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INTRODUCTION

K ,KNOWLEDGE of the dielectric constant of a substance
is of great importance in physics, chemistry, and engi-
neering. Recent advances in science have expanded the
use of dielectrics and have raised new problems involv-
ing the study of their properties. The latest progress
in microwave physics has necessitated a study of the
behavior of matter at these new wavelengths, and the
accomplishments in microwave technology have given
rise to new methods for the measurements of dielectric
constants of substances.

There are many published methods of measuring
dielectric constants of substances at microwave fre-
quencies. We review in the present article the most
frequently employed methods, indicate the progress
made toward improving old methods and developing
many new ones. Principal attention is paid to the
physical aspects of the measurement of e and tan 6.
With this as a starting point, we classify the methods
of measuring e and tan 6, and also describe in greater
detail some new methods for the measurement of these
quantities, particularly the helical-waveguide method.
Less attention is being paid to measurement techniques,
and we do not consider at all questions connected with
a detailed analysis of the measurement errors .

I. CLASSIFICATION OF METHODS USED IN THE
MEASUREMENT OF THE DIELECTRIC CONSTANT

In principle, any measurement of the effect of a sub-
stance on an electromagnetic field can be used to deter-
mine e and tan б of the substance. At low frequencies,
the simplest is the interaction between the electric field
of a capacitor and the dielectric used in it. Conse-
quently all methods for the measurement of dielectric
constants at low frequencies reduce to an evaluation of
the change in capacitance brought about by introducing
the investigated substance into the capacitor. The vari-
ous methods of accounting for the change in capacitance
predetermine the methods used for measurement of the
dielectric constants. The most frequently encountered
are bridge methods, resonance methods, and beat meth-
ods. The use of these methods results in sufficiently
accurate measurements of the dielectric constants of
the substances. Thus, in the case of nonconducting
dielectrics, the resonance method yields an accuracy
on the order of 0.01 percent in the determination of e,
while the beat method permits a determination of e

accurate to 5 x 10"6 dielectric-constant units.1 The
error increases sharply with increasing conductivity
of the investigated dielectric.

In the microwave range, systems with lumped con-
stants are replaced by systems with distributed con-
stants. Accordingly, the methods used to measure the
dielectric constant change. Some resonance proce-
dures are retained. In addition, methods come into
play in which interaction between guided waves and
matter is used. There are several types of guides
available for microwave such as the two-conductor line,
the coaxial line, hollow waveguides, dielectric t rans-
mission lines, etc. The use of different transmission
lines leads to different measurement methods. Finally,
guided waves in free space can also be used, and this
in turn necessitates a new technique.

The existence of a large number of methods of
measurement of e and tan б is due to the presence
of various transmission lines, to the possibility of
choosing different parameters suitable for the meas-
urement, to the use of specimens of different shape,
and to the choice of locations of these specimens in the
system.

A common feature of all these methods is that they
all involve a determination, in one manner or another,
of the change in the phase constant of the propagation
whenever the tested dielectric is introduced into the
system, and the determination of the connection between
this change and the value of the dielectric constant.
These relations can be quite different in each individual
case, and consequently the number of methods for meas-
uring e and tan б is large.

The methods used for microwave measurements of
the dielectric constant are usually classified in the
literature as follows:2"4

1) methods using waves in free space;
2) methods using guided waves;
3) resonant methods.
The most extensive group of methods, based on the

use of guided waves, can be subdivided by the type of
transmission line (two-conductor, waveguide, or
coaxial line).

The two-conductor line served as the basis for the
development of: 1) the first Drude method,5 2) the sec-
ond Drude method (or the capacitor in two-conductor
line method),6 3) Rozhanskii's plate method,7 and
4) the Tatarinov method.8 These methods were exten-
sively used and developed in the Thirties. They were
later replaced by better methods in which coaxial and
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FIG. 1. Distribution of
field intensity for low and
medium losses.

waveguide lines were used. It must be noted, however,
that the second Drude method is still used for decim-
eter waves, while the remaining methods are interest-
ing because they were the first in which ideas were
proposed for the derivation of the formulas and for the
choice of parameters suitable for measurement; these
methods were then transferred to the waveguide and
cavity resonator methods.

The most widely used among the waveguide methods
are those based on investigation of the waves trans-
mitted through the specimen or reflected from it. The
most popular variants are those in which a calibrated
line is used,9 although there are also bridge variants,
based on a comparison of the waves reflected from the
investigated specimen and from standard loads (see,
for example, reference 10).

Methods employing waves in free space can also be
subdivided into two subgroups, corresponding to the
observation of the reflected and transmitted waves,
respectively.

A similar subdivision can also be made when a co-
axial line is used. In addition, a method in which a
line segment with lumped capacitance is introduced
is also worthy of attention. In the latter case equiva-
lent-circuit calculations lead to simple formulas for
e and tan б of a substance placed in the capacitive
part of the line.

Resonance methods have found extensive use. They
differ in that the resonant systems can be made up of
different transmission lines, in the type of the oscilla-
tions excited in these systems, in the placement of
the specimen in the resonator, and in the shape of the
specimen itself.

If we start from the common nature of the physical
principles of the interaction between field and matter,
all the foregoing methods can be subdivided into the
following groups:

1) methods based on the study of the standing-wave
field in the investigated dielectric,

2) methods based on an analysis of waves reflected
from the investigated specimen,

3) methods based on a study of the waves transmitted
through the dielectric,

4) resonance methods.

Worthy of particular attention are the investigations
of N. A. DiviFkovskii and M. I. Filippov,11 in which the
dielectric constant is determined from the change in
the temperature of a small dielectric sphere in a high-
frequency field.

The existing methods can also be classified by the
character of the waves used to interact with the sub-
stance. In most methods the phase velocity of the wave
is either greater than the velocity of light (waveguide
methods ) or equal to the velocity of light (two-conduc-
tor lines, coaxial lines, free space). Methods exist,
however, in which the phase velocity of the waves is
less than the velocity of light (isolated dielectric rod,
helical waveguide). In this review we shall call the
first group fast-wave methods and the second group
slow-wave methods.

П. FAST-WAVE METHODS OF MEASURING DIELEC-
TRIC CONSTANTS

1. Methods Based on the Investigation of the Standing-
Wave Field in the Dielectric

The simplest relations between e and the measured
parameters can be obtained by considering the propa-
gation of waves in an unbounded dielectric medium or
in a system completely filled with dielectric.

It is well known12 that the propagation constant k m

of a wave in an unbounded dielectric and the propaga-
tion constant k0 of a wave in free space are related
by the equation

а щ ^ [• 6(J./CQ, ( 2 . 1 )

where e and ц, the dielectric constant and the perme-
ability, are in general complex quantities.

If k m can be measured when ц = 1, it becomes
possible to determine e at a given frequency (w0 = k oc).
The simple connection between the dielectric constant
and the propagation constant holds also for waves prop-
agating in systems where the field structure is close to
that of a plane wave, that is, in two-conductor and co-
axial lines. If such lines are completely imbedded in
the investigated medium, with e * 1 and ц = 1, the
dielectric constant of the substance is determined from
the formula

(2.2)

and the entire process of measuring e reduces to a
determination of the wavelength in the system without
the dielectric (\0) and with the dielectric (\&). А
measurement can be effected by placing an ideally r e -
flecting plane perpendicular to the propagation direc-
tion of a plane wave and observing the standing-wave
pattern in front of this plane. Figure 1 shows the dis-
tribution of the intensity of the electric fields for the
case of low and medium losses. At low or medium
losses, the distance between neighboring minima, I,
is equal to half the wavelength, A.̂  = 21.
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FIG. 2. Cross section of coaxial line with investigated dielec-
tric. 1) Probe. 2) Cylindrical cuvette. 3) Dielectric.

The tangent of the loss signal can be determined
here from

t~X _ 2 -̂ min (2.3)*

where E m j n and E m a x are the field intensities at the
minimum and maximum of the standing wave.

The earliest attempt to use a two-conductor line
for the measurement of e with the line completely
imbedded in the dielectric is the work by V. I. Kalinin13

on the determination of the dielectric constant of water.
The two-conductor line was drawn through a vessel
filled with liquid. A probe was used to plot the field
in the system with and without the liquid. The value
of e was calculated using (2.2). At 16.8 cm, € of
water was found to be 81.7, in good agreement with
the results obtained by other methods. A determina-
tion of € of liquids in a completely filled rectangular
waveguide has been reported.4 The dielectric constant
was determined from two values of the wavelength in
the guide, with and without the dielectric. In this sys-
tem the connection between e and the measured wave-
lengths is somewhat more complicated than for a two-
conductor line, but all the measurements reduce in
this case only to a determination of the standing wave
in a medium completely filled with dielectric.

The determination of e from the standing wave pat-
tern in a dielectric was reported also in references 14
and 15, where e and tan б were measured in speci-
mens of sufficient length, filling part of a short-cir-
cuited coaxial line. The specimen did not occupy the
complete cross section of the line (Fig. 2). The probe
was moved in the remaining free space. An equivalent-
circuit analysis of the system yielded the following
simple formulas for the determination of e from the
standing-wave pattern in the system:

FIG. 3. Position of specimen in
the method of the short circuited
line.
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Ло is the wavelength in the line without dielectric, \ e

*tg = tan.

ТЛ

is the wavelength in the presence of dielectric, Х-р is
the wavelength in the line in the presence of a tube,
e^ is the dielectric constant of the tube, while Rj, R2,
R3, and R4 are the radii of the internal wire, the tube
(inside and outside diameters), and external wire of
the coaxial line, respectively. The losses were deter-
mined from (2.3). It is noted in references 14 and 15
that a coaxial line can be used to measure dielectric
constants e < 20 and medium losses in a broad band
of frequencies.

A feature of the described methods is the simplic-
ity of the mathematics. They are most suitable for
the measurement of e of liquids in different parts of
a frequency band. Among their shortcomings is the
need for a large quantity of the investigated substance,
difficulties arising in the investigation of solid sub-
stances, and the fact that these methods cannot be
used for substances with high losses.

2. Methods Based on Waves Reflected from the Spe-
cimen

The methods based on a study of the standing-wave
field in the investigated dielectric are not used exten-
sively because of several shortcomings, the principal
among which is the need for a large quantity of the in-
vestigated substance. If small specimens are on hand,
then methods based on a study of the waves transmitted
through a limited portion of the investigated substances,
or reflected from the substance, are more suitable. The
most widely used are methods wherein the standing
waves in front of the specimen are investigated with a
known load behind the specimen. Many papers 9 ' 1 6 " 1 8

have been devoted to such methods.

