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I. INTRODUCTION

1Τ is extremely important to study the kinetics of the
decomposition of supersaturated solid solutions for
both theoretical and practical reasons. Investigations
in this branch of the science of metals and alloys de-
termine the factors that affect processes taking place
during heat treatment, and thus determine the possi-
bilities of different metastable states. The methods
used in the theoretical analysis of these processes are
based on the thermodynamics of nonequilibrium states
and the laws of physical kinetics; therefore this field
of study is also of interest from a general physical
point of view.

Both physical kinetics and the thermodynamics of
nonequilibrium states are subjects of comparatively
recent development. Difficulties are encountered in
applying these branches of theoretical physics to the
solution of specific problems. Moreover, the existing
theory of phase transformations was developed with
reference to vapor condensation processes. Great
care must be exercised in applying this theory to the
analysis of crystallization from the liquid state, and
even more so in examining the characteristics of
transformations in solid metals and alloys. Because
of this situation relatively few investigations have
been made of the kinetics of solid-state phase trans-
formations. Among the basic problems awaiting solu-
tion are the effects of stresses arising during phase
transformations and the effect that anisotropy of the
medium has on the rate of nucleation and the form of
a new phase. In the present investigation we do not
consider the crystalline properties of the medium
undergoing a phase transformation. This is obviously
permissible at sufficient high temperatures.

We shall confine our analysis to the kinetics of the
decomposition of supersaturated solid solutions. Be-
cause of the great complexity of the processes in-
volved and the large number of factors affecting them
in each individual problem, our scheme of calculation
will consider only the principal characteristics of the
phenomena in question. In the decomposition of a
supersaturated binary solid solution the new phase
can differ from the original phase with regard to the
original lattice type or composition, or both simulta-
neously. Therefore in the general case the diffusional
redistribution of solute atoms will be accompanied by
transitions of the solvent from one modification to an-
other or by the formation of a new chemical compound.

The first of these processes is associated with the
movement of atoms through distances considerably
greater than atomic separations, while the second
process amounts to a reorganization of the solvent
lattice at the phase interface. In our investigation
we assume that the isothermal decomposition rate of
a supersaturated solid solution is determined by the
kinetics of that particular process, among the simple
processes required for the transformation, which pro-
duces the smallest amount of the new phase in a given
time interval and plays the part of a limiting factor in
the transformation. In the case of a ternary system
the retarding factor can be the diffusion of the third
element. We shall show that the introduction of the
latter can in some instances change the retardation
factor of the process. Our theoretical analysis will be
illustrated with examples pertaining to processes oc-
curring during the heat treatment of both plain carbon
and alloy steels. The results can clearly be used for
the study of similar processes occurring in other me-
tallic systems.

We shall consider successively the kinetics of phase
transformations in one-component, binary, and ternary
systems. Pertinent experimental investigations have
been performed by the groups of G. V. Kurdyumov,1

S. S. Shtemberg,2 and S. T. Konobeevskii.

Π. ONE-COMPONENT SYSTEMS

In a one-component system, such as a polymorphic
metal, cooled below the stability range of the high-
temperature phase, regions appear in which the struc-
ture of a new modification is exhibited. Under the in-
fluence of thermodynamic factors these regions, if
they exceed a certain critical size, grow until they
occupy the entire volume of the system.3 (Regions
of less than critical size will be called embryos, and
larger regions will be called nuclei (or centers), of
the new phase.) Thus the nuclei of the new phase
grow steadily while embryos shrink and tend to dis-
appear. However, in any system fluctuations occur
consisting in local departures of the system from
equilibrium in the direction opposite to that expected
thermodynamically. The existence of fluctuations en-
ables the embryos to increase to a size suitable for
stable growth. Since the number of small embryos
exceeds the number of large embryos, their enlarge-
ment as a result of fluctuations is more probable than
the reverse. Therefore the growth of embryos results
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from the systematic influence of thermodynamic forces
and from fluctuation-induced size changes. At each
moment during an isothermal period t of a system its
metastable phase is described by the distribution
Ζ (g, t) of regions of the new modification with re-
spect to the contained number of atoms:4'5

dZ (g, t) _ с

dt d^

where D (g) is the probability that an embryo contain-
ing g atoms will acquire an additional atom in unit
time, and b (g) is the equilibrium size distribution of
embryos at which detailed balancing is established in
the system, b (g) is determined from

where N is the total number of atoms in the system,
and A<i>(g) is the change in the thermodynamic poten-
tial of the system when an embryo consisting of g
atoms is formed.6 The solution of Eq. (1) under the
conditions conventionally assumed in studying phase
transformations after a nonsteady-state period,7 en-
ables us to determine the nucleation rate of new-phase
centers, i.e., the number of embryos transformed into
nuclei per unit time per unit volume of the metastable
state is

(2)

(3)

/ = const·exp ί — -£ψ jexp

or, as follows from reference 8,

where

Sct =
2σ

σ is the surface tension at the phase boundary, AF0 is
the change in free energy accompanying the formation
of a unit volume of the new phase, p c r is the critical
nuclear radius, h is Planck's constant, R is the gas
constant, v0 is the specific volume, a is determined
by the structure and varies from 1 to 10 (a/v0

« 1 cm3/mole), and u is the activation energy for
the transfer of atoms through the phase interface.

The description of the phase transformation proc-
ess requires knowledge of the rate of directed growth
as well as the nucleation rate. For a spherical cen-
ter 9 · 1 0 of radius p, assuming the average frequency
of atomic vibrations at the phase interface to be ω
= a)m ax = k0rj/h, (where 0D is the Debye temperature),
and also assuming* Τ = θχ> we obtain

16 nr

kT J 'V dtdt Q У
(4)

where
when10

r a is the atomic radius. Equation (4) is valid

•These assumptions simplify the calculations without chang-
ing essentially the computed result for the growth rate of a center.

ZHT

When ρ — °° we have

dQ

It

- = ? «I-

9Л

0 . , u -4

Θ XV{,~T(fJ

(5)

(6)

Since the volume of a single atom is given by

v«

for a flat interface we have

dt exp V. kT J '
(7)

where χ is the boundary coordinate. In experimental
investigations of the kinetics of isothermal transfor-
mations in one-component systems, as in other phase
transformations, it is customary to determine the
kinetic curve, which is the dependence of the new-
phase volume V on the isothermal period t. If the
nucleation rate I and the growth rate dp/dt are known
as functions of t and temperature, the analytical de-
termination of V(t) is a purely mathematical prob-
lem, which has been solved by A. N. Kolmogorov under
certain assumptions in reference 11.

For the kinetic curve of the isothermal process we
have

YM= l _ e x p [ (8)

where Vo is the initial volume and f (t) is the volume
of the new-phase center at time t. Assuming steady
creation of centers and confining ourselves to suffi-
ciently large p, we transform to the molar quantities
U = Nu and W = Nw, where N is Avogadro's number,
and from (3) and (6) we obtain

- η = 1 — exp — : \YRT
З'Л*

Here d = 2r a and η is the transformed fraction of the
initial volume. From (9) we obtain the transformation
time for the fraction η of the volume:

3ft

• [ -
271n(l —η)

exp RT (10)

Thus with η given, Eq. (10) furnishes t as a function
of T.

III. BINARY SYSTEMS

1. Growth Rate of a Nucleus of a New Phase in the
Decomposition of a Supersaturated Noneutectoid
Solid Solution

The phase transformation involved in.the decompo-
sition of a supersaturated binary solid solution cannot
be attributed, as was done for one-component solutions,
solely to lattice reconstruction at the interphase bound-
ary. The difference between the composition of the ini-
tial solid solution and that of the new phase shows that
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FIG, 1. A portion of the Fe-C constitution diagram.

the process requires diffusional redistribution of the
dissolved component in addition to a change of the sol-
vent lattice.

