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(2)

Here, ±Ij is the energy of the interaction between
two neighbor dipoles on the same row with parallel and
antiparallel orientations of the dipoles, respectively.
Similarly we denote by ± I2 the energy of the inter-
action between two neighbor dipoles on the same column.
For the partition function we have the expression
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J.HE thermodynamics of a dipole lattice is of consid-
erable interest since this is the only model of a system
experiencing a second-order phase transition which
admits an exact solution. Onsager1 and Kaufman2 gave
a solution of this problem. The method developed by
them does as a matter of principle not admit a gener-
alization to the case of a three-dimensional lattice.

One of the present authors (Yu. B. R.) gave in 1954
a survey of the above-mentioned papers.3

Recently a paper by Hurst and Green4 appeared in
which there was made considerable progress and es-
sentially new ideas in the approach to the problem.
The new method gives a solution which is simpler than
the one given in references 1 and 2 and which above all
does not exclude the possibility of generalizing it to a
three-dimensional lattice. We therefore thought it ex-
pedient to give an exposition of the new method in the
form of a survey, which may be considered to be a
continuation of the survey in reference 3.

1. THE PARTITION FUNCTION

Let there be given a square lattice consisting of m
columns and η rows, containing N = nm lattice sites.
We renumber the lattice sites in lexicological order,
i.e., we assign to each site a number

(σ) fe=l

= 2 Πβχρ(~
(σ) fc=l

*ι) e x P ( - θ 2 σ Λ. Μ ) , (3)

where 2(σ) indicates a sum over all 2^ possible di-
pole configurations and where we have introduced the
notation

h
τ •

(4)

Taking into consideration that σ\ = 1, we get the for-
mula*

iak = chα + а&ь sha =

, 1</с2<п, (1)

where kt and k2 are the numbers of the column and
the row in which a given site is situated.

To get rid of edge effects we impose upon the lat-
tice a periodic boundary condition, closing it in both
directions, i.e., we identify the (m + l)-st column with
the first column, and the (n + l)-st row with the first
row.

In each lattice site we place a dipole with axes
along the direction normal to the plane of the lattice.
Each dipole can have one of two possible opposite di-
rections. It is clear that the general number of pos-
sible configurations of dipoles in the lattice is equal
to 2N.

To describe the different configurations we proceed
in the following way. We ascribe to each dipole a dis-
crete variable σ which can take on only two values:
σ = +1, if the dipole is oriented toward the right, and
σ = - 1, if the dipole is oriented to the left.

If we restrict ourselves to taking only nearest-
neighbor interactions into account and neglect inter-
actions between farther neighbors, the configurational
energy Ε (a j , . . . σ^) can be written in the form

1 — σ Cj; th a

"(1 —th'a)1'» '

Using this formula and introducing the notation

χ = th bv y = th Θ21

we can rewrite Ζ (Τ) in the form

Ν Ν

(5)

(6)

2. DIAGRAM TECHNIQUE

The product

G(x,y,av ...,oN)= (7)

occurring in (6) is a polynomial in the variables x, y,
σ 1 ( . . . , σ^. Since G occurs in (6) under the summation
sign over all configurations, not all terms in the poly-
nomial will give a non-vanishing contribution to the
partition function. We show that only those terms
give a non-vanishing contribution which contain all
variables σ 4 , . . . , σ^ to the zeroth, second, or fourth

*ch = cosh, sh = sinh, th = tanh.
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power. It is clear that it is sufficient to prove this
statement for just one arbitrarily chosen separate
variable σ .̂

We split off from G all factors containing σ .̂
It is clear that there are four such factors, and we

can write (6) in the form

χ 2 G( i)(z, У,
σ1 σ ί-ι · σ ί + 1 aN

X 2 (1 )(1 )(

( _ , , a i + i , . . . , aN)

(8)

where G^1^ denotes the product of all those factors
which do not contain the variable σι. Performing in
(8) the last summation over aj we see that nonvanish-
ing contributions to Ζ (χ,у) are only made by those
terms in G which contain σ̂  to the zeroth, the second,
and the fourth power. The discussion given here is,
clearly, valid for all variables σ^.

Since σ\ = 1, each term of the polynomial which
contains all variables a l t . . . , ajj in even powers will
after summation over all configurations give a contri-
bution proportional to the total number of configura-
tions 2N .