Let us examine the short circuited line method.9

Assume that some portion of a transmission line (say
a waveguide) is filled with the investigated dielectric
(region П of Fig. 3). Each of the three regions will
then be characterized by propagation constants y4, y2>
and y3 and by wave impedances Zj, Z2, and Z3. It is
possible to determine the propagation constant in the
investigated medium from the measured input imped-
ance of the line. The short-circuiting plate can be
located in different places.
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1. Second medium short circuited (Д = 0). The in-
put impedance of a line segment of length d, shorted
at the end, is known to be2

/2

Z'& = Z, tby2d, (2.5)"

where y2 = a + i/32, a is the attenuation factor, j32 is
the phase constant; y2 is the propagation constant, and
the normalized input impedance is

-7-—- — Y \\\ytd. (2.6)

On the other hand, it is known that the characteristic
impedance for а ТЕ wave is connected with the propa-
gation constant by the relation

ZTK = -

and consequently

Уг

F r o m (2.5) a n d (2.6) w e g e t a n e q u a t i o n f o r y 2 :

y2rl

(2.7)

(2.8)

2. If t h e s h o r t - c i r c u i t i n g p l a t e i s l o c a t e d a q u a r t e r

w a v e l e n g t h a w a y f r o m t h e r e a r w a l l of t h e s p e c i m e n

(Д = \/4) and the attenuation in the third medium is
equal to zero, we can write the following expression
for the input impedance of the open line:

- (2.9) t

In t h i s c a s e w e c a n a l s o o b t a i n a n e q u a t i o n r e l a t i n g t h e

u n k n o w n p r o p a g a t i o n c o n s t a n t i n t h e s e c o n d m e d i u m

w i t h t h e m e a s u r e d q u a n t i t i e s ( i n p u t i m p e d a n c e of t h e

l i n e a n d p r o p a g a t i o n c o n s t a n t i n t h e f i r s t m e d i u m ) :

ctli_i_
(V (2.10)

Relations (2.8) and (2.10) are transcendental equations
with respect to the unknown propagation constant. They
must be solved graphically. Many papers on the meas-
urement of dielectric constants by similar methods
list tables of the functions tanh e/0.1 '9 In addition,
methods wherein the system is only partially filled
with dielectric lead to ambiguities in the determina-
tion of e, and to eliminate these ambiguities one must
resort to repeated measurements of e of specimens
of different thickness or determine beforehand the
approximate value of the measured values of e.

Several particular cases lead to simpler expres-
sions for the propagation constant in the investigated
medium.

a) Case of lossless dielectric. The propagation con-
stant has in this case the form

The equation for y2 becomes

*th = tanh.
Tcth = coth.

where x (0) is the input reactance of the line. Account
of the equation

• У- (^') • + о ,J / о 1 o \

w h e r e d m j n i s t h e d i s t a n c e f r o m t h e s p e c i m e n t o t h e

f i r s t m i n i m u m o f t h e s t a n d i n g w a v e , l e a d s t o t h e f o l -

l o w i n g e q u a t i o n f o r y 2 :

tff Bi t?,1 ( i T 1 to- R rf
° n " n ь в На" in -in\

E q u a t i o n ( 2 . 1 3 ) i s s i m p l e r t o s o l v e t h a n ( 2 . 8 ) , s i n c e

the function tan в/в = f (в) has been tabulated. In this
case, however, it is necessary to take into account the
ambiguity in the determination of e.

b) In the case of high losses, when the reflected
wave does not reach the air-dielectric interface, the
determination of e becomes much easier. Indeed, the
absence of a reflected wave in the line leads to the
equation

Z in(0) = Z£.

Since Z2 /Zi = i , we have

(2.14)

In this case there is no need for solving a transcenden-
tal equation.

c) It is also possible to get rid of the transcendental
equation by modifying the method to the so-called two-
position method.17 In this method the input impedances
of the line are measured in the presence of a specimen,
at two positions of the short-circuiting piston. In one
of these positions the specimen is at the short circuit,
and in the other the distance from the specimen to the
short-circuiting plate is equal to one quarter wave-
length. For the two measurements we have

1 cth y2d __ (Zin)2 1tli yad _ I
y2d y2d

From these equations we obtain an expression for y2

in terms of the measured parameters:

All the equations derived for y2 hold also for meas-
urements in a coaxial line (Fig. 3b).

Knowledge of the propagation constant enables us to
determine the complex dielectric constant of the me-
dium. For a two-conductor or coaxial line, the e of
the medium can be determined from the relation

(2.16)

where ej and yx are the dielectric constant and the
propagation constant in the first medium, while €*
and y2 refer to the second medium.

For a waveguide the following relation holds true:



M E T H O D S OF M E A S U R I N G D I E L E C T R I C C O N S T A N T S 621

-,2 1,2 7 2
Y2—« —ACT,

where y2

 = a2 + *02 * s * n e propagation constant in a
waveguide with e * 1, к = i/30 V e (1 — i tan б) is the
propagation constant in an unbounded medium with
e it l, /30 = 2тг/\0 is the propagation constant in free
space with e = 1, and k c r = 27гД с г. The expressions
for e and tan 6 are obtained in the following form:

(2.17)

The foregoing relations, which give the connection be-
tween у2 and the measured input impedance, hold for
any transmission line (two-conductor, coaxial, or
waveguide), when the specimen is located in some
part of the line. The difference lies in the connection
between y2 and the measured value of e.

Notice should be taken of still another position of
the specimen and somewhat different equations for y2

in the case of a coaxial l ine. 1 ' 1 8 A specimen in the
form of a disc (and not a ring) is located in the
capacitive part, formed by the central conductor and
the end half of the line (Fig. 3c). In this case the input
impedance of the line can be determined from the for-
mula

Zin 1 1
Zx icoC* '

(2.18)

where C* = e*Co. From the input impedance of the
line, the lumped capacitance Co, and the geometry of
the line we can determine the dielectric constant of
the substance in explicit form:

(2.19)

where Dt and D2 are the diameters of the conductors
and f is the frequency in cycles.

For low-loss specimens we have

( 2 . 2 0 )

• c t g - ( 2 . 2 1 )

We see that the formulas for e and tan б are quite
simple and a small quantity of the investigated sub-
stance is needed for the research.

Thus, the measurement of e and tan б by the short-
circuited line method reduces to a determination of the
input impedance of the line, that is, to a measurement
of the standing-wave coefficient and of the shift of the
first minimum (as measured from the specimen). The
errors of the method are determined by the errors of
these measurements, and depend also on the gap be-
tween the specimen and the line. For specimens with
medium values of e and tan б (e < 20, tan б = 10~3

— 10"2), methods in which a measuring line is used
yield an error of one percent in the determination of
e, while the accuracy of tan б is limited by the accu-

FIG. 4. Cell for measurement of e and tan 8
liquids.

racy of the SWR measurement, which is approximately
2 percent.4 Among the shortcomings of the method is
that the specimen must be accurately adjusted to these
dimensions of the system, something particularly im-
portant if large values of e are measured. If the spe-
cimen is placed in the capacitive portion of a coaxial
line, an additional difficulty is involved in the prepara-
tion of a special cell—the measuring capacitor. The
short circuited line method is most convenient in the
centimeter band. In the decimeter band the method is
less suitable because of the need for a cumbersome
measurement line. On the short-wave side, the use
of the method is limited by the difficulty of construct-
ing a short-circuited line with moving probe at wave-
lengths below 1 cm. The bandwidth of the method is
determined by the transmission line employed. The
width in the waveguide variant is less than when a co-
axial line is used. Among the shortcomings of the
method, in the general ease, is the need for solving
transcendental equations and the ambiguity of deter-
mination of e. The method is suitable for the meas-
urement of solid and liquid dielectrics.

Dielectric constants of liquids are usually measured
in special cells such as shown schematically in Fig. 4.
Here 1—a liner made of solid dielectric with very low
losses and impervious to the liquid, 2—measured liquid
dielectric, and 3—opening in the piston for the passage
of the liquid. By connecting the cell to a vertically
mounted measuring line and by plotting the readings
of the indicator as the piston is displaced in the cell,
a plot of the attenuation of the electromagnetic wave
in the liquid dielectric is found as a function of the
thickness of the liquid layer. From this curve it is
possible to calculate the wavelength in the dielectric
A(j and the attentuation coefficient a. To determine
the real and imaginary components (e' and e") of
the dielectric constant, the following relations are
derived from waveguide theory:

( 2 - 2 3 )

The results reported in reference 26 indicate that at-
tenuation is determined by this method with high accu-
racy. A similar method can be used to measure the
dielectric constants of liquids in the millimeter
range. Heinken and Bruin27 report measured values of
e for several alcohols and halogen-substitution ben-
zenes in the 3 — 7.5 mm range. Burdun and Kantor2 8

give measured values of the dielectric constant of
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_ . „ _ ,, , . с . , ~ . , , F I G - 6. Measurements of e in free space by the transmission
FIG. 5. Measurement of e and tan S by the reflection method. t, .

1 method.

water and formamide in the centimeter and millimeter
band.

Recently published papers 1 9 " 2 1 report the use of the
short circuited line method for the measurement of
dielectric constants of substances with e > 200. To
reduce the large amount of reflection occurring when
large values of e are measured, a plate made of a
substance with low loss angle and with a dielectric
constant equal to the square root of the dielectric con-
stant of the investigated substance was placed in front
of the tested specimen. Lipaeva and Skanavi21 report
dielectric constants, measured in this manner, for
several special ceramics (barium titanate with e
= 656, tan б = 0.41; s t ront ium-bismuth-t i tanate SVT-1
with e = 385, tan б = 0.34, and o t h e r s ) .

The shor t c i rcui ted line method used with wave-
guides has proved useful in the m e a s u r e m e n t of the
t e m p e r a t u r e dependence of e and tan 6. It i s n e c e s -
s a r y to construct special t h e r m o s t a t i c sect ions in this
c a s e . References 22 — 25 descr ibe such sect ions, note
the p e c u l a r i t i e s of the m e a s u r e m e n t method, and give
the t e m p e r a t u r e dependence of e and tan б for many
substances . It i s poss ible, as shown in re ference 24,
to m e a s u r e e with a c c u r a c y on the o r d e r of 1.5 — 3
percent , and tan б with a c c u r a c y on the o r d e r of 10
— 20 percent .

