SOVIET PHYSICS USPEKHI

VOLUME 4, NUMBER 4

JANUARY-FEBRUARY 1962

METHODS OF MEASURING DIELECTRIC CONSTANTS OF
SUBSTANCES AT MICROWAVE FREQUENCIES

V. P. SHESTOPALOYV and K. P. YATSUK
Usp. Fiz. Nauk 74, 721-755 (August, 1961)

INTRODUCTION

KNOWLEDGE of the dielectric constant of a substance
is of great importance in physics, chemistry, and engi-
neering. Recent advances in science have expanded the
use -of dielectrics and have raised new problems involv-
ing the study of their properties. The latest progress
in microwave physics has necessitated a study of the
behavior of matter at these new wavelengths, and the
accomplishments in microwave technology have given
rise to new methods for the measurements of dielectric
constants of substances.

There are many published methods of measuring
dielectric constants of substances at microwave fre-
quencies. We review in the present article the most
frequently employed methods, indicate the progress
made toward improving old methods and developing
many new ones. Principal attention is paid to the
physical aspects of the measurement of € and tan &.
With this as a starting point, we classify the methods
of measuring € and tan 6, and also describe in greater
detail some new methods for the measurement of these
quantities, particularly the helical -waveguide method.
Less attention is being paid to measurement techniques,
and we do not consider at all questions connected with
a detailed analysis of the measurement errors.

I. CLASSIFICATION OF METHODS USED IN THE
MEASUREMENT OF THE DIELECTRIC CONSTANT

In principle, any measurement of the effect of a sub-
stance on an electromagnetic field can be used to deter-
mine € and tan & of the substance. At low frequencies,
the simplest is the interaction between the electric field
of a capacitor and the dielectric used in it. Conse-
quently all methods for the measurement of dielectric
constants at low {requencies reduce to an evaluation of
the change in capacitance brought about by introducing
the investigated substance into the capacitor. The vari-
ous methods of accounting for the change in capacitance
predetermine the methods used for measurement of the
dielectric constants. The most frequently encountered
are bridge methods, resonance methods, and beat meth-
ods. The use of these methods results in sufficiently
accurate measurements of the dielectric constants of
the substances. Thus, in the case of nonconducting
dielectrics, the resonance method yields an accuracy
on the order of 0.01 percent in the determination of e,
while the beat method permits a determination of €

accurate to 5 x 1078 dielectric-constant units.! The
error increases sharply with increasing conductivity
of the investigated dielectric.

In the microwave range, systems with lumped con-
stants are replaced by systems with distributed con-
stants. Accordingly, the methods used to measure the
dielectric constant change. Some resonance proce-
dures are retained. In addition, methods come into
play in which interaction between guided waves and
matter is used. There are several types of guides
available for microwave such as the two-conductor line,
the coaxial line, hollow waveguides, dielectric trans-
mission lines, etc. The use of different transmission
lines leads to different measurement methods. Finally,
guided waves in free space can also be used, and this
in turn necessitates a new technique.

The existence of a large number of methods of
measurement of € and tan 6 is due to the presence
of various transmission lines, to the possibility of
choosing different parameters suitable for the meas-
urement, to the use of specimens of different shape,
and to the choice of locations of these specimens in the
system.

A common feature of all these methods is that they
all involve a determination, in one manner or another,
of the change in the phase constant of the propagation
whenever the tested dielectric is introduced into the
system, and the determination of the connection between
this change and the value of the dielectric constant.
These relations can be quite different in each individual
case, and consequently the number of methods for meas-
uring € and tan § is large.

The methods used for microwave measurements of
the dielectric constant are usually classified in the
literature as follows:%™

1) methods using waves in free space;

2) methods using guided waves;

3) resonant methods.

The most extensive group of methods, based on the
use of guided waves, can be subdivided by the type of
transmission line (two-conductor, waveguide, or
coaxial line).

The two-conductor line served as the basis for the
development of: 1) the first Drude method,® 2) the sec-
ond Drude method (or the capacitor in two-conductor
line method),® 3) Rozhanskii’s plate method,? and
4) the Tatarinov method.®? These methods were exten-
sively used and developed in the Thirties. They were
later replaced by better methods in which coaxial and
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waveguide lines were used. It must be noted, however,
that the second Drude method is still used for decim-
eter waves, while the remaining methods are interest-
ing because they were the first in which ideas were
proposed for the derivation of the formulas and for the
choice of parameters suitable for measurement; these
methods were then transferred to the waveguide and
cavity resonator methods.

The most widely used among the waveguide methods
are those based on investigation of the waves trans-
mitted through the specimen or reflected from it. The
most popular variants are those in which a calibrated
line is used,?® although there are also bridge variants,
based on a comparison of the waves reflected from the
investigated specimen and from standard loads (see,
for example, reference 10).

Methods employing waves in free space can also be
subdivided into two subgroups, corresponding to the
observation of the reflected and transmitted waves,
respectively.

A similar subdivision can also be made when a co-
axial line is used. In addition, a method in which a
line segment with lumped capacitance is introduced
is also worthy of attention. In the latter case equiva-~
lent-circuit calculations lead to simple formulas for
€ and tan 6 of a substance placed in the capacitive
part of the line.

Resonance methods have found extensive use. They
differ in that the resonant systems can be made up of
different transmission lines, in the type of the oscilla~
tions excited in these systems, in the placement of
the specimen in the resonator, and in the shape of the
specimen itself.

If we start from the common nature of the physical
principles of the interaction between field and matter,
all the foregoing methods can be subdivided into the
following groups:

1) methods based on the study of the standing-wave
field in the investigated dielectric,

2) methods based on an analysis of waves reflected
from the investigated specimen,

3) methods based on a study of the waves transmitted
through the dielectric,

4) resonance methods.
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Worthy of particular attention are the investigations
of N. A. Divil’kovskii and M. I. Filippov,!! in which the
dielectric constant is determined from the change in
the temperature of a small dielectric sphere in a high-
frequency field.

The existing methods can also be classified by the
character of the waves used to interact with the sub-
stance. In most methods the phase velocity of the wave
is either greater than the velocity of light (waveguide
methods ) or equal to the velocity of light (two-conduc-
tor lines, coaxial lines, free space). Methods exist,
however, in which the phase velocity of the waves is
less than the velocity of light (isolated dielectric rod,
helical waveguide ). In this review we shall call the
first group fast-wave methods and the second group
slow-wave methods.

II. FAST-WAVE METHODS OF MEASURING DIELEC-
TRIC CONSTANTS

1. Methods Based on the Investigation of the Standing-
Wave Field in the Dielectric

The simplest relations between € and the measured
parameters can be obtained by considering the propa-
gation of waves in an unbounded dielectric medium or
in a system completely filled with dielectric.

It is well known!? that the propagation constant kyy
of a wave in an unbounded dielectric and the propaga-
tion constant k, of a wave in free space are related
by the equation :

ke =V kg, (2.1)

where ¢ and pu, the dielectric constant and the perme-
ability, are in general complex guantities.

If kyy can be measured when p =1, it becomes
possible to determine € at a given frequency (wg=Kkyc).
The simple connection between the dielectric constant
and the propagation constant holds also for waves prop-
agating in systems where the field structure is close to
that of a plane wave, that is, in two-conductor and co-
axial lines. If such lines are completely imbedded in
the investigated medium, with € = 1 and u =1, the
dielectric constant of the substance is determined from

the formula
= (a)=(h)

and the entire process of measuring e reduces to a
determination of the wavelength in the system without
the dielectric (Ay) and with the dielectric (Ag). A
measurement can be effected by placing an ideally re-
flecting plane perpendicular to the propagation direc-
tion of a plane wave and observing the standing-wave
pattern in front of this plane. Figure 1 shows the dis-
tribution of the intensity of the electric fields for the
case of low and medium losses. At low or medium
losses, the distance between neighboring minima, I,
is equal to half the wavelength, Ag = 2I.

(2.2)
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FIG. 2. Cross section of coaxial line with investigated dielec-
tric. 1) Probe, 2) Cylindrical cuvette. 3) Dielectric.

The tangent of the loss signal can be determined
here from

(2.3)*

where Epnin and Emax are the field intensities at the
minimum and maximum of the standing wave.

The earliest attempt to use a two-conductor line
for the measurement of ¢ with the line completely
imbedded in the dielectric is the work by V. L. Kalinin!®
on the determination of the dielectric constant of water.
The two-conductor line was drawn through a vessel
filled with liquid. A probe was used to plot the field
in the system with and without the liquid. The value
of € was calculated using (2.2). At 16.8 cm, € of
water was found to be 81.7, in good agreement with
the results obtained by other methods. A determina-
tion of € of liquids in a completely filled rectangular
waveguide has been reported.* The dielectric constant
was determined from two values of the wavelength in
the guide, with and without the dielectric. In this sys-
tem the connection between € and the measured wave-
lengths is somewhat more complicated than for a two-
conductor line, but all the measurements reduce in
this case only to a determination of the standing wave
in a medium completely filled with dielectric.

The determination of € from the standing wave pat-
tern in a dielectric was reported also in references 14
and 15, where € and tan 6 were measured in speci-
mens of sufficient length, filling part of a short-cir-
cuited coaxial line. The specimen did not occupy the
complete cross section of the line (Fig. 2). The probe
was moved in the remaining free space. An equivalent-
circuit analysis of the system yielded the following
simple formulas for the determination of € from the
standing-wave pattern in the system:

[y AT

(2.4)

where

A=1In ﬁf (in %)’1,

NG L By 1,8 By Re\?
7]“—(;;)) —<1n R T 0 H[“” R, <1n1{1> ,

Ay is the wavelength in the line without dielectric, A¢

*tg = tan.
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FIG. 3. Position of specimen in
the method of the short circuited
line.

is the wavelength in the presence of dielectric, At is
the wavelength in the line in the presence of a tube,

€t is the dielectric constant of the tube, while Ry, Ry,
Rg, and R, are the radii of the internal wire, the tube
(inside and outside diameters), and external wire of
the coaxial line, respectively. The losses were deter-
mined from (2.3). It is noted in references 14 and 15
that a coaxial line can be used to measure dielectric
constants € =< 20 and medium losses in a broad band
of frequencies.

