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1. INTRODUCTION

IN crystal optics, the medium is characterized by a
dielectric tensor eij(w, k) (w —frequency, k —electro-
magnetic wave vector). Spatial dispersion, i.e., the
dependence of €jj on k, was introduced long ago,[ﬂ
but until recently it was assumed to be significant only
in considerations of the rotation of the plane of polari-
zation of light in gyrotropic crystals, and to introduce
in all other respects only negligible corrections in
crystal optics, on the order of a/A (a —lattice con-
stant, A —wavelength of light). Even in discussions
of spatial dispersion in crystals it has been tacitly
assumed until 1957 (2] that ordinary birefringence is
maintained, i.e., for a given propagation direction s
there are two waves with induction vectors Dy and D,,
which are perpendicular to each other and to s.

This estimate of the smallness of the effects con-

nected with spatial dispersion is in most cases correct.

However, as we have shown as long ago as 1957, (37 ¢
the frequency of the light approaches some exciton-
absorption band, the foregoing estimates are utterly
incorrect, and an account of spatial dispersion modi-
fies €jj significantly even when A > a. As a result,
the frequency dependence of the refractive indices be-
comes appreciably changed, arbitrarily large devia-
tions from the known relation between the integral ab-
sorption of the band and the oscillator strength of the
elementary crystal cell become possible, etc. The
most interesting result of (3] was the predicted exist-
ence of supplementary light waves in the vicinity of
the exciton absorption bands, in addition to the uni-
versally known birefringence waves.

It was shown, for example, that two light waves
having the same polarization and propagation direction
but different velocities can exist in the crystal.

Following the publication of [3], the theory of supple-
mentary waves advanced rapidly and during the elapsed
four years many papers were published on this sub-
ject.[4-3¢] Supplementary light waves were observed
experimentally in anthracene (2324 and in cuprous
oxide. [26] Attempts to observe these waves experi-
mentally in a few other crystals also yielded favorable
preliminary results.

Investigations show that supplementary waves occur
only near the exciton absorption bands. By exciton is
meant here a crystal excitation with a single continu-
ous quantum number—the quasi momentum k (all

*Paper delivered at the plenary session of the Eighth Congress
on Low-Temperature Physics in Kiev, October 13, 1961.
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other quantum numbers are discrete). (3] 1t is also
required that the aforementioned exciton represent
with sufficient accuracy a stationary state of the crys-
tal, i.e., that it have a sufficiently long lifetime with
respect to thermal transitions (scattering by phonons,
transition to the ‘‘multi-phonon wind”’ etc.). Since the
lifetime (path time) of the exciton increases with de-
creasing temperature, [28:2%] the additional waves and
the associated phenomena should manifest themselves
more distinctly at low temperatures.

2. SUPPLEMENTARY LIGHT WAVES IN THE AC-
COUNT OF ABSORPTION

If the frequency of light w is close to wy = £(0)/h
where £(k) is an isolated exciton energy band, then
the specific dipole moment of crystal polarization

P(r,t) caused by the passage of the light wave is (3]
P = P eilkr—on 4 Pre—itkr-on - P =B(w, k) L5, (1)

where B is a tensor of the second rank,

, Quyt %y
Bey =B+ gy e @)
Qey=V (Pou) (Pii)y,  Pox= (¥ P (0) i) @)

Here pxy —constants, V —volume of the unit cell
of the crystal, ¥ and ¥ —the ground and exciton
states of the crystal, k —quasi momentum of the ex-
citon, which coincides with the wave vector of light,
and P(0) —specific dipole moment operator at the
macropoint r = 0. The energy is measured in such a
way that in the state ¥ the energy is zero. The scalar
H2 and the tensor « are complex; they vanish if the
exciton lifetime is infinite 37 and are proportional to
the probability of scattering or thermal decay of the
exciton, Lol which is assumed small.

