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INTRODUCTION

v^LASSICAL crystal optics has developed along the
following lines. The crystal is characterized by a
complex dielectric tensor ejj (ω) which depends on
the radiation frequency ω. Knowing the tensor €^ (ω ) ,
we can determine from the equations of macroscopic
electrodynamics the " n o r m a l " electromagnetic waves
in the crystal, i.e., waves of the form

Е = Еое'<кг-ш'>, Eo = const, ω * kω -

(we confine ourselves for simplicity to homogeneous
plane waves in which the equal-phase planes and
equal-amplitude planes coincide). Different normal
waves (designated by the index I) have different polar-
izations (the vector Eo;) and different values of the
complex refractive index η;(ω, s ) = щ + i/cj.

When no boundaries are involved, the tensor €^(ω)
is useful for it replaces the much more complicated
quantity η;(ω, s ) , which is a function of both ω and s.
Considerations of a general type readily demonstrate
the symmetry of the tensor ejj(o)) = eij(a>) + iefi(oj)
and relate its real and imaginary parts е'ц and
(dispersion relations). To determine the frequency
dependence of €jj, we must, however, resort to mac-
roscopic theory, involving the use of a definite model
or of various approximations. If a simple model is
used, particularly if the symmetry is high, we can just
as readily calculate щ(ш, s ) directly, rather than

J U W / . However, even in cubic crystals, when in
the final analysis we deal with only one function η(ω)
= Ve(oi) [here ε^(ω) = ε ( ω ) δ ^ ] , €(ω) is the sim-
pler of the two quantities; it relates the current in-
duced by the field and the field itself at a single point,
and no retarded interaction need be taken into account
in its calculation [at the same time, the index η(ω)
is related in obvious fashion with the wave propaga-
tion; in addition, a cubic crystal supports three normal
waves, counting the longitudinal one, although the de-
generacy щ = n2 = η applies to two of the waves ].

Thus, there is no doubt that the main problem of the
microscopic theory is in general the determination of
the tensor eij(w).

It follows from the symmetry of the kinetic coeffi-
cients that in the absence of a macroscopic magnetic
field the tensor ejj (ω) is symmetric (see, for ex-
ample, M ) . Natural optical activity (gyrotropy) is,
therefore, beyond the scope of classical crystal optics
(in the sense of our definition of the t e r m ) . As is
well known, an analysis of natural optical activity en-
tails the account of some small terms of order a/λ,
where a is the characteristic dimension (lattice
constant, dimension of the molecule) and λ = λ0 /η
= 27r/k is the wavelength of light in the medium (λ0

= 2πο/ω —wavelength in vacuum). Physically this r e -
duces to a situation wherein the current induced by the
specified field depends not only on the frequency ω but
also on the wave vector k, i.e., the current varies with
the wavelength of the field. Such a dependence is cus-
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tomarily called spatial dispersion (frequency disper-
sion is the dependence of the current on the field fre-
quency oi). In a homogeneous unbounded medium
(plasma, liquid), and to good approximation in crystal
optics (see Sec. 2a) allowance for spatial dispersion
reduces to the use in the field equation of a tensor*

o, k), (1)

, where ejj(o)) is the
i

which depends on w and к and satisfies, of course,
the condition €^(ш, 0) = ец
tensor considered in classical crystal optics.

We shall call the crystal-optics theory based on the
use of the tensor ец(ш, к) crystal optics with allow-
ance for spatial dispersion. Although such a crystal
optics is evidently broader than the classical theory,
it is in turn confined to a region of not too short waves
Xo = 2жс/ш, so that the parameter a/X0 is small. The
lattice constant is a ~ 10~8—10"7 cm, in the optical
region we have Xo £ 10"5 cm, and consequently a/X0

< 10"2—10"3. On the other hand, in optics usually, even
near the absorption lines, n £ 10, so that the following
inequality is also satisfied

± = . £ 5 . ^ 1 . (2)

Condition (2) denotes that the spatial dispersion is weak
and this is precisely the assumption (which in the op-
tical region corresponds to all known cases) that we
shall use below.

As already stated, terms of order a/A. must be
taken into account in the analysis of gyrotropy. Centro-
symmetric crystals, as well as a few others, have no
terms proportional to (a/X), and the terms of order
of (a/X)2 are usually quite small. Nonetheless, a l -
lowance for the terms proportional to (a/X)2 is in
some cases essential even for a qualitative understand-
ing of the phenomena. Thus, the propagation of longi-
tudinal waves in any medium, and particularly in c rys -
tals is completely determined by spatial dispersion
(disregard of spatial dispersion yields zero group ve-
locity for the longitudinal waves; see, for example, ^
and below). Further, as long ago as in 1878 L o r e n t z ^
pointed out that cubic crystals become anisotropic if
terms proportional to (a/X)2 are taken into account
(see also £4'5^). Optical anisotropy of cubic crystals
has recently been experimentally established. M Fi-
nally, inclusion of the terms proportional to a/X or,
in the absence of gyrotropy, of terms proportional to
(a/X)2, may prove necessary in the region of anoma-
lous dispersion, i.e., near the absorption lines, where
the refractive index, and consequently the parameter
a/X = an/X0, increases. Therefore, as is well demon-
strated by the example of a magnetoactive plasma, ^2-l
spatial dispersion in the absorption-line region (near
the natural frequency) can appreciably change the

*In the present article we refer only to the linear theory (the
superposition principle holds) and disregard the Raman effect.
Concerning the latter see, for example,[s°].

course of the dispersion curves, and in particular,
lead to the appearance of new waves (new values of
щ at a given frequency w). The appearance of new
waves is also possible in principle, for example, near
the lines of the so-called exciton absorption of light in
non-gyrotropic crystals ^ [this effect was regarded
in ET3 as some new phenomenon; in this connection it
was shown in ^ that the situation involves a particu-
lar case of allowance for spatial dispersion, and that
in non-gyrotropic crystals it is sufficient to take into
account terms proportional to (а/Л) 2 ]. The observa-
tion of new waves in non-gyrotropic crystals is com-
plicated considerably by the influence of absorption.
In the case of gyrotropic crystals, a new wave should
appear near the absorption line with properties char-
acterized by the parameter a/A., making the condi-
tions for its observation more favorable. ^

Thus, there are many problems, the analysis of
which lies in the field of crystal optics with account
of spatial dispersion. The task of the theory is first
to establish a connection between щ{ш, s ) and
ejj(w, k) and to use the corresponding formulas to
reduce the experimental data. The experiments yield
the complex refractive index щ(ш, s ) = щ + ijq, and
failure to use crystal optics would necessitate meas-
urements for a very large number of directions of s.
On the other hand, if п;(ш, s ) is expressed in terms
of £ij(w, k), it is sufficient to measure щ for several
directions only. If spatial dispersion is neglected, this
is evident at once, since the symmetrical complex ten-
sor ejj(o)) is characterized at a given frequency by at
most six numbers (recognizing that e{j and e'{j have
already been reduced to the principal axes). Account
of weak spatial dispersion complicates the situation,
but the measurements need be made only in a few di-
rections, by virtue of the simple dependence of
ejj(w, k) on k.

If ец(ы, к) is known in some approximation, all
the normal waves in the crystal corresponding to this
approximation can be regarded as known [ in particu-
lar, the dispersion law u>j = wj(k) is equivalent to
specifying the functions щ(ш, s ) = ck/o)j(k)]. In ad-
dition, the tensor е^(ы, к) determines the energy
lost when the particles move in the medium, the mo-
lecular forces between the bodies, the fluctuations of
the electromagnetic field, and provides in general a
fairly complete description of the medium (crystal).
[1,8-10]

The principal purpose of the present article is to
present the fundamentals of crystal optics with allow-
ance for spatial dispersion (we shall make consider-
able use of £5,8})_ we also consider it advisable to
dwell here on the connection between crystal optics
and exciton theory and on certain related problems.

Since there is no universally accepted terminology,
we shall define excitons as "elementary excitations"
in crystals, obeying Bose statistics. This definition
obviously classifies as excitons all normal electro-
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magnetic waves in a crystal, which in quantum me-
chanical language are none other than ' 'photons in the
medium" (including longitudinal photons in the me-
dium— plasmons ).* By the same token, the general
exciton theory embraces, on the one hand, crystal op-
tics with allowance for spatial dispersion, and on the
other all the theoretical constructions aimed at calcu-
lating the tensor €jj(w, k) .

The transition from problems in terminology to the
essence of the matter occurs when one begins to dis-
cuss methods for the calculation of £ij(w, k) and the
character of various possible approximations. The
latter are dictated primarily by the type of crystal
and by the nature of the excitations studied. Thus,
in ionic crystals in the infrared region the optical
modes of lattice vibration are particularly important.
t12J However, in the same ionic crystals but at higher
frequencies, and especially in molecular crystals and
some semiconductors, the electronic excitations play
the principal role.^13^ These excitations can be visu-
alized as an excited state of a molecule proceeding
from site to site (molecular crystal) , or as a moving
bound electron-hole pair (semiconductors). At the
same time, by virtue of the translational symmetry of
the crystal, the eigenfunctions corresponding to the ex-
citations encompass the entire crystal and have the
character of modulated plane waves with wave vector
k.t If we confine ourselves for simplicity to an ideal
immobile lattice, then the wave function of the excita-
tion can be written in the form ^13J

4rk,, = eikRt/k,,(R, iv-iv), (3)

where R = SiTi/NV is the radius vector of the centroid
of all the NV electrons (with radius vectors r^), the
function XJfcj is periodic (with the period of the lattice)
with respect to R, and the index I corresponds to
quantum numbers that do not reduce to k. Confining
ourselves in (3) to an account of the particle coordi-
nates only, we imply by the same token a mechanical
problem, with an analysis of the Coulomb interaction
only. This immediately raises the question of relating
the "mechanical" excitations (excitons) thus obtained
to the real excitons, and of their role from the point of
view of calculating eij(w, k).

Before touching upon this problem, let us make more
precise the concept of the "mechanical exciton." It is
not rational to define as a "mechanical exciton" any
solution of the Coulomb problem. In fact, among such

•Concerning the use of the concept of photons in a medium
(with energy fia> and momentum liwn/c) as applied to other prob-
lems in radiation theory, see["l. We note that the definition given
in the text for excitons includes also acoustic waves, for which,
however, it is advantageous to retain the universal term
"phonon."

tThis is why a localized electron-hole pair or an excited
molecule (which can be considered as a pair with small radius)
is described in terms of a wave packet. In some case, however,
the consideration of packets is fully justified and can even serve
for quantitative calculations.

e x c i t a t i o n s t h e r e a r e i n c l u d e d s u c h r e a l e x c i t o n s a s

l o n g i t u d i n a l n o r m a l w a v e s ( p l a s m o n s ) , in w h i c h t h e

e l e c t r i c f ie ld i s p o t e n t i a l a n d t h e r e a r e no m a g n e t i c

f i e l d s . In a d d i t i o n , t h e s o l u t i o n s of t h e C o u l o m b p r o b -

l e m i n c l u d e w a v e s w h i c h w e c a l l " f i c t i t i o u s " l o n g i t u d i -

n a l w a v e s ( s e e S e c . l b ) . In s u c h w a v e s ( w i t h s m a l l

v a l u e s of k ) , a s in l o n g i t u d i n a l w a v e s , t h e r e e x i s t s a

n o n - v a n i s h i n g l o n g - w a v e p o t e n t i a l e l e c t r i c f i e ld E

= E|| (the field Ец is non-vanishing whenever div P
* 0, where P is the electric polarization*).

In addition to having polarization of longitudinal
character (curl Ец = 0 ) , the macroscopic Coulomb
field Ец does not differ in any respect from an arbi-
trary macroscopic field (having, of course, the same
values of w and k). In addition, the distinction be-
tween the longitudinal and transverse fields is in the
general case of an anisotropic medium and an arbitrary
wave-vector direction by no means natural, since in
the corresponding normal waves the field E is neither
transverse nor longitudinal. Finally, if we deal with
an account of the role of the long-wave field, this ac-
count (even if the normal waves do separate into lon-
gitudinal and transverse) is obtained in a unified
manner for the total field by using the equations of
electrodynamics. Consequently, we shall always take
"mechanical excitons" to mean excitations obtained
in the absence of or neglecting not only the long-wave
transverse electromagnetic field, but also the potential
macroscopic (long-wave) electric field (see, for ex-
ample, M ) . From the point of view of solving the me-
chanical problem, this means that the potential macro-
scopic field Ец (if it does not vanish) is discarded
from the equations of motion and we are thus taking
an approximate rather than complete account of the
Coulomb interaction, t Actually, of course, in specific
calculations this is the natural procedure, a fact clearly
reflected in Sec. 44 of the book E12^. As regards termi-
nology, the article E1*] defines as "mechanical exci-
tons" all the exact (and only exact) solutions of the
Coulomb problem, and real excitons are called "op-
tical excitons"; previously in article Cu a3, ^ е s a m e

real excitons were called "polaritons." As already
mentioned, we are using a different terminology. A

*We assume that there are no "free charges" and no absorp-
tion, and therefore div D = div (E + 4тгР) = О (see Sec. la, where
the quantity D' is used with D = D' for a non-absorbing non-mag-
netic medium; in the present introduction we use for simplicity
the vectors D and P rather than D' and P') . In state (3) the polar-
ization vector is

where P u is the ion polarization, N the electron concentration,
and V the volume of the crystal.

tAs is well known, the macroscopic field E can be separated
in a consistent manner (see, for example,!12] Sees. 30 and 44).
Thus, neglect of the influence of the field E on the eigenfunc-
tions and natural frequencies can be carried out in a fully defined
manner. We note also that by macroscopic field (in particular, the
field E) we mean here any field whose Fourier expansion con-
tains only long waves (Л » a; for more details see Sec. la) .
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f a c t o r of i m p o r t a n c e t o u s i s t h e f a c t t h a t t h e " m e -

c h a n i c a l e x c i t o n " i s t h e n a m e u s e d f o r a n e x c i t a t i o n

c o n s i d e r e d w i t h o u t a c c o u n t of t h e l o n g - w a v e f ie ld . A s

t o t h e a c c o u n t of t h e s h o r t - w a v e ( m i c r o s c o p i c ) f ie ld,

t h e r e s t r i c t i o n t o t h e C o u l o m b i n t e r a c t i o n o n l y , a s i s

i m p l i e d i n t h e u s e of (3), i s of n o s i g n i f i c a n c e i n p r i n -

c i p l e . F u r t h e r m o r e , i t i s m o r e c o r r e c t t o a s s u m e t h a t

i n t h e c a l c u l a t i o n of t h e e n e r g i e s a n d w a v e f u n c t i o n s of

t h e " m e c h a n i c a l e x c i t o n s " a c c o u n t i s t a k e n of t h e e n -

t i r e s h o r t - w a v e i n t e r a c t i o n e x i s t i n g u n d e r g i v e n s p e -

c i f i c c o n d i t i o n s ( i n a d d i t i o n t o t h e C o u l o m b i n t e r a c -

t i o n w i t h a c c o u n t of e x c h a n g e , w e o b v i o u s l y m a y a l s o

d e a l w i t h m a g n e t i c i n t e r a c t i o n ) . S i n c e i n p r a c t i c e t h e

d i s c u s s i o n i s n e v e r t h e l e s s u s u a l l y r e s t r i c t e d t o t h e

C o u l o m b i n t e r a c t i o n , w e s h a l l l i k e w i s e m e n t i o n o n l y

t h i s i n t e r a c t i o n ; h o w e v e r , t h i s i s d o n e s o l e l y f o r t h e

s a k e of s i m p l i f y i n g t h e d i s c u s s i o n .

