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INTRODUCTION

CLASSICAL crystal optics has developed along the
following lines. The crystal is characterized by a
complex dielectric tensor eij(w) which depends on
the radiation frequency w. Knowing the tensor ejj(w )s
we can determine from the equations of macroscopic
electrodynamics the ‘‘normal’’ electromagnetic waves
in the crystal, i.e., waves of the form

E= Eoei (kr—mt), EO = const, k = %ﬁs’ § = —

(we confine ourselves for simplicity to homogeneous
plane waves in which the equal-phase planes and
equal-amplitude planes coincide ). Different normal
waves (designated by the index ) have different polar-
izations (the vector Ey) and different values of the
complex refractive index fij(w, 8) = ny +ixky.

When no boundaries are involved, the tensor ejj(w)
is useful for it replaces the much more complicated
quantity nz(w, 8), which is a function of both w and s.
Considerations of a general type readily demonstrate
the symmetry of the tensor e€jj(w) = e{j(w) + ie{'j(w)
and relate its real and imaginary parts ejj and &jj
(dispersion relations ). To determine the frequency
dependence of €jj, we must, however, resort to mac-
roscopic theory, involving the use of a definite model
or of various approximations. If a simple model is
used, particularly if the symmetry is high, we can just
as readily calculate fij{w, 8) directly, rather than

eij(w }. However, even in cubic crystals, when in

the final analysis we deal with only one function fi(w)
= Ve(w) lhere €jj(w) = e(w)djjl, €(w) is the sim~
pler of the two quantities; it relates the current in-
duced by the field and the field itself at a single point,
and no retarded interaction need be taken into account
in its calculation [at the same time, the index fi(w)
is related in obvious fashion with the wave propaga-
tion; in addition, a cubic crystal supports three normal
waves, counting the longitudinal one, although the de-
generacy n; = n, = n applies to two of the waves].

Thus, there is no doubt that the main problem of the
microscopic theory is in general the determination of
the tensor eij(w).

It follows from the symmetry of the kinetic coeffi-
cients that in the absence of a macroscopic magnetic
field the tensor eij(w) is symmetric (see, for ex-
ample, [1]), Natural optical activity (gyrotropy) is,
therefore, beyond the scope of classical crystal optics
(in the sense of our definition of the term ). As is
well known, an analysis of natural optical activity en-
tails the account of some small terms of order a/a,
where a is the characteristic dimension (lattice
constant, dimension of the molecule) and A = Ay/n
= 2n/k is the wavelength of light in the medium (3,
= 27c/w —wavelength in vacuum ). Physically this re-
duces to a situation wherein the current induced by the
specified field depends not only on the frequency w but
also on the wave vector k, i.e., the current varies with
the wavelength of the field. Such a dependence is cus-
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tomarily called spatial dispersion (frequency disper-
sion is the dependence of the current on the field fre-
quency w). In a homogeneous unbounded medium
(plasma, liquid), and to good approximation in crystal
optics (see Sec. 2a) allowance for spatial dispersion
reduces to the use in the field equation of a tensor*

&;; (0, k) =¢i; (0, k)+¢i; (0, k), )

which depends on w and k and satisfies, of course,
the condition eij(w, 0)= eij(w), where eij(w) is the
tensor considered in classical crystal optics.

We shall call the crystal-optics theory based on the
use of the tensor eij( w, k) crystal optics with allow-
ance for spatial dispersion. Although such a crystal
optics is evidently broader than the classical theory,
it is in turn confined to a region of not too short waves
Ay = 2re/w, so that the parameter a/A, is small. The
lattice constant is a ~ 10°3—10"7 cm, in the optical
region we have Ay R 107% ¢m, and consequently a/ Ag
<107%~1073, On the other hand, in optics usually, even
near the absorption lines, n S 10, so that the following
inequality is also satisfied

a

an
_7»-2.?»_0« 1. 2)

Condition (2) denotes that the spatial dispersion is weak
and this is precisely the assumption (which in the op-
tical region corresponds to all known cases) that we
shall use below. v

As already stated, terms of order a/A must be
taken into account in the analysis of gyrotropy. Centro-
symmetric crystals, as well as a few others, have no
terms proportional to (a/A), and the terms of order
of (a/A)? are usually quite small. Nonetheless, al-
lowance for the terms proportional to (a/ A) is in
some cases essential even for a qualitative understand-
ing of the phenomena. Thus, the propagation of longi-
tudinal waves in any medium, and particularly in crys-
tals is completely determined by spatial dispersion
(disregard of spatial dispersion yields zero group ve-
locity for the longitudinal waves; see, for example, (2]
and below). Further, as long ago as in 1878 Lorentz[3]
pointed out that cubic crystals become anisotropic if
terms proportional to (a/A)? are taken into account
(see also [48]), Optical anisotropy of cubic crystals
has recently been experimentally established. (6] Fi-
nally, inclusion of the terms proportional to a/A or,
in the absence of gyrotropy, of terms proportional to
(a/A)2%, may prove necessary in the region of anoma-
lous dispersion, i.e., near the absorption lines, where
the refractive index, and consequently the parameter
a/A = an/A,, increases. Therefore, as is well demon-
strated by the example of a magnetoactive plasma, C2]
spatial dispersion in the absorption-line region (near
the natural frequency ) can appreciably change the

*In the present article we refer only to the linear theory (the
superposition principle holds) and disregard the Raman effect.
Conceming the latter see, for example,[*°].

course of the dispersion curves, and in particular,
lead to the appearance of new waves (new values of
n; at a given frequency w). The appearance of new
waves is also possible in principle, for example, near
the lines of the so-called exciton absorption of light in
non~-gyrotropic crystals L") [this effect was regarded
in ["J as some new phenomenon; in this connection it
was shown in [%] that the situation involves a particu-
lar case of allowance for spatial dispersion, and that
in non-gyrotropic crystals it is sufficient to take into
account terms proportional to (a/A)2]. The observa-
tion of new waves in non-gyrotropic crystals is com-
plicated considerably by the influence of absorption.
In the case of gyrotropic crystals, a new wave should
appear near the absorption line with properties char-
acterized by the parameter a/A, making the condi-
tions for its observation more favorable. (5]

Thus, there are many problems, the analysis of
which lies in the field of crystal optics with account
of spatial dispersion. The task of the theory is first
to establish a connection between fij(w, 8) and
eij(w, k) and to use the corresponding formulas to
reduce the experimental data. The experiments yield
the complex refractive index fiy(w, 8) = n; + ik, and
failure to use crystal optics would necessitate meas-
urements for a very large number of directions of s.
On the other hand, if fij(w, 8) is expressed in terms
of €jj(w, k), it is sufficient to measure ny for several
directions only. If spatial dispersion is neglected, this
is evident at once, since the symmetrical complex ten-
sor €jj(w) is characterized at a given frequency by at
most six numbers (recognizing that €jj and {j have
already been reduced to the principal axes). Account
of weak spatial dispersion complicates the situation,
but the measurements need be made only in a few di-
rections, by virtue of the simple dependence of
eij(w, k) on k.

)i eij(w, k) is known in some approximation, all
the normal waves in the crystal corresponding to this
approximation can be regarded as known [in particu-
lar, the dispersion law wj = wy(k) is equivalent to
specifying the functions fij(w, 8) = ck/wy(k)}. In ad-
dition, the tensor eij( w, k) determines the energy
lost when the particles move in the medium, the mo-
lecular forces between the bodies, the fluctuations of
the electromagnetic field, and provides in general a
fﬁl;‘lj{o ]complete description of the medium (crystal).

The principal purpose of the present article is to
present the fundamentals of crystal optics with allow-
ance for spatial dispersion (we shall make consider-
able use of |:5"’1). We also consider it advisable to
dwell here on the connection between crystal optics
and exciton theory and on certain related problems.

Since there is no universally accepted terminology,
we shall define excitons as ‘‘elementary excitations”’
in crystals, obeying Bose statistics. This definition
obviously classifies as excitons all normal electro-
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magnetic waves in a crystal, which in quantum me-
chanical language are none other than ‘‘photons in the
medium’’ (including longitudinal photons in the me-
dium—plasmons ).* By the same token, the general
exciton theory embraces, on the one hand, crystal op-
tics with allowance for spatial dispersion, and on the
other all the theoretical constructions aimed at calcu-
lating the tensor eij(w, k).

The transition from problems in terminology to the
essence of the matter occurs when one begins to dis-
cuss methods for the calculation of eij(w, k) and the
character of various possible approximations. The
latter are dictated primarily by the type of crystal
and by the nature of the excitations studied. Thus,
in ionic crystals in the infrared region the optical
modes of lattice vibration are particularly important.
(121 However, in the same ionic crystals but at higher
frequencies, and especially in molecular crystals and
some semiconductors, the electronic excitations play
the principal role. (13] These excitations can be visu-
alized as an excited state of a molecule proceeding
from site to site (molecular crystal), or as a moving
bound electron-hole pair (semiconductors). At the
same time, by virtue of the translational symmetry of
the crystal, the eigenfunctions corresponding to the ex-
citations encompass the entire crystal and have the
character of modulated plane waves with wave vector
k.T If we confine ourselves for simplicity to an ideal
immobile lattice, then the wave function of the excita-
tion can be written in the form (13

Wk'[=€ikRUk' I(R, l‘i——l‘j), (3)

where R =3iri/NV is the radius vector of the centroid
of all the NV electrons (with radius vectors rj), the
function Uk ; is periodic (with the period of the lattice)
with respect to R, and the index I corresponds to
quantum numbers that do not reduce to k. Confining
ourselves in (3) to an account of the particle coordi-
nates only, we imply by the same token a mechanical
problem, with an analysis of the Coulomb interaction
only. This immediately raises the question of relating
the ‘‘mechanical’’ excitations (excitons) thus obtained
to the real excitons, and of their role from the point of
view of calculating qj(w, k).

Before touching upon this problem, let us make more
precise the concept of the ‘“mechanical exciton.”’ It is
not rational to define as a ‘‘mechanical exciton’’ any
solution of the Coulomb problem. In fact, among such

*Concerning the use of the concept of photons in a medium
(with energy how and momentum fiwn/c) as applied to other prob-
lems in radiation theory, seel'']. We note that the definition given
in the text for excitons includes also acoustic waves, for which,
however, it is advantageous to retain the universal term
¢“‘phonon.”’

tThis is why a localized electron-hole pair or an excited
molecule (which can be considered as a pair with small radius)
is described in terms of a wave packet. In some case, however,
the consideration of packets is fully justified and can even serve
for quantitative calculations.
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excitations there are included such real excitons as
longitudinal normal waves (plasmons), in which the
electric field is potential and there are no magnetic
fields. In addition, the solutions of the Coulomb prob-
lem include waves which we call ‘‘fictitious’” longitudi-
nal waves (see Sec. 1b). In such waves (with small
values of k), as in longitudinal waves, there exists a
non-vanishing long-wave potential electric field E

= Ey (the field E); is non-vanishing whenever div P

# 0, where P is the electric polarization*).

In addition to having polarization of longitudinal
character (curl E|; = 0), the macroscopic Coulomb
field E| does not differ in any respect from an arbi-
trary macroscopic field (having, of course, the same
values of w and k). In addition, the distinction be-
tween the longitudinal and transverse fields is in the
general case of an anisotropic medium andanarbitrary
wave-vector direction by no means natural, since in
the corresponding normal waves the field E is neither
transverse nor longitudinal. Finally, if we deal with
an account of the role of the long-wave field, this ac-
count (even if the normal waves do separate into lon-
gitudinal and transverse) is obtained in a unified
manner for the total field by using the equations of
electrodynamics. Consequently, we shall always take
‘“‘mechanical excitons’’ to mean excitations obtained
in the absence of or neglecting not only the long-wave
transverse electromagnetic field, but also the potential
macroscopic (long-wave ) electric field (see, for ex-
ample, (8J), From the point of view of solving the me-
chanical problem, this means that the potential macro-
scopic field E;; (if it does not vanish) is discarded
from the equations of motion and we are thus taking
an approximate rather than complete account of the
Coulomb interaction.t Actually, of course, in specific
calculations this is the natural procedure, a fact clearly
reflected in Sec. 44 of the book [12], As regards termi-
nology, the article (14 defines as ‘“‘mechanical exci-
tons’’ all the exact (and only exact) solutions of the
Coulomb problem, and real excitons are called ‘‘op-
tical excitons’’; previously in article [143'], the same
real excitons were called ‘‘polaritons.”” As already
mentioned, we are using a different terminology. A

*We assume that thete are no ‘‘free charges’’ and no absorp-

tion, and therefore div D = div (E + 4#P) = 0 (see Sec. 1a, where
the quantity D' is used with D = D’ for a non-absorbing non-mag-
netic medium; in the present introduction we use for simplicity
the vectors D and P rather than D' and P’). In state (3) the polar-
ization vector is

1
P = S llfitl\(v Zeri~Pu> Ykidry...dr N,

where P, is the ion polarization, N the electron concentration,
and V the volume of the crystal.

TAs is well known, the macroscopic field E can be separated
in a consistent manner (see, for example,[*?] Secs. 30 and 44).
Thus, neglect of the influence of the field E on the eigenfunc-
tions and natural frequencies can be carried out in a fully defined
manner. We note also that by macroscopic field (in particular, the
field E) we mean here any field whose Fourier expansion con-
tains only long waves (A >> a; for more details see Sec. 1a).
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factor of importance to us is the fact that the ‘“‘me-
chanical exciton’’ is the name used for an excitation
considered without account of the long-wave field. As
to the account of the short-wave (microscopic) field,
the restriction to the Coulomb interaction only, as is
implied in the use of (3), is of no significance in prin-
ciple. Furthermore, it is more correct to assume that
in the calculation of the energies and wave functions of
the ‘“mechanical excitons’’ account is taken of the en~
tire short-wave interaction existing under given spe-
cific conditions (in addition to the Coulomb interac-
tion with account of exchange, we obviously may also
deal with magnetic interaction). Since in practice the
discussion is nevertheless usually restricted to the
Coulomb interaction, we shall likewise mention only
this interaction; however, this is done solely for the
sake of simplifying the discussion.