The external electric field perturbing the crystal
is

ext ext

ES g, eikr—at) L (E ¥ Y¥g—itkr—on, (4)

where

- ok
E,= -4 (Pys)s, s= Txi

ext

EC =E,—E

o
Here Ey —amplitude to the total macrofield and

E{; —amplitude of the vortex-free field, generated with-

out retardation by the fictitious dielectric-polarization

charges that arise in the crystal upon passage of the

wave. If no extraneous charges are introduced into

the crystal, then E‘(?Xt coincides with the vortical

(transverse) part of Ej:
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ESX =nE,, n., = 0y — x5, (5)

vy Ny ¥

If, as is customary, we assume that the electric
field, the induction, and the magnetic field are propor-
tional to exp [i(k-r — wt)], where k = wns/c and n
is the refractive index of the wave, then Maxwell’s
equations reduce to

D, = n"ky; D, = yE,, where vy, (0, k)=38,, --47{f (0, k)nl,,.

(6)
Equation (6) has a solution if
| Yax Viy Va: |
(s, ys) - [(s, v3) — (s, v8)sp ¥l n® - | Yyu Vyy Yy |=0.  (7)
Voo Yoy Yaz

This equation determines the values of n. If we neg-
lect the dependence of v on k, then (7) becomes quad-
ratic in n® and the two ordinary birefringence waves
are obtained. On the other hand, if the dependence of
v on Kk, i.e., on n, is taken into account, then (7) is of
higher degree in n, and defines not two but more val-
ues of n, with as many plane-wave solutions of Max-
well’s equations. This gives rise to the supplementary
waves. In general, £(k) cannot be expanded in powers
of kx, ky, and kg, £7.9] nor can it be expanded in pow-
ers of |k| for a given direction 8. Let us examine the
case of a crystal with a symmetry center, when this
expansion contains only even powers:

B2k
ZMS +"'7 (8)

g (k)=¢&,+

&5 and Mg are independent of |k|, but do depend on
the direction s.

If we introduce the notation y' =74 4nf'n, 7., =08,
M jc? B HON _ 2Mc? He
Bs = T35 (1— o >: ol (""“’O"‘T>’ ©)
My, . 8IM,
B, = S @+ ) =" 0+ a),
then substitution of (2) and (8) in (6) yields
Y=Y+ (10)

- p’a
In this case the degree of Eq. (7) with respect to n®
will depend on the symmetry of the crystal in the prop-
agation direction 8. This equation can be solved for
specific cases.

We consider below excitons whose photoexcitation
is allowed in the dipole approximation Py = Ii{llm Pyk.

—0

Let us examine, for simplicity, the case of a crystal
with symmetry not lower than rhombic, in which the
principal axes of the tensor €jj coincide with the two-
fold or fourfold crystal axes. We choose the latter as
the Cartesian coordinates. If the beam direction s
coincides with one of these coordinate axes, then the
latter remain the principal axes of €ij also if the de-
pendence of €jj on k is allowed for. In this case
Pyk(lk| — 0) can be directed only along one of the
aforementioned principal axes. Let us assume that
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sx =sy =0 and sz =1 for the light beam and for the
exciton interacting with it. The equation (7) can then be
solved in elementary fashion. The polarization of the
exciton and of the light wave can in this case be either
longitudinal [3,9,17]

Po || Eo=E; = — 40Py ||s, Dy=0, nr?=p, (), (11)
or transverse (to be specific, parallel to Ox):
Py || 0z, Eoy=F,, =0,
;‘+ n '—_(HS T 'Y\;x)‘{— ‘/ Y\\ "\— /))\\"J'
By = ——
E- 7 (H’s + Y\x) - % (l‘*s - \‘J’«‘-\‘)z’*'/’).w:\" (12)

We see that there exist two waves of the same polari-
zation and with different refractive indices. For the
exciton polarization considered above (Pyy = Po)é It Ox)
it is possible to have, in addition to the waves (12),
still another ordinary transverse light wave, which
does not interact at all with the given exciton:

EOx'_"EO::()f EOy #* 07 n"—"l/V!Z (13>

If the principal axes x and y of the tensor €jj are
degenerate, i.e., if z is the optical axis of the crystal
{rhombohedral, tetragonal, hexagonal, and cubic sys-
tems ), the he exciton is also doubly degenerate, with
P k and Pok equal to each other and simultaneously
different from zero. In this case only transverse
waves of type (12) exist in the vicinity of the exciton
band (four waves, assuming the waves with different
polarizations to be different), and their amplitudes
E, are arbitrarily oriented in the x,y plane. There
are no waves of type (13).