The method of two th icknesses is expedient for the
m e a s u r e m e n t of d ie lec t r ic constants of l iquids. The
equations for e and tan б a r e obtained in explicit
form, and no g r e a t difficulties a r e involved in p r o d u c -
ing d ie lec t r ic l a y e r s of different thickness in the case
of liquid d i e l e c t r i c s . The r e s u l t s of r e s e a r c h c a r r i e d
out by such a method a r e r e p o r t e d in r e f e r e n c e s 16
and 29.

The i n t e r e s t that is attached to the study of d i s p e r -
sion p r o p e r t i e s of m a t t e r make it frequently n e c e s s a r y
to use coaxial l ines for the m e a s u r e m e n t of e and
tan 6. Several published p a p e r s 1 8 ' 3 0 ' 3 1 descr ibe the
r e s u l t s of m e a s u r e m e n t s of e and tan б in the 5 — 40,
14 — 66, and 8 — 80 cm r a n g e s . P a r t i c u l a r i n t e r e s t
at taches to the c a s e when the specimen is placed in
the capacit ive port ion of the l i n e . 1 8

Surface reflection of waves from the specimen can
also be used to m e a s u r e e. Methods based on the use
of surface reflection can be employed with some guided
waves and with waves propagating in free space . In the
study of waves reflected from the front wall of the s p e -
cimen in a waveguide l ine, m e a s u r e s m u s t be taken to

el iminate reflection from the r e a r wall of the spec i-
men. It becomes n e c e s s a r y to bevel the second wall
of the specimen o r to match the load in some fashion.
The need for using a matched load behind the s p e c i -
m e n makes this method l e s s convenient than the shor t
c ircui ted l ine method. Data a r e repor ted in the l i t e r -
a t u r e on the m e a s u r e m e n t of the d ie lec t r ic constant of
water in a waveguide by the surface reflection method. 4

This method is extensively used with waves propagat-
ing in f ree space. The s imples t formulas for the d e -
terminat ion of e and tan б a r e obtained ( a s c o r o l -
l a r i e s of the F r e s n e l formulas) in the c a s e of normal
incidence of the waves on the specimen:

e s e c 6 =
l — 2r; cos r?

sin z. = —
e sec 6

(2.24)

(2.25)

where r j exp [ - i r j ] i s the surface reflection coeffi-
cient. At a r b i t r a r y angle of incidence, the formulas
become somewhat m o r e complicated. A change to free
space simplif ies theory very l itt le and n e c e s s i t a t e s the
use of an ent ire ly different exper imental technique.
Figures 5a and b show setups used to m e a s u r e re f lec-
tion in free space . F igure 5a shows the c a s e of n o r -
m a l incidence. Here 1—generator, 2—attenuator,
3—line with probe, 4—antenna, 5—tested d ie lec t r ic ,
6—absorbing s c r e e n . The l ine and probe a r e used to
m e a s u r e the reflection from the specimen and from a
meta l l ic sheet placed in front of the antenna. If the
antenna is matched with the space, the rat io of the two
m e a s u r e d reflections yields the unknown reflection c o -
efficient. When the incidence i s far from n o r m a l
(Fig. 5b, where 1 and 2 a r e the t r a n s m i t t e r and r e -
ceiver while 3 is the specimen), the reflection is
m e a s u r e d by comparing the reflected power with that
direct ly received. An example of the use of this
method is repor ted in re ferences 32 and 33.

3. Methods Based on Waves Transmitted Through the
Dielectric

These methods can be used to study the passage of
waves through a d ie lect r ic situated e i ther in some
waveguide sys tem o r in free space. What is m e a s u r e d
is the complex t r a n s m i s s i o n coefficient. The e x p r e s -
sion for the t r a n s m i s s i o n coefficient of a plane wave
normal ly incident on the interface between two d ie lec-
t r i c s with constants e t and e 2 has the following form 4
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FIG. 7. Measurements of tan 8 by the transmission method.
1 — generator, 2 - attenuator, 3 and 4 — horns, 5 - specimen,
6 - detector, 7 — amplifier, 8 — indicator.

(2.26)

It is assumed here that the wave propagates from the
medium with dielectric constant et to the medium with
€2. Measurement of the amplitude and phase of the
transmission coefficient yields the complex dielectric
constant of the investigated medium. By separating
the real and imaginary parts of the transmission co-
efficient we obtain two equations for the real and
imaginary parts of the dielectric constant. In general
these are transcendental interdependent equations. If
the losses are low, the equations are no longer tran-
scendental. For H modes in a waveguide with cutoff
wavelength Ac r the expressions for e and tan б as-
sume the form1

- 7 7 = 1 - 1 4 . 1 . - — • t g s = 7 ; , o - . 2 • ( 2 . 2 7 )

w h e r e

868Al

51.3M
2л

(2.28)

(radians per unit length), Да—attenuation, Acp— phase
shift, Al—thickness of the specimen, and Â j— wave-
length in the system.

For the case of normal incidence of waves on a
specimen (for two-conductor and coaxial lines), the
formulas for the determination of e and tan б assume
the following form:

(2.29)

(2.30)

The errors in this method are analogous to those in
the measuring-line method. Inaccuracies in the tr im-
ming of the specimen to the dimensions of the measur-
ing waveguide exert a similar influence. Another in-
convenience is the need of using a matched load behind
the specimen or for using specimens with beveled
walls to prevent reflection.

This method finds greatest application when waves
in free space are used. The dielectric constant is
calculated from the phase difference of oscillations
propagating in free space and in the investigated di-
electric. The tangent of the loss angle is determined
by measuring the power attenuation in the dielectric
and in free space. A block diagram for the measure-
ment of e and tan б is shown in Fig. 6. The signal

flows from generator 1 to tee 2. One arm of the tee
leads to attenuator 5 and to transmitting horn antenna
6. The other arm connects through attenuator 3 to de-
tector 4. Horn 6 is first moved until the signal inci-
dent on detector 4 is of the opposite phase (the meter
9 reads minimum deflection then). Insertion of the
specimen (8) disturbs the out of phase relationships
and makes it therefore possible to determine the
phase shift. The formula for e is

- ( • + 4 ) (2.31)

where Д is the horn displacement necessary to r e -
store the phase and d is the thickness of the specimen.
The tangent of the loss angle is determined with the aid
of the circuit shown in Fig. 7. The signal is determined
first without the specimen. The specimen 5 is then in-
serted and attenuator 2 adjusted until the signal returns
to its value in the absence of the specimen. The differ-
ence in the attenuator readings determines the attenua-
tion in the specimen. The attenuation, the known thick-
ness of the specimen, and the magnitude of the dielec-
tric constant yield the tangent of the loss angle. The
phase shift can be read with sufficient accuracy, and
consequently the measurements of e by this method
are highly accurate. 3 4

The method is applicable in the short-wave part of
the centimeter band and to the millimeter band. Among
the shortcomings is the need for using large specimens.

4. Resonance Methods

Any transmission line, whether it be two-conductor,
coaxial, or waveguide, can be made into a resonant
system by shortcircuiting both ends of the line. Such
a system has then a natural resonant frequency and
internal losses. Introduction of a dielectric into the
resonator changes the natural frequency and the losses
of the resonant circuit. By determining the changes in
the characteristics of the resonant circuit we can
measure the electric parameters of the investigated
dielectrics.

1. System completely filled with dielectric. Mathe-
matically it is simplest to describe the processes when
the resonator is completely filled with the substance.
Indeed, let the resonator without dielectric have a
resonant frequency f0 = c/X0, where с is the velocity
of propagation of the electromagnetic oscillations in
free space, and Xo is the free-space wavelength at
which the system is resonant. When the resonator is
completely filled with dielectric and its length is un-
changed, resonance takes place at a frequency

The two resonant frequencies are related as

Therefore the measurement of the resonant frequencies
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of a hollow resonator and one completely filled with
matter enables us to determine the dielectric constant
of the matter, using the formula

(2.32)

The dielectric constant of a substance can be measured
also at a fixed generator frequency. In this case the
resonance disturbed by introducing the dielectric is
restored by changing the dimensions of the system.

Assume that the resonator is made from a wave-
guide. If resonance without dielectric occurs at a
system wavelength

(2.33)

then filling the resonator with dielectric causes the
resonance (for the same free-space wavelength \ 0 )
in the system to occur at a wavelength

and this yields an expression for e in the form

(2.34)

The expression obtained is valid for substances with
low losses.

The simplest relations are obtained for two-conduc-
tor and coaxial lines, for which X c r = °°. For these
lines

-.Sid. (2.36)

An example of the use of this method with a two-con-
ductor line is the first method of Drude.5 The gist of
the method is to determine the position of two short-
circuited bridges in a two-conductor line, for which
an indicator placed between the bridges reads minimum
intensity. This distance is equal to half a wavelength
or an integral number of half wavelengths. The meas-
urements are made for two cases, with and without
dielectric. The dielectric constant is determined
from (2.36). The absorption coefficient is determined
from the distribution of the field intensity along the
line. If Io and I x are the amplitudes of the current
when the indicator is located on the boundary of the
liquid and at a depth x, the following relation holds true

The coefficient of absorption пк is determined in this
case from the current ratio at different bridge posi-
tions

j i = e * *o . (2.38)

In cavity resonators, complete filling is used to de-
termine the dielectric constants of gases and non-polar

liquids. The dielectric constant is then determined by
formula (2.32), and the losses by the formula

t g 6 =- i . _ - i - , (2.39)

where Qo and Q are the figures of merit of the reso-
nator without and with dielectric.

The shortcomings inherent in this method are as
follows: the difficulty of measuring solid specimens,
the need for using a large amount of investigated sub-
stance, and large absorption when high-loss substances
are investigated.

2. Partial filling of the system with dielectric. If
the losses in the substance are large or if only a small
specimen is available, or else if the investigated sub-
stance is difficult to machine, methods with a com-
pletely filled resonator become unsuitable and one
must resort to partial filling of the system with di-
electric. Although an instrument based on this method
overcomes satisfactorily the difficulty of obtaining a
Q high enough to perform the measurements with suf-
ficient accuracy, the mathematical analysis becomes
more complicated and as a rule involves numerical
or graphical solution of transcendental equations. Let
us consider several examples of partial filling of reso-
nators, based on different transmission lines: two-
conductor, coaxial, and waveguide.

