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1. INTRODUCTION

i. LL phenomena in nature are independent of the in-
ertial coordinate system in which they are regarded.
This fact has its expression in the statement that the
equations describing such phenomena are invariant
with respect to Lorentz transformations. The wave
functions of charged particles (for example, elec-
trons ) are complex. Then the Lagrangian and the
dynamical quantities are invariant with respect to the
transformation ф — фе1а and ф* — ф*е~1а. The ex-
perimentally observed charge independence of nuclear
forces led to the need to introduce the concept of iso-
topic spin. The mathematical expression of this fact
is the independence of the equations describing strong
interaction with respect to rotations in isotopic space.
Thus, it is very characteristic of contemporary phys-
ical theories that the equations and dynamical vari-
ables referring to different phenomena are invariant
with respect to different types of transformations.
Here it is usually understood that the parameters de-
termining the transformation, for example, the phase
factor or the angles in a Lorentz transformation, are
constant over all configuration space and, once given,
are preserved over all the interval of time during
which the problem is treated.

We now propose that we go on to a stronger r e -
quirement, that of local invariance; i.e., we demand
that the parameters which determine the transforma-
tion be independent at each point in space-time.
Thus we go over from parameters £i to func-
tions £j (x, y, z, t ) . Is such an invariance possible?
It turns out that it is, but we are then forced to intro-
duce a new compensating field which guarantees in-
variance under the conditions of a space-time depend-
ence e^x^) . One of the examples of such a compen-
sating field is very well known. This is the electro-
magnetic field which must be introduced if we assume
that the phase factor a is a function of the coordinates
and time. In a 1954 paper by Yang and Mills1 it was
shown that from the requirement of invariance with r e -
spect to locally independent rotations in isotopic spin
space there follows the necessity for the existence of
a certain 12-component B-field, which is a 4-vector
in ordinary space and has three isotopic components.
In a paper of Utiyama2 (1956) the general approach
was given to the problem of the compensating field.
In this paper it was shown that if there is a field
whose action is invariant with respect to a certain

group of transformations, depending on one or more
parameters щ, then when we make the transition
from group parameters which are numbers to param-
eters which depend on the coordinates щ — щ(хц),
it becomes necessary to introduce a compensating
field. Utiyama also showed that the gravitational field
can be obtained as the compensating field if we intro-
duce a dependence of the parameters determining the
Lorentz group on the coordinates. The introduction
of the concept of local invariance has a meaning only
for continuous transformations. Discrete transforma-
tions like space or charge reflections depend on a
single constant parameter which is not varied. The
concept of the compensating field was used by Salam
and Ward3 for introducing an intermediate vector
meson into the theory of weak interactions. The ques-
tion of the place of the principle of local invariance in
contemporary theory is discussed in a paper of Sakurai.4

2. THE ELECTROMAGNETIC FIELD

First let us consider the well-known example of the
electromagnetic field. The transformation ф — фе1а,
which the wave functions of charged particles admit, is
usually called a gauge transformation of the first kind.
The invariant with respect to this transformation is
just the charge (electrical or baryonic, i.e., nuclear).
Invariance with respect to this transformation guaran-
tees conservation of charge in the sense of an algebraic
sum of negative and positive charges.5 For example,
we consider an interaction as a result of which a doubly
charged particle ф decays into two particles cp^ and
(p2- In order for the interaction Lagrangian to be gauge
invariant, it is necessary, when we make the replace-
ment ф у ^ e 2 i e a , also to make the replacement <pf
—- <pjfe~leQ!and cp^ — cpj e~iea, i.e., the doubly charged
particle decays into two particles, each of which carries
a unit charge of the same sign.

We note that charge conservation is guaranteed if
the phase factor is assumed to be constant, i.e., inde-
pendent of coordinates and time. But if we assume that
the choice of the phase factor is arbitrary at each point
in space-time, i.e., a = a (x, y, z, t ) , then it is neces-
sary to introduce a compensating field in order to
achieve local invariance of the Lagrangian, i.e., an in-
variance which is satisfied independently at each point.
In fact, the Lagrangian of the free electron field

607



608

though invariant with respect to the transformation
ф — фе*€а and ф — фе~*-еа, does not remain invariant
under the transformation ф ~~ фе1еа^х1^ and
ф — фе~1еа(хи\ because of the appearance of terms
of the form Эа/Эх^. But the Lagrangian, which in-
cludes the electromagnetic field

V. В. ADAMSKII

(>Q = TaBaQ, or in components, 6QA = TtBeaQ
B. (3.3)

L = i

is invariant with respect to the transformation
ф —- 0е* е а ( х м) and ф — фе~^еа(х^ when we make a
simultaneous replacement A^ — A^ + да/дхц, which
is easily verified by substitution. Here F ^ v is the
electromagnetic field tensor. Thus local invariance
exists with respect to the transformation ф —
if there is a simultaneous gauge transformation of the
electromagnetic field (a gauge transformation of the
second kind). We note that if the electromagnetic
field Lagrangian contained a term with the photon
mass, £i2A2, the invariance would not hold.

3. GENERAL THEORY OF LOCAL INVARIANCE

a. Formulation of the Problem

Let us now consider, following Utiyama,2 the situa-
tion with local invariance and compensating field in its
most general form. Let us assume that there are some
fields QA(x) (A = 1, 2 , . . . N). The superscript A may,
for example, run through values from 1 to 4, and the
Q-A- may be simply the components of a single field.