If the lifetime (scattering time) of the exciton is
infinite, then the quantities H® and « in (2) vanish, (el
and consequently the light is not absorbed at all in the
crystal, no matter how strong the phototransition os-
cillator may be. The dispersion curves corresponding
to formulas (12) for this case are the continuous lines
of Figs. 1 and 2. The plots correspond to the following
parameters:

—2eV, a-=10q, (ao P —0.520R° J, Yix=2.

me-

The oscillator strength, referred to the crystal ele-
mentary cell, is f=0.1.

Figure 1 corresponds to the case Mg = m, and in
this case Bgyx = 58400; Figure 2 corresponds to the
same values of Mg and Bgxy, but with negative sign.
This new type of frequency dependence of the refrac-
tive indices (12) was first derived in our paper (3] (see
also [4),

In the case of a finite but large exciton lifetime with
respect to thermal transitions, when H2 and « are
small, we can neglect « and the real part of H2 in
(2), but the imaginary part of H® must be retained,
since H2 depends on w and k in the considered re-
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gion of £(k) — fw ~ 0.9 But since k is small, it

is possible to replace H2(w,k) by H3(w,0). The fre-
quency dependence of H2 has not yet been investigated.
If we assume that it is sufficiently smooth and recog-
nize that the term H? is in general significant only in
the small frequency range w = w,, we can assume ap-
proximately that H® is a constant imaginary quantity.
Then ug in (9) becomes complex, ug = ug +iug,

where [9]

~

(14)

As a result, if the refractive indices are repre-
sented in the form n = n’ + in”, their frequency de-
pendence, which is determined by formula (12), has
the form shown in Figs. 3 and 4. We assumed here
the same values of the parameters as in Figs. 1 and 2,
but introduce an imaginary addition (14) to ug, namely

ug = 10, which corresponds to iH2/f = 6.1 x 1010 sec™!.

Figures 3 and 4 correspond to the cases Mg =m and
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FIG. 4. Dependence of the real (n”) and imaginary (n”) parts of
the refractive indices of transverse light waves on the frequency
when absorption is taken into account.

Mg = —m, respectively. In Fig. 4 we have n; =n_,

ny, =n, when —pug > yyxyx and ny =n,, ny, = n_ when
’ ’

—Hg < Yxx-

Attention is called to the almost symmetrical form
of the curves in Figs. 3 and 4. The symmetry should
actually occur in the region where lnfE [ > Yxx- We
can then discard by way of an approximation the term
Yxx in (12) and obtain as a result

n(®—wy) = + n. (0, — 0);
n’ (0 — 0= + n (0, — o)

As can be seen from Fig. 3, the exponential damp-

ing coefficient of the wave is much larger in the n”

(15)
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space for the ‘‘minus’’ wave than for the ‘‘plus’’ wave.
The dependence of n} on w goes through a maximum,
while the w-dependence of n” is monotonic. If the il-
luminated crystal slab is sufficiently thick, only the
‘“plus’’ wave, which is less attenuated, will pass
through it. The intensity of the light transmitted
through the slab will depend monotonically on the
thickness I, namely J ~ exp (-2wn%l/c). Conse-
quently, when Mg > 0 the Lambert-Bouguer law should
hold in the case of thick plates, and we can introduce
the concept of an absorption coefficient 2wn?/c as a
specific characteristic of the matter. The form of

the absorption band is given by the n%(w) curve of
Fig. 3. Its maximum lies on the violet side of the
‘‘dispersion frequency’’ w.