A feature of the described methods is the simplic-
ity of the mathematics. They are most suitable for
the measurement of € of liquids in different parts of
a frequency band. Among their shortcomings is the
need for a large quantity of the investigated substance,
difficulties arising in the investigation of solid sub-
stances, and the fact that these methods cannot be
used for substances with high losses.

2. Methods Based on Waves Reflected from the Spe-
cimen

The methods based on a study of the standing-wave
field in the investigated dielectric are not used exten-
sively because of several shortcomings, the principal
among which is the need for a large quantity of the in-
vestigated substance. If small specimens are on hand,
then methods based on a study of the waves transmitted
through a limited portion of the investigated substances,
or reflected from the substance, are more suitable. The
most widely used are methods wherein the standing
waves in front of the specimen are investigated with a
known load behind the specimen. Many paperss’m'18
have been devoted to such methods.

Let us examine the short circuited line method.?
Assume that some portion of a transmission line (say
a waveguide ) is filled with the investigated dielectric
(region II of Fig. 3). Each of the three regions will
then be characterized by propagation constants vy, vj,
and 7y; and by wave impedances Zj, Z,, and Zj. It is
possible to determine the propagation constant in the
investigated medium from the measured input imped-
ance of the line. The short-circuiting plate can be
located in different places.
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1. Second medium short circuited (A= 0). The in-
put impedance of a line segment of length d, shorted
at the end, is known to be?

28 = 7, thyd, (2.5)%

where v, = a +iB,, « is the attenuation factor, B, is
the phase constant; v, is the propagation constant, and
the normalized input impedance is

Ziin

A (2.6)

=7 thy,d.

On the other hand, it is known that the characteristic
impedance for a TE wave is connected with the propa-
gation constant by the relation

Tt op
e Yo

and consequently ’

Zy Yio_ ity

Z Yo __PY.;. 2.7)
From (2.5) and (2.6) we get an equation for v,:

1 Zin th y,d

iBid 21~ yod (2.8)

2. If the short-circuiting plate is located a quarter
wavelength away from the rear wall of the specimen
(A =2A/4) and the attenuation in the third medium is
equal to zero, we can write the following expression
for the input impedance of the open line:

7 2.91

70 (0) = Zy cth y,d.
In this case we can also obtain an equation relating the
unknown propagation constant in the second medium
with the measured quantities (input impedance of the

line and propagation constant in the first medium):
cth yad

i Zin
b 7 el (2.10)

Relations (2.8) and (2.10) are transcendental equations
with respect to the unknown propagation constant. They
must be solved graphically. Many papers on the meas-
urement of dielectric constants by similar methods
list tables of the functions tanh /0.1'® In addition,
methods wherein the system is only partially filled
with dielectric lead to ambiguities in the determina-
tion of ¢, and to eliminate these ambiguities one must
resort to repeated measurements of € of specimens
of different thickness or determine beforehand the
approximate value of the measured values of e.

Several particular cases lead to simpler expres-
sions for the propagation constant in the investigated
medium.

a) Case of lossless dielectric. The propagation con-
stant has in this case the form

Vo= (P
The equation for y, becomes

*th = tanh.
tcth = coth,
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1 %0y _tgPed

ifoid £y Pud

(2.11)

where x (0) is the input reactance of the line. Account
of the equation

zié(_(’) (2.12)

N = —1 t‘g Isldmin»

where dpyjp is the distance from the specimen to the
first minimum of the standing wave, leads to the fol-
lowing equation for vyy:

t ﬁl dmin g P

T = (2.13)
Equation (2.13) is simpler to solve than (2.8), since
the function tan 9/6 = £ (#) has been tabulated. In this
case, however, it is necessary to take into account the
ambiguity in the determination of €.

b) In the case of high losses, when the reflected
wave does not reach the air-dielectric interface, the
determination of ¢ becomes much easier. Indeed, the
absence of a reflected wave in the line leads to the
equation

Zin (0) = Z,.

Since Z,/Z=1iBy/vy, we have

Yy = Z‘in B, @2.14)
In this case there is no need for solving a transcenden-
tal equation.

c) It is also possible to get rid of the transcendental
equation by modifying the method to the so-called two-
position method.!? In this method the input impedances
of the line are measured in the presence of a specimen,
at two positions of the short-circuiting piston. In one
of these positions the specimen is at the short circuit,
and in the other the distance from the specimen to the
short-circuiting plate is equal to one quarter wave-
length. For the two measurements we have

thy.d  (Zin) 1

Yol Zy ifyd” Yod Z1

cthyed  (Zin)e 1

Pd

From these equations we obtain an expression for v,
in terms of the measured parameters:
Bizi

2 = —_——
Vo= Zh Zin)e * (2.15)

All the equations derived for v, hold also for meas-
urements in a coaxial line (Fig. 3b).

Knowledge of the propagation constant enables us to
determine the complex dielectric constant of the me-
dium. For a two-conductor or coaxial line, the € of
the medium can be determined from the relation

BV
A ( Yi > !
where €4 and 7y, are the dielectric constant and the
propagation constant in the first medium, while e;

and vy, refer to the second medium.
For a waveguide the following relation holds true:

(2.16)
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Vs = k* — ki

crs

where v, = a4 + 18, is the propagation constant in a
waveguide with € = 1, k =ig;Ve(l—itand) is the
propagation constant in an unbounded medium with

€ =1, By=27m/A, is the propagation constant in free
space with € = 1, and kgp = 27/Acr. The expressions
for € and tan 6 are obtained in the following form:

-2 2 _q?
e _]:cr +pi—a?
pi ’

) 208,
tgd= W . 2.17)
The foregoing relations, which give the connection be-
tween v, and the measured input impedance, hold for
any transmission line (two-conductor, coaxial, or
waveguide ), when the specimen is located in some
part of the line. The difference lies in the connection
between v, and the méasured value of e.

Notice should be taken of still another position of
the specimen and somewhat different equations for v,
in the case of a coaxial line.»18 A specimen in the
form of a disc (and not a ring) is located in the
capacitive part, formed by the central conductor and
the end half of the line (Fig. 3c). In this case the input
impedance of the line can be determined from the for-
mula

Zin 1 1

AT (2.18)
where C* = ¢*Cy. From the input impedance of the
line, the lumped capacitance C;, and the geometry of
the line we can determine the dielectric constant of
the substance in explicit form:

e*C, = (iu)Zl %}:_1)‘1 - (867if ZL_T lg_g_,i>-1 ,

where Dy and D, are the diameters of the conductors
and f is the frequency in cycles.
For low-loss specimens we have

(2.19)

2nd, 31
eCO=:(867flg§%tg—:%fﬂl) , (2.20)
nAz 2ad iy 2ad i
go =5 {1g T perg e ) @.21)

We see that the formulas for € and tan 6 are quite
simple and a small quantity of the investigated sub-
stance is needed for the research.

Thus, the measurement of ¢ and tan 6 by the short-
circuited line method reduces to a determination of the
input impedance of the line, that is, to a measurement
of the standing-wave coefficient and of the shift of the
first minimum (as measured from the specimen). The
errors of the method are determined by the errors of
these measurements, and depend also on the gap be-
tween the specimen and the line. For specimens with
medium values of € and tan'é (e =20, tan 6 = 1073
—1072%), methods in which a measuring line is used
yield an error of one percent in the determination of
€, while the accuracy of tan § is limited by the accu-
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FIG. 4. Cell for measurement of € and tan &
liquids.

racy of the SWR measurement, which is approximately
2 percent.! Among the shortcomings of the method is
that the specimen must be accurately adjusted to these
dimensions of the system, something particularly im-
portant if large values of € are measured. If the spe-
cimen is placed in the capacitive portion of a coaxial
line, an additional difficulty is involved in the prepara-
tion of a special cell—the measuring capacitor. The
short circuited line method is most convenient in the
centimeter band. In the decimeter band the method is
less suitable because of the need for a cumbersome
measurement line. On the short-wave side, the use
of the method is limited by the difficulty of construct-
ing a short-circuited line with moving probe at wave-
lengths below 1 cm. The bandwidth of the method is
determined by the transmission line employed. The
width in the waveguide variant is less than when a co-
axial line is used. Among the shortcomings of the
method, in the general case, is the need for solving
transcendental equations and the ambiguity of deter-
mination of €. The method is suitable for the meas-
urement of solid and liquid dielectrics.

Dielectric constants of liquids are usually measured
in special cells such as shown schematically in Fig. 4.
Here 1—a liner made of solid dielectric with very low
losses and impervious to the liquid, 2—measured liquid
dielectric, and 3-—opening in the piston for the passage
of the liquid. By connecting the cell to a vertically
mounted measuring line and by plotting the readings
of the indicator as the piston is displaced in the cell,
a plot of the attenuation of the electromagnetic wave
in the liquid dielectric is found as a function of the
thickness of the liquid layer. From this curve it is
possible to calculate the wavelength in the dielectric
Ag and the attentuation coefficient @. To determine
the real and imaginary components (¢’ and €”) of
the dielectric constant, the following relations are
derived from waveguide theory:

o =(ig) +GEY -8 ()
E”Z%<;‘%>2 ahg.