We go over to a diagram technique, noting that to
each term in the polynomial G (x, y, a l f . . . , σ^) we
can uniquely assign an aggregate of lines joining sev-
eral pairs of neighboring lattice sites.

The diagrams given, for instance, in Figs. 1 а—с
correspond to the following terms in the polynomial

a)

Ь)

Equation (7) shows that each horizontal line corre-
sponds to a factor χ and each vertical line to y.
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FIG. 1

We have shown above that only those terms in G,
which contain the variables a t σ^ to the zeroth,
second, and fourth power, give a nonvanishing contri-
bution to the partition function.

This means geometrically that, out of all possible
diagrams, only those for which zero, two, or four lines
meet in each lattice site give a nonvanishing contribu-

tion to the partition function. The simplest examples
of such diagrams are given in Figs. 1 b and с All
diagrams making a nonvanishing contribution must
thus be closed, and in some lattice sites there is the
possibility of multiple intersections (the site k+m
in Fig. lb).

The partition function can thus be written in the fol-
lowing form

(9)

where gao is the number of closed diagrams consist-
ing of a horizontal and β vertical lines, with any
multiply connected diagram counted as one in the cal-
culation (for instance, the diagram of Fig. lc) .

3. INTRODUCTION OF FERMI OPERATORS

To evaluate the sum S (x, y) by Eq. (10) we intro-
duce for each lattice site two pairs of Fermi-oper-
ators (a£, a^ and b£, b k ) which satisfy the relations

abui + aiai = 6ik, Ь£Ь{ + ЦЬк = bih. (11)

(All other anticommutators are equal to zero.)
Let us calculate the expression

S*(x, y)= Sp

(12)

and show that S*(x, у) = S (χ, у).
We note that for convenience we denote henceforth

by Sp С the quantity Sp C/Sp E, where Ε is the unit
matrix of the same dimensions as C. With this nota-
tion the dimensions of the matrices under the Sp sign
will not affect the results.

We expand the product under the Sp sign and gather
together terms with the same powers of 2x and 2y.
We get

Σ /·* ·s* {χ, y) = Σ (2χ)α

α, β λ

where we have under the Sp sign sums of different
products of the Fermi operators a£, a^' and b(, by .

To visualize the structure of these products it is
convenient to use again a diagram technique.

To do this we introduce the eight elementary dia-
grams depicted in Fig. 2, corresponding to each of the
eight terms from which the factors in the product (12)
are constructed.

We agree to draw the lines going up or to the left
from a lattice site as solid lines and we assign crea-
tion operators to them, while lines going down or to
the right from a lattice site are dotted and correspond
to annihilation operators. Moreover, we write down
for each creation operator a£ a factor 2x and for
each creation operator b£ a factor 2y.
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FIG. 2

We place arbitrarily on each lattice site one of the
eight elementary diagrams drawn in Fig. 2.

We call a diagram a "duplicated" one, if in it any
two neighboring sites are either not joined at all or
are joined by one solid and one dotted line. We note
that diagrams in which some of the duplicated lines
turn out to be both solid or both dotted cannot be en-
countered at all, since it can be shown from Fig. 2 that
in the elementary diagrams all solid lines are directed
opposite the corresponding dotted line.

We show that all duplicated diagrams are closed.
Indeed, one can see from Fig. 2 that an even number
of single lines depart from each site. These lines
are duplicated only by lines starting from neighboring
sites. In the duplicated diagrams an even number of
duplicated lines pass through each site, i.e., such a
diagram is a closed one.

It is clear that to each duplicated diagram there
corresponds some set of paired creation and annihila-
tion operators. A duplicated horizontal line, for in-
stance, joining the (k - 1 )-st and the k-th site can be
constructed if we place on the (k - 1 )-st site one of
the diagrams of Fig. 3a, and on the k-th site one of
the diagrams of Fig. 3b.

The part of the resultant diagram of interest to us
is shown in Fig. 4a.

Similarly, a vertical duplicated line can be con-
structed if we place on the (к — m) -th site one of the
diagrams of Fig. 5a, and on the k-th site one of the
diagrams of Fig. 5b. The diagram obtained then is
conventionally shown in Fig. 4b.