It is usually assumed that the growth rate of new-
phase centers is determined by the diffusion rate of
the solute. This assumption has been used by Pines,1 2 '1 3

Zener,14»15 and others. However, it is sometimes pos-
sible that reorganization of the solvent lattice is the
controlling process. As an example we shall consider
the decomposition of austenitic steel, an interstitial
solid solution of carbon in the high-temperature modi-
fication γ-Fe which has a face-centered cubic lattice.16

A similar solution of carbon in low-temperature body-
centered α-Fe is called ferrite. The equilibrium car-
bon content in austenite does not exceed 1.7%; carbon
exhibits very low solubility in α-Fe. 1 7 An important
structural component of steel is cementite (Fe3C),
which has a rhombohedral lattice containing 6.67%
carbon. The iron-carbon constitution diagram in Fig.
1 shows the stability regions of different phases of
steel. The austenite stability region is bounded by the
lines GS and SE. In connection with heat treatment
it is important to study the decomposition of under-
cooled austenite at temperatures below 723° C.18 The
structure and composition of the phases resulting from
the isothermal decomposition of austenite depend es-
sentially on the original composition and the degree
of undercooling. We shall limit our discussion to the
growth rate of new-phase nuclei in isothermal aus-
tenite decomposition within the upper region of sub-
critical temperatures (723 — 500° С).

Since we are interested in determining the physical
mechanism of the investigated effects, we shall study
the initial stage of the transformation during which
nuclei grow practically independently. Later stages
begin to be affected by such factors as contact between
nuclei, altered solid-solution concentration as a re-
sult of decomposition19·20 etc. The iron-carbon dia-
gram exhibits a eutectoid point S at 723° С for 0.8%
carbon content (Fig. 1). Undercooled eutectoid aus-
tenite maintained isothermally in the upper range of
subcritical temperatures decomposes into alternate
plates of ferrite and cementite, forming a distinctive
structure called pearlite. If the austenite has under
0.8% carbon initially the decomposition begins with
the formation of ferrite nuclei in the undercooled

FIG. 2 Distribution of concentra-
tions ahead of the front of a growing
grain for Co < С»·

С
-, outer
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phase; these nuclei grow in a nearly spherical shape.
As the quantity of ferrite increases the carbon con-
centration in the remaining autenite is enhanced, ap-
proaching the eutectoid point. When the latter is
reached the pearlite transformation takes place. Thus
the decomposition of hypoeutectoid austenite results
in a structure consisting of ferrite grains surrounded
by pearlite. Similarly, the decomposition of hyper-
euteetoid austenite produces carbide grains in a
pearlite matrix.

Let us consider the growth of a ferrite nucleus in
undercooled hypoeutectoid austentite. If during growth
the outer side of the nuclear surface is in a region with
the equilibrium concentration13

= RTQJ
(ID

(where С я is the solute concentration in the old phase
when the two phases separated by a plane are in equi-
librium and v c is the atomic volume of the solute),
the rate of the process is determined by the carbon
diffusion rate.

It should be noted that (11) is not firmly established.
It is necessary to investigate further the equilibrium
conditions for coexisting phases taking into account the
thermodynamics of solid solutions.21 For small nuclei
we assume that the concentration distribution of the
solute, given spherical symmetry, is represented by

Л Г — 2 dC
(12)

The carbon concentration decreases with distance
from the nuclear surface, approaching the original
value Co (Fig. 2). The concentration inside of the
nucleus has the equilibrium value Сп„ for the given
temperature. It is clear that

(Co - С n p ) i яв» = 4π \ [C (ρ, ι) - Co]n p ) i (13)

It can be shown that in the case of a nonsteady-state
concentration distribution represented by

ac (14)

(where D = Doe~Q/R T is the diffusion coefficient, Do

is the coefficient of the exponential, and Q is the acti-
vation energy for diffusion), Eq. (13) assumes the dif-
ferential form

(15)ir r \ d Q - п(дС

For a steady state Eq. (15) is a valid approximation
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FIG. 3. Growth rate of a fer-
rite grain determined by (1) the
kinetics of lattice reconstruc-
tion, and (2) carbon diffusion.

for small ρ and low supersaturation.
In our case the solution of (12) becomes

Substituting (16) in (15), we obtain

gg η
dt ~

(16)

(17)

According to (11) the new-phase nucleus should have
a very rapid growth rate for small p. On the other
hand, the growth of a ferrite nucleus of near-critical
size is marked by relatively slow change of the solvent
(iron) structure, since the thermodynamic advantage
of reconstruction of the iron lattice in this range of
nuclear dimensions is very insignificant. During the
growth of a nucleus, excess carbon is precipitated
from the volume occupied by the new phase and ap-
pears on the nuclear surface. Because of the small
nuclear size the carbon deposited on its surface pro-
duces almost no change in the solute concentration in
that region. It can therefore be assumed that during
the first growth stage the solute concentration on the
nuclear surface has practically the initial value Co.
On the other hand, if Eq. (11) is applicable the equilib-
rium concentration for these nuclei is relatively large.
Thus the true concentration on the surface of a small
nucleus is below the equilibrium value. In this stage
of growth carbon can be accumulated on the nuclear
surface and the process rate is determined by the
kinetics of reconstruction of the solvent lattice. As
the nucleus grows its growth rate is accelerated and
the concentration outside of the phase boundary ap-
proximates Cp. Finally, the nuclear radius approaches
a limit р ц т when the concentration on the nuclear sur-
face is Cp. The retarding effect of the solute diffusion
rate now becomes important and the process rate is
determined by diffusion.8'22 In actuality there is no
sharp demarcation between different periods in the
growth of a nucleus. The transition from one growth
mechanism to another is gradual and cannot be asso-
ciated with any precise size.* It follows from the de-
scribed scheme that the growth of new-phase regions
from the minimum size at which we are entitled to

*B. Ya. Pines has considered the growth of a new-phase nu-
cleus during a steady-state stage of phase transformation in a
substitutional solid solution."
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FIG. 4. Graph of the function FQ3).

speak of a definite structure up to the limiting radius
Plim is described by Eq. (4). рЦщ corresponds to
the equivalence of (4) and (17) (Fig. 3). In the latter
equation we shall assume for simplicity Cp = Coo,
which is valid if v c (2a/RTpijm) « 1. In this approx-
imation we obtain

27Д-.Й

o Ca - С exp ( -1Пг
2(7

(18)

The foregoing discussion can be applied to the pre-
cipitation of cementite from undercooled hypoeutectoid
austenite, keeping in mind that р ц т can theoretically
also be smaller than p c r , i.e., a nuclear radius cor-
responding to the limiting role of the lattice recon-
struction mechanism is possible but not required.

When ρ — « we have Cp —- C«>. The condition for
the surface of a nucleus then becomes

Moreover,

C[Q(t),t] =

С {со, t) = Ct.

(19)

(20)

In this case the mathematical difficulty of the solution
is considerably alleviated and it becomes possible to
solve the nonsteady-state diffusion equation (14), for
which (15) is an exact condition.23'24 We obtain

C(r, <) =

where

2VDt ~Ш ,/-- r С г Л
e — V π erfc I = )

, r V2 V Dt
— / я erfc β

erfc β = -?·=· [ e-l'dl = 1 - erf β.

(21)

Substituting (21) in (15), we obtain

where β is a root of the transcendental equation

(22)

(23)

The function F (β) is represented by Fig. 4. It fol-
lows directly from (22) that
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dt
(24)

During the growth of a ferrite grain Cio is determined
by extrapolating the GS curve of the iron-carbon phase
diagram (Fig. 1). The analytical expression for this
quantity is

( 4 = 0.8 + 0.013(996-7).

We shall consider the case Co = 0.5% and C n p

(25)

= 0.04%. At Τ = 993° Eq. (25) gives c t = 0.839%. Thus
F (β) = 0.4, and from Fig. 4 we have β a 0.8. The car-
bon diffusion coefficient in austenite depends on tem-
perature and the carbon concentration as follows:25

31350

D (С) = (0.04 + 0.08% С) е т cm2/see (26)

The carbon concentration in the region surrounding
a ferrite grain varies from С„ to Co. We take the
average of D in this range of concentrations:

D(C)dC

31 350
cmVsec. (27)

Substituting the value obtained for β and the corre-
sponding value of D (C) in (24), we obtain

9.4y=-^=-10"4 mm/sec.
Yt

(28)

The experimental growth rate 2 6 of a ferrite grain is
compared with Eq. (28) in Fig. 5. It is important to
note in connection with our subsequent discussion that
the calculated curve, although lying below the experi-
mental curve, gives a good representation of the way
in which the isothermal growth rate of a ferrite nucleus
varies with time.

