uniform over different generatrices of
this cone.

We write the radiation intensity at a frequency
ω and azimuthal angle φ , where - π / 2 < φ < π/2
(we recall that φ is the angle formed by the normal
to the boundary and the projection of the wave vector
on the xy plane perpendicular to the charge velocity):

Κω «>ϊ= 2ql

v τ ; ην2

and compare this expression with the radiation inten-
sity in an infinite medium, where the radiation inten-
sity is uniform over azimuthal angles:

ε β 2 — Ι (ΠΙ. 147)

We assume that the velocity of the charge is high so
that /8=1. Then, the radiation intensity Ι (ω, φ = 0)
vanishes at φ = 0. (More precisely, this quantity is
proportional to 1-/32, i.e., inversely proportional to
the square of the particle energy.) Thus, as the par-
ticle velocity increases the radiation intensity in the
plane perpendicular to the boundary approaches zero.
When φ = ± π/2 the radiation intensity is identically
zero for any charge velocity. The radiation reaches
a maximum value between φ = 0 and φ = ± π / 2 . This
maximum can be extremely high as compared with the
radiation intensity in a continuous medium IQ (ω, φ ) .
For purposes of illustration we consider Ι (ω, φ )
when φ = 45° (it is again assumed that /3=1):

If d, the distance of the charge from the boundary, is
small, so that the exponential factor can be set equal
to unity, the quantity Ι (ω, ψ =π/4) may be appreciably
greater than Io (ω, φ ) . When € = 1.5 the ratio I/Io

is almost 4 when ψ =45°. According to (III. 146) the
function Ι (ω, φ) is independent of φ apart from a
constant; this function is shown in Figs. 9a to 9d. (It
is assumed that the charge moves toward the observer
and radiates into the lower space, which is filled with
dielectric.)

To obtain the total radiation intensity at frequency
ω we integrate Ι (ω, φ ) over all angles at which radi-
ation is excited ( - π / 2 < φ < π/2). The integration is
difficult because of the presence of the exponential fac-
tor. If we consider only those wavelengths for which
the exponential factor can be set equal to unity

CO ι

(d — V e — 1 « 1 ) the integration is carried out easily

and yields
π

2
/ ( ω ) = [ /(co,(p)d<p

—я
2

OH. 149)

This quantity is to be compared with the radiation in-
tensity at frequency ω in a continuous medium

„2
( ω ) = » (Ш. 150)

(ε+1)(εβ 2 — l)cosaq> — ε
When e/32 = 1 the ratio I/Io is unity at the radiation
threshold:

X 008·= φ · e (Ш.146) (ΠΙ.151)
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Thus, near the radiation threshold (for sufficiently
small distances between the charge and the boundary)
the radiation intensity is the same as in an infinite
medium. Although I = Ig at velocities close to the
threshold velocity it should be noted that both of these
quantities are proportional to e/32 - 1 and vanish at the
radiation threshold.

As the particle velocity increases still further the
quantity Ι (ω) becomes smaller than Ι 0 (ω); when
β = 1, the ratio 1/Ц is

Г = ГТТ (β = 1)· (Ш.152)

Although this quantity is smaller than unity it is evi-
dent that the radiation intensity in the presence of a
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boundary is comparable with that in an infinite medium.
In the present analysis we have assumed that the

particle moves close to the boundary, that is,

If this condition is not satisfied the Cerenkov radiation
spectrum of a particle moving in vacuum and radiating
into a medium is cut off because of the factor

^d^e^-Dsm^+l-P* 011.152')

in the integrand in СП-145). The radiation spectrum
at a given azimuth is proportional to ω as long as the
exponential factor OIL 152) can be neglected and then
cuts off sharply at this point. The frequency at which
the radiation spectrum at angle ψ starts to cut off is
determined by the order of magnitude of the quantity

(εβ2 — I)sin2(p-j~l — β3

In many respects this behavior is reminiscent of radi
ation in an empty channel, being a typical feature of
boundary-value problems of this kind.

We recall that in the case of radiation in an empty
channel the limiting frequency is determined by the
analogous relation

where a is the channel radius.
The total radiation energy loss can be estimated if

it is assumed that the medium is dispersionless (e
independent of ω). Carrying out the integration over
frequency and then angle in (III. 145) we obtain the total
energy loss per unit path 3 0 7 μ2 = 1

dW
dz

(ΠΙ. 153)

It is interesting that (III. 153) is simplified consider-
ably in the ultrarelativistic case, (β = 1) and assumes
the form

dW q- OIL 154)

Strictly speaking, this relation does not apply if there
is dispersion. However (Ш.154) still applies with high
accuracy if the exponent αΐΙ·152') becomes large far
from an absorption pole (i.e., if the exponent increases
because of the factor ω rather than the factor
V (e/32 — 1) sin2 φ + 1 — β2 ); the radiation of a charge
moving in a vacuum along an interface with a medium
does not depend on the behavior of e if the charge
velocity is close to the velocity of light. It is evident
that (HI. 154) becomes more accurate with increasing
distance d between the particle trajectory and the
interface.