We introduce the Lagrangian density L (QA, QA)

where QA= aQA/ax^ and the action I = / L ( Q A , Q A ) d*x
п

where п is some arbitrary 4-volume.
We assume that the action I remains invariant when

a transformation of the field components S (ea) is made
which depends on n parameters €a (a = 1, 2 , . . . n) .
These may be, for example, the three parameters de-
fining a rotation, or the six parameters defining a
Lorentz transformation,

Q' = s (во) Q , or in components, QA' = Si Ы) QB
(3.1)

The transformation S can be expanded in a Taylor
series in the parameters ea,

where I is the identity transformation, and

a = dS
8„=0

(3.2)

is the operator for an infinitesimal transformation, or,
as we say, an infinitesimal operator. The small change
of the quantities Q is expressed directly in terms of
the infinitesimal operators, the set of which completely
determine the transformation:

From the fact that the action I is invariant with re-
spect to the transformation Q' = SQ and that this in-
variance holds for an arbitrary volume п, it follows
that the Lagrangian density is also invariant:

M = l ^ S ( ? A + ̂  SCu=0. (3.4)

Substituting (3.3) in (3.4), we get

-^T KBQ + ~{ TA

BQ
B = 0. (3.5)

Noting that the second term in (3.4) can be written as

dL «/-.A d Г dL

<>QA

w e o b t a i n

j dL a_

J dxn SQA V

dL
( 3 - 6 )

T h e f i r s t t e r m g o e s t o z e r o b e c a u s e i t i s s i m p l y t h e

f i e l d e q u a t i o n o b t a i n e d f r o m t h e p r i n c i p l e o f l e a s t

a c t i o n . T h e r e t h e n f o l l o w f r o m ( 3 . 4 ) t h e c o n s e r v a t i o n

l a w s

dx,
= 0, and ./£= (3.7)

may be regarded as the current vector.
Let us now assume that the parameters €a defining

the transformation are no longer numbers, but func-
tions of the coordinates and time:

Then 6QA = 6QA(x/x) = TA B

(3.8)

B a ( x ) QB . Here the in-
finitesimal operators T A

B which define the transfor-
mation of course remain the same at all points in
space. Now in the expression for the variation of the
Lagrangian there is added a new term, and we can no
longer set it equal to zero:

dL dL

or

(3.9)

on the basis of (3.5). In order to retain invariance of
the Lagrangian under the conditions (3.8), we must in-
troduce a field

J=i, 2, Л/,

to compensate for the additional term arising in the va-
riation of the Lagrangian (3.9). For this purpose we must
consider a new Lagrangian which also contains the
field A:

L'(Q QA, AJ).
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b. The Locally Invariant Lagrangian and Transforma-
tion Properties of the A-Field

We set the infinitesimal change of the field A equal
to

(3.10)

while the infinitesimal changes of the field are as be-
fore equal to 6Q = T^e^Q. U and С are as yet un-
known matrices which are to be determined from the
condition of invariance of the Lagrangian L',

flZ,' =аи
dQA

Substituting from (3.10) and collecting coefficients of
е а ( х „ ) and Зе^/Эх^, we equate them to zero, since
the identity 6L' = 0 should hold for any choice of
ea(x). We thus obtain two relations:

аи f^
0Q£

dL' _ an
'dA71

A

(3.11)

(3.12)

The set (3.12) has a total of 4n equations. (To each
of the n parameters of the transformation there cor-
respond four equations, since д = 1, 2, 3, 4.) Thus,
in order that the dependence of the Lagrangian L' on
the field A, which is determined by the partial deriv-
atives 9L'/3A'J, be unique, we need M = 4n equations,
where M is the largest value of J, i.e., it must be
equal to the number of unknowns.

To the matrix С we can make correspond an in-
verse matrix C"1 which is defined by the conditions

Using the inverse matrix, we go over from A'^ to
A ® — O~^Pl A ' J T h o n ЯТ ' /Я A ' J — I ЯТ ' /ЯА ^ \ P~iP*

S u b s t i t u t i n g t h i s e x p r e s s i o n i n ( 3 . 1 2 ) , w e g e t

dL' dl/
( 3 . 1 3 )

T o s a t i s f y t h i s i d e n t i t y i t i s n e c e s s a r y t h a t t h e f i e l d

A $ b e c o n t a i n e d i n t h e L a g r a n g i a n i n t h e c o m b i n a t i o n

( 3 . 1 4 )

I n t h i s c a s e w e h a v e

dl/ dL'

I n g o i n g o v e r f r o m A ^ t o A®, f o r m u l a ( 3 . 1 0 ) w h i c h

d e s c r i b e s t h e t r a n s f o r m a t i o n p r o p e r t i e s o f t h e A f i e l d

g o e s o v e r i n t o t h e e x p r e s s i o n

дх„
( 3 . 1 5 )

w h e r e

Now we can write L ' (Q A , Q A , Aj?) = L"(Q A , VMQA)
where V̂ Q-A- is defined by formula (3.14). Then we
find the following relations between the derivatives:

dL' dl." dl." T "Aa

dl/ dl," dl/

~d~?
dl." T AQUC~'^

If we substitute these expressions in (3.11), go over
from A ' J to Aff and use relation (3.15), we get

аи
dQA

dl."