T o e x p l a i n t h e f o r e g o i n g a n d f o r f u r t h e r e x p o s i t i o n ,

w e c o n s i d e r q u a l i t a t i v e l y a s i m p l e m o d e l . N a m e l y , w e

discuss a system of NV anisotropic harmonic oscilla-
tors, located in the sites of a rhombic lattice (the two-
fold axes coincide with x, y, z ) . Each isolated oscil-
lator has three different natural frequencies ш^
= wX ;y ) Z, and the normal modes correspond to vibra-
tions (variation of the electric dipole moment p) of
the oscillator along the lattice axis x, y, or z. In the
limit of sufficiently large lattice constants a x , a y , and
a z or in the case of small "oscillator strengths" (i.e.,
sufficiently weak interaction between oscillators), the
normal frequencies of the system can be regarded as
NV-fold degenerate and also equal to w x >y j Z. As the
oscillators come closer together, the frequencies
split and the normal oscillations have the form р;д
= р;д> 0 ехр i [ k T i ~ c j ; ( k ) t ] where р/д is the dipole
moment of the i-th oscillator located at the point r i .
If we consider only Coulomb interaction (specifically,
dipole-dipole interaction) between oscillators, then
the long-wave normal oscillations separate quite dis-
tinctly into transverse polarization oscillations
(PZ,i*k = 0 ) , longitudinal oscillations (ряд х к = 0),
and all others. In the case of transverse polarization
oscillations, there is no longitudinal electric field

E = Ец, since div P = div ( — Spj ] = 0, div D

= div (Ец + 4тгР) = О, curl Ец = О, and thus (k-Ец)
= 0 and k x Ец = 0. From symmetry considerations
it is clear that transverse normal oscillations are
possible if the moments р^д and consequently the
electric polarization P are directed along one of
the axes x, y, or z, whereas the wave vector к lies
in the corresponding coordinates plane (for exam-
ple, P x * 0, Py = P z = 0, k x = 0). In a rhombic
lattice there are obviously three " z o n e s " of such
waves with frequencies шх ( k x = 0, ky, k z ) ,
wy ( k x , ky = 0, k z ) and wz (k x, ky, k z = 0). In
section lb these waves ("polarization waves" )
will be analyzed macroscopically. Since the field
in "polarization waves" is Ец = 0, these waves

should be classified as "mechanical excitons" and
are obtained at the same time in the exact solution
of the Coulomb problem.

Waves traveling along one of the axes and polarized
along the same axis (for example, P x ^ 0 , Py = Pz
= 0, ky = k z = 0), are longitudinal waves in which
E = Ец ^ 0 and D = 0. Finally, waves can exist in
which D * 0 and E = Ец * 0. In these waves, as in
all others, the vector D = E + 4тгР is transverse
(k-D = 0 by virtue of div D = 0). But the vector
E = Ец must be longitudinal (a strictly Coulomb prob-
lem is considered). Therefore the vector P in these
waves ("fictitious" longitudinal waves; see Sec. lb)
is neither longitudinal nor transverse. Only such nor-
mal waves can propagate in this model in an arbitrary
direction (k x * 0, k y * 0, k z * 0).* The longitudinal
and "fictitious" longitudinal waves, regarded as exact
solutions of the Coulomb problem, are not "mechanical
excitons" in our terminology. To each of these waves,
however, there corresponds a "mechanical exciton"
which is a normal oscillation with characteristics that
are obtained when the effect of the field Ец is neglec-
ted. Using as an example a longitudinal wave propa-
gating along the x axis, we shall explain this statement.
The equation of motion for the oscillator can then be
written xj + wxxigxi = ef 1 / ( SE||/m, where щ = f ^ x j
(f —"oscillator strength") and ĝ  —force exerted by
all other oscillators, after subtracting the long-range
part (the latter is precisely included in the field Ец ).t
In a longitudinal wave we have

- 0 , P- v ^eft.l2Nxi

(we consider long waves) and Ец = -47ref1^Nxi. Thus,
an account of the field Ец changes the square of the
natural frequency by CJQ = 47re2fN/m, and this change
can be quite large and exceed the splitting due to the
force gj.t In our example, obviously, the "median-

*The foregoing statements follow without further detailed
analysis from the macroscopic consideration (see Sec. lb), and
also become clear if one bears in mind the limiting case of un-
coupled (non-interacting) oscillators (when the coupling is weak,
these properties of the model remain patently unchanged).

tThe force gi contains also a long-range term (the "polariza-
tion correction") connected with the difference between the ma-
croscopic field E and the "effective field" F. For a cubic lattice
made up of point-like dipoles, as is well known, F — E = 4wP/3
(as к -> 0). Consequently in a cubic lattice polarized along the x
axis, the force g t contains a term (4nef^/3)P = (477eafN/3m)Xi.
This term can be accounted for by suitably changing the frequency
<ux; the same pertains to crystals with lower symmetry, if we dis-
regard the replacement of the numerical coefficient 4ir/3 by some
other coefficient. In connection with the foregoing and with the
qualitative character of this discussion, we shall not include ex-
plicitly the difference between the effective field and the macro-
scopic field, assuming the frequencies coXfY:Z to be suitably
modified, and we shall regard gi as accounting only for the
short-range interaction (the correct classical calculation for the
cubic lattice is found i n M ; see also Sec. 4b).

the foregoing footnote.
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ical exciton" is a longitudinal wave with frequency
cox + 6cox, where <5cox is the frequency change due to
the forces g x j . The frequency of the real longitudinal
exciton, on the other hand, is соц = cox + 6u>x + co0.

The foregoing remarks and the exposition that fol-
lows should leave no doubt of the advisability of dis-
tinguishing in crystal optics between real excitons and
certain approximate solutions (images), called " m e -
chanical excitons," the difference lying precisely in
whether the effect of the long-wave electromagnetic
field is accounted for or not.

What is the connection between real and "mechan-
ica l " excitons? If we bear in mind only the principal
aspect of the problem (and not a specific quantitative
comparison), the answer to this question is perfectly
clear from both general considerations and from an
examination of any simple model. The latter path is
more illustrative and shorter, and consequently we
return to the discussed model of anisotropic oscilla-
tors.

In the case of longitudinal waves the real exciton
(i.e., the exact solution with account of the entire
electromagnetic interaction) differs from the corre-
sponding mechanical exciton in the inclusion of the
long-wave field Ец. This leads, as was already ex-
plained, to a change in the natural frequencies соц(к).
For transverse mechanical excitons ("polarization
waves") Pj^ ;* 0 and E = Ец = О. The presence of al-
ternating polarization Pj^ gives r ise to a transverse
electromagnetic field, which leads to a generally sig-
nificant difference between the real transverse and
mechanical excitons. Indeed, the equation of motion
for the i-th oscillator, which makes its contribution,
say, to the transverse normal oscillation along the у
axis, can be written in the form yj + w2yj + gyi
= ef1 / / 2Ey/m. To clarify the qualitative picture in the
long-wave region, we can put gyi = 0 (we assume the
"polarization correction" to be accounted for by mod-
ifying the frequency Wy) and Py = ef1//2 Nyj. Then in
the field E y = E y 0 exp [ i(k • r - cot)] we have

и m(co 2 —с

еу~ЕУ~ "'" m(co2 —со2) '
= 0, k.). (4)

For transverse waves the field equations lead in this
case to the relation eyEy = fi2Ey, i.e.,

я = и — ги = ]/е'•.-V 1 +т ( с о 2 — со2)
(4')

N a t u r a l l y , i f t h e f r e q u e n c y c o y i s r e a l , t h e n t h e r e i s

n o a b s o r p t i o n ( a s w a s i n d e e d a s s u m e d ) . In t h e r e g i o n

ey = ft2 = - к2 < 0 and neglecting spatial dispersion, the
average energy flux in the wave is zero (when a wave
strikes such a medium from the outside, total reflec-
tion occurs; see, for example, И and Sec. lc below).
In the transparency region (к = 0 and ft2 = n2 > 0) we
have

In the limit corresponding to classical crystal optics,
Шу is independent of к and it is easy to express w
explicitly in terms of k.

Thus, for a real exciton the dispersion equation
w = co(k) has in this case the form (5), whereas for
the mechanical exciton ш = coy(k). In the simplest
case, when the к dependence of Wy can be neglected
(the primitive calculation* above is sufficiently con-
vincing without further analysis only under these con-
ditions), the foregoing analysis is of course equivalent
to the well-known elementary dispersion theory. We
wanted to emphasize here, however, the close connec-
tion between exciton theory and problems well known
long ago. The use of a different terminology or of
unaccustomed images frequently makes this connec-
tion insufficiently obvious as evidenced by the contents
of certain articles.

In classical crystal optics (coX)y>z = const) plots
of the functions n = [ ex.y .z^) ! 1 ^ 2 a r e usually em-
ployed. Such a plot for the case of (5) is shown in
Fig. la . In exciton theory the relation со = w(k) is
more frequently used, and the curve for our example
is shown in Fig. lb.

b)

We note that the frequency соц = [coy + 47re2fN/m ]1</2

corresponds to the condition £y(co) = 0; this frequency
со|| is precisely equal to the frequency of the longitud-
inal wave propagating along the у axis (see Sec. lb) .
Near the frequency со = соц we obviously have

or

(6)

If we compare (6) with the relation W = Kco = Kco0

+ K2k2/2meff, we can speak E14^ of an effective exciton
mass meff = K2cof| (dey/dco ) ш /2с2 near the frequency
co0. The use of this term naturally adds nothing to the
understanding of classical dispersion theory and will
not be applied to real excitons.

If coy = coy( k) for the mechanical exciton, then ey
depends on k; this corresponds to allowance for spa-

*See Sec. 4b for rigorous calculations.
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<"§

0)1,(0) CO,(0) Ш 0

a)

FIG. 2-

b)

t i a l d i s p e r s i o n . T h e c h a r a c t e r o f t h e c u r v e s n ( c u ) a n d

oi(k) under similar conditions with k x = ky = 0, k z = к
5* 0 (or with ky = k z = 0, k x = к ^ 0) and with a cer-
tain definite dependence of Wy on к is clear from
Fig. 2. We note that for optical vibrations of an ionic
lattice the function ш у (к) corresponds in form in the
simplest case precisely to the dashed curve of Fig. 2.
A transition from mechanical vibrations (mechanical
excitons) to real electromagnetic waves (excitons)
for this case can also be easily traced, as was recently
done. 02,16,17] >pne r e s u i t i s qualitatively the same as
for the oscillator model, and is illustrated in Fig. 2.
This is understandable, for dispersion theory is quite
general in character and only an account of absorption
can change the curves of Figs. 1 and 2 appreciably
(provided, naturally, we speak of only a single reso-
nant frequency and a single function e X j y j Z ; s e e ^ e c *
3b).

We now consider a "mechanical exciton" of a third
type (i.e., neither longitudinal nor transverse relative
to the polarization P ) . In our model such excitons in-
clude, first, all mechanical normal waves with k x * 0,
ky * 0, k z * 0. The vector P has in this case a t rans-
verse component, inducing a transverse electromag-
netic field. The corresponding real exciton is there-
fore neither longitudinal nor transverse (we refer to
the field E), and its dispersion law w = w(k) differs
from that of the mechanical exciton, generally speak-
ing, even more than in the case of the transverse ex-
citons. In the limit as к — 0 the picture can be read-
ily explained using the formulas of classical crystal
optics or by employing the same oscillator model. We
shall return to this question later (see Sec. lb).

From (5) or from Figs. 1 and 2 it is clear that at
large values of к (or n) but at frequencies ш ~ соц(О)
~ o)y(0) we have approximately

co(k) % coy(k), k—i>co, ш=ешц(0). (7)

In other words, with increasing к the properties of
real transverse excitons approach those of the trans-
verse mechanical excitons. This result is quite gen-
eral and has a clear-cut physical meaning [ Eq. (7) is
the resonance condition in (5)]. As regards the fre-
quencies of non-transverse (with respect to P) me-

chanical excitons, they coincide as к—* О with the
frequencies of transverse excitons having the same
direction of oscillation, for when к = 0 the polariza-
tion direction cannot play any role if the long-range
long-wave field E|| is not included. Since in the r e -
gion of interest to us the spatial dispersion is weak
(the vector к is small compared with l / a x у z ), the
difference between the frequencies of the mechanical
excitons with given polarization P but different к will
also be small. This is, however, no longer the case
for the exact solutions of the Coulomb problem with
E|| * 0 (i.e., for the longitudinal and "fictitious" lon-
gitudinal waves); for example, the frequency of the
longitudinal wave differs from the frequencies of the
transverse waves by an amount on the order of u)0

= [47re2fN/m]1/'2, and the "p lasma" frequency u;0 in
a condensed medium is usually quite high.

Whereas the properties of real and mechanical ex-
citons are the same only in the limiting cases [ see,
for example, (7)], the connection between them, of
course, always exists. This is evident from the same
expressions (4) and (5), which show that the dielectric
constant and consequently all the properties of real
excitons are determined by the frequencies of the
mechanical excitons. On the other hand, if the gen-
eral dispersion formula is used, it is clear that the
energy (frequencies) and eigenfunctions of the me-
chanical excitons completely determine under certain
conditions the tensor е^(ш, к ) . We shall return to
the last question in Sec. 4. We must emphasize at the
same time that it is not the purpose of the present ar-
ticle to present either a detailed and complete expo-
sition of the quantum mechanical theory of mechanical
excitons or of specific calculations of eij(w, k) . The
corresponding remarks made above and those that fol-
low in Sees. 3 and 4, are essentially prompted by
methodological considerations. For the same reason,
the subject is developed in the article in most cases
with sufficient detail, even when dealing with elemen-
tary problems. It seems to us that such an exposition
is justified, for the tremendous literature on exciton
theory shows much confusion and misunderstanding.
We note, finally, that by developing in relatively de-
tailed fashion certain aspects, the authors do not pre-
tend at all to provide a complete explanation of the
problems touched upon in exciton theory (the same
pertains also to the list of cited references).