The well known methods of measuring e with the
aid of a two-conductor line—the Rozhanskii-plate
method and the capacitor method (or the second Drude
method) are essentially the first versions of the method
with a resonant system partially filled with dielectric.
In the Rozhanskii method a thin plane-parallel layer of
dielectric is placed perpendicular to the two-conductor
line, in the voltage antinode. The shift in the resonant
bridge after introducing the dielectric layer deter-
mines the dielectric constant e, while measurement
of the width of the resonance curve determines in this
case tan 6. Theformulas for e' and e" are

(e -1) -Xl~X"' (2.40)
о Co —- jCn ~~~ JCt у

w h e r e x 0 i s t h e d i s t a n c e f r o m t h e m o v i n g b r i d g e t o t h e

l o c a t i o n o f t h e d i e l e c t r i c ( t h a t i s , t o t h e v o l t a g e a n t i -

n o d e i n t h e a b s e n c e o f d i e l e c t r i c ) , x t i s t h e s a m e w i t h

t h e d i e l e c t r i c , x 2 i s t h e d i s t a n c e f r o m t h e b o u n d a r y o f

t h e d i e l e c t r i c t o t h e b r i d g e p o s i t i o n w h e r e t h e e n e r g y

h a s h a l f t h e m a x i m u m v a l u e , a n d d i s t h e t h i c k n e s s o f

t h e s p e c i m e n . T h e s e f o r m u l a s h a v e b e e n d e r i v e d a s -

s u m i n g l o w l o s s e s a n d n e g l i g i b l e t h i c k n e s s o f t h e s p e -

c i m e n s , s o a s t o o b v i a t e t h e u s e o f t r a n s c e n d e n t a l

e q u a t i o n s f o r t h e d e t e r m i n a t i o n o f e ' a n d e " .

I n t h e c a p a c i t o r m e t h o d ( t h e s e c o n d D r u d e m e t h o d ) ,

a c a p a c i t o r f i l l e d w i t h t h e i n v e s t i g a t e d l i q u i d i s p l a c e d

i n t h e r e s o n a n t c i r c u i t f o r m e d b y t h e t w o s h o r t - c i r c u i t -

i n g b r i d g e s . T h e c a p a c i t o r w i t h l i q u i d s h i f t s t h e r e s o -

n a n t p o i n t , a n d t h e v a l u e o f e i s d e t e r m i n e d f r o m t h i s

s h i f t , w h i l e t h e l o s s e s a r e d e t e r m i n e d b y t h e b r o a d e n -
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b)

FIG. 8. Illustrating the measurement of e and tan S by the sec-
ond Drude method.

ing of the resonant curve. Figure 8 shows the consecu-
tive variation of the resonant wavelength and of the
resonance width when a capacitor (Fig. 8b) is intro-
duced in the system, when the capacitor is filled with
a known control dielectric with e = 2.28 (Fig. 8c) and
with an unknown dielectric with e = x (Fig. 8d).

We used the following formulas to determine the
dielectric constant:

a) Morton's formula,35 derived under the assump-
tion of low losses in the specimen and absence of
losses in the line, and disregarding the effect of the
suspensions:

1 sinftrf
Qo-r BQ — 2 s i n p a . s i n p ( a _

(2.41)

Г

where p = 4тгк In [D/R] and p 0 = 47rk0 In [D/R] are the
capacitor constants, k0 is the ballast capacitance of
the capacitor (the capacitance of the leads inside and
outside the glass), к the working capacitance, D the
distance between the leads, R the radius of the leads,
e the unknown dielectric constant, and /3 = 27г/Л.

b) The Coolidge formula36 for the absorption coeffi-
cient к:

• о , i i, ( ~, a — ^ 1 s i n P<z"!

a snip (a + d) У 2 J v |
-Am fid ~r~ sinp(a-brf) I , . .

r ^ - ^ i / T ^ : ^fid J - < 2 - 4 2 )

where у = а\ and a is the attenuation of the line per
unit length. These formulas are subject to er rors
which are particularly noticeable in highly-conducting
liquids. In the thirties, a large number of investiga-
tions were made to obtain more accurate formulas, and
also to develop and improve the method. The most im-
portant of these researches were made by V. N. Kes-
senikh and K. A. Vodop'yanov,37 B. I. Romanov,38 N. V.
Malov,39 S. L. Sosinskii and V. A. Dmitriev,4 0 В. К.
Maibaum,41 and I. A. El'tsin.4 2 Study of the peculiari-
ties of these methods led to the following recommen-
dations for the measurement of the dielectric constant
of a substance by the capacitor and two-conductor line
methods:

1. The capacitor employed should have low capaci-
tance.

FIG. 9. Illustrating the
measurement of E with a reso-
nator in the H01, mode.

r i

1
It

T
II

2. The influence of the suspension must be taken
into account, and also the influence of the conductivity
of the dielectric and the attenuation of the measuring
line itself.

3. The fluctuations in generator power must be min-
imized to the utmost by effecting optimal coupling with
the generator.

Measurements of e and tan б of substances with the
aid of a two conductor line have several important
shortcomings, due essentially to radiation of electro-
magnetic energy and the influence of extraneous fields.
Work on formulating the theory of this method is still
going on, however,4 3"4 5 and many papers have been
published on the measurements of e and tan б in the
meter and decimeter bands by the capacitor and two-
conductor line method.4 6"5 0

Particularly interesting is reference 51, in which the
two-conductor line capacitor method was modified to
measure e and tan б of substances with high losses.
This improvement is attained by connecting the meas-
uring capacitor to the line not directly but through a
quarter-wave loop perpendicular to the main line.
Such a connection reduces the load on the main line,
thereby permitting measurement of e and tan б of
liquids with high losses.

At frequencies exceeding 3 x 109 cps, cavity reso-
nators are used to measure the dielectric constant.
The H o u and E 0 1 0 modes are the most frequently
used.

a) Measurements with the H o l l mode. In these
measurements the specimen is usually a cylindrical
disc placed on the end of the cavity (Fig. 9). If reso-
nance at a given \ 0 exists in the presence of a speci-
men of thickness d when the specimen surface coin-
cides with the line AA', and if resonance in the ab-
sence of a specimen is produced when the piston is a
distance d0 away from the line AA', this means that
the reactances of the two segments between the piston
and the plane AA' are equal. Using the expression
for the impedances of the H wave in a resonator with
and without dielectric, we obtain the following expres-
sion:

; M , (2.43)
fid ~ fi0d0 '

where /30 is the propagation constant in the empty
resonator
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& = 2тг/Л<1 is the propagation constant in a waveguide
completely filled with dielectric. The problem r e -
duces to determining the propagation constant /3 in
the given medium. This can be done by solving the
transcendental equation (2.43). If we know the propa-
gation constant p = 27rAd in a waveguide filled with
the investigated substance, then the dielectric con-
stant can be determined from the relation

(2.44)

Equation (2.43) neglects the losses in the substance.
In addition, this is a transcendental equation, so that
to determine e it is necessary to know the approxi-
mate range of e or to carry out the measurements
with two specimens of different thickness.

To determine tan б of a substance partially filling
the resonator it becomes necessary to calculate the Q
of the resonator in the H0 1 1 mode with and without the
dielectric. In reference 52 the following expression
was obtained for Q:

1 ,

where

i л 2

a is the radius of the resonator, d is the thickness of
the dielectric, I is the length of the part of the reso-
nator filled with air, Д is the depth of penetration of
the field, /3 is the phase constant in the part of the
resonator filled with the dielectric, |80 is the phase
constant in the part of the dielectric filled with air,
and e is the dielectric constant. When the losses in
the dielectric are negligibly small we have tan б ю О
and Q = Q m ( Q m is the value of Q for a resonator
filled with a perfect lossless dielectric having the
same relative dielectric constant as the real dielec-
t r ic) . From (2.45) we obtain

PD+TL

F r o m (2.45) and (2.46) we have

(2.46)

( 2 - 4 7 )

The depth of penetration Д can be determined in the
following manner. For an air-filled resonator we ob-
tain theoretically

(2.48)

We can determine Q m experimentally. We then deter-
mine Д from (2.48) and the known Q m . This value of
Д is substituted in the expression for Q m ; the calcu-

FIG. 10. Distribution of
fields and position of speci-
men in the resonator method
of measuring Б and tan 8 in
the E 0 1 0 mode.

lation of tan б thus reduces to measuring the Q of the
resonator and to calculating Q m . To determine Д it
is necessary to measure the Q of the empty resonator.
If the losses are low, we can assume Q m as Q m .

b) Measurements with E 0 1 0 mode. The field distri-
bution in such a resonator is shown in Fig. 10. When
the specimen is on the axis of the system we can write
for the field inside the resonator (by solving Maxwell's
equation in cylindrical coordinates)

ф = .4/, (AT) < E. = - (2.49)

(2.45) where k2 = - i (cr + iwe'), while J o and J x are
Bessel functions of the first kind. In the region be-
tween the dielectric and the wall we have r > 0 and
the fields are therefore given by the sum of two Bessel
functions:

*„ (2.50)

where k0 = /30 = 2ъ/~кй, and No and N t are Bessel
functions of the second kind. The boundary conditions
on the air-metal interface and on the air-dielectric
interface yield the following equation for e:

V'o (Po°)
i(Po*) -MPo«) -MPo*)
i (Pi&) iVp (poe) Vp (P,fe) •

(2.51)

Л(Ров) Л
where Ло is the resonant wavelength in free space and
/?! = /S0VT . For low losses this equation is exact but
transcendental with respect to e. It can be simplified
by recognizing that

h (W) Л'0(РвЬ) - Jo (P06) Л', (Po*) = i ^ j .

and introducing the notation

F = Jo (po6) /Vo (poa) - /0 .Vo (po6)].

We then obtain

_ i | * Л(Р„а) \J
l , 1 (o , у, « Ja (P,a)

(2.52)
Plots of F vs. /Зоа have been prepared for different

values of b/a down to 0.3 (e to 6). For very thin
specimens, we can write the following expression for
e:

e = l + 0.539 — M.. (2.53)
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The expres s ion for the tangent of the l o s s angle can
be wri t ten in the following form:

(2.54)
where Q r e f e r s to the r e s o n a t o r with the specimen
and Q' r e f e r s to the r e s o n a t o r with fictitious l o s s l e s s
specimen. The theoret ica l value of Q' is

In p r a c t i c e it is n e c e s s a r y to obtain Q' by comparing
the exper imenta l and the theoret ica l values of this
quantity for a r e s o n a t o r without a specimen at the
s a m e frequency.