To explain the foregoing and for further exposition,
we consider qualitatively a simple model. Namely, we
discuss a system of NV anisotropic harmonic oscilla-
tors, located in the sites of a rhombic lattice (the two-
fold axes coincide with x, y, z). Each isolated oscil-
lator has three different natural frequencies wy

' = Wg,y,z» and the normal modes correspond to vibra-
tions (variation of the electric dipole moment p) of
the oscillator along the lattice axis x, y, or z. In the
limit of sufficiently large lattice constants ayx, ay, and
ay or in the case of small ‘‘oscillator strengths’’ (i.e.,
sufficiently weak interaction between oscillators), the
normal frequencies of the system can be regarded as
NV-fold degenerate and also equal to wg,y,z. As the
oscillators come closer together, the frequencies
split and the normal oscillations have the form pj i
=pl,i,0 expilk-rj-wy(k)t] where p;j is the dipole
moment of the i-th oscillator located at the point rj.
If we consider only Coulomb interaction (specifically,
dipole-dipole interaction) between oscillators, then
the long-wave normal oscillations separate quite dis-
tinctly into transverse polarization oscillations
{p1,i*k = 0), longitudinal oscillations (py,i x k =0),
and all others. In the case of transverse polarization
oscillations, there is no longitudinal electric field

E = E)|, since div P =div (%Epi) =0, divD

=div (E;; + 47P) = 0, curl Ej; = 0, and thus (k-Ej;)
=0 and k x E| = 0. From symmetry considerations
it is clear that transverse normal oscillations are
possible if the moments p7 i and consequently the
electric polarization P are directed along one of
the axes x, y, or z, whereas the wave vector k lies
in the corresponding coordinates plane (for exam-
ple, Px = 0, Py =P, =0, kx =0). Ina rhombic
lattice there are obviously three ‘‘zones’’ of such
waves with frequencies wy (kx =0, ky, kz),

wy (ky, ky =0, k) and wz (kx, ky, kzy =0). In
section 1b these waves (‘‘polarization waves’’)

will be analyzed macroscopically. Since the field

in ‘“‘polarization waves’’ is E; = 0, these waves
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should be classified as ‘‘mechanical excitons’’ and
are obtained at the same time in the exact solution
of the Coulomb problem.

Waves traveling along one of the axes and polarized
along the same axis (for example, Px = 0, Py = Py
=0, ky =k, = 0), are longitudinal waves in which
E=E; =0 and D = 0. Finally, waves can exist in
which D # 0 and E = Ey| # 0. In these waves, as in
all others, the vector D = E + 47P is transverse
(k.D = 0 by virtue of div D = 0). But the vector
E = E|| must be longitudinal (a strictly Coulomb prob-
lem is considered). Therefore the vector P in these
waves (‘‘fictitious”’ longitudinal waves; see Sec. 1b)
is neither longitudinal nor transverse. Only such nor-
mal waves can propagate in this model in an arbitrary
direction (kg = 0, ky # 0, kz = 0).* The longitudinal
and ‘“fictitious’’ longitudinal waves, regarded as exact
solutions of the Coulomb problem, are not ‘‘mechanical
excitons’’ in our terminology. To each of these waves,
however, there corresponds a ‘‘mechanical exciton’’
which is a normal oscillation with characteristics that
are obtained when the effect of the field Ey is neglec-
ted. Using as an example a longitudinal wave propa-
gating along the x axis, we shall explain this statement.
The equation of motion for the oscillator can then be
written ¥j + wixigyi = ef!?E| /m, where pj = f/2x;

(f —‘“‘oscillator strength’’) and g; —force exerted by
all other oscillators, after subtracting the long-range
part (the latter is precisely included in the field E; ).t
In a longitudinal wave we have

ef!/? Z z;

D=E)+4nP =0, P=—"—~ef'2Nz,

(we consider long waves) and E = - 4ref'/? Nx;. Thus,
an account of the field E;; changes the square of the
natural frequency by w} = 47e?N/m, and this change
can be quite large and exceed the splitting due to the
force gi.i In our example, obviously, the ‘‘mechan-

*The foregoing statements follow without further detailed
analysis from the macroscopic consideration (see Sec. 1b), and
also become clear if one bears in mind the limiting case of un-
coupled (non-interacting) oscillators (when the coupling is weak,
these properties of the model remain patently unchanged).

fThe force g; contains also a long-range term (the ‘‘polariza-
tion correction’’) connected with the difference between the ma-
croscopic field E and the ‘‘effective field’” F. For a cubic lattice
made up of point-like dipoles, as is well known, F — E = 47P/3
(as k - 0). Consequently in a cubic lattice polarized along the x
axis, the force g; contains a term (47ef”/3)P = (4me*fN/3m)x;.
This term can be accounted for by suitably changing the frequency
wy; the same pertains to crystals with lower symmetry, if we dis-
regard the replacement of the numerical coefficient 47/3 by some
other coefficient. In connection with the foregoing and with the
qualitative character of this discussion, we shall not include ex-
plicitly the difference between the effective field and the macro-
scopic field, assuming the frequencies wy, y, - to be suitably
modified, and we shall regard g; as accounting only for the
short-range interaction (the correct classical calculation for the
cubic lattice is found in[**]; see also Sec. 4b).

tSee the foregoing footnote.
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ical exciton’’ is a longitudinal wave with frequency
wy + 6wy, where 6wy is the frequency change due to
the forces gyi. The frequency of the real longitudinal
exciton, on the other hand, is w) = wx + dwy + w.

The foregoing remarks and the exposition that fol-
lows should leave no doubt of the advisability of dis-
tinguishing in crystal optics between real excitons and
certain approximate solutions (images), called ‘‘me-
chanical excitons,’’ the difference lying precisely in
whether the effect of the long-wave electromagnetic
field is accounted for or not.

What is the connection between real and ‘‘mechan-
ical’’ excitons? If we bear in mind only the principal
aspect of the problem (and not a specific quantitative
comparison), the answer to this question is perfectly
clear from both general considerations and from an
examination of any simple model. The latter path is
more illustrative and shorter, and consequently we
return to the discussed model of anisotropic oscilla-
tors.

In the case of longitudinal waves the real exciton
{i.e., the exact solution with account of the entire
electromagnetic interaction) differs from the corre-
sponding mechanical exciton in the inclusion of the
long-wave field E;. This leads, as was already ex-
plained, to a change in the natural frequencies w) (k).
For transverse mechanical excitons (‘‘polarization
waves’’) P; = 0 and E = E; = 0. The presence of al-
ternating polarization P; gives rise to a transverse
electromagnetic field, which leads to a generally sig-
nificant difference between the real transverse and
mechanical excitons. Indeed, the equation of motion
for the i-th oscillator, which makes its contribution,
say, to the transverse normal oscillation along the y
axis, can be written in the form §; + wiy; + gyj
= efl/2 Ey /m. To clarify the qualitative picture in the
long-wave region, we can put Byi =0 (we assume the
‘‘polarization correction’’ to be accounted for by mod-
ifying the frequency wy) and Py = efl/?2 Nyj. Then in
the field Ey = Eyo expli(k-r—wt)] we have

e2fNE, £fuf1

Pu:m(mf’—uﬂ): 4 By
, 41t fN L .
Eu:“’y:l%‘mzmgimg) ooy =0y by ky=0, k). (4)

For transverse waves the field equations lead in this
case to the relation ¢yEy = A’Ey, i.e.,

ﬁ:nfi%:l/e—y:‘/1+4—mzzzv—

m(mi/oﬁ) ' ")
Naturally, if the frequency wy is real, then there is

no absorption (as was indeed assumed). In the region
ey = i = —«? < 0 and neglecting spatial dispersion, the
average energy flux in the wave is zero (when a wave
strikes such a medium from the outside, total reflec~
tion occurs; see, for example, 2] and Sec. 1c below ).
In the transparency region (x = 0 and fi* =n? > 0) we
have

) _ o N AmeE[N
k=Tn(w 5)= G ‘/1 Lm0 —o?) ®)

327

In the limit corresponding to classical crystal optics,
wy is independent of k and it is easy to express w
explicitly in terms of k.

Thus, for a real exciton the dispersion equation
w = w(k) has in this case the form (5), whereas for
the mechanical exciton w = wy(k). In the simplest
case, when the k dependence of w, can be neglected
(the primitive calculation* above is sufficiently con-
vincing without further analysis only under these con-
ditions ), the foregoing analysis is of course equivalent
to the well-known elementary dispersion theory. We
wanted to emphasize here, however, the close connec-
tion between exciton theory and problems well known
long ago. The use of a different terminology or of
unaccustomed images frequently makes this connec-
tion insufficiently obvious as evidenced by the contents
of certain articles.

In classical crystal optics (wx y z =const) plots
of the functions n = [ex y z(w )11/2 are usually em-
ployed. Such a plot for the case of (5) is shown in
Fig. 1a. In exciton theory the relation w = w(k) is
more frequently used, and the curve for our example
is shown in Fig. 1b.
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We note that the frequency wj = [w%, + 47eN/m |12
corresponds to the condition ey(w) = 0; this frequency
w), is precisely equal to the frequency of the longitud-
inal wave propagating along the y axis (see Sec. 1b).
Near the frequency w = w) we obviously have

ch?

2
(1)” ?

dey
g, (v) = (E)m” (0 — o) =n>=
or

o k2. (6)

W=+ ————
e wﬁ (dey/dw)m“

If we compare (6) with the relation W = fiw = Hw,
+ 1%k?%/2meggf, we can speak [14] of an effective exciton
mass Megf = h*wfj(dey /dw),,, /2c? near the frequency
wq. The use of this term naturally adds nothing to the
understanding of classical dispersion theory and will
not be applied to real excitons.

If wy = wy( k) for the mechanical exciton, then €y
depends on k; this corresponds to allowance for spa-

*See Sec. 4b for rigorous calculations.
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tial dispersion. The character of the curves n(w) and
w(k) under similar conditions with kx =ky =0, kz =k
# 0 (or with ky =k =0, ky =k = 0) and with a cer-
tain definite dependence of wy on k is clear from

Fig. 2. We note that for optical vibrations of an ionic
lattice the function wy(k) corresponds in form in the
simplest case precisely to the dashed curve of Fig. 2.
A transition from mechanical vibrations (mechanical
excitons ) to real electromagnetic waves (excitons)
for this case can also be easily traced, as was recently
done. [12:16:17]  The result is qualitatively the same as
for the oscillator model, and is illustrated in Fig. 2.
This is understandable, for dispersion theory is quite
general in character and only an account of absorption
can change the curves of Figs. 1 and 2 appreciably
(provided, naturally, we speak of only a single reso-
nant frequency and a single function ey y ,; see Sec.

3b).
We now consider a ‘‘mechanical exciton’’ of a third

type (i.e., neither longitudinal nor transverse relative
to the polarization P). In our model such excitons in-
clude, first, all mechanical normal waves with ky = 0,
ky = 0, ky = 0. The vector P has in this case a trans-
verse component, inducing a transverse electromag-
netic field. The corresponding real exciton is there-
fore neither longitudinal nor transverse (we refer to
the field E), and its dispersion law w = w(k) differs
from that of the mechanical exciton, generally speak-
ing, even more than in the case of the transverse ex-
citons. In the limit as k — 0 the picture can be read-
ily explained using the formulas of classical crystal
optics or by employing the same oscillator model. We
shall return to this question later (see Sec. 1b).

From (5) or from Figs. 1 and 2 it is clear that at
large values of k (or n) but at frequencies w ~ w;(0)
~ wy(O) we have approximately

ok) ~ o,(k), k-—o0, ooy (7)

In other words, with increasing k the properties of
real transverse excitons approach those of the trans-
verse mechanical excitons. This result is quite gen-
eral and has a clear-cut physical meaning [ Eq. (7) is
the resonance condition in (5)]. As regards the fre-
quencies of non-transverse (with respect to P) me-
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chanical excitons, they coincide as k — 0 with the
frequencies of transverse excitons having the same
direction of oscillation, for when k = 0 the polariza-
tion direction cannot play any role if the long-range
long-wave field E| is not included. Since in the re-
gion of interest to us the spatial dispersion is weak
(the vector k is small compared with 1/ ax,y,z ), the
difference between the frequencies of the mechanical
excitons with given polarization P but different k will
also be small. This is, however, no longer the case
for the exact solutions of the Coulomb problem with
E, = 0 (i.e., for the longitudinal and ‘‘fictitious’’ lon-
gitudinal waves ); for example, the frequency of the
longitudinal wave differs from the frequencies of the
transverse waves by an amount on the order of w,

= [47e*N/m]!”, and the ‘plasma’’ frequency w, in
a condensed medium is usually quite high.

Whereas the properties of real and mechanical ex-
citons are the same only in the limiting cases [see,
for example, (7)], the connection between them, of
course, always exists. This is evident from the same
expressions (4) and (5), which show that the dielectric
constant and consequently all the properties of real
excitons are determined by the frequencies of the
mechanical excitons. On the other hand, if the gen-
eral dispersion formula is used, it is clear that the
energy (frequencies) and eigenfunctions of the me-
chanical excitons completely determine under certain
conditions the tensor e;;(w, k). We shall return to
the last question in Sec. 4. We must emphasize at the
same time that it is not the purpose of the present ar-
ticle to present either a detailed and complete expo-
sition of the quantum mechanical theory of mechanical
excitons or of specific calculations of eij(w, k). The
corresponding remarks made above and those that fol-
low in Secs. 3 and 4, are essentially prompted by
methodological considerations. For the same reason,
the subject is developed in the article in most cases
with sufficient detail, even when dealing with elemen-
tary problems. It seems to us that such an exposition

is justified, for the tremendous literature on exciton
theory shows much confusion and misunderstanding.

We note, finally, that by developing in relatively de-
tailed fashion certain aspects, the authors do not pre-
tend at all to provide a complete explanation of the
problems touched upon in exciton theory (the same
pertains also to the list of cited references).

1. THE COMPLEX DIELECTRIC TENSOR ¢jj(w, k)
AND NORMAL WAVES IN A MEDIUM

a) The tensor €jj{w, k) and its properties. The
equations of the electromagnetic field will be written
in the form*

1 0D’
rotB= -5,

1 0B
mtE:_TW’

divD’ =0,
divB=0. 1.1)

*rot = curl.




