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INTRODUCTION

J.HE development of nuclear physics in the course of
the past few years has led to many unexpected results
which essentially change our picture of the structure
of the nucleus and the dynamics of nuclear processes.
Briefly speaking, we have seen the tremendous impor-
tance of collective effects which give rise to the ap-
pearance of qualitatively new phenomena.

The subject of the present survey is the so-called
optical model of the nucleus, a model according to
which nucleons are scattered by nuclei in almost the
same way as light is scattered by a semi-transparent
optical medium. The important thing here is just this
semi-transparency of the nucleus since, on the basis
of the data concerning effective cross sections for the
interaction of free nucleons, one would have expected
the nucleus to behave like a black body in scattering
processes.

The optical model for the scattering of nucleons
has been investigated by comparing the theoretical
and experimental data, beginning approximately with
the years 1953 —1954, after the appearance of the
papers of Feshbach, Porter, and Weisskopf.1·2 Al-
though certain important details, concerning which we
shall have to speak later on, still remain unclear, one
can hardly doubt now that the optical model of the nu-
cleus correctly describes nucleon scattering.

bi 1958 —1960 there was published a series of ex-
perimental and theoretical investigations whose re-
sults appeared at first glance to be completely fan-
tastic. We have in mind the experiments on elastic
scattering by nuclei of complex particles— deuterons,
a particles, Ν14, Ο16, and other nuclei. As a result
of the progress of experimental technique, one suc-
ceeded in these experiments in obtaining detailed pic-
tures of the angular distributions of the scattered
particles and, in particular, the differential cross
sections for scattering through large angles. A com-
parison of the results obtained with the theory showed
that the scattering of these complex particles is well
described by the optical model and, in fact, with ap-
proximately the same parameters as for nucleons.
In other words, it appears that the nucleus is almost
equally transparent for complex particles as it is for
nucleons. This remarkable fact, if it should be con-
firmed by further investigations, has great importance
for an understanding of the dynamics of nuclear reac-
tions and, in particular, of reactions of the so-called
direct type, which proceed without the preliminary

stage of formation of a compound nucleus. The results
described concerning the scattering of composite par-
ticles will be treated in more detail in the second part
of this survey. The first part is devoted to a descrip-
tion of the present state of the optical model for nu-
cleons.

I. THE OPTICAL MODEL FOR SCATTERING OF
NUCLEONS

1. Initial Assumptions

The optical model attempts to obtain the following
quantities: the cross section for elastic scattering a s,
the total cross section for all inelastic processes (the
so-called reaction cross section) σΓ, the differential
scattering cross section at a given angle t?: das(i?)
and the polarization of the scattered nucleons Ρ d?)
as a function of the scattering angle £.

The fundamental assertion which constitutes the
essence of the model consists in the statement that the
scattering of nucleons by complex nuclei can be de-
scribed as a solution of the problem of diffraction of
the nucleon wave by a certain potential. This means
that the scattering ppoblem is treated not as a many-
body problem, but as a problem of motion of a nucleon
in a certain time-independent field produced by the
nucleus. Thus the Schrodinger equation for the nucleon
wave function Ф(г) has the form:

Ψ ( Γ ) =

where

Y'lmE

(1)

(2)

is the wave number of the nucleon, and U (r) is the
nuclear potential. We seek a solution of Eq. (1) which
at large distances from the nucleus has the form of a
superposition of an incident plane wave with wave vec-
tor к and a diverging spherical wave:

where к is the wave vector of the scattered particle
(| k' | = | к |). The amplitude of the outgoing wave
f (к, к') depends on к and the scattering angle •&.
The complex quantity f has the dimensions of a length
and is called the scattering amplitude. The square
modulus of the scattering amplitude determines the
differential scattering cross section:

')\2dQ, (lb)
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where du = sin & ά$άφ is the element of solid angle.
The scattering cross section a s is equal to the inte-
gral of (lb) over all scattering angles S:

2 sin θ dQ. (lc)

The total cross section σ̂  = σΓ + σ 8 is expressed in
terms of the imaginary part of the forward scattering
amplitude (i.e., the amplitude at S- = 0):

= 0). (Id)

Finally, the absorption cross section σΓ is given by
the formula

ar = σ, - as = ^ Im / (ϋ = 0) - 2π \ | /12 sin θ (le)

The parameters determining the potential U (r)
(its depth, extension, etc.) are found by comparing
the experimental cross sections with those calculated
using formula (1). Of course, the model has a meaning
only if the parameters of the potential are either the
same over the whole range of energy of the incident
nucleons and for all nuclei, or (which is actually the
case) vary only slightly. Since, in addition to scatter-
ing, there occurs an absorption of the particles, it is
clear that the potential U (r) must be complex. This
follows from the fact that the current density of the
particles is given by the usual expression

2m v

and it then follows immediately from (1) that

div j = 2Im U | Ψ |2.

(3)

(4)

If the nucleus absorbs particles, div j at points of the
nucleus must be different from zero and negative.
Consequently

— Im U = W > 0. (5)

The sign of the real part of the potential is chosen so
that it corresponds to an attractive force between the
nucleon and the nucleus:

Thus

J7(r)= -V(r) — i

(6)

(7)

It is important to emphasize that the imaginary part
of the potential is important not only for the calculation
of the reaction cross section σΓ (which is different
from zero only for W * 0), but also for the calculation
of the scattering cross sections das(i>) and σ 8.

The point is that, from the very fact of the occur-
rence of absorption of incident nucleons by the nucleus,
independent of whatever mechanism one uses for this
absorption there results a definite scattering of nucle-
ons. This occurs because, in nuclear physics, scatter-

- Wave front

First diffraction
maximum

FIG. 1. Diffraction by a black disc.

ing always occurs even under the conditions λ « R
(where R is the nuclear radius, and λ is the de Broglie
wavelength of the nucleon) as a diffraction problem. In
this sense the situation is markedly different from or-
dinary optics—the scattering of light by optically in-
homogeneous media. (In the case of scattering of
light, for wavelengths which are much smaller than
the dimensions of the inhomogeneities of the medium,
it becomes valid to use the laws of geometrical optics,
and diffraction phenomena play no role.)

In order to explain the situation, let us consider
Fraunhofer diffraction of waves by a black disc of
radius R under the condition that λ « R. We know
that in this case, beyond the disc at some distance
from it there appears a bright spot—the first diffrac-
tion maximum. In the language of geometrical optics
this means that part of the light rays were scattered,
and the directions of the scattered rays make an angle
£Л\Х/Л with the initial ray (Fig. 1). However, since
the diffraction angle t? is small, there will still be a
region of geometrical shadow near the disc. "Near"
in this case means a distance which is small compared
to the distance from the bright spot. This distance is
equal to R/& = R2/\. Thus a diffraction picture ap-
pears only starting with a distance of the order of
R2A- In other words, if we make an observation at dis-
tances of the order of or greater than R2A, we "see"
diffracted rays, i.e., we observe scattering resulting
from diffraction. But at distances smaller than R2A,
we observe a picture corresponding to geometrical
optics. In optics λ = 10"5 cm, R и 1 cm and, conse-
quently, R2A =* 1 km, while the observations occur
at distances which are much smaller than this quan-
tity, i.e., in regions where the wave field is described
to high accuracy by the geometric approximation. In

rv-12 n-13. n-u cm,nuclear physics R ^ 10" " cm, λ £ 10"13 — 10
and R2/\ £ 10"11 —10"10 cm, whereas the observatio
of the scattering occurs at macroscopic distances,
which are much greater than this quantity, i.e., just
where the distortion of the wave field as a result of
diffraction essentially determines the whole picture.
It is not difficult to compute the effective scattering
cross section, i.e., the ratio of the intensity of the
diffracted waves to the flux density in the incident
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wave. For this purpose we use the Babinet reciprocity
law, according to which the diffraction picture behind
the black disc coincides exactly with the diffraction
picture behind a hole of the same radius in a black
screen, if, in this latter case, we replace all the
maxima by minima, (i.e., just as a negative and
positive of the same photograph coincide with one
another). Since at a distance of R2/\ beyond the
hole there will be a black spot, in the same way, in
terms of scattering, this means that all the light pass-
ing through the aperture (or, consequently, impinging
on the black disc) undergoes scattering.

From this it is clear that the intensity of the scat-
tered light is equal to Jn\R2, where J is the current
density in the incident waves. Thus, for the cross
section for scattering by a black disc, we have

= nR\ (8)

With regard to the scattering of nucleons by nuclei,
the result we have obtained means that if the nucleus
is "black," i.e., if every nucleon incident upon it does
not leave (or emerges leaving some of its energy in
the nucleus), then the total cross section at = σ 5 + σΓ

for interaction of the nucleon with the nucleus will be
equal to 2πΒ?, since obviously

ar = 0)

This result, which follows automatically from the
wave picture, seems paradoxical if we do not consider
the wave nature of the scattering, and go over to par-
ticle language. In the derivation of formula (8) we have
assumed that the disc is black, i.e., we have assumed
that .there is no reflection of the wave at the surface of
the disc. (In the contrary case we could not apply the
Babinet principle.) Such an assumption corresponds
to equating the real part of the potential to zero. All
the scattering in this case results solely from the fact
that there is a total absorption of the particles imping-
ing on the nucleus.

In closing the consideration of what we might call
the general physical aspect of the theory of scattering
of nucleons by nuclei, we emphasize once more that
any, even local, disturbance of a wave field leads, as
a result of continuity and the continuity of the first
derivatives of the wave function, to a change in the
field at far distances, i.e., in particular, to scattering.
Just because of this circumstance, the scattering of
nucleons by nuclei is inseparably coupled to the ab-
sorption, and this means that it is coupled to the imag-
inary part of the optical potential, if the scattering is
described by an optical model.

From these remarks, besides, it follows that if the
nucleus were assumed to be "black" for the incident
nucleons, then in calculating the values of the scatter-
ing and reaction cross sections we would need no ad-
ditional models. It is obvious that the nucleus can be
considered to be "black" if the average mean free

path of a nucleon impinging on the nucleus is much
less than nuclear dimensions. An estimate of this
quantity can be obtained using the formula

where σ is the collision cross section for the incident
nucleon with the nucleons in the nucleus, ρ is the den-
sity of particles in the nucleus. The value of ρ is a
constant to good accuracy for all nuclei:

ρ ~ 1038СПГ3.