The considerations leading one of the present au-
thors to Eq. (24), which were presented in reference
23 at the beginning of 1948, were also published by
Zener at the end of 1949.14 Zener did not mention
reference 23 and stated that he knew no solution of
the foregoing problem for the spherically symmetrical
case.

The dependence of the isothermal growth rate of a
ferrite nucleus on the temperature at which austenite
decomposes is given by the factor /3VD (C) , which is
a function of Co and T. Figure 6 shows /3VD (C) as
a function of Τ for different values of Co. The solid
curve in the figure connects the maximum growth

ш

\

г
\

\
FIG. 5. Growth rate of a fer-

rite grain at 720°C. Curve 1 - ex-
perimental; curve 2 — calculated.

ΰ Щ 40 SO
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FIG. 6. Growth rate of a spherical
ferrite nucleus β \/D(C) vs Τ and the
initial carbon concentration Co.

w
CO.

rates at different initial carbon concentrations. This
figure agrees qualitatively with the growth rate of a
nucleus as a function of the initial concentration and
of temperature that was obtained by A. A. Bochvar in
an experimental investigation of the crystallization of
eutectic alloys.2 7

For a spherical cementite nucleus, taking Co = 1.2%
and Τ = 993° and considering that cementite-austenite
equilibrium is subject to the condition

CL = 0.8-0.002(996-Γ),

we find F (β) = 0.07, β = 0.2, and

v = -~10-i mm/sec.

(29)

(30)

Figure 7 shows the dependence of the growth rate of a
cementite nucleus (j8V D (C) , t = 1 sec) on Τ and
the initial carbon concentration.2 8

During the annealing of steel, carbide plates with
rounded edges are apparently precipitated.2 9 If the
thickness-length ratio of a plate is small its edge can
be approximated by a parabolic cylinder.3 0 In Fig. 8
the у axis is perpendicular to the χ axis lying in the
horizontal cross section of a plate. The solute dis-
tribution ahead of the edge of a growing plate is given
by

dt
(31)

The differential form of the mass balance equation is

( 3 2 )

where η is the normal to the interface and u is a
dimensionless variable defined as the ratio of the
radius of curvature ρ at the vertex of the parabola
through a given point to the radius of curvature p 0 at
the vertex of the parabola representing the interface

a;

FIG. 7. Growth rate of a
spherical cementite nucleus
/3\/ЩС5 vs Τ and the initial
carbon concentration Co.

327 127 727 627 S27 t'C
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FIG. 8. Schematic drawing of the р ю w S c h e m a t i c outline of the
edge of a growing new-phase plate at e d g e o f a p e a r i i t e g r a i n -

t = 0.

(in two dimensions). Assuming that a steady state is
rapidly established at the interface, the growth rate ν
of a cementite plate is not time-dependent. С is a
function of the complicated argument

Ferrite |--p-

Qo
—
Qo

(33)

Solving the diffusion equation (31) subject to the
conditions

we obtain

1 —erf pu

2

l-erf/-f '

(34)

(35)

where

Substituting (35) in (32), we obtain a transcendental
equation for p:

4iP)= /% (36)

This function is shown in Fig. 9.
As an example let us consider the growth of carbide

platelets at Τ = 993° and Co = 1.2%. ρ = 0.005 is ob-
tained. The maximum growth rate of a platelet corre-
sponds to p0 =* 2p c r and is calculated to be 0.4 χ 10"3

mm/sec.

2. The Growth Rate of a New Phase in the Decomposi-
tion of a Eutectoid Solid Solution

Pearlite results from the decomposition of under-
cooled eutectoid austenite, as already stated. At the
present time the mechanism responsible for the for-
mation of the lamellar structure of pearlite is not
clearly understood. Insufficient data are available for
a quantitative analysis of the pearlite nucleation rate.
We shall outline a hypothetical qualitative model of
pearlite nucleation. It is assumed that the transfor-
mation begins with the appearance of a carbide nucleus
in undercooled eutectic austenite. As this nucleus

as
US.

FIG. 9. Graph of cp(p).

J

grows, the carbon content diminishes in the austenite
region adjacent to the surface of the nucleus; there-
fore the probability of the creation of a ferrite nucleus
increases. A ferrite nucleus arising adjacent to a
cementite center precipitates carbon. There is now
relatively less carbon at the side of the cementite nu-
cleus opposite the first ferrite nucleus. The most
favorable conditions are thus created for a second
ferrite nucleus, so that ferrite nuclei now border the
cementite nucleus on both sides. Growth ceases in
the contact regions between the nuclei. Similarly, a
new cementite nucleus should arise adjacent to each
ferrite nucleus, leading to a chain of alternating
cementite and ferrite nuclei. In time the links of the
chain, which were originally spherical, will flatten
out because growth ceases at the surfaces in contact.
The ultimate pearlite nucleus consists of alternate
ferrite and cementite layers (Fig. 10). This qualita-
tive discussion will now be confirmed by quantitative
estimates.

Let us consider a cementite lamella with equilib-
rium carbon concentration at its surface, varying from
point to point in accordance with the changing radius of
curvature of the interface. The radius of a critical
ferrite nucleus should depend, from a rigorous point
of view, on the carbon concentration in the initial and
final phases, although the formation mechanism
amounts to reordering of the solvent lattice. This
follows from the fact that AF0 varies with Co and C n p ;
this has been taken into account as proposed in refer-
ence 31. Taking σ = 70 erg/cm2, Τ = 873°, and U = 35
kcal/mole, and

Δ/Ό = + Nc (10 500 - 3.425Γ) + (37)

(where Np e and Nc are the mole fractions of iron
and carbon, and AF* is associated with the ordering
of the solid solution and is negligibly small in our
present case), we obtain the result depicted in Fig. 11.
The probability of the appearance of a ferrite nucleus
at a plane austenite-cementite interface is much
greater than at the edge of a cementite plate.

Thus a pearlite nucleus grows both by the joining
of new ferrite and cementite nuclei, and by the ad-

FIG. 11. Eerrite nucleation rate
at austenite-cementite interface vs.
curvature of the interface.

loglog(MOM O O°)
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vance of the edges of ferrite and cementite lamellae
into undercooled austenite.31 As in the case of single-
phase precipitation, the growth of eutectoid grains can
be limited either by the kinetics of lattice reconstruc-
tion or by the carbon diffusion rate in austenite.

We shall confine ourselves here to the second of
these possible processes. We shall calculate the
edgewise growth rate of a pearlite grain, which means
the rate of advance of the edges of ferrite and cement-
ite lamellae in the pearlite transformation. When the
growth rate of a pearlite nucleus is determined ex-
perimentally we obtain an average value depending on
the edgewise growth rate of the pearlite nucleus and
the creation rate of ferrite and cementite nuclei in the
direction perpendicular to the contact plane between
ferrite and cementite lamellae. Since pearlite grains
are almost spherical we can expect close agreement
between the experimental rate and the calculated edge-
wise growth rate of these grains.

The actual calculation requires the determination
of the carbon concentration at a pearlite grain surface.
In our foregoing discussion of the new-phase growth
rate at noneutectoid concentrations we showed that
after a transition through a definite limiting size an
equilibrium concentration, depending on the decompo-
sition temperature and nuclear radius, is established
outside of the nuclear surface and is maintained during
subsequent growth. In the case of pearlite we have at
a cylindrical cementite-austenite interface

and at a ferrite-austenite interface
a*f

(38)

(39)

where a a c and σα£ are the surface tensions on the re-
spective phase boundaries.