It is clear that the system of "duplicated" diagrams
constructed here is completely equivalent to the sys-
tem of diagrams of the preceding section and leads to

- J -

4~

ι—
L
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FIG. 3

a) b)

FIG. 4

4 - r-

4- J L I
b)

FIG. 5

it if we replace each duplicated line by a single one.
Apart from the duplicated diagrams considered up

to now, we will encounter also diagrams in which some
of two neighboring lattices are joined by a single (solid
or dotted) line.

It is clear that such diagrams will correspond to
products of Fermi operators containing unpaired (cre-
ation or annihilation) operators.

However, if we substitute such products under the
Sp sign in Eq. (13), they give a vanishing contribution
to the sum. They need therefore not be considered and
the only products remaining in the sum correspond to
duplicated closed diagrams.

For S(x, y) and S*(x, y) we have the expressions

α, β

where gaβ is the number of closed diagrams com-
posed of a horizontal and β vertical lines, and

S* (x, y) = ° (2yf V),
α, β

(14)
where paired products of a Fermi operators a£, a^
and β Fermi operators b£, b̂ ^ are under the Sp sign.

In view of the proved equivalence of single and du-
plicated diagrams, the number of terms in the second
sum will be exactly equal to %αβ.

Bearing in mind that when we evaluate the trace of
a product of Fermi operators

Spaiax =
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we get from Eq. (14)

±1), (15)
α, β

where the brackets contain gaβ terms, each equal to

± 1 .

The sign of the corresponding term is determined

by the parity of the permutation that must be made in

order that the original arrangement of Fermi opera-

tors determined by Eq. (12) go over into the "paired"

arrangement, wherein creation operators stand next

to the corresponding annihilation operators.

We shall show in Appendix I that it turns out that

when the operators are paired off, the sign is con-

served and that one must thus everywhere take the

plus-sign. It is thereby shown that

S(x, y) = x, y).

4. CALCULATION OF THE FUNCTION S(x,y)

To evaluate the function S (x, y) using Eq. (12) we

must evaluate the trace of the product of N factors,

each of which is a sum of eight terms: unity, a single

product of four Fermi operators, and six products of

two Fermi operators.

We derive in Appendix Π an equation which enables

us to evaluate conveniently the trace of products of

factors containing Fermi operators, i.e., a product

of the type

N

Π
i=t

We could use this equation were we able to write each

of the factors in (12) as a product of factors linear in

the Fermi-operators contained in them.

To carry out this program of "linearizing" the

product in (12) we calculate the product

F + 2yb*k) (A'k
3> + ahtl) (A? + bhtm), (17)

where the A^ are four operators that anticommute

with the operators aj£, ajj+i, b£, b k + m . We get then

If we impose upon the four operators

ditions

(18)

the con-

W , 8 Ρ 4 λ ) 4 μ ) = δλμ (λ, μ = 1,2, 3,4), (19)

we can write S (x,y) as the product of 4N factors

(x, У) = Sp Π $) (A? + 2yb\

(20)

c^·). (χ = i, 2,3,4, 5, and 6), and put

(21)

Equations (20) and (21) enable us to write the trace

of the product (13) as the trace of the product of 4N

factors linear in the operators

at, ah, Ы, bk, cta\ ά λ ) .

By Eq. (12) of Appendix II we can write the square of

this trace in the form of the determinant of a 4N by

4N antisymmetric matrix D, the elements of which

are numbered by two indices (k,λ), where к = 1,2,
..., Ν, λ= 1,2,3,4. The elements of D are

(к, X\D\k, λ) = 1,

(A, 3 |0 | f c+l , 1)=*,
(k, i\D\k+m, 2) = y.

(22)

The other matrix elements are equal to zero. We see

that the matrix D can be represented as a hypermatrix

consisting of 4 by 4 blocks

U X 0
-XT U X

о -хт их

У0
ΟΥ

ΟΥ
(23)

where according to Eq. (22)

y

The structure of the matrix D shows that it can be

written as a sum of direct products of N by N mat-

rices E, Ej, and E m by four by four matrices U, X,

and Y, respectively:

D = Ε χ U + Ε, χ X + Em χ Y- EJ χ Х Г - £ £ х У Т , (25)

where

(i\E\k) = 6ih, (i\E1\k+l) = bik, (i\Em\k+m) = 6ih.