vt»V y.-(:,,,,.st

I A'v\ЦУа/р]н °ц —Оаив^ав] = 0 - (3.16)

Here

\J a' »\n -- I or I pa— ' f,i-l ah-

Since the Lagrangian L"(Q A , V^QA) is obtained

from the initial Lagrangian L '(Q A , Q A ) by replacing
the derivative 8QA/8xM by the "invariant" derivative,

just as one introduces the electromagnetic field by
means of the transition 8/Эх — 8/Эх - ieAx, then ac-
cording to the identity (3.5) the first two terms in
(3.16) vanish, while the last two terms can be written
in the form

dL (3.17)

Here we have made use of the well-known commutation
re la t ions between the infinitesimal o p e r a t o r s , which
follow from group theory:

ГаВ= fabTcB- (3.18)
p -I A

b}B =
pC rpA. r

ЬВ — ' Ьс-<

T h e n u m b e r s f § c h a v e t h e p r o p e r t i e s

fab/ma + fbcfma + /ca/mb = 0 , fab = — /ba- . 1 9 )

F r o m t h e i d e n t i t y ( 3 . 1 7 ) w e c a n e x p r e s s t h e u n k n o w n

m a t r i x M i n t e r m s o f t h e c o e f f i c i e n t s f, w h i c h a r e d e -

f i n e d f o r a n y t r a n s f o r m a t i o n :

M ^ b ^ b l f a b . ( 3 . 2 0 )

T h u s w e h a v e o b t a i n e d t h e m a t r i x M w h i c h d e t e r m i n e s

t h e l a w o f t r a n s f o r m a t i o n o f t h e A - f i e l d a s a f u n c t i o n

o f t h e t r a n s f o r m a t i o n t o w h i c h t h e f i e l d Q i s s u b j e c t e d .

N o w , t h e i n f i n i t e s i m a l c h a n g e o f t h e f i e l d A t a k e s t h e

f o r m

dx
( 3 . 2 1 )

I n a d d i t i o n , w e o b t a i n t h e r u l e a c c o r d i n g t o w h i c h t h e

t r a n s i t i o n t o t h e l o c a l l y i n v a r i a n t L a g r a n g i a n i s a c -

c o m p l i s h e d b y r e p l a c i n g t h e o r d i n a r y d e r i v a t i v e b y

t h e i n v a r i a n t d e r i v a t i v e ( 3 . 1 4 ) .
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с. General Properties of the Free Compensating Field

Now we can investigate the properties of the free
A-field. We denote the Lagrangian of the free field by
Lo:

а да.
T I Aa Aa \ Aa — v-

L e t u s c o n s i d e r t h e c o n s e q u e n c e s o f t h e i n v a r i a n c e

of t h e L a g r a n g i a n L o u n d e r t h e a c t i o n o f t h e t r a n s f o r -

m a t i o n s ( 3 . 1 5 ) a p p l i e d t o t h e f i e l d A :

A° , v = 0 .

S u b s t i t u t i n g

«41.» = + -

and collecting coefficients of e and its derivatives, we
get

jfefbA + -£j*-My = O, (3.22)

JbL.+J£uftcAb = o, (3.23)

(3.24)аь„• = 0.

I n o r d e r f o r t h e l a s t i d e n t i t y t o b e s a t i s f i e d , t h e d e r i v -

a t i v e s o f A m u s t e n t e r i n t o L o i n t h e c o m b i n a t i o n s

— ® A" d A" — Aa A"Ц. v] — ~fa~ л\— -Г7) Av- — A\,v- — A\i,v

Since vi >^> ^ ц v
Eq. (3.23) can be written in the form 9L0/9AJj
= (9L0/9Ac^>M])f£bA^ ; from this it follows that
^%x,v\ enters into Lp in combination with the expres-
sion £fgc [A^Ag - AbA°j] in the form

F a dA
v

uv = "jj
1 ,a r ,b ,c Ab Ac }у/be l-VAv — Л,Лц]

Using (3.23) and the relation (3.24), one can show that
the Lagrangian of the free field Lo is a function only
of Е$„.

We may note the analogy between the quantity F ^
and the field intensity in electrodynamics. This quan-
tity is invariant with respect to the transformation
(3.15):

which, in analogy to electrodynamics, can be called a
gauge transformation. The Lagrangian of the free A
field, being a function only of Fjjj,,, contains no term
with a rest mass, which would destroy the gauge in-
variance. Thus the A-field should not have a rest
mass.

One can also introduce the vector

d L ТА (3 2R)

a n d s h o w t h a t i t s a t i s f i e s a c o n s e r v a t i o n l a w o f t h e

f o r m

дх„
(3.27)

I n t h e a b s e n c e o f t h e c o m p e n s a t i n g f i e l d , t h e e x -

p r e s s i o n ( 3 . 2 6 ) g o e s o v e r i n t o t h e c u r r e n t v e c t o r ( 3 . 7 ) .

W e n o t e t h a t t h e p r o p e r t i e s o f t h e f r e e c o m p e n s a t i n g

f i e l d d o n o t d e p e n d o n t h e i n f i n i t e s i m a l o p e r a t o r s

w h i c h e s t a b l i s h t h e t r a n s f o r m a t i o n o f t h e i n i t i a l f i e l d ,

b u t o n t h e c o m m u t a t i o n r e l a t i o n s b e t w e e n t h e m , w h i c h ,

a s w e k n o w , a r e t h e s a m e f o r a l l r e p r e s e n t a t i o n s o f a

p a r t i c u l a r g r o u p . T h i s m e a n s t h a t t h e c o m p e n s a t i n g

f i e l d i s t h e s a m e f o r d i f f e r e n t f i e l d s w h i c h a r e s u b -

j e c t e d t o t h e a c t i o n o f t h e s a m e t r a n s f o r m a t i o n .