CRYSTAL OPTICS WITH ALLOWANCE FOR SPATIAL DISPERSION

Here E is the intensity of the electric field and B the
magnetic induction, occurring in the expression for the
force F =e (E + v x B/c) acting on a particle with
charge e and velocity v. The charge density p, and
the current density j, corresponding to the external
source are assumed to vanish in (1.1) (otherwise
curl B = %8—81%_ + i}cﬂjo and div D’ = 4mp,). The elec-
tric induction D’ used in (1.1) is defined by the re-
lation

D =T haj, (1.2)
where j is the density of the current induced in the
medium. *

To avoid misunderstanding, we emphasize that we
shall not refer at all to averaging of fields over small
regions. Such a procedure is unnecessary, nor is it
feasible in a theory of material electrodynamics in
which spatial dispersion is consistently taken into ac-
count.

In linear electrodynamics, the connection between
D’ and E can be written in the following genersal form

t
Di(x, )=\ at’ S dre, (t—t, 6, ) E; (¢, '), (1.3)

summation over repeated indices is implied henceforth.
The dependence of the kernel of this integral equa-~

tion on the difference t—t’ is due to the assumed ho-

mogeneity of the properties of the medium in time (in

other words, the properties of the medium are assumed

constant in time). On the other hand, if some factor
(for example, an alternating external pressure) causes
the properties of the medium to vary in time, then ‘e‘ij
= eij(t, t’, r, r'). Further, the integration with respect
to t’ in (1.3) is only in the interval from — <« to t, as
dictated by the causality principle, viz: the induction
D'(r, t) is determined only by past and present values
of the field E, i.e., for values t’ <t. If the medium is
also spatially homogeneous (all its points are equi-
valent ), then

t
Dy, )=\ dr Sdr'é”(t b e ) E (0, ). (1.4)

Let us take the Fourier transform of this formula,
putting
Li(r, f) = S E; (k. o)e k=00 do dk

[we use the same symbols Ej for the transforms

*By j we denote here the current density in a system which
is in a definite state, or after averaging with the aid of a statis-
tical matrix (by the same token, fluctuation phenomena are dis-
regarded; fluctuations are discussed in[‘“]), A traditional notation
in field theory uses in place of D' the expression j + JP/dt + ¢ x
curl M, where j is the conduction current density, P = (D — E)/4r
is the electric polarization and M is the magnetization (in other
words, the quantity D’ which we use and the customarily em-
ployed induction D coincide only for a non-absorbing non-mag-
netic medium).
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Ej(k, w) and for the originals Ej(r, t), but this will
not lead to confusion, since the arguments are indi-
cated; similar notation is used for other quantities ].
Incidentally, to obtain Dj(k, w) there is not even need
for the Fourier transformation, and it is sufficient to
put in (14) E(r’, t') = E(k, w) exp[i(k.r' — wt’)]. As
a result we get

Dk, 0)=¢;; (o, k) E; (k, v),

e, (0 K=\ dv (dRe-tom-ovz (2 R),  (1.5)
AR

and the component D;(k, w) is connected only with the
components Ej( k, w) having the same values of w and
k; this holds by virtue of the temporal and spatial ho-
mogeneity of the medium, i.e., by virtue of the depend-
ence of €jj only on the differences 7=t—t' and R
=r-r’.

eij(w, k) is called the complex dielectric tensor.

The frequency dependence of €jj{w, k) corresponds
to frequency dispersion, while the dependence on the
wave vector corresponds to spatial dispersion. The re-
gion in which the kernel €i~( 7, R) is of any significance
whatever is determined by the characteristic frequen-
cies of the medium w; (and also by the reciprocals of
the relaxation times) and by the characteristic dimen-
sions aj.

The frequencies wj usually lie within a rather broad
range. The dimensions aj (‘“‘molecular action radius”’
etc), to the contrary can in many cases be regarded as
small. In liquids and solids, the a; are the dimensions
of the molecules, the distances between atoms, or the
lattice constants; all these quantities are usually of the
same order of magnitude and are very small compared
with the wavelengths, which lie in the optical range. It
is therefore understandable why in optics spatial dis-
persion plays generally a less important role than fre-
quency dispersion.

If spatial dispersion is neglected, then eij(w, k)
= €jj(w, 0) = €jj(w), and in a homogeneous isotropic
medium, of course, eij(w) = E(w)éij (an example of
a homogeneous but anisotropic medium is a liquid
crystal). If spatial dispersion is taken into account
in an isotropic non-gyrotropic medium, then

ey (o, k) = (05 — ik, /2) eV (@, k) - (ke /6 €l (0, k),

with
e(0,0) = (o, 0) = &(v)

(for details, see below). We note that the tensor
eij(w, k), as can be seen from (1.1) and (1.5), de-
scribes also the magnetic properties of the medium
[if D’ depends also on B, relation (1.3) remains in
force, since B can be expressed in terms of E with

the aid of the equation curl E = -~ ==]. The per-
c

meability uij(w) need be introduced in addition only
on making the transition to the tensor eij( w). The
corresponding limiting transition is quite unusual; t1ol
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we shall not discuss this problem here, since ;5 ( w)
= 6j for optical frequencies (see also (13, sec. 60).
This circumstance is already implied in the assump-
tion €jj(w, 0) = ¢jj(w). We note also that formula
(1.5) or its analytical continuation determine, gener-
ally speaking, the tensor eij(w, k) not only for real
but also for complex values of w and k. Also the
tensor €;j; does not lose its physical meaning, since it
relates D’ with the field E, the amplitude of which
builds up or attenuates in time and in space. To be
sure, such amplitudes increase without limit at infin-
ity in corresponding regions of the complex plane.
However, a field in the form E = Ej expli(k.r — wt)]
with w and k real likewise does not correspond to
reality, since such a wave fills all of space-time. For
any specific physical formulation of the problem it be~
comes necessary to deal with an integral with respect
to the frequencies and the wave vectors (i.e., with
wave packets; this includes also problems with bound-
ary and initial conditions) and strictly speaking only
finite values of t and r are significant. Therefore, in
the region where the functions eij(w, k) are defined,
they can be used without danger. Generally speaking,
the tensor eij(w, k) has an inverse e{ji(w, k), so that

E, (k, o)=¢;] (0, k) D; (k, o). (1.6)

A crystal is not a spatially-homogeneous medium,
but for long waves (Ay > a) the tensor eij( w, k) can
be used in this case, too. The interaction of eij(w, k)
in erystals will be analyzed in Sec. 2a; here we con-
fine ourselves to any medium for which (1.5) and (1.6)
hold.

The energy relations will be discussed in Sec. lc.
We merely note now that when w and k are real the
heat released in a monochromatic wave is proportional
to the difference ¢jj(w, k) — ej*i(w, k), where the aste-
risk denotes the complex conjugate (see also Sec. 1c).
Thus, under the indicated conditions there is no energy
absorption if the tensor ¢jj is Hermitian

g;; (w, k) =e}; (0, k). 1.7)

The tensor ¢jj is generally speaking complex even for
real w and k. In both this case and the general case
it is convenient to resolve ¢;; into two Hermitian parts
€jj and €fj:

5, (0, k) = 5 (0, k) + ig}y (0, k) = b, + 1 0, (0, K),
R A (1.8)
where we introduce also the complex conductivity ten-
sor
Oy; (0, k) = 03; (0, k)t io; (o, k)
which is occasionally employed (we assume that w #0
and the tensors ofj and ofj are Hermitian).*

*The mixed notation[*] E{j = € * i4noij/w is also used,
where the total tensor is denoted by the prime, and its Hermitian
part is written without the prime [here, unlike in (1.8), 0;; is a
Hemitian tensor]. The sign of o;; corresponds to the sign in the
expression for the wave exp [t i(k-r — t)]; the plus sign is chosen
in the present article.
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It is obvious from (1.7) that €{j = 0 in the absence
of absorption and when w and k are real.

A real field E should produce real induction D’, by
virtue of which [see (1.4)—(1.5) and Sec. 1c]

g;; (0, k) =2} (— o, —k),

(1.9)

with w and k assumed real here. On the other hand,
if w is real and the vector k complex (a situation
which we shall deal with), then

&;; (0, k) = el;{— 0, —k¥). (1.9a)

By virtue of the symmetry of the kinetic coefficients
we have [for a proof see, for example [191; it is a
direct generalization of the corresponding proof for
the tensor eij(w)]:

g;; (@, k) = g (o, —k). (1.10)

It is assumed here and generally in what follows that
the induction of the permanent magnetic field is Bgxt
= 0; otherwise
€;; (0, k, Bexe) = g;; (0, —k,—Bexy).

If the medium has a center of symmetry (i.e., the gas
molecules or the unit cells of the crystal have a center
of symmetry), then the directions k and —k are
equivalent and

g;; (0, k) =¢; (0, k). (1.11)
Generalizing in natural fashion the customary defini-
tions, we shall call a medium in which condition (1.11)
is satisfied non-gyrotropic, while a medium not satis-
fying this condition is called gyrotropic or naturally-
active [it must be borne in mind here that relation

(1.11) may be satisfied also in the absence of a center

of symmetry; in other words, the absence of a center
of symmetry is necessary but not sufficient for the
occurrence of gyrotropy; see Sec. 2b].

For a non-gyrotropic medium and for Bgyt =0,
when relation (1.11) holds true, the tensors e{j(w, k)
and e{’j(w, k) are real, since a symmetrical Hermit-
ian tensor is always real [see (1.8) and (1.11)]. This
takes place, in particular, in the absence of spatial
dispersion and when Bgxt = 0. (The induction Bext
# 0 when there is an external field present or in fer-
romagnets.) In this connection, €ij and e{j usually
denote the real and imaginary parts of €45 We shall
do the same whenever there is no danger of misunder-
standing.

By virtue of the causality principle which we al-
ready used in (1.3) and (1.4), the tensor eij(w, k) has
definite analytical properties. The use of these prop-
erties enables us to relate in integral fashion the real
and imaginary parts of ¢;; for real w and k. The en-
tire analysis is similar to that used for an isotropic
medium without spatial dispersion (see, for example,
[1]), As a result (see also [10])

1 T Ime; (07 K)

Reau(m, k) —8;;=—

J 24

: do’,
@ —w
L

Imeg;; (o, k)= - %

—0

Re 81']‘ ((l)', k)——éi]‘ dm' (1 12)

o' —o
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The integrals are taken here in the sense of the prin-
cipal values and for simplicity we put

limw;;e (0, k) — 0.

-0

The Hermitian tensors efj and €{j can be represented
in the form

. , , B ,, " ’ "
€ =8ij, ¢+ L85 v Bij = &ij ¢+ LEij, ay Re € ;=8 ¢ &, a
N ” ” , , 0 "
i), ¢c=Eji, ¢y Bij, c=8&ji, ¢y Eij, a=—84i,a, &ij,a=""Eji,a»
’ .
Imaijzai]-,a—l— €ij, cr (1.83.)

where all the tensors with subscripts ¢ and a are
real. If Bext = 0 and condition (1.11) is satisfied, then
€ij, a = = €fj,a = 0 and we can simply put in (1.12) Re ¢jj
= €1J and Im €jj = e” In the general case, on the other
hand, we obtain from (1.12) and (1.8a)

(0, k) do’

z] ”
ehe (@, k) — 8;; = % e, e (0, k)
1 o {&;5, (@ 'y k)—d;;t do’
F% o —o ’
+
1 el (0, k) (', k) "
Sua—'?% z]a d(.l),{-}-”a(l)k)——-—g ‘LJ(,(;—(J) .

(1.12a)

We note that in the references known to us[19:18] the
formulas in (1.12) are derived with both w and k as-
sumed real. Yet both quantities can be regarded real
only in the limiting case of a transparent medium.
Since (1.12) and (1.12a) involve integration with re-
spect to the frequency, the assumed transparency over
the entire interval is patently inadmissible. Relations
(1.12) and (1.12a) can therefore be used in the pres-
ence of spatial dispersion for an analysis of wave
propagation in a medium only if they are generalized
to include complex values of k. Relation (1.10) is ob-
tained (see [1%]) using (1.12) and is consequently
proved in [1%J only for real k. Since k enters (1.12)
as a parameter, it seems to us that these expressions
and formula (1.10) should hold true also for complex
k. It is assumed here that the tensor ¢;;(w, k) is
uniquely defined for the complex values of k under
consideration. The absence of singularities of

eij(w, k) in the corresponding range of variables
(analyticity ) is probably of importance, too. In the
case of weak spatial dispersion of interest to us (see
Sec. 2b), the tensor €jj or the other tensors employed
have indeed no inadmissible singularities near the point
k = 0, at which the formulas (1.12) are known to be
valid. Allowance for the fact that the velocity of the
signal does not exceed ¢ leads [18:1%] to dispersion re-
lations that are more general than (1.12).

Certain inequalities for the derivatives of €jj with
respect to w follow from (1.12) and from the principle
of increasing entropy (see [1%] and Sec. 1c). We note
finally that all properties (in particular the symmetry
property) of the tensor 61_1(“” k) extend to the 1nverse
tensor €1J !(w, k). The use of the tensor €jj or 61]*
i.e., of relations (1.5) or (1.6), is equivalent over a
wide range and is dictated by convenience.
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b) Normal electromagnetic waves in a medium.
Transverse and longitudinal waves. ‘‘Fictitious’’ lon-
gitudinal waves and ‘‘polarization waves.’”” We shall
seek the solution of the field equations (1.1) in the
form of plane waves

El — EOlei(kr—mt)’ Bl — Bmei(k"“””, — D()lei('"—“”), (1'13)
where Ey, By, and Dy are constants.
We then have*
D' = —-2[kB], kD’'=0,
@
_° — (1.14)
B=--[kE], kB=0.

From this, eliminating B, we obtain the ‘‘wave equa-
tion”’

2

D’ =%{k2E—k(kE)}. (1.15)
The waves (1.13) can obviously be solutions of the field
equationsT only if the relation between D’ and E is
such that only waves with the same w and k are
coupled. This is precisely the situation under condi-
tions when the tensors eij(w, k) or ei-jl(w, k) can be
introduced.

Substituting (1.5) in (1.15) we obtain a system of
linear equations

(1)2

8k — K°E; + kB, =0, (1.16)
The condition for the existence of a nontrivial solution
for this system leads to a dispersion equation relating
w with k (the symbols A or |...| denote determi-

nants ): .
Ao, k)= e, (K, m)-k%&i,.+kikj\=o. (1.17)
If the tensor ¢;; is replaced by ei‘jl, we obtain
Ay(o, k) =|2 o, k) + ket (o, k)l:O. (1.18)

When both tensors ¢jj and e{jl exist simultaneously,
equations (1.17) and (1.18) are of course equivalent.
Unless otherwise stipulated, this situation is assumed
throughout.