We have according to (12) of Appendix Π

S(x,yy = det\D\. (26)

When evaluating the determinant of the matrix D

we can perform a similarity transformation upon it,

using the equations of Appendix III:

D' = {SxE)D (S-1 χ E)= EXU + E[X X+E'm

(27)

One can easily verify that one can satisfy condition and choose the matrix S such that Ej and E m turn

(19) by introducing six extra pairs of Fermi operators out to be diagonal.
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Since N = mn is a large number, we can impose
the periodicity condition upon the elements of the
matrix D

Α. Μ. DYKHNE a n d Yu. Β. R U M E R

2π

l n S { x ' y) = 2 " w \\ l n [ ( 1 + ^ ( 1 + y 2 ) ~ 2 x ( 1 ~ ^ c o s ω ι

(iV + fc,

In that case

c', Я') = (/с, λ | β μ', λ')· (28)
— 2y (1 — ж2) cos ω2] άω1 da>2. (37)

Em = i£™, £ = (Exf, E"~l = £f ' = £f, £f " m = £ ~ m = £ „ ,

5, F R E E ENERGY, PHASE TRANSITION

Since we have an expression for ln S (x,у) we can

(29) u s e ^ 1 " ^ *° w r ^ e down an expression for the free

from which it follows that the eigenvalues of the mat- energy F (x, у) in the form

rices E l and E m will be the N-th roots of unity: _1^А = ^ 1 п 2 { Х у „) = ι η 2 _ . 1 ΐ η ( 1 - * • ) ( ! - » • )

(^тр^ = βρ· 2π

+ Τ ( 2 ^ 5 5 1 η [ ( 1 + г 2 ) ( 1 + y i ) ~ 2 χ ( 1 - У 2 ) c o s ω ι
°

— 1y (1 — x2) cos ω2] ίίω^ <£α>2. (3 8)

Substituting χ = tanh θχ and у = tanh θ2, we get

The matrix D' can be written in the form of a block
matrix:

Τ,'· λ

\U,\

where according to (27) and (30)

с / р = и + Я р А + ΡρΖ —ΟρΛ —РрУ ,

or, using Eq. (24)

0 1 1 + α ζ 1
_ 1 ο 1Ρ

(32)

3

2π

X \ \ In [ch 2Θ, ch 2Θ, — sh 2Θ. cos ω, — sh 2Θ, cos ω2] άω. No-

(39)

This expression was obtained in Onsager's original
paper. 1

W e show that the expression occurring under the
logarithm sign in (38) is non-negative. We have

.Evaluating the determinant, we get

det I i7p | = (1 + ж2) (1 + У2) - 2y (1 - x̂ ) c o s 2^

) (40)

or

- г / 2 ) -

We use the notation ρ = p2n + pit l s p ^ n , 0 < p 2 Adding to both sides of the inequality the positive ex-
^ m — 1, pression

с о 8 ^ я = с о з ^ ( ^ 2 + ^ ) , с о 8 ^ т р = с о 8 ^ Р 1 (34) 4^(1 + y*) + 4»»(1 + *«) = 4x2(l -jf)» + 4y»(l-»»)*+ i f e y ,

and we write the final expression for S2(x,y) as a w e g e t

(1 + z4 + 2z2) (1 + ?/4 + 2г/2)> [2a; (1 - у2) + 2г/ (1 - a:2)]2,

from which it follows that

A{x, г/) = (1+а;2)(1 + 2/ 2)-2ж(1-г/ 2)-2у(1-а; 2)>0> (41)

— 2г/(1 — ж2) cos — Г р2 + ̂ ί") 1, (35) where the equality sign occurs for the values χ = XQ
m and у = Ус for which

and taking the logarithm we get from this (i _ ^j) /1 _ „·) _ 4X « = o. (42)
η m— 1

Using (41) we can write the free energy in the form

double product:

*. 2 / ) = Π Π I (1 + ж2) (1 + y2) — 2ж (1 — г/2) cos -^-
O

In S (x y) = — У, У ln Г (1 + хг) (1 + г/2)