4 . T H E G R O U P O F P H A S E T R A N S F O R M A T I O N S A N D

T H E E L E C T R O M A G N E T I C F I E L D

L e t u s n o w t u r n o n c e a g a i n t o t h e e x a m p l e o f t h e

e l e c t r o m a g n e t i c f i e l d a n d o b t a i n i t a s a s p e c i a l c a s e

o f c o m p e n s a t i n g f i e l d a r i s i n g u n d e r p h a s e t r a n s f o r m a -

t i o n s . L e t u s c o n s i d e r a c h a r g e d f i e l d d e s c r i b e d b y

the function î and the complex conjugate function ф*.
The Lagrangian is invariant with respect to phase
transformation, i.e., with respect to the transforma-
tion

!j)' = tyeiea and г|)*' = т|)*е-«а.

The operator S in formula (3.1), which determines the
transformation, is equal in this case to simply e i e a

o r e " l e a . T h e i n f i n i t e s i m a l o p e r a t o r T = — —
a=o

= i e

for ф and T = - i e for

) = (eai|) and = — iea\p*.

The group of phase transformations, like every one-
parameter group, is commutative, i.e., the order of
operations in such a group is irrelevant. This also
follows from the form of the operator S = e * e a . There
is a single infinitesimal operator. Therefore the num-
ber f, which is associated with the commutation rela-
tion between the infinitesimal operators according to
formula (3.19), is equal to zero. If now we require
local invariance for the charged field ф and conse-
quently assume a = a ( x ) , the compensating field will
have very simple properties. In this case M = 0,
[cf. (3.20)] and according to (3.15)

The new Lagrangian is

(4.1)

where VM# = дф/Вхц - геА^ф, У^ф* = дф*/дхр + 1еАрф*
according to the general formula (3.14). Thus the
charge, which guaranteed conservation of particles in
the algebraic sense, turns out in addition to be the
coupling constant between the original and the com-
pensating fields.
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The Lagrangian of the free field is Lo = L0(F/U^)
where F^,, = ЭА^/Эх^ - ЭА^/Эх^ according to the
general formula (3.25).

5. CONSERVATION OF BARYONIC CHARGE AND

THE CORRESPONDING PHASE TRANSFORMA-

TION

All reactions involving heavy particles (baryons),
i.e., nucleons and hyperons, occur in such a way that
the algebraic sum of the numbers of particles and
anti-particles is conserved. This means that there
exists a conserved quantity, the baryonic charge,
which is positive for baryons and negative for anti-
baryons. Thus, there is complete analogy with the
conservation of electrical charge. The wave func-
tions of the baryons must also be complex and be in-
variant with respect to phase transformations, just
like the wave functions of electrons.

Thus with respect to baryons, for example, proton
and neutron, we may write

where TJ is the baryonic charge.
Just as in the case of electrodynamics, when we

make the transition from constant phase a to vari-
able phase a (x, y, z, t ) it becomes necessary to
introduce a compensating field.6 This field must
have the same properties as the electromagnetic
field, with the one difference that it interacts only with
'ЪагуотсаИу" charged particles, just as the electro-
magnetic field interacts with electrically charged par-
ticles. If such a field actually exists, then between
baryons, and in particular between nucleons, there
must exist, in addition to the nuclear forces, forces
of Coulomb type. Lee and Yang6 have called attention
to this point. Since all bodies consist of nucleons and
do not contain antinucleons, these forces must be r e -
pulsive in character. Between two massive bodies
there should thus act the force

Here the first term corresponds to the gravitational
attraction, and the second term to quasi-Coulomb r e -
pulsion, у is the gravitational constant, Mj, M2 and
Aj, A2 are the inertial masses and the nucleon num-
bers, i.e., baryonic charges, of the two bodies r e -
spectively. To clarify the problem of the magnitude
of such a quasi-Coulomb repulsion, we consider the
force acting between a proton and some other body.
It can be written in the form

Г, Мп'Ш MryMi , n A

F= - Y — р - = ~ Y да + 1 -ДГ- .

where Ш is the effective gravitating mass of the
body, including its quasi-Coulomb interaction, Mj is
the inertial mass of the body, Mp is the mass of the
proton. Then

Mj can be written in the form

Mt = MMV,

where M is the atomic weight expressed in terms of
the proton mass; the value of A/M changes from sub-
stance to substance because of the difference in mass
defects, which are ~ 10"3; consequently 9K/Mj should
vary by ~ 10"3(?72Mi/yMp). From experiment we know
ajJ/Mj to an accuracy of 10~8. Consequently, 772/уМр
< 10~5 and T)2 < 10~5yMp ~ 1O"58. Thus the charge 77
is at least 1019 times smaller than the electric charge.