The roots of (1.17), which are the frequencies of
the normal waves, will be designated by the index I,
i.e., denoted by wy = wy(k), where w; and k are, gen-
erally speaking, complex. Whether one of these quan-
tities, wy or k, can be chosen as the real variable de-
pends on the formulation of the physical problem (see,
for example, [2]). In crystal optics the frequency w
is usually real (this is the frequency of the light from
the external source). But even when the frequency w
is real in general k =k’ + ik” and only in the trans-
parency region do we have approximately k = k’ (k’

*[kB] =k x B.

tAn analysis of waves of the type (1.13) may prove insuffi-
cient for values of » and k corresponding to multiple roots of the
dispersion equation. This question, which is not very significant,
will be discussed in Sec. 3a.
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and k” are real). We shall consider below as a rule
only homogeneous plane waves, for which

k=%;ts, n(o, s)=n-tix, (1.19)
where 8 = k/k is a unit real vector and the frequency
w is real. When the vector 8 can occur, it is implied
without further explanation that the transition to ho-
mogeneous waves has been made. Under conditions
(1.19), obviously, the statement that k is complex with
w real denotes that « = 0.

Equation (1.15) now has the form

D’ =n?{E —s (sE)}. (1.20)

The dispersion equation (1.17) has in this case the
form

m A N, r\2
Bn(‘l” -c—ns)—— n (‘5ij—‘sisj)’

= ei]-sisjﬂ“-—[(sijsisj) £ —S;8,48,;8;] N2+ | ;| =0. (1.21)

The induction D’ is always transverse (i.e., 8+D’
= () and the terms ‘‘transverse’’ and ‘‘longitudinal”’
waves will be employed henceforth, as usual, only with
respect to the vector E. In the general case normal
waves in an anisotropic medium are neither trans-
verse nor longitudinal. Under certain conditions, how-
ever, the waves can be longitudinal or transverse, and
these cases will be pointed out. For transverse waves,
in accordance with (1.20),

D' =n’E, sE=0, sD’=0. (1.22)

By way of illustration we shall indicate in the present
section the character of different normal waves for a
rhombic crystal in the limit as k — 0, i.e., assuming
eij(w, k) = eij(w) (classical crystal optics). For
such a crystal the principal axes of the tensor €jj cO-
incide for all w with the two-fold axes X, y, z (we re-
fer to crystal classes D; and Dyp; in class Cyy the z
axis is parallel to the two-fold axis and x and y are
perpendicular to the symmetry planes). In this coor-
dinate system the diagonal elements of €45 with values
€x, €y, and €, are all different (it is assumed that
there is no accidental degeneracy). In transverse
waves the vector E is parallel to any one of the axes
X, y, or z, and the vector k lies in one of the coordi-
nate planes. In the frame of the principal axes x, y,
and z we have for transverse waves

ni, 2, 3=t . (0). (1.23)

In an arbitrary frame we have for transverse waves
[see (1.16), (1.19), and (1.23)]

& (@, k) —n2,;|=0. (1.22a)

This equation also holds true in the presence of spatial
dispersion.

We note that transverse waves correspond only to
those solutions of (1.23) that are compatible with the
transversality condition 8- E = 0, It is therefore obvi-
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ously inconvenient and senseless to use (1.22a). For
longitudinal waves, as is clear from (1.20)

D'=0, E=ZEs. (1.24)

When Dj = €jj and Ej =0, the vector E can be non-
vanishing only if

| &;; (0, k) |[=0. (1.25)

In addition, one must be certain that the vector is lon-
gitudinal for the solution under consideratien, i.e., that
E = Es. Longitudinal waves are considered quite fre-
quently in plasma applications and have been suffi-
ciently well investigated (see, for example, [2J), None-
theless we make several remarks concerning these
waves. It follows from the field equations (1.14) that
in the longitudinal waves B = 0 and they can thus be
regarded with allowance for the Coulomb field only. *

In the absence of spatial dispersion, the condition
(1.25) determines the possible longitudinal-wave fre-
quencies wy, which are independent of k. Therefore
the group velocity u = dw/dk = 0 and consequently
only an account of the spatial dispersion can lead to
the propagation of longitudinal waves (in the sense
that u = 0).

In an isotropic non-gyrotropic medium, as already
indicated in Sec. la, we have

&, (0, k)= (8;;— s;5;) e (@, k) + s;5,81 (0, k).  (1.26)

We arrive at this expression by recognizing that a
second-rank tensor can be formed in an isotropic me-
dium only by using the tensor &ij (6ij =0 when i = j,
ijj =1 when i =) and the tensor sjsj. The introduc-
tion of the symbols €T and el is connected with the
fact that in a transverse field E, when s+-E =0, we
have

D’ =¢tr (0, k)E ( for sE=0). (1.27)
In a longitudinal field, when E = Es,
D' =¢l(w, k)E ( for E=Es). (1.28)

1t is easily seen that waves in an isotropic medium can

be either longitudinal or transverse. For transverse

waves we have in this case [see (1.22) and (1.27)]
;Lj_:.atr(o), —mc—;l_]_) H (1.29)

and for longitudinal waves, according to (1.24) and
(1.28),
® A
gl <(D, vy n )= 0.
Of course, (1.30) can also be obtained by substituting

(1.26) in the general relation (1.25). When spatial dis-
persion is neglected etr = €l = e(w) and the frequen-

(1.30)

*The equality B =0 in longitudinal waves pertains, naturally
only to the field of the wave, as is assumed in (1.14). In the
presence of an external magnetic field Begt = const, the longi-
tudinal wave can propagate only in the direction of Bext (see [’]).
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cies of the longitudinal waves are determined by the
equation e(w)) = 0.

For rhombic crystals and k = 0 Eq. (1.25) for lon-
gitudinal waves has in the frame of the principal axes
the form

Ex ((‘)) &y ((1)) €. ((1)) =0.

In the absence of accidental degeneracy these longitud-
inal waves are directed along one of the principal axes
X, ¥, z and have a frequency w satisfying the corre-
sponding equation ex(w) =0, ey(w) =0, or €z(w) = 0.
Only if the vector k is parallel to one of the axes x, y,
or z are all normal waves in a rhombic crystal trans-
verse or longitudinal, as is clear even from symmetry
considerations. When the vector k lies in the coordi-
nate plane (but not parallel to an axis), one of the nor-
mal waves is transverse and the other is neither longi-
tudinal nor transverse.* The latter pertains to all nor-
mal waves in the case of a vector k lying outside the
coordinate planes. We have in mind here the optical
region or, formally, finite values of k, and at the same
time only solutions that satisfy all the field equations.
If we consider large values of k (short waves), then
waves with finite values of D’ and with non-zero field
E come quite close to longitudinal. This is clear di-
rectly from the wave equation (1.20): in the transpar-
ency region we have fi = n and for a finite frequency

w the limit k = wn/c — = corresponds to the limit

n — «; however when fi = n — « the induction D’, in
accordance with (1.20), is finite only when E =8(s8+*E),
i.e., only for longitudinal waves if E # 0. On going
over to absolute values, the same pertains to an arbi-
trary fi, but actually if absorption is taken into account
the modulus |fi| is finite and the transition to the limit
[fif — = cannot be realized. If spatial dispersion is
taken into account, |fi| is generally speaking finite
even if absorption is neglected (see Sec. 3b). These
factors, however, are not significant here since the
limiting transition k — « has a formal significance,
and physically we are dealing only with the fact that
waves with E # 0 are nearly longitudinal when k

= w|0|/c is sufficiently large.

To determine the conditions under which n in-
creases, we first use the well-known equation which
determines n in classical crystal optics for a uni-
axial non-absorbing crystal:
syt s 52

=———+—-,-—-

ng €, (o) e’ (@)

(1.31)

(the z axis coincides with an optical axis, say the
four-fold axis in the case of a tetragonal crystal).

The refractive index n, for the extraordinary
wave becomes infinite if

&) (®) (s + s7) + ez (0)s2=0. (1.32)

*In such waves the direction of the energy flux S (or of the
group-velocity vector u = dw/dk) does not coincide with k (see
also Sec. 1ic).
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In order to satisfy this condition, the indices €| and
€5 should obviously have different signs, but can have
no singularities (poles) whatever.

Within the limits of classical crystal optics, if the
principal axes of the tensors €{j(w) and efj(w) coin-
cide, it is convenient to transform to the system of
these axes. In this system the dispersion equation
(1.21) has the form
(8% + £,55 + £,57) nt

—lec (e, +8.)si+ &, (e, +8,)sy+e, (e, +¢&,) s n®

+e,8,8,=0. (1.33)
The root of this equation can become infinite for finite
values of ey, €y, and €; only under a condition that is
a direct generalization of (1.32):

(1.34)

On the other hand, if we do not change to the principal-
axes frame, then we can readily see that (1.34) is writ-
ten in the form

e2st -+ efsh +e2si= 0.

g;; (@) 5;5,= 0. (1.35)

The frequencies wjj, satisfying (1.35) or the more gen-
eral expression (1.39) given below, will be called the
frequencies of the ‘“fictitious’’ longitudinal waves; in
these waves D’ # 0 and E = Es.

As already mentioned, the ‘“fictitious’’ longitudinal
waves satisfy the field equations only as k — . How-
ever, if we consider the equation (1.35) independently
of the field equations, a procedure that has a certain
meaning (see below), then the frequencies w|, are
found to depend on 8 even when k = 0 [the absolute
value of k does not enter in (1.35)]. This means that
the frequencies w,’, are analytic functions of k as
k—0.

The frequencies w,'| correspond to resonance—infi-
nite values for the curves of n(w) —only for non-
transverse waves. The latter limitationis connected
with the fact that strictly transverse waves [see (1.22)
and (1.23)] cannot approach longitudinal waves in any
manner. At the same time, the index n(w) can tend
to infinity for these waves too.

It is clear from (1.20) that for non-longitudinal
waves, and particularly for transverse waves [see
(1.21)] we have

E=0(for |n|->o and finite D’). (1.36)

In the simple case (1.23), the pole || — = corre-
sponds to a pole of one of the quantities ex’y,z(w ).

If we do not consider the field equations, then the
induction D’ can differ from zero for a zero field
Ej= e{jl(w, k) Dj = 0 only when

| &} (o, k) |=0. (1.37)

Waves with frequencies wp(k), satisfying simultane-
ously this equation and the condition k.D’ = 0, will be
called ‘‘polarization waves’’ [in such waves the gen-

eralized polarization P = (D' —E)/4r = D' /4r does not
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vanish when E = 0]. As follows from (1.36) and the
statements above, the ‘‘polarization waves’’ satisfy
the complete system of equations only as k — =,

The ‘‘fictitious’’ longitudinal waves and the ‘‘po-
larization waves,’’ satisfying the field equations only
as |fi| — ~, cannot exist in reality, and their analysis
is only ancillary. The latter is connected predomi-
nantly with the fact that these waves are obtained in
the solution of the purely Coulomb problem div D’ =0,
curl E = 0 for arbitrary k [the equations of the Cou-
lomb problem are obtained formally from the general
field equations (1.1) with ¢ — =]. For homogeneous
plane waves the last two equations mean that

sD'=0, E=Es. (1.38)

‘“‘Polarization waves”’ satisfy these equations of the
Coulomb problem if the induction in these waves, in
addition to meeting condition (1.37), is also transverse
(s+D' =0), ‘“Fictitious’’ longitudinal waves (D’ = 0,
E = Es = 0) satisfy equations (1.38) if

85(0, KE, = s;5;8,(0, E = 0,

.
s;Di=s;

ij
i.e., under the condition

g (0, k)s;s,=0. (1.39)

This equation generalizes directly the condition (1.35)
and becomes identical with it in the limit of classical
crystal optics.

The fact that the solutions of the Coulomb problem
(““fictitious’’ longitudinal waves and ‘‘polarization
waves’’) satisfy for k — « the complete system of
field equations is of course connected with the possi-
bility of neglecting the transverse field* (or, as is
sometimes stated, neglecting the retardation) as
k — «, It is indeed clear directly from the field
equations (1.14) that as k — « and for finite w = 0,
E, and D’ we have B— 0 and k X E = 0. The same
is clear from the dispersion equation (1.21), since
this equation is satisfied if (1.39) holds and i — «.

The longitudinal waves (1.24), of course, satisfy
the equations of the Coulomb problem. If we disre-
gard these waves, then the solution of the Coulomb
problem in crystal optics is of importance only from
the point of view of calculating the tensor €jj(w, k)
for some particular model. An important role is then

‘assumed, as already mentioned in the introduction and
as will be discussed further in Sec. 4, by the “‘polari-
zation waves” and by the approximate solutions ob-

tained when E = 0 and going over into the ‘“fictitious’’
longitudinal waves when the influence of the long-wave

*If we are dealing with the microscopic field, it is necessary
to take into account in the field equations (1.1) the appearance
of the charge tensor p, and current density j,, which are con-
nected with the particles. Consequently the neglect of the trans-
verse field does not apply to magnetic fields, which are important
in the analysis of the magnetic interaction between particles in
the crystal.
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Table I. Normal plane and homogeneous waves in an

anisotropic medium (E; =Eg e(k*=¢9, k=-‘%ﬁ(m) s, ste=1)

a) Complete system of field equations (finite k):
General Case:

D' =ii* {E~s (SE)}, sD'=0, |&;5(w, k) ~*(8ij—sisj) | = 0;
Transverse Waves:
D'=1’E, sD'=0, sE = 0;
Longitudinal Waves:
D'=0,E=EFEs %0 &; (o, % | =0

b) Solutions of the Coulomb problem (s-D' =0, E=Es):
Longitudinal Waves:

D'=0,E=Es #0, | &j(w, k) | =0;
“Fictitious’’ Longitudinal Waves:
D'#0, sD'=0, E = Es +0, &; (o, k) 515 = 0;
‘‘Polarization Waves:”
D'£0,sD'=0,E=0, | el (0, k) | =0.

Formally, as k -+ «, the ¢‘fictitious’’ longitudinal waves and
the ‘‘polarization waves’’ satisfy also the complete system of
field equations.

field E on the frequencies and wave polarization is
taken into account.

In conclusion we present Table I, which lists the
relations for normal waves in an anisotropic medium.