On the other hand, if the slab is thin both waves
(12) emerging from the slab have comparable ampli-
tudes. Since these waves are coherent and have the
same polarization, they will interfere with each other
after emerging from the slab. The phase difference
of these waves, w(n’, +n’)l/c, depends on the thick-
ness [ of the slab. As a result, the intensity of the
light transmitted through the slab will be not a mono-
tonic but an oscillating function of 7.[23] (This will
be discussed in greater detail in the next section). It
is therefore impossible to retain the concept of ab-
sorption coefficient as a specific characteristic of
the matter.

In the case when Mg < 0, as can be seen from
Fig. 4, we have n{ > nj only on the violet side of the
maximum of the absorption band. Therefore in the
case of a thick slab only in this frequency range will
the ‘2’ wave alone be transmitted, and 2wnj /¢ as-
sumes the sense of a specific light absorption coeffi-
cient. On the red side of the maximum of the band we
can have n{ ~ nj and both waves will pass equally
well through a slab of arbitrary thickness. We cannot
therefore retain the concept of specific coefficient of
light absorption, in view of the mentioned unavoidable
interference of the two waves on emerging from the
slab.

If the experimenter ignores this interference and
determines the frequency dependence of the coefficient
of absorption in traditional fashion, assuming that the
intensity of the transmitted light decreases monoton-
ically and exponentially with increasing I, then the
band shapes obtained experimentally for different

values of ! will not be reproducible, as was pointed out
in [39],

According to Fig. 4, n{ and n{ have opposite signs.

If light is incident from vacuum on a semi-infinite
crystal, the sign preceding the complex value ny = nj
+in{ should be chosen such (1] a5 to make the wave
exp [i(wnyz/c — wt)] attenuate as it penetrates in the
crystal. Let z increase with increasing depth in the
crystal; we should then have n{ >0 and nj < 0. It is
interesting that in this case the phase velocity of the
wave is directed outward from the crystal towards its
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surface, i.e., opposite the incoming wave. On the other
hand, the group velocity is directed inside the crystal.

If terms of higher power in | k| are retained in the
expansion (8), higher powers of n will appear in the
denominator of (10). The degree of Eq. (7) in n will
then increase and additional roots will appear. Does
this mean further appearance of supplementary waves,
on top of those considered above? An investigation
shows that the new roots n do not have any physical
meaning, since they correspond to values of |k| so
large that the expansion (8) diverges (we get A < a).

It must not be thought that introduction of spatial
dispersion into the dielectric tensor should lead in
general to additional electromagnetic waves. The point
is that the supplementary roots n do not arise in the
overwhelming majority of cases, or else have no phys-
ical meaning. The exciton is apparently still the only
exception to this rule. For example, inclusion of spa-
tial dispersion does not lead to additional waves in a
crystal near non-exciton absorption bands. Another
example is a plasma (ionosphere), in which an ac-
count of the spatial dispersion of the electric tensor
greatly distorts the frequency dependence of the re-
fractive indices (the discrete frequency spectrum of
the longitudinal waves changes into a band spectrum,
and dispersion curves such as shown in Figs. 1 and 2
appear in a magnetic plasma), but no additional waves
arise—three waves exist in the plasma whether spatial
dispersion is included or not. There are likewise
three waves in a magnetic plasma.*

3. EXPERIMENTAL OBSERVATION OF SUPPLE-
MENTARY WAVES

We have previously proposed (48] several experi-
ments with which to check the foregoing theory and,
in particular, to detect supplementary waves. Some of
these experiments have already been performed and
have actually confirmed the existence of the supple-
mentary light waves predicted by the theory.m We re-
port here briefly the results of these experiments

Assume that a monochromatic light wave is nor-
mally incident from vacuum on a plane-parallel crys-
tal slab and gives rise to two waves in the slab with
complex wave vectors k, = k!, =ik and k_ =k’ +ik”.
On leaving the slab, the two waves interfere with each
other and as a result the intensity of the transmitted
light J should be an oscillating function of the slab
thickness : (%3]

J~]E‘2=!a+|28_2k“+[a_]ze“Zk""