If we admit the existence of a rest mass for the
compensating field, this destroys the gauge invariance
of the field (3.15), and thus the corresponding forces
acting between baryons will not have a quasi-Coulomb
long-range interaction. These would now be short-
range forces, whose range of action is given by a fac-
tor e~r'^, where Л = h/mc is the Compton wave-
length of the particles with mass m. The considera-
tions of order of magnitude which were given above
would not be applicable to such forces. In this case,
the particles of such a neutral vector field would serve
as the carr iers of strong interaction between baryons,
as was proposed by Kobzarev and Okun'.7

6. THE GROUP OF ROTATIONS IN ISOTOPIC SPACE
AND THE COMPENSATING FIELD OF YANG AND
MILLS1

Let ф be a two-component field function of a field
with isotopic spin \, and S the two-by-two unitary
matrix which produces the transformation of the func-
tion ф under rotation of the three-dimensional isotopic
space. All processes in which isotopic spin is con-
served must be described by equations which are in-
variant with respect to rotation in isotopic space.
Usually it is assumed that the rotation can be arbi-
trary, but must be the same at all points in space and
at every moment in time. The reason for this r e -
striction is that, having once oriented the isotopic
axes, we define the isotopic components of the field,
for example I z = 2, as a proton, and I z = - \ as a
neutron, and regard this definition as necessary over
all space and at all times. The breakdown of this r e -
striction would mean a spontaneous charge-exchange
in the course of time, or in the movement of a particle
from one point to another.

If we do not make this restriction and thus extend
the principle of local invariance to phenomena asso-
ciated with the isotopic spin then, in accordance with
the general theory of local invariance and in a way
analogous to that in electrodynamics, it becomes nec-
essary to introduce a compensating field.

The matrix S depends on the three parameters de-
termining the rotation in isotopic space. Usually we
choose for these parameters the angles of rotation
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around the coordinate axes. Then the infinitesimal
change of one of the components of the function ф
will be equal to

or in matrix form

6i|) =
3

фстс\|),

( 6 . 1 )

( 6 . 2 )

w h e r e TV T 2 , T 3 a r e t h e i s o t o p i c s p i n m a t r i c e s o f t h e

n u c l e o n , w h i c h a r e t h e i n f i n i t e s i m a l o p e r a t o r s f o r r o -

t a t i o n a r o u n d t h e c o o r d i n a t e a x e s i n i s o t o p i c s p a c e .

N o w i f w e a s s u m e t h e r o t a t i o n i n i s o t o p i c s p a c e t o b e

i n d e p e n d e n t a t e a c h p o i n t i n c o n f i g u r a t i o n s p a c e , w e

m u s t i n t r o d u c e a c o m p e n s a t i n g f i e l d . S u c h a f i e l d

w a s i n t r o d u c e d b y Y a n g a n d M i l l s . 1 A c c o r d i n g t o t h e

g e n e r a l r u l e ( 3 . 1 4 ) , t h e c o m p e n s a t i n g f i e l d i s i n t r o -

d u c e d b y m a k i n g t h e t r a n s i t i o n f r o m t h e o r d i n a r y

d e r i v a t i v e t o t h e i n v a r i a n t d e r i v a t i v e :

9

dxOXV
( 6 . 3 )

From this we see that the field В has three isotopic
components and тсВЯ is nothing but the scalar prod-
uct in isotopic space. In addition, B°j is a 4-vector
in ordinary space. It is obvious that B^ is a 12-
component field which is a 4-vector in ordinary space-
time and a vector in isotopic space, i.e., it possesses
isotopic spin 1. Each isotopic component describes a
vector particle: positive, negative, and neutral, which
form an isotopic triplet similar to the тг mesons,
which also have an isotopic spin equal to one.

According to the general formula (3.25), one can
form a quantity analogous to the field intensity:

rid V II Г / 3 ^ D ^ р Ь D ^ 1 . l(i А \

F and В are vectors in isotopic space. Making use
of this fact, we can write (6.4) in more compact form

( 6 . 5 )

The Lagrangian of the free В field can be written
by analogy with electrodynamics in the form

L ^ l F ^ F 1 " . (6.6)

The total Lagrangian including the B-field and nucle-
onic field can be written by making the replacement in
the Lagrangian of the free nucleon field (replacement
of the ordinary derivative by the invariant derivative)
and adding the free B-field:

( 6 . 7 )

F r o m f o r m u l a s ( 6 . 4 ) a n d ( 6 . 5 ) i t f o l l o w s t h a t t h e B -

f i e l d i s n o n l i n e a r , i . e . , o n e c a n h a v e a d i r e c t i n t e r a c -

tion of isotopic components of a field with one another.
The isotopic spin of the system consisting of the tp-
and B-fields obviously is given by the sum of the
charges of these fields. As already pointed out above,
the independence of the orientations of the isotopic
axes at different points in space-time means that it
is possible to have a charge-exchange in movement
from one point in space to another. For example, a
charged particle moving from x to x' becomes neu-
tral, or a neutral particle at rest is converted to a
charged particle. The introduction of the compensat-
ing B-field enables us to explain charge-exchange as
the emission of charged particles—isotopic compo-
nents of the B-field.

If we choose as the initial field, which is a vector
in isotopic space, the тг+, 7г° and тг~ mesons, we get
this same compensating field B. This is a consequence
of the general situation pointed out in Sec. 3 that to
each transformation there corresponds one compen-
sating field, which interacts with all fields admitting
this transformation. But the invariant derivative will
look somewhat different for different fields. For the
тг meson field

and the Lagrangian of the тг meson field interacting
with the B-field is

w h e r e T i s t h e t h r e e - b y - t h r e e m a t r i x o f t h e i s o t o p i c

spin of the 7Г meson.