Before proceeding with the proposed method of cal-
culating the edgewise growth rate of pearlite centers,
we shall discuss reference 32, which is concerned with
the same problem. On the basis of experimental data
Brandt assumes that the edges of the ferrite and
cementite lamellae in pearlite advance at a constant
rate into the original austenite, and writes the diffu-
sion equation describing the redistribution of carbon
in austenite in a moving coordinate system with its
origin at the center of the edge of a cementite lamella.
The diffusion equation will thus be solved in a coordi-
nate system moving at constant velocity along the ab-
scissa! axis, for a region bounded on one side by a
complex curve (the pearlite-austenite boundary) of
unknown shape. Unjustifiable simplifications are intro-
duced because of the complexity of this formulation.
The function describing the carbon concentration in
austenite is written as an infinite series cut off at the
third term; the coefficients of all higher terms are
thus assumed to vanish. Supplementary conditions

are used to determine the coefficients of the first
three terms.

According to a general theorem of mathematical
physics, a unique solution of a second-order partial
differential equation is obtained only when the sought
function or its first derivative is given along an entire
contour bounding the region in question. The cutting
off of the series in reference 32 therefore corresponds
to fixing the carbon concentration at the pearlite sur-
face in such a way that all coefficients except the first
three will vanish. However, the carbon concentration
at the pearlite-austenite interface must clearly have
an equilibrium value determined by the curvature of
the pearlite nucleus at the given point. These consid-
erations make it desirable to devise a different scheme
for calculating the growth rate of pearlite grains.33

The carbon concentration distribution ahead of the
front of a pearlite transformation is described by a
two-dimensional diffusion equation, which for a steady
process in a coordinate system moving at velocity ν
with the front becomes

me
dx*

ν ac _ 0

D дх - (40)

The solution of this equation, taking into account the
periodicity of concentration in the у direction, can
be represented by

С (χ, у) = Са + 2 Кпе~а»х cos bny. (41)

where b n = (27r/S0)n and So is the plate separation in
pearlite. Kn and a n are determined from (40) and the
condition of mass balance at the interface, which is
given approximately by

< 4 2 >

where y0 is the coordinate on the interface and Cn(y)
is the carbon concentration distribution function in
pearlite. Equation (42) is valid if we assume that the
normal at any point of the austenite-pearlite interface
is parallel to Ox. This simplification is equivalent to
the assumption that in the range of χ from the pearlite-
austenite interface to the zOy plane the variation of
carbon concentration in austenite can be neglected. In
this way the true carbon distribution along the surface
of a pearlite nucleus is "projected" on the zOy plane
(Fig. 10). In addition to (42) we require

C(0, 0) =
(43)

It must also be remembered that Cn(y) has the form
shown in Fig. 12.

After a number of transformations we obtain, for
the determination of

(44)
SM
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1 FIG. 12. Schematic dia-
gram of the carbon distribu-
bution in pearlite.

the transcendental equation

i i = O(«) = -yi L , , '•' J , (45)

For C0=0.8%, Cf = 0.04%, and Cc = 6.67%, Φ(α) is

shown in Fig. 13.

Assuming the value of the carbon diffusion coeffi-

cient in austenite that was given in Eq. (26) and aver-

aging in the indicated manner, we obtain D (C). We

must also take34

1 5

96 — 7 1 •10"* cm.

Equation (44) is easily transformed into

(46)

(47)

Cp and Cp are related to the radii of curvature of

cementite-austenite and ferrite-austenite interfaces

by Eqs. (38) and (39). The realized radii of curvature

permit the system to approach equilibrium at a maxi-

mum rate, i.e., edgewise growth of pearlite grains

proceeds at the maximum rate. Therefore, in accord-

ance with (45), Cp must be as large as possible and

CJg must be as small as possible. It follows from (38)

and (39) that this condition requires a maximum radius

of curvature at the center of the cementite-austenite

interface (pc = °°) and a minimum radius of curva-

ture at the center of the ferrite-austenite interface.

The latter radius is that of the smallest ferrite grain

according to our scheme, and is taken to be the crit-

ical nuclear radius p c r for a γ-Fe —-α-Fe transfor-

mation in pure iron. Therefore

°W "c ΔΡ»

where we have taken aaf га σ£0, ν ρ 8 is the atomic

FIG. 13. The function Φ(α).

FIG. 14. Edgewise
growth rate of a pearlite
grain vs. temperature.
Solid curve —experimen-
tal; dashed curve —cal-
culated.
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volume of iron, p c r = 2afc /AF0, and AF0 is the
change in free energy per gram-atom in the γ-Fe

— α-Fe transformation. According to reference 1,5,

in the temperature range of present interest experi-

mental values for AF0 can be expressed by

AF0 = RT [0,538 - (Τ - 273) -0.0007]. (48)

Figure 14 shows fairly satisfactory agreement be-

tween calculations based on Eq. (47) (the dashed curve)

and experimental results for industrial eutectoid steel.35

However, the experimental result for the growth rate

of a pearlite nucleus in the decomposition of high-purity

eutectoid steel36 is 10 —15 times larger than the calcu-

lated value. Since our theoretical treatment neglected

the effect of impurities, we now see that the decompo-

sition of a solid solution is affected by an additional,

accelerating factor that we failed to consider. This is

confirmed by Fig. 5, where the experimental curve

also lies above the theoretical curve. The omitted

factor is obviously associated with the characteristics

of solid-state phase transformations that are due

mainly to anisotropy of the transformed substance

and transformation-induced stresses.

3. The Influence of Transformation-Induced Stresses
on the Growth Rate of Nuclei

In this section we discuss the influence of the afore-

mentioned stresses on the growth rate of new-phase

nuclei during the isothermal decomposition of solid

solutions. Anisotropy of the medium will not be taken

into consideration. The influence of the stresses on

the kinetics of the process is complicated by the si-

multaneous effects of two factors. The presence of

different atomic volumes of the new and old phases

around a nucleus produces a stress field that is in-

dependent of the solute concentration. Also, an in-

homogeneous concentration distribution around a nu-

cleus resembles an inhomogeneous temperature dis-

tribution causing thermal stresses, and thus generates

"concentration stresses." Both kinds of stresses have

been studied by V. S. Gorskii,37 S. T. Konobeevskii,38'39

and M. I. Zakharov and N. F. Lashko.40

A differential equation for diffusion in a stress field
is given in reference 38, and an analogous equation
based on thermodynamic analysis was derived in ref-
erence 41:*

•The derivation of (49) is based on special considerations
that are extraneous to the present discussion.
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дС шСг>0 (49)

It is assumed here that solute atoms change the lattice
parameter of the solid solution according to the law

α = αο[1 + ω(<7 — Co)]. (50)

In this equation ω for substitutional solid solutions
represents the difference between the atomic radii
r g and гд of the solute and solvent, respectively,
as follows:

"A

In interstitial solid solutions ω simply represents
the dependence of the solvent lattice parameter on the
solute concentration. The deformation of the solvent
lattice around a nucleus, resulting from the presence
of solute atoms with concentration C, is

outer / /•» /Ύ \

ec = ω ( 6 —C o ).

Within a nucleus we have, analogously,*

He = u > ( C n p -Co).

(51)

(52)

Equations (51) and (52) can be used to calculate the
stress tensor components in the case of a spherical
nucleus, using the conventional methods applied to
temperature stresses in the theory of elasticity.42

Temperature is replaced formally by the concentra-
tion and the coefficient of thermal expansion by the
quantity ω. Following some simple transformations
we obtain for r > ρ (t):

(53)

and Ε is the elastic modulus. UsingHere u = — —
ρ (t)

(53), we obtain

σ,, = σ, + 2στ = - 3£ω (С - Со). (54)

The substitution of (54) in (49) gives us an equation for
the diffusion of the solute around a nucleus, taking con-
centration stresses into account:

ac

where D' = D 1 +

(55)

ЗСурЕог
RT The solution of this

last equation is simplified by linearization, which is
permissible since С varies over only a relatively
small range. We therefore replace the true concen-
tration with its average value

- (56)

*We are neglecting here the deformation resulting from differ-
ent types of atomic packing in the two phases." This usually
does not affect the calculated result.

It can easily be seen that (55) is mathematically
identical with (14). For example, in the case of fer-
rite grain growth the solution of the former is given
by (21) with D replaced by D'.

We introduce

Cv0Eu>2

ИГ

Then

(57)

(58)

and the growth rate of a nucleus, taking concentration
stresses into account, is

υ = Vt
(59)

The difference between the specific volumes of the
two phases produces stresses that shift the lines in the
constitution diagram of the system; this will affect the
value of β obtained from the transcendental equation
(23). However, we shall neglect this effect since a
calculation given in reference 43 shows that it is in-
significant.