1. THE COMPLEX DIELECTRIC TENSOR eij(w, k)
AND NORMAL WAVES IN A MEDIUM

a) The tensor eij(w, к) and its properties. The
equations of the electromagnetic field will be written
in the form *

rotB = - ~ , divD' = 0,

rot E = г -Д— , div В = 0.
(1.1)

*rot = curl.
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Here E is the intensity of the e l e c t r i c field and В the

magnet ic induction, o c c u r r i n g in the e x p r e s s i o n for the

force F = e (E + V x B/c) acting on a p a r t i c l e with

charge e and velocity v. The charge density p 0 and

the c u r r e n t density j 0 cor responding to the external

s o u r c e a r e a s s u m e d to vanish in (1.1) (otherwise

cur l В =- 1 ЭР'

" с at
t r i e induction

lat ion

• +

D '

47Г

c J °

u s e d

5D'

a n d d i v

i n ( 1 . 1 )

D '

i s

= 4тгр0)

defined

. The

by the

elec

r e -

i
\
(1.2)

where j i s the density of the c u r r e n t induced in the

m e d i u m . *

To avoid misunders tanding, we emphas ize that we

shall not r e f e r at all to averaging of fields over smal l

r e g i o n s . Such a p r o c e d u r e is unnecessary , nor is it

feasible in a theory of m a t e r i a l e lec t rodynamics In

which spat ia l d i s p e r s i o n is consistently taken into a c -

count.

In l i n e a r e l e c t r o d y n a m i c s , the connection between

D' and E can be wr i t ten in the following genera l form

D\(r, t)= \ dt' -t', r, r', t'); (1.3)

summat ion over repeated indices is implied henceforth.

The dependence of the kernel of this integral equa-

tion on the difference t - 1 ' is due to the a s s u m e d h o -

mogeneity of the p r o p e r t i e s of the medium in t ime (in

other words , the p r o p e r t i e s of the medium a r e a s s u m e d

constant in t i m e ) . On the other hand, if s o m e factor

(for example, an a l ternat ing external p r e s s u r e ) causes

the p r o p e r t i e s of the medium to vary in t i m e , then ejj

= ei j(t, t ' , r , r ' ) . F u r t h e r , the integrat ion with r e s p e c t

to t ' in (1.3) is only in the interval from - °° to t, as

dictated by the causal i ty pr incip le , viz: the induction

D ' ( r , t ) is d e t e r m i n e d only by pas t and p r e s e n t values

of the field E, i .e. , for values t ' < t. If the medium is

a l so spat ial ly homogeneous (a l l i t s points a r e equi-

v a l e n t ) , then

D[(T, t)= \ dt' W r ' e u ( i - r , г - г ' ) Я , . (г', «'). (1.4)
— CO

L e t u s t a k e t h e F o u r i e r t r a n s f o r m of t h i s f o r m u l a ,

p u t t i n g

£ , ( r , I) --= С £V(k, co)e i(k '--'»')d(odk

[ w e u s e t h e s a m e s y m b o l s E j f o r t h e t r a n s f o r m s

*By j we denote here the current density in a system which
is in a definite state, or after averaging with the aid of a stat is-
tical matrix (by the same token, fluctuation phenomena are dis-
regarded; fluctuations are discussed int10]). A traditional notation
in field theory uses in place of D' the expression j + dP/<9t + с х
curl M, where j is the conduction current density, P = (D — Е)/4тг
is the electric polarization and M is the magnetization (in other
words, the quantity D' which we use and the customarily em-
ployed induction D coincide only for a non-absorbing non-mag-
netic medium).

Ej(k, w) and for the originals E j ( r , t ) , but this will

not lead to confusion, s ince the a r g u m e n t s a r e indi-

cated; s i m i l a r notation is used for other q u a n t i t i e s ] .

Incidentally, to obtain Dj(k, u>) t h e r e is not even need

for the F o u r i e r t rans format ion, and it is sufficient to

put in (14) E ( r ' , t ' ) = E(k, ш) e x p [ i ( k - r ' - ar t ' ) ] . As

a r e s u l t we get

D[(k, w) = e i ;((o, k)£,.(k, <D),

e;j. (to, k ) = dx R), (1.5)

and the component Dj(k, ш ) i s connected only with the

components Ej(k, ш) having the s a m e values of w and

k; this holds by v i r tue of the tempora l and spat ia l h o -

mogeneity of the medium, i .e., by v ir tue of the depend-

ence of €jj only on the differences т = t — t ' and R

= r - r ' .

€ij(oj, k ) is called the complex d ie lec t r ic t ensor .

The frequency dependence of €ц(и>, к ) c o r r e s p o n d s

to frequency d i spers ion, while the dependence on the

wave vector c o r r e s p o n d s to spatial d i spers ion. The r e -

gion in which the kernel £ц(т, R ) is of any significance

whatever is de termined by the c h a r a c t e r i s t i c frequen-

cies of the medium OJJ (and also by the r e c i p r o c a l s of

the re laxat ion t i m e s ) and by the c h a r a c t e r i s t i c d imen-

sions a;.

The frequencies u>i usually l ie within a r a t h e r broad

r a n g e . The dimensions aj ( "molecu lar action r a d i u s "

e t c ) , to the c o n t r a r y can in many c a s e s be regarded a s

s m a l l . In l iquids and sol ids , the a j a r e the d imensions

of the molecules , the d i s tances between a t o m s , or the

lat t ice cons tants ; all these quantit ies a r e usually of the

s a m e o r d e r of magnitude and a r e very smal l compared

with the wavelengths, which l ie in the optical range . It

is there fore understandable why in optics spat ia l d i s -

p e r s i o n plays general ly a l e s s important ro le than f re-

quency d i sper s ion .

If spat ia l d i sper s ion is neglected, then eij(w, k)

= ejj(w, 0) = ejj(oj), and in a homogeneous i sotropic

medium, of c o u r s e , е ^ ( ш ) = e(oj)6jj (an example of

a homogeneous but anisotropic medium is a liquid

c r y s t a l ) . If spatial d i sper s ion is taken into account

in an i sotropic non-gyrotropic medium, then

w i t h

e u ( w , 0 ) =

( 0 ) j

0) = e(w)

( и ,

(for de ta i l s , s e e below). We note that the t e n s o r

6jj(w, k ) , as can be seen from (1.1) and (1.5), d e -

s c r i b e s a l so the magnet ic p r o p e r t i e s of the medium

[if D' depends a l so on B, re la t ion (1.3) r e m a i n s in

force, s ince В can be expres sed in t e r m s of E with

the aid of the equation cur l E = — ]. The p e r -
C dt

meabi l i ty /*ц (ш) need be introduced in addition only

on making the t rans i t ion to the t e n s o r е ^ ( ш ) . The

corresponding l imit ing t rans i t ion is quite unusual; E10
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we shall not discuss this problem here, since /4ц(ш)
= 6ij for optical frequencies (see also M , Sec. 60).
This circumstance is already implied in the assump-
tion eij(w> 0) = eij(cu). We note also that formula
(1.5) or its analytical continuation determine, gener-
ally speaking, the tensor ejj(a), k) not only for real
but also for complex values of ш and k. Also the
tensor ец does not lose its physical meaning, since it
relates D' with the field E, the amplitude of which
builds up or attenuates in time and in space. To be
sure, such amplitudes increase without limit at infin-
ity in corresponding regions of the complex plane.
However, a field in the form E = Eo exp[i(k-r - wt)]
with ш and к real likewise does not correspond to
reality, since such a wave fills all of space-time. For
any specific physical formulation of the problem it be-
comes necessary to deal with an integral with respect
to the frequencies and the wave vectors (i.e., with
wave packets; this includes also problems with bound-
ary and initial conditions) and strictly speaking only
finite values of t and r are significant. Therefore, in
the region where the functions ejj(w, k) are defined,
they can be used without danger. Generally speaking,
the tensor ejj(o), к) has an inverse еГ/(ш> к), so that

£i(k, со) = 8"/(со, к) IK (к, со). (1.6)

A crystal is not a spatially-homogeneous medium,
but for long waves ( Л . 0 » а ) the tensor eij(o), k) can
be used in this case, too. The interaction of е^(ш, к)
in crystals will be analyzed in Sec. 2a; here we con-
fine ourselves to any medium for which (1.5) and (1.6)
hold.

The energy relations will be discussed in Sec. l c .
We merely note now that when ш and к are real the
heat released in a monochromatic wave is proportional
to the difference ец(ш, к) - ед(ш, к), where the aste-
risk denotes the complex conjugate (see also Sec. l c ) .
Thus, under the indicated conditions there is no energy
absorption if the tensor ejj is Hermitian

The tensor ejj is generally speaking complex even for
real u) and k. In both this case and the general case
it is convenient to resolve €ц into two Hermitian parts
e-j and ei'j:

e i ; (со, к) = e'y (со, к) + ie-, (со, к) = 64j + i -^- a(/ (со, к),

ву = в;г, еу = е;г, ( 1 - 8 )

where we introduce also the complex conductivity ten-
sor

atj (со, к) = ay (со, Ю.+ io'ij (w, k)
which is occasionally employed (we assume that ш * 0
and the tensors crU and crfj are Hermitian).*

•The mixed notationW z'i} = Ejj ± i4mnj/w is also used,
where the total tensor is denoted by the prime, and its Hermitian
part is written without the prime [here, unlike in (1.8), ffjj is a
Hermitian tensor]. The sign of a-^ corresponds to the sign in the
expression for the wave exp [± i(k-r - tut)]; the plus sign is chosen
in the present article.

It is obvious from (1.7) that ejj = 0 in the absence
of absorption and when w and к are real.

A real field E should produce real induction D', by
virtue of which [see (1.4)—(1.5) and Sec. l c ]

e(J- (со, k) = e*( — со, — к ) , (1.9)

with ш and к assumed real here. On the other hand,
if ш is real and the vector к complex (a situation
which we shall deal with), then

Ei,(co, -co, - k * ) . (1.9a)

By virtue of the symmetry of the kinetic coefficients
we have [ for a proof see, for example '-10-'; it is a
direct generalization of the corresponding proof for
the tensor ejj (w)]:

, (a>, k) = 8 j i (со, - к ) . (1.10)

It is assumed here and generally in what follows that
the induction of the permanent magnetic field is Bext
= 0; otherwise

e i( (со, к, 3ext) = ен (со, —к,—Bext).
If the medium has a center of symmetry (i.e., the gas
molecules or the unit cells of the crystal have a center
of symmetry), then the directions к and — к are
equivalent and

e..(co, k) = e;i(a>, k). (1.11)
Generalizing in natural fashion the customary defini-
tions, we shall call a medium in which condition (1.11)
is satisfied non-gyrotropic, while a medium not satis-
fying this condition is called gyrotropic or naturally-
active [ it must be borne in mind here that relation
(1.11) may be satisfied also in the absence of a center
of symmetry; in other words, the absence of a center
of symmetry is necessary but not sufficient for the
occurrence of gyrotropy; see Sec. 2b].

For a non-gyrotropic medium and for B e x ^ = 0,
when relation (1.11) holds true, the tensors е[\(ш, к)
and ei'i(w, k) are real, since a symmetrical Hermit-
ian tensor is always real [see (1.8) and (1.11)]. This
takes place, in particular, in the absence of spatial
dispersion and when B e x t = 0. (The induction B e x t
* 0 when there is an external field present or in fer-
romagnets.) In this connection, e{j and ец usually
denote the real and imaginary parts of ejj. We shall
do the same whenever there is no danger of misunder-
standing.

By virtue of the causality principle which we al-
ready used in (1.3) and (1.4), the tensor £и(ш, к) has
definite analytical properties. The use of these prop-
erties enables us to relate in integral fashion the real
and imaginary parts of e^ for real и and k. The en-
tire analysis is similar to that used for an isotropic
medium without spatial dispersion (see, for example,

M ) . As a result (see also [ l o : i )

'1, k)
-rfco',Re e u (со, к) - 6tj = —

I m e ^ K l O ^ - A H " ' ^ " 6 " ^ - d.12)
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T h e i n t e g r a l s a r e t a k e n h e r e i n t h e s e n s e of t h e p r i n -

c i p a l v a l u e s a n d f o r s i m p l i c i t y w e p u t

1 ш в ц е ( ю , k)—> U.

The Hermitian tensors e{j and
in the form

fj can be represented

Re ei7- = eWi c —

Im8 i j = 4-o-!-8y? c, (1.8a)

where all the tensors with subscripts с and a are
real. If B e x t = 0 and condition (1.11) is satisfied, then
e{j>a = eij,a = 0 and we can simply put in (1.12) Re e^
= ejj and Im ejj = efj. In the general case, on the other
hand, we obtain from (1.12) and (1.8a)

eyc((o', k) da'

;(<o',k)-6i3-}

с(<о> к )

И E V,a( c 0 '> k )
Л И ' .

(1.12a)

W e n o t e t h a t i n t h e r e f e r e n c e s k n o w n t o u s t l o > 1 8 3 t h e

formulas in (1.12) are derived with both ш and к as-
sumed real. Yet both quantities can be regarded real
only in the limiting case of a transparent medium.
Since (1.12) and (1.12a) involve integration with r e -
spect to the frequency, the assumed transparency over
the entire interval is patently inadmissible. Relations
(1.12) and (1.12a) can therefore be used in the pres-
ence of spatial dispersion for an analysis of wave
propagation in a medium only if they are generalized
to include complex values of k. Relation (1.10) is ob-
tained (see E10^) using (1.12) and is consequently
proved in ^10-' only for real k. Since к enters (1.12)
as a parameter, it seems to us that these expressions
and formula (1.10) should hold true also for complex
k. It is assumed here that the tensor e^j(о?, к) is
uniquely defined for the complex values of к under
consideration. The absence of singularities of
ejj(w, k) in the corresponding range of variables
(analyticity) is probably of importance, too. In the
case of weak spatial dispersion of interest to us (see
Sec. 2b), the tensor ejj or the other tensors employed
have indeed no inadmissible singularities near the point
к = 0, at which the formulas (1.12) are known to be
valid. Allowance for the fact that the velocity of the
signal does not exceed с leads E18'10^ to dispersion r e -
lations that are more general than (1.12).

Certain inequalities for the derivatives of ejj with
respect to ui follow from (1.12) and from the principle
of increasing entropy (see ^19^ and Sec. l c ) . We note
finally that all properties (in particular the symmetry
property) of the tensor е^(ш, к) extend to the inverse
tensor ejj^w, k). The use of the tensor ejj or efj1,
i.e., of relations (1.5) or (1.6), is equivalent over a
wide range and is dictated by convenience.

D'=—£-[kB], kD' = 0,

B = -MkE], kB = 0.

b) N o r m a l e l e c t r o m a g n e t i c w a v e s in a m e d i u m .

T r a n s v e r s e a n d l o n g i t u d i n a l w a v e s . " F i c t i t i o u s " l o n -

g i t u d i n a l w a v e s a n d " p o l a r i z a t i o n w a v e s . " W e s h a l l

s e e k t h e s o l u t i o n of t h e f ie ld e q u a t i o n s (1.1) i n t h e

f o r m of p l a n e w a v e s

E, = Е01е4<кг-м'\ В; = Во1е'<кг-Ш'\ D,'= DJie^'-»'), (1.13)

where E
o
j, B0£, and Dj; are constants.