- 2x (1 - y2) cos =~ p1

(36) (43)

where R (x, y) is a function which is regular at χ = x c ,

For large η and m this sum goes over into an integral У = Ус·



THERMODYNAMICS OF A PLANE ISING-ONSAGER DIPOLE LATTICE 703

We see that the singularity of the free energy is
connected with the fact that the expression under the
logarithm sign vanishes for wt = ω2 = 0 and a temper-
ature T c determined by the equation

t h ^ = zc, t h A = y (44)

where x c and y c satisfy Eq. (42).
Since the equation

А {x, у) + 2x (1 - г/2) (1 - cos coj + 2y (1 — χ-) (1 - cos ω2)

has a minimum at the values ω4 = 0, ω2 = 0, χ = x c ,
у = y c and vanishes there, we can expand it in a power
series and we get

(45)

Since by virtue of (44)

we have for the free energy in the vicinity of the singu-
larity

2π

(*c Ус) +Ύ7^{\ Ь[С(ГС)(Г-ГС)2

TN

where

) coj (46)

( 4 7 )

Integrating (46) we get for the free energy the expres-
sion

T.f. (48)

The internal energy U is found from the formula

We note that it is continuous in the point Τ = T c

(49)

The
specific heat, however, has a logarithmic discontinuity:

c - d fSL*) - , Τс) + 2C, (Ге) In (Г - Tc)\ (50)

— (к3 — i)mn-\-(k2 —
(1*)

We readily arrive at the equations

Z(x, y, z) =
S(x,y,z)= 2

α, β, V
(10*)

Here %α.β-γ is the number of closed spatial diagrams
with a, /3, and γ lines in three mutually perpendicular
directions.

Moreover, we can introduce, as in (12), Fermi op-
erators corresponding to the three mutually perpen-
dicular directions in the lattice, namely a£, a^, b£,
bk> ck> c k· T n e elementary diagrams similar to the
ones depicted in Fig. 2 can also be easily constructed.
One verifies easily that there are thirty-two of them
in the three-dimensional case. One can develop a dia-
gram technique for the quantity S*, and one obtains
easily the equation

S*(x,y,z)= 2
α , β , ν

± 1 ± 1 ± . . . ± 1 ) , (15*)

where there are gQ/βγ terms within the brackets. How-
ever, in contradistinction to the plane case, it is im-
possible to prove here that all terms in (15*) have a
plus sign. Furthermore, there is a simple example
showing that this is not the case. The diagram of
Fig. 6 serves as such an example:

(*)

Performing the pairing as shown in (*) we get the
result that the diagram of Fig. 6 gives a negative con-
tribution to the partition function. This fact is inde-
pendent of the order of the operators at the vertices
since a vertex of each type occurs twice in the dia-
gram considered.

FIG. 6

CONCLUSION

We note in conclusion that the method expounded
here cannot immediately be generalized to the case
of a three-dimensional lattice. We shall number the
corresponding equations for the three-dimensional
lattice by the same numbers as for the two-dimen-
sional one, but with an asterisk. We assign to each
lattice site a number

APPENDIX I

We show that for the given order of the operators
in (12) all diagrams make a non-negative contribution
to the partition function.

In order to go over from an arbitrary term of the
sum in (14) to the diagrams, it is necessary to write
down the Fermi operators in such a way that one can
go from the lexicological order which we took in (12)
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d)

c)

FIG. 7

to an order where each creation operator stands next
to the corresponding annihilation operator. We note
that the order in which the corresponding creation
and annihilation operators are situated with respect
to one another is immaterial, by virtue of the validity
of the relation

It is sufficient to prove this for connected diagrams,
since an unconnected diagram is equal to the product
of the connected parts occurring in it. We prove this
by induction. To do this we verify that the simplest
diagram Fig. lc has a plus sign. This diagram cor-
responds to the operators

Performing the permutations in the usual way, we
satisfy ourselves that the diagram has a plus sign.

We consider first an arbitrary connected diagram
without intersections. It is clear that any such dia-
gram can be constructed from an elementary one by
successive applications of one of the operations shown
in Fig. 7.

It is sufficient for us to show that any one of those
operations leaves the sign of the diagram unchanged.
Since the elementary diagram gives a positive contri-
bution to (15), we show thereby that a positive contri-
bution is made by all diagrams that contain no inter-
sections. The proof proceeds in the same way for all
operations in Fig. 7; we can here thus consider any
one as an example, say, Fig. 7e.