2| (a,, a¥){cos[(k, —kl)I+a]. (16)
Here a, and a_ —amplitudes of the electric field of
the waves after emergence from the slab, with allow-

*This may explain why the theoreticians, who investigated for
years electromagnetic waves in media with spatial dispersion but
did not consider specially the case of the exciton, did not raise
the question of the supplementary waves until 1957.
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ance for the reflection of light from both surfaces of
the slab, but without account of attenuation in the slab
{we neglect multiply reflected waves); «; is deter-
mined by the equation (a, .a¥) =| (a+-af)leiao.
Equation (16) is plotted in Fig. 5.

Oscillating curves of this type were obtained ex-
perimentally for anthracene at 20°K near the exciton
absorption band, the maximum of which is at 25,200
cm™!. Preliminary results of the experiment were
published in (23 and more accurate results of a more
carefully performed repeat experiment, using an im-
proved procedure, were published in (21, Figure 6
shows one of the curves obtained in [24], It corre-
sponds to a light frequency 25,108 em™!, The experi-
mental points are marked with the probable errors in
both directions. The light was transmitted through
two parallel polarizers, one (Glan prism) ahead of
the crystal and the other (spar) behind the crystal.
The monoclinic crystal axis of anthracene, which coin-
cides with the principal axis of the tensor €jj, was
oriented strictly parallel to the electric field vector
of the polarized light wave. Consequently only one
of the two ordinary birefringence waves was produced
in the crystal. The interference shown in Fig. 6 de-
notes the appearance of a second wave of the same
polarization in the crystal, i.e., of a supplementary
wave.
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05r &
FIG. 6. Experimentally ob-
tained dependence of the inten-
sity of the transmitted light on
the thickness of the slab. An-
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It must be emphasized that under the conditions of
the described experiment the interference of the waves
multiply reflected from the surfaces of the slab was
completely eliminated, since the intensity of the beam
after passing three times through the plate is two or
three orders of magnitude lower than the intensity of
the beam passing once through the slab, whereas in
Fig. 6, the value of J oscillated some 30 times. In
addition, in order to explain the observed period of
the oscillations of J with increasing I, it would be
necessary to ascribe to anthracene a refractive index
of 3.45, whereas the actual value exceeds 5 at this
frequency and temperature, [3¢]

Figure 6 shows quite clearly the periodicity of the
maxima and minima: the distance between the maxima
is Al = 0.056, 0.060, and 0.057 u. The distances be-
tween the minima are Al = 0.063 and 0.055u. Such a
periodicity would not be natural for a simple straggle
of the points.

It must be emphasized that each of the 30 experi-
mentally measured points on Fig. 6 is obtained for
its own independently grown crystal. Different points
represent different independent experiments (some-
times separated by a long time interval). Conse-
quently the near-lying points found in many places on
the curves illustrate the reproducibility of the experi-
mental results.

The value of k) —k’ can be calculated with the aid
of (16) from the average period of the curve which is
equal to 0.058 u. A value of 6.9 is obtained for n’ —n’.
The experimental curve of Fig. 6 is similar to the
theoretical curves of Fig. 5. Other than the theory of
supplementary light waves, we see no possible ex-
planation for the observed two waves of like polariza-
tion.

Another crystal in which it was possible to observe
experimentally the supplementary light waves pre-
dicted by the theory is cuprous oxide. The first (with
longest wavelength) absorption band of the yellow ex-
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citon series was investigated. This band is forbidden
in the dipole approximation, and consequently formula
(12) does not apply to it. The theory of supplementary
waves for the case of a dipole-forbidden line is de~
veloped in detail for cubic crystals in [2:21], 1t is
shown there, in particular, that if the light propagates,
along the (1, 1, 0) direction, it breaks up into waves
that can have only two polarizations: 1) with electric
field parallel to the (0, 0, 1) direction, and 2) with
electric field parallel to the (1, —1, 0) direction. At
one of these polarizations the light wave ignores com-
pletely the considered exciton—it does not interact
with the exciton, it is not absorbed, and no peak is
produced on the dispersion curve in the correspond-
ing frequency region. Nor do supplementary waves
arise. If the Cartesian y axis is oriented along this
polarization, we obtain relations of the type (13) for
such a wave:

Eo=Fo.=0, Iy =0, n=)7. 17)
In a cubic crystal ¥’ is a constant.