7. THEORY OF COMPENSATING FIELDS AND THE
INTERMEDIATE VECTOR MESON IN WEAK IN-
TERACTIONS

a. The Hypothesis of an Intermediate Meson in Weak
Interactions

Weak interaction is the term for processes which
occur with an interaction constant G = 1.4 x 10~49 erg-
cm3. Another general feature of these interactions is
nonconservation of parity. These processes involve
an even number of fermions. In such processes as,
for example, /3 decay or meson decay, four fermions
participate. In the decay of the тг meson тг — ц. + v
or тг —* e + v, there are two fermions involved. Finally
there are processes as, for example, the decay of К
mesons K° — тг+ + 7r~ or K+ —* тг+ + 7г+ + тг~ in which
no fermions participate. According to the Sakata
model, тг mesons and К mesons are not truly ele-
mentary particles, but consist of two fermions. Thus
every weak interaction is a four-fermion interaction.
According to this scheme, the decays of the 7г and К
meson have the form shown in the figure.

Another important feature of weak interactions is
the fact that of the four fermions participating two are
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charged and two are neutral. The four-fermion inter-
action is described as the interaction of two currents

The current Ja contains four terms:

where the superscripts denote: e—electron, v—neu-
trino, fi-muon, n—neutron, p—proton, Л— lambda
hyperon.

Each such current contains one charged and one
neutral particle. In a process of weak interaction
there occurs a sort of "charge exchange." Such a
charge exchange is most easily described by assum-
ing, for example, that the neutral particle is con-
verted to a charged particle by emitting an interme-
diate charged particle which then decays into two
fermions, one charged and one neutral. Such a scheme
guarantees the forbiddenness of processes which do
not occur in nature, in which all four fermions are
charged, as for example ц — e~ + e + + e" and ц~ + p
—» p + e~, or those in which both of the leptons c re-
ated are charged: K° —- e + + e". The hypothesis of
the existence of such an intermediate particle has
been proposed by many authors. 8 ' 9

The introduction of an intermediate particle brings
nonlocality into the interaction between the four fer-
mions. This is a nonlocality of the order of the Comp-
ton wave length of the particle which carries the in-
teraction between the fermion pairs, I ~ h/mc. The
lighter the intermediate particle, the greater the non-
locality which it introduces. For m —- 0 there is a
long-range interaction which is characteristic of the
Coulomb interaction. It is obvious that the interme-
diate meson in weak interactions should have a large
mass, at least of the order of the nucleon mass, in
order that it not carry highly nonlocal effects which
are not observed in experiment. The hypothesis of a
particle transferring the weak interaction meets with
serious difficulties associated with the non-occurrence
of the process ц — e + y, which should occur if there
exists an intermediate charged particle. 1 0 To avoid
this difficulty there has been proposed an additional
hypothesis of two different neutrinos,1 1 one of which
participates in the muon current and the other in the
electronic current. A more detailed presentation of
this type of question can be found in the survey by
Okun'.12

b. Application of the Principle of Local Invariance to
the Lepton Field

Let us now consider the scheme proposed by Salam
and Ward3 of applying the idea of a compensating field
to the theory of weak interaction. They used not iso-
topic space, but a charged space proposed in a paper
by D'Espagnat, Prentky, and Salam. Isotopic space
and the concepts associated with it are unsatisfactory,
according to these authors, because they do not have
a natural place for the introduction of leptons. The
charge space proposed by them is three-dimensional.
The particles e+, v, e~ form a charged triplet L t

and are described by the components ip+ = (l/VlT)*
(Н + 1фу), Ф° = Фг and ф~ = (1//2)(фх-ify) of a
vector $ in this charge space. The particles, since
they form a triplet, have the same ' Ъ а г е " mass. The
difference in the real masses occurs as a result of
the differences in interaction among the components
of the triplet. The Lagrangian of the free lepton field
is described by

(7.1)

since ф is a vector in the charge space, each term in
the Lagrangian is a sum of three terms for the charge
components of the ^-field; m is the mass of the " b a r e "
lepton (possibly equal to zero).

The Lagrangian (7.1) is invariant with respect to
rotations in the charge space. If we now postulate in-
variance of the Lagrangian with respect to locally in-
dependent rotations, then, as in the preceding cases,
the derivatives in the Lagrangian (7.1) must be r e -
placed by invariant derivatives according to formula
(6.3):

' дх„
(ETB.

The total Lagrangian, including the B-field, takes
the form:

(7.2)

where T is a vector corresponding to spin 1 in the
charged space. The B-field is the field of Yang and
Mills, since the charge and isotopic spaces have the
same geometric properties.

We now make use of the relation which exists for
an operator corresponding to spin 1 to give the inter-
action term in the Lagrangian a different form:

where sa is the a component of the spin operator s.
We may then write

Thus the interaction term in (7.2) can be written in
the form
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JB = в [-ф x уф] В.

We now expand the product:

[ф X ф] В = (ф*ф" - ф-ф*) В э + (ф'ф- - ф*ф») В*

(7.3)

—ф° —ф"ф")В".

We identify the neutra l component of the B-field with
the e lectromagnet ic field. We introduce the notation
i/)+—* e+, 0~ —* e~, ф°—~ v and B° — A, and write the
interaction between the electron-neutrino and B-fields:

e {[e*y^e* - е~уце~] А + [e'y^ - vy»e~] fi* -|~ [Vy ê* - e'y^v] B).