We write down the operators corresponding to the
diagram on the left of Fig. 7e:

(1)

Here a denotes the totality of all Fermi operators
pertaining to sites preceding the k-th site, β to the
sites included between the k-th and the (k+m)-th
sites (in Fig. 7e the corresponding part of the diagram
is shown by a wavy line), and γ to the sites following
the (k+m + l ) - s t site.

After adding the elementary square, the left dia-
gram of Fig. 7e, goes over into the one on the right.
We write out the operators corresponding to it:

(2)

Pairing in (1) the operators bk + m and bk+ m,
also ak + m + 1 and a £ + m + 1 we get

sgn(l)= -

ш the same way we verify that

We have thus

sgn(l) = sgn(2),

and the diagrams in Fig. 7e have the same sign.
The proof in all the other cases is performed in

the same way.
To perform the proof for diagrams with intersec-

tions it is necessary to include operations of the kind
depicted in Fig. 8 among the extension operations.

\

FIG. 8

The proof is then given in an exactly similar way
as in the preceding case.

APPENDIX Ω

Let there be given 2τ expressions linear in the
Fermi operators c£ and c^:

(3)

We introduce an equation with which to calculate the
trace of the product of such linear expressions

(4)
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jLi]^=LjLi + LiLj= 2 К-ЛИСАСН + ^ А ^
h, kf

(5)

We draw up a sequence of 2τ — 1 identities:

Sp (L^Ls... Z,2t)+Sp (Z,2Z,,L3 - ^ x M ^ ] Sp(L3L4 ...L2x),

... L2x) = - [L^] Sp (L2L4... L2x), (6)

Sv(LJL3...LJ.

Since the trace of a product is invariant under cyclic permutation of the factors, we get, adding (6),

2τ

2Sp (LlL2... L2x)= V (— I)1 [L1Li

t = 2 (-1)' sP(£ 'i i ' i)Sp(L2L3...Z, i.1L, t l... Lit),
i=2

(7)

a recurrence formula to evaluate the trace in which we The calculation of the trace through Eq. (4) is thus

are interested. Applying Eq. (7) consecutively, we get reduced through Eqs. (5) and (12) to an evaluation of a

52t=2'(-irSp(LftlLft2)Sp(Z-»ISLft4)...Sp(L2T_1L2T), (8) d e t e r m i n a n t ·

where the Σ' sign indicates that the summation is

taken over all permutations

&,re2 . . . K2x-\ / c 2 l

1 2 ...2τ-12τ

satisfying the conditions

(9)

1 2> n - l 2n> цэд

while ρ is the parity of the permutation (9).

An expression of the kind (8) is called the Pfaffian

of the triangular table of quantities5

'Sp (L.L,) Sp (L/ J 3 ). . . Sp {LXL2J

Sp(Z,2/.3)...Sp(£2L2t)
(11)

The minor of the Pfaffian corresponding to the ele-
ment Sp (L^Lj), j > i, is defined as the Pfaffian ob-
tained from the Pfaffian of (7) by striking out two rows
(the i-th and k-th) and two columns (the j-th and
the k-th).

Equation (7) is the expansion of the Pfaffian (11) in
terms of the elements of the first row.

A fundamental theorem in the theory of Pfaffians,
which we give without proof, establishes a connection
between the square of the Pfaffian and the determinant
of the corresponding antisymmetric matrix:

- S p (£,£,) 0 . Sp (L2L3) . . . Sp ( L 2 L 2 T )

- S p ( £ 2 i . 3 ) 0 ... Sp(L3L2x) (12)

APPENDIX Ш

We call the nm by nm block matrix

(AUB A12B...AlmB
ΑχΒ=\ Α2ΐΒ A22B...A2mB (13)

the direct product of an η by η matrix A and an m by

m matrix B, It is clear that Α χ Β * Β χ Α.

From the definition the following formulae for prod-

ucts follow

(ΑχΒ) (CXD) =ACxBD,
(AxB)(CxD) (FXG) = ACFXBDG. (14)

One can perform a similarity transformation to a

direct product

/ С \/ С \ / A \/ T)\ f C~l \y C~l\ С Л C~' ν/ С t) C™1 /1 К\

In the particular case Sj = Ε we get the formula

(£Х-У2) (AxB)(ExSi1)=AxS2BSi1, (16)

given in the text.
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