For very thin specimens we have

tg6 = 0.263 (2.56)

Resonator methods p e r m i t highly a c c u r a t e m e a s u r e -
ments of e and tan 6. Thus, when operat ing in the
H o l l mode, the e r r o r in the m e a s u r e m e n t of e in the
t h r e e - c e n t i m e t e r band i s ± 1 . 5 percent , while the a c -
curacy of tan б is ± 5 p e r c e n t . 3 Resonators in the
E o l o mode at 10 cm provide an accuracy of 5 percent
in e and 10 percent in tan 6, while e m e a s u r e d with
coaxial r e s o n a t o r s in the 3-cm band is a c c u r a t e to
1.5 — 5 p e r c e n t . The re lat ive s implicity and conven-
ience, the manageable d imens ions, and the feasible
construct ions make resonant methods with cavity r e s o -
n a t o r s quite s imple to o p e r a t e . These methods have
found wide use in microwave m e a s u r e m e n t p r a c t i c e .
Among thei r shortcomings a r e the need for p r e c i s e l y
made spec imens of definite shape, an a c c u r a t e d e t e r -
mination of the wavelength, and g e n e r a t o r s of high
stability. In addition, ord inary resonant methods a r e
unsuitable for the m e a s u r e m e n t of e and tan б of
substances with high l o s s e s .

Recent work on the improvement of r e s o n a t o r
methods has been aimed at broadening the range of
m e a s u r e d values of e and tan б and at the develop-
ment of designs suitable for study of the t e m p e r a t u r e
c h a r a c t e r i s t i c s of the substances .

Tunable r e s o n a t o r s , the use of which i s l imited to
the c e n t i m e t e r band, p e r m i t m e a s u r e m e n t of e up to
about 200. 5 4 To m e a s u r e l a r g e values of e in the
d e c i m e t e r band, methods using semi-coaxia l cavit ies
have proved very convenient . 5 5 ' 5 6 The equivalent c i r -
cuits of such a cavity, which can be regarded as a r e s o -
nant c i r c u i t with dis t r ibuted inductance and lumped
capaci tance, yield r a t h e r s imple formulas for € in
t e r m s of the change in the resonant frequency and for
tan б in t e r m s of the change in Q brought about by in-
troducing the specimen into the r e s o n a t o r . Similar
cavit ies p e r m i t m e a s u r e m e n t of e up to 1000. The
method yields quite a c c u r a t e value of e. A s h o r t -
coming is the n a r r o w bandwidth for specified usable
cavity dimensions and the need for graduation ( i .e . ,
the need for control s p e c i m e n s ) .

As shown by G. V. Zakhvatkin, 5 7 r e s o n a t o r s of the
semi-coaxia l type can be used to m e a s u r e e and tan б
of substances with l a r g e l o s s e s . For this purpose the
specimen should be placed not d i rect ly in the gap b e -
tween the end of the cavity and the centra l rod, but in
an additional capaci tor such that the resul tant a i r gap
is in s e r i e s with the m e a s u r e d specimen and d e c r e a s e s
the drop in Q due to the introduction of the specimen
in the cavity. This p e r m i t s m e a s u r e m e n t of e and
tan б of substances with high l o s s e s . 5 5 ' 5 6 Such m e a s -
u r e m e n t s a r e possible even at s h o r t e r wavelengths
( l e s s than 10 c m ) with ordinary r e s o n a t o r s . In ref-
e r e n c e 58, the e of substances with high l o s s e s (d i-
pole l iquids) were m e a s u r e d with a r e s o n a t o r in the
H o l l mode in a cyl indrical specimen placed on the
r e s o n a t o r ax i s , i .e . , in the region where the field i n -
tensi ty is low. This choice of specimen location r e -
duces the absorption of waves in the substance, m e a n -
ing that substances with high l o s s e s can be investigated.

To d e t e r m i n e the t e m p e r a t u r e var iat ions of e and
tan б by the r e s o n a t o r method, it becomes n e c e s s a r y
to place the m e a s u r i n g r e s o n a t o r s in t h e r m o s t a t i c
ovens. References 24 and 56 contain descr ipt ions of
semi-coaxia l r e s o n a t o r s made of c e r a m i c s with
s i lvered interna l s u r f a c e s . The m e a s u r e m e n t s , made
on 3 and 10 cm, p e r m i t t e d the behavior of many high
polymers and f e r r o e l e c t r i c s to be t r a c e d over the in-
vestigated t e m p e r a t u r e r a n g e .

Various modifications of the r e s o n a t o r method have
found application recent ly . Thus, e and tan б of solid
d i e l e c t r i c s a r e m e a s u r e d with a pi-shaped r e s o n a t o r . 5 9

Along with using H o l l and E o l o modes in cyl indrical
cavi t ies , higher o r d e r modes a r e used. For example,
the Н ш i s used in r e f e r e n c e 60 and the HOi4 mode in
re ference 61. In re ference 60 the express ions for e
and tan б a r e obtained in analytic form and can be
m e a s u r e d a c c u r a t e to 2 and 15 percent , respect ive ly .
Transcendental equations must be solved to find €
and tan б in accordance with the method of re ference
61.

1П. SLOW-WAVE METHODS OF MEASURING THE
DIELECTRIC CONSTANT

In the methods considered up to now the d ie lec t r ic
constant was determined with s y s t e m s in which the
electromagnet ic waves propagate with a velocity equal
to the velocity of light, o r with a phase velocity g r e a t e r
than the velocity of light. The d ie lect r ic constants can
also be m e a s u r e d with slow waves, that i s , waves in
which the phase velocity is l e s s than the velocity of
light.

A l a r g e number of investigations have been devoted
to the study of slow surface waves. F r o m among the
var ious slow-wave s y s t e m s , p a r t i c u l a r i n t e r e s t is a t -
tached to s y s t e m s of the hel ical type, the p r o p e r t i e s of
which have been investigated by m a n y . 6 2 " 6 6 A study of
the d i spers ion c h a r a c t e r i s t i c s of slow-wave s y s t e m s
containing d i e l e c t r i c s enable us to es tabl i sh r e l a t i o n -
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ships between the d ie lect r ic constant and the phase
velocity of the wave in the sys tem. The use of hel ical
and other slow-wave s y s t e m s for the m e a s u r e m e n t of
e is c h a r a c t e r i z e d by var ious p r o p e r t i e s , pr incipal
among which a r e the following:

1. Helical type s y s t e m s a r e of the broadband type
and call for a broadband method of determining e.

2. A hel ica l-die lectr ic slow-wave sys tem reduces
appreciably the phase velocity of the wave, so that the
dimensions of the m e a s u r i n g apparatus can be d e -
c r e a s e d .

3. A grea t degree of slowing down enables us to
introduce c e r t a i n simplifications in the derivat ion of
the formulas and thereby get r id of t ranscendenta l
t e r m s in the express ions for e.

4. In a helix, as in any other surface-wave sys tem,
the field on the axis is lower than on the surface itself.
By placing a thin specimen with l a r g e l o s s e s in the
region where the field intensity is reduced the field
energy absorption i s d e c r e a s e d , so that the values of
e of substances with la rge los ses can b e m e a s u r e d .

The classi f ication of slow-wave methods for the
measurement of e and tan б can be the same as that
of fast-wave methods.

1. Measurement of e of Solid Dielectrics.6 7'6 8

1. Determination of e of a substance completely
filling the helix. If the internal region of a helical
waveguide (helix radius a, winding angle 6) is filled
with a perfect dielectric with constant e, then the dis-
persion equation of such a system has the form

/с2 ctg2 6 = - (3.1)1

where
а (к!2а)

ph (3.2)

(А.о is the wavelength in free space, Vpn is the phase
velocity of the fundamental wave in the system). In the
case of a closely-wound helix (cot в « 15 — 20), we
can put in (3.1)

fc;~/r;~fc;=fb( ( 3 . 3 )

where \'^ is the wavelength in the helix-dielectric sys-
tem. This substitution enables us to simplify the dis-
persion equation (3.1) greatly and determine e in ex-
plicit form

(3-4>

(The arguments of the modified Besse l functions I o ,
Ko, and Kt are 27га/\д and are omitted.)

Thus, as in methods using fast waves, an explicit
expression for e can be obtained in the case of slow
waves if the system is completely filled with the in-
vestigated substance.

In the case of Bessel functions of large arguments,
when 27га/Л^ > 3 (i.e., at high frequencies for a speci-
fied system geometry, or at large helix radii for a
fixed frequency), the expression (3.4) for e simplifies
to

7-tge")2—i. (3.5)

2. Determination of e in the presence of a gap be-
tween the cylindrical specimen and the helix. Such a
system comprises a helix of radius a with winding
angle 9, in which is placed coaxially a dielectric cyl-
inder of radius b (Fig. l la) . For a closely-wound
helix, the formula for e is in this case

i - Л И
( 3 . 6 )

w h e r e

1 = / 0 ( a ) , (a)

(3.7)

(the factor 2тг/Л£ has been left out from the arguments
of the Bessel functions), and

'2JW_\

(3.8)2яа

(A.(j i s t h e w a v e l e n g t h i n t h e f r e e h e l i x ) . At h i g h f r e -
q u e n c i e s , (3.6) a s s u m e s t h e f o r m

(3.9)

If w e p u t a = b i n (3.9), t h a t i s , c h a n g e t o t h e c a s e
w h e n t h e r e i s n o g a p b e t w e e n t h e d i e l e c t r i c a n d t h e
h e l i x , t h e n (3.9) b e c o m e s

- 1 . (3.10)

b) НЛ\ i ^ ^ ^ ^ ^ w i j F w m r a r m g < / - < ' - '

'SS////////////////////////////////////////.

*Ctg = COt. FIG. 11. "Helix plus dielectric" system.
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As a — •» , the "hel ix plus d i e l e c t r i c " sys tem changes
into a "cyl indr ica l d ie lec t r ic r o d " sys tem in free
space, and formula (3.6) becomes

(3.11)

It i s known that for an isolated d ie lec t r ic rod the d i s -
pers ion equation of an ax ia l ly - symmet r ica l wave is
wri t ten in the form1 2

gb JyjgtyK^pb)
pb Jl(gb)Kt>(pb)

(3.12)

where p = V k3
2 - k2 , g = V ek2 - k3

2 ; J 0 (gb) and
J t ( g b ) a r e Besse l functions of the f irs t kind of ze ro
and f i rs t o rde r , respect ively .