If we choose for σ the value of the cross section
for collision of free nucleons with a kinetic energy in
the center of mass system of the order of several tens
of Mev, then σ =* 0.5 barn and

= 2·1014 cm, (10a)

which is much less than the radius of even the light
nuclei, for which R » 4 — 5 χ 10"13 cm. With such a
mean free path, the probability that the nucleon passes
through the nucleus without suffering a collision is
very small (approximately 10"8). Starting from just
such estimates, it was assumed for a long time that
the nucleus is a black body, and that therefore for
nucleon energies of the order of 10 Mev, where the
condition λ « R is fulfilled, σ 8 and σΓ should be de-
termined by (9) and (10). These formulas predict a
monotonic increase of cross section with increasing
mass number, since

R = r0A
ll\ (11)

and constancy of the cross section as a function of en-
ergy, if the latter is such that λ « R.

The model of a black nucleus also predicts a mon-
otonic increase in cross section with increasing A
and fall off with increasing Ε for low energies of nu-
cleons in all those cases where no resonance effects
can occur resulting from isolated levels of the com-
pound nucleus.

Experiments did not confirm these expectations.
It first became clear from the data of Barschall et
al3 that for neutrons with energies up to 3 Mev the
cross sections σ 8 and σΓ as a function of A and the
energy of the incident neutrons Ε are not monotonic,
but show a behavior which is incompatible with the
picture of a black nucleus. Further experimental in-
vestigations of angular distributions of scattered neu-
trons and protons also were in poor agreement with
the idea of a black nucleus. At the same time, it ap-
peared that all of these data are very satisfactorily
described by the optical model. The parameters of
the optical model are discussed in detail in Sec. 2;
here we shall only say in a preliminary fashion that
the magnitude of the imaginary part of the potential
W for nucleon energies of the order of 10 Mev is
around 5 — 6 Mev. Let us see what mean free path of
the nucleon in the nucleus corresponds to this value.
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For simplicity we shall assume that V ( r ) and W ( r )
are constant inside the nucleus and that the nucleus is
infinite in size. (This can be assumed for estimates,
since λ « R.) Under these simplifying assumptions
the nucleus can be pictured as a half-plane and the
flux of nucleons occurs normal to its boundary.

Then it follows from the Schrodinger equation that
inside the nucleus the wave function of the nucleon has
the form of a plane wave

where

(12)

(13)

and С is a coefficient determined from the require-
ment of continuity of the wave function and its deriva-
tives at the nuclear boundary. Equation (13) shows that
because the potential is complex, the wave vector of the
nucleon inside the nucleus also is a complex quantity.
If we assume that W « V (which actually corresponds
to the true situation, since W ^ 5 — 6 Mev, while V
<χ 40 — 50 Mev), then

VIE
(14)

From (14) we see, besides, that the real part of the
potential determines the real part of the "index of r e -
fraction" of the nucleus, if we use optical terminology.
In fact, in optics the index of refraction of a medium is
equal to the ratio of the wavelength in vacuum to the
wavelength in the medium, or to the reciprocal of the
ratio of the wave numbers. If, in this same way, we
introduce a nuclear index of refraction n, then

v_
Ε

τ __Кг _ \ W
2 k 2 Ε

Thus, the greater the real part of the potential, the
stronger the refraction and reflection of the nucleon
wave at the nuclear boundary. Precisely as in optics,
the imaginary part of the index of refraction determines
the damping of the wave in the medium as a result of
absorption. From formulas (12) and (14) it follows that
the wave function * ( r ) contains a damping factor
(K 2 -r > 0 )

Ψ (г) = (15)

For neutrons with an energy of 14 Mev, l/k = ft =1.4
χ 10" 1 3 cm, W ^ 5 Mev, V « 40 Mev. We then obtain
from formula (15)

2Λ = —— = ? — 5 (16)

i.e., a quantity which is 30 times greater than that
calculated by us earlier from formula (10), in which
we used for the collision cross section σ of the inci-
dent nucleon with the nucleons in the nucleus the ex-

perimental value of σ for the collisions of free nucle-
ons. From a comparison of these data we see that the
effective cross section for collision with a nucleon
bound in the nucleus is 30 times smaller than the
cross section for free nucleons.

The main reason for the reduction in cross section
for bound nucleons is the action of the Pauli principle.
In order to explain this, let us assume, in accordance
with the shell model, that the nucleons in a nucleus
move independently of one another. In the model of
an infinite nucleus this means that the nucleons in
the nucleus in their ground state form a gas of Fermi
particles, in which all the lowest energy states are
occupied (degenerate Fermi gas). The momentum
distribution of the nucleons in such a gas is charac-
terized by the fact that there is a certain limiting mo-
mentum (the radius of the Fermi sphere), while all
states with momenta less than the radius of the Fermi
sphere are occupied, since the nucleus is in its ground
(i.e., lowest) energy state. If an external nucleon
impinges on the nucleus, then we can say that a colli-
sion has occurred between it and the nucleons inside
the nucleus only when the momenta of the colliding
particles, including also the momentum of the nucleon
inside the nucleus, have changed. In the case of a col-
lision of free nucleons, we may have any change in
momenta of the colliding particles (which is compat-
ible with the conservation laws). But the momentum
of a nucleon inside the nucleus can change only in such
a way that the final state in which the nucleon is put as
a result of the collision is not occupied, i.e., is located
outside the Fermi sphere. This means that, for nucle-
ons having momenta considerably less than the radius
of the Fermi sphere, collisions with small transfer of
momentum are impossible (only for the very small
number of nucleons which are contained in the bound-
ary layer of the Fermi distribution can one have arbi-
trarily small momentum transfers, so that collision
with these particles occurs almost in the same way as
with free nucleons). The restriction in the number of
possible final states as a result of this effect leads to
a reduction of the cross section by reducing the avail-
able phase volume.

In these arguments the nucleus was assumed to be
infinite in extent. However, nothing is changed if we
take account of the finite dimensions of the nucleus.
The only difference will be that the state of the nucle-
ons inside the nucleus is characterized in this case
not by a definite value of the momentum, but by the
values of the energy and angular momentum. The role
of the radius of the Fermi sphere is then taken over by
the energy of the highest occupied state, and in place
of the restricted possibilities for momentum transfer
to the nucleon in the infinite nucleus because of the
Pauli principle, we must now speak of the possibilities
of transition of a nucleon in these collisions only to
states which lie above the highest occupied energy level.



678 I. S. SHAPIRO

Of course, it is understood that the action of the
Pauli principle should lead to a reduction of the cross
section for collision with bound nucleons inside the
nucleus as compared with the cross section for free
nucleons, since this is qualitatively clear even before
one establishes the values of the parameters of the
optical model. However, the magnitude of this reduc-
tion in cross section (and consequently the increase
in transparency of the nucleus) was only explained
after comparing computations on the optical model
with the experimental data, and turned out to be un-
expectedly large.

2. Parameters of the Optical Potential

a) The simplest potential—the rectangular well.
This potential was used for scattering of neutrons in
the first papers of Feshbach, Porter, and Weisskopf.1'2

The imaginary part of the potential was also taken to
be constant inside the nucleus and equal to zero out-
side it. Thus

where

Vo, r<R,
r>R,

w

(17)

(18)

For neutrons with energies up to 3 Mev, the best agree-
ment of the theoretical computations with the experi-
mental data for the total cross section σ^ was ob-
tained for the following choice of parameters:

Vo = 42 Mev, ζ = 0.03, R = 1,45- cm. (19)

We shall not give a detailed analysis of the results of
computations with the potential (17) as compared with
the experimental data, since at present the defects of
the potential (17) are well understood. The main de-
fects are that a model with a rectangular well gives
too high values of the ratio σ0 = σΒ/σν. This is the
case even when the energy of the incident neutrons is
so small that the wavelength of the neutron is λ » R.
At first glance, such a situation seems strange since
the nuclear forces fall off quite rapidly with distance,
and a " smear ing" of the potential should occur over
a distance of the order of 10"1 3 cm, which is much
less than the wavelength of the incident neutron, if its
energy is of the order of 200 kev or less. Under these
conditions it would appear that the nature of the fall-
off of the potential (infinitely rapid or with a deriva-
tive of the order of 4 χ 1015 Mev cm" 1 ) should not
essentially affect the results. In these considerations,
however, one has disregarded the fact that, however
small the energy of the nucleon outside the nucleus,
inside the nucleus its wavelength cannot be greater
than * t = K/V 2mVo . For Vo =* 40 Mev, * t = 0.7 χ 10
cm, and this is already comparable with the distance
over which the potential should fall off significantly.
The sharp jump in wave number at the nuclear bound-

" 1 3

ary makes more difficult the penetration of neutrons
into the nucleus, since most of the neutron wave under-
goes reflection. In this respect the present situation
is entirely analogous to the optical case: a jump in the
index of refraction at the boundary between two media
leads to the appearance of reflected waves whose inten-
sity is the greater, the greater the discontinuity in the
index of refraction.