The results reported in reference 26 indicate that at-
tenuation is determined by this method with high accu-
racy. A similar method can be used to measure the
dielectric constants of liquids in the millimeter
range. Heinken and Bruin®? report measured values of
€ for several alcohols and halogen-substitution ben-
zenes inthe 3 — 7.5 mm range. Burdun and Kantor??
give measured values of the dielectric constant of

(2.22)

(2.23)
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a)

FIG. 5. Measurement of € and tan § by the reflection method.

water and formamide in the centimeter and millimeter
band.

Recently published papers report the use of the
short circuited line method for the measurement of
dielectric constants of substances with € > 200. To
reduce the large amount of reflection occurring when
large values of € are measured, a plate made of a
substance with low loss angle and with a dielectric
constant equal to the square root of the dielectric con-
stant of the investigated substance was placed in front
of the tested specimen. Lipaeva and Skanavi?! report
dielectric constants, measured in this manner, for
several special ceramics (barium titanate with €
= 656, tan 6 = 0.41; strontium-bismuth-titanate SVT-1
with € = 385, tan 6 = 0.34, and others).

The short circuited line method used with wave-
guides has proved useful in the measurement of the
temperature dependence of € and tan 6. It is neces-
sary to construct special thermostatic sections in this
case. References 22 — 25 describe such sections, note
the pecularities of the measurement method, and give
the temperature dependence of € and tan § for many
substances. It is possible, as shown in reference 24,
to measure € with accuracy on the order of 1.5 —3
percent, and tan 6 with accuracy on the order of 10
— 20 percent.

The method of two thicknesses is expedient for the
measurement of dielectric constants of liquids. The
equations for € and tan 6 are obtained in explicit
form, and no great difficulties are involved in produc-
ing dielectric layers of different thickness in the case
of liquid dielectrics. The results of research carried
out by such a method are reported in references 16
and 29,

The interest that is attached to the study of disper-
sion properties of matter make it frequently necessary
to use coaxial lines for the measurement of € and
tan 8. Several published papers!®30:3! describe the
results of measurements of € and tan 6 in the 5 — 40,
14 — 66, and 8 — 80 cm ranges. Particular interest
attaches to the case when the specimen is placed in
the capacitive portion of the line.!8

Surface reflection of waves from the specimen can
also be used to measure €. Methods based on the use
of surface reflection can be employed with some guided
waves and with waves propagating in free space. In the
study of waves reflected from the front wall of the spe-
cimen in a waveguide line, measures must be taken to
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FIG. 6. Measurements of € in free space by the transmission
method.

eliminate reflection from the rear wall of the speci-
men. It becomes necessary to bevel the second wall
of the specimen or to match the load in some fashion.
The need for using a matched load behind the speci-
men makes this method less convenient than the short
circuited line method. Data are reported in the liter-
ature on the measurement of the dielectric constant of
water in a waveguide by the surface reflection method.*
This method is extensively used with waves propagat-
ing in free space. The simplest formulas for the de-
termination of € and tan 6 are obtained (as corol-
laries of the Fresnel formulas) in the case of normal
incidence of the waves on the specimen:

_ 1—2r;cos r;+-r} (2_24)
B8e0 0 = o s
) 1 A '
sin & _ 6 — i 2.2
sin 2 (Vesec T 6) tgri, (2.25)

where rj exp [—iri] is the surface reflection coeffi-
cient. At arbitrary angle of incidence, the formulas
become somewhat more complicated. A changetofree
space simplifies theory very little and necessitates the
use of an entirely different experimental technique.
Figures 5a and b show setups used to measure reflec-
tion in free space. Figure 5a shows the case of nor-
mal incidence. Here l1—generator, 2—attenuator,
3—line with probe, 4—antenna, 5—tested dielectric,
6—absorbing screen. The line and probe are used to
measure the reflection from the specimen and from a
metallic sheet placed in front of the antenna. If the
antenna is matched with the space, the ratio of the two
measured reflections yields the unknown reflection co-
efficient. When the incidence is far from normal

(Fig. 5b, where 1 and 2 are the transmitter and re-
ceiver while 3 is the specimen), the reflection is
measured by comparing the reflected power with that
directly received. An example of the use of this
method is reported in references 32 and 33.

3. Methods Based on Waves Transmitted Through the
Dielectric

These methods can be used to study the passage of
waves through a dielectric situated either in some
waveguide system or in free space. What is measured
is the complex transmission coefficient. The expres-
sion for the transmission coefficient of a plane wave
normally incident on the interface between two dielec-
trics with constants €; and ¢, has the following form*




METHODS OF MEASURING DIELECTRIC CONSTANTS

FIG. 7. Measurements of tan § by the transmission method.
1 ~ generator, 2 — attenuator, 3 and 4 — homs, 5 — specimen,
6 — detector, 7 — amplifier, § — indicator.

femiti 2 Ve

i —m. (2.26)

It is assumed here that the wave propagates from the
medium with dielectric constant €; to the medium with
€5. Measurement of the amplitude and phase of the
transmission coefficient yields the complex dielectric
constant of the investigated medium. By separating
the real and imaginary parts of the transmission co-
efficient we obtain two equations for the real and
imaginary parts of the dielectric constant. In general
these are transcendental interdependent equations. If
the losses are low, the equations are no longer tran-
scendental. For H modes in a waveguide with cutoff
wavelength A, the expressions for € and tan 6 as-
sume the form?

A.—2 + ﬁZ_a2
d 2___q2
cr p2—a +(7‘cr )
where
__ Ac
= g8a1 @.28)

b=s73m+ 1anr |
(radians per unit length), Aa—attenuation, A¢—phase
shift, Al—thickness of the specimen, and Ag—wave-
length in the system.

For the case of normal incidence of waves on a
specimen (for two-conductor and coaxial lines), the
formulas for the determination of € and tan 6 assume
the following form:

(4 e
20,0
BE—q¥ °

(2.29)

tgd=

(2.30)

The errors in this method are analogous to those in
the measuring-line method. Inaccuracies in the trim-
ming of the specimen to the dimensions of the measur-
ing waveguide exert a similar influence. Another in-
convenience is the need of using a matched load behind
the specimen or for using specimens with beveled
walls to prevent reflection.

This method finds greatest application when waves
in free space are used. The dielectric constant is
calculated from the phase difference of oscillations
propagating in free space and in the investigated di-
electric. The tangent of the loss angle is determined
by measuring the power attenuation in the dielectric
and in free space. A block diagram for the measure-
ment of € and tan 6 is shown in Fig. 6. The signal
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flows from generator 1 to tee 2. One arm of the tee
leads to attenuator 5 and to transmitting horn antenna
6. The other arm connects through attenuator 3 to de-
tector 4. Horn 6 is first moved until the signal inci-
dent on detector 4 is of the opposite phase (the meter
9 reads minimum deflection then). Insertion of the
specimen (8) disturbs the out of phase relationships
and makes it therefore possible to determine the
phase shift. The formula for € is

e=(1+5Y),

where A is the horn displacement necessary to re-
store the phase and d is the thickness of the specimen.
The tangent of the loss angle is determined with the aid
of the circuit shown in Fig. 7. The signal is determined
first without the specimen. The specimen 5 is then in-
serted and attenuator 2 adjusted until the signal returns
to its value in the absence of the specimen. The differ-
ence in the attenuator readings determines the attenua-
tion in the specimen. The attenuation, the known thick-
ness of the specimen, and the magnitude of the dielec-
tric constant yield the tangent of the loss angle. The
phase shift can be read with sufficient accuracy, and
consequently the measurements of € by this method
are highly accurate.®

The method is applicable in the short-wave part of
the centimeter band and to the millimeter band. Among
the shortcomings is the need for using large specimens.

(2.31)

4. Resonance Methods

Any transmission line, whether it be two-conductor,
coaxial, or waveguide, can be made into a resonant
system by shortcircuiting both ends of the line. Such
a system has then a natural resonant frequency and
internal losses. Introduction of a dielectric into the
resonator changes the natural frequency and the losses
of the resonant circuit. By determining the changes in
the characteristics of the resonant circuit we can
measure the electric parameters of the investigated
dielectrics.

1. System completely filled with dielectric. Mathe-
matically it is simplest to describe the processes when
the resonator is completely filled with the substance.
Indeed, let the resonator without dielectric have a
resonant frequency f = c¢/A,, where c is the velocity
of propagation of the electromagnetic oscillations in
free space, and ) is the free-space wavelength at
which the system is resonant. When the resonator is
completely filled with dielectric and its length is un-
changed, resonance takes place at a frequency

Ta=

c
Ve
The two resonant frequencies are related as

fd:%'

Therefore the measurement of the resonant frequencies
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of a hollow resonator and one completely filled with
matter enables us to determine the dielectric constant
of the matter, using the formula

fo 3\

The dielectric constant of a substance can be measured
also at a fixed generator frequency. In this case the
resonance disturbed by introducing the dielectric is
restored by changing the dimensions of the system.

Assume that the resonator is made from a wave-
guide. If resonance without dielectric occurs at a
system wavelength

A= —tt

(2.32)

l/ -

then filling the resonator with dielectric causes the
resonance (for the same free-space wavelength Aj)
in the system to occur at a wavelength

(2.33)
A'Cl’ )

» (2.34)
Ve (Ey s—<
7"01‘
and this yields an expression for € in the form
}“0 2
&= (”x;, [1-(5 ) (2.35)

The expression obtained is valid for substances with
low losses.
The simplest relations are obtained for two-conduc-

tor and coaxial lines, for which Ayp = . For these
lines
A0 \2
— (L4
8_(7&1) . (2.36)

An example of the use of this method with a two-con-
ductor line is the first method of Drude.® The gist of
the method is to determine the position of two short-
circuited bridges in a two-conductor line, for which
an indicator placed between the bridges reads minimum
intensity. This distance is equal to half a wavelength
or an integral number of half wavelengths. The meas-
urements are made for two cases, with and without
dielectric. The dielectric constant is determined

from (2.36). The absorption coefficient is determined
from the distribution of the field intensity along the
line. If I; and Iy are the amplitudes of the current
when the indicator is located on the boundary of the
liquid and at a depth x, the following relation holds true

Iy=Te ™5, (2.37)
The coefficient of absorption nk is determined in this
case from the current ratio at different bridge posi-

tions
X, —X,

—dnnx L
—e Ao

(2.38)

\lN
eyl

In cavity resonators, complete filling is used to de-
termine the dielectric constants of gases and non-polar
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liquids. The dielectric constant is then determined by
formula (2.32), and the losses by the formula

1

—Q—O ’ (2.39)

1
tg 0= U' —
where Q) and Q are the figures of merit of the reso-
nator without and with dielectric.