Formula (3.11) coincides with (3.12) if the follow-
ing substitution is possible (in the ca se of l a rge
slowing-down ra t io )

P = K, g^ik's. (3.13)

Let us compare two methods of measur ing e: 1) the
method of the isolated d ie lec t r ic cylinder, and 2) the
method of the d ie lec t r ic cylinder on which a helix i s
wound. In the case of the isolated rod, the substitution
(3.13) int roduces very l a rge e r r o r s in the d e t e r m i n a -
tion of e, s ince the la rge slowing-down ra t io (that i s ,
g r e a t e r values of k3) a r e obtained only for l a rge va l -
ues of e, but then g = V ek2 - k3

2 * ik3, and ek2 can
no longer be neglected compared with k3

2 without in-
troducing a l a rge e r r o r . Consequently e should be
determined from (3.12) and not (3.11). But (3.12) is a
t ranscendenta l equation with r e spec t to e. Thus, to
find e it i s n e c e s s a r y to use graphic calculat ions,
and the isolated cyl inder method becomes unavoidably
cumbersome . In addition, the p resence of a Besse l
function of f i rs t o r d e r in (3.12) leads to ambiguity in
the determinat ion of e. The isolated d ie lec t r i c rod
method is descr ibed in reference 69. In this method
the determinat ion of e i s reduced to a study of the
standing-wave pat tern along a cylindrical specimen
made of the investigated d i e l ec t r i c . A compar ison
of the length of the wave slowed down by the rod with
the length of the wave in free space yields the value
of e. The method can be used to m e a s u r e e on shor t
waves . On longer wavelengths i ts use is m o r e diffi-
cult , owing to the need for spec imens with l a rge d i am-
e t e r s . Another shortcoming of this method i s the need
for matching the specimen with the l ine.

If the d ie lec t r ic rod i s placed inside a helix, the
wave i s slowed down both by the helix and by the d i -
e l ec t r i c . The surface cha rac t e r of the slowed-down
elect romagnet ic waves is much m o r e strongly p r o -
nounced in the "hel ix with d i e l e c t r i c " sys tem than
in the isolated "cyl indr ica l r o d . " This makes the
substitution ki s k'2 = k3 in the derivat ion of formulas
(3.4) and (3.6) for e quite legi t imate , and this yields
explicit express ions for e and e l iminates the a m b i -
guity.

2. M e a s u r e m e n t of e of Liquid D i e l e c t r i c s 7 0 " 7 2

A h e l i c a l l i n e c a n a l s o b e u s e d to m e a s u r e e of
l i q u i d d i e l e c t r i c s . In t h i s c a s e t h e h e l i x c a n b e e i t h e r
c o m p l e t e l y i m m e r s e d i n t h e d i e l e c t r i c , s i m i l a r t o t h e
c o m p l e t e i m m e r s i o n of t h e t w o - c o n d u c t o r l i n e in t h e
l i q u i d , 1 3 o r wound on a n i n s u l a t i n g t u b e in to w h i c h t he
i n v e s t i g a t e d l i q u i d i s p o u r e d . T h e r e d u c e d d i m e n s i o n s
of s u c h s y s t e m s , c o m p a r e d w i t h t w o - c o n d u c t o r o r c o -
a x i a l l i n e s , a r e a use fu l p r o p e r t y of t h i s m e t h o d of
m e a s u r i n g e if e m p l o y e d on d e c i m e t e r w a v e l e n g t h s .

1. C o m p l e t e i m m e r s i o n of t h e h e l i x i n t h e d i e l e c -
t r i c . If t h e h e l i x i s c o m p l e t e l y i m m e r s e d i n a n i d e a l
u n b o u n d e d d i e l e c t r i c m e d i u m w i t h e * 1 and /u = 1,
t h e n t h e e x p r e s s i o n f o r £ i s

2na 2яа \

(3.14)

At h i g h f r e q u e n c i e s , (3.14) s i m p l i f i e s t o

i j . (3.15)

It is seen from (3.14) and (3.15) that the value of e of
the investigated liquid can be d e t e r m i n e d in the follow-
ing fashion. Choosing a helix with sufficiently c lose
winding (cot в а: 10), we m e a s u r e the length of the
standing wave \(j in the helix in free space at the
specified frequency f0. The helix is then i m m e r s e d
in the investigated liquid and the length of the slow
wave of the helix, Лд, is m e a s u r e d . These two m e a s -
u r e m e n t s a r e sufficient to d e t e r m i n e the d ie lec t r ic
constant of the liquid.

2. Liquid in tube. To m e a s u r e the d ie lect r ic con-
stants of l iquids, it i s m o r e convenient in p r a c t i c e to
use a sys tem consist ing of a d ie lect r ic tube ( e x ) of
inside radius b, on which is wound a helix of radius a
and which is filled with the investigated liquid ( e j ) . In
the c a s e of c lose winding (cot 9 > 10), for a known
value of ex , the express ion for e; is

h
(3.16)

w h e r e

о tg 6
Xd

/0(q) Jj-p (a) Ki(a) I

4W = Л, (а) Ко (Ь) -

Ko (a) ' "c» 2Kb '

q'a = Io (b) K, (a) +1, (a) Ko (b).

(3.17)

We have left out the factor 2тт/\'^ in the arguments of
the Besse l functions. As b — 0 (the thickness of the
tube tends to z e r o and e x ~* €l ~ €)> formula (3.16)
becomes identical with (3.4). If b * a but e x = 1, we
obtain from (3.16) formula (3.6) for the d ie lec t r ic con-
stant e of a solid d ie lec t r ic in the p r e sence of a gap
between the specimen and the helix.

In the case of high frequencies , when 27га/Лд & 3
and 27rbAd - 3» formula (3.16) simplif ies to

(3.18)
2fe" — 1

D'
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Equations (3.16) and (3.18) can be solved with respect
to €7*. When ei = 1, we obtain expressions for the di-
electric constant of a specimen in the form of a hollow
dielectric cylinder. From (3.18) we get

V(E'-1)D'

w h e r e

£>' =

1-exp {•§-<»-

(3.19)

. (3.20)

3. Measurement of e with a Helical Waveguide and a
Metal Shield

A helix with dielectric, placed in a metal shield,
can be a useful instrument for the measurement of e.
This construction eliminates the influence of extrane-
ous fields and therefore increases the measurement
accuracy. The presence of the shield affects the form
of the dispersion equation, and consequently the ex-
pression for e. Figure l ib shows the most general
system, consisting of a layered dielectric placed in
a metallic waveguide of radius R. In the case of a
dielectric placed in a tube of known value e2, the ex-
pression for ej (when cot в а 10) is given by

1\(b){[A] ? £ b- / 0 (a)] /\{a)-
*d

(3.21)

where

«f=Л M-h (<*) = Io (R) Ko (a) -Io (a) Ko (R),

(3.22)

In t h e s i m p l e r c a s e w h e n t h e h e l i x i s c o m p l e t e l y f i l l ed

w i t h d i e l e c t r i c ( a n d a s h i e l d i s u s e d ) , t h e fo l lowing

e x p r e s s i o n i s o b t a i n e d

/i (a) Ko (a) K0(R) K^ (a)
1 + -

_ n d V /§(a) W,
' — V i ' i г в / \ i 1(Д) К0(а) К0(Щ ' ^ " ^

h{B)K1(a) / 0 (а) J0(R)

In t h e p r e s e n c e of a g a p b e t w e e n t h e d i e l e c t r i c a n d t h e

h e l i x , t h e d i e l e c t r i c c o n s t a n t of t h e s p e c i m e n i s g i v e n

A s R — « o , f o r m u l a s ( 3 . 2 1 ) , ( 3 . 2 3 ) , a n d ( 3 . 2 4 ) g o i n t o

t h e c o r r e s p o n d i n g f o r m u l a s f o r t h e " h e l i x p l u s d i e l e c -

t r i c " s y s t e m w i t h o u t a s h i e l d . T h e e x p r e s s i o n s f o r e

a t h i g h f r e q u e n c i e s a r e t h e s a m e a s f o r a n o p e n h e l i x ,

f o r t h e n t h e w a v e s a r e c r o w d e d c l o s e l y a g a i n s t t h e

helix, and therefore the shield exerts no influence on
the slowing down factor.

4. Determination of tan б by the Helical Waveguide
Method73

The problem can be solved in two ways. The first
is to obtain a dispersion equation for the investigated
system from Maxwell's equations taking into account
the fact that the dielectric constant is complex, and
to separate from the dispersion equation the imagi-
nary part, which characterizes the attenuation. The
second reduces to solving the problem by the energy
method, that is, to a determination of the attenuation
coefficient in the system in terms of the ratio of the
power lost to the total power flowing in the system.

1. Case of low and medium losses for cylindrical
rods on which helices are wound. The dispersion
equation of a helix closely wound on a dielectric rod
with e r = e' — ie" has the form (when cot в г 10)

«я / t (а) # , (a) l(a)Ka(a) + lo(a)h\(a) (3.25)

S i n c e t h e d i e l e c t r i c i s l o s s y , t h e p r o p a g a t i o n c o n s t a n t

c o n t a i n s a t e r m c h a r a c t e r i z i n g t h e a t t e n u a t i o n , i . e . ,

k'3 c a n b e w r i t t e n i n t h e f o r m

fc; = Y - m , ( 3 . 2 6 )

where у = 2тг/\ф and a takes the attenuation into ac-
count. In the case of low and medium losses, when e"
< e' and a < y, we obtain from (3.25) the dispersion
equation (3.1) for e, and also an expression for tan б

( 3 . 2 7 )

The same formula is obtained for tan б by the energy
method.

At high frequencies, (3.27) simplifies considerably:

t g 6 = ^ d ( e ' + l). (3.28)

It is seen from (3.28) that at high frequencies the at-
tenuation in the system, for a given specimen and for
a given helix geometry, is proportional to the fre-
quency. This becomes understandable from an analy-
sis of the expressions for the power fluxes in the two
regions of the helix. With increasing frequency, the
power flux increases inside the helix and decreases
outside. Because of the large interaction between the
field and the substance, the attenuation of the system
also increases. With increasing cotangent of the helix
winding angle, the attenuation of the system increases,
because the field becomes highly concentrated inside
the rod and this increases the attenuation. Thus, to
measure the attenuation of specimens with low losses
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it is necessary to modify the system so as to concen-
trate the greater part of the power flux inside the di-
electric. This can be done by increasing cot в or by
changing over to a shielded system, for the shield
essentially redistributes the power (increases the
power flux inside the helix).