Just as the elimination of jumps in the index of r e -
fraction increases the light output of an optical appa-
ratus (so-called translucent optics), a smooth fall-
off to zero in the potential U ( r ) should lead to an in-
crease in the cross section σ Γ ) a reduction of σ δ , and,
consequently, an approach of the theoretical value of
σ0 to the experimental data. This is why the next step
in the development of the optical model was the treat-
ment of the nucleus with a "smeared boundary," i.e.,
a potential which falls off continuously to zero.

b) Nucleus with diffuse edge. The optical model
with a smooth fall-off in the nuclear potential was first
treated by Woods and Saxon4 (for protons) and by
Nemirovskii5 for neutrons. Later on, the nucleus with
a diffuse edge was treated by many authors, and from
these papers it appeared that the shape of the curve
of fall-off of the potential does not play any essential
role so long as one guarantees a sufficiently rapid
fall-off. Most frequently one uses the Woods-Saxon
potential

(20)

The rate of fall-off of the potential is characterized by
the parameter a. As follows from numerous experi-
mental data,

α = 0,65·10"13 cm. (20a)

For the "nuclear radius" R, the best value, when one
uses the Woods-Saxon potential, is

Д = 1.27· 10-™ cm A1''. (21)

This value is somewhat lower than that used by Fesh-
bach, Porter, and Weisskopf,2 which is natural since
the potential (20) is different from zero also for r > R.
In the paper of Luk'yanov, Orlov, and Turovtsev,6 they
used a potential which coincides with a cubic parabola
(Fig. 2):

1,

1 +

0,

(г—Д—2rf)(r—
id»

(22)

(22a)

The rate of fall-off of the potential is here determined
by the quantity d. The best value of d is

й=3,66-10" 1 3ст. (23)

The parameter R in formula (22a) was chosen by the
authors of reference 6 in the form



THE OPTICAL MODEL OF THE NUCLEUS 679

t-ffj

FIG. 2. Nuclear potential
used for calculating 4T S , as,

and at for 14-Mev neutrons in ref-
erence 6.

c m . (24)

It should be mentioned that from data on scattering and

capture cross sections it is not possible to determine

Vo and R uniquely. Actually, other things being equal,

all the results depend on V0R
2. The potential (22), al-

though less "physical," is convenient for computation

since the fall-off of V (r) to zero for r > R + d (in

place of the exponential damping of the Wood-Saxon

potential) greatly reduces the computation time for a

digital computer, without which it would be impossible

to attempt a solution of the Schrodinger equation (1) for

the case of a nucleus with a diffuse boundary. It is ab-

solutely necessary that the imaginary part of the po-

tential W (r) depend on r in the same way as the real

part. However, in the first papers on the model with a

diffuse edge, the authors attempted to use the minimal

number of parameters, and so they chose for the imag-

inary part of the potential the same dependence as for

the real part. In other words, they assumed that

υ{Γ)=-ν(Γ)(ί+ίζ). (25)

The value of the quantities Vo and ζ depends on the

energy of the nucleon. Thus, for neutrons with energy

14 Mev the best agreement with the experimental data

for the potential (22) is obtained for the values

F0 = 42, ζ = 0,12, (26)

which corresponds to W = 5.05 Mev. Approximately

FIG. 3. Value of | div j | for 18-Mev α particles at various
points in an argon nucleus. The interior circle corresponds to a
value of the nuclear potential equal to 0.9 Vo, the outer circle to
0.1 V,,. The arrows indicate the direction of j .

FIG. 4. The three-di-
mensional picture of Fig. 3
as projected on a plane.
The arrows show the mag-
nitude and direction of j .
The level lines (dashed
lines) are drawn through
points with the same values
of | div j | .

the same values for these quantities are obtained at

Ε = 14 Mev for the Woods-Saxon potential. The pa-

rameters R and D [or a in the potential (20)], Vo,

and ζ were selected to give the best agreement between

computational and experimental values of σ 8 and σΓ.

Using the parameters thus obtained, the differential

scattering cross section da s (^) was calculated, which

could also be compared with the results of experiments

and thus test the model. In the variant considered by

us, the imaginary part of the potential W is different

from zero at all points of the nucleus. It takes on its

maximum value in the central region of the nucleus

and falls off with increasing radius (cf. Fig. 2). How-

ever, this does not mean that absorption of the nucleons

occurs mostly in the center rather than at the periph-

ery of the nucleus. The point is that, as we have al-

ready said, the absorption of particles at a given point

in the nucleus is determined by the magnitude of the

divergence, which is proportional not just to W (r) ,

but also to the density of incident particles | Ф(г)|2

at the given point r in the nucleus. Figure 3 shows
the effect of the factor | Ф(г)|2 in the expression for
the divergence. In this figure, we show some compu-
tations of McCarthy7 made on the basis of the optical
model with volume absorption, for a particles of 18
Mev energy impinging on argon nuclei. The heights
of the points in the diagram of Fig. 3 give the value of
- div j ; the magnitudes and directions of the arrows
approximately show the current J. The computations
were done for the Woods-Saxon potential, where the
two circles in Fig. 3 correspond to distances at which
the potential is equal to 0.9 Vo and 0.1 Vo respectively.

As we see from Fig. 3, the absorption is not uni-
formly distributed over the nucleus, even though W (r)
changes very little in the central part. A point of in-
terest also is the presence of a large maximum in the
absorption in the direction of the incident beam, at the
edge of the nucleus diametrically opposite to the side
from which the impinging particles came. Approxi-
mately 15 — 20% of all the particles absorbed by the
nucleus are absorbed in this maximum. Figure 4
shows the same picture in a plane view. The dashed
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FIG. 5· Explanation of the appearance of a maximum in |div j |
at the edge of the nucleus. In the figure is shown the geometric
path of "rays" (normals to wave surfaces) for 30-Mev neutrons in
an argon nucleus. Because of the refraction effect of the real part
of the nuclear potential, the nucleus acts as a lens with a focus
at the edge of the nucleus. The distances from the center of the
nucleus are given in units of 10~" cm (fermi).

lines are lines of "equal height," i.e., lines along
which the divergence is constant. The arrows once
again show the direction and magnitude of the current
where, in contrast to Fig. 3, the length of the arrows
is strictly proportional to | J |. Figure 5 explains the
appearance of the "forward" maximum in the absorp-
tion, whose presence is shown in Figs. 3 and 4. In this
figure we show the geometrical path of rays refracted
by the nucleus. The computation was done for 30-Mev
neutrons (the wavelength for such neutrons is approx-
imately 1.4 times greater than the wavelength for 18-
Mev a particles, for which Figs. 3 and 4 were con-
structed). As we see from Fig. 5, the nucleus simply
acts as a lens whose focus lies on the axis near the
edge of the nucleus. The presence of this focus also
explains the absorption maximum since, in the region
of the focus, |Ф(г) | 2 obviously has a maximum. Pic-

FIG. 6. Ratio σό = σΒ/σΓ as a
function of k\ The solid
curve is calculated from the
optical model with a diffuse
edge and volume absorption,
for 14-Mev neutrons.

aas/du for 14-Mev neutrons.
The abscissa gives the scat-
tering angle, and the ordinate 0.001
gives άσΛ/άύ in arbitrary units.
The solid curves are the
computations on the optical
model with volume absorp-
tion and a diffuse edge/

30 60 120 150 180

FIG. 7

0 30 60 30 120 150

FIG. 8
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tures of the type shown in Figs. 3, 4, and 5 may turn
out to be very useful for understanding the dynamics
of direct nuclear processes. The model of a nucleus
with a diffuse edge and a volume central absorption
still is not the best approximation to actuality. From
a comparison of the computational data with the re-
sults of experiment one finds the following:

1. One can choose the parameters of the model to
obtain good agreement of theoretical and experimental
results for the total cross section σ̂  and the value of
σ0 in the region of medium and heavy nuclei. But then
the theoretical value of σ0 for light nuclei is too high.
Figure 6, taken from reference 6, which gives the scat-
tering of neutrons with an energy of 14 Mev, illustrates
this result.

2. The angular distribution of scattered neutrons is
essentially described correctly by the model. However,
one observes a discrepancy between the theoretical and
experimental data on two counts:

a) The depth of the diffraction minima in the angular
distribution is actually much less than one obtains from
theory. (In other words, the theory predicts a much
larger variation in intensity of scattered particles with
change in angle of scattering $ than is actually the
case);

b) The theory gives too high a value for the relative
probability of scattering at angles close to 180°.

In Figs. 7 and 8, which are also taken from refer-
ence 6, one sees these differences very clearly, bi
these figures, the abscissa is the scattering angle and
the ordinate is da s (^) in arbitrary units. The solid
curves gives the theoretical results obtained with a
potential defined by formulas (22) — (24) and (26). En-
tirely similar results are also obtained for a potential
of the Woods-Saxon type.

The discrepancy between the theoretical and experi-
mental data mentioned in Sec. 1 could also be elimi-
nated by choosing for light nuclei a value of ζ approxi-
mately twice as large as for heavy nuclei. Such a
marked "blackening of the nucleus" with decrease in
A is, however, highly improbable. Therefore many
authors, and in particular Fernbach and Bjorklund,8

have introduced, for the purposes of improving the
agreement of theory with experiment, a surface ab-
sorption, i.e., they have assumed that the imaginary
part of the potential W (r) is different from zero
only at the edge of the nucleus. With surface absorp-
tion, σ0 should (for fixed values of the parameters in
the potential) depend more weakly on the mass num-
ber of the nucleus than for the case of volume absorp-
tion, because the absorbing volume in the first case is
equal (in order of magnitude) to 47rrjjbA2/3 (where b
is the effective depth of the surface absorbing layer,
which is independent of A), whereas it is (4π/3)τ§Α
in the second case. We should say immediately that
there are no clear physical reasons for replacing the
volume absorption by a surface absorption. Most usu-
ally, one gives as an argument in favor of the surface

absorption the fact that, in the central region of the
nucleus, for the most part those nucleons are neighbors
which lie in the inner nucleonic shells, whose state is
difficult to change because of the effect of the Pauli
principle (since the higher states are occupied). Ac-
tually, however, as Peierls9 has pointed out, this as-
sertion is by no means correct, since there is no
marked difference between the density of nucleons of
the inner and outer shells in the central region of the
nucleus.

Nevertheless, the introduction of surface absorption
in the first place makes it possible to avoid the sharp
jump in the imaginary part of the potential when we go
from light nuclei to heavy nuclei (which, as we have
pointed out, is necessary in the case of volume absorp-
tion for explaining the dependence of σ0 on A), and,
secondly, it eliminates the contradiction, pointed out
in 2.a, between theory and experiment concerning
the angular distributions (too deep diffraction minima
in the theoretical curve in Fig. 7). The use of surface
absorption improves the agreement of theory and ex-
periment simultaneously in both respects, and thus justi-
fies the increase in the number of parameters charac-
terizing the optical potential which must be done when
one introduces the surface absorption. In Bjorklund's
calculations, the imaginary part of the potential was
chosen as a Gaussian

W =

where
for neutrons 6 = 0,98·10'13 cm,

for protons δ=1.2·10"13 cm.

For 14-Mev neutrons,

W 0 =7Mev.

(27)

(28)

(28a)

(29)

In Table I we give data showing how well the com-
puted values agree for a wide interval of values of σ Γ ,
as obtained with the surface absorption model. The
data given in the table refer to 14-Mev neutrons. The
experimental results are those of MacGregor; the
theoretical results are Bjorklund's (cf. reference 10).