We then have*

(1.14)

From th is , el iminating B, we obtain the "wave equa-
t i o n "

(1.15)

The waves (1.13) can obviously be solutions of the field
equations^ only if the relation between D' and Б is
such that only waves with the same w and к are
coupled. This is precisely the situation under condi-
tions when the tensors €JJ(OJ, k) or ejj (w, k) can be
introduced.

Substituting (1.5) in (1.15) we obtain a system of
linear equations

- i,iiEi — i + kf = 0. (1.16)

The condition for the existence of a nontrivial solution
for this system leads to a dispersion equation relating
a) with к (the symbols Д or | . . . | denote determi-
nants ):

(1.17)

If the tensor ej: is replaced by --1 we obtain

А„ (со, k) = - ^ 6i3- - кЧЦ (со, к) + fc^ef/ (со, к) = 0. (1.18)

When both tensors ejj and e{j exist simultaneously,
equations (1.17) and (1.18) are of course equivalent.
Unless otherwise stipulated, this situation is assumed
throughout.

The roots of (1.17), which are the frequencies of
the normal waves, will be designated by the index I,
i.e., denoted by щ = wj(k), where щ and к are, gen-
erally speaking, complex. Whether one of these quan-
tities, ь>1 or k, can be chosen as the real variable de-
pends on the formulation of the physical problem (see,
for example, E2^). In crystal optics the frequency ш
is usually real (this is the frequency of the light from
the external source). But even when the frequency ш
is real in general к = к' + ik" and only in the trans-
parency region do we have approximately к = к' (к'

*[kB] = к х В.
tAn analysis of waves of the type (1.13) may prove insuffi-

cient for values of <u and к corresponding to multiple roots of the
dispersion equation. This question, which is not very significant,
will be discussed in Sec. 3a.
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and k" a r e r e a l ) . We shal l cons ider below a s a ru le

only homogeneous plane waves, for which

к = — ns, и (to, s) = (1.19)

w h e r e s = k/k is a unit r e a l vector and the frequency

ш is real. When the vector s can occur, it is implied
without further explanation that the transition to ho-
mogeneous waves has been made. Under conditions
(1.19), obviously, the statement that к is complex with
oi real denotes that к * 0.

Equation (1.15) now has the form

D' = rc2{E-s(sE)}. (1.20)

The dispersion equation (1.17) has in this case the
form

= ejjSjSjn*—[(e^Sj) su—sieuei)sj] n2 +1 ei3-1 = 0. (1.21)

The induction D' is always transverse (i.e., s»D'
= 0) and the terms " t r a n s v e r s e " and "longitudinal"
waves will be employed henceforth, as usual, only with
respect to the vector E. In the general case normal
waves in an anisotropic medium are neither t rans-
verse nor longitudinal. Under certain conditions, how-
ever, the waves can be longitudinal or transverse, and
these cases will be pointed out. For transverse waves,
in accordance with (1.20),

, sE = 0, sD' = 0. (1.22)

By way of illustration we shall indicate in the present
section the character of different normal waves for a
rhombic crystal in the limit as k—- 0, i.e., assuming
ejj(a), k) = €ij(w) (classical crystal optics). For
such a crystal the principal axes of the tensor ец co-
incide for all из with the two-fold axes x, y, z (we r e -
fer to crystal classes D2 and D 2 n ; in class C 2 V the z
axis is parallel to the two-fold axis and x and у are
perpendicular to the symmetry planes). In this coor-
dinate system the diagonal elements of ejj, with values
e x , €y , and ez , are all different (it is assumed that
there is no accidental degeneracy). In transverse
waves the vector E is parallel to any one of the axes
x, y, or z, and the vector к lies in one of the coordi-
nate planes. In the frame of the principal axes x, y,
and z we have for transverse waves

2, з = a*. „, z (to). (1.23)

In an arbitrary frame we have for transverse waves
[see (1.16), (1.19), and (1.23)]

|е4,(ш, | = 0. (1.22a)

Th is equat ion a l s o h o l d s t rue in the p r e s e n c e of spat ia l

d i s p e r s i o n .

We note that t r a n s v e r s e w a v e s c o r r e s p o n d only to

t h o s e s o l u t i o n s of (1.23) that a r e c o m p a t i b l e with the

t r a n s v e r s a l i t y condi t ion s • E = 0. It i s t h e r e f o r e obv i -

ously inconvenient and senseless to use (1.22a). For
longitudinal waves, as is clear from (1.20)

D' = 0, E=Es. (1.24)

When D[ = ejj and Ej = 0, the vector E can be non-
vanishing only if

(со, к) | = 0. (1.25)

In addit ion, one m u s t b e c e r t a i n that the v e c t o r i s l o n -

gitudinal for the s o l u t i o n under c o n s i d e r a t i o n , i . e . , that

E = E s . Longitudinal w a v e s a r e c o n s i d e r e d quite f r e -

quent ly in p l a s m a app l i ca t ions and h a v e b e e n suf f i-

c i e n t l y w e l l i n v e s t i g a t e d ( s e e , for e x a m p l e , !-2-0. N o n e -

t h e l e s s w e m a k e s e v e r a l r e m a r k s c o n c e r n i n g t h e s e

w a v e s . It f o l l o w s from the f ie ld equat ions (1.14) that

in the longitudinal waves В = 0 and they can thus be
regarded with allowance for the Coulomb field only. *

In the absence of spatial dispersion, the condition
(1.25) determines the possible longitudinal-wave fre-
quencies w||, which are independent of k. Therefore
the group velocity u = dw/dk = 0 and consequently
only an account of the spatial dispersion can lead to
the propagation of longitudinal waves (in the sense
that u *• 0).

In an isotropic non-gyrotropic medium, as already
indicated in Sec. la, we have

(со, k) = ( d 4 , - (1.26)e4, (со, k) = (d 4 ,- v , ) e tr (<o, k) + siSje4<>>, ft).

We arrive at this expression by recognizing that a
second-rank tensor can be formed in an isotropic me-
dium only by using the tensor 6ц (бц = 0 when i ^ j ,

1 when i = j) and the tensor SJSJ. The introduc-

0, we
tion of the symbols e i r and e1 is connected with the
fact that in a transverse field E, when s • E
have

D' = e t r (со, ft) E ( for sE = 0). (1.27)

In a longitudinal field, when E = Es,

D' = в» (to, ft) E ( for E = Es). (1.28)

It is easily seen that waves in an isotropic medium can
be either longitudinal or transverse. For transverse
waves we have in this case [see (1.22) and (1.27)]

.") ; (1-29)

and for longitudinal waves, according to (1.24) and
(1.28),

0. (1.30)

Of course, (1.30) can also be obtained by substituting
(1.26) in the general relation (1.25). When spatial dis-
persion is neglected e* r = e* = e (w) and the frequen-

*The equality В = 0 in longitudinal waves pertains, naturally
only to the field of the wave, as is assumed in (1.14). In the
presence of an external magnetic field B e x t = const, the longi-
tudinal wave can propagate only in the direction of B e x t (see M).
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cies of the longitudinal waves are determined by the
equation е(шц ) = 0.

For rhombic crystals and к = 0 Eq. (1.25) for lon-
gitudinal waves has in the frame of the principal axes
the form

RX (со) ey (со) e. (со) = 0.

In t h e a b s e n c e of a c c i d e n t a l d e g e n e r a c y t h e s e l o n g i t u d -

i n a l w a v e s a r e d i r e c t e d a l o n g o n e of t h e p r i n c i p a l a x e s

x , y, z a n d h a v e a f r e q u e n c y OJ s a t i s f y i n g t h e c o r r e -

s p o n d i n g e q u a t i o n e x ( w ) = 0, Cy(a>) = 0, o r e z ( w ) = 0.

Only if the vector к is parallel to one of the axes x, y,
or z are all normal waves in a rhombic crystal trans-
verse or longitudinal, as is clear even from symmetry
considerations. When the vector к lies in the coordi-
nate plane (but not parallel to an axis ), one of the nor-
mal waves is transverse and the other is neither longi-
tudinal nor transverse.* The latter pertains to all nor-
mal waves in the case of a vector к lying outside the
coordinate planes. We have in mind here the optical
region or, formally, finite values of k, and at the same
time only solutions that satisfy all the field equations.
If we consider large values of к (short waves), then
waves with finite values of D' and with non-zero field
E come quite close to longitudinal. This is clear di-
rectly from the wave equation (1.20): in the transpar-
ency region we have n = n and for a finite frequency
ш the limit к = wn/c —- » corresponds to the limit
n —- °° ; however when n = n — °° the induction D', in
accordance with (1.20), is finite only when E = s ( s * E ) ,
i.e., only for longitudinal waves if E ^ 0. On going
over to absolute values, the same pertains to an arbi-
trary n, but actually if absorption is taken into account
the modulus | n | is finite and the transition to the limit
| n | —- °° cannot be realized. If spatial dispersion is
taken into account, | n | is generally speaking finite
even if absorption is neglected (see Sec. 3b). These
factors, however, are not significant here since the
limiting transition к —- °° has a formal significance,
and physically we are dealing only with the fact that
waves with E ^ 0 are nearly longitudinal when к
= ш | n l/c is sufficiently large.

To determine the conditions under which n in-
creases, we first use the well-known equation which
determines n in classical crystal optics for a uni-
axial non-absorbing crystal:

n z о ' c ' e '
111 — b X — b x — b y .

E l (CO)
(1.31)

(the z axis coincides with an optical axis, say the
four-fold axis in the case of a tetragonal crystal).

The refractive index n2 for the extraordinary
wave becomes infinite if

(1.32)

*In such waves the direction of the energy flux S (or of the
group-velocity vector u = doj/dk) does not coincide with к (see
also Sec. l c ) .

In order to satisfy this condition, the indices eĵ  and
e z should obviously have different signs, but can have
no singularities (poles) whatever.

Within the limits of classical crystal optics, if the
principal axes of the tensors efj(w) and efj(w) coin-
cide, it is convenient to transform to the system of
these axes. In this system the dispersion equation
(1.21) has the form

- К (ey + e.) sj + ey (ex + ez) s$ + ez (E, + ey) si] n"

+ exeyez = 0. (1.33)
The root of this equation can become infinite for finite
values of e x , €y, and e z only under a condition that is
a direct generalization of (1.32):

On t h e o t h e r h a n d , if w e do no t c h a n g e to t h e p r i n c i p a l -

a x e s f r a m e , t h e n w e c a n r e a d i l y s e e t h a t (1.34) i s w r i t -

t e n i n t h e f o r m

hi И v , = (1.35)

The frequencies w[|, satisfying (1.35) or the more gen-
eral expression (1.39) given below, will be called the
frequencies of the "fictitious" longitudinal waves; in
these waves D' * 0 and E = Es.

As already mentioned, the "fictitious" longitudinal
waves satisfy the field equations only as к —» ». How-
ever, if we consider the equation (1.35) independently
of the field equations, a procedure that has a certain
meaning (see below), then the frequencies ш\\ are
found to depend on s even when к = 0 [ the absolute
value of к does not enter in (1.35)]. This means that
the frequencies w[| are analytic functions of к as
k — 0 .

The frequencies w(| correspond to resonance—infi-
nite values for the curves of n(ui) —only for non-
transverse waves. The latter limitation is connected
with the fact that strictly transverse waves [see (1.22)
and (1.23)] cannot approach longitudinal waves in any
manner. At the same time, the index n(w) can tend
to infinity for these waves too.

It is clear from (1.20) that for non-longitudinal
waves, and particularly for transverse waves [see
(1.21)] we have

E = 0 (for со and finite D'). (1.36)

In the simple case (1.23), the pole | n | —- °o corre-
sponds to a pole of one of the quantities e X j y ) Z (a)) .

If we do not consider the field equations, then the
induction D' can differ from zero for a zero field
Ej = еГ/(ш, к) D] = 0 only when

= 0. (1.37)ef/ (со, к)

Waves with frequencies wp(k), satisfying simultane-
ously this equation and the condition к • D' = 0, will be
called "polarization waves" [in such waves the gen-
eralized polarization P = (D' -E)/47T = DV47T does not
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vanish when E = 0]. As follows from (1.36) and the
statements above, the "polarization waves" satisfy
the complete system of equations only as к — «>.

The "fictitious" longitudinal waves and the "po-
larization waves," satisfying the field equations only
as | n | — °°, cannot exist in reality, and their analysis
is only ancillary. The latter is connected predomi-
nantly with the fact that these waves are obtained in
the solution of the purely Coulomb problem div D' = 0,
curl E = 0 for arbitrary к [the equations of the Cou-
lomb problem are obtained formally from the general
field equations (1.1) with с — « ] . For homogeneous
plane waves the last two equations mean that

sD' = 0, E,= Es. (1.38)

"Polarization waves" satisfy these equations of the
Coulomb problem if the induction in these waves, in
addition to meeting condition (1.37), is also transverse
( s - D ' = 0). "Fict i t ious" longitudinal waves (D' * 0,
E = Es * 0) satisfy equations (1.38) if

= s^e^co, k)E = 0,

(1.39)

Table I. Normal plane and homogeneous waves in an

i.e., under the condition

This equation generalizes directly the condition (1.35)
and becomes identical with it in the limit of classical
crystal optics.

The fact that the solutions of the Coulomb problem
("fictitious" longitudinal waves and "polarization
waves") satisfy for k—- « the complete system of
field equations is of course connected with the possi-
bility of neglecting the transverse field* (or, as is
sometimes stated, neglecting the retardation) as
к —»°°. It is indeed clear directly from the field
equations (1.14) that as k - « and for finite w * 0,
E, and D' we have В — 0 and к х Е = 0. The same
is clear from the dispersion equation (1.21), since
this equation is satisfied if (1.39) holds and fi2 —• « .

The longitudinal waves (1.24), of course, satisfy
the equations of the Coulomb problem. If we disre-
gard these waves, then the solution of the Coulomb
problem in crystal optics is of importance only from
the point of view of calculating the tensor €ц(ш, к)
for some particular model. An important role is then
assumed, as already mentioned in the introduction and
as will be discussed further in Sec. 4, by the "polari-
zation waves" and by the approximate solutions ob-
tained when E = 0 and going over into the "fictitious"
longitudinal waves when the influence of the long-wave

*If we are dealing with the microscopic field, it is necessary
to take into account in the field equations (1.1) the appearance
of the charge tensor p0 and current density j 0 , which are con-
nected with the particles. Consequently the neglect of the trans-
verse field does not apply to magnetic fields, which are important
in the analysis of the magnetic interaction between particles in
the crystal.

anisotropic medium (Ei = Eoi г= Eoi г(кг""ш1)

k = —n(a>)s, s2 = l)

a) Complete system of field equations (finite k):
General Case:

D ' = n 2 i E - s ( s E ) | , s D ' = 0 , |еи(ш, k ) - n 2 ( 5 i j - s i s j ) | = 0;

Transverse Waves:

D' = n 2 E , s D ' = 0 , sE = 0 ;

Longitudinal Waves:

D' = 0, E = Es ф 0 | eu («a, k) | = 0.

b) Solutions of the Coulomb problem (s-D' = 0, E = Es):
Longitudinal Waves:

D' = 0, E = Es Ф 0, | е ц (<и, к) | =0;

" F i c t i t i o u s " Longitudinal Waves:

DV= 0, sD' = 0, E = Es Ф0, Sjj (u>, k) si Sj = 0;

"Polarization Waves:"

D' £ 0, sD' = 0, E = 0, | efj1 (<u, к) | = 0.