The shortcomings inherent in this method are as
follows: the difficulty of measuring solid specimens,
the need for using a large amount of investigated sub-
stance, and large absorption when high-loss substances
are investigated.

2. Partial filling of the system with dielectric. If
the losses in the substance are large or if only a small
specimen is available, or else if the investigated sub-
stance is difficult to machine, methods with a com-
pletely filled resonator become unsuitable and one
must resort to partial filling of the system with di-
electric. Although an instrument based on this method
overcomes satisfactorily the difficulty of obtaining a
Q high enough to perform the measurements with suf-
ficient accuracy, the mathematical analysis becomes
more complicated and as a rule involves numerical
or graphical solution of transcendental equations. Let
us consider several examples of partial filling of reso-
nators, based on different transmission lines: two-
conductor, coaxial, and waveguide.

The well known methods of measuring € with the
aid of a two-conductor line—the Rozhanskii-plate
method and the capacitor method (or the second Drude
method) are essentially the first versions of the method
with a resonant system partially filled with dielectric.
In the Rozhanskii method a thin plane-parallel layer of
dielectric is placed perpendicular to the two-conductor
line, in the voltage antinode. The shift in the resonant
bridge after introducing the dielectric layer deter-
mines the dielectric constant €, while measurement
of the width of the resonance curve determines in this
case tan 6. Theformulas for €’ and €” are

(8’ - 1)d=x1—x‘“
e'd =1, —z,,
where x, is the distance from the moving bridge to the
location of the dielectric (that is, to the voltage anti-
node in the absence of dielectric), x, is the same with
the dielectric, x, is the distance from the boundary of
the dielectric to the bridge position where the energy
has half the maximum value, and d is the thickness of
the specimen. These formulas have been derived as~
suming low losses and negligible thickness of the spe-
cimens, so as to obviate the use of transcendental
equations for the determination of ¢’ and €”.
In the capacitor method (the second Drude method),
a capacitor filled with the investigated liquid is placed
in the resonant circuit formed by the two short-circuit-
ing bridges. The capacitor with liquid shifts the reso-
nant point, and the value of € is determined from this
shift, while the losses are determined by the broaden-

(2.40)
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b) @54

) @e-22
d) @ e=Z

FIG. 8. Illustrating the measurement of £ and tan 8§ by the sec-
ond Drude method.

ing of the resonant curve. Figure 8 shows the consecu-
tive variation of the resonant wavelength and of the
resonance width when a capacitor (Fig. 8b) is intro-
duced in the system, when the capacitor is filled with

a known control dielectric with € = 2.28 (Fig. 8c) and
with an unknown dielectric with € = x (Fig. 8d).

We used the following formulas to determine the
dielectric constant:

a) Morton’s formula,® derived under the assump-
tion of low losses in the specimen and absence of
losses in the line, and disregarding the effect of the
suspensions:

sin fd

) 1
Q0+ 8=y i pa-sinp @ d) (2.41)

where p = 4nk In [D/R] and pg = 47ky In [D/R] are the
capacitor constants, ky is the ballast capacitance of
the capacitor (the capacitance of the leads inside and
outside the glass), k the working capacitance, D the
distance between the leads, R the radius of the leads,
¢ the unknown dielectric constant, and g = 27/A.

b) The Coolidge formula3® for the absorption coeffi-

cient «:
A .
asin B (a-d) (j—a—d>sm Ba

2 sin Bd + sin f (a--d)
sin Bd

|
|, a2

where v = oA and « is the attenuation of the line per
unit length. These formulas are subject to errors
which are particularly noticeable in highly-conducting
liquids. In the thirties, a large number of investiga-
tions were made to obtain more accurate formulas, and
also to develop and improve the method. The most im-
portant of these researches were made by V. N. Kes-
senikh and K. A. Vodop’ya.nov,37 B. L Romanov,38 N. V.
Malov,? S. L. Sosinskii and V. A. Dmitriev,*’ B. K.
Maibaum,*! and L. A. El’tsin.%? Study of the peculiari-
ties of these methods led to the following recommen-
dations for the measurement of the dielectric constant
of a substance by the capacitor and two-conductor line
methods:

1. The capacitor employed should have low capaci-
tance.

FIG. 9. Illustrating the
measurement of € with a reso-

A
nator in the H,,, mode. -

2. The influence of the suspension must be taken
into account, and also the influence of the conductivity
of the dielectric and the attenuation of the measuring
line itself.

3. The fluctuations in generator power must be min-
imized to the utmost by effecting optimal coupling with
the generator.

Measurements of € and tan 6 of substances with the
aid of a two conductor line have several important
shortcomings, due essentially to radiation of electro-
magnetic energy and the influence of extraneous fields.
Work on formulating the theory of this method is still
going on, however,*¥~*5 and many papers have been
published on the measurements of € and tan 6 in the
meter and decimeter bands by the capacitor and two-
conductor line method, 485

Particularly interesting is reference 51, in whichthe
two-conductor line capacitor method was modified to
measure € and tan & of substances with high losses.
This improvement is attained by connecting the meas-
uring capacitor to the line not directly but through a
quarter-wave loop perpendicular to the main line.
Such a connection reduces the load on the main line,
thereby permitting measurement of € and tan § of
liquids with high losses.

At frequencies exceeding 3 X 10? ¢cps, cavity reso-
nators are used to measure the dielectric constant.
The Hyy; and Eg;y modes are the most frequently
used.

a) Measurements with the Hy; mode. In these
measurements the specimen is usually a cylindrical
disc placed on the end of the cavity (Fig. 9). If reso-
nance at a given A, exists in the presence of a speci-
men of thickness d when the specimen surface coin-
cides with the line AA’, and if resonance in the ab-
sence of a specimen is produced when the piston is a
distance d, away from the line AA’, this means that
the reactances of the two segments between the piston
and the plane AA’ are equal. Using the expression
for the impedances of the H wave in a resonator with
and without dielectric, we obtain the following expres-
sion:

tefd__tg fod
Ba ~ Budy

where B is the propagation constant in the empty
resonator

(2.43)

g PN

Do = =
Po \Ger /

27 2=x /
2-xv
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B = 21/Aq is the propagation constant in a waveguide
completely filled with dielectric. The problem re-
duces to determining the propagation constant 8 in
the given medium. This can be done by solving the
transcendental equation (2.43). If we know the propa-
gation constant 8 = 2n/Ag in a waveguide filled with
the investigated substance, then the dielectric con-
stant can be determined from the relation

D = —-—ﬁ—_ﬁ .
0
Ve (G
Equation (2.43) neglects the losses in the substance.
In addition, this is a transcendental equation, so that
to determine € it is necessary to know the approxi-
mate range of € or to carry out the measurements
with two specimens of different thickness.

To determine tan 6 of a substance partially filling
the resonator it becomes necessary to calculate the Q
of the resonator in the Hy; mode with and without the
dielectric. In reference 52 the following expression
was obtained for Q:

(2.44)

PD4 4L
Q=371 . (2.45)
% (g7 ) 0D+ D+8*+ B+ 7D 1g 8
where
D=2d—sin2fd, L=20—sin2B,
0
_( sinfyl \? po 2
—< sinfd / ° T her’

a is the radius of the resonator, d is the thickness of
the dielectric, 7 is the length of the part of the reso-
nator filled with air, A is the depth of penetration of
the field, B8 is the phase constant in the part of the
resonator filled with the dielectric, B, is the phase
constant in the part of the dielectric filled with air,
and € is the dielectric constant. When the losses in
the dielectric are negligibly small we have tan 6 ~ 0
and Q = Qm (Qm is the value of Q for a resonator
filled with a perfect lossless dielectric having the
same relative dielectric constant as the real dielec-

tric). From (2.45) we obtain
PD4L
Om="73"T1T . (2.46)
Tm[k (pD+L)~4-2a (B2p-+B3))
From (2.45) and (2.46) we have
1L 1 1
wo=(1455)(5-a) (2.47)

The depth of penetration A can be determined in the
following manner. For an air-filled resonator we ob-
tain theoretically

= el +BY)

" (er 2y

We can determine Qp, experimentally. We then deter-
mine A from (2.48) and the known Q. This value of
A is substituted in the expression for Qm; the calcu-

(2.48)
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FIG. 10. Distribution of
fields and position of speci-
men in the resonator method
of measuring € and tan § in
the E,,, mode.
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lation of tan & thus reduces to measuring the Q of the
resonator and to calculating Q;n. To determine A it
is necessary to measure the Q of the empty resonator.
If the losses are low, we can assume Qup ~ Qm.

b) Measurements with Eg;, mode. The field distri-
bution in such a resonator is shown in Fig. 10. When
the specimen is on the axis of the system we can write
for the field inside the resonator (by solving Maxwell’s
equation in cylindrical coordinates)

Hy= AT, (kr) 6o, F.