For the real part of the potential Bjorklund used
formula (20) with the parameter values (20a) and (21),
where VQ was taken to be equal to

Fo = 44 Mev. (30)

As we see from the table, the dependence of σΓ on
A over a wide interval of values from A = 9 to A = 209
is given extremely accurately by the results of the theo-
retical computation carried out using surface absorp-
tion. As already mentioned, the introduction of surface
absorption enables us to eliminate the discrepancy be-
tween the theoretical and experimental results for the
angular distribution which was pointed out in 2a.
However, one does not succeed in eliminating the too
high values of differential scattering cross section at
angles close to 180° (2b).
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Table I. Capture cross section σΓ for 14-Mev neutrons
(in barns)

Element

Be
B1 0

С
F
Mg
Af
s
Ti
Fe
Co
Ni

Experiment

0.51 ±0.03
0.66 ±0.07
0.56 ±0.02
0.88 ±0.05
1.00 ±0.03
1,02 ±0.02
1.16±D.O6
1.33±0.03
1.34 ±0.03
1.41 ±0.03
1.36 ±0.02

Theory

0.61
0.66
0.71
0.86
0.98
1.04
1.04
1.34
1.33
1.40
1,35

Element

Cu
Zn
Zr
Ag
Cd
Su
Sb
Au
Hg
Pb
Bi

Experiment

l,49±0,02
1.57 ±0.03
1.73±0,03
l,93±0,03
1,91 ±0,03
1,89 ±0,06
1.96 ±0.04
2.41 ±0.04
2,43 ±0.03
2.56±0,04
2.56±0.04

Theory

1,47
1,48
1,75
1.85
1,90
1,98
2,01
2.48
2.49
2.53
2.54

This point is related to the fact that up to now we
have not taken into account the spin-orbit interaction
of the impinging nucleons with the nucleus. Spin-orbit
interaction leads first of all to a polarization of the
scattered nucleon, and second, as will be shown later
on, increases the relative intensity of nucleons scat-
tered to the "side," i.e., at angles of the order of 90°.

c) Inclusion of spin-orbit interaction. Since the spin
of the nucleon is s = 2, its projection s z on any given
direction in space can take on only the two values s z

= ± 2 · И this direction is physically distinguished in
the process of scattering which we are considering,
the nucleons with different spin projections on this
physically distinguished direction may, in general, be
scattered differently. This will occur, obviously, only
if the forces of interaction between the nucleon and the
nucleus depend on the orientation of the spin with re-
spect to the possibly physically distinguished direc-
tions .

In the scattering process we deal with three phys-
ically distinguished directions

k+k' 1 = к—к'
2 cos ft/2 ' 2k sin ft/2

and the normal to the plane of scattering*

Asinft #

Let us examine which of these three directions in
space might be important for spin effects. For this
purpose we note first of all that, if the scattering de-
pends on the orientation of the spin of the nucleon with
respect to some direction, then we are actually dealing
not with a single scattering amplitude, but with four
amplitudes corresponding to the different values of s z

for the nucleon before and after the scattering. We
shall denote the states (initial or final) with projec-
tion s z = +5 by the index 1 and the states with projec-
tion s z = — 5 by the index 2. The scattering process
is then described by four amplitudes which we shall
denote by fu, f22, fi2> f2i №e first index is the initial
state, the second denotes the final state). The first
two amplitudes describe the scattering without change

in spin orientation; the second pair of amplitudes cor-
responds to scattering with a change in s z (called spin-
flip scattering). Actually, we have a whole table of
scattering amplitudes, i.e., a two-by-two matrix,

1
n (31)

We note that any two-by-two matrix can be represented
as a linear combination of four matrices:

the unit matrix

A _ _

and the three Pauli matrices:

-ι)·

Thus we can write

= ±= {a • »} = J = {a.

(32)

(33)

where a and bj are functions of the scattering angle $.
The differential scattering cross section at angle i>

for fixed values of the spin in the initial and final states
is obviously equal to

U α=β, (34)

If in an experiment we do not determine the spin
orientations of the initial and final states, which is
usually the case in experiments in which one meas-
ures the angular distribution of scattering, then to
obtain the differential cross section measured by such
an experiment we must sum (34) over all α, β = 1,2,
i.e., over all orientations of the spin in the initial and
final states:*

—ifo— = ^j Ι 1°$ I I ^ t ~Ь!" 1 * №&)
α, β

•Formula (35) is easily obtained if we note that

= к х ^

a,f)

where Sp A denotes the sum of the diagonal elements of the ma-
trix A: Sp A = A,, + A22, and we use the identities

Spai0j = 26ij, SpOj=0.
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The value of da s /du should not change under rotations
of the coordinate systems since it depends only on
quantities which are invariant with respect to rotation
—the angle i? between the two directions к and k' (in
other words, on k*k'/k2 = cos S-) and the absolute
value к of the wave vector. From this it follows that

| b' | 2 ΞΞ | b[ |3 +1 b'21
2 +1 б, I2 is invariant under rotation.

(36)

But this means that the three functions bid?), Ъ'2(£),
and Ьз(<?) must be the components of a vector, since
only a vector has the property (36). The vector b'
can be directed only along one of the physically dis-
tinguished directions m, 1, or n. However, it is easy
now to see that, since parity is conserved in nuclear
interactions,

b'(d) = 6'(*)n. (37)

In fact, the conservation of parity means, in par-
ticular, that under a space inversion all the effective
cross sections, including the cross section (34), remain
unchanged. Since under an inversion χ — — χ, у —- -у,
ζ — - ζ :

mx—+ — mx, my—> — my, mz—> — mz, (38)

lx->-lx, lv^-ly, lz->-h, (39)

then, with the condition (37), the cross section (34) will
be invariant under inversion. In fact, ad?) andbd?)
are not changed under reflection since 1? does not
change and, according to (39'),

η σ - • ησ.

If the vector b ' were directed along m or 1, then
as a result of (38) the cross section (34) would change
under an inversion, since

which is possible only when parity is not conserved.
From all this, it follows first of all that a possible
distinguished direction for the spin orientation is the
direction of the vector η normal to the scattering
plane. This means that the scattering cross section
can depend on the projections of the spins of the inci-
dent and scattered nuclei only along the direction n.
Secondly, from formulas (35) and (37) there follows
the statement formulated in Sec. b of this paragraph
concerning the reduction in the relative probability of
scattering at angles close to 180°. In fact, it is clear
that

if t> — 0 or π, since for $ = 0 or π the direction of
the vector η becomes indeterminate, and if b ' ( t ? ) n - a
went to zero at these angles, then we would obtain for
the scattering amplitude at $ = 0 and π physically
meaningless expressions. Since

it then follows that
In other words we

where

| 6 | < o o

Then according to

у [kk'l 6'
П ~~ к sin ϋ '

b'/sini? is finite for ύ-
can write

V (θ) = b (#) sin ft,

for θ = 0 or я.

(36) and (37) we have

= 0 or ж.

(40)

dQ
(41)

If the scattering is independent of spin orientation, then

Ι α (π) |
das

(42)

If the nuclear potential depends on the spin orientation,
then according to (40) we have

das (π) Ι α ( π ) I2

das
\a ( i) \ 2

(43)

Thus we see that the dependence of scattering on spin
orientation of the nucleon leads to a reduction in the
relative probability of scattering at angles close to
180°. The same situation exists for scattering angles
close to 0. [ The magnitude of the effect still depends,
of course, on the behavior of b (^) as a function of 1?. ]

It is easy to see that at the same time the total
cross section remains unchanged, since, according to
formula (12), at is expressed in terms of the forward
scattering amplitude. From this it also follows that
the spin-dependence of the scattering has very little
effect on the magnitudes of the first, most intense,
diffraction maxima and minima. In fact, let us con-
sider the scattering by a real potential. In this case
a t = a s , and consequently σ̂  is not changed by the in-
troduction of forces which depend on the orientation
of the spin relative to n. But the quantity a s is de-
termined for the most part by the area of the first few
diffraction maxima, by their heights and extension.
Since a s is not changed, these quantities also cannot
change essentially.* It is therefore clear that the spin
dependence of the scattering affects the angular dis-
tribution only at large angles. This situation remains
when we have a complex potential. Thus, the depend-
ence of the potential on the orientation of the spin of
the nucleon practically changes neither a s nor σΓ,
since the contribution of the higher diffraction maxima
to as at nucleon energies of the order of 10 Mev
amounts to only a few percent, (this is much smaller
than the experimental errors in the measurements of
a s and σ Γ ) , but can give a significant change in the
angular distribution of the scattered nucleons at angles
close to π (namely, decrease the relative intensity of
scattering at angle π) which, as we saw in the preced-

*This assertion is, of course, valid in those cases where the
angular distribution is sufficiently strongly peaked forward, i.e.,
for nucleon energies above 5 Mev.
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ing sections, is just what is required to give agreement

between the theoretical and experimental results.

If the scattering is dependent on spin orientation,

this may lead to the result that the scattered nucleons

are polarized in a direction v, even if the incident

nucleons are unpolarized. Let us express the polari-

zation of the nucleons in terms of the amplitudes ίαβ.

By the polarization Р„ we mean the quantity

J+—J- do + — ao_
= 7Γ7Γ = (44)

where J+ and J_ are the numbers of nucleons scat-

tered at angle $ with projection s z on the direction v,

equal respectively to ± J ; da+ and άσ_ are the differ-

ential scattering cross sections corresponding to these

nucleon spin orientations in the final state. According

to the preceding statements,

We now note that it follows from (33) that

Since

/21 = -^= sin θ • sin

(47)

(49)

where 0 and φ are the polar angles of the vector η

(Oz II v). Thus

But for in and f22 we have the equations

where

_ а — Ь'3

b' = b sin θ · cos Θ = Ь sin Ь ην,

(50)

(51)

(52)

since у II Oz.
Substituting (51) and (52) in (50) and using formula

(35) for das(&), we obtain:

^ g (53)

From formula (53) it is clear that the polarization
Pyd>) goes to zero for S- = 0 and π. This is also to

be expected since at i> = 0 or π the physically distin-

guished direction, the direction of the vector n, ceases

to be determinate. An important conclusion which fol-

lows from the above statement is that if we introduce

a nuclear potential depending on spin orientation for

the purpose of obtaining the correct behavior of the

angular distributions at angles & close to π, then this

same potential must give values of the polarization

Pj,(t>) of the scattered nucleons in accord with experi-

ment.