We have already indicated that the waves radiated
by the particle into the second medium are elliptically
polarized. The polarization vector for waves with

ky > 0 rotates from the χ axis to the у axis and in
the opposite direction for waves with k y < 0.

A charged particle moving near the surface of a
dielectric experiences not only a retarding force,
caused by the radiation reaction, but also a transverse
force, caused by the reaction of the dielectric. This
transverse force is given by the expression

x=y=Q, 2=vt

where Aj is obtained from (Ш.131) and flll.134). Cal-
culations carried out by A. I. Morozov, who neglected
dispersion, indicate that the force F x points toward
the interface for any charge velocity and is of the
same order of magnitude as the retarding force Fx
= dW/dz.

c) We now briefly consider several other possibili-
ties. The Cerenkov condition can be satisfied in both
media, that is, e^ t/32 > 1 and ε2μ2/32 > 1. In this case
radiation is excited on both sides of the boundary. The
energy loss of the charge due to Cerenkov radiation is
given by (ΠΙ.140), where the integration extends over
the range for which the inequalities e^j/32 > 1 and
е^/З 2 > 1 are satisfied. At certain values of k y radi-
ation can be produced in one medium while the field is
damped exponentially in the other. To be specific, let
us assume that e ^ t < ε2μ2, i.e., that the second me-
dium is more dense optically than the first. Then, if
ky lies in the interval

the field in the first medium is damped g | < 0 but
there is a radiation field in the second medium g2 > 0.

If ky < — (e^j/32 — 1) the fields in both media are ra-

diation fields and if k y > \ (ε2μ2β
2 - 1 ) the fields in

both media are damped exponentially. We define the
azimuthal angle φ by the relation

Then, if

there are radiation fields in both media. In this case
the field is linearly polarized in the second medium.
However, if

the field in the second medium is a radiation field and
the field in the first medium is damped. In this case
the field in the second medium is elliptically polar-
ized. The radiation at frequency ω is distributed
over a cone in the second medium and the intensity
is different on different generatrices.

d) The Cerenkov condition is satisfied in the first
medium but not in the second {ефф2 > 1, ε2μ2/32 < 1,
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δι > 0, g2 < 0). In this case the Cerenkov radiation
excited in the first medium experiences total internal
reflection at the boundary and does not enter the sec-
ond medium. The radiation is a superposition of lin-
early and elliptically polarized waves.

e) To conclude, we consider the polarization loss
of a charge moving parallel to the interface between
two dielectrics. Polarization radiation is produced
at frequencies w s such that the dielectric constant
€j vanishes. The polarization energy loss is

dW
ε' (f>s)

1 - е . 155)

where ε '(ω 4 ) = -—
αω
- —
αω and the summattion is

taken over all roots ω 8 . Because the polarization
waves are damped in all directions from the particle
trajectory, as d increases this formula becomes an
expression for the polarization loss in an infinite me-
dium. When d —- » 1 the exponential factor in the

ν
integrand can be neglected and we obtain the usual
formula for polarization energy loss in an infinite
medium. In this case the integration must be cut off
at some maximum value k m a x . We may note that the
integrand in the loss expression 011.140) can have
poles where

8i§2 + e2§ ι = 0 and \iyg2 + μ^! = 0.

We neglect the loss corresponding to this case.
In various situations it is frequently necessary to

consider the radiation due to an extended charge rather
than a point charge, for example the radiation of a
plane modulated electron beam moving in vacuum,
parallel to a dielectric boundary. In this case the
charge density is written in the form

ρ = ρ0 б (χ) [1 + α cos (κζ — ωί)], 011.156)

where 2тг/к is the modulation wavelength, ω is the
modulation frequency and a is the depth of modulation.
The field produced by extended sources of this kind
can be obtained by multiplying the Fourier components
of the solution 011.129—135) for a point charge by the
Fourier component of the density of the extended
source. In the example being considered this factor is

Because of this factor, only the waves for which k y = 0
and k z = ± ω/ν are radiated. The radiation propagates
in the xz plane. The electric vector of the radiated
wave also lies in this plane (because the component
a 2 y is proportional to ky, we have E 2 y = (ico/c)a2y

= 0.

We have assumed above that the media on both
sides of the boundary are absolutely transparent, that

is, we have assumed e l f μ^ e2 and μ2 to be real. The
expressions for the field of the charge (III.129—135)
still apply if one or both media exhibit absorption.
Equation (III. 140) for the particle energy loss will
still be valid. In this case all calculations must be
carried out with complex e and μ. The appropriate
calculations for a plane modulated electron beam
have been carried out by Lashinsky.260

The literature contains several papers in which
the radiation of charges and currents moving in plane
slits in a dielectric have been considered.304'305 We
shall not discuss these papers here, but note that as
the width of the slit approaches zero the radiation of
a charge moving in the slit goes over to the radiation
of a charge in a continuous medium. However, the
radiation of a dipole in a narrow slit is the same as
in a continuous medium only if the dipole is parallel
to the plane of the slit. As the width of the slit ap-
proaches zero the radiation of an electric dipole per-
pendicular to the plane of the slit differs from the
radiation of a dipole in a continuous medium by a
factor (e 2 /e t )

2 where et and e2 are the dielectric
constants of the media inside and outside the slit.191
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