“otime

ATy (kr) e, (2.49)

where k= —iwu (o +iwe’), while J, and J, are
Bessel functions of the first kind. In the region be~
tween the dielectric and the wall we have r > ¢ and
the fields are therefore given by the sum of two Bessel
functions:

Ho=(BJ (ky) - CN, (kgr)] er!,

k .
Ry [BJO(A~,,I-)+C'N0(k0r)] pion

- tWE,
where k; = 8, = 2m/Ay, and Ny and N; are Bessel
functions of the second kind. The boundary conditions
on the air-metal interface and on the air-dielectric
interface yield the following equation for e:

(2.50)

Mg (Boa)  Ni(Bob)
£ — B1/o (Bob) /1 (Bob) 7o (Boa) J1 (Bod) ) (2.51)
B’ ® (o) J1 (B18) Vg (Boa) Ny (Bob)

Jo (Boa) s (Bo?)
where A, is the resonant wavelength in free space and
By =ByVe . For low losses this equation is exact but
transcendental with respect to €. It can be simplified
by recognizing that

2

Ty (Bob) No(Bob) = /4 (Bob) V1 (Bob) = 257 »
and introducing the notation
F = T80 (7, (Bb) N (Bo) — Jo (By) Vo (Bb))

We then obtain

— .t JoBem)
=ty N

A o1 2]y 4 2 Jo(Boa) 171
[P0 By |+ 5 (Bobye o Jelbos) }

(2.52)

Plots of F vs. Bja have been prepared for different

values of b/a down to 0.3 (€ to 6). For very thin
specimens, we can write the following expression for

s:1+0.539%é,v_", (2.53)
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The expression for the tangent of the loss angle can
be written in the following form:

wo- [(g ) +re=n]{r [t aug ] (6 v)

(2.54)
where Q refers to the resonator with the specimen
and Q' refers to the resonator with fictitious lossless
specimen. The theoretical value of Q' is

=g [($)V+re-n] [0 pe~n] " @55

In practice it is necessary to obtain Q' by comparing
the experimental and the theoretical values of this
quantity for a resonator without a specimen at the
same frequency.

For very thin specimens we have

G e )

Resonator methods permit highly accurate measure-
ments of € and tan 6. Thus, when operating in the
Hy;; mode, the error in the measurement of ¢ in the
three-centimeter band is + 1.5 percent, while the ac-
curacy of tan & is 5 percent.? Resonators in the
Eyo mode at 10 cm provide an accuracy of 5 percent
in € and 10 percent in tan §, while ¢ measured with
coaxial resonators in the 3-cm band is accurate to
1.5 — 5 percent. The relative simplicity and conven-
ience, the manageable dimensions, and the feasible
constructions make resonant methods with cavity reso-
nators quite simple to operate. These methods have
found wide use in microwave measurement practice.
Among their shortcomings are the need for precisely
made specimens of definite shape, an accurate deter-
mination of the wavelength, and generators of high
stability. In addition, ordinary resonant methods are
unsuitable for the measurement of € and tan § of
substances with high losses.

Recent work on the improvement of resonator
methods has been aimed at broadening the range of
measured values of ¢ and tan 6 and at the develop-
ment of designs suitable for study of the temperature
characteristics of the substances.

Tunable resonators, the use of which is limited to
the centimeter band, permit measurement of € up to
about 200.% To measure large values of ¢ in the
decimeter band, methods using semi-coaxial cavities
have proved very convenient.?% The equivalent cir-
cuits of such a cavity, which canbe regardedas areso-
nant circuit with distributed inductance and lumped
capacitance, yield rather simple formulas for € in
terms of the change in the resonant frequency and for
tan 6 in terms of the change in Q brought about by in-
troducing the specimen into the resonator. Similar
cavities permit measurement of € up to 1000. The
method yields quite accurate value of €. A short-
coming is the narrow bandwidth for specified usable
cavity dimensions and the need for graduation (i.e.,
the need for control specimens).

1gd= (2.56)
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As shown by G. V. Zakhvatkin,®? resonators of the
semi-coaxial type can be used to measure € and tan 6
of substances with large losses. For this purpose the
specimen should be placed not direc-tly in the gap be-
tween the end of the cavity and the central rod, but in
an additional capacitor such that the resultant air gap
is in series with the measured specimen and decreases
the drop in Q due to the introduction of the specimen
in the cavity. This permits measurement of ¢ and
tan 6 of substances with high losses.?»% Such meas-
urements are possible even at shorter wavelengths
(less than 10 cm ) with ordinary resonators. In ref-
erence 58, the ¢ of substances with high losses (di-
pole liquids ) were measured with a resonator in the
Hyy; mode in a cylindrical specimen placed on the
resonator axis, i.e., in the region where the field in-
tensity is low. This choice of specimen location re-
duces the absorption of waves in the substance, mean-
ing that substances with high losses can be investigated.

To determine the temperature variations of € and
tan 8 by the resonator method, it becomes necessary
to place the measuring resonators in thermostatic
ovens. References 24 and 56 contain descriptions of
semi-coaxial resonators made of ceramics with
silvered internal surfaces. The measurements, made
on 3 and 10 cm, permitted the behavior of many high
polymers and ferroelectrics to be traced over the in-
vestigated temperature range.

Various modifications of the resonator method have
found application recently. Thus, € and tan é of solid
dielectrics are measured with a pi-shaped resonator.?
Along with using Hyy; and Ey, modes in cylindrical
cavities, higher order modes are used. For example,
the H,y; is used in reference 60 and the Hy;; mode in
reference 61. In reference 60 the expressions for ¢
and tan 6 are obtained in analytic form and can be
measured accurate to 2 and 15 percent, respectively.
Transcendental equations must be solved to find €
and tan § in accordance with the method of reference
61.

III. SLOW-WAVE METHODS OF MEASURING THE
DIELECTRIC CONSTANT

In the methods considered up to now the dielectric
constant was determined with systems in which the
electromagnetic waves propagate with a velocity equal
to the velocity of light, or with a phase velocity greater
than the velocity of light. The dielectric constants can
also be measured with slow waves, that is, waves in
which the phase velocity is less than the velocity of
light.

A large number of investigations have been devoted
to the study of slow surface waves. From among the
various slow-wave systems, particular interest is at-
tached to systems of the helical type, the properties of
which have been investigated by many.%-% A study of
the dispersion characteristics of slow-wave systems
containing dielectrics enable us to establish relation-
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ships between the dielectric constant and the phase
velocity of the wave in the system. The use of helical
and other slow-wave systems for the measurement of
€ is characterized by various properties, principal
among which are the following:

1. Helical type systems are of the broadband type
and call for a broadband method of determining e.

2. A helical-dielectric slow-wave system reduces
appreciably the phase velocity of the wave, so that the
dimensions of the measuring apparatus can be de-
creased.

3. A great degree of slowing down enables us to
introduce certain simplifications in the derivation of
the formulas and thereby get rid of transcendental
terms in the expressions for e.

4. In a helix, as in any other surface-wave system,
the field on the axis is lower than on the surface itself.
By placing a thin specimen with large losses in the
region where the field intensity is reduced the field
energy absorption is decreased, so that the values of
€ of substances with large losses can be measured.

The classification of slow-wave methods for the
measurement of € and tan 6 can be the same as that
of fast-wave methods.

1. Measurement of € of Solid Dielectrics, 6768

1. Determination of € of a substance completely
filling the helix. If the internal region of a helical
waveguide (helix radius a, winding angle ¢) is filled
with a perfect dielectric with constant €, then the dis-
persion equation of such a system has the form

K I, (k1a) K o Ko (kya)
_ 1, (k1a) * K, (kya)
Wetght=—3 Il(kltz)+1 K, (kia) 6-1*
k 1o (kya) ky K (kia)
where
2n , S AN, ’ (0] ‘ T I3
kz;sﬁ,h=VW_makfﬁf,@=Vw—w

ph (3.2)

(Ay is the wavelength in free space, Vbh is the phase
velocity of the fundamental wave in the system ). In the
case of a closely-wound helix (cot § ~ 15 —20), we
can put in (3.1)

(3.3)
where A is the wavelength in the helix-dielectric sys-

tem. This substitution enables us to simplify the dis-
persion equation (3.1) greatly and determine € in ex-

plicit form
I‘,Klv _
IlKo >

s-——(;”t e)

( The arguments of the modified Bessel functions I, I,,
Ky, and K; are 27ma/Aj and are omitted.)

Io Ky
11K1

IKy

e (3.4)

*ctg = cot.
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Thus, as in methods using fast waves, an explicit
expression for € can be obtained in the case of slow
waves if the system is completely filled with the in-
vestigated substance.

In the case of Bessel functions of large arguments,
when 2ma/Ag = 3 (i.e., at high frequencies for a speci-
fied system geometry, or at large helix radii for a
fixed frequency), the expression (3.4) for ¢ simplifies
to

a—2<i tge\ 1. (3.5)

2. Determination of € in the presence of a gap be-
tween the cylindrical specimen and the helix. Such a
system comprises a helix of radius a with winding
angle 6, in which is placed coaxially a dielectric cyl-
inder of radius b (Fig. 11a). For a closely-wound
helix, the formula for € is in this case

( ) [Agtlor —T1 () 71 Q%ly [gooT1 () — Aoy I (@)

ll(b) Q101700—<Ad> 1 '

(3.6)

where
Ay =Io(b) K, (b)+ Il(b) Ky(b),
o =1o(b) Ky ()41, (a) K,(b),
q = qooK;(a) + 9K, (a)

ly=1,(a)K,(a)+1,(a) Ky(a),
Goo =14 (a) Ko (b) — 1 (b) K, (),
(3.7)

(the factor 27/Ag has been left out from the arguments
of the Bessel functions ), and

K, (2_:(3_)11 2na>K1 <2na>

Qa = 2na 2na (3.8)
2na /2mz 2na
1‘,(%)1(0(%) ) (5 )
(Aq is the wavelength in the free helix). At hlgh fre~
quencies, (3.6) assumes the form
RY 4m
1—{ 52 ) exp {35 (b—a)
A A
oG e {ige-a) 5

%)2—1+exp {%(b—a)}
Ifweput a=b in (3.9), that is, change to the case
when there is no gap between the dielectric and the
helix, then (3.9) becomes

(3.10)

Il g<r<oo, =]
I ber<ge<
1 0<r<b, e+l

IB% 7,7 7 2
a 5 A Z
) w I/’/Z'///'///‘///‘ /"/~ 4%

I PRI

Il a<r<f, &=/
ber<g, E=Ey
37 O<res, £=2,

FIG. 11. ‘““Helix plus dielectric’’ system.
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As a— =, the ‘“helix plus dielectric’’ system changes
into a ‘‘cylindrical dielectric rod’’ system in free
space, and formula (3.6) becomes

2nb 2nb
To (7;;) o (Té,)
2nb 2ab :
& (7;) Kooy )
It is known that for an isolated dielectric rod the dis-

persion equation of an axially-symmetrical wave is
written in the form 1

(3.11)

g =

gb Jo (gh) Ky (pb)
= T K () (8.12)

where p=v k§¢ — k?, g=+vVek? -ki?; Jy(gb) and
Ji(gb) are Bessel functions of the first kind of zero
and first order, respectively.