Now let us see what the form of the potential which

depends on the nucleon spin orientation should be. As

already discussed above, in this case we must treat

two wave functions ^i(r) and ΨΙ(Υ) corresponding to

the two orientations of the nucleon spin before the

scattering. For r — «> these functions will have the

form

e- ik r + (/ + f) ^ (54)
r + (/a + fn) ^

J= (55)

Neither these functions themselves nor linear combi-

nations of them can be solutions of two independent

equations since | f1 212 = | f2i | 2 * 0.* Therefore in place

of the Schrodinger equation (1) we must write a system

of two differential equations with four potentials Uu,

U12, U21, and ϋ 2 2 :

(45) ( V 2 + A

(46) or in matrix form

where

is the matrix of the potential and

W) = 0, (56)

(56a)

(57)

(58)

denotes the two-component wave function of the nucleon.

Using the properties of the Pauli matrices, we write

U(r) = U(t)-l+jV,a. (59)

The vector U s can be directed only along the vectors

r, V, or [V χ r ] which are available to us. In exactly

the same way as in establishing the form of the matrix

of the scattering amplitudes from conservation of par-

ity, i.e., from the invariance of ϋαβ with respect to

space inversion, it follows that

(60)

or, introducing the orbital angular momentum opera-

tor (in units of R)

we obtain

where

*If f12 = £,, = 0, the functions

1 ,

(61)

(62)

V2
г к г

could be solutions of two independent equations since a and b
are independent.
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FIG. 9. Dependence of Vo (upper curve) and Wo on nucleon en-
ergy (abscissa in Mev) in a model with surface absorption and dif-
fuse edge (for V we use the Woods-Saxon potential, for W a Gaus-
sian curve). The values of Vo and Wo (ordinates) are given in Mev.
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Thus the matrix potential U (r) takes the form

(63)

Here U (r) is the usual central potential treated by
us earlier. The second term in (63) describes the spin-
orbit interaction. The form of the spin-orbit potential
V s (r) cannot be established from general physical
considerations. Good agreement with the experimen-
tal data is obtained if we choose V 4(r) in a form
analogous to the atomic spin-orbit potential

V -V (1Y±*11
dr

(64)

where Vs0 > 0 and f (r) is a function which determines
the dependence of the real part of the potential V (r)
on r. The quantity Κ/μο = 1.4 χ 10~13 cm is the Comp-
ton wavelength of the ж meson (μ is the rest mass of
the 7Γ meson), which is introduced into (64) purely
formally to make Vso have the dimensions of an energy.
In the case of the Woods-Saxon potential, for example,

df

dr'
e(r-R) a

(65)

Up to energies of the order of 100 Mev, the experimen-
tal data are well des«ribed on the assumption that Vs0

is a real quantity. Thus the spin-orbit potential in the
form (64) is determined by a single constant. Fre-
quently V s 0 is written in the form

where the constant of the spin-orbit coupling к has the
dimensions cm2.

d) Comparison of theoretical and experimental re-
sults. In comparing the experimental data with the re-
sults of computations on the optical model, one must
keep in mind (especially for energies of the order of
1 Mev) that the theoretical values of σ 8 should be
somewhat lower than the experimental results. This
is related to the fact that, in the optical model, reso-

№ да

FIG. 10. Dependence of spin-orbit potential on nucleon en-

ergy. Upper curve — real part of V s o in Mev, lower points — imag-

inary part V p o.

nance scattering, i.e., scattering which proceeds via
the formation of a compound nucleus with its subse-
quent decay, in which a nucleon is emitted with an
energy precisely equal to the initial energy, is con-
tained in the quantity σΓ and not in σ 8.

However, resonance scattering is quite improbable
if the compound nucleus is formed in a state with suf-
ficiently high excitation energy, so that there are many
different paths available for its decay (many "open
channels"). Such a situation actually already occurs
in practice in most cases for energies of the incident
particles above 2 or 3 Mev.

We shall consider for the most part a model with a
diffuse edge, surface absorption, and the spin-orbit po-
tential (64) (results for a model with volume absorp-
tion are described in detail in the monograph of Nemi-
rovskii11). The most detailed calculations of this sort
are those of Fernbach and Bjorklund,8 who used for
V(r) the Woods-Saxon potential and for W(r) formula
(27). For the parameters a, b, R, they chose the val-
ues (20a), (21), and (28). In Fig. 9 are shown the de-
pendence on nucleon energy of the quantities Vo and
Wo. As we see from Fig. 9, Vo falls off and Wo in-
creases with increasing energy, as should be expected
since the greater the energy of the incident nucleons,
the less the effect of the Pauli principle in limiting the
number of possible states of the colliding particles
(impinging particle and nucleon in the nucleus). We
note that although in Fig. 9 the dependence of Wo on
Ε is shown up to an energy of the order of 100 Mev,
the surface absorption actually is in good agreement
with experimental data up to energies of the order of
50 Mev. For larger energies of the incident nucleons,
the best agreement with experiment seems to be ob-
tained in the model with volume absorption. In Fig. 10
is shown the dependence of the spin-orbit potential Vs0

on energy (upper curve). The lower curve refers to
the imaginary part of the spin-orbit potential. Here
the data are less definite, although it appears to be
clear that up to an energy of the order of 40 Mev at
least, the imaginary part of the spin-orbit potential
is equal to zero.
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FIG. 11. at (upper curve,
in barns) and στ as functions
of A^ for 14-Mev neutrons.
The solid curve is a com-
putation for a model with
diffuse edge and surface
absorption.

The dependence shown in Figs. 9 and 10 is quite
well approximated by the following formulas (for Ε
£ 15 Mev):

Fo = 52,5-0.6£ Mev,

Mev,

F.n= 10.0-0Λ5Ε Mev.

(66)

(67)

(68)

As we see from (68), when Ε = 14 Mev, Vs0 is equal
to 8 Mev, which corresponds to к =* 3.5 x 1O"27 cm2.
(This constant was first established by Levintov.12)
Figures 11 and 12 show the neutron cross section σ̂
(upper curves) and σΓ (lower curves) as functions
of mass number A. These data indicate the very good
agreement of theory with experiment over a wide in-
terval of values of A from 8 up to 200. In Fig. 13 we
give curves of das(<?) for 14-Mev neutrons. These
curves also show the excellent agreement of theory
and experiment (except, possibly, for the data on
scattering by Al). In this figure an interesting point
is the absence of deep minima which are character-
istic for the model with volume absorption, and the
beautiful agreement of the theoretical and experimen-
tal data for scattering at angles close to ж, which, as
pointed out above, is a consequence of the inclusion
of spin-orbit coupling.

In Fig. 14 we give curves of polarization of scat-
tered neutrons (E = 3.1 Mev) as a function of scat-
tering angle i>. The experimental data were obtained
as usual by observing the azimuthal asymmetry in
double scattering. As one sees from Fig. 14, there
is no agreement between the theoretical and experi-
mental results; the situation is especially bad in the
case of lead and tin. The reason for the discrepancy
is still not clear, and this question requires additional
(experimental and theoretical) investigation.

FIG. 12. σ4 (upper curve,
in barns) and at as a func-
tion of A 4 for 26-Mev neu-
trons. See remarks for
Fig. 11.

Z0 40 60 80 100 120 НО 160 180

FIG. 13. ааз/йп (mb/sr) for 14-Mev neutrons. The scatterers
are tin, copper, iron, and aluminum.

It should be mentioned that for high-energy neutrons
and protons the agreement of theoretical and experi-
mental results on polarization in the model with sur-
face absorption is entirely satisfactory. Such a con-
clusion follows, for example, from the analysis of data
on polarization of 8.5- and 10.5-Mev protons scattered
by various nuclei (from Be to Ag, cf. reference 13).
The theoretical results obtained on the basis of the
optical model give essentially the correct absolute
values of Ρ (ι?), as well as the dependence of the de-
gree of polarization on the scattering angle •&. In par-
ticular, the experiments confirm the prediction of the
optical model that there is a systematic decrease in
polarization with increasing A. Another confirmation
of the diffraction nature of the polarization phenomena
(i.e., the fact that the difference in scattering cross
sections for particles with different spin orientations
can be described by a spin-orbit potential) is the fact
that the location of the maxima and minima in the po-
larization is, in first approximation, a function only of
the quantity

as should be the case for Fraunhofer diffraction by a
homogeneous obstacle of radius R.
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FIG. 14. Polarization of neutrons Ρ (0) (in %) as
a function of 9 for 3.1-Mev neutrons. The solid
curves are computations on the optical model with
diffuse edge and surface absorption.
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This circumstance is illustrated by Fig. 15 in which
is shown the value of η for the maxima and minima in
the polarization of nucleons with an energy around 10
Mev, scattered by various nuclei. As one sees from
the figure, the value of η is approximately constant
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FIG. 15. Values of kRsin(#/2) for maxima and minima in the
polarization P(d) as a function of mass number A.

for maxima and minima of the polarization over a
wide range of variation of A.

We have already remarked concerning the results
obtained in the model with volume absorption. The de-
fects of this model which were pointed out in Sec. 3
make it preferable, for Ε < 50 Mev, to use the model
with surface absorption.

However, in certain cases, even with volume ab-
sorption, one can obtain satisfactory agreement with
experiment, though the parameters of the potential
must then be allowed to vary markedly as we go from
nucleus to nucleus. As an example of this, we may
cite the data shown in Figs. 16 and 17. In these fig-
ures are shown curves of Ρ (t?) and da s(^) for 10-
Mev protons,14 scattered by nitrogen and argon nuclei.
As we see from the data shown in the graphs, the quan-
tities Vo, Wo, Vs0 and a, even though they change
when we go from nitrogen to argon, have approximately
the same order of magnitude as in the model with sur-
face absorption.

FIG. 16. Polarization Ρ (θ) (left scale, in %) and
dOg/dO (right-hand scale, mb/sr) as functions of scat-
tering angle d (in the с m. system) for 10-Mev protons
(scattering by nitrogen nuclei). The solid curves are
for a model with diffuse edge and volume absorption;
the dashed curve is the experimental data for do /dfl.
The parameters are: r0 = 1.2 fermi, a = 0.6 fermi, Vo

= 0.49 Mev, Wo = 3.0 Mev, V s 0 = Ю.0 Mev.
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240

FIG. 17. Polarization Ρ (ft) (left scale, in %)
and άσΒ/άύ (right-hand scale, mb/sr) as func-
tions of scattering angle θ (in the c m . system)
for 10-Mev protons. The scatteret was argon.
The notation is the same as in Fig. 16. The
parameters are: r0 = 1.2 fermi, a = 0.415 fermi,
Vo = 61.76 Mev, Wo = 8.78 Mev. V s o = 20 Mev.