2. Determination of tan б of a dielectric located
inside a dielectric tube on which a helix is wound.
Here, as in Sec. 3 of Ch. Ill, it is necessary to con-
sider a helix with a layered dielectric. By subdivid-
ing the system into three regions:

Ill) (7<r<oo, e=1
and assuming that e'{ < e\ and e% < e'2, we can deter-
mine e by the energy method and obtain the following
expression for the tangent of the loss angle of the di-
electric situated inside the helix (ej, e2, and e2 are
known):
t.g6, = R,bI

 l {a [b4f -f £; (A (a) a2-A (b) б2) -f А; (Ф (b) b*

-- Ф (я) а2) + й2Л'] - el' (В (a) я - S (b) b)}, ( 3 - 2 9 ^

where

M = tg a У 'W) "' \

A (r)^[A2I1{'-)-B

В (r) =_ \Аг1л (г) -

r)f-r^r[A2IA'-)-B2Kr (;•)]

X [A.J0(r) + B2K0 (/•)] - [AJ0 (

(г)} [A2I0 (r) + В2К0 (г)];

lx(b)Ka(b), Bt = ̂ I0 (b) /,

И-=V?(r)-/„('О ЛИ-

, ( а ) -

(3.30)

5. Measurements of e with the Aid of a Moving Probe
To measure the dielectric constant by the helical

waveguide method it is necessary to know the geometry
of the specimen and of the helix, and also to determine
the length of the slow wave Л^ in the investigated sys-
tem for a specified wavelength of the supply generator.
The slow wavelength \'d can be measured with the sys-
tem shown in Fig. 12. Probe diagrams plotted at con-
stant generator power output can be used also to deter-
mine the attenuation coefficient a, which must be
known to determine tan 6.

The dielectric constant of several cylindrical-rod
samples was measured to verify formulas (3.4), (3.5),
and (3.10). The substances investigated were vinyl
plastic, organic glass, ebonite, porcelain, glass, and
a special ceramic. Systematic investigations were
made of the dispersion properties of "helix plus di-
electr ic" type systems of different diameters and
with different winding angles. Figures 13 and 14 show
the dispersion relations for vinyl plastic and porcelain,

C D
FIG. 12. Block diagram of

probe methods for the measure-
ment of e: 1 — generator;
2 —wavemeter; 3 —coaxial cable;
4 — helix with dielectric; 5 — short
circuit; 6 —probe, detector, and
indicator.

FIG. 13. Dispersion
curves of the "helix plus
dielectric" system (vinyl
plastic). theory,
— x — experiment.

2o-5mm
ctgS-15.7

28.7mm
ctgB-35.6

0 W W 30 HO 50 60 70 80 90 100

calculated in accordance with (3.1) and plotted e x p e r i -
mental ly . A study of the d i sper s ion curves and the
frequency dependence of e, made for spec imens of
the same dielectric but with different values of cot в
and different diameters D = 2a, shows that identical
values of e are obtained for identical D/Л^. Figures
15 and 16 show the dependence of e on D/Л^ for vinyl

FIG. 14. Dispersion
curves of the "helix plus
dielectric" system (porce-
lain). theory,
— x — experiment.

" га-10тт
ctgB-12,41

2B-I0 mm
ctgB-32.2

0 W 20 30 40 SO 60 70 80
An. cm
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3.5
30
15

0 OS 1.0 1.5 2J) 2S 3.0 3.5

FIG. 15. Dependence of
measured values of e on D/A'd
for vinyl plastic. Д —2a= 5 mm,
cot в = 15.7; D - 2 a = 28.7 mm,
cot в = 35.6; X _ 2a = 28.7 mm,
cot в = 15; О - 2a = 10 mm,
cot в = 15.7.

plastic and porcelain. From the plots of Figs. 15 and
16, and on the basis of the data obtained by investigat-
ing other substances (organic glass, ebonite, glass),
we can draw the following conclusions:

1. As the ratio D/X^ is decreased, e first increases
slowly and then (after passing through the value D/X^
~ 1) the increase is faster. The guiding rule for
measurements of e must therefore be that the speci-
men dimensions and the frequency range be such that
the condition D/X£[ > 1 be satisfied.

2. Figures 15 and 16 show that the error in the
measurement of e varies with the interval of D/Xtf.
Thus, for substances with e ~ 2 — 3, the measurement
error reaches 15 percent when 1 < D/X^ < 1.5, drop-
ping to 7 percent when 1.5 < D/X^ s 2 and to 3 percent
when 2 sD/X^ — 3.5. In addition, as e increases the
region with the lower measurement error shifts toward
the lower values of D/X^- Thus, in the case of porce-
lain, the region of values of D/Xd for which the meas-
urement error is less than 10 percent lies between 1
and 1.5.

3. A frequency range in which e can be measured
can be established for each specimen. On the short-
wave side this range is limited by the frequency at
which the slow wave becomes commensurate with the
pitch of the helix, and on the long wave side the limit
is the ratio D/X^, which must not exceed 1.

4. To cover a wide range of frequencies, several
specimens of different diameters must be used. Fig-
ure 17 shows the range of frequencies within which the
error in the measurement must not exceed 10 percent
for specimens of different diameters. Tubes made of
glass, porcelain, and a special ceramic were meas-
ured to verify formula (3.20). Figure 18 shows the
frequency dependence of the calculated values of e
while Fig. 19 illustrates the dependence of e on D/X^,
where D is the outside diameter of the tube. From the
curves of Fig. 19, and also from an analysis of the

7.5
7.0
6.5
6Л

5.5

FIG. 16. Dependence of meas-
ured values of e on D/Ад for porce-

, lain, о - 2 a = 10 mm, cot в = 32.2;
X _ 2a = 10 mm, cot в = 12.46.

i

ismmmb- •//.:•:

1

2a-5 ct^lSJ г"

2a-20: ctgS-WT

U-10.9
ctgS-15.6

'—~ 1.

£ 3 " T i k o n d "

- " " — • — ч

•У/.У/////Л

Za-28,7:

C e r a m i c

2а-Ш9
ctgS - 34.6

2a -16.8, 2b-l3.8
ctgS -42.3

1 Glass

ctgS-35.6
is tic

10 20 30 W 60 70 S0 100 ПО

FIG. 17. Frequency range for specimens of different diameters,
within which e can be measured by the helical waveguide method
with less than 10 percent error.

d a t a o b t a i n e d b y i n v e s t i g a t i n g o t h e r s u b s t a n c e s , i t c a n

b e c o n c l u d e d t h a t t o o b t a i n m o r e a c c u r a t e v a l u e s of e

i t i s n e c e s s a r y t o s a t i s f y t h e c o n d i t i o n D/Xj > 1-

FIG. 18. Dependence of
measured values of e of glass
tubes on the wavelength.
• — molybdenum glass; X —or-
dinary glass.

, ctgB-15.1

га-Я15тт. ctgff-21.7
2b8J5

2Q—W.8 mm, i
Zb"l3,8 mm

10 20 30 50 60 70

T o v e r i f y f o r m u l a s (3.16) a n d (3.18) f o r t h e d i e l e c -

t r i c c o n s t a n t of l i q u i d s , w e m e a s u r e d t h e v a l u e s of e

of g a s o l i n e , b e n z e n e , e t h e r , a c e t o n e , a n d d i s t i l l e d

w a t e r , i n g l a s s a n d c e r a m i c t u b e s . S e v e r a l t h e o r e t i c -

a l l y c a l c u l a t e d a n d e x p e r i m e n t a l l y p l o t t e d d i s p e r s i o n

r e l a t i o n s w e r e c o m p a r e d f o r s y s t e m s of t h e " h e l i x

p l u s l a y e r e d d i e l e c t r i c " t y p e . F i g u r e 20 s h o w s t h e

t h e o r e t i c a l a n d e x p e r i m e n t a l c u r v e s f o r a g l a s s t u b e

f i l led w i t h b e n z e n e o r w i t h d i s t i l l e d w a t e r , w h i l e F i g .

2 1 s h o w s t h e d i s p e r s i o n c u r v e s f o r t h e c a s e of a c e t o n e

i n a t i k o n d t u b e ( e ^ = 2 1 ) a n d f o r a c e t o n e i n a g l a s s

t u b e ( C f = 6 ) . It i s s e e n f r o m t h e s e c u r v e s t h a t a

d i s p a r i t y e x i s t s b e t w e e n t h e t h e o r e t i c a l a n d e x p e r i m e n -

t a l c u r v e s i n t h e s h o r t a n d l o n g w a v e r e g i o n s . T h e

w i d t h of t h e r e g i o n w h e r e t h e t w o c o i n c i d e d e p e n d s o n

FIG. 19. Depend-
ence of measured val-
ues of s on D/Xd, for
tubes of different
brands and diameters.

2a-Smm. ,etgB-t5J
26-4,5 mm+ 6U-

га-ЮЛ mm, clgff-t2J
2ЬШ/3.6 mm

0 0.5 W 15 W 15 ЗЛ ш аз as 07 09 u u is n w ю гз 2S
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Ad,c

1.0
0.9
0.8
07
е.в
0.5
DA

FIG. 20. Dispersion curves
for "helix plus layered dielec-
tric" systems. 1—Benzene in
glass tubes; 2 — distilled water
in glass tubes; — theory,
— x— experiment.

20 30 W 50
К c m

the geometry of the tubes and on the ratio of the dielec-
tric constants of the tube and the liquid in the tube. It
is seen from Fig. 19 that the region of agreement is
broader for acetone in a "tikond" tube than for a glass
tube. Measurements of substances in tubes with differ-
ent ex lead to the conclusion that when ex < e? it is
necessary to work in the range 0.9 s D/X̂ j < 1.1. If
e T > el the range 0.7 < D/Ad < 1.5 can be used. In
this case the measurement errors do not exceed 10
percent.

The determination of tan б of a substance has been
reduced to a measurement of Ad and of the attenuation
coefficient a and to calculations with formulas. For-
mulas (3.27) and (3.28) were checked for specimens
made of vinyl plastic, ebonite, and getinaks (micarta).
The values of tan б of getinaks were found to be close
to those tabulated, while the values for ebonite and
vinyl plastic were somewhat higher than those in the
table. The reason is that the attenuation produced in
a low-loss dielectric is commensurate with the atten-
uation caused by the helix, and consequently a rigorous
account of the losses in the helix becomes necessary.