(7.4)
The first term is the usual electromagnetic interaction.
The second and third terms give the weak interaction
of leptons of the charge triplet Lj (e + , v, e~) via the
charged vector particles B + and B~, where the inter-
action constant is the same for the electromagnetic
and weak interactions.

As a consequence of the fact that the rest mass of
the neutrino is equal to zero, the neutrino Lagrangian
and also interactions involving the neutrino must be in-
variant with respect to the following transformation of
the neutrino function:

v -> v5v.

The interaction between the leptonic and vector meson
fields takes a form which is invariant with respect to
this transformation, if we go over from (7.4) to the
expression

Ys) v - + YB

From (7.5) it follows that interactions with the charged
components of the B-field (i.e., weak interactions)
lead to a parity violation. Thus the invariance of the
neutrino with respect to the transformation v — ybv
has the consequence that one axis in the charge space
becomes distinguished. The component B3 = A inter-
acts with the leptons without parity violation, while the
other components of the B-field interact with the lep-
tons with parity violation.

Since we have no indications of the mass of the
charged particles В + and B" from the method by
which they were introduced into interaction with the
lepton field, we will assume that their mass is deter-
mined by equating the coupling constants of the elec-
tromagnetic and weak interactions according to the
formula9

4яе2 = 2 / 2 Gm\ (7.6)

which gives m g » 56 nucleon m a s s e s .
All the arguments given above can be applied to the

second group of leptons: L2 (м+. v, ix"). The neutrino
entering in the leptonic triplet L2 may not be identical
with the neutrino of the triplet Lj (e + , v, e" ). The in-
teraction of the B-field with mesons and hyperons can

also be constructed by going over in the Lagrangian of
these fields from 9/Эх to the locally invariant deriva-
tive

V = £ - « Т В .

We thus see that if we represent the electron and
neutrino as a charge triplet and apply the principle of
local invariance with respect to rotations in charge
space, the charged components of the compensating
field may be identified with intermediate particles in
weak interaction, and the neutral component with the
electromagnetic field. However, in order to bring
this scheme close to actuality as it exists in weak and
electromagnetic interactions, we must ascribe a mass
to the charged components of the B-field and intro-
duce nonconservation of parity, which destroys the
invariance with respect to rotations in charge space.

8. THE LORENTZ GROUP AND THE GRAVITATIONAL
FIELD

We shall now show, as was done by Utiyama2 in his
work, that if we assume that the parameters of the
Lorentz group depend on the coordinates, then in order
to preserve invariance we must, as in the general case,
have a compensating field which is just the gravitational
field. Let us consider some field Q A ( x ) , whose action
I = J L ( Q A , Q A , k ) d 4 x is invariant with respect to
Lorentz transformations. (Here we use the usual ab-
breviated notation QA,k = 9QA/9xk.) In addition to
the inertia! coordinate system x^, we introduce the
curvilinear system u^. Then the interval is given in
both systems by the metric tensor

ds- = gik dx1 dxk = ĝ v du» duv.

Latin indices refer to the inertial system and Greek
indices to the curvilinear:

Sll — g-22 = §33 — — #44 =

and gVi-

We introduce, as functions of the curvilinear coordi-
nates, the quantities

hUu) = to^ and A*(«) = ^s-. (8.1)

In curvilinear coordinates the action is written as

/ = \ L (QA (u), QA,# hi) hd'u, where A = det | A£ |.

These quantities enable us at each point, with given
curvilinear coordinates uM, to go over to the inertial
system. At each such point we can carry out a Lor-
entz transformation

(8.2)

where
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while the field components are subjected to the trans-
formation

"v ~o" filBx ' \O.*J/

Here Ty;g is an infinitestimal operator correspond-
ing to one of the representations of the Lorentz group,
depending on the nature of the field Q. The infinitesi-
mal operators satisfy the commutation relations

Mb .,
I hi run' (8.4)I'ftl' mn] ~~ ~2 'k

The coefficients fj^mn characterize the Lorentz group
and do not depend on the representation. The quantities
hfj are related by the equations

duv Shn

(8.5)

which are simply the equating of the mixed derivatives
Э2хк/Эи^Эи", which are preserved under Lorentz trans-
formations. Suppose now that the parameters e i k de-
pend on the curvilinear coordinates of the point at which
we carry out the Lorentz transformation, e ^ = е ^ ( и ) .
Correspondingly

(,QA = 1 ehl (u) TilBQ
B and бЛц = el (в)А .̂ (8.6)

The field Lagrangian will no longer be invariant with
respect to such transformations and we must introduce,
in accordance with the general rule, a compensating
field AJ^(u). We note immediately that AJ^(u)
= — AJ^(u), since the indices к and I number the
axes of the inertial coordinate system, and therefore
A ^ and AJ£ correspond to the same rotation, but in
opposite directions. The transformation properties of
the A-field are obtained by applying the general for-
mula (3.21):

в ikl 1 ,hl tml ab / \ \b.g , dtkl

О Л С —~£ !hgA\i E (U) Л ц ~т ~g^~ .