Formula (3.11) coincides with (3.12) if the follow-
ing substitution is possible (in the case of large
slowing-down ratio)

p=k, (3.13)

Let us compare two methods of measuring €: 1) the
method of the isolated dielectric cylinder, and 2) the
method of the dielectric cylinder on which a helix is
wound. In the case of the isolated rod, the substitution
(3.13) introduces very large errors in the determina-
tion of €, since the large slowing-down ratio (that is,
greater values of kj) are obtained only for large val-
ues of ¢, but then g = vV ek? — kj2 = ik}, and ek? can
no longer be neglected compared with k{,z without in-
troducing a large error. Consequently € should be
determined from (3.12) and not (3.11). But (3.12) is a
transcendental equation with respect to €. Thus, to
find € it is necessary to use graphic calculations,
and the isolated cylinder method becomes unavoidably
cumbersome. In addition, the presence of a Bessel
function of first order in (3.12) leads to ambiguity in
the determination of €. The isolated dielectric rod
method is described in reference 69. In this method
the determination of € is reduced to a study of the
standing-wave pattern along a cylindrical specimen
made of the investigated dielectric. A comparison
of the length of the wave slowed down by the rod with
the length of the wave in free space yields the value
of €. The method can be used to measure € on short
waves. On longer wavelengths its use is more diffi-
cult, owing to the need for specimens with large diam-
eters. Another shortcoming of this method is the need
for matching the specimen with the line.

If the dielectric rod is placed inside a helix, the
wave is slowed down both by the helix and by the di-
electric. The surface character of the slowed-down
electromagnetic waves is much more strongly pro-
nounced in the ‘‘helix with dielectric’’ system than
in the isolated ‘‘cylindrical rod.”” This makes the
substitution kj = kj = kj in the derivation of formulas
(3.4) and (3.6) for € qulte legitimate, and this yields
explicit expressions for € and eliminates the ambi-

guity.

-
g =1k,.
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2. Measurement of ¢ of Liquid Dielectrics’®-%

A helical line can also be used to measure ¢ of
liquid dielectrics. In this case the helix can be either
completely immersed in the dielectric, similar to the
complete immersion of the two-conductor line in the
liquid, 3 or wound on an insulating tube into which the
investigated liquid is poured. The reduced dimensions
of such systems, compared with two~conductor or co-
axial lines, are a useful property of this method of
measuring € if employed on decimeter wavelengths.

1. Complete immersion of the helix in the dielec-
tric. If the helix is completely immersed in an ideal
unbounded dielectric medium with € # 1 and u =1,
then the expression for ¢ is

(21111) (”J‘ta)

A
e=(= tig o) — Era (3.14)
n( e ()
At high frequencies, (3.14) s1mp11f1es to
o _L 2_ E 2
= hztge)_gé). (3.15)

It is seen from (3.14) and (3.15) that the value of € of
the investigated liquid can be determined in the follow-
ing fashion. Choosing a helix with sufficiently close
winding (cot 6 = 10), we measure the length of the
standing wave Ag in the helix in free space at the
specified frequency f,. The helix is then immersed

in the investigated liquid and the length of the slow
wave of the helix, Ag, is measured. These two meas-
urements are sufficient to determine the dielectric
constant of the liquid.

2, Liquid in tube. To measure the d1electrlc con-
stants of liquids, it is more convenient in practice to
use a system consisting of a dielectric tube (eT) of
inside radius b, on which is wound a helix of radius a
and which is filled with the investigated liquid (€z). In
the case of close winding (cot 8 = 10), for a known
value of €T, the expression for €7 is

8 {Q [Agi], (@) gool 1 (B)] — Eq [AgiT1 (@) —g5: 1 1}
72 (0) [oy00n— Q73] . 3.16)
where
(Mg N2 L (a) | Ko@) _ Kila) C M
Q= A ) [ll(a)+K1(a) Ko@) o= Zms
Goo="To (@) Ko (1) — K,y (@) Lo (), qiy =1, (8) K, (@) + 1, (a) K, (B).
(3.17)

We have left out the factor 2r/Aj in the arguments of
the Bessel functions. As b — 0 (the thickness of the
tube tends to zero and €T — €7 = €), formula (3.16)
becomes identical with (3.4). If b = a but eT =1, we
obtain from (3.16) formula (3.6) for the dielectric con-
stant € of a solid dielectric in the presence of a gap
between the specimen and the helix.

In the case of high frequencies, when 2ma/Ajq = 3
and 27b/Ag = 3, formula (3.16) simplifies to

<2E'——1-——~—

28" —A1
&y

(3.18)

g =
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Equations (3.16) and (3.18) can be solved with respect
to ep. When €7 =1, we obtain expressions for the di~
electric constant of a specimen in the form of a hollow
dielectric cylinder. From (3.18) we get

er=D"(E'— 1)+ V(E'— ) D"+ 2E' 1, (3.19)

where
£ %o tg 8 ) (Ad)

+exp{ 0= o) }

(3.20)
— exp {7: & — a)}

3. Measurement of € with a Helical Waveguide and a
Metal Shield

A helix with dielectric, placed in a metal shield,
can be a useful instrument for the measurement of e.
This construction eliminates the influence of extrane-
ous fields and therefore increases the measurement
accuracy. The presence of the shield affects the form
of the dispersion equation, and consequently the ex-
pression for e. Figure 11b shows the most general
system, consisting of a layered dielectric placed in
a metallic waveguide of radius R. In the case of a
dielectric placed in a tube of known value €,, the ex-
pression for €; (when cot § = 10) is given by

{[A] an

TLO T ]+e [ n@- T ne ]}

’

&=

Th
7 11 (8) 1938 [A]— eaqgR
}h 1 (d) a9 [ €297 H (3'21)

where

9 =1y (b) K (a)+ 1, (a) Ky (D), q35=1,(a) K,(b) —
@f=1(R) Ky (a) 1, (a) K, (R),q°% =1, (R) Ko (a) — 1, (a) Ko (R),
gif =1, (R) K, (a)—1, (a) Ky (R), ¢38 =1, (R)Ky(a)+ 1, (R) K, (R),

NN R

1o (b) Ky (a),

(4]=

78
(3.22)

In the simpler case when the helix is completely filled
with dielectric (and a shield is used), the following
expression is obtained

@B @ K®)_ K@

i@ theke  L,® LW
=(2 )% @ L@ K@) Koy 2

LBE@ 1@ 1,0

In the presence of a gap between the dielectric and the
helix, the dielectric constant of the specimen is given
1o (a)

by Ad \2 qaR qaR
n@—n@{(52) [ 26+ ar |~ )

oo {m[() (G

As R — », formulas (3.21), (3.23), and (3.24) go into
the corresponding formulas for the ‘‘helix plus dielec-
tric’’ system without a shield. The expressions for €
at high frequencies are the same as for an open helix,
for then the waves are crowded closely against the

ZZi )- Zﬁ -} @20
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helix, and therefore the shield exerts no influence on
the slowing down factor.

4. Determination of tan 6 by the Helical Waveguide
Method ™

The problem can be solved in two ways. The first
is to obtain a dispersion equation for the investigated
system from Maxwell’s equations taking into account
the fact that the dielectric constant is complex, and
to separate from the dispersion equation the imagi-
nary part, which characterizes the attenuation. The
second reduces to solving the problem by the energy
method, that is, to a determination of the attenuation
coefficient in the system in terms of the ratio of the
power lost to the total power flowing in the system.

1. Case of low and medium losses for cylindrical
rods on which helices are wound. The dispersion
equation of a helix closely wound on a dielectric rod
with €y = €’ — ie” has the form (when cot 4 = 10)

k 2
(gete0) -

Since the dielectric is lossy, the propagation constant
contains a term characterizing the attenuation, i.e.,
kj can be written in the form

Iy (a) Ky (a) kja
I (a) Ky (a) e.d1(a) Ky (a)4-To(a) K1(a) *

(3.25)

ky=vy—ia, (3.26)

where y = Zw/}\a, and a takes the attenuation into ac-
count. In the case of low and medium losses, when €”
< € and a <y, we obtain from (3.25) the dispersion

equation (3.1) for €, and also an expression for tan §
=€"/e:

aa ;. VEtg?o I3 2
‘ga:m KB i+ S EE A 1)

Yz:g”’ 10)(1(]( K“)J

3.27)

The same formula is obtained for tan § by the energy

method.
At high frequencies, (3.27) simplifies considerably:

tgé:%‘i(s'-{—i). (3.28)
It is seen from (3.28) that at high frequencies the at-
tenuation in the system, for a given specimen and for
a given helix geometry, is proportional to the fre-
quency. This becomes understandable from an analy-
sis of the expressions for the power fluxes in the two
regions of the helix. With increasing frequency, the
power flux increases inside the helix and decreases
outside. Because of the large interaction between the
field and the substance, the attenuation of the system
also increases. With increasing cotangent of the helix
winding angle, the attenuation of the system increases,
because the field becomes highly concentrated inside
the rod and this increases the attenuation. Thus, to
measure the attenuation of specimens with low losses
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it is necessary to modify the system so as to concen-
trate the greater part of the power flux inside the di-
electric. This can be done by increasing cot 6§ or by
changing over to a shielded system, for the shield
essentially redistributes the power (increases the
power flux inside the helix).