Formally, as k — =, the ‘“fictitious’’ longitudinal
waves and the ‘‘polarization waves’’ satisfy also the
complete system of field equations.

c) Energy and some other relations for waves in
an anisotropic medium. In the analysis of quantities
that are quadratic in the field (for example, the en-
ergy density ), the fields must be regarded as real.
We therefore put

E(r, )= % {Eoe——i(cot—kr) 4 E*eitot —k*n}, (1.40)

where E; is constant for a monochromatic wave and
varies slowly for a quasi-monochromatic field (this
means that E; changes little within a time ~1/w and
over a distance ~ 1/k). The frequency w in (1.40) is
assumed real in accordance with the character of the
problems of interest to us. Expressions analogous
to (1.40) are used for D’ and B.

If we neglect the derivatives of Ej, By, and Dy we
can rewrite (1.14) in the form

oD, = —c[kB,], ©oB,=c[kE,];
oD* = —c[k*B}], oBj=c[k*E*].

(1.41a)
(1.41b)
Multiplying (1.41a) by E, and B, respectively, we get

D,E, = B,B, = ck [E,B,]. (1.42)

In a transparent medium k =k* and, as is clear from
(1.41), we also have

D'E;=B,B}. (1.43)
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Further, we obtain from (1.41a) after multiplying by
E* and Bf respectively

o (DET + B,BY) = ck {[E B7] + [E7B,]}.  (1.44)
In addition, of course,
kD;=0, kB,=0, DB,=0, BJE;=0. (1.45)

Differentiating (1.44) with respect to k7 and taking
(1.5) into account, we obtain expressions that become
highly simplified for a transparent medium if the
upper sign is chosen in (1.44) (for the general case
see (19 where the earlier literature is also cited ).
For a transparent medium we thus arrive at the re-
lation

Wu:g’ u=g_(l:’ Sij:s’fi]'? g b +—S 0 1651:([E B*]
+ [ESB,)),
de]. (o, k)
Spu= —%t——]akl EyEg;,
1{ doe;; (0, k) .
e e EOjE0i+BoB:} (1.46)

Here u —group velocity, W —time-averaged energy
density, 8, —Poynting vector, and §; —energy flux
arising only in the presence of spatial dispersion

(the superior bar denotes averaging with respect to
time or, more accurately, with respect to the high fre-

quency; for more details see [1%10,1%20]) 1 the ab-
sence of spatial and frequency dispersion
D;Et+BB: S _ &
W=w,= = S5=5, (1.47)

and choosing the upper sign we obtain from (1.46) and
(1.44)

Wu=5, W,=X5, M_y, (1.48)

e]w

ie., u = Vph, Where ug =u- k/k and Vph = w/k —
phase velocity in the direction of k.

Relations other than (1.41) and (1.46) but of the
same type can also be derived. (18]

In the presence of absorption or in the case of a
non-stationary process, an important role in the anal-
ysis of the energy relations is played by the Poynting
equation

1 oD’

'HEW+~_= ——dlv [EB], (1.49)

which follows from the field equations (1.1).
For the field (1.40) relation (1.49) averaged over
the high frequency becomes [1%a]

oW i do¥; 0By, « 00y OEY; 1
o + 0051 — {6(0 % YT e o E"’J
. OF o OEF. —
0] 04 0i N G 1
ak, oz, ak, Bz, EOJ} = —divS§, (1.50)

where the expressions for W and S are indicated in
(1.46) and the quantity oij = we{'j /4w (the conductivity)
is introduced with € = Eij + ie{’- [the Hermitian ten—
sors €jj, Ojj, and their derivatives are taken in (1.50)

335

for real values of the frequency w and the vector Kk;
a more general expression, suitable for complex k, is
also derived in [1921 ]. It is clear from (1.50) (see
[198,20] for details) that the physical interpretation of
the various terms in this equation is in general diffi-
cult. On the other hand, if we are dealing for example
with a monochromatic wave, (i.e., when 9E; /ot = 0)
in the absence of spatial dispersion[%%] or in an almost
transparent medium (real vector k; see [1%]) then the
quantity l/zUionjEf)*i is the heat dissipated from unit
volume per unit time ). *

Starting from the dispersion relations (1.12) we
can obtain in the case of an equilibrium medium L1e]
several inequalities for the derivatives 9¢{j/dw and
their combinations. For example,

de;; (@, k) del;

, 2(3—ef)
ow >0, '

“dw )

(1.51)

Recognizing that the group velocity u is the signal
velocity in a transparent medium, it becomes quite
obvious that in such a medium

\ dw X
=lﬁl<c’ (1.52)
to include the vacuum we must naturally write this in-
equality in the form u =< c. In the general case w
=w(k, a, B), where oz =ky/k and B = ky /k
(v =k, /k, a? + g% +y% =1). Hence, as can be readily

seen,

do do 1—a? __8_m£

m_ ak “tFe TR Bk
ete.

We therefore have directly
_k do b0 c
RNy T den) 2008 % (1.53)
do

where ¢ —angle between u and k. According to (1.52)
and (1.53)

d(mn) > 1

(1.54)

In the absence of spatial dispersion we can show that
the angle ¢ < 7/2 (i.e., the vectors u and k always
make an acute angle) and consequently

d (a)n)

> 1 (1. 543.)

In addition, in the absence of spatial dispersion in a
non-absorbing medium the quantity B = (n +ix)? is
always real, and in the presence of absorption the
product nx is positive. L19] In the presence of spatial
dispersion the angle between 8; and k remains acute,

*In the present article we are treating an absorbing medium

which is in particular a medium in thermal equilibrium. We note
that a non-equilibrium medium (crystal) may be not absorbing,
but radiating, as is the case in lasers. For an isotropic medium
without spatial dispersion this means that €" = 47¢/w <0 and
nx = 270/w < 0, as is clear from the relation € = €' + ig”

=(n +ix)
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but the angle between u and k can be arbitrary. The
quantity #i* can be complex in this case also for a non-
absorbing medium, and the sign of nk can be arbitrary
(see Sec. 3). In the case of complex A2, the field de-
creases on penetrating the medium not monotonically
(as in the case when fi = —«? is real), but in oscilla-
tory fashion; therefore the time-averaged Poynting
vector is 8, # 0. On the other hand, if total reflection
takes place (no absorption, but the wave strikes an ex-
tensive non-transparent medium with « = 0), then the
time-averaged total energy flux within the medium,

S =8, +8§,, of course vanishes. Since 8; = 0 in the ab-
sence of spatial dispersion, the equality §0 = 0 must
be satisfied in this case (normal incidence on the me-
dium ) for total reflection. It is therefore clear why in
the absence of spatial dispersion the field, under total
reflection conditions, cannot decrease with depth in a
non-absorbing medium in oscillatory fashion (i.e.,
with index n # 0).

Let us discuss in conclusion the effect of spatial
dispersion on the scalar product of the inductions D’
for different homogeneous normal waves propagating
in a given direction s.

From (1.20), recognizing also that 8. D = 0, we ob-
tain for any two normal waves with given 8 (waves Dj,
El' fli, and Dé, Ez, and ﬁz)

DD, = nE,D; = anZD (1.55)

Consequently for different fi; and fi,, taking the sym-
metry property (1.10) into account, we have

)= (o2 0)
D

In the absence of spatial dispersion and when w; = wy,
we conclude from (1.56) that the solutions 1 and 2 are
orthogonal (i.e., under these conditions Dy-Dj = 0).
In the presence of spatial dispersion this orthogonality
property does not obtain, generally speaking, even for
identical w; and w,, since fi} = H%. In an isotropic
medium or in propagation along an optical axis, when
fi; = fi,, degeneracy sets in, and the vectors D{ and Dj
in the normal waves can be chosen orthogonal. In ad-
dition, in the case of gyrotropic media [see (2.26) be-
low], it can be readily seen that D{ and D; remain
orthogonal when fi; = fi;, in spite of the presence of
gyrotropy—spatial dispersion of first order with re-
spect to k.

In analogy with the derivation of (1.56), we readily
obtain the equation

D07 (4 g ) [0 %)

— & (031: —C—nls> ] EliE,j.
When w; = w,, in the absence of spatial dispersion, and
when absorption is neglected the tensor €jj is Hermit-
ian, and fi%is real. Under these conditions and when
i} = fi3, obviously DjDj* = 0. If we disregard spatial

DD'(

(1.56)

(1.56a)

dispersion, then even for a transparent medium (index
fi real, tensor €;; Hermitian) the condltlon DlD’* =
is violated even when w; = w, but #i = fi{. We note,
finally, that in the analysis of wave propagation in a
medium use is made occasionally of the tensor

S_L,w Tluelmnm], (1.57)
where nij is the projection tensor
7].‘_6.._.33 (1.58)
By virtue of (1.20) and 8+D’ = 0, obviously,
Nafy =0, Dj =0, 8imn,;D; = ey, Di. (1.59)

The symmetry and Hermitian propertles of the ten-
sor eu extend also to the tensor el ij? since the ten-
sor 1jj is real and symmetrlcal By way of an exam-~
ple of the use of the tensors €7 _|_ ij and n‘) let us write
the condition (1.39) for the ex1stence of “‘fictitious’’
longitudinal waves in a different form. Namely, the two

relations E; = 'JiD and s; D = 0 can be combined in

one equation E; = €il TllJDjs since Si'ﬂiij =0 automat-
ically. It is clear, therefore, that when D’ = 0 the vec-

tor E is non-vanishing and longitudinal (i.e., E = E8
or n;;E; = 0) only if the determinant
\nllel’mnm] I '—|BJ_ ij (1.60)

vanlshes The tensor € 1,ij which is the inverse of
eqt 1], is also sometimes introduced.[?5] Since E;

= €Jj Dj = €lm77mijs we obviously have
Nk, = I 1,-D

and
Di=e  muli=¢) ,E)

e1.ime ;=05 B =y (1.61)
Thus, the tensor € j; enables us to express the in-
duction D’ (if s~ .D’ = 0) in terms of the transverse
electric field E;. The tensor ¢ 1,ij does not exist if
(1.60) holds true. This is readily understandable, for
if (1.60) holds then D’ # 0 for longitudinal E, i.e.,
when E| = 0.

Generally speaking, the tensor €| ij is not an

analytic function of k as k — 0, even if the tensor
€4 is analytic (the latter does hold true over a wide
range; see Sec. 2b). In addition, knowing €} jj, it is
not always possible to determine €;;. Even for these
reasons alone it is already clear that the tensors ¢ ij
and €7 .L ijj can at best only be of ancillary value, al-
though they can prove to be convenient for writing
down certain expressions. Indeed, in the case of non-
longitudinal waves the expression for fi% is expressed
quite simply in terms of EI}ij and €1,ij- Thus, ac-
cording to (1.59), the dispersion equation has the form
6.,'._7‘ _1
;,2 J_ 3]

=0. (1.62)

Further, from (1.20) and (1.61) it is clear that
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2
E|;=nE

(1.63)

&, ..

1,45

and the dispersion equation is written in the form
| €108 — 12| =18 — 81 0an® +]eL0p] =0.  (1.64)

Here o, § =1,2 and the z axis is in the direction of

k; in this system
(1 0 0)
"5=0 0 0

Blan=¢6,11-F&1 225|808l =81 118 22— 8] 128 o1

and in the absence of spatial dispersion

€ +e& 1
—%‘1&:& 7V(SJ_,11 — &) ,22)+4E) 128,21 -

(1.65)
In place of the tensor ¢ 1,ij we can equally well use
the tensor

2
Ry e=

€ =814+ 5S;

since
Di=ey yE | j=¢€;E

We can show that
il€miStSm
€rt5rSt

€
Sl.ii=2<‘5ij"si3;‘)—6i;’+ (1.66)
In the microscopic theory, if only the transverse field
is used as the perturbation, we obtain none other than
the tensor € ij (see Sec. 4b).

2. THE TENSOR ¢jj(w, k) IN CRYSTALS

a) Introduction of the tensor ¢jj{w, k) for the case
of crystals. Crystals are not spatially homogeneous,
since, for example, the lattice sites are not equivalent
to other points. Therefore the use of the tensor
eic(w, k), introduced for a homogeneous medium, has
certainly only limited application when it comes to
crystals. Before we proceed to the discussion of
crystals, we rewrite in different form the equation
(1.3), which pertains to an arbitrary medium (the
properties of the medium being independent of the
time ). We put

E(r, t)=E;(r, 0)e,

or

E(r, t)= S E, (K, o) ei0r—an gg,
and use an analogous notation for D’. Substituting
these expressions in (1.3), we obtain
Di(r, w) = S g{w, r, v')E; (', @)dr’,
g (0, 1, r)= S Eii (t, r, ') et dr,
Dj (k, 0) = ﬁ S D (r, w)e=irdr

= &, (0, k k) E; (K, 0)d,

* o 1 N i KrkE .
£U(m,k,k)=(zT)SS &, (@, v, 1) eX kTR dr

|
|
;2.1
|
J

For an unbounded homogeneous medium

g (t,r, 0" ) =g, (T, r—r’)

and since
1
(2m)®

S eil—xr gr’ = § (k — k'),

we see that
& (o, k, k')= &;; (0, k)b (k—Kk').

We thus arrive at Eg. (1.5) for a homogeneous medi-
um, as we should.

The crystal is an inhomogeneous medium whose
properties remain unchanged under a displacement
equal to any lattice vector a (translational symme-
try). In the crystal, therefore,

g {0, r,r')=¢;(w, ria, r'+a) 2.2)

A function possessing the property (2.2) can be
written in the form
g;; (0,1, ') = D) gp (o, r—r’) eIz,
b

where
b=n,b; +n,b, - n;b,

is an arbitrary reciprocal-lattice vector (nj are in-
tegers and bj the three fundamental reciprocal-lattice
vectors, i.e., exp (i2ra-b) = 1). Substituting such an
expression for eij(w, r,r’) in (2.1), we obtain

&y (@, k k)= S eb (0,k) 8 (k' —k — 2ab), 2.3)
b

where

ef; (0, k)= S go{0, R) e kRJR

and obviously, if we include only the term with b = 0,
we get

& (0, k, k') =eP=0 (0, k) & (k' — k)
and
Di(k, 0) =&?~0(0, k) E; (k, ).

Thus, the tensor €%=0( w, k) corresponds to the di-
electric tensor €ij (w, k) and the latter can be used in
the electrodynamics of crystals whenever it is suffi-
cient to retain one term with b = 0 in the right half of
(2.3), or when all the remaining terms can be expressed
by means of this first term.