For the growth of the ferrite grain considered
above at 720° С and Co = 0.022 atomic fraction (or 0.5
weight %) we have Vl + 3χ = 1.27. The ratio of fer-
rite grain growth calculated from (59) is compared in
Fig. 15 with the growth rate as calculated neglecting
stresses, and also with experimental findings, which
are more nearly approximated when stresses are
taken into account.

We shall now calculate the stress field around
spherical nuclei. Substituting in (53) the expression
(21) for the concentration field with D replaced by D\
we obtain by integrating,

E(o "3/(«β)
/(β) 2β»/(β)

Η » 1 -

cm-i

2β3/ (β)

с„-с0

(60)

where

Figure 16 shows the results obtained from (60) for
ferrite grain growth with the parameters Co = 0.5%,
β = 0.8, Τ = 993°, Ε = 2 χ 104 kg/mm2, and ω = 0.2.
Radial tensile stresses (σΓ > 0) appear on the sur-

FIG. 15. Growth rate of a
ferrite grain at 720° С Curve
1 — experimental; curve 2 —
calculated neglecting stresses;
curve 3 — calculated including
stresses.

800
1

w го 30 40 SOt, sec 60
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σ, kg/mm2

2

FIG. 16. Stress distribution
near a growing ferrite grain. 1 — ra-
dial component σΓ; 2 —tangential
component ar; 3 — values of
\at-or\.
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face of a nucleus up to u = 2, after which σ Γ becomes
negative. Tangential stresses σ τ near the surface of
a nucleus are negative and are reversed at u = 2.3. It
is especially interesting to study the absolute value of
the difference | σ Γ — σ τ |, since the condition for a
plastic transition of the substance can be given as 4 4

| oT - στ \ > σ8, (61)

where as is the yield point determined from tests on
macroscopic samples. In our case

С nn —

2β3/(β)

np —^o "1

(62)

Figure 16 shows that | σ Γ — σ τ | is very large near the
nuclear surface, but decreases rapidly, vanishing at
u = 2.2, after which there is some increase.

If σ 8 is taken as 10 kg/mm2, in accordance with
mechanical tests at high temperatures, a plastic state
is produced only in the immediate vicinity of nuclear
surfaces. It should be noted that the given value of a s

is assumed arbitrarily, since it is at present not en-
tirely clear to what extent mechanical properties de-
rived from experiments on macroscopic samples can
be applied to the range of very small dimensions.
X-ray determinations of the elastic modulus suggest
that this modulus is approximately identical for vol-
umes of different orders of smallness. No analogous
statement is justified regarding σ 8 , for which a de-
tailed study of the mechanism of plastic deformation
in microscopic volumes is required. The modern dis-
location theory4 5 suggests that the yield point in micro-
scopic volumes is considerably above the value as-
sumed by us. Plastic deformation at the surface of a
nucleus leads to partial relaxation of the concentration
stresses and therefore diminishes their effect on the
nuclear growth rate.

It follows from the foregoing that when a nucleus
is growing in undercooled austenite the stresses in-
duced by the phase transformation itself exercise an
autocatalytic influence on the growth process. An es-
pecially marked effect of concentration stresses can
be expected in the decomposition of eutectoid solid

solutions. Large changes of concentration within small
volumes induce appreciable stresses within the decom-
position product, and also in the initial solid solution
as a result of interactions between the phases.

We shall illustrate our hypothesis by calculating
the edgewise growth of pearlite grains taking account
of concentration s tresses . 4 6 ' 4 7 The diffusion of the
solute in the stress field is described by (49), which
we represent approximately39 by

ас
ИГ- = div (D' grad C) - div (D" grad ε);

3

D"=D-
SC2

(63)

where F o is the free energy of the solid solution in
the absence of stresses, expressed in cal/gram-atom;
L = E/(\—1v) = 3E, since the Poisson coefficient is
v = Уз' a r e strain tensor com-cxx> cyy>
ponents.

In the approximation of dilute solutions we obtain
d*F0 RT

RT

τγ-Τ)

We shall now calculate the edgewise growth rate of a
pearlite nucleus if diffusion processes in austenite
are represented by (63). We transform to coordinates
moving with velocity ν along the χ axis and consider
the carbon concentration to be constant ahead of the
phase transformation front during the process (Fig. 10).
Equation (63) then becomes

div (£>' grad C) - div (D" grad ε) + υ grad С = 0. (65)

We must know how e depends on С in order to
solve (65). As already mentioned, this problem in the
theory of elasticity can be solved by methods used for
thermoelastic stresses.4 2 It is necessary to obtain the
auxiliary function Uj — Tj, where

^*ϋλ = 0, V2ri = £ w (C-C 0 ) . (66)

The concentration distribution in austenite is here
given by a formula analogous to (41). We shall now
determine the coefficients Kn and an, which are con-
siderably complicated in the present case.

We begin by seeking the function T t, which can ob-
viously be represented by

n = 0
*Οcosbny, (67)

where b n = (2π/β ο )η. Substituting (67) in the second
equation of (66), we obtain the solution*

(χ) = -°m s h

Since for χ — « all components of the s t ress tensor
must approach zero, we have An = 0. U t is written
in the form

*sh . sinh.
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(69)

The function Wn(x) is obtained by solving the equa-
tion resulting from the substitution of (69) in the first
equation of (66). In virtue of the aforementioned con-
dition when χ — °°, we have

(70)

where Mn and Nn are arbitrary constants.
With Uy and T t known, we obtain the following

stress tensor components in a supersaturated solid
solution:

σ τ τ =
n = 0

p—bnx

+ Ea>bn \ Kner«& sh bn (x - ξ) d% 1 cos bny,

ση = "каюТг) = Σ [ δ » Μ . * + L«)е~ЬпХ-2Nnbne-b"*

дхду

+ E<i>bn J Kne-°rt sh bn (x - sin bny.

(71)
The components of the strain tensor are related to

σ χ χ

ν)
— ) ω ( С -

(72)

In the expressions in Eq. (64) for D' and D* we
replace С with C, where

_

Equation (65) then becomes

D'AC- D"Ae + υ grad С = 0. (73)

On the basis of (72) and expressing the concentration
by (41), we obtain the following equation for a n :

whence

RT ' Sov

(74)

(75)

(76)

(77)

When concentration stresses are taken into account,
Eq. (42) becomes

оЛ^'С^О-о-ЧЮ-о· (78)

Substituting (72) and (41) for С in (78), we obtain the
following equation for Kn with η >: 1:

"(Υ, - *n) + KnanD' + §j§- D"Nn - Ща^^Га = О. (79)

The carbon distribution in pearlite is here represented

2(0,-0,) .
: Sin («*)) (80)

Equation (80) corresponds to the scheme shown in
Fig. 12. Equation (79) contains the unknown coeffi-
cients Nn, which we shall determine from the equal-
ity of the normal stresses σχχ and displacements u
at an interface.

It follows from (71) that on the austenite side of an
interface we have

cos bny, (81)

since

β-** sh bn {x -1) d% = -ф

The complex character of pearlite, resulting from
the fact that it consists of lamellae having two differ-
ent structures, makes it impossible to calculate con-
centration stresses using the theory of thermoelastic-
ity. However, as a first approximation it will also be
assumed in this case that we are seeking functions Uj
and T t satisfying the equations

У)-Со]. (82)
dyi ' dy2

From the solution of (82) and equilibrium conditions at
the phase front

So

\ axx dy = 0, (83)
о

we obtain

σχχ=-Εω 2 yncosbny.

From (84) and (81) we obtain

The displacement in pearlite is

tdx.

(84)

(85)

(86)

where

Hence

n (y)-Col.

(87)

u a in austenite is determined from the relationship
between displacements and stresses:
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FIG. 17. 3>(\,b)forb = 2.3
(curve 1) and b = 1.4 (curve 2).