II. THE OPTICAL MODEL FOR SCATTERING OF
COMPOSITE PARTICLES

3. Scattering of a particles

In recent years it has become clear that, just as for
the case of nucleons, in the scattering of a particles
we cannot treat the nucleus as a black body.

We know that for a particle energies below the
Coulomb barrier for a given nucleus the scattering
occurs almost entirely as Rutherford scattering. The
same situation remains for energies above the Cou-
lomb barrier, but for small scattering angles. This is
explained by the fact that the cross section for Ruther-
ford scattering at small angles is large, since it can
occur even when the a particle passes far from the
nucleus.

The non-electromagnetic, nuclear interaction of
the a particle and the nucleus manifests itself mainly
for scattering at large angles. For the reasons cited,
quantitative conclusions concerning "nuclear" (non-
electromagnetic ) scattering of a particles became
possible only after experiments were done in which
scattering was observed at large angles for a par-
ticles which were accelerated artificially to high en-
ergies (of the order of 30 Mev and more). For these
energies the α-particle wavelength is λ « R, which
is an essential point for what follows. Let us first of
all consider the results of the theory in which the nu-
cleus is regarded as being "black" for a particles.

In this case the smallness of the wavelength of the
a particle permits us to simplify considerably the
treatment of the nuclear Coulomb field.

As already pointed out above, for λ « R, diffrac-
tion (wave) phenomena, appear only at distances of
the order of or greater than R2A. Near the nu-
cleus the picture will be practically the same as that
of "geometrical optics," i.e., the a particles will
move along classical trajectories. In this case, these
trajectories will not be straight lines, as they would

be for uncharged particles, but hyperbolas, since the
Coulomb field of the nucleus acts on the a particles.
The latter is a slowly-varying function of r, and at
distances of the order of λ changes only insignificantly.
Therefore, the motion of a particles in the Coulomb
field can be treated as classical. The presence of a
black absorbing nucleus has the result that, at dis-
tances greater than R2A, one gets a diffraction pic-
ture whose optical analogue is the diffraction of light
by a black sphere placed in a medium with a slowly
varying index of refraction (varying as V 1 - a/r ,
where r is the distance from the center of the sphere).
We recall that, in contrast to this, the scattering of
neutrons corresponded to a picture of diffraction of
light by a black sphere in a homogeneous medium with
a constant index of refraction. In practice, the compu-
tation of dffs(i?) for a particles on this scheme is
carried out as follows: if, as usual, we expand the
scattering amplitude in partial waves with given or-
bital angular momentum:

/ (*) = l-Xr- Σ l/27TT(l - /,) л(cos θ), (69)

where P;(cos £) are Legendre polynomials and Ц are
the amplitudes of the scattered partial waves, independ-
ent of ,?, then for I greater than some value V, the Ц
are exactly equal to the amplitudes of the waves scat-
tered by a "pure" Coulomb field, (i.e., in the absence
of the black nucleus) while for I == V

U = 0. (70)

In fact, from the classical point of view ("geomet-
rical optics" in the neighborhood of the nucleus) only
those particles can penetrate into the nucleus for which
the energy Ε is greater than the sum of the heights of
the Coulomb barrier U^ and the centrifugal barrier Щ.
Since

(71)

(72)
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the condition
2Zf_2

R
ЬЧ' (Г

(73)

determines the maximum orbital angular momentum
V of particles which can penetrate into the nucleus.

If I «V, the wave penetrates into the nucleus and
is absorbed there (the nucleus is black), so that the
amplitude Ц for such partial waves should be set equal
to zero. If, however, I > Γ, the wave does not pene-
trate into the nucleus and only the Coulomb field acts
on it, so that Ц for I > V is not affected by the pres-
ence of the black absorbing nucleus. These statements
can be understood by noting that, for neutrons, (73)
goes over into the condition

which can be rewritten as

(I' > 1),

У 2тЕ

(74)

(75)

This last condition, if we introduce the impact param-
eter d (i.e., the distance from the nucleus to the
classical trajectory of the particle, which in the case
of neutrons is a straight line—the "rays" of geomet-
rical optics in a homogeneous medium), can be ex-
pressed as

d = R, (76)

since I' = dp/h", where ρ = V2mE is the neutron mo-
mentum. Thus the condition for penetration into the
nucleus, I < V, is simply the trivial geometrical con-
dition for "shadow" and "illumination,"

d<R. (77)

The presence of the Coulomb field changes the con-
dition (77) in exactly the same way as the index of re-
fraction of light in the medium with an index which
varies according to the law V 1 — a/r , "shifts" the
light from the sphere whose center is located at the
point r = 0. Therefore the region of geometrical
shadow right near the sphere (far from it we have a
diffraction picture) still remains: only those rays which
are close to the normal to the sphere surface are not
refracted and impinge on the surface of the sphere and
are absorbed by it. The model described above for a
particle scattering was first treated by Blair15 and has
been given the name of the "sharp cut-off model" in
the foreign literature. We shall call it the black nu-
cleus model. The characteristic results for the black
nucleus model are shown in Fig. 18 which is taken
from Blair.16 In this figure, the dashed curve shows
the results of a computation of the ratio das(t?)/daR
(where άσ# is the Rutherford scattering cross sec-
tion) for the scattering of 48.2 Mev a particles by
gold. In this case (V = 22) R was set equal to 1.3
χ 10"12 cm (which is somewhat greater than the radius
of this nucleus for neutrons, which is approximately
0.73 χ 10"12 cm).

FIG. 18. das/d<7R for 48.2-Mev α particles. The scatterer is
Au1". The abscissa gives the scattering angle θ. The dashed
curve is a computation on the black nucleus model; the solid curve
gives the experimental data.

The solid curve in Fig. 18 is drawn through the
experimental points. As we see from the figure,
starting with scattering angles £ =* 40°, the experi-
mental data and the results of the theoretical compu-
tations disagree markedly. (For & = 90° the theoret-
ical values are 50 times greater than the experimental
results.) This shows convincingly that the black nu-
cleus model is unsuitable for describing α-particle
scattering.

FIG. 19. Experimental data on the
angular distribution of scattering of
40.2-Mev a particles by various nuclei.
The abstissa is the scattering angle
d (in the с. т. system); the ordinates
are άσβ/άσΆ.

αοοι
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FIG. 20. Аая/ап (mb/sr) for 40.2-Mev α particles. The scat-
terer is carbon. The solid curve is computed on the optical model
(•θ in the с m. system).

Nevertheless, the optical model with a diffuse edge,
,and not assuming the nucleus to be black, is in good
agreement with the experimental data, and gives an
almost exact description of the details of the angular
distribution. In Fig. 19 is shown the general form of
the curves for the ratio da s /daR as a function of
scattering angle £, obtained in various experiments.
As we see from the figure, these curves, which oscil-
late for light and medium heavy nuclei, become mono-
tonic for heavy nuclei. The calculations, carried out
by Igo and Thaler17 using an optical model with diffuse
edge and volume absorption, reproduce very closely
the behavior of the experimental curves for all A. As
an example, we shown in Figs. 20 — 23 a comparison
of the results of Igo and Thaler with the experimental
data on scattering of 40.2-Mev a particles from C,
Ti, Mo, and Au nuclei. The authors of this paper
used the Woods-Saxon potential with the following
parameters:

cm,
α = 0.5-10'13 cm,

= 30—51 Mev,

(78)

(79)

Wo=9— 13 Mev. (80)

β·

FIG. 21. do-s/dQ (mb/sr) for
40.2-Mev a particles. The scat-
terer is Ti. The solid curve is
computed on the optical model
(d in the с m. system).

FIG. 22. άσ8/άΩ (mb/sr) for 40.2-Mev α particles. The scat-
terer is Mo. The solid curve is computed on the optical model
(p in the с m. system).

These values of the parameters refer to an energy of
Ε = 40.2 Mev. In going from nucleus to nucleus the
parameters are changed somewhat (mainly Vo), where
the smallest value Vo = 30 Mev applies to the light nu-
clei C, Al, and Ti. In the wide interval Cu-Th,
Vo = 47 — 51 Mev. Approximately the same results
were obtained in a paper by Cheston and Glassgold.18

In all probability, one could achieve even better
agreement with experiment and more constant values
of the parameters as functions of A in a model with
surface absorption. If we calculate, using (80), the
mean free path Λ of α particles in the Au nucleus,
we get

Λο = 2·10-χ3«η,

which is ten times greater than the mean free path of
a nucleon with an energy of the order of 10 Mev in a
black nucleus [cf. formula (10a)].

4. Scattering of Deuterons

A still more surprising effect is the transparency
of nuclei for 10 — 15 Mev deuterons. In Figs. 24, 25,
and 26 we give experimental data (das/dffR as a func-

FIG. 23. das/dCl (mb/sr) for
40.2-Mev α particles. The scat-
terer is Au. The solid curve is
computed on the optical model
(9 in the с m. system).
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FIG. 24. das/dfi for 15-Mev deuterons. The scatteref was Al.
The solid curve gives computations on the optical model with
volume absorption (d in the с m. system).

tion of scattering angle i?) for the scattering of 15 Mev
deuterons by Al, Rh, and Au nuclei, as well as theo-
retical curves obtained on the basis of the optical
model with a diffuse edge and volume absorption
(Woods-Saxon potential).

In Table II we give the optical potential param-
eters.1 9 The mean free path calculated, using these
parameters, for 15-Mev deuterons in a gold nucleus
is approximately equal to half the nuclear radius AD
=* 4 x 10~13.

The very good agreement of the theoretical results
obtained on the basis of the optical model with the ex-
perimental data is unexpected because the "loose"
structure of the deuteron (low binding energy) allows
it to be deformed at quite large distances from the
nucleus. This occurs in principle because of two ef-
fects: the action of the Coulomb field and the distortion
of the wave front as a result of diffraction. The latter
phenomenon is especially important for diffraction at
large angles where the deuteron momentum changes
a great deal:

Ap = | ρ - p ' | ~ 2p.