According to (2.1) and (2.3), the electric field E and
the induction D’ are related by the equation

Dj(k, o) = ; &b (0, k) E; (k + 27b,0), (2.4)

which enables us to write the wave equation (1.15) in

the form

O3 €h (@, k) By (k + 2ab, 0) — KE; (k, 0) + kk,E; (k, 0) =0.
b (2.5)
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The determinant A (w, k) of the system (2.5) deter-
mines the dispersion equation

Ao, k)=0, (2.6)
the roots of which (generally speaking, complex) are
0= (k)y = 1! 2: 37 (2-7)

and correspond to different branches (modes) and
zones of the ‘‘normal’’ frequencies of the electromag-
netic field in the crystal.

In optics the interest lies in the region of relatively
long waves (k < b ~ 1/a) and relatively low frequen-
cies (w «< ¢cb ~ ¢/a). Let us assume that in this fre-
quency region some Fourier component of the electric
field E (k, w), corresponding to small k, is consid-
erably greater than .all the other Fourier components
in (2.4) and (2.5) corresponding to b = 0.

From (2.5) we can readily establish by successive
approximations that such an assumption is generally
speaking confirmed, and the field components with b
# 0 turn out to be smaller than E;(k, w) by a factor
(w/2 be)? 'b(w 2mb) S (a/Ag)? 3one can think that
usually €~ (w, 2rb) £ 1).* Therefore, if we eliminate

*We denote the running wave vector by k' [the symbol k was
used in (2.5)] and put k' = 27b + k, |k| < |2#b|. We then have in
first approximation

<2—:c- \)2 e (0, 2b) E; (k, ©)~b3E; (21h, ©)4bib;E; (2xb, ©)=0.

From this we get precisely E (27b, m)~(ﬁb—)z &P (@, 2mb) Ek, o),

if we disregard the possibility of occurrence of a small coefficient
in the denominator, owing to the smallness of the determinant
|8ij —byb;/b?*|. Even if the crystal is under the influence of a ho-
mogeneous field E(0, ), the induced current and D’ will in gen-
eral be deeply modulated, in view of the influence of the lattice
sites with periods ~a, which corresponds to wave vectors ~1/a
~b. This is why we assume 81',-" (o, 27b) $1. It must be noted in
addition that both the last assumption and specially the use of
the estimate [8;; —bib;/b*|~1 are worthy of a more detailed anal-
ysis. For this purpose it would be useful to carry out the corre-
sponding calculations for some simple model.

Under the assumptions made above we have for small k <2nb

E(k + 2nb, w) = E(2nb, m)N()\o) E (k, w) and the first term in

2
(2.5) has the form o {E 0 (w, k) x Ej (k, w) + terms of the order

of e2%0 (e, k) (X) Ek, o).
At the same time, in accord with (2.4), we have accurate to

small terms

Di (2ab, 0)=¢;;" (0, 2nb) E; (k, o)and Difk, 0)=237(0, k) Ej (k, o).

From this it is clear that in order of magnitude

D' (2mb, ©) _ &~ "(w, 2zh)
D’ (k, o) =0 (a, k)

and thus this relation is far from small when £®~ 1 and gb=0
S510. In other words, if the spatial modulation is deep, by virtue
of which &P (w, 2ab) ~ 1, the smallness of the amplitudes

E (2#b, o) is not at all simultaneously connected with smalless
of the amplitudes D'(2nb, ). For the latter reason the wave
equation for D' can, generally speaking, not be used [similar to
Eq. (2. 5) for E] to obtain equations of the type (2.8) by succes-
sive approximations.

in the corrésponding approximation all terms with
b = 0 from (2.5), we obtain for E(k, w) an equation
that coincides with (1.16):

& (0, k) E; ~ k2E; + k;k,E; = 0. (2.8)
Here €ji(w, k) differs from ¢j 0(<.u,k) by terms of
order (a/ )»0)2 These addmonal terms, in addition, de-
pend weakly on k, provided k/27b ~ ak = 2man/Aj < 1;
consbequently in first approximation eij(w, k)
~ €jj(w, 0). In other words, in the long-wave region
it is necessary to include the additional terms if fre-
quency dispersion is considered with accuracy to
~ (2/Ag)%. What is of interest, on the other hand, are
effects of order an/A, (natural optical activity), ef~
fects of order (an/A¢)? = (a/A)? when n > 1 (longi-
tudinal waves, waves near the absorption lines ), and
terms proportional to (a/)\o)z, but dependent on the
direction (the optical anisotropy of cubic crystals with
n~1l). Asa result we can, generally speaking, put
511(0-’ k) = €1 %(w, k) in (2.8) for the long-wave re-
gion of 1nterest to us.

Equation (2.8) leads to the dispersion equation
(1.17), with limitation to rather low frequencies
(w < ¢/a ~ 10! gec™!) and long waves (Ay > a ~ 3
x 1078 ¢cm ), which does correspond to the optical re-
gion; the harmonics of the electric field, correspond-
ing to short waves, are small and the principal part of
the field is given by (2.8) with a certain tensor eij(w, k).
By the same token, it is possible to employ this tensor
in crystal optics in the same way as in a homogeneous
medium.®] This was indeed the past procedure, but a
more precise statement of the conditions and of the
meaning of the tensor eij(w, k) as applied to crystals
is essential. It is sufficient to point out that when the
tensor eij(w, k =0) is used, the ratio a/A is assumed
non-vanishing, while on the other hand, the medium
(crystal) is considered spatially-homogeneous. The
validity of such a procedure is not obvious a priori.

The situation involved in the formalism employed
was described above. Physically, everything reduces
to having the lattice constant a play a double role.
On the one hand, the parameter a characterizes the
spatial inhomogeneity of the medium, an inhomoge-
neity which is neglected on going over to €jj(w, k).
On the other hand, the same parameter a describes
the ‘“‘molecular action radius’’ I —the interval of val-
ues of R, for which the kernel eij(w, r,r+R) in
(2.1) differs appreciably from zero. Letting the ra~
dius ! approach zero corresponds to neglecting spa-
tial dispersion, as was already noted above. If we
introduce from the very outset two formally independ-
ent parameters a (the lattice constant) and I (the
‘““molecular action radius’’), the picture may become
clearer. Actually, however, usually a ~ I in the crys-
tal, and for complicated crystals with anomalously
large lattice parameter, a > I. The inequality a < I
{or, formally, the tendency of a to zero with I = 0)
is apparently impossible for a real crystal.
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b) Case of weak spatial dispersion (a/A « 1). The
introduction of the tensor €jj(w, k) and its use in the
wave equation (2.8) for a crystal lattice is, generally
speaking, possible if

a 2
(%) «t
(we disregard for the time being some additional as-
pects pointed out in Sec. 2a).

In optics the condition (2.9) can be assumed to be
satisfied at all times, at the same time, however, it
still does not indicate that the spatial dispersion is
small. The point is, as was already emphasized, that
spatial dispersion is characterized by a parameter
a/A = an/Ap. It is obvious that at large values of the
refractive index n this parameter an/Ay, and conse-
quently also the spatial dispersion, can be appreciable
even if the inequality (2.9) holds true. Under such
conditions €jj{w, k) can turn out to be a rather com-
plicated function of k, and if we imagine eij( w, k) to
be expanded in powers of k, this series will contain
many terms (the expansion parameter is precisely
the quantity an/A;). The wave equation (2.8) can in
this case have many solutions, i.e., the dispersion
equation (1,17) will have many roots wy(k). On the
other hand, if spatial dispersion is neglected, the dis-
persion equation has only two roots corresponding to
the ordinary and extraordinary waves, and under cer-
tain conditions an additional root w| = const for the
longitudinal wave.

In connection with the foregoing, a very important
fact is that in crystal optics the spatial dispersion is
weak, i.e., the inequality mentioned in the introduction
applies

2.9)

alh=an/hy € 1. (2.10)

To satisfy this inequality we can put in practice
€jj(w, k) = eij=°(w, k). This is an important factor
from the point of view of calculating ei-j(w, k) from
the microscopic theory. Since such calculations have
only limited significance, an incomparably more im-~
portant factor is the fact that condition (2.10) allows
us to expand the tensors eij(w, k) or ei'ji(w, k) in
powers of k of which only the first two or three terms
need be retained. (5] We thus use the expansion

&5 (0, K) = &;; (0) 4 ;5 (@) By + 0y (0) K, 2.11)
or, for homogeneous plane waves, when k = wiis/c:
5 (0, k) = &, (0) + ivyy1 (@) 2 sy + gz (@) 2 ) osis,. (2.12)
Analogously, for the inverse tensor
&) (0, k)=¢ei} (0) + i8;;; (0)k; + Bijum (@) KiK. (2.13)

The use of the tensor €;j and ei_~1, whether in general
or in the form (2.11)—(2.13), is equivalent over a wide

range and is dictated by considerations of convenience. *

*In spite of the fact that the tensor €;; is used more fre-

quently, the advantages gained by using the tensor ai’jl in certain
cases have been noticed long ago (see, for example,[21,22]),

Exceptions are cases in which several components of
the tensors ¢jj(w) or e{'jl(w) tend to infinity (increase
strongly). For example, if some component 6ij(w)
tends to infinity, then the expansions (2.11)—(2.12) are
insufficient for the corresponding component of

€jj(w, k), since all the terms are vanishingly small
compared with €jj(w). At the same time, an increase
in €4 usually brings about an increase in fi, i.e., an
increase in the role of the spatial dispersion. In such
a case we can use expansion (2.13), which is particu-
larly effective when ei_jl( w) decreases. Analogously,

in the region where ei'jl(e) increases strongly, we
must use the expansion (2.11)—(2.12), and not (2.13).
We shall henceforth make use of the expansions (2.11)
—(2.13).

Let us now discuss the conditions under which they
can be used, apart from the initial requirement (2.10).
Expressions (2.11)—(2.13) are meaningful only if the
functions eij(w, k) and ei'jl(w, k) can in general be
expanded near the point k = 0. In this connection we
recall that as k— 0 the functions eij(w, k) and
ei'jl(w, k) tend respectively to €jj(w) and e{jl(w)
and are independent of both the modulus and the direc-
tion of k. Further, eij(w, k) and ei'ji(w, k) are inte-
gral quantities, obtained by spectral summation (see
Sec. 4). Therefore, even if the integrand has a few
sufficiently weak singularities (for example, at the
natural frequencies of the unperturbed problem ), the
components of €jj will have no singularities. In addi-
tion, as already mentioned in the introduction and as
will be pointed out in Sec. 4, in the cases known to us
the natural frequencies of the correctly chosen unper-
turbed problem have no singularities near k = 0. Thus,
there are no grounds whatever for doubting that the
functions €;5 and ei'ji have no essential singularities
when k — 0.

Expansions of the type (2.11)—(2.13) using only a
few terms may not be sufficient in the following unique
situation. Let, for example, eij(w, k) = e(w, k) 64,
with

o (0, k) =8 (@) + oo
L pke
o

2.14)

Under certain conditions this expression describes the
variation of e(w, k) near a quadrupole absorption line.
So long as the term uk? is insignificant, we deal here

with an expansion such as (2.11). In the opposite case,

however, 0—ay

© —pkt
[e(@ k)—e()]!'=———,

vk

which corresponds to neither (2.11) nor (2.13). It is

easy to write an expression that generalizes formula
(2.14) to include any crystal in the sense of the phe-
nomenological expansion (2.11)

25 (0, Ky =g;; (0) + iy (0) by oy (0, K) ik,

oifim (@, k) = & 51 (@) + Ny (©) By + Loy (0) kK, (2.15)
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Similarly we can replace yijl(w) in (2.11) by Yijl(‘*” k),
with
Vit (©, k) =y} (@) + itijim (@ + Vijimn (@) ki,

For a non-gyrotropic cubic crystal formula (2.15) is
equivalent to (2.14), with
% jumbrkn =8y m__‘_’—a(f)ki— .
o MM
In a more complicated case the use of the combined
expansion (2,15) leads to cumbersome expressions,
which can hardly be of practical interest. It is more
important, however, that formulas such as (2.14) and
(2.15) need be used only in exceptional cases. In fact,
the expansions (2.11)—(2.15) are in the parameter a/A,
i.e., the coefficients v and 6 are of order a while the
coefficients a, 8, v, and u are of order a®. There-
fore, as is clear from (2.14), the term /.tl«:2 in the de-
nominator need be taken into account only when
lw=wyl/wy ~ uk? ~ (21a/A)?, while at the same time
vk?
0o
o

~ uk? ~ ¢ (0) ~1.

The latter means that the quadrupole line makes a
contribution to €, comparable with the contribution

of the dipole lines. The corresponding value of the
ratio (w~—wy)/wy is on the order of 10~5—10-¢, which
is equivalent to approaching the center of the line with-
in A\ ~ 10724 in the case of weak absorption. Even
when such conditions are realized, the term uk? in
(2.14) or the dependence of ajjim on k in (2.15) still
need to be taken into account in a very narrow region
near the center of the line. Outside these regions, ex-
pansions (2.11)—(2.13) are more convenient, and the
entire ‘‘quadrupole effect’’ finds its reflection in the
terms ojjimkikm or Bijimkikm, which thus play the
principal role. Consequently, a changeover to expres-
sions of the type of (2.14) and (2.15) corresponds in a
certain sense to an examination of higher-order effects.
The corresponding limitation on the range of validity
of the expressions (2.11) and (2.13) is therefore per-
fectly natural. It is interesting that a similar higher-
order effect is encountered in the experiments (see
Sec. 3f). Summarizing, we can state that the use of
formulas (2.11)—(2.13) in crystal optics with spatial
dispersion is a fully consistent method, * although it
does occasionally need some further generalization,
such as the use of expressions similar to (2.15).

*When series such as (2.11)—(2.13) are substituted in the dis-
persion equations (1.17) and (1.18), as was done inf®], one ob-
tains for the refractive index n algebraic equations whose order
increases with the number of terms retained in the series. The
new roots n, however, correspond to ever increasing values of k.
Consequently, in the detemination of only those first few roots
n which can be considered in connection with condition (2.9)

" and by virtue of the influence of absorption (see[’] and Sec. 3b,
below), the retention of only the first terms of the series is again
fully consistent and justified. Thus, remarks to the contrary,
made in[?*], appear to us to be incorrect.