(88)
In virtue of (71), (85), and (87) we obtain

Νη = Εω[κη *«»+»» - 3 - Κ Ι . (89)

The substitution of (79) in (89) leads to the solution

12 , ,

Κ η — Yn ~l

2 2 >-*»(

(90)

We have thus obtained a function С (х, у) for the car-
bon concentration distribution in austenite. From the
conditions (43) we have

n=t
(91)

(92)

Subtracting (91) from (92) and substituting for γ η , we
have

1

= 0 θ"(λ)-ΐ+^-6-

(94)

as a function of temperature. Curve 3 is obtained
from Eq. (47) (b = 0). The figure also shows experi-
mental findings for two industrial eutectoid steels
(curves 4 and 5)3 5 and for a high-purity eutectoid steel
with 0.93% C, 0.002% Si, and < 0.004% Mn (curve 2).3 6

The theoretical value of the edgewise growth rate is
considerably enhanced by taking concentration stresses
into account, and approaches the experimental value.

When the carbon concentration distribution is known
it is not difficult to determine the corresponding con-
centration stresses, 4 8 which are represented analytic-
ally by

— Yn Г ^ Ч Г Ί e~bn* Η " , " f " \ cos Ъ„

e

<-bl J C 0 S °пУ<

(95)

These equations are used to plot curves representing
the concentration stress distribution ahead of the pearl-
ite transformation front (Fig. 19 a-c). The condition
for the plastic transition is now given by reference 44

(93)

The value of b depends on the transformation tem-
perature, varying from 1.4 to 2.3 in the temperature
range from 723 to 500° С Figure 17 shows Φ(λ, b)
for b = 2.3 (curve 1) and b = 1.4 (curve 2). Curve 1
in Fig. 18 shows the edgewise growth rate of a pearlite
grain calculated from

ее

so

to

X

Ю

FIG. 18. Edgewise growth rate
of a pearlite grain. 1 — theoretical
from (94); 3 - theoretical from (47);
2 —experimental for high-purity
eutectoid steel; 4, 5 — experimental
for industrial steels.
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FIG. 19. Stress tensor components,
a) σ%%, b) Oyy, and c) t x y for у = 0,
so/4, s o/2, and 3/4 s 0 .
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* x-l.

FIG. 20. Condition for
plastic deformation at a
pearlite front. Dashed
l i n e - for as/2.

FIG. 22. Curves for the ki-
netics of isothermal austenite
decomposition in unalloyed
steel. Solid curve — experimen-
tal; dashed curve — calculated.
(This was a 5% transformation.)
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-ζ\αχχ — σνν) (96)

Figure 20 shows the extent of the region outside of an
interface in which plastic deformation can occur. As
in the case of a spherical nucleus, plastic flow partially
relaxes the concentration stresses and thus reduces
their influence.

4. The Decomposition Kinetics of Supersaturated
Binary Solid Solutions

There are two factors determining the kinetics of
phase transformations in binary solid solutions. These
are the reconstruction rate of the solvent lattice and
the solute diffusion rate. As a specific problem we
shall consider the precipitation of ferrite from under-
cooled hypoeutectoid austenite. As already shown, up
to ρ = рцт > pcr the rate of the process is deter-
mined by the reconstruction of the iron lattice, while
for ρ > pjim the limiting factor is carbon diffusion.
If τ is the time required for a nucleus to grow to the
radius PHm, the growth rate of a ferrite nucleus is
given by (4), and for t > τ by (17). Nucleation takes
place as in a one-component system and is represented
by Eq. (3). For the general case we thus obtain49

Ι 15Μη(1-η)
exp V RT

8·3 β Λ 3 £» 3 / 2 β 3 -exp Ш
(97)

For t « τ the reconstruction rate determines the
transformation kinetics, which is represented by (10).
When the carbon diffusion rate is the limiting factor
we have

SHOO

mo

2000

1000

FIG. 21. хцщ in carbon
steel at different tempera-
tures.

SOU

P (98)

Equation (18) is used to calculate х ц т = р ц т / Р с г ·
We assume Co = 0.5% and obtain Do = 0.1 cm2/sec
from (26). The activation energy for the γ-Fe — a - F e
transformation in carbon steel is taken to be the aver-
age of the activation energies for recrystallization in
a- and γ-iron. 5 0 The results are U = 35 kcal/mole,
with r a = 1.25 χ 10"8 cm. The value of σ has practic-
ally no effect on the determination of рцт, which is
usually considerably larger than p c r ; σ affects only
the latter. An indirect calculation shows that in our
case x i i m increases at lower temperatures as shown
in Fig. 21. Thus, while carbon diffusion is the limit-
ing process down to 650° C, the importance of the lat-
tice reconstruction mechanism increases in the range
650 — 600° С and becomes the controlling factor below
600° С It follows that the kinetics of the transforma-
tion can be calculated from (98) down to 650° C, but
that (97) must be used at lower temperatures.

The solid curve in Fig. 22 represents the kinetics
of the 5% austenite transformation of steel containing
0.45% carbon,5 1 while the dashed curve represents the
corresponding calculation. The calculation required
knowledge of the value of σ in W. σ is not known ex-
actly and will be considered a free theoretical param-
eter. An indirect confirmation of the correctness of
our reasoning is provided by the reasonable order of
magnitude of σ, giving satisfactory agreement between
the calculations and experiment. In our case*

σ = 40 +0,36 (996 -Τ). (99)

Although AF0 depends on the carbon content, in the
present calculation we assume as an approximation
that Eq. (48) represents the change of free energy in
the γ — a transformation.

The kinetics of the pearlite transformation can be
analyzed by comparing the theoretical kinetic curves
with experimental results. 5 2 A calculation of the ki-
netics of the pearlite transformation with the rate of
lattice reconstruction as the controlling factor is rep-
resented by curve 2 in Fig. 23. In the calculation 0.8%
carbon content was taken for the eutectoid steel. Since

Temperature, С *In all subsequent formulas σ i s given in erg/cm2.
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FIG. 23. Kinetics of the isothermal (pearlite) decomposition of
austenite in unalloyed steel. (This was a 50% transformation.)
1 — experimental; 2 — calculated with the у -» α lattice transforma-
tion as the controlling process; 3 —calculated with carbon diffu-
sion as the controlling process.

a higher carbon content reduces the activation energy
for iron self-diffusion according to the law53

U=Uo(i-0AC%), (100)

in our case we have U = 30 kcal/mole (Uo = 45 kcal/
mole).

In the kinetic calculation we assume that pearlite
nuclei grow as spheres. This assumption is based on
the approximate equality of the edgewise and sidewise
growth rates of pearlite.54 Curve 3 of Fig. 23 shows
the result of a calculation with carbon diffusion as the
limiting process, taking account of concentration
stresses. Curve 1 is based on an experimental inves-
tigation of the pearlite transformation in plain carbon
steel (η = 0.5). In this case the pearlite transforma-
tion is clearly not limited by the rate of the γ —- a.
polymorphic transformation and is therefore controlled
by carbon diffusion. Since cementite was taken to be
the leading phase the calculation required a value of
the surface tension at the austenite-cementite inter-
face; it was assumed that

aoc = 48+ 0.3(993-7"). (101)

It should be noted that the somewhat arbitrary values
of σ used in the present work and any possibly refined
values for free-energy changes accompanying nuclea-
tion cannot affect our general conclusions, since the
pertinent equations contain the same power of the work
of formation W of a critical nucleus, and therefore do
not determine the relative positions of the calculated
curves 2 and 3.52

The results of the present investigation show that
the hypothesis in reference 55 to the effect that the
lattice reconstruction mechanism controls the eutec-
toid transformation in unalloyed carbon steel is not
valid in the range 723 — 600° C. This hypothesis was
advanced in reference 55 because the conventional ex-
plantion based on the carbon diffusion mechanism did
not explain the pearlite transformation in high-purity
unalloyed eutectoid steels. Allowance for the way in
which diffusion is affected by the concentration stresses
arising in the pearlite transformation leads to good

to'

to*

to3

I №

to

ro /a' toJ to* to1 χ

FIG. 24. Graphs corresponding to (4) and (24) for determining
xlim i°r ferrite grain growth in unalloyed steel (1) and in chrom-
ium steels (2, 3, 4) containing 3%, 6%, and 9% chromium, re-
spectively, at 720°C

agreement between experiment and the pearlite growth
rate calculated from (94). On the other hand, in ref-
erence 55 empirical constants are chosen in order to
establish an artificial connection between the experi-
mental curves and Eq. (7) for pearlite growth.