When there is a change in the momentum of the
center of gravity, each of the nucleons constituting the

1,2

1,0

as

ЦБ

Ο.Ί.

0,2

го ΊΟ во so wo izo но iso wo'
ϋ

FIG. 25. das/dfi for 15-Mev deuterons. The scatterer was Rh.
The solid curve gives computations on the optical model with vol-
ume absorption (θ in the c. m. system).

га 40 ев

FIG. 26. das/dn for 15-Mev deuterons. The scatterer was Au.
The solid curve gives computations on the optical model with vol-
ume absorption (θ in the с m. system).

deuteron can obtain a velocity relative to the center of
gravity of the order of Δρ/mjj, and consequently has,
in the reference system fixed in the center of gravity,
an energy of the order of ΔΕη = m/mjj · Δρ2/2. If
Δρ ^ 2p, then ΔΕη =* 2E. For Ε = 15 Mev, ΔΕ ^ 30
Mev, which considerably exceeds the binding energy
of the deuteron (2.19 Mev). This means that in dif-
fraction at large angles the deuteron can dissociate
("diffraction breakup"), or, in any case, be deformed.
In other words, these considerations do not permit us
to assume a priori that the scattering of deuterons at
sufficiently large angles can be regarded as the dif-
fraction of a wave corresponding to the motion of the
deuteron as a whole. Therefore, the experimental
data which indicate the validity of the optical model
for the scattering of deuterons at large angles contain
very vital information: they show that the effects of
deformation of the deuteron during the scattering proc-
ess are unimportant.

The first papers on the optical model for deuterons
date from approximately 1956.20 At present, the study
of the optical model for deuterons is still in its initial
stages. It is not clear in particular (because of the
lack of detailed experimental data) to what extent the
optical model correctly describes the behavior of the
deuteron cross sections σ 8 and σΓ as a function of
energy and mass number. No test has been made of

Table II. Parameters of the optical
potential for deuterons

Deuteron
energy
(Mev)

13.5

15

Element

Ni
Sn
Au
Λ1
Ti
Rh
Sn
Pd
Та
Au
Pb

Vo (Mev)

59
60
50
55
59
52
55
53
48.5
50
48.5

Wo (Mev)

19
10.5

9
25
21
12

n11
9
9
9

ro (fermi)

1.43
1,60
1.50
1.50
1.50
1.62
1,60
1.62
1.55
1 .55
1.52

a (fermi)

0.63
0.62
0.66
o;6o
0.60
о!бо
0.58
0.58
0.53
0.66
0.63

1
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the model with surface absorption, which for deuterons
may be especially important because of peripheral
processes of the type of the stripping reaction. The
introduction of surface absorption should lead in par-
ticular to a smoothing out of the variation of param-
eters of the optical potential as a function of A.

Finally, it should be clarified just how well the
optical model for deuteron scattering describes po-
larization phenomena. Since the spin of the deuteron
is 1, polarization phenomena can differ significantly
from those which occur in the case of nucleons. Let
us consider this problem in a little more detail. The
projection of the deuteron spin on any direction can
take on three values, +1, 0, and - 1 . Let us agree
to denote the states with projection +1, 0, and — 1 by
subscripts 1, 2, and 3 respectively. The scattering
amplitude is a three-by-three matrix

/ =

da,'<*

(α, β = 1,2, 3),

= |/αβ|2,

(81)

(82)

(83)

where άσαβ is the scattering cross section corre-
sponding to a process in which the deuteron was in
spin state a before the scattering and goes into spin
state β after the scattering. Let us see what are the
characteristics of the spin alignment of the scattered
deuteron beam. In the case of nucleons, the only char-
acteristic was the polarization, the ratio of the differ-
ence in cross sections for the two possible spin pro-
jections in the final state to the sum of these cross
sections. This definition can be formulated in the fol-
lowing way, which is more convenient for generaliza-
tion: the polarization is the ratio of the average value
of the spin projection on a given direction to the spin
of the particle. In fact, in the case of spin \ (nucleon)
we had, according to formula (44),

a+ —da_ _ \\da_da_\ Fv

^ t = 7 ' (83a)

where §„ is the average value of the spin projection
and s is the spin of the nucleon.

Generalizing this definition for spin 1 (the deu-
teron), we have

where

(83b)

(84)

we may say that the spins of the particles of the beam
are oriented at random if

da^ = do_ = da0. (85)

If Р„ = О, it then follows only that

dat = da_,

but not equation (85). Thus, if Vv = 0, but da+ = da_
* da0, the beam is ordered to some extent since the
numbers of particles with different spin projections
are not equal to one another. Let us therefore intro-
duce still another characteristic of the alignment of
the beam, which we shall call the quadrupolarization

(86)

If the beam is completely disordered, i.e., if we have
Eq. (85), then Qu = Pv = 0. Conversely, if <3„ = Р„ = О,
then (85) is satisfied, i.e., the beam is completely dis-
ordered. But if either one of the quantities (Q ,̂ or Р„)
is different from zero, then the orientation of the spins
of the particles in the beam is no longer random. The
quadrupolarization Q,, can also be expressed in terms
of the average value Щ of the square of the spin pro-
jection of the deuteron:

Μ dat-\-da_

Noting that

we find

v — 2

(87)

(88)

(89)

Let us now see what experimentally observable
phenomena in deuteron scattering occur because of
the presence of the two polarization characteristics
Ρ μ and Q,,. For this purpose we note that the matrix
of the scattering amplitudes f, just as in the case of
nucleons, can be represented as a linear combination
of certain basis matrices. The number of such basis
matrices should be equal to the number of matrix
elements f, i.e., nine. These basis matrices are the
following:

/1 0 o\ .

-= ° 1 0 ' / l = 7 I
0 1 0
1 0 0
0 — 1 0

0 1 o
0 1

1 0 0
0 0 0
0 0—1

(i, / =

(90)

(91)

The independent matrices Q^ are five in number,
since, first of all

In the case of deuterons, Pv is, however, not the
only characteristic of the alignment of the scattered
beam, since da0 does not even appear in Р„. In fact, and secondly

iS = QH
QiS = Q (92)
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Σ <?" = о,

i.e.,

(93)

(93a)

Thus we finally have:

The matrices Ii play the same role in the theory of
particles with spin 1 as the Pauli matrices σ<ί> played
in the theory of spin-g particles. The equations (90)
and (91) thus determine nine independent matrices of
third order, in terms of which one can expand the
matrix f:

b' ι / ч
(94)/ = —— · 1 + У — / 4- — У с- О11

* i, i

According to (82), the differential scattering cross
section das is

«to,=Σ /«β /& = 2 /5, /αβ = 2 (/*/)P = s P /7, 05)
α, β β

where f+ is the Hermitian conjugate of the matrix f:

/αβ = /βα. ^УO^

Since the matrices Ij and Q4 are Hermitian, i.e.,

/r = /., ρ ίί* = ρί>> (96a)

and since, in addition,

^ = 20^,

{
(98)

(99)

then, substituting (94) in (95) and using (96) — (99), we
find

das = [α| 2 + Σ (bif+'Σι (<Ч;)2· (Ю0)

Now arguing in exactly the same way as in Sec. 1,
we arrive at the conclusion that the quantities Ъ{ are
the components of a vector directed along n:

b' = 6'n, (101)

and that the five independent quantities CJJ form a
symmetric tensor of rank two. Using the three orthog-
onal unit vectors m, 1, and η which are at our dis-
posal, we may represent Cji in the form

= {сттц + cju + с„пц) У 8,

where

(102)

(103)

(Zij and nij are determined by similar equations) and
οχ, c m , and c n are scalars depending on the scatter-
ing angle i?. The fact that tensors of the type пра.у
njZj do not appear in Cij is related to the invariance
of άσαβ with respect to space inversion. Tensors of
the type Ẑ mj do not appear because of the invariance
of d a s with respect to time reversal (then m — m,
1 1).

(104)

where CJJ is given by (102).
We now express the quantities P,, and Q ,̂ in terms

of a, b ' and CJJ. To do this we first note that formula
(53) for the polarization of the nucleons in a direction
ν making an angle J with the vector, can be rewritten
in the form *

* n

Sp/*/ffV (104a)

Similarly, the polarization of the deuteron beam after
the scattering is given by the formula

p _Sp/»fl*._ ab'* + a*b' .

The quadrupolarization Q^ along the direction ν is
given by the expression

Using formula (102) for the cjj and noting that

we get

where

-(mv)*.

(107)

(108)

(109)

Similar equations give Q^ and Q^. The quantities
^ m · Щ* a n d Qn a r e t n e components of the quadru-
polarization Q,, in the directions m, 1, and n. From
formulas (105), (108), and (109) we see that the polar-
ization is determined by the quantity b ' , and the
quadrupolarization by the quantities c m , c^, and c n .
From formulas (105), (108), and (109) we see also that
Р„ = 0 if ν In. However, the quadrupolarization Qv

will in general be different from zero. If Q^ * 0, then
we say that the beam is "aligned" along the direction
v. If Py * 0, then we say that the beam is polarized
along the direction v. Since Qv depends quadratically
on the vector v, then Qj, = Q_,,. This means that all
effects related to beam alignment along some direc-
tion ν are not changed when we replace ν by —v.
Therefore the possible anisotropy in angular distribu-
tions in scattering of a beam of aligned particles should
exhibit symmetry with respect to the plane perpendicu-
lar to v.

Let us now consider the question of how one can
measure Vv and Qy, occurring as a result of the

*v is the direction of the "axis of quantization" i.e., the di-
rection along which we take the spin projection; for our choice of
the matrices σ and I this direction is the ζ axis.
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scattering of completely unpolarized deuterons by

some nucleus. We know that the polarization Р„ can

be measured by performing a second scattering and

observing the dependence of the intensity of the second-

scattered particles on the angle between the planes of

the first and second scatterings, i.e., on η · η \ where

, _ [k'fc*]
2k sin di/s

(110)

Here k" is the wave vector of the twice-scattered par-

ticles, d- is the angle between k' and k" (the angle of

the second scattering).