V. M. AGRANOVICH and V. L. GINZBURG

We note that some references [14:24:25] yge expres-
sions for eij(w, k) in crystals that are in some re-
spect more general than (2.11)—(2.13). Thus, the ex-
pression used in (14} ig
gij

e F (2.16)

gy (0, k) =¢gj, -

where €, wy, and gjj are constants. In fact, how-
ever, we must put in (2.16) F(k) =f + grky + hykyk o,
since inclusion of terms of higher order in k is in
general beyond the limits of the initial approximation.
Equation (2.16) then reduces to (2.13) and is suitable
for use only near the center of the line.* Formulas
suitable for a wide range of frequencies are given in
(241 put these extend beyond the limits where expan-
sions (2.11) and (2.13) are valid, and have essentially
an extrapolative character. It seems to us that the
most correct procedure is not to resort to extrapola-
tion formulas for ¢jj(w, k), thereby taking explicit
account of the weakness of the spatial dispersion. For
eij(w ), to the contrary, it is convenient to use extrap-
olation formulas near the absorption line, for example
by putting in the principal-axis frame
©};
52-_7&1:_—%—@ (2.17)

The tensors contained in (2.11)—(2.13) satisfy cer-
tain relations that follow from (1.7) and (1.9)—(1.11).
Thus, by virtue of (1.10),

g; (v) =g;} ie;":ao;—

g;; (0) = &;; (@), eif (0) = &5 (0), 5, (0) = &y, (),

Yist (0) = —Yji (@), ‘51';'1 (0)= — ajil (@), ﬁiilm (0) = ﬁjilm(m)'
(2.18)

In addition, the tensors ojkrm and Bjkpm can always
be chosen such as to make @jjim = @jjml and Bijim
= Bijml (we assume here that this choice was indeed
made ). We note also that the magnetic induction of
the external field Bgxt is assumed equal to zero
everywhere except in Sec. 3d. In the presence of a
center of symmetry and for a nongyrotropic medium
in general, it follows from (1.11) that

Vit =0, S =0. (2.19)

In the absence of absorption, the tensors eij(w ), ei'jl(w),
Yijl> ®ijim, 0ijl,» and Bjjim are all real [see (1.7) and
(2.18)].

All tensors simplify considerably for crystals with
high symmetry, let alone for an isotropic medium.

In an isotropic nongyrotropic medium the tensor
eij( w, K) has the form (1.26). If the spatial dispersion
is weak, then [see (1.26)—(1.30) and (2.12)]

*In[#] and in some other articles, the approach used inl5] and
above in this article, connected with the expansion of €;;(w, k)
in powers of k, is compared to some extent with different calcula-
tions that include various elements of microscopic theory. It
seems to us that one cannot agree with these comparisons and
with many other ideas advanced in the literature. Since the cor-
responding critical remarks have already been mentioned-inl*],
we do not deem it necessary to discuss them in the present
article.
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[the factor (w/c)?, contained in (2.12), is included in
ay and o). Near the pole e(w) an expansion of the
type (2.13) must be used, and for an isotropic medium

&5 (0, k) =2 (o) 0y, — oy (w) n? (8;5— 5:8;) — oy (0) ﬁzsis].,

e (@) ng = 20 (2.20)

T4a, (0)’ f )

ni

Table II. Properties of the tensor eij(w) and the pseudo-
tensor fij(w) (€ij = €ji, fij = fji, Yijl = eijmfml)

L. Principal axes of L.
System v ru’t‘.gleptﬂens)({)r fij
Triclinic €11 €12 €13 Not fixed fij=0 in class C;
(812 €29 323) 1t f12 f1s .
€13 €93 E33 fij: fiz foe fas |—in class Cl
fig fas fas
Monoclinicl g3 O €53\ |y axis directed fi;=0 in class Cy
0 £,,0 along 2-fold fii 0 fis
£13 0 &4y axis or perpen- | f,=|0 f;,0 |—in classC,
dicular to the F15 0 fag
symmetry plane. 0 f15 0
f“=<f,2 0 f23)—in class C;
0 fu3 0
. Axes x, y, and z .
Rhombic e 0 0 directed along | fij==0 in class Cp
0 £, 0 2-fold axes, fnu0 0
0 0 &y and in class fij=[0 /20 }—in class D,
Cyy thex and y 0 0 fg
axes are per- 0 f1,0
pendicular to fij=|f20 0 )—inclass Cy,
the symmetry 0 0 0
planes,
Tetragonal €, 0 0 In classes Cy, f;j==0in classes Cyp, Cyy, and Dy
0 ¢, 0 S4ia?€c4h fp 000
— o .
0 0 g a;lig (4?f:ld fii=] 9 1.9 Jin classes C,and
axis) is fixed, 0 fy Dy
In classes Dy, fu f12 0
C4v: Dag, and | f,,—=| f1p f1, 0 in class S,
D4n gll axes 00 0
are fixed. 0 130
fij=| 10 O in class Dyg
0 0 0
Trigonal e, 00 In classes C3 fi;=01in classes C;;, Cyy, and Dy
and C3; only /5,0 0
0 &0 the z axis is L
0 0 g fixed (3-fold fij= 0 71 0 )in classes C;and
axis). In classes] 0 0 f, D,
DS’ CSV’ and
D3q all axes
are fixed
Hexagonal g, 0 0 In classes Cg, fij="0in classes Cy, Cep, Cgy, Dyn,
0 &, 0 C3n, and Cgn f,0 0 Dan
L1 only the z 0 o\
0 0 &g axis (6-fold fii= i in classes €y and
axis) is fixed. (U Y Dy
All axes fixed
Cubic e 00 « (x,yand z fij==0in classes 7%, 7, and 0,
(0 e 0) are 2-fold F00
axes in =10 folj 7
00e classes T and | /¥ <0 {) fj, in classes 7 and O
Ty, and 4-fold /
axes in
classes O,
T4 and Oy,).
Isotropic 00 Choice of f;;=20 in the presence of a center
medium (0 e ()) axes arbi- of symmetry
[AVIRVANIR
00 e trary foefofolin the absence of a -
1}
00 f

center of sym-

metry
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e} =71 (0) 8;;+ By (@) n2 (8;; — 5;5;) + By (@) n?s;s;. (2.21)

By virtue of the condition 8.D’ = 0, we have obviously
E =[1/¢ + g, (w) % 1D, and from (1.20) we obtain

»} 1 1 N, 1
ﬁL”ﬁ_+TL*1=Ov ni = —Tﬁzéi ‘/(@) —'rE.
(2.22)

We shall have more to say about this solution in Sec.
3b. For the longitudinal wave we obtain from (2.21)
the condition e(w);) = 0. The spatial dispersion for
the longitudinal wave is disregarded when the expan-
sion (2.21) is used.

We note that formulas (2.20) and (2.21) correspond
to the following relations

D=¢E—o (o) ;—Z rot rot E + o) (@) gz— grad div E,

2

E= —Iel + By (0) :0—22 rot rot D — fy; (0) %grad divD. (2.23)

The expressions (2.23) are the most general relations
between the two vectors in an isotropic nongyrotropic
medium with neglect of all derivatives of order higher
than the second.

The conditions connected with the symmetry of the
crystals, with respect to the tensors ¢jj and vjj;, are
well known (see, for example, [1:2%:26]), Nonetheless
for the sake of convenience we recall the correspond-
ing results (the symmetry properties for the inverse
tensors are obviously the same as for the original
tensors and their components will not be written out
below ).

A symmetrical tensor of the second rank, specific-
ally eij(w ), has at most six independent components.
For the corresponding second-order characteristic
surface €jjxjxj =1 this corresponds to the lengths of
three axes and to three parameters (angles) deter-
mining the orientations of these axes. The symmetry
of the tensor €jj is the same for all crystal classes of
a given crystal system. This can be readily verified
by determining €4j for the least symmetrical class of
each system. In doing this, it is useful to bear in mind
the following fact, which is obvious from the proper-
ties of second-order surfaces: in a plane perpendicu-
lar to the 3-fold and higher-order axes, the section
through the surface degenerates into a circle. There-
fore, for example, even for the least symmetrical
crystal class T in the cubic system the characteristic
surface degenerates into a sphere, i.e., €jj = €dij
(class-T crystals have four 3-fold axes, correspond-
ing to the space diagonals of a cube).

In the tetragonal, trigonal (rhombohedral) and
hexagonal systems we can, by aligning the z axis with
the 4-fold, 3-fold, or 6-fold axis respectively, reduce

g 00
0 e, 0) etc (Table II).*
00 e

*The tensor simplification resulting from symmetry is dis-
cussed in particular detail in[?¢]. We note that we use for the
crystal classes the Schoenflies notation,which is most widely
used in the physics literature (the correspondence between this
notation and the international notation is given in{*1).

the tensor ¢jj to the form

By virtue of (2.18), the tensor Yijl (and 5ijl) has
the following properties:
Yax, 1 = Yyy, 1=Yzz,1 = Ov

Yax, 1 = — Yxz, 1
The tensors vjj; and 6;5; have thus in general nine in-
dependent components and can be written in the form

(2.24)

Yxy, 1 = ._’ny,'l’ sz. L= —Y:y. i
(I=1, 2, 3=gz, y, z);

Yijt = €ijm8mi» 61'1'1 = € imlmi>

where ejjm is a unit pseudotensor of third rank (e;;
=1, ey3=-1, ey = 0 ete; ejjm is unchanged by mir-
ror reflection) and gy and fi,; are pseudotensors of
the second rank. Further, one can write

Yijihs = € m@niky = € jmBmy Ok = e jnfoiky =€, fms (2.25)

where the pseudovectors (i.e., axial vectors) g’ and
£’ are introduced.

Neglecting in (2.11)—(2.13) terms that are quadratic
in k, we have

D’izaij(m7 k)Ej= €;; ((‘o)Ej— i[g'E];,

E; =&i} (0, k) D} =&} (0) D} — i [£'D),. (2.26)

Substituting these relations into the wave equation
(1.15), we can verify (see Sec. 3a and, for example, (11,
Secs. 82, 83) that only the scalar product fijSiSj or
fisi plays a role in this equation. Consequently the re-
fractive indices and the ratio of the components of the
vector D’ are obviously independent of the antisym-
metrica} part of fij, i.e., this tensor can be chosen in

symmetric form.* For an isotropic medium and cubic

*The antisymmetrical parts of the pseudotensors g;; 4 and
fij,a lead to pseudovectors ga and fa , which have the form
const-[h x k]; here h is a certain unit vector connected with the
crystal. Obviously, such a vector can exist only for crystals in
which one direction is preserved (without change of sign) under
all symmetry transformations. In other words, the vector h exists
only for pyroelectric crystals Cy, Cs, Cy, Cyy, C4, C4qv, C3, Cay,
Cs, Cgv; see, for example[‘], Sec. 13). From this and from Table
III it is clear that for crystals of classes Cj3y, C4y, and Cgy the
entire tensor f;; is antisymmetrical, but these crystals are usu-
ally not regarded as gyrotropic (only the symmetrical part of the
tensor f;; is indicated in Table II). Actually, it follows from
(2.26) that the .vector f; leads to the appearance of a longitudinal
component of E only (we assume that k = wns/s). Therefore the
tensor f;; 4 makes no contribution whatever to the refractive
indices and to the ratio between the components of the vector D
in the solution of the wave equation for the isotropic crystal (see,
for example, Sec. 3a). At the same time, the vector E, generally
speaking, has elliptic polarization even when f;; = f;; 5. In this
case, however, the degree of ellipticity is proportional to k, i.e.,
we are speaking of an effect of order (a/)). Thus, in examining
only circular or near circular polarization, crystals of classes
C3zy, C4v, and Cgy are nongyrotropic, and for all other crystals
the tensor fj; can be regarded as symmetrical.

We shall proceed in this fashion henceforth (this pertains to
Table II). In addition, in examining effects of second order in k

. we shall henceforth assume for simplicity that (2.11)—(2.13) con-

tain no tems linear in k, although these terms may also lead to
second-order effects.

“Weak gyrotropy’’ (the degree of ellipticity ~a/A) which
should be observed in pure form in crystals of classes C3y, Cy4y,
and Cg, (this was pointed out earlier in[*’]) seems to us, at the
same time, fully deserving of study.
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Table III. Properties of the tensor ajjim (@ijim = @jilms
@jjlm = ®ijml; the properties of the tensor Bijim
are analogous to those of ajjim)

System

Components ajj/m (in addition to those indicated, the components obtained by virtue of the
conditions ¢jjy = &jilm = aijm! also differ from zero)

Triclinic
table; see the text and table II)

All 36 components ojj/m differ from zero (poésibility of fixing the axes is not taken into account in this

Monoclinic

20 components differ from zero; the following components vanish: dyxyyy, Gzyyy, Gyyyx, Qyyyzs

Uxxxy: Oyxxxr» Xzzzy, Qyzzz, Xxzxy, Oxyxz,» Oxxyz, QYyzxx, %zxzy, Xzyzx, Gzzxy, %Xxyzz

Rhombic

Cxyxy: Oxzxzs» Oyyzz, Xzzyys Xyzyz

12 independent components differ from zero: cyyyx, Oyyyy, Rzzzz, Oxxyy, Xxxzzs Oyyxxs %zzxx:

Tetragonal

In classes Dy, C4y, Dp4, and Dyp, seven independent components differ from zero: cyyxxx = Gyyyy,
Ozzzz, Oxxyy = Oyyxx, Oxxzz = Oyyzz, Ozzxx = Ozzyy, Oxzxz = Oyzyz and Ayyxy
In classes Cy4, S4, and Cyy, three additional independent components differ from zero:

Kxyxx = — Oxyyy, Oxxxy = — Gyyxy, Oxzyz = — Kyzxz

Trigonal

In classes C3 and Cj; there are 12 independent components: oxxxx = Oyyyy, Cxxyy = Oyyxx, Oxxzz
= Oyyzz, Oxxyz = Oxyxz =~ Qyyyz, Gxxxz =~ Qyyxz = — Oxyyz, Xxxxy = Cxyyy =~ Qyyxy =~ Oxyxx,
Ozzxx = Ozzyy, %zzzz, Oyzxx = = Oyzyy = Oxzxy, Cxzxx = — Oxzyy = — Oyzxy, Oyzyz = Oxzxz,
Oyzxz = — Oxzyz, Oxyxy =+ Qxxxx — Sxxyy-

In classes Dj, C3y and D3gq we have in addition oixxxz = Oxxxy = Oyzxz = Gxzxx =0

Hexagonal

In classes Cg, C3n and Cgp there are 8 independent components (the components not included are
equal to zero): oyxyx = Oyyyy: Oxxyy = Oyyxx, Oxxzz = Oyyzz, Ozzxx = Ozzyy and azzzz: Axyyy
= Oxxxy = — Oyyxy.= — Oxyxx, Oyzyz = Oxzxz,» Oyzxz = — Oxzyz, Oxyxy = Oxxxx ~ Cxxyy-

In classes Dg, Cgv, D3n, and Dgy, we have in addition cixxxy = Gyzxz = 0 (other components con-
nected with the foregoing are also equal to zero in view of the relations given above).