IV. TERNARY SYSTEMS

In connection with the decomposition of a supersat-
urated ternary solid solution it is necessary first to
determine the effect of the third element on х ц т · This
effect appears in changes of С ю , C n p , U, Q, Do, and
σ. As an illustration we shall consider the kinetics of
the austenite decomposition of hypoeutectoid alloy steel,
i.e., of a system containing iron, carbon, and an alloy-
ing element such as Cr or Mo. The alloying element
changes the positions of phase boundaries in the alloy
equilibrium diagram, and therefore changes C» and
C n p . The presence of the alloying element also changes
the foregoing process parameters U, Q, Do and σ. Our
thesis is subject to the condition that diffusion of the al-
loying element does not itself inhibit the process.

We shall calculate the change of xi j m at 720° С for
different chromium contents (with 0.5% carbon con-
tent). Curves 1 — 4 in Fig. 24 show the dependence of
dp/dt on χ calculated from (24); curves l ' - 4 ' were
calculated from (4). The intersections of the corre-
sponding curves (1-1', 2-2', 3-3', 4-4') determine
xlim f° r each steel. С ю and Cnp are obtained from
the constitution diagram,56 by extrapolating to low tem-
peratures the boundary of the γ region for a given
content of the alloying component. For example, with
5% Cr we have

= 0.48 + 0.016 (1083 -7"). (102)

The effect of alloying on Do and Q is considered in
reference 57. In alloys containing up to 7% chromium,
Do increases to 0.21 cm2/sec, and Q increases to
38 900 cal/mole. A study of the available data58 indi-
cates that the ferrite-austenite surface tension de-
creases in an alloy (to 20 erg/cm2 in the case of chro-
mium ). We take
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FIG. 25. Kinetics of isothermal austenite decomposition in
steel containing 0.4% С and 8.5% Cr (a 5% transformation). Solid
curve-experimental; dashed curve - calculated.

σο/ = 22+ 0.3(993 — Τ).

Our calculation of AF0 follows:31

AF0 = NFe hFlT + Nc (10500 - 3.425Γ) + Δ/\,

(103)

(104)

yhere Nj is the mole fraction of an alloying element,
Ki are temperature-dependent alloying constants, and
the other quantities are the same as in (37). For a
chromium alloy49 we have

)= 1200- - 500). (105)

The change of U in alloys is arbitrarily taken to
represent the way in which the activation energy for
iron self-diffusion in austenite57 depends on alloying.
For chromium alloys this dependence is represented
analytically by

£/r = Z70(l + 0,044C), (106)

which agrees with experiment. Alloying considerably
increases x ^ , which even at 720° with 6% Cr has a
value of the order of tens of thousands. Thus in the
kinetics of the austenite transformation in chromium
steel the limiting process is the mechanism of lattice
reconstruction, and the kinetic curve is represented
by Eq. (10).

The solid curve in Fig. 25 represents a 5% austen-
ite transformation in steel containing 0.4% С and 8.5%
Cr according to data given in reference 59. The dashed
curve represents a calculation based on Eq. (10). Some
other alloying elements appear to have a similar effect
on the kinetics of ferrite precipitation from austenite.

We shall now consider how changes of the carbon
content affect the kinetics of ferrite precipitation from
undercooled austenite. In this case it is convenient to
base an analysis of the limiting mechanism on the time
when a nucleus attains its limiting size:60

Slim 27ft

(107)
The calculation of τ shows that the condition τ » t
already given for the applicability of (10) is fulfilled
in this case.
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FIG. 26. Kinetics of isothermal austenite decomposition in
steel alloys (a 5% transformation). Experimental: 1-8.5% Cr and
0.05% C; 2 - 8 . 5 % Cr and 0.04% С Calculated: l ' - 8 . 5 % Cr and
0.05% C; 2'-8.5% Cr and 0.04% С

The dashed curves in Fig. 26 represent calcula-
tions based on (10): 1' for steel containing 0.05% С
and 8.5% Cr, and 2' for steel containing 0.04% С and
8.5% Cr (TJ = 0.05). The solid curves 1 and 2 repre-
sent data given in reference 59 for the austenite trans-
formation in these steels. Equation (106) gives UQ
= 58 kcal/mole for this steel. The values of aaf at
720° are 17 and 22 ergs/cm2, respectively. In alloy
steels the effect of carbon on the activation energy
for the γ-Fe —- α-Fe lattice transformation is oppo-
site that of alloying metals such as chromium. This
also applies to the magnitude of the interface surface
tension aaf. The experimentally observed accelera-
tion of the austenite transformation with increasing
carbon content in steel alloys can be accounted for
by the fact that an increase of the work of formation
of a critical nucleus resulting from the increase of
aaf or the decrease of AF0 does not cover the reduc-
tion of U, since the exponent in (10) contains V4W.
Otherwise the austenite transformation in steel alloys
would be slowed down.

With increasing carbon content there is only a
small reduction of the activation energy for lattice
reconstruction, but there is a considerable rise in
the surface tension. In the transformation kinetics
represented by (98) the controlling factor is the
slowing-down of diffusion processes (through the
value of β) and the austenite decomposition rate is
decreased as a whole.

In order to determine the influence of alloying ele-
ments on the kinetics of the pearlite transformation it
is necessary to learn the dependence of I and ν on
the concentration of alloying additions and on the trans-
formation temperature T. According to current ideas
regarding the pearlite transformation mechanism in
steel alloys,61 pearlite growth proceeds either without
preliminary diffusion of the alloying element in austen-
ite, or it is directly associated with the redistribution
of that element. In the first case the eutectoid decom-
position results in a two-phase lamellar structure of
ferrite and cementite with spacing So, while the con-
tent of the alloying element differs little from that in
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the original austenite. In the second case the new
lamellar structure consists of ferrite and carbide, and
the appearance of a pearlite colony will be regarded as
beginning with the creation of carbide nuclei such as
(FeMe)7C3 or (FeMe)3C, as described by (3).

The edgewise growth rate of a pearlite grain in the
original austenitic alloy is determined by the speed of
the slowest process required for the eutectoid trans-
formation. When a ferrite-cementite structure is
formed, the processes involved are the reconstruction
of the iron lattice and the diffusion of carbon. When a
ferrite-carbide mixture is formed directly, another
process is the diffusion of the alloying element, result-
ing in its high concentration in the carbide.

Equation (7) describes the growth rate of a pearlite
nucleus when lattice reconstruction is the controlling
process. Alloying increases considerably the activa-
tion energy for this process. By a calculation based
on (7), the pearlite growth rate for a eutectoid trans-
formation in unalloyed steel at 700° is 0.03 cm/sec,
which is hundreds of times larger than the experimen-
tal value. In chromium steel (8.5% Cr, Uo = 47 kcal/
mole) the growth rate is calculated to be 10"5 cm/sec,
which is considerably closer to the experimental re-
sult. Thus the introduction of an alloying element can
slow the lattice transformation of the basic component,
with the latter process limiting the transformation ki-
netics of the three-component solid solution.

The growth rate of pearlite grains as a result of
carbon diffusion in an austenitic alloy will be calcu-
lated from (94). According to (76) and (77),

Q
RT (108)

In this equation alloying changes the quantities Do, Q,
So, λ, b, C a c , Caf, and C c (in the formation of car-
bides). For chromium steel (8.5% Cr) the pearlite
growth rate calculated from (108) exceeds the experi-
mental result.

In calculating the pearlite growth rate limited by
the diffusion of the alloying element in austenite we
proceeded as in the foregoing case with carbon dif-
fusion as the limiting process, but with all parameters
now pertaining to the migration of the alloying atoms.
For the growth rate we obtain

~RT (109)

where DOk and Qk are the diffusion parameters of the
alloying element in austenite, Xk is determined from

< n o >

which is similar to (93), and к is a correction taking
concentration stresses into account. As was shown in
reference 52,
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FIG. 27. Kinetics of the isothermal (pearlite) decomposition of
austenite in steel containing 0.4% С and 8.5% Cr (a 50% transfor-
mation). 1—experimental; 2 —calculated as controlled by the
у -» α iron lattice transformation; 3 — calculated as controlled by
carbon diffusion.