Formally, as к -> ~, the " f ic t i t ious" longitudinal waves and
the "polarization waves" satisfy also the complete system of
field equations.

f i e l d E o n t h e f r e q u e n c i e s a n d w a v e p o l a r i z a t i o n i s

t a k e n i n t o a c c o u n t .

In c o n c l u s i o n w e p r e s e n t T a b l e I, w h i c h l i s t s t h e

r e l a t i o n s f o r n o r m a l w a v e s i n a n a n i s o t r o p i c m e d i u m .

F o r m a l l y , a s k — °°, t h e " f i c t i t i o u s " l o n g i t u d i n a l

w a v e s a n d t h e " p o l a r i z a t i o n w a v e s " s a t i s f y a l s o t h e

c o m p l e t e s y s t e m of f ie ld e q u a t i o n s .

c) E n e r g y a n d s o m e o t h e r r e l a t i o n s f o r w a v e s i n

a n a n i s o t r o p i c m e d i u m . In t h e a n a l y s i s of q u a n t i t i e s

t h a t a r e q u a d r a t i c i n t h e f ie ld ( f o r e x a m p l e , t h e e n -

e r g y d e n s i t y ) , t h e f i e l d s m u s t b e r e g a r d e d a s r e a l .

We t h e r e f o r e p u t

E (r, t) = 4 (1.40)

where Eo is constant for a monochromatic wave and
varies slowly for a quasi-monochromatic field (this
means that Eo changes little within a time ~ l/ш and
over a distance ~ 1/k). The frequency w in (1.40) is
assumed real in accordance with the character of the
problems of interest to us. Expressions analogous
to (1.40) are used for D' and B.

If we neglect the derivatives of Eo, Bo, and Dj we
can rewrite (1.14) in the form

u)D;=-c[kB 0 ], <oBo = c[kEo]; (1.41a)

oiD;*= -c[k*BJ], wB* = c[k*E*]. (1.41b)

Multiplying (1.41a) by Eo and Bo respectively, we get

0 ] . (1.42)

In a transparent medium к = к* and, as is clear from
(1.41), we also have

D'E*=B0B*0.
(1.43)
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F u r t h e r , we obtain from (1.41a) after multiplying by
E * and B * respect ive ly

to (D;E* ± B0B0*) = ck {[E0B*] ± [EJBO]}.

In addition, of c o u r s e ,

k D ; = o , D ; B O = B O E O = O.

(1.44)

(1.45)

Differentiating (1.44) with r e s p e c t to k; and taking
(1.5) into account, we obtain express ions that become
highly simplified for a t r a n s p a r e n t medium if the
upper s ign i s chosen in (1.44) (for the genera l c a s e
see E19^, where the e a r l i e r l i t e r a t u r e i s a lso c i t e d ) .
F o r a t r a n s p a r e n t medium we thus a r r i v e at the r e -
lation

+ [Ео*В„]),

_ со ^ ( с о , к) ri

16я

16я V

F

е:;- (со, к )
(1.46)

H e r e u — g r o u p v e l o c i t y , W — t i m e - a v e r a g e d e n e r g y
d e n s i t y , S o — P o y n t i n g v e c t o r , a n d Sj — e n e r g y flux
a r i s i n g o n l y i n t h e p r e s e n c e of s p a t i a l d i s p e r s i o n
( t h e s u p e r i o r b a r d e n o t e s a v e r a g i n g w i t h r e s p e c t t o
t i m e o r , m o r e a c c u r a t e l y , w i t h r e s p e c t t o t h e h i g h f r e -
q u e n c y ; f o r m o r e d e t a i l s s e e C M . K M V O ] ^ ш ^ n e a ^ _
s e n c e of s p a t i a l a n d f r e q u e n c y d i s p e r s i o n

S = S 0 (1.47)
" - " о - 1 6 я . - - - о

a n d c h o o s i n g t h e u p p e r s i g n w e o b t a i n f r o m (1.46) a n d
(1.44)

W ou = So, W ?

o = ^ - S o , - ^ - = 1 , (1.48)

i . e . , ujj = Vp n , w h e r e u ^ = u * k / k a n d Vp n = w / k —
p h a s e v e l o c i t y i n t h e d i r e c t i o n of k.

R e l a t i o n s o t h e r t h a n (1.41) a n d (1.46) b u t of t h e
s a m e t y p e c a n a l s o b e d e r i v e d . ^1 9^

In t h e p r e s e n c e of a b s o r p t i o n o r i n t h e c a s e of a
n o n - s t a t i o n a r y p r o c e s s , a n i m p o r t a n t r o l e i n t h e a n a l -
y s i s of t h e e n e r g y r e l a t i o n s i s p l a y e d b y t h e P o y n t i n g
e q u a t i o n

dD' а в1

(1.49)

which follows from the field equations (1.1).
For the field (1.40) relation (1.49) averaged over

the high frequency becomes t19a]
m a « dEo dOi> dE*Oi

where the expressions for W and S are indicated in
(1.46) and the quantity ajj = ше'ц /47г (the conductivity)
i i t d d ith j i ? [th H i iis introduced with [the Hermitian ten-
sors crjj,

j
^ = ej= + ie?=

and their derivatives are taken in (1.50)

for r e a l values of the frequency ш and the vector k;
a m o r e genera l express ion, suitable for complex k, is
a l so der ived in C1 9 a-]]. it i s c l e a r from (1.50) ( see
[i9a,20] for (jetaiig) t n a t the physical in terpre ta t ion of
the var ious t e r m s in this equation is in genera l diffi-
cult. On the o ther hand, if we a r e dealing for example
with a monochromat ic wave, ( i .e . , when 9E 0 i /9 t = 0)
in the absence of spatial d i spers ion C203 or in an a lmost
t r a n s p a r e n t medium ( r e a l vector k; s e e P°3) then the
quantity V^ijEojEoi is the heat diss ipated from unit
volume p e r unit t i m e ) . *

Start ing from the d i spers ion re la t ions (1.12) we
can obtain in the c a s e of an equil ibrium medium '-19-'
s e v e r a l inequali t ies for the der ivat ives 9e{j /Вы and
t h e i r combinat ions. F o r example,

(со, к )
dus dco

(1.51)

R e c o g n i z i n g t h a t t h e g r o u p v e l o c i t y u i s t h e s i g n a l
v e l o c i t y i n a t r a n s p a r e n t m e d i u m , i t b e c o m e s q u i t e
o b v i o u s t h a t i n s u c h a m e d i u m

(1.52)

to include the vacuum we m u s t natura l ly wr i te this in-
equality in the form u < с In the genera l c a s e w
= w (k, a, /3), where a = k x / k and /3 = k v / k
(y = k z /k, a2 + /32 + y 2 = 1) . Hence, as can be readi ly
seen,

dco cto d(a 1 — a2 dco сф
дкх дк да к д& к

e t c .
We there fore have d i rect ly

к da да> с
k~~k~ ~dk ~ "дк ~ ~d (con)

da
= и cos <p, (1.53)

where ц> —angle between u and k. According to (1.52)
and (1.53)

d(con)
rfco

(1.54)

In the absence of spat ia l d i spers ion we can show that
the angle cp < n/2 ( i . e . , the vectors u and к always
m a k e an acute angle) and consequently

d (an)
dm

(1.54a)

In addition, in the absence of spat ia l d i spers ion in a
non-absorbing medium the quantity n 2 = (n + i/c)2 i s
always r e a l , and in the p r e s e n c e of absorpt ion the
product пк is posi t ive. E19J I n t h e p r e s e n c e of spatial
d i s p e r s i o n the angle between So and к r e m a i n s acute,

*In the present article we are treating an absorbing medium
which is in particular a medium in thermal equilibrium. We note
that a non-equilibrium medium (crystal) may be not absorbing,
but radiating, as is the case in lasers. For an isotropic medium
without spatial dispersion this means that e" = 4no/<o < 0 and
nx = 2no/co < 0, as is clear from the relation e = e' + ie"
= (n + IK)2.
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but the angle between u and к can be arbitrary. The
quantity n2 can be complex in this case also for a non-
absorbing medium, and the sign of n/c can be arbitrary
(see Sec. 3). In the case of complex n2, the field de-
creases on penetrating the medium not monotonically
(as in the case when n = — K2 is real) , but in oscilla-
tory fashion; therefore the time-averaged Poynting
vector is S 0 * 0 . On the other hand, if total reflection
takes place (no absorption, but the wave strikes an ex-
tensive non-transparent medium with к = 0), then the
time-averaged total energy flux within the medium,
S = So + Sj, of course vanishes. Since S t = 0 in the ab-
sence of spatial dispersion, the equality So = 0 must
be satisfied in this case (normal incidence on the me-
dium ) for total reflection. It is therefore clear why in
the absence of spatial dispersion the field, under total
reflection conditions, cannot decrease with depth in a
non-absorbing medium in oscillatory fashion (i.e.,
with index n ^ 0).

Let us discuss in conclusion the effect of spatial
dispersion on the scalar product of the inductions D'
for different homogeneous normal waves propagating
in a given direction s.

From (1.20), recognizing also that s« D = 0, we ob-
tain for any two normal waves with given s (waves Dj,
E L nu and D2, E2, and n 2)

D;D; = W?EXD; = ^ E 2 D ; . a . 55)

Consequently for different n t and n2, taking the sym-
metry property (1.10) into account, we have

„£,, . (1.56)

In the absence of spatial dispersion and when wj = w2,
we conclude from (1.56) that the solutions 1 and 2 are
orthogonal (i.e., under these conditions Dj'-D2 = 0).
In the presence of spatial dispersion this orthogonality
property does not obtain, generally speaking, even for
identical Wj and w2, since n2 ^ n|. hi an isotropic
medium or in propagation along an optical axis, when
fij = n2, degeneracy sets in, and the vectors DJ and D2

in the normal waves can be chosen orthogonal. In ad-
dition, in the case of gyrotropic media [see (2.26) be-
low ], it can be readily seen that DJ and D2 remain
orthogonal when щ * fi2, in spite of the presence of
gyrotropy—spatial dispersion of first order with r e -
spect to k.

ш analogy with the derivation of (1.56), we readily
obtain the equation

When ojj = CL>2, in the absence of spatial dispersion, and
when absorption is neglected the tensor e-y is Hermit -
ian, and fi2is real. Under these conditions and when
fif * n2, obviously ЩЩ* = 0 . If we disregard spatial

dispersion, then even for a transparent medium (index
n real, tensor €ц Hermitian) the condition DJD2* = 0
is violated even when wt = w2 but n2 ^ n2. We note,
finally, that in the analysis of wave propagation in a
medium use is made occasionally of the tensor

W (1.57)

where TJJJ is the projection tensor

l i i ^ i i - V , -

By virtue of (1.20) and s»D' = 0, obviously,

(1.59)

The symmetry and Hermitian properties of the ten-
sor e^j1 extend also to the tensor ej^jj, since the ten-
sor 7?ij is real and symmetrical. By way of an exam-
ple of the use of the tensors ej^ij and 77̂  let us write
the condition (1.39) for the existence of "fictitious"
longitudinal waves in a different form. Namely, the two
relations E j = ej"-1 Dj and s^Dj = 0 can be combined in

one equation Ej = ejjj rĵ jDj, since SJTJJJDJ = 0 automat-
ically. It is clear, therefore, that when D' * 0 the vec-
tor E is non-vanishing and longitudinal (i.e., E = Es
or 77jjE; = 0) only if the determinant

which is the inverse of
Since Ej

w e obviously have

vanishes. The tensor e^ jj,
ej | i j, is also sometimes introduced.

and

e±.i«e21

>14, = e i i, £ b i = %£,.. (1.61)
Thus, the tensor e^ jj enables us to express the in-
duction D' (if s »D' = 0) in terms of the transverse
electric field Е_̂ . The tensor e±ti\ does not exist if
(1.60) holds true. This is readily understandable, for
if (1.60) holds then D' ^ 0 for longitudinal E, i.e.,
when E_L = 0.

Generally speaking, the tensor e^jj is not an
analytic function of к as к —» 0, even if the tensor
£jj is analytic (the latter does hold true over a wide
range; see Sec. 2b). In addition, knowing ej^ij, it is
not always possible to determine ejj. Even for these
reasons alone it is already clear that the tensors e^ jj
and ej^ij can at best only be of ancillary value, al-
though they can prove to be convenient for writing
down certain expressions. Indeed, in the case of non-
longitudinal waves the expression for n2 is expressed
quite simply in terms of ^ u and eĵ  j j . Thus, ac -
cording to (1.59), the dispersion equation has the form

l.il
= 0. (1.62)

Further, from (1.20) and (1.61) it is clear that



e±..E±j = n2E±At (1.63)

and the dispersion equation is written in the form

L,ae|=0. (1.64)
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For an unbounded homogeneous medium

г'ц(х, г, г') = е4]. (х, г —г')

and s ince
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H e r e a, /3 = 1, 2 and the z axis i s in the direct ion of
k; in this sys tem

/1 0 0\
T | t J = 0 1 0 ,

Vo о о/

we see that

,k') = e i ,(a) I k)e(k-k').

'•> I e-LaP I = E X.' i e ±,22 — e

a n d i n t h e a b s e n c e of s p a t i a l d i s p e r s i o n

„ 2 2 = °1.H+SJ..22 ± | / ( е 1 л 1 _ е ± 2 2 ) г + 4 8 ь 1 2 е ь 2 1 .

(1.65)

In p l a c e of t h e t e n s o r e ± i j w e c a n e q u a l l y w e l l u s e

t h e t e n s o r

since

We t h u s a r r i v e a t E q . (1.5) f o r a h o m o g e n e o u s m e d i -

u m , a s w e s h o u l d .