Cubic

In classes T and Ty, four independent components differ from zero: oy = cxxxx = Oyyyy = Gzzzz,

&g = Qxxzz = Oyyxx = Xzzyy, X3 = Oxyxy = Ayzyz = Czxzx: X4 = Gzzgxx = Oxxyy = Gyyzz
For classes O, T4, and Op, we have in addition «g = oy

Isotropic medium

The same components as in the cubic system differ from zero, but in addition to oy = a4 we also have
o3 = oy — oy (thus, we have a total of two independent components),

crystals ‘of course, without center of symmetry, for
otherwise gjj = fjj = 0; in addition, it must be borne
in mind that the tensor gjj may vanish also in the ab-
sence of a center of symmetry, as occurs, for example,
for cubic crystals of class Tq):

gi;=88;; fi;=18;; g =gk, {'=/k,

)} _e}::_zg[kE], 2.21)

E="" _if[kD'].
In this case not only D’«k = 0, but also E+«k = 0 when
D’ = 0. On the other hand, if D' = 0 and E = Es (lon-
gitudinal waves ), then the gyrotropy becomes immate-
rial. The form of the symmetrical tensor fjj for dif-
ferent crystal classes is indicated in Table II (for more
more details see (1], Sec. 33, and [22,26,287),

Let us proceed to examine the properties of the ten-
SOr O'jjim (and Bijlm ). By virtue of the symmetry of
the tensor ajjpm with respect to the indices ij, and
separately with respect to the indices Im [see (2.18)],
this tensor has in general 36 components (in place of
the 81 components of an arbitrary 4th-rank tensor ).

Further decrease in the number of independent com-
ponents is connected with the specific symmetry of the
crystals. The general principle reduces, as is known,

to the requirement that the tensor components (phys-
ical quantities ) remain unchanged under the transfor-
mations allowed by the symmetry of the crystal (for
more details see 26,281y,

Triclinic crystals either have no symmetry ele-
ments (class Cy), or else have a center of symmetry
(class Cj). However, the presence or absence of a
center of symmetry does not impose any conditions on
a 4th-rank tensor. Consequently, 36 independent co-
efficients ajjjyn remain in the triclinic system. To be
sure, the choice of axes, which in this case is arbitrary,
enables us to fix three coefficients. It seems more ra-
tional, however, to calculate the number of independent
components without account of the possibility of free
choice of axes.

1t is sufficient here to recall as an example the ten-
sor €jj(w) (or any other second-rank tensor). The
number of independent components of ¢j; in the tri-
clinic, monoclinic, and rhombic systems is respec-
tively 6, 4, and 3 (see Table II). At the same time in
all these cases in the system of principal axes the ten-
sor €jj has three independent components. However,
the difference between the crystals of these systems
is very large, inasmuch as in a rhombic crystal the
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principal axes are fixed, but in a triclinic crystal
they must be determined, this being equivalent to three
additional parameters.

We shall indicate below the possibility of choice of
the principal axes (i.e., we note the cases when this
choice is not fixed by considerations connected with
the symmetry of the crystal), but in calculating the
number of independent components this circumstance
is disregarded.*

In monoclinic crystals of classes C, and C,, there
is a two-fold axis, usually chosen to be the y axis. In
rotation about such an axis, the coordinates are trans-
formed as follows: x — —x and z — —z., The compo-
nents of tensors with odd sums of the number of x and z
indices reverse sign under this transformation, while
physically both systems of coordinates are perfectly
equivalent, and in this lies the meaning of the assertion
that a two-fold axis is present. Consequently, the cor-
responding 16 components of the tensor ajjiy vanish,
namely the components

a . a,

xxxyr O

Qeyyyr Fzyuy o

[24 X

YYyx? Yyyye’ YXxXX?I zz2Y? yzzz?

e,

xxyz? ayzxxv @

xczxyr axyxz? 2x2Yy? azy.-lxv &z axyz:'

The class Cg has only a mirror plane perpendicular
to the y axis, and by virtue of this symmetry the com~
ponents @jjm with odd number of y indices should
vanish. This requirement leads to the same result as
for classes Cy and Cy,. Thus, in monoclinic crystals
the tensor ajj;y has 20 independent components. In
crystals of the monoclinic system the symmetry prop-
erties fix only one crystal axis (the y axis) and by
choosing the other axes we can reduce the number of
components of the tensor a;jjzy by one.

Classes Dy and D,j of the rhombic system have
three two-fold axes. We see readily that in this case
the following 12 components with even number of each
of the indices x, y, and z (the axes X, y, and z are
two-fold axes) differ from zero:

a axxyy' axxzz’ a azzxx’ axyxy' ax:x:’

Q.

XXXXI yyxx?

a a (2.28)

zzyyr a;

yyyyr Cyyzer Qyryr Cozzz
(in addition, of course, axyxy = yxxy = Oxyyx ete).
The third class of the rhombic system, class Cyy,
has one two-fold axis (the z axis) and two mutually
perpendicular mirror planes passing through this axis.
Reflection in these planes, i.e., the transformations
X— —X or y — —y, leave only the components of the
tensor with even number of indices x, and simultane-
ously, with even number of indices y unchanged. But
from this it follows for the fourth-rank tensor that the
number of indices z must be even, i.e., we again ar-
rive at the scheme (2.28). Thus, crystals of the rhom-

bic system have 12 independent components jjzy.

*The possibility of the choice of axes is taken into consid-
eration in[?°] in an evaluation of the number of independent com-
ponents of the elastic-modulus tensor. This explains the differ-
ence in the number of independent components between(**]
and[?*].
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For classes Dy, C4y, Dyq, and Dy of the tetragonal
system, in addition to symmetry elements correspond-
ing to one of the classes of the rhombic system, the z
axis is a 4-fold rotation or inversion axis. Rotation
through an angle 7/2 about this axis should leave the
components of the tensor (physical properties) un-
changed, and at the same time the transformation
X — -y, y — ~x occurs. It follows therefore that
some of the coefficients of (2.28) are equal to each
other, and only seven among them are independent
(the remaining Qjjlm> in addition to those obtained
by virtue of the conditions @jjim = @jilm = ®ijml
are equal to zero in the chosen frame):

= Oyyyyr Bzzzzr Oaxyy = Oyyxer Cuxzz = Cypers

Oz = O

a'xxxx

a a.

=a xyry

(2.29)

2% zzyy? Yzyz?

For classes C4, Sy, and Cy, of the tetragonal system,
having only a 4-fold rotation or inversion axis (and
also a mirror plane perpendicular to it in the case of
class C4n ), we cannot start from (2.28). As was already
illustrated above, we arrive at the conclusion that the
other non-vanishing coefficients, in addition to those in
(2.29), for these classes are

a = —Q

Q. — Q. X7Yz

Xyxx = xyyyr Caxxy =  Cyyxyr yrxze (2.30)

Thus, for classes Cy4, S, and Cy, there are 10 inde-
pendent components. At the same time, for these
classes the symmetry of the crystal singles out only
the z axis, and thus there is one degree of freedom
in the choice of the coordinate frame.

Crystal classes of the cubic system have no non-
vanishing components other than those for rhombic
crystals [see (2.28)].* The number of independent
components, however, decreases greatly. Thus, even
the four 3-fold axes, which are present in all classes
of the cubic system (body diagonals of the cube), lead
to the equivalence of all components of the tensor under
the substitution xyz — yzx — zxy. We are, therefore,
left with only four independent components
= Cty

oy =

XXXX =a

az:yy’

a ... (2.31)

Yyyzz

yyyy = Lrzagy Og = Oyyyy yxx

Oy = Cyyny = Cyayz = Qppaer O = Qppy == Qyyyy =
For classes T and Ty, no further simplifications
arise. In classes Tq, O, and Op we have, in addition

a,=a, (classes T, 0, 0,). (2.32)

(2.32) follows in obvious fashion from (2.31), if we rec-
ognize that the axes of the cube, X, y, and z, are 4-fold

*This statement is connected with the fact that all classes
of the cubic system share symmetry elements with at least one
of the classes of the rhombic system (in addition to having other
symmetry elements) (see, for example, the illustrative table 21
in[“]). We recall also that the axes x, y, and z are fixed for all
classes of the cubic system (two-fold axes for classes T, Ty,
and T4; 4-fold axes for classes O and Oy).
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inversion axes (class Tq) or rotation axes (classes O
and Op).*

In an isotropic medium, as is clear from (2.20),
there are only two independent components ajjzm. In

tensor notation for an arbitrary Cartesian frame
c2 b

RLexxe = Lyyyy = Fozze = % = T Ta? QXts Ay = Pz
c? l
= Oyyaex = Ay = O e = a‘::yy =y = Oy = — sl Xy, (2-33)
o2
CLyxy = Pazxs = (Zyzyz:OL3:(Z1*OL2=F((ZJ.—OC”). j

The difference between the cubic crystals of classes
Td, O, and Op lies obviously only in the existence of
the relation o3 = o; - a,.

In crystals of the triclinic and hexagonal systems,
an account of the symmetry properties calls for sim-
ple analytic transformations, which we shall not carry
out here (see, for example [28:2%] for some of these
transformations applied to some other tensors). There
is no further need for it, particularly since the sym-
metry properties of the tensor ajj, (including those
given above) can in fact be assumed known from the
literature. The point is that the symmetry of the ten-
sor ajjym is the same as in the long-employed tensor
of piezo-optical coefficients 7jj;y,, which relates the
variation of ei—jl with the stress tensor oy (thus,
Seij = mijimOIm; see (?81). Precisely the same sym-
metry is of course possessed by the tensor of elasto-
optical coefficients pjjym (here 6ei_j1 = PijimYm>
where uymy is the strain tensor). Therefore the sym-
metry properties of the tensor @jjlm for the trigonal
and hexagonal systems will be taken from (2] (see
Table 15 of [28]), This was not done for other systems
in view of the simplicity of the derivation and the de-
sire to emphasize certain aspects. A summary of all
the values of ajjym is given in Table IIL

We shall not consider simultaneously terms of first
and second order in k, in view of the remark already
made concerning the smallness of the spatial disper-
sion. We shall therefore be interested not in the gen-
eral expressions (2.11)—(2.13), but in expression
(2.26) for the gyrotropic medium and the following
expression for a nongyrotropic medium

2 ~
g (0, k) =¢;; (0) + (\%) %, im (@) n%,8,,,
2
& (0 k) = e} + ()
The tensor eij(w, k) can, of course, always be diago-
nalized by choosing the corresponding (principal)
axes.T The direction of these axes for arbitrary s

ﬁijlm ((D) n‘ZSlSm'

*We point out a certain inaccuracy in[*]: the statements made
with respect to the values of o1 in tetragonal and cubic crys-
tals are valid only for the more symmetrical classes of these
systems [the schemes (2.29) and (2.31)—(2.32)].

TIf the tensor & (w, k) is not Hermitian, then we must con-
sider €{; and €fj separately, and the principal axes of these
tensors (more accurately, the eigenvectors, which in general are
complex) do not coincide in the general case. Unless otherwise
stipulated, we refer in the text, for the sake of brevity, only to
the tensor E-:{j, which is considered real.

(2.33") '
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does not coincide with either 8 or with the axes of the
tensor eij(w); if the axes of the tensor eij(w) are
fixed (i.e., they are free of the degeneracies present
in cubic and uniaxial crystals), the axes of the tensor
€jj{w, k) are close to the axes of ¢jj(w), in view of
the smallness of the s-independent terms in (2.33).

In crystal optics with spatial dispersion, naturally,
a great interest is attached to those principal axes
€jj(w, k), the direction of which coincides with s.
For rhombic crystals such axes are X, y, and z [see
(2.28) and Table III]. If, for example, the vector 8 is
directed along the x axis, then the principal values of
the tensor eij(w, k) are

€1 = Exx ((D’ k) = €y ((1)) =+ <% ;7'> Qpxner €2 = &y (o, k) =&y ((D)

® ~ \? @ AN\ 2
J7_<T ) Oyyxxs 3= 8y ((1), k):ex ((D) %{77&) ©ooxn-

In tetragonal crystals of classes Dy, C4y, Dyg, and
D4h, for a vector s directed along the axes x and y,
the tensor eij(w, k) turns out to be reduced to the
principal axes, and the principal values are different.
On the other hand if the vector is directed along the z
axis (along the 4-fold axis ), then

o ® ~\2 /oo~ 2
sl—ez—sl(m)+<7n> Olyxzys 83:8-[—%&? n) Cose

Without dwelling on crystals of other systems, let us
proceed to cubic crystals. In this case (see Table HI)

£.x =&+ (% ;1>2 {a,82 4 a8y + 0,87), ey =2 <—‘£— ;z>2 38,8, ]
g,y =&+ <% ;1>2 {082 + ay5p + 0y82), &, =2 < % ;z>2 O3SyS,, !\
g..=¢g-L (% ;1>2 {aysk - aysy+ayst), e, =2 <% h)z 55,5, Jl

(2.34)
[for classes O, Tq and Op, in addition, ay = 0y; the
factor two in the expressions for €xys €xz» and e€yy
appears in connection with the summation in (2.33) of
terms proportional to sxsy and sysx]. It is, there-
fore, obvious that the axes of the cube x, y, and z are
the principal axes of the tensor, if the vector 8 is di-
rected along any of the axes X, y, z. In this case the
corresponding second-degree surface for o, = a4 de-
generates into a surface of revolution (ellipsoid or
hyperboloid ). I the vector s is directed along the
body diagonals of the cube (|sx|=|sy|=]|sz]|= 1V3),
then

1 ® ~\?2
sxx:t?‘yy=azz=8'i—-3’<7n> (a1+a2+0’4)7

~ 2
oy | = [ | =8, =2 (22 ) %2, (2.35)

[ Part II of this article (Secs. 3 and 4) will be published
in one of the future issues of UFN.]
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