U s i n g t h e p r o p e r t i e s o f t h e s t r u c t u r e c o n s t a n t s o f t h e

L o r e n t z g r o u p ( a n t i s y m m e t r y i n a l l t h r e e p a i r s o f i n -

d i c e s , e q u a l i t y t o z e r o w h e n t h e r e a r e f o u r d i f f e r e n t

i n d i c e s , a n d e q u a l i t y t o o n e o r m i n u s o n e w h e n i n e a c h

p a i r t h e r e i s o n e i n d e x f r o m e a c h o f t h e o t h e r t w o

p a i r s ) , w e g e t

~ ди„
(8.7)

T h e L a g r a n g i a n of t h e f ie ld Q r e m a i n s i n v a r i a n t u n d e r

t h e a c t i o n of t r a n s f o r m a t i o n (8.6), if w e go o v e r i n t h e

Lagrangian from the ordinary derivatives Э/Эи^ to
invariant derivatives in accordance with the general
rule (3.1):

ди„
(8.8)

When we have a spatial dependence е ^ ( и ) , the r e -
lation (8.5) is no longer satisfied. Satisfying this con-
dition would mean that we can always go over from
curvilinear to inertial coordinate systems, i.e., al-
though we may have used the curvilinear coordinate

system, the space is actually flat. (All the compo-
nents of the Riemann-Christoffel curvature tensor
Rij,kZ = °-) Violation of condition (8.5) means that
the space is curved. The curvature of the space, as
we know, indicates the presence of a gravitational
field. The metric of a space curved because of the
dependence e ^ ( u ) is given by the metric tensor

£nv («•) = hi (u) hkv (a).

It r ema ins only to find the connection between the
m e t r i c t ensor g^v and the components of the compen-
sating field. To do this we consider the t ensor field

^ We form the invariant der ivat ive

\ Qkl — "v _ — AIX Qm-

^kZ

(8.9)

t o t h eN o w w e g o o v e r f r o m t h e t e n s o r c o m p o n e n t s Q 1

c o m p o n e n t s QPV = h ^ h ^ Q k Z . S u b s t i t u t i n g Q W =

i n t h e r i g h t - h a n d s i d e o f ( 8 . 9 ) , r e m e m b e r i n g t h a t h d e -

p e n d s o n u ^ , a n d t h e n m u l t i p l y i n g b y h ^ h ^ a n d u s i n g

t h e r e l a t i o n h f t i £ = 6^, w e g e t t h e e x p r e s s i o n

where we have introduced the notation

Г0 — h° dl'v 4° A° — hQh
I o n " fll ~T~T. '̂ VUi SL\]X — «fc'4v-

(8.11)

The invariant derivative (8.10) has the form of the
usual covariant derivative with the Christoffel tensors
гстд- W e show that the expressions (8.11) were cor-
rectly called Christoffel symbols:

From this equation

If we assume symmetry of Г ^ in the lower indices,
then we arrive at the usual expression for the Chris-
toffel symbols in terms of the metric tensor

<8-12»

Thus we have shown that a dependence of the param-
eters determining the Lorentz group on the curvilinear
coordinates щ leads to the necessity for introducing a
compensating field A ^ for preserving the invariance.
On the other hand, this dependence results in a curva-
ture of the space. The metric tensor and the Chris-
toffel symbols determining this spatial curvature and
characterizing the gravitational field are related to
the compensating field A^' by the relations (8.11) and
(8.12). Thus the compensating field A^f is nothing
other than the gravitational field. Introducing the La-
grangian and the action of the field A, Utiyama shows
that one can, by using variational principles, also ob-
tain the gravitational field equation.2
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9. CONCLUSION

Thus the principle of local invariance leads to the
appearance of compensating fields. To each type of
transformation there corresponds its own field. These
fields have two general properties. They must have a
tensor dimensionality which is not lower than unity,
i.e., they cannot be scalar, but must be vector or ten-
sor fields. They must not have a rest mass, since a
term containing the rest mass would violate the local
invariance.

The very principle of local invariance is a logical
requirement on the Lagrangian and the field equations.
In fact, why should one retain invariance with respect
to transformations which are the same over all space-
time ? Why should the transformation at one point have
to depend on how the transformation is carried out at
some other point, especially if these points are sepa-
rated by a space-like interval? Invariance with r e -
spect to phase transformations means non-measura-
bility of the phase of the wave function of a charged
particle. Local invariance means, in this case, as
pointed out by Yang and Lee, that the phase difference
is not measurable for wave functions at different
points in space-time, i.e., these quantities are obvi-
ously no more observable than the phase itself.

In the scheme of compensating fields one includes
in a natural way the gravitational and electromagnetic
fields. These fields correspond to transformations
with respect to which we have an absolutely exact in-
variance. Application of the principle of local invari-
ance to transformations of the type of isotopic t rans-
formations leads to the introduction of charged fields
without rest mass. In order that they may serve as
carr iers of the already known interactions, weak or
strong, they must have a rest mass. But then we

violate the local invariance. The situation is analogous
to that which arises in the case of the spirality trans-
formation ф —» у5ф. Only the free neutrino field is in-
variant with respect to this transformation. The weak
interactions are also invariant with respect to it, but
only when we omit the expressions which contain the
mass of the weakly interacting particles. The absence
of a rest mass for the compensating fields would mean
that these fields are completely analogous to the Cou-
lomb field and are in no way related to the short-range
forces of weak and strong interactions, and in general,
as pointed out by Lee and Yang (cf. Sec. 5) have prac-
tically no effect.
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