2. Determination of tan 6 of a dielectric located
inside a dielectric tube on which a helix is wound.
Here, as in Sec. 3 of Ch. III, it is necessary to con-
sider a helix with a layered dielectric. By subdivid-
ing the system into three regions:

tlu (a) - k:;b/l(b)<‘| ”‘ng)(/oo:r }
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DO<r<b, gy=e,—ie]: 1) b<rla, g,=8,— e,

Iy a<r< o, e=1
and assuming that €{ < €} and €j < e{, we can deter-
mine € by the energy method and obtain the following
expression for the tangent of the loss angle of the di-
electric situated inside the helix (€}, €}, and €} are

known):

tgd, = m {a[b2M 4 e (A (a) a®— A (b) b%) - A2 (D () b?
- (a) a®) + a®N]— ¢, (B (a) a — B (b) b)}, (3.29)
where

X |30y — Lo (0) 5 (D))

o= []o(a)—‘ k;b('] - %)11 (b) qt;o]Z [ﬂl(—a)-’ <?L(§tg 0>:7§l(;)]

X [Ky(a) Ky (a) ~ K3 (a)),

Ar) =1 Agl, (1) = oy () Lol (1) = BoK ()]

X {Agd o (r) 'i"BzKo (N =41 o (1) B.K o (1)]2,

B(r)y= 4], (1) — BoK, (N} [A:1y (1) + BoK, (7)];
T LT 1 < . 2mb
ot =T £é>11(b)1sn(b), Bo=

D (r) = Ay (r) = Lo (r) L2 (7).

5. Measurements of € with the Aid of a Moving Probe

To measure the dielectric constant by the helical
waveguide method it is necessary to know the geometry
of the specimen and of the helix, and also to determine
the length of the slow wave Aj in the investigated sys-
tem for a specified wavelength of the supply generator.
The slow wavelength Ag can be measured with the sys-
tem shown in Fig. 12. Probe diagrams plotted at con-
stant generator power output can be used also to deter-
mine the attenuation coefficient o, which must be
known to determine tan §.

The dielectric constant of several cylindrical-rod
samples was measured to verify formulas (3.4), (3.5),
and (3.10). The substances investigated were vinyl
plastic, organic glass, ebonite, porcelain, glass, and
a special ceramic. Systematic investigations were
made of the dispersion properties of ‘‘helix plus di-
electric’’ type systems of different diameters and
with different winding angles. Figures 13 and 14 show
the dispersion relations for vinyl plastic and porcelain,

FIG. 12. Block diagram of
probe methods for the measure-
3 ment of € 1 —generator;
2 —wavemeter; 3 — coaxial cable;
4 —helix with dielectric; 5 — short
circuit; 6 — probe, detector, and
indicator.

Loy Lo {1 -2).

(3.30)

Ad,cm
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FIG. 13, Dispersion 5 I
curves of the ‘‘helix plus s }
dielectric” system (vinyl
plastic), — theory, J
—- X — experiment. 2t /
2q =28.7mm
! M -356

01020304050607080490100

g.cm

calculated in accordance with (3.1) and plotted experi-
mentally. A study of the dispersion curves and the
frequency dependence of €, made for specimens of
the same dielectric but with different values of cot 6
and different diameters D = 2a, shows that identical
values of € are obtained for identical D/Ag. Figures
15 and 16 show the dependence of € on D/A§ for vinyl

}\d,cm
[
§

FIG. 14. Dispersion 4 //,:?a-lﬂmm
curves of the ‘‘helix plus /4 clgd~io46
dielectric’’ system (porce- i 4
lain), — theory, 2 i 20~ mm
— x — experiment. I} W g8 -2

R T T

5. CM
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4 FIG. 15. Dependence of j‘ﬂ
0F measured values of € on D/\y 2% 2e-10.9
a5 for vinyl plastic. A—2a=5 mm, 25 f ctgd - 158 Ceramic
’ ' cot 8 =15.7; 0~2a = 28.7 mm, % & ZZ27)
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plastic and porcelain. From the plots of Figs. 15 and 3tos L 20-287; ctgg =15
16, and on the basis of the data obtained by investigat- 2 0 AViny1 plastic
ing other substances (organic glass, ebonite, glass), T e ctps-0% Za-287, g <58
woa W w w & W & X W W

we can draw the following conclusions:

1. As the ratio D/A{ is decreased, € first increases
slowly and then (after passing through the value D/Aj
~ 1) the increase is faster. The guiding rule for
measurements of € must therefore be that the speci-
men dimensions and the frequency range be such that
the condition D/Ag > 1 be satisfied.

2. Figures 15 and 16 show that the error in the
measurement of € varies with the interval of D/Aj.
Thus, for substances with ¢ ~ 2 — 3, the measurement
error reaches 15 percent when 1 =< D/7\c’.i = 1.5, drop-
ping to 7 percent when 1.5 = D/AJ = 2 and to 3 percent
when 2 =D/A§ = 3.5. In addition, as € increases the
region with the lower measurement error shifts toward
the lower values of D/Ag. Thus, in the case of porce-
lain, the region of values of D/Aj for which the meas-
urement error is less than 10 percent lies between 1
and 1.5,

3. A frequency range in which € can be measured
can be established for each specimen. On the short-
wave side this range is limited by the frequency at
whichthe slow wave becomes commensurate with the
pitch of the helix, and on the long wave side the limit
is the ratio D/Ag, which must not exceed 1.

4, To cover a wide range of frequencies, several
specimens of different diameters must be used. Fig-
ure 17 shows the range of frequencies within which the
error in the measurement must not exceed 10 percent
for specimens of different diameters. Tubes made of
glass, porcelain, and a special ceramic were meas-
ured to verify formula (3.20). Figure 18 shows the
frequency dependence of the calculated values of ¢
while Fig. 19 illustrates the dependence of € on D/Ag,
where D is the outside diameter of the tube. From the
curves of Fig. 19, and also from an analysis of the

5t

0 FIG. 16, Dependence of meas-

65t . ured values of € on D/A§ for porce-

60 \ . lain. 0-2a =10 mm, cot § = 32.2;
! X —2a =10 mm, cot § = 12.46,

55t ,;

005 10 15 20 25 30
/R .

FIG. 17. Frequency range for specimens of different diameters,
within which € can be measured by the helical waveguide method
with less than 10 percent error.

data obtained by investigating other substances, it can
be concluded that to obtain more accurate values of ¢
it is necessary to satisfy the condition D/Aj > 1.

£
s 20=6mm, clp@=/5/

FIG. 18. Dependence of By =45 wm
measured values of € of glass /[ 20-815 mm, 04g6=217

o N et /Zﬂ'ﬂ,/imm
ubes on the wavelength. 2010 mm, ctgg~234
O — molybdenum glass; X —or- e 2b=8.] mm

9
7
di lass. 5t
naty glass 20168 wm, 018 = 423
7 26138 mm
1
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To verify formulas (3.16) and (3.18) for the dielec-
tric constant of liquids, we measured the values of ¢
of gasoline, benzene, ether, acetone, and distilled
water, in glass and ceramic tubes. Several theoretic-
ally calculated and experimentally plotted dispersion
relations were compared for systems of the ‘‘helix
plus layered dielectric’’ type. Figure 20 shows the
theoretical and experimental curves for a glass tube
filled with benzene or with distilled water, while Fig.
21 shows the dispersion curves for the case of acetone
in a tikond tube (ep =21) and for acetone in a glass
tube (eT =6). It is seen from these curves that a
disparity exists between the theoretical and experimen-
tal curves in the short and long wave regions. The
width of the region where the two coincide depends on

206 mm, ctgG-I51

L & 2b=45 mm
FIG. 19, Depend- mny \ 20915 mm, &lg§=2l7

ence of measured val- ¢ 2b=815 mm
¢ 7 200w, cly§=234
ues of € Ol.fl D/Ag, for [ o ./nr:nm oy
tubes of different 5 T i——
brands and diameters. f t 2b=138 me:
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Ad: cm
I
Lo FIG. 20. Dispersion curves
a9 for “‘helix plus layered dielec-
08 tric’’ systems. 1 —Benzene in
a7 glass tubes; 2 — distilled water
6 in glass tubes; — theory,
a5 — X — experiment,
a4

W@ @ W i
)‘o em

the geometry of the tubes and on the ratio of the dielec-
tric constants of the tube and the liquid in the tube. It
is seen from Fig. 19 that the region of agreement is
broader for acetone in a ‘‘tikond’’ tube than for a glass
tube. Measurements of substances in tubes with differ-
ent €T lead to the conclusion that when €T < €7 it is
necessary to work in the range 0.9 =D/Ag < 1.1. I
€T > €7 the range 0.7 = D/Ag =< 1.5 can be used. In
this case the measurement errors do not exceed 10
percent,

The determination of tan 6 of a substance has been
reduced to a measurement of Aj and of the attenuation
coefficient o and to calculations with formulas. For-
mulas (3.27) and (3.28) were checked for specimens
made of vinyl plastic, ebonite, and getinaks (micarta).
The values of tan 6 of getinaks were found to be close
to those tabulated, while the values for ebonite and
vinyl plastic were somewhat higher than those in the
table. The reason is that the attenuation produced in
a low-loss dielectric is commensurate with the atten-
uation caused by the helix, and consequently a rigorous
account of the losses in the helix becomes necessary.