6. Determination of e and tan 6 by the Helical and
Loaded Cavity Methods74

Measurements of the dielectric constants of sub-
stances with high losses by the helical waveguide
method are quite difficult, because the wave attenuates
rapidly in such systems. The attenuation can be r e -
duced by using thin specimens located on the axis of
the system. But the slowing down effected by the in-
troduction of a thin specimen is greatly reduced.
Measurement of small changes of the length of the
slow wave can lead to large er rors . The above- de-
scribed method can therefore be modified by changing
over to the resonator method of measurement. A

ко
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0.7
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FIG. 21. Dispersion curves for
"helix plus layered dielectric" sys-
tems. 1 -Acetone in glass tube, 2a
= 10 mm, 2b = 8.1 mm, cot в = 23.4,
&2 = 6; 2 — acetone in tikond tube,
2a = 6.85 mm, 2b = 5.3 mm, cot в
— 91 ^ P — 91

FIG. 22. Helical cavity
with dielectric.

resonator is produced when a shielded helix is shorted
on both sides by conducting planes. If the helix is then
energized at high frequency, resonance will set in the
system whenever the length of the helix is equal to a
whole number of half waves. The presence of a helix
in the cylinder produces slow waves of the helical
type. Since the helix is a broadband system, a cavity
of the helical type of fixed length will resonate in a
broad band of frequencies. The resonance frequency
of such a cavity is changed by placing on the axis of
the system a thin specimen of the same length as the
system. The shift in the resonant frequency will be
proportional to the dielectric constant, and the change
in the Q of the system yields the value of tan 6 of the
investigated substance. Since it is possible to meas-
ure relatively small frequency shifts, specimens with
high losses can be investigated, and these specimens
can be made sufficiently thin so as not to reduce
greatly the value of Q, and to produce on the other
hand a noticeable frequency deviation.

Resonators can also be made with other slow-wave
systems, such as a segment of a loaded waveguide. It
should be noted that the pass band of the latter is much
smaller than that of a helical cavity. The character of
the dispersion determines the variation of the field in-
tensity on the symmetry axis on going from one reso-
nance to another. The intensity of the field changes
slowly from one resonance to another in a helical
resonator but abruptly in a loaded waveguide. This
property makes the helical resonator suitable for the
measurement of substances in a broad band of frequen-
cies at an approximately uniform sensitivity. On the
other hand, the sharp dependence of the field intensity
on the frequency in a loaded cavity makes the latter
suitable for measurement of e of substances within
a wide range of loss angle.

1. Cavity made of a segment of a coaxial helix. In
measurements by the resonance method it is necessary
to place the specimen, made in the form of a cylindri-
cal rod, inside the cavity. It is more convenient in
practice to use specimens with diameter less than that
of the helix. To measure e and tan б of a high-loss
substance the specimen diameter must be small. If
the specimen diameter 2b (Fig. 22) is small enough to
make a > 5b (a is the radius of the helix), and if in
addition the radius of the shield is R > 5a, the ex-
pression for e is

i (3.31)

0 10 20 30 40 50 60 70
A.Q, cm
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MR

FIG. 23. Block diagram for the measurement of the frequency
shift by the transmission method. G — generator, W — wavemeter,
At — attenuator, PM — power meter, MR — measuring resonator,
A — amplifier, I — indicator.

where

?5f V
Х' )

f0 i s t h e r e s o n a n t f r e q u e n c y c o r r e s p o n d i n g t o t h e

p r o p a g a t i o n c o n s t a n t k 0 = 27r/\0 a n d Af i s t h e f r e -

q u e n c y sh i f t d u e t o i n s e r t i o n of t h e d i e l e c t r i c i n t h e

c a v i t y . T h e p r o c e d u r e f o r m e a s u r i n g e c a n b e a s

f o l l o w s . We d e t e r m i n e b e f o r e h a n d t h e s l o w w a v e -

l e n g t h s X$ a t s p e c i f i e d r e s o n a n t f r e q u e n c i e s of t h e

i n v e s t i g a t e d s y s t e m ( t h e s e a r e m e a s u r e d b y t h e p e r -

t u r b a t i o n m e t h o d ) . T h e s p e c i m e n i s t h e n i n s e r t e d a t

a n y of t h e s e f r e q u e n c i e s a n d t h e f r e q u e n c y d e v i a t i o n

m e a s u r e d .

T h e t a n g e n t of t h e l o s s a n g l e i s d e t e r m i n e d f r o m

t h e c h a n g e i n t h e Q b r o u g h t a b o u t b y i n s e r t i n g t h e

i n v e s t i g a t e d s p e c i m e n i n t o t h e c a v i t y . If a > 5b a n d

R 5: 5a , t h e n

| ] . ( 3 . 3 2 ,

w h e r e

Г = /„ (a) - \ (*;&)» (1-е) 9oo, cU = /0 (a) Ko (b) - Io (b) Ko (a).

l« = /0 (R) Ko(a) - /0(a) Ko (R), < = /0 (R) K, (a) + /, (a) Ko (R).

Here Qo pertains to the air-filled cavity and Q to the
system with the specimen.

2. Cavity made of segment of loaded waveguide. For
specimens with small transverse dimensions we can
use the following simplified formula for e. It is shown
in references 75 and 76 that the relative shift of the
cavity frequency (whether the cavity be of simple or
complex form), caused by insertion of a specimen of
length equal to the length of the system, is

J PE dv
Д/ v
— = • w ' (3.34)

w h e r e V i s t h e v o l u m e of t h e p e r t u r b i n g b o d y , E i s

t h e i n t e n s i t y of t h e f ie ld o u t s i d e t h e p e r t u r b i n g b o d y ,

P = ( e — 1) E t i s t h e v e c t o r of e l e c t r i c p o l a r i z a t i o n of

t h e d i e l e c t r i c b o d y ( E t i s t h e f ie ld i n t e n s i t y i n s i d e t h e

p e r t u r b i n g b o d y ) , e i s t h e d i e l e c t r i c c o n s t a n t of t h e

p e r t u r b i n g b o d y , a n d W i s t h e t o t a l e n e r g y s t o r e d i n

t h e c a v i t y . U s i n g s u i t a b l e s i m p l i f i c a t i o n s , w e o b t a i n

f r o m (3.34)

I 1 MR

i ,D

FIG. 24. Block diagram for the measurement of frequency shift
by the leakage method. G — generator, M — modulator, W — wave-
meter, At — attenuator, D — detector, MR — measuring resonator,
О — oscilloscope.

(3.33)

< r (3.35)
SVa

w h e r e P = W v g r /I i s t h e e n e r g y f lux d e n s i t y i n t h e

s y s t e m , S i s t h e c r o s s s e c t i o n a r e a of t h e s p e c i m e n ,

a n d v g r i s t h e g r o u p v e l o c i t y . T h e q u a n t i t y | E z 0 | 2 / W

i s p r o p o r t i o n a l t o t h e c o u p l i n g r e s i s t a n c e a n d i s fully

d e t e r m i n e d b y t h e g e o m e t r y of t h e s y s t e m a n d b y t h e

f r e q u e n c y . T h e r e f o r e , b y c a l c u l a t i n g o r m e a s u r i n g

b e f o r e h a n d t h e v a l u e s of | Ez0 | 2 / W a t d i f f e r e n t r e s o -

n a n t f r e q u e n c i e s , w e c a n u s e (3.35) t o d e t e r m i n e t h e

d i e l e c t r i c c o n s t a n t . In t h e p r e s e n c e of a c o n t r o l s p e -

c i m e n w i t h k n o w n v a l u e of eit w e c a n d e t e r m i n e t h e

frequency shift №4 due to introducing the control
specimen. Then e x °f a n unknown specimen with the
same transverse dimensions can be determined from
the formula

(3.36)

Measurement of e by the resonator method reduces
therefore to a measurement of the resonant-frequency
shift due to introducing the investigated specimen into
the cavity. Two methods were used to measure the
frequency shifts. The first is illustrated in Fig. 23
and the second in Fig. 24. The Q of the resonator,
needed to determine tan 6, was measured from the
width of the resonant curve at the half-power level.

To verify formulas (3.31) and (3.32), we measured
e of solid-rod specimens and of liquids in capillary
tubes. The measurements of e of a polystyrol wire
1 mm in diameter yielded values e = 2.3 — 2.6 on
wavelengths 10 — 50 cm. The values of e of a glass
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Phase shift per cell,

Resonance of hollow cavity,
Mc/sec

Substance

Ebonite
Vinyl plastic . .
Organic glass
Ordinary glass . •
Bakelite . . . .
Getinaks

Specimen

5 mm
5 mm
5 mm

5 mm
5 mm
5 mm

h--

Af,
Me/
sec

3.4
3.4
3.4

1 1 .8
6.4
6.4

^

,78,

e

2.63
2.63

6.7
4.06
4.06

л

/2~27.'iO

Af,
Me/
sec

6.8
6.8
6.8

23.2
13
11.6

2.63
2.B3

6.54
4.2
3.K4

I

i,-

Af,
Me/
sec

15
15

54.5
2». 5
26.8

л

21)76

2.63
2.63

6.9
4.2
3.11

/4=26.4 s

Af,
Me/
sec

21.2
21
21.2

84.3
42.3
38.8

2.6
2.63

6.8
4.25
4.06

Table П

No.

ecalc
eexp

1

23.5
22.В

•)

48.3

46.6

3

50.22

4

Л1.5

50.4

о

63

65

r o d 2 m m i n d i a m e t e r , i n t h e s a m e b a n d , w e r e 4 . 2

— 4.8, while tan б ranged from 0.002 to 0.003. The
m e a s u r e m e n t s of e and tan 5 of l iquids were c a r r i e d
out in c a p i l l a r i e s with inside d i a m e t e r 0.64 m m and
wall thickness 0.075 m m . In the range 10 — 50 cm,
e of dist i l led w a t e r ranged from 60 — 70, while tan 6
ranged from 0.15 to 0.2. M e a s u r e m e n t s w e r e made
of e and tan 6 of methyl and ethyl alcohol in the
51.7 — 15 cm range . The values obtained for both
alcohols agreed well with the d i sper s ion curves ob-
tained for alcohols by var ious a u t h o r s . 7 7 ' 5 0

To verify (3.35), we p r e p a r e d spec imens of ebonite,
vinyl p las t ic , organic g lass , g la s s , bakel i te, and get i-
naks. The spec imens were made into r o d s 5 m m in
d i a m e t e r and the s a m e length a s the sys tem. The
control specimen was ebonite with e = 2.63. The r e -
sults of the m e a s u r e m e n t s made at different r e s o -
nances a r e l i s ted in Table I. The d ie lec t r ic constant
of liquids was m e a s u r e d in g lass capi l la r ies with in-
side d i a m e t e r 1 m m and outside d i a m e t e r 1.1 m m .
The control specimen was dist i l led w a t e r ( e t = 77).
The investigated substances w e r e special ly p r e p a r e d
m i x t u r e s of dioxane and dist i l led water . The r e s u l t s
of m e a s u r e m e n t s made at 2676 M c / s e c a r e l i s ted in
Table II.

Thus, the helical waveguide method can be used
along with other well known methods for the m e a s u r e -
ment of e and tan 6.
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