The intensity dJ of the second scattered particles

will obviously be equal to the following expression:

, ,• Jo das das
F' (111)

(ΣίΑχβΙΜ/βγΙ2}
r> σβν

~~ ( Σ ι / α β ΐ 2 Ι ! Σ ι / ^ ι 1 ' ( 1 1 2 )

αβ αβ

where Jo is the current density in the initial beam, L

is the distance between the first and second scatterers,

and the primed quantities refer to the second scatter-

ing. The sum F can be calculated without any special

technical tricks only in the simple case of spin \ . For

larger spin values, and in particular already for spin 1,

such a "head-on" calculation becomes too complicated.

The artifice used in these cases is the following. We

may note that the quantities

(112a)

form a Hermitian matrix ρ = f+f. This matrix is

called the density matrix. The density matrix, ac-

cording to its definition, can depend only on observ-

able quantities, so that its expansion in terms of the

matrices Ц and Qi must have the form

where

(114)

<?m = <?m\ а = 0 ' \ Qn = <№. (115)
The quantities Q m , Qj, and Q n are the quadrupolari-

zations along the physically distinguished directions

m, 1, and n.

The density matrix p' of the second scattering,

which we shall call the density matrix of the analyzer,

has a form which is entirely analogous to (113), with

the one difference that the quantities P' and Q' which

appear in it refer to the second scattering. The quan-

tity F which we are interested in then has the form

= 2 еа (116)

We now note that F should be invariant with respect

to rotations of the coordinate system. The matrices

ρ and p' will then transform according to the law

Q'-^DQ'D-1, (117)

where D is a matrix depending on the parameters of

the rotation. But this means that we may always turn

the coordinate system so that one of the matrices, for

example, the matrix p', becomes diagonal (since any

Hermitian matrix can always be brought to diagonal

form):

Then (116) can be written as follows:

= Σ
α, β

= Sp ρρ'.

(117a)

(118)

As already noted, F is invariant with respect to rota-

tion, and Sp also does not change under the transfor-

mations (117);* therefore (118) will be valid in any

coordinate system, independently of whether either

of the matrices p, p' is diagonal or not.

Substituting the formulas (113) for ρ and p' in (118)

and using relations (97) — (99), we find:

F = γ + γ ΡΡ' ηη' + - | (QmQ'm> (mm')2

+ QtQ',. (ll')« + <?„<?;. (nn')V (119)

Formula (122) contains the complete angular correla-

tion of the double-scattered deuterons. It is interest-

ing to compare it with the analogous expression for the

double scattering of nucleons:

^nuci = γ (1 + ΡΡ' ηη'). (120)

Formula (120) shows that, because of the presence of

quadrupolarization, the azimuthal asymmetry after the

second scattering will have the form

α + β cos φ 4- У cos2 φ, (121)

where φ is the angle between η and n', and the meas-

urement of the coefficient of cos2 φ enables us to de-

termine the quadrupolarization Qn, if we know the

quadrupolarization Qn of the analyzer. We note that

in the case of nucleons there is no term quadratic in

cos φ, as we see from formula (120).

The study of polarization phenomena in deuteron

scattering is of great interest, since it enables us to

investigate how completely the optical model describes

the scattering process and, consequently, to what ex-

tent it reflects reality if we are dealing with composite

particles. From the consideration of the general form

of the scattering amplitude carried out above, it is

clear that the optical potential can have a more com-

plicated structure in the case of the deuteron. Namely,

instead of the usual central potential and spin-orbit

interaction, for describing the quadrupolarization it

may be convenient to introduce additional terms of

the type

*) Sp ρρ' 2
α. β. Υι 0»

γб O Й = Σ δ̂

βV. β
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*7Q = 5) (FQ (r) nn + V'Q (r) ViVy + V"Q (г) Д-) Q4. (122)

A potential of the type (122) for deuterons has as yet
not been studied theoretically because of the practic-
ally complete absence of experimental data concerning
polarization phenomena in deuteron scattering. In all
probability, U Q ( T ) should be treated as a surface po-
tential, and one should begin its investigation with a
term containing the angular momentum operator ?j.
It is just this term which is important for azimuthal
asymmetry in double scattering, i.e., for experiments
which may possibly be carried out first, since they
are entirely analogous to the existing experiments
with protons.

5. Scattering of Heavy Ions

Satisfactory experimental data on angular distribu-
tions of heavy ions elastically scattered from nucleons
(such as, N u , O16, etc.) have appeared only very re-
cently. In particular, this applies to scattering at large
angles. Therefore the experimental data available at
present are very few in number. Nevertheless, it fol-
lows clearly from these data that the black nucleus
model is not applicable to scattering of heavy ions. An
extremely convincing illustration is given in Fig. 27,
in which we reproduce the results of a recently pub-
lished paper by Reynolds, Goldberg, and Kerlee21 on
the scattering of O1G ions of energy 164 Mev by Au m .
The abscissa is the scattering angle in the center-of-
mass system, and the ordinate the ratio da s/daR.
The data for large scattering angles show only the
upper limit for the intensity of the scattered particles.
The solid curve in this figure is calculated by the black
nucleus model considered in Sec. 3, with I' = 89. As
we see from the figure, at angles greater than 40° the
experimental data and the theoretical computations on
the black nucleus model are in marked disagreement.
The situation is not rectified if one includes waves
which tunnel through the centrifugal barrier (dashed
curve).

FIG. 28. &rs/doR for N" ions with an energy of 27.3 Mev.
The scatterer is Be. The black circles are experimental data; the
white circles, theoretical computation for the optical model with
surface absorption and diffuse edge. The parameters were: Vo

= 50 Mev, Wo = 16 Mev, r0 = 1.23 fermi, a = 0.65 fermi, b = 1.125
fermi.

On the other hand, the agreement of the experimen-
tal data with the results of computations on the optical
model should be regarded as extremely satisfactory.
This is indicated, for example, by the data of Bassel
and Drisko,22 which is shown in Figs. 28 — 29. These
results are for the scattering of N u ions, with an en-
ergy of 27.3 Mev, by carbon and beryllium nuclei. The
theoretical results shown in Figs. 28 and 29 were ob-
tained from a model with surface absorption. Satis-
factory agreement of theory and experiment for this
case is also obtained using volume absorption, with

SO 100 120 140 160 180

FIG. 27. <Ц,/4>к for 165-Mev O16 ions. The scatterer is Au.
The solid curve is computed on a black body model (/'= 89).

FIG. 29. dffs/47R for N" ions with an energy of 27.3 Mev.
The scatterer is C. The notation is the same as in Fig. 28. The
parameters were: Vo = 47 Mev, Wo = 9 Mev, r0 = 1.275 fermi,
a = 0.645 fermi, b = 1.25 fermi.
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the following values of the parameters of the optical
potential (the Woods-Saxon potential was used):

Vo = 48 Mev,
r o = 1.275-ΙΟ"13 cm,

0 = 5.75 Mev,
1 = O.575-!Cr13 cm.

The mean free path Лц for the N14 nucleus in nuclear
material, as calculated with these data, is A ·̂ =* 2
χ 10"13 cm. This is much greater than the mean free
path which one would expect if one started from the
cross section for collision of N14 with a free nucleon.
Just as in the case of deuterons, investigations on the
optical model for heavy ions are at present in an early
stage of development. In particular, there are no suf-
ficiently detailed data on total cross sections, and no
polarization experiments have been carried out. Of
course, only after a comparison of such data with the
results of computations on the optical models can one
state to what extent the optical model is close to real-
ity in describing the interaction of composite particles
with nuclei. However, one important conclusion can
probably already be drawn. This is the statement that
nuclear matter is much more transparent than was pre-
viously assumed, not only for nucleons, but also for
composite particles.

β. The Optical Model and Direct Processes

As we know, as a result of investigations in recent
years it has become clear that the Bohr picture of the
mechanism of nuclear reactions, as processes which
proceed via an intermediate state of formation and
decay of a compound nucleus, is not in agreement with
experiment in many cases. This manifests itself in:

a) a difference between the energy spectrum of
emerging particles from that for a Maxwellian evapo-
ration spectrum;

b) the asymmetry of angular distributions around £
= 90°, where $ is the angle (in the center-of-mass
system) between the momenta of the incident particles
and the reaction products;

c) anomalously large yields of composite particles
(a-particles, deuterons) compared with the yield of
nucleons, when the emergence of the latter is not
forbidden by any known selection rules (for example,
the reaction Ν14 (η, α) Β11 is 30 times more probable
than N14 (n, p) C14, for the same neutron energies,
1.8—4.2 Mev).

In the light of these facts, it is extremely interest-
ing to attempt to treat the so-called direct nuclear
processes as reactions in which the impinging nucleon
ejects the composite particle (deuteron, a particle,
etc.) from the nucleus, where such a particle is al-
ready prepared and existing in the nucleus. Such an
approach to the theory of direct processes, which has
been discussed earlier, is especially interesting at
present since, as we have explained in the preceding
paragraphs, the mean free paths of composite particles
in nuclear matter are large. This means that a com-

posite particle, formed in the nucleus at a certain
time, will exist in it for a relatively long time, on the
average over a period of the order of τ» Λ/ν where
ν is the velocity of the particle in the nucleus.

Since, as is now clear, A is of the same order of
magnitude as the nuclear radius R, then, first of all,
the probability that the composite particle which ap-
pears in the nucleus will not be broken up during the
time At =* R/v' after the passage through the nucleus
of the impinging particle (with velocity v'), is com-
parable to unity, and, secondly, because of the trans-
parency of nuclear matter, such a composite, intra-
nuclear particle will have a considerable probability
for emerging from the nucleus.

Since as a result of theoretical and experimental
studies of the optical model, we at least know the
orders of magnitude of the parameters of the optical
model for a composite particle, there arises an en-
tirely definite problem of developing a theory of proc-
esses of "direct ejection" which should quantitatively
relate the cross sections of these processes with the
data of the optical model. Thus one will establish the
internal connection between the results of two differ-
ent groups of nuclear experiments, experiments on the
scattering of particles by nuclei and experimental data
on direct nuclear interactions. If it turns out that these
two groups of experimental facts can actually be brought
into quantitative agreement with one another (in some
conventional sense; for more detail concerning this,
see reference 23), then this will be a strong argument
in favor of the possibility of the existence in the nu-
cleus over a reasonably long time of complex associ-
ations of the type of a particles, deuterons, and other
particles. The establishment of such a fact would un-
doubtedly be one of the most important results in the
evolution of our picture of the structure of atomic nu-
clei and of the dynamics of nuclear processes.
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