In chromium steel (Co = 8.5% Cr) the carbide (FeCr)7C3

is formed, while at lower temperatures (FeCr)3C is
formed. According to reference 62, DOk = 10 emVsec
and Qk = 75 kcal/mole. At 700°
From (111) we have

So reaches 10"* cm.

ti < 10"11 cm/sec. (112)

f < (111)

Thus the pearlite transformation in chromium steels
cannot be limited by chromium diffusion, which would
have made the growth rate of pearlite six to seven or-
ders of magnitude slower than the observed rate. Car-
bide formation takes place in the cementite-ferrite mix-
ture already formed. The situation seems to be similar
in the case of alloying with manganese, nickel, and
some other elements distinguished by large activation
energies for diffusion. In some instances, however,
as in alloying with Mo, the pearlite growth rate is
controlled by the diffusion of the alloying element. A
calculation, based on (109), of the pearlite growth rate
as austenite decomposes at 675° in molybdenum steel
(0.5% Mo) furnishes the result ν = ~ 10"9 cm/sec
(D0k = 0.1 cm 2/sec, Q = 59 kcal/mole). 6 2 The experi-
mental growth rate of pearlite for this steel is 2 χ 10"6

cm/sec. 6 3 In the case of molybdenum steels we cannot
exclude the possibility that austenite decomposes di-
rectly into ferrite and a special carbide, as has been
observed experimentally.1 8 However, this question
requires separate study.

An analysis of the equations describing the process
when limited by lattice reconstruction or by carbon
diffusion shows that the kinetics of the pearlite t rans-
formation depends basically on changes of the quanti-
ties U, Q, and W in the exponential. The changed
value of the difference U - Q with alloying is a crite-
rion for determining the type of kinetics of the pearlite
transformation and the possibility of describing it as
limited by one or the other of the indicated mechan-
isms.

The curves in Fig. 27 represent the kinetics of the
pearlite transformation (η = 0.5) as calculated with
the γ — α lattice transformation as the controlling
process (curve 2), with carbon diffusion as the con-
trolling process (curve 3), and according to experi-
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ment.59 In this case the pearlite transformation ap-
pears to be controlled by the lattice transformation.
This confirms the opinion, agreeing with reference 61,
that the kinetics of the pearlite transformation is con-
trolled by lattice reconstruction in alloy steels, whereas
carbon diffusion is the controlling process in unalloyed
and low-alloy steels. An analysis of the change of the
activation energy for the two mechanisms shows that
in chromium steel containing more than 2.5% chromium
the kinetics of the pearlite transformation is controlled
by the polymorphic transformation.

A similar analysis can be carried out for steels of
different composition. A consideration of the cases in
which the decisive role is played by diffusion of the
alloying element, leading to the formation of special
carbides, requires a deeper study of the thermody-
namics properties of the latter.

V. CONCLUSION AND DEDUCTIONS

The complexity and diversity of the factors affecting
isothermal processes in undercooled solid solutions re-
quire that a quantitative theoretical study be based on a
physically valid model of the mechanism involved. Com-
parison of the theoretical calculations with experiment
serves to check the selected model and thus determines
the most essential factors controlling the given effect
while rejecting secondary factors.

The analysis of phase transformation kinetics in
one-component systems leads to the conclusion that in
such cases the growth rate of new-phase nuclei is con-
trolled by the rate at which atoms surmount the poten-
tial barriers opposing their transfer to the structure of
the new modification. Nuclei grow with increasing
speed as they are enlarged beyond the critical size;
the growth rate of sufficiently large nuclei becomes
practically independent of size. This picture becomes
complicated in the isothermal decomposition of solid
solutions. For example, in the isothermal decomposi-
tion of austenitic carbon steel the kinetics of the proc-
ess and the form of the precipitated new phase depend
essentially on the initial composition of the solid solu-
tion and on the transformation temperature. In the
upper subcritical region 723 — 600° С undercooled hypo-
eutectoid austenite precipitates spherical ferrite nuclei
containing less carbon than the initial solid solution.
When the nuclei are near critical size the kinetics de-
pends on the transfer rate of iron atoms from the aus-
tenite lattice to the ferrite lattice. The process is
limited by the carbon diffusion rate, beginning at a
certain size limit. Nuclei considerably larger than
the critical size grow at a rate inversely proportional
to the square root of time. A comparison with experi-
ment shows that the calculation conveys correctly the
character of the temporal change of the nuclear growth
rate, although the calculated values are smaller than
the experimental values.

Nuclei appearing in the decomposition of under-
cooled hypoeutectoid or hypereutectoid austenite con-

sist of a single phase, but nuclei of the eutectoid pearl-
ite arising through the decomposition of undercooled
austenite containing about 0.8% С consist of alternate
ferrite and cementite lamellae. The calculated tem-
porally constant rate at which the edges of these lamel-
lae advance depends on temperature in the same way
as the experimental result. However, although the cor-
rect order of magnitude is given for the growth rate of
pearlite nuclei as compared with experimental results
obtained on industrial eutectoid steels, theory and ex-
periment disagree considerably in the case of high-
purity eutectoid steel. In the latter case the calculated
edgewise growth rate of a pearlite grain is 10 — 15
times smaller than the experimental rate.

Some accelerating factor has obviously been omitted
from the foregoing model, just as in the case of the
growth of ferrite nuclei. S. T. Konobeevskii has pointed
out that this factor lies in the stresses resulting from
the transformation, which impart an autocatalytic char-
acter to the process. The nuclear growth rate taking
these stresses into account approaches the experimen-
tal result much more closely. The foregoing calcula-
tion of the stress field around a nucleus indicates the
regions, located at phase interfaces, in which plastic
deformation can occur. The questions regarding the
calculation of transformation-induced stresses are in-
timately related to the problem of alloy hardening
through dispersive precipitation of the new phase.64

In ternary systems the third element can produce
considerable change in the aforementioned nuclear
radius limit рцщ> a n ( i thus either weaken or enhance
the role of the lattice reconstruction mechanism. For
example, in the iron-carbon-chromium system piim
is considerably increased by the presence of chromium,
and the influence of the reconstruction mechanism is
consequently strengthened. For a fixed chromium con-
tent, an increase of the carbon content accelerates the
process by changing the relationship between the fac-
tors affecting the kinetics. Finally, in the pearlite
transformation the addition of chromium makes the
reconstruction mechanism dominant.

The foregoing theoretical treatment must be ex-
panded to include a large number of different systems
and to refine the different thermodynamic and kinetic
parameters of the pertinent processes. Interaction be-
tween new-phase nuclei must also be taken into account
in later stages. It is extremely important to extend the
theory to cover nonisothermal processes.

The parts played by different kinds of defects, such
as dislocations, grain boundaries, vacancy clusters
etc., have become increasingly clear in recent years.
For example, the acceleration of diffusion processes
at the grain boundaries of polycrystalline alloys makes
a solid solution decompose predominantly in these re-
gions; during the tempering of steel, carbides can pre-
cipitate directly at dislocations; microcavities influence
the kinetics of graphitization in cast iron etc. These
effects can be important, especially in the decomposi-
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tion of solid solutions at relatively low temperatures.
However, the study of the decomposition kinetics of
solid solutions taking inhomogeneities of the initial
medium into account is still hampered by a lack of
reliable experimental data, or even of clear theoret-
ical concepts, although individual attempts have been
made to take such factors into account. The science
of metals and alloys is being directed generally toward
this type of study. Investigators are especially inter-
ested in the influences exerted by different structural
and concentrational inhomogeneities on the properties
and course of processes in metals and alloys. The
neglect of defects in the present review article is a
simplifying assumption, which in some instances can
affect the results obtained from a theoretical descrip-
tion of the decomposition of supersaturated solid solu-
tions in real metals and alloys. Our analysis has
shown, however, that the approximation can lead to
a satisfactory explanation of some characteristics
of the processes under investigation.
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