T h e c r y s t a l i s a n i n h o m o g e n e o u s m e d i u m w h o s e

p r o p e r t i e s r e m a i n u n c h a n g e d u n d e r a d i s p l a c e m e n t

e q u a l t o a n y l a t t i c e v e c t o r a ( t r a n s l a t i o n a l s y m m e -

t r y ) . In t h e c r y s t a l , t h e r e f o r e ,

e i 3 (со, г, r') = ei;. (со, г + a, r ' + a). (2.2)

A function p o s s e s s i n g the p r o p e r t y (2.2) can be
wri t ten in the form

D\ =

We can show that where

(1.66)

etj ((а, г, г') = ^ £ъ К г — r ' )
ь

Ь = njbj + n 2 b 2 + n 3 b 3

In the m i c r o s c o p i c theory, if only the t r a n s v e r s e field i s a n a r b i t ™ r y r e c i p r o c a l - l a t t i c e vector ( n j a r e i n -
is used a s the per turbat ion, we obtain none other than t e S e r s a n d b J t h e * Ь г е е fundamental r e c i p r o c a l - l a t t i c e

v e c t o r s , i .e . , exp (i27ra«b) = 1 ) . Substituting such an
expression for е^(со, г, r ' ) in (2.1), we obtain

the tensor (see Sec. 4b).

2. THE TENSOR €ц(ш, к) IN CRYSTALS

a) Introduction of the tensor eii(w, k) for the case
XJ i where

of crystals. Crystals are not spatially homogeneous,
since, for example, the lattice sites are not equivalent
to other points. Therefore the use of the tensor
ejj(oj, k), introduced for a homogeneous medium, has
certainly only limited application when it comes to
crystals. Before we proceed to the discussion of
crystals, we rewrite in different form the equation
(1.3), which pertains to an arbitrary medium (the
properties of the medium being independent of the
time). We put

«,,(«, к, к ' ) - 2 <fc<«b *>*<*'-к-2яЬ). (2.3)

a n d o b v i o u s l y , if w e i n c l u d e o n l y t h e t e r m w i t h b = 0,

w e g e t

a n d

Ei3.(co, к, к') = 8ь=°(ш,к)6(к'-к)

D[(k, Ш ) = в ь = о (

E(r, 0 = r, co)e-
o r

E(r, t)={ Е ;(к',

and use an analogous notation for D'. Substituting
these expressions in (1.3), we obtain

Щ г , со) = ^ ei;.(a), r, r')£ ;.(r', (o)dr', )

e u (со, r, r') = \ e1;- (t, r, r') e«« dx,

D[ (к, со) = - ^ J Dl (г, со) е-"» dr

Thus, the tensor ejj (ы, к) corresponds to the di-
electric tensor ejj (w, k) and the latter can be used in
the electrodynamics of crystals whenever it is suffi-
cient to retain one term with b = 0 in the right half of
(2.3), or when all the remaining terms can be expressed
by means of this first term.

According to (2.1) and (2.3), the electric field E and
the induction D' are related by the equation

D\ (к, со) = , к) Ej (к + 2лЬ,ш), (2.4)

(2.1)

= ^ ei3(co, k, k')£3(k', a)dk',

u (со, k, k') = - ^ [ e4, (со, r, r') e^'+^idrdr'. J

which enables us to write the wave equation (1.15) in
the form

> k ) E i ( k + 2 l t b> ю) ~ «>) = 0.
(2.5)
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The determinant Д (со, k) of the system (2.5) deter-
mines the dispersion equation

Д(ш, к) = 0, (2.6)
the roots of which (generally speaking, complex) are

ш, = ш,(к), 1 = 1, 2, 3, . . . (2.7)

and correspond to different branches (modes) and
zones of the " n o r m a l " frequencies of the electromag-
netic field in the crystal.

In optics the interest lies in the region of relatively
long waves (к « b ~ l /a) and relatively low frequen-
cies (со « cb ~ c/a). Let us assume that in this fre-
quency region some Fourier component of the electric
field Ej(k, со), corresponding to small k, is consid-
erably greater than-all the other Fourier components
in (2.4) and (2.5) corresponding to b * 0.

From (2.5) we can readily establish by successive
approximations that such an assumption is generally
speaking confirmed, and the field components with b
* 0 turn out to be smaller than E; (к, со) by a factor
(со/2 Ьс) 2 е- Ь (ш, 27rt>) £ ( а Д 0 ) 2 (one can think that
usually e~*(u>, 27rb) 4 1) .* Therefore, if we eliminate

*We denote the running wave vector by k' [the symbol к was
used in (2.5)] and put k' = 2nb + k, |k| « |2яЬ|. We then have in
first approximation

( к , ш ) — 6 2 £ { ( 2 Я Ь , a ) + b i b j E j ( 2 л Ь , ю ) = 0 .

From this we get precisely Е(2ттЬ, <а)~{— -̂У ££*(&), 2ттЬ) Е(к, а),—^

if we disregard the possibility of occurrence of a small coefficient
in the denominator, owing to the smallness of the determinant
|Sij — b̂ bj /Ъа |. Even if the crystal is under the influence of a ho-
mogeneous field E(0, <u), the induced current and D' will in gen-
eral be deeply modulated, in view of the influence of the lattice
sites with periods ~ a , which corresponds to wave vectors ~ l / a
~b. This is why we assume £Ijb(<u, 2тт-Ь)^1. It must be noted in
addition that both the last assumption and specially the use of
the estimate 18y-bibj/b2 |~l are worthy of a more detailed anal-
ysis. For this purpose it would be useful to carry out the corre-
sponding calculations for some simple model.

Under the assumptions made above we have for small к «27rb

E(k + 2nb, <u) = E(2nt>, <u)~("f-J E(k, cS) and the first term in

(2.5) has the form ^j |ebj=0(<u, к) х Ej (k, w) + terms of the order

of е ь * 0 ( Ш ( к ) М 2

Е ( к > й ) ) | .

At the same time, in accord with (2.4), we have accurate to
small terms

D'i (2nb, fi>) = Erb (ш, 2лЬ) Ej (к, <в) and £>i(k, а>) = в "̂°(ш. k) Ej (к, со).

From this it is clear that in order of magnitude

D' (2яЬ, ш)
D' (к, со)

ю, 2лЬ)
е ь = 0 (со, к)

and thus this relation is far from small when e ~ b ~ 1 and e b °
,$10. In other words, if the spatial modulation is deep, by virtue
of which е" ь(ш, 2irb)~ 1, the smallness of the amplitudes
E(2nb, (o) is not at all simultaneously connected with smalless
of the amplitudes D'(2nb, <a). For the latter reason the wave
equation for D' can, generally speaking, not be used [similar to
Eq. (2. 5) for E] to obtain equations of the type (2.8) by succes-
sive approximations.

in the c o r r e s p o n d i n g a p p r o x i m a t i o n a l l t e r m s with

b * 0 from (2.5), we obtain for E(k, со) an equation
that coincides with (1.16):

CD*
i (со, к) £ , - / j = 0. (2.8)

Here ец(со, к) differs from е^"°(со,к) by terms of
order (a/A.o)

2. These additional terms, in addition, de-
pend weakly on k, provided k/27rb ~ ak = 2тгап/А0 « 1;
consequently in first approximation е&(со, к)
и qj(co, 0). In other words, in the long-wave region
it is necessary to include the additional terms if fre-
quency dispersion is considered with accuracy to
~ (a/A0)

2. What is of interest, on the other hand, are
effects of order an/\ 0 (natural optical activity), ef-
fects of order (an/A.o)

2 = ( a / \ ) 2 when n » 1 (longi-
tudinal waves, waves near the absorption lines), and
terms proportional to (а/Л0)

2, but dependent on the
direction (the optical anisotropy of cubic crystals with
n ~ 1). As a result we can, generally speaking, put
ец(со, к) = ebj=0(co, к) in (2.8) for the long-wave r e -
gion of interest to us.

Equation (2.8) leads to the dispersion equation
(1.17), with limitation to rather low frequencies
(со « с/а ~ 1018 sec" 1 ) and long waves (Ao » а ~ 3
x 10~8 cm), which does correspond to the optical r e -
gion; the harmonics of the electric field, correspond-
ing to short waves, are small and the principal part of
the field is given by (2.8) with a certain tensor ей (со, к) .
By the same token, it is possible to employ this tensor
in crystal optics in the same way as in a homogeneous
medium. ^ This was indeed the past procedure, but a
more precise statement of the conditions and of the
meaning of the tensor eij(co, k) as applied to crystals
is essential. It is sufficient to point out that when the
tensor ен(ш, к ^ 0 ) is used, the ratio a/A. is assumed
non-vanishing, while on the other hand, the medium
(crystal) is considered spatially-homogeneous. The
validity of such a procedure is not obvious a priori.

The situation involved in the formalism employed
was described above. Physically, everything reduces
to having the lattice constant a play a double role.
On the one hand, the parameter a characterizes the
spatial inhomogeneity of the medium, an inhomoge-
neity which is neglected on going over to qj(co, k) .
On the other hand, the same parameter a describes
the "molecular action radius" I —the interval of val-
ues of R, for which the kernel ец(со, г, г + R ) in
(2.1) differs appreciably from zero. Letting the r a -
dius I approach zero corresponds to neglecting spa-
tial dispersion, as was already noted above. If we
introduce from the very outset two formally independ-
ent parameters a (the lattice constant) and I (the
"molecular action radius"), the picture may become
clearer. Actually, however, usually a ~ I in the crys-
tal, and for complicated crystals with anomalously
large lattice parameter, a » I. The inequality a « I
(or, formally, the tendency of a to zero with I *• 0)
is apparently impossible for a real crystal.
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b) Case of weak spatial dispersion (a/A. « 1). The
introduction of the tensor €ij(u>, k) and its use in the
wave equation (2.8) for a crystal lattice is, generally
speaking, possible if

( £ > ' « l (2.9)

(we disregard for the time being some additional a s -
pects pointed out in Sec. 2a).

In optics the condition (2.9) can be assumed to be
satisfied at all times, at the same time, however, it
still does not indicate that the spatial dispersion is
small. The point is, as was already emphasized, that
spatial dispersion is characterized by a parameter
а/Л. = ап/Л0. It is obvious that at large values of the
refractive index n this parameter an/A.o, and conse-
quently also the spatial dispersion, can be appreciable
even if the inequality (2.9) holds true. Under such
conditions eij(w, k) can turn out to be a rather com-
plicated function of k, and if we imagine £ij(w, k) to
be expanded in powers of k, this series will contain
many terms (the expansion parameter is precisely
the quantity an/A.o). The wave equation (2.8) can in
this case have many solutions, i.e., the dispersion
equation (1.17) will have many roots wj(k). On the
other hand, if spatial dispersion is neglected, the dis-
persion equation has only two roots corresponding to
the ordinary and extraordinary waves, and under cer-
tain conditions an additional root ш\\ = const for the
longitudinal wave.

In connection with the foregoing, a very important
fact is that in crystal optics the spatial dispersion is
weak, i.e., the inequality mentioned in the introduction
applies

а/Я = ап/Я„<1. (2.10)

To satisfy this inequality we can put in practice
qj(w, к) = еп~°(ш, к) . This is an important factor
from the point of view of calculating ец(а>, к) from
the microscopic theory. Since such calculations have
only limited significance, an incomparably more im-
portant factor is the fact that condition (2.10) allows
us to expand the tensors eij(w, k) or ец(ш, к) in
powers of к of which only the first two or three terms
need be retained. M We thus use the expansion

etj (со, k) = ei;. (со) + iyin (со) kt + aijlm (со) kxkm, (2.11)

or, for homogeneous plane waves, when к = oins/c:

et, (со, k) = e(J. (со) + iym (со) ^ ns, + aijl .(2.12)

Analogously, for the inverse tensor
ej/ (со, k) = ef/ (со) + гб^, (а>);*, + pijlm (со) ktkm. (2.13)

ецThe use of the tensor ejj and ец , whether in general
or in the form (2.11) —(2.13), is equivalent over a wide
range and is dictated by considerations of convenience.*

*In spite of the fact that the tensor Ец is used more fre-
quently, the advantages gained by using the tensor ЕГ1 in certain
cases have been noticed long ago (see, for example,[">"]).

Exceptions are cases in which several components of
the tensors ем(ш) or е[^(ш) tend to infinity (increase
strongly). For example, if some component ejj(o))
tends to infinity, then the expansions (2.11)—(2.12) are
insufficient for the corresponding component of
ejj(w, k), since all the terms are vanishingly small
compared with eij(w). At the same time, an increase
in ejj usually brings about an increase in fi, i.e., an
increase in the role of the spatial dispersion. In such
a case we can use expansion (2.13), which is particu-
larly effective when ejj(w) decreases. Analogously,

i n t h e r e g i o n w h e r e ej j 1 ( e ) i n c r e a s e s s t r o n g l y , w e

m u s t u s e t h e e x p a n s i o n (2.11) — ( 2 . 1 2 ) , a n d n o t (2 .13) .

W e s h a l l h e n c e f o r t h m a k e u s e of t h e e x p a n s i o n s (2.11)

- ( 2 . 1 3 ) .

L e t u s n o w d i s c u s s t h e c o n d i t i o n s u n d e r w h i c h t h e y

c a n b e u s e d , a p a r t f r o m t h e i n i t i a l r e q u i r e m e n t (2 .10) .

E x p r e s s i o n s (2 .11)—(2.13) a r e m e a n i n g f u l o n l y if t h e

f u n c t i o n s £ц(а>, к ) a n d e j j ^ w , к ) c a n i n g e n e r a l b e

expanded near the. point к = 0. In this connection we
recall that as k—- 0 the functions ец(ш, к) and
efj^w, k) tend respectively to eij(w) and е{/(ш)
and are independent of both the modulus and the direc-
tion of k. Further, е^(ш, к) and ejj^w, к) are inte-
gral quantities, obtained by spectral summation (see
Sec. 4) . Therefore, even if the integrand has a few
sufficiently weak singularities (for example, at the
natural frequencies of the unperturbed problem), the
components of ejj will have no singularities. In addi-
tion, as already mentioned in the introduction and as
will be pointed out in Sec. 4, in the cases known to us
the natural frequencies of the correctly chosen unper-
turbed problem have no singularities near к = 0. Thus,
there are no grounds whatever for doubting that the
functions ejj and ejj1 have no essential singularities
when к —• 0.

Expansions of the type (2.11)—(2.13) using only a
few terms may not be sufficient in the following unique
situation. Let, for example, £ij(w, к) = е(ш, k)6j,
with

e (со, к) = е(ш) vk*
CO — (О;

(01

(2.14)

U n d e r c e r t a i n c o n d i t i o n s t h i s e x p r e s s i o n d e s c r i b e s t h e

v a r i a t i o n o f e ( w , k ) n e a r a q u a d r u p o l e a b s o r p t i o n l i n e .