6. Determination of € and tan § by the Helical and
Loaded Cavity Methods™

Measurements of the dielectric constants of sub-
stances with high losses by the helical waveguide
method are quite difficult, because the wave attenuates
rapidly in such systems. The attenuation can be re-
duced by using thin specimens located on the axis of
the system. But the slowing down effected by the in-
troduction of a thin specimen is greatly reduced.
Measurement of small changes of the length of the
slow wave can lead to large errors. The above- de-
scribed method can therefore be modified by changing
over to the resonator method of measurement. A

Ag em
Ll ///
10 2 FIG. 21. Dispersion curves for
a9 “‘helix plus layered dielectric”’ sys-
08 tems. 1 — Acetone in glass tube, 2a
a7 =10 mm, 2b = 8.1 mm, cot 6 = 23,4,
as ‘ €, = 6; 2 — acetone in tikond tube,
a5 ’ » 2a=6.85mm, 2b =5,3 mm, cot &

=21.5 ¢, = 2L

R

g, cm

FIG,. 22. Helical cavity
with dielectric.

resonator is produced when a shielded helix is shorted
on both sides by conducting planes. If the helix is then
energized at high frequency, resonance will set in the
system whenever the length of the helix is equal to a
whole number of half waves. The presence of a helix
in the cylinder produces slow waves of the helical
type. Since the helix is a broadband system, a cavity
of the helical type of fixed length will resonate in a
broad band of frequencies. The resonance frequency
of such a cavity is changed by placing on the axis of
the system a thin specimen of the same length as the
system. The shift in the resonant frequency will be
proportional to the dielectric constant, and the change
in the Q of the system yields the value of tan 6 of the
investigated substance. Since it is possible to meas-
ure relatively small frequency shifts, specimens with
high losses can be investigated, and these specimens
can be made sufficiently thin so as not to reduce
greatly the value of @, and to produce on the other
hand a noticeable frequency deviation.

Resonators can also be made with other slow-wave
systems, such as a segment of a loaded waveguide. It
should be noted that the pass band of the latter is much
smaller than that of a helical cavity. The character of
the dispersion determines the variation of the field in-
tensity on the symmetry axis on going from one reso-
nance to another. The intensity of the field changes
slowly from one resonance to another in a helical
resonator but abruptly in a loaded waveguide. This
property makes the helical resonator suitable for the
measurement of substances in a broad band of frequen-
cies at an approximately uniform sensitivity. On the
other hand, the sharp dependence of the field intensity
on the frequency in a loaded cavity makes the latter
suitable for measurement of € of substances within
a wide range of loss angle.

1. Cavity made of a segment of a coaxial helix. In
measurements by the resonance method it is necessary
to place the specimen, made in the form of a cylindri-
cal rod, inside the cavity. It is more convenient in
practice to use specimens with diameter less than that
of the helix. To measure € and tan & of a high-loss
substance the specimen diameter must be small. If
the specimen diameter 2b (Fig. 22) is small enough to
make a = 5b (a is the radius of the helix), and if in
addition the radius of the shield is R = 5a, the ex-
pression for € is

(3.31)
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FIG. 23. Block diagram for the measurement of the frequency
shift by the transmission method. G — generator, W — wavemeter,
At — attenuator, PM — power meter, MR — measuring resonator,
A — amplifier, I — indicator.

where

<2nz\
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propagation constant ky = 27/A, and Af is the fre-
quency shift due to insertion of the dielectric in the
cavity. The procedure for measuring € can be as
follows. We determine beforehand the slow wave-
lengths Aq at specified resonant frequencies of the
investigated system (these are measured by the per-
turbation method). The specimen is then inserted at
any of these frequencies and the frequency deviation
measured.

The tangent of the loss angle is determined from
the change in the Q brought about by inserting the
investigated specimen into the cavity. If a = 5b and
R = 5a, then

uy = m) tgd=1 (g5 )mm[G+T qg;] . (3.32)
f, is the resonant frequency corresponding to the where
I'=1,(a)— % (kD)2 (1 —2) gop, Qoo =10 (a) Ky (b) — 1, (b) K, (a). |
o = To(R) K, (a) I,(a) Ky (R), 4‘35‘=lo( ) Ky (a)+ 1, (a) Ko (R). !
G={1,(@+ 5k b>2<1—e> [1 @h" 4 K,@]) (8.33)
{1 (a) + kb) (1—3)[1 (a)]n——A ,(a)]}.J
Here Qg pertains to the air-filled cavity and Q to the 8( Af)
system with the specimen. (3.35)

2. Cavity made of segment of loaded waveguide. For

specimens with small transverse dimensions we can
use the following simplified formula for €. It is shown
in references 75 and 76 that the relative shift of the
cavity frequency (whether the cavity be of simple or
complex form ), caused by insertion of a specimen of
length equal to the length of the system, is
{PE dv

Af _ ¥

FT W (3.34)
where V is the volume of the perturbing body, E is
the intensity of the field outside the perturbing body,
P = (e-1)E, is the vector of electric polarization of
the dielectric body (E,; is the field intensity inside the
perturbing body), € is the dielectric constant of the
perturbing body, and W is the total energy stored in
the cavity. Using suitable simplifications, we obtain
from (3.34)

MR

%o é
!

FIG. 24. Block diagram for the measurement of frequency shift
by the leakage method. G — generator, M — modulator, W — wave-
meter, At — attenuator, D — detector, MR — measuring resonator,
O — oscilloscope.

St dg|F IS
where P = Wvgp /1 is the energy flux density in the
system, S is the cross section area of the specimen,
and vgy is the group velocity. The quantity | Ego|2/W
is proportional to the coupling resistance and is fully
determined by the geometry of the system and by the
frequency. Therefore, by calculating or measuring
beforehand the values of | E,(|%/W at different reso-
nant frequencies, we can use (3.35) to determine the
dielectric constant. In the presence of a control spe-
cimen with known value of €4, we can determine the
frequency shift Af; due to introducing the control
specimen. Then e€x of an unknown specimen with the
same transverse dimensions can be determined from
the formula

Afx

YA (3.36)

€ g, — 1)+ 1.
Measurement of € by the resonator method reduces
therefore to a measurement of the resonant-frequency
shift due to introducing the investigated specimen into
the cavity. Two methods were used to measure the
frequency shifts. The first is illustrated in Fig. 23
and the second in Fig. 24. The Q of the resonator,
needed to determine tan 6, was measured from the
width of the resonant curve at the half-power level.
To verify formulas (3.31) and (3.32), we measured

€ of solid-rod specimens and of liquids in capillary
tubes. The measurements of € of a polystyrol wire

1 mm in diameter yielded values € = 2.3 —2.6 on
wavelengths 10 — 50 cm. The values of € of a glass
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Table 1
Phase sh(i/it per cell, a ERs L 0 r
; = by
|
T -1
Resonanc;gt}:::low cavity, J1=2743 22730 g 2676 fa= 2635 ’
!
. Af, Af, T Af, Af,
Substance Specimen Moy | e | Mer| o | Mey| e | Mes| .
secC sec 7_535 - secC .
Ebonite . . . . . S mm 24| — 6.8 | — s — t2t2l |
Vinyl plastic - . .| 5 mm 3.4 2,63 6.8 283 15 | 26321 2.6 ]
Organic glass 5 mm B4 2630 6.8 263 |15 263202263
Ordinary glass . . 5 mm il.816.7 321604 0451 6.9 84.316.8
Bakelite * 5 mm 6.4 ] 4.06 ] 13 2 290 | 4.2 42.3 | 4.25
Getinaks . . . . . 5 mm 6.4 ] 406 ) 11.6 ) 3,54 26081 3.9 38.8 | 4.06
i
] 4 Texuika u3Mepenuit Ha caHTUMeTpoBbiX BodHax ( Centimeter
Table II Wave Measurement Techniques), Vol. II, 1952.
. 1 T \ . i 5Pp. Drude, Ann. Physik 59, 16 (1897).
° - ' N 8 p. Drude, Ann. Physik und Chem. 55, 633 (1895).
'D. A. Rozhanskii, J. Tech. Phys. (U.S.S.R.) 3, 935
€calc 23.5 48,3 1 0,22 ) 515 63
£ 2026 | 46.6 | 30.0 | 504 | 65 (1938).
exp | = S 8y. V. Tatarinov, JETP 5, 539 (1935).

rod 2 mm in diameter, in the same band, were 4.2

— 4.8, while tan 6 ranged from 0.002 to 0.003. The
measurements of € and tan § of liquids were carried
out in capillaries with inside diameter 0.64 mm and
wall thickness 0.075 mm. In the range 10 —50 cm,

¢ of distilled water ranged from 60 — 70, while tan 6
ranged from 0.15 to 0.2. Measurements were made
of € and tan 6 of methyl and ethyl alcohol in the
51.7 — 15 cm range. The values obtained for both
alcohols agreed well with the dispersion curves ob-
tained for alcohols by various authors."%

To verify (3.35), we prepared specimens of ebonite,
vinyl plastic, organic glass, glass, bakelite, and geti-
naks. The specimens were made into rods 5 mm in
diameter and the same length as the system. The
control specimen was ebonite with € = 2.63. The re-
sults of the measurements made at different reso-
nances are listed in Table I. The dielectric constant
of liquids was measured in glass capillaries with in-
side diameter 1 mm and outside diameter 1.1 mm.
The control specimen was distilled water (e, =177).
The investigated substances were specially prepared
mixtures of dioxane and distilled water. The results
of measurements made at 2676 Mc/sec are listed in
Table II.

Thus, the helical waveguide method can be used
along with other well known methods for the measure-
ment of € and tan 3.
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