In the case of the second of the polarizations, the
light wave interacts with the exciton, becomes ab-
sorbed, albeit weakly (dipole-forbidden band ), and a
weak peak should appear on the dispersion curve. In

lieu of (12) we obtain
Eoy=FE, =0, FEo==FE,+0,

2 L S 2
Ny 27(\ +bs+”) + l/T((Y o bs'—us)“—'_bsp’s' ’ (18)

Consequently, two waves with this polarization should
exist—the supplementary wave appears; bg is a con-
stant considerably smaller than Bg (which is contained
in formula (12) for the dipole-forbidden bands). As be-
fore, ug is determined by (11).

In a cubic crystal there can also exist exciton bands
for which waves of either type (17) alone or of type (18)
alone exist in both polarizations. But these do not in-
clude the already mentioned investigated excited band
in cuprous oxide.

The experiments on the longest-wave band of the
yellow exciton series in cuprous oxide have fully con-
firmed the theoretical predictions. Thus, independ-
ently of the development of the theory, it was observed
first in (%21 and then in [?5) that a wave with polariza-
tion 1) is absorbed, whereas a wave with polarization 2)
is not absorbed at all. This fact, which agrees com-
pletely with our theory, allows us to conclude that the
exciton band belongs to the Fy, B’, or E’ symmetry in
the group-theoretical classification. (221 In all three

cases theory predicts that two waves of type (18) should

be observed in the case of polarization 1), while one
wave of type (17) should appear for polarization 2). To
check this, a special experiment was set up, (261 gnalo-
gous to that with anthracene. The existence of two
waves of like polarization was proved by the oscilla-
tions present in the dependence on the intensity of the
transmitted light and on the thickness of the cuprous-
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oxide slab. The results of the experiments are shown
in Fig. 7. The ordinates represent the absorption co-
efficient in the line, Kj, after subtracting the back-
ground absorption coefficient; Ky = (1/1) In{Jy/J(A)]
em™! ( Jy —intensity of the transmitted light at a fre-
quency alongside the line, and J the intensity of the
transmitted light with frequency falling inside the
line).

The abscissa axis represents the thickness of the
crystal slab. Each peaked curve represents the line
shape K(\) at a thickness corresponding to the ab-
scissa of the maximum of the peak. Figure 7 contains
also a scale for the wavelengths at which the contour
of the band was measured. The figure shows the os-
cillations of J as a function of the thickness of the
slab, demonstrating the presence of two waves with
polarization 1), No such oscillations with polariza-
tion 2) were observed, indicating that only one wave
exists, in accord with the theory.

The observed period of oscillations, ~0.2 mm,
cannot be attributed to interference of the waves
multiply reflected from the surfaces of the slab. The
latter would result in a period on the order of 0.6
x 1073 mm.

We note that the observed total polarization of the
absorption band, and also the presence of an additional
wave in polarization 1) and its abserce in polariza-
tion 2), contradict that version of the theory[¢J in
which the spatial dispersion is introduced arbitrarily
by representing ej; I{w, k) in the form of a polynomial
in kx, ky, and kz. The reason for this contradiction
lies in the fact that in most cases neither €43 hor ei'-1
are analytic functions of kg, ky, and k; (for more de-
tails see [3"J) and cannot be represented by polyno-
mials.

An account of spatial dispersion, in addition to
leading to supplementary waves, leads also to ordinary
birefringence in cubic crystals. The latter was con-
sidered theoretically in [1:38-40,6,18] 5n4 in other works.
This birefringence should be more clearly pronounced
near the exciton absorption bands. Apparently, how-
ever, it will be easier to observe experimentally in
dipole-allowed bands. The possibilities and conditions
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