So long as the term дк2 is insignificant, we deal here
with an expansion such as (2.11). In the opposite case,
however,

0) — 0)J
[e(co, к)-е(<в)Р = .

which c o r r e s p o n d s to nei ther (2.11) nor (2.13). It is
easy to w r i t e an express ion that genera l izes formula
(2.14) to include any crys ta l in the sense of the p h e -
nomenological expansion (2.11)

Si,- (w, к) = е„ (со) + iyiH (со) A, + a i j I m (со, к) kLkm,

a$m (со, к) = liilm (со) + *т|ш И ki + iihim И ktkm. (2.15)
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Similarly we can replace уш(ш) in (2.11) by Уш(ш, к),
with

Vw » N

For a non-gyrotropic cubic crystal formula (2.15) is
equivalent to (2.14), with

„ J, ь _ A v (ш) А2

CO;

In a more complicated case the use of the combined
expansion (2.15) leads to cumbersome expressions,
which can hardly be of practical interest. It is more
important, however, that formulas such as (2.14) and
(2.15) need be used only in exceptional cases. In fact,
the expansions (2.11)—(2.15) are in the parameter a/\,
i.e., the coefficients у and 6 are of order a while the
coefficients a, /3, v, and д are of order a2. There-
fore, as is clear from (2.14), the term дк2 in the de-
nominator need be taken into account only when
| w — u^i \/ш1 ~ дк2 ~ (2ira/\)2, while at the same time

v/c2

(0 — C0(
C0[

• |i/c2 ~ e (<fl) — 1.

T h e l a t t e r m e a n s t h a t t h e q u a d r u p o l e l i n e m a k e s a

c o n t r i b u t i o n t o e , c o m p a r a b l e w i t h t h e c o n t r i b u t i o n

o f t h e d i p o l e l i n e s . T h e c o r r e s p o n d i n g v a l u e o f t h e

ratio (о) -ш1)/ш1 is on the order of 10"5—10~6, which
is equivalent to approaching the center of the line with-
in ДЛ ~ 10~2 A in the case of weak absorption. Even
when such conditions are realized, the term дк2 in
(2.14) or the dependence of ащщ on к in (2.15) still
need to be taken into account in a very narrow region
near the center of the line. Outside these regions, ex-
pansions (2.11)—(2.13) are more convenient, and the
entire "quadrupole effect" finds its reflection in the
terms ai j^ m k;k m or /3ijunkZkm> which thus play the
principal role. Consequently, a changeover to expres-
sions of the type of (2.14) and (2.15) corresponds in a
certain sense to an examination of higher-order effects.
The corresponding limitation on the range of validity
of the expressions (2.11) and (2.13) is therefore per-
fectly natural. It is interesting that a similar higher-
order effect is encountered in the experiments (see
Sec. 3f). Summarizing, we can state that the use of
formulas (2.11)—(2.13) in crystal optics with spatial
dispersion is a fully consistent method, * although it
does occasionally need some further generalization,
such as the use of expressions similar to (2.15).

•When series such as (2.11)-(2.13) are substituted in the dis-
persion equations (1.17) and (1.18), as was done int5], one ob-
tains for the refractive index ii algebraic equations whose order
increases with the number of terms retained in the series. The
new roots ii, however, correspond to ever increasing values of k.
Consequently, in the determination of only those first few roots
n which can be considered in connection with condition (2.9)

' and by virtue of the influence of absorption (seeM and Sec. 3b,
below), the retention of only the first terms of the series is again
fully consistent and justified. Thus, remarks to the contrary,
made in[23], appear to us to be incorrect.

We note that some references'^1 4'2 4'2 5-' use expres-

sions for ejj(w, k) in crystals that are in some r e -

spect more general than (2.11)—(2.13). Thus, the ex-

pression used in E14-' is

со, к) = 8;, + — — F-rr^ . W.ib)

where e^?*, щ, and gjj are constants. In fact, how-
ever, we must put in (2.16) F(k) = f + g^kj + h ^ k j l ^ ,
since inclusion of terms of higher order in к is in
general beyond the limits of the initial approximation.
Equation (2.16) then reduces to (2.13) and is suitable
for use only near the center of the line.* Formulas
suitable for a wide range of frequencies are given in
C243, but these extend beyond the limits where expan-
sions (2.11) and (2.13) are valid, and have essentially
an extrapolative character. It seems to us that the
most correct procedure is not to resort to extrapola-
tion formulas for £ij(w, k), thereby taking explicit
account of the weakness of the spatial dispersion. For
ejj(ai), to the contrary, it is convenient to use extrap-
olation formulas near the absorption line, for example
by putting in the principal-axis frame

The tensors contained in (2.11) —(2.13) satisfy cer-
tain relations that follow from (1.7) and (1.9)—(1.11).
Thus, by virtue of (1.10),

Е [ , М = % М , el/ (ш) = e]} (a>), а ; Я т (ш) = а Д ! , п Н ,

Yiji (») = - Y,ii И , 6i3-, (<o) = - biU (an), Pi,[m(co) = Pj-iIm(u>).

(2.18)

In a d d i t i o n , t h e t e n s o r s « ikZm a n d ftk^m c a n a l w a y s

be chosen such as to make а ц г т = a i j m j and Рщт

= /3jjm£ (we assume here that this choice was indeed
made). We note also that the magnetic induction of
the external field B e x t is assumed equal to zero
everywhere except in Sec. 3d. In the presence of a
center of symmetry and for a nongyrotropic medium
in general, it follows from (1.11) that

Yti« = O. 6t)i = 0. (2.19)

In the absence of absorption, the tensors ejj(w), e[jf (w),
TijZ. aijZm> 6ijl> a™1 ftjZm ai>e all real [see (1.7) and
(2.18)].

All tensors simplify considerably for crystals with
high symmetry, let alone for an isotropic medium.

In an isotropic nongyrotropic medium the tensor
6ij(w, k) has the form (1.26). If the spatial dispersion
is weak, then [see (1.26) —(1.30) and (2.12)]

*InM and in some other articles, the approach used inM and
above in this article, connected with the expansion of e^ (w, k)
in powers of k, is compared to some extent with different calcula-
tions that include various elements of microscopic theory. It
seems to us that one cannot agree with these comparisons and
with many other ideas advanced in the literature. Since the cor-
responding critical remarks have already been mentioned inL"],
we do not deem it necessary to discuss them in the present
article.
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i y (со, k) = 8 (to) 6 l f — a x (со) n2 (6t). - ŝ,-) — щ (со) и2« ;̂.,

"-L l-t-а, (со) ' Оц(СО)
(2.20)

[ t h e f a c t o r ( w / c ) 2 , c o n t a i n e d i n ( 2 . 1 2 ) , i s i n c l u d e d i n

« ( I a n d a j j . N e a r t h e p o l e e ( w ) a n e x p a n s i o n o f t h e

t y p e ( 2 . 1 3 ) m u s t b e u s e d , a n d f o r a n i s o t r o p i c m e d i u m

Table II. Properties of the tensor ец(ш) and the pseudo-
f ( ) ( f f W )t e n s o r fj

System

Tri clinic

Monoclinic

Rhombic

Tetragonal

Trigonal

Hexagonal

| u

/en 0
0 e2 3

\El3 0

/Ell 0
0 в2 3

\0 0

/ e , 0

| ° e ±
I 0 0

/ 8 ± 0

0 E j

I 0 0

/ e ± °
[О В

\° °"

Cubic

j

Isotropic
medium

,-E 0
08

\0 0

/BO
OB

\0 0

j(w)

El3\

p23 /ьзз/

о
<w

о \
о
833/

0 \
0 1

°\

-°ell/

°\
0 1L

V

°\0
e/

°\
0

e/

(£ij = eji> fij =

Principal axes of
the tensor

Not fixed

у axis directed
along 2-fold
axis or perpen-
dicular to die
symmetry plane.

Axes x, y, and z
directed along
2-fold axes,
and in class
C2V the x and у
axes are per-
pendicular to
the symmetry
planes.

In classes C 4 ,
S 4 , and C 4 h

only the z
axis (4-fold
axis) is fixed.
In c lasses D 4 ,
C 4 v , D 2d, and
D 4h all axes
are fixed.

In c lasses C 3

and C 3 i only
the z axis is
fixed (3-fold
axis). In classes
D 3 , C 3 v , and
D 3d аП axes
are fixed

In c lasses C 6 ,
C 3 h , and C 6 h

only the z
axis (6-fold
axis) is fixed.

All axes fixed
, (x,у and z

are 2-fold
axes in
classes T and
T h and 4-fold
axes in
classes 0,
T d a n d O h ) .

Choice of
axes arbi-
trary

f j b

fi,=

ta =

1u =

1a =

hi =

/ij =

hi =

hi =

hi =

fa =

/u =

/« =

0 i n

( h i

/ 1 2

\ / l 3

0 i n

/ / 1 1

0

\ / l 3

/ 0

/ 1 2

V o

0 i n

( h i

0

V o

/ 0

/ 1 2

\ o

0 i n

( f ±

v °

( h i

I f 1 2

\ o

/ 0

/ 1 2

\ o

/ i ; = 0 i n

hi = u

\ °

/ i 3 = 0 i n

hi =

/i; =

/ • ~

f u =

o f

U j -

/ / ,

1 °

v °

= 0 i n

( 1

- \ °

l o

0 i n

= s i j m f m Z )

c l a s s C t

/ 1 2

/ 2 2

/ 2 3

/i3\
/23 1 — in class C1

fj

c l a s s C 2 h

0

/ 2 2

0

f

0

/ 2 3

hA
0 — in class C2

/33/
0 \
/2 3 —in class C s

э У
c l a s s C 2 h

0

f ^

0 "

/ 1 2

0

0

° \
0 J—in class D2/33/
0 \
0 —in class C2V0 J

c l a s s e s C 4 f l , C i v , a n d D , h

0

f ±

0

/ 1 2

/ 1 1

0

f n

0

0

0 N
~J 1 in classes C4 andJ

0 \
0 in class St0 /0 \
0 in class D2d0 J

classes C 3 i, C3V, and Ьз^
0 0 \

0
0 in classes C3 andf I D3/

classes C3h, Ceh, Cev, D3h,
0

t±

°

0 \ D0 1 in classes C6 and
у D«

classes 7',,, T,, and 0/,
) 0\
/ 0
u //

the

in classes 7" and (9

presence of a center
s y m m e t r y

( f

0

J 0 \

J //

in the absence of a
center of sym-
metry



342 V. M. A G R A N O V I C H a n d V. L. G I N Z B U R G

e«/ = в"» (со) bi} + p± (со) n2 (6i;. -*,.,) + p., (со) n\Sj. (2.21)

By virtue of the condition 8 • D' = 0, we have obviously
Б = [ 1/c + /З^ш) n | ] D, and from (1.20) we obtain

(2.22)
We shall have more to say about this solution in Sec.
3b. For the longitudinal wave we obtain from (2.21)
the condition е(о)ц) = 0 . The spatial dispersion for
the longitudinal wave is disregarded when the expan-
sion (2.21) is used.

We note that formulas (2.20) and (2.21) correspond
to the following relations

c2 c2

D = eE — a (̂co) -^ rot rot E + ац (со) — grad div E,

The expressions (2.23) are the most general relations
between the two vectors in an isotropic nongyrotropic
medium with neglect of all derivatives of order higher
than the second.

The conditions connected with the symmetry of the
crystals, with respect to the tensors e^ and y ^ , are
well known (see, for example, C1»22»26^). Nonetheless
for the sake of convenience we recall the correspond-
ing results (the symmetry properties for the inverse
tensors are obviously the same as for the original
tensors and their components will not be written out
below).

A symmetrical tensor of the second rank, specific-
ally eij(oi), has at most six independent components.
For the corresponding second-order characteristic
surface ejjxixj = 1 this corresponds to the lengths of
three axes and to three parameters (angles) deter-
mining the orientations of these axes. The symmetry
of the tensor ец is the same for all crystal classes of
a given crystal system. This can be readily verified
by determining ejj for the least symmetrical class of
each system. In doing this, it is useful to bear in mind
the following fact, which is obvious from the proper-
ties of second-order surfaces: in a plane perpendicu-
lar to the 3-fold and higher-order axes, the section
through the surface degenerates into a circle. There-
fore, for example, even for the least symmetrical
crystal class T in the cubic system the characteristic
surface degenerates into a sphere, i.e., ejj = ебц
(class-T crystals have four 3-fold axes, correspond-
ing to the space diagonals of a cube).

In the tetragonal, trigonal (rhombohedral) and
hexagonal systems we can, by aligning the z axis with
the 4-fold, 3-fold, or 6-fold axis respectively, reduce

/ 8 l 0
the tensor ejj to the form 0 e2 0 ) etc (Table II).*

\0 0
*The tensor simplification resulting from symmetry is dis-

cussed in particular detail inM. We note that we use for the
crystal classes the Schoenflies notation,which is most widely
used in the physics literature (the correspondence between this
notation and the international notation is given in[Ml).

By virtue of (2.18), the tensor yjj/ (and 5ц1) has
the following properties:

Y M . I = YUy, I = Y«, ! = 0. Y * U , ! = -Уух,.1, Yyr. 1 = - Y : ! ; . !.

Y-i, i = — Yx2, i (l = 1. 2, 3 = x, y, z);

The tensors у ш and 6jw have thus in general nine in-
dependent components and can be written in the form

Yij! = eijm£ml. bijl=>eijmfml' (2.24)

where е ц т is a unit pseudotensor of third rank (е12з
= 1, e 2 1 3 = — 1, e 1 1 2 = 0 etc; e i j m is unchanged by mir-
ror reflection) and g m j and fm j are pseudotensors of
the second rank. Further, one can write

Y h. ___ p 0 Ic P fl' A Jc P ~f /i* О 4' t*) *? t\ \

ijlKl — eijmSmlKl — eijmSm, О;у,/С; — eijrIJmlKl — ei]mfm, \Л.АЬ)

w h e r e t h e p s e u d o v e c t o r s ( i . e . , a x i a l v e c t o r s ) g ' a n d

£' a r e i n t r o d u c e d .

N e g l e c t i n g i n ( 2 . 1 1 ) — ( 2 . 1 3 ) t e r m s t h a t a r e q u a d r a t i c

i n k, w e h a v e

D[ = e i ; (со, к) E} = Bif (со) Е, - i [g 'E] ; >

Et = в$ (со, k) D'j = ег/ (со) D- - i [ f ' D ' ] t . (2.26)

S u b s t i t u t i n g t h e s e r e l a t i o n s i n t o t h e w a v e e q u a t i o n

(1.15), w e c a n v e r i f y ( s e e S e c . 3 a a n d , f o r e x a m p l e , M ,

S e e s . 82, 8 3 ) t h a t o n l y t h e s c a l a r p r o d u c t fi jSiSj o r

f^sj p l a y s a r o l e i n t h i s e q u a t i o n . C o n s e q u e n t l y t h e r e -

f r a c t i v e i n d i c e s a n d t h e r a t i o of t h e c o m p o n e n t s of t h e

v e c t o r D ' a r e o b v i o u s l y i n d e p e n d e n t of t h e a n t i s y m -

m e t r i c a l p a r t of fjj, i . e . , t h i s t e n s o r c a n b e c h o s e n i n

s y m m e t r i c f o r m . * F o r a n i s o t r o p i c m e d i u m a n d c u b i c

•The antisymmetrical parts of the pseudotensdrs gij_a and
fij t a lead to pseudovectors g a and fa , which have the form
const • [h x k]; here h is a certain unit vector connected with the
crystal. Obviously, such a vector can exist only for crystals in
which one direction is preserved (without change of sign) under
all symmetry transformations. In other words, the vector h exists
only for pyroelectric crystals C 1 ( C S , C j , C 2 v , C 4 , C 4 v , C 3 , C 3 v ,
^ 6 . C 6 v ; see, for example!1], Sec. 13). From this and from Table
III it i s clear that for crystals of c lasses C 3 v , C 4 v , and Cg v the
entire tensor £y is antisymmetrical, but these crystals are usu-
ally not regarded as gyrotropic (only the symmetrical part of the
tensor fy is indicated in Table II). Actually, it follows from
(2.26) that the vector fa leads to the appearance of a longitudinal
component of E only (we assume that к = <uns/s). Therefore the
tensor fij> a makes no contribution whatever to the refractive
indices and to the ratio between the components of the vector D
in the solution of the wave equation for the isotropic crystal (see,
for example, Sec. 3a). At the same time, the vector E, generally
speaking, has elliptic polarization even when fy = fij, a. In this
case, however, the degree of ellipticity is proportional to k, i.e.,
we are speaking of an effect of order (a/X). Thus, in examining
only circular or near circular polarization, crystals of c lasses
C 3 v>

 c-4v> a n d Cev are nongyrotropic, and for all other crystals
the tensor {ц can be regarded as symmetrical.

We shall proceed in this fashion henceforth (this pertains to
Table II). In addition, in examining effects of second order in к
we shall henceforth assume for simplicity that (2.11)—(2.13) con-
tain no terms linear in k, although these terms may also lead to
second-order effects.

"Weak gyrotropy" (the degree of ellipticity ~ а/Л) which
should be observed in pure form in crystals of c lasses C 3 v , C 4 v ,
and C 6 v (this was pointed out earlier int2 7]) seems to us, at the
same time, fully deserving of study.
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Table III. Properties of the tensor а^1т (
aijZm = aijmZ; the properties of the tensor

are analogous to those of а>щт)

343

System

Triclinic

Monoclinic

Rhombic

Tetragonal

Trigonal

Hexagonal

Cubic

Isotropic medium

Components а ц / т (in addition to those indicated, the components obtained by virtue of the
conditions а.ц1т = а д ; т = cxijm/ also differ from zero)

All 36 components а ц / т differ from zero (possibility of fixing the axes is not taken into account in this
table; see the text and table II)

20 components differ from zero; the following components vanish: <xXyyy. &zyyy. &yyyx> a

y y y z >
а ххху» ayxxx> a z z z y » a y z z z - Ct X Z X y, a xyxz> K M y Z , ctyzxx* a z x z y » a z y z x » ttzzxy» a x y z z

12 i n d e p e n d e n t c o m p o n e n t s differ from z e r o : aXxxx> ayyyy< a z z z z > <*xxyy> a xxzz< <* y y X xi azzxxt
axyxy> O-xzxz, a y y z z . «zzyy> O-yzyz

In c l a s s e s D4, C^v, D2d» and D 4 h s e v e n i n d e p e n d e n t c o m p o n e n t s differ from z e r o : a X X x x = ayyyy>
a z z z z > <*xxyy = ayyxx> <*xxzz = ctyyzz. a z z x x = a Z Z yy> C-xzxz - <*yzyz a n d O-xyxy

In c l a s s e s C 4 , 84, and C41, t h r e e a d d i t i o n a l i n d e p e n d e n t c o m p o n e n t s differ from z e r o :
ttXyXX = — « Х У У У > C x X X y = — < * y y X y , CtxZJTZ = — % Z X Z

In c lasses C 3 and C31 there are 12 independent components: ctxxxx = ауууу> axxyy = ayyxx> <*xxzz
= <*yyzz< O-xxyz = "xyxz = ~ <*yyyz> «xxxz = ~ Otyyxz = — Ctxyyz> «xxxy = <*xyyy = — ayyxy = ~ Cxyxxi
&ZZXX = Otzzyy» azzzz» ayzxx = ~ ayzyy = axzxy» axzxx = ~~ axzyy = ~~ ayzxy» a yzyz = axzxz»
a yzxz = ~ CtXzyz» axyxy — + axxxx — axxyy-

In classes D 3 , C3V and D3<j we have in addition aXxxz = <*xxxy = a y z X z = «xzxx = 0

In c lasses C 6 , C 3 h and Csh there are 8 independent components (the components not included are
equal to гею): а Х Х Х х = «yyyy. txXx y y = а у у х Х . «xxzz = a y y z z , o t z z x x = a z z y y and a z z z z , < z x y y y

~ axxxy = ~" ayyxy — ~ axyxx» a y Z yz ~ V-xzxzi Wyzxz = ~ CX-xzyz» axyxy ~ axxxx — axxyy*
In classes Dg, Cgv. D311, and D6i,, we have in addition a X X X y = a yzxz = 0 (other components con-

nected with the foregoing are also equal to zero in view of the relations given above).

In c lasses T and T h , four independent components differ from zero: ax = aXxxx = ayyyy = «zzzz.
a 2 " &XXZZ ~ ayyxx = azzyy> a 3 = axyxy = a y z y z = ctzxzxt a 4 = &zzxx ~ axxyy = a yyzz

For c lasses 0 , T<j, and Oh, we have in addition 0.2 = 014

The same components as in the cubic system differ from zero, but in addition to 0-2 = 0C4 we also have
013 = оц _ ot2 (thus, we have a total of two independent components).

crystals 'of course, without center of symmetry, for
otherwise gjj = Щ = 0; in addition, it must be borne
in mind that the tensor gjj may vanish also in the ab-
sence of a center of symmetry, as occurs, for example,
for cubic crystals of class T j ) :

(2.27)

In this case not only D' • к = 0, but also E • к = 0 when
D' * 0. On the other hand, if D' = 0 and E = Es (lon-
gitudinal waves ), then the gyrotropy becomes immate-
rial. The form of the symmetrical tensor fjj for dif-
ferent crystal classes is indicated in Table II (for more
more details see M , Sec. 33, and H22.26.283).

Let us proceed to examine the properties of the ten-
sor ajj^jjj (and Pijim). By virtue of the symmetry of
the tensor cqjun with respect to the indices ij, and
separately with respect to the indices Zm [see (2.18)],
this tensor has in general 36 components (in place of
the 81 components of an arbitrary 4th-rank tensor).

Further decrease in the number of independent com-
ponents is connected with the specific symmetry of the
crystals. The general principle reduces, as is known,

to the requirement that the tensor components (phys-
ical quantities ) remain unchanged under the transfor-
mations allowed by the symmetry of the crystal (for
more details see C26»28^).

Triclinic crystals either have no symmetry ele-
ments (class Cj), or else have a center of symmetry
(class Cj). However, the presence or absence of a
center of symmetry does not impose any conditions on
a 4th-rank tensor. Consequently, 36 independent co-
efficients щцт remain in the triclinic system. To be
sure, the choice of axes, which in this case is arbitrary,
enables us to fix three coefficients. It seems more r a -
tional, however, to calculate the number of independent
components without account of the possibility of free
choice of axes.

It is sufficient here to recall as an example the ten-
sor ejj(w) (or any other second-rank tensor). The
number of independent components of ejj in the t r i -
clinic, monoclinic, and rhombic systems is respec-
tively 6, 4, and 3 (see Table II). At the same time in
all these cases in the system of principal axes the ten-
sor ejj has three independent components. However,
the difference between the crystals of these systems
is very large, inasmuch as in a rhombic crystal the
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p r i n c i p a l a x e s a r e f ixed, b u t i n a t r i c l i n i c c r y s t a l

t h e y m u s t b e d e t e r m i n e d , t h i s b e i n g e q u i v a l e n t t o t h r e e

a d d i t i o n a l p a r a m e t e r s .

We s h a l l i n d i c a t e b e l o w t h e p o s s i b i l i t y of c h o i c e of

t h e p r i n c i p a l a x e s ( i . e . , w e n o t e t h e c a s e s w h e n t h i s

c h o i c e i s n o t f ixed b y c o n s i d e r a t i o n s c o n n e c t e d w i t h

t h e s y m m e t r y of t h e c r y s t a l ) , b u t i n c a l c u l a t i n g t h e

n u m b e r of i n d e p e n d e n t c o m p o n e n t s t h i s c i r c u m s t a n c e

i s d i s r e g a r d e d . *

In m o n o c l i n i c c r y s t a l s of c l a s s e s C 2 a n d C 2 n t h e r e

is a two-fold axis, usually chosen to be the у axis. In
rotation about such an axis, the coordinates are t rans-
formed as follows: x — —x and z — — z. The compo-
nents of tensors with odd sums of the number of x and z
indices reverse sign under this transformation, while
physically both systems of coordinates are perfectly
equivalent, and in this lies the meaning of the assertion
that a two-fold axis is present. Consequently, the cor-
responding 16 components of the tensor а ц ; т vanish,
namely the components

^ХУУУ ^zyyy» **yyyxi ^yyyz* ^xxxyi «yxxx ' ^ z z z y ^yzzz*

T h e c l a s s C s h a s o n l y a m i r r o r p l a n e p e r p e n d i c u l a r

to the у axis, and by virtue of this symmetry the com-
ponents aijlm with odd number of у indices should
vanish. This requirement leads to the same result as
for classes C2 and C 2 n . Thus, in monoclinic crystals
the tensor ajj£m has 20 independent components. In
crystals of the monoclinic system the symmetry prop-
erties fix only one crystal axis (the у axis) and by
choosing the other axes we can reduce the number of
components of the tensor а ш т by one.

Classes D2 and D 2 n of the rhombic system have
three two-fold axes. We see readily that in this case
the following 12 components with even number of each
of the indices x, y, and z (the axes x, y, and z are
two-fold axes) differ from zero:

(2.28)

(in addition, of course, <*xyxy = otyxxy = axyyx etc).
The third class of the rhombic system, class C 2 V .

has one two-fold axis (the z axis) and two mutually
perpendicular mirror planes passing through this axis.
Reflection in these planes, i.e., the transformations
x — — x or у —- — у, leave only the components of the
tensor with even number of indices x, and simultane-
ously, with even number of indices у unchanged. But
from this it follows for the fourth-rank tensor that the
number of indices z must be even, i.e., we again a r -
rive at the scheme (2.28). Thus, crystals of the rhom-
bic system have 12 independent components щ

*The possibility of the choice of axes is taken into consid-
eration int29] in an evaluation of the number of independent com-
ponents of the elastic-modulus tensor. This explains the differ-
ence in the number of independent components betweent29]
andM.

For classes D4, C 4 V , D2(j, and D ^ of the tetragonal
system, in addition to symmetry elements correspond-
ing to one of the classes of the rhombic system, the z
axis is a 4-fold rotation or inversion axis. Rotation
through an angle тт/2 about this axis should leave the
components of the tensor (physical properties) un-
changed, and at the same time the transformation
x — — у, у — — x occurs. It follows therefore that
some of the coefficients of (2.28) are equal to each
other, and only seven among them are independent
(the remaining а ф т , in addition to those obtained
by virtue of the conditions <*ijjm

 = ajiZm = ai)ml
are equal to zero in the chosen frame):

tf' °zzzz> axxyy — ajjyxx
y axzxz = a\)zy

> axxzz az
(2.29)

For classes C4, S4, and C ^ of the tetragonal system,
having only a 4-fold rotation or inversion axis (and
also a mirror plane perpendicular to it in the case of
class C ^ ) , we cannot start from (2.28). As was already
illustrated above, we arrive at the conclusion that the
other non-vanishing coefficients, in addition to those in
(2.29), for these classes are

„• (2.30)

Thus, for classes C4, S4, and C ^ there are 10 inde-
pendent components. At the same time, for these
classes the symmetry of the crystal singles out only
the z axis, and thus there is one degree of freedom
in the choice of the coordinate frame.

Crystal classes of the cubic system have no non-
vanishing components other than those for rhombic
crystals [see (2.28)].* The number of independent
components, however, decreases greatly. Thus, even
the four 3-fold axes, which are present in all classes
of the cubic system (body diagonals of the cube), lead
to the equivalence of all components of the tensor under
the substitution xyz — yzx — zxy. We are, therefore,
left with only four independent components

a l == axxxx = ayyyy = azz;z' a2 ~ axxzz " ayyxx = azzyy
K 3 = O^xyxy = ayzyz = «zxzx. «4 = a-zxx = ахх„у = ayyzz- ( 2 - 3 1 )

F o r c l a s s e s T a n d T n , n o f u r t h e r s i m p l i f i c a t i o n s

a r i s e . I n c l a s s e s T ( j , O , a n d O h w e h a v e , i n a d d i t i o n

а„ = а4 (classes Td, O, Oh
(2.32)

(2.32) follows in obvious fashion from (2.31), if we rec-
ognize that the axes of the cube, x, y, and z, are 4-fold

*This statement is connected with the fact that all classes
of the cubic system share symmetry elements with at least one
of the classes of the rhombic system (in addition to having other
symmetry elements) (see, for example, the illustrative table 21
inM). We recall also that the axes x, y, and z are fixed for all
classes of the cubic system (two-fold axes for classes T, Th,
and T,j; 4-fold axes for c lasses О and Oh).



C R Y S T A L O P T I C S WITH A L L O W A N C E FOR S P A T I A L D I S P E R S I O N 345

inversion axes (class T<}) or rotation axes (classes О
and Oh).*

In an isotropic medium, as is clear from (2.20),
there are only two independent components a^im. In
tensor notation for an arbitrary Cartesian frame

axxxx = a

m m = «^z: = al= - —£ ос,,, axxyy = axx:.

= ayilxx = ayyz: = azzxx = azzyu = a2 = a4 = - ~ ax, \ (2.33)

— — — — — c'2 \ \

The difference between the cubic crystals of classes
T(j, O, and Oh lies obviously only in the existence of
the relation a3 = at — a2.

In crystals of the triclinic and hexagonal systems,
an account of the symmetry properties calls for sim-
ple analytic transformations, which we shall not carry
out here (see, for example C26>29] for some of these
transformations applied to some other tensors). There
is no further need for it, particularly since the sym-
metry properties of the tensor « ш т (including those
given above) can in fact be assumed known from the
literature. The point is that the symmetry of the ten-
sor ctijixa is the same as in the long-employed tensor
of piezo-optical coefficients т г ^ т , which relates the
variation of efj1 with the stress tensor cr;m (thus,
Sejj1 = TijimcrZm! s e e ^2S^)- Precisely the same sym-
metry is of course possessed by the tensor of elasto-
optical coefficients P i j j m (here бей = PijunuZm>
where u ; m is the strain tensor). Therefore the sym-
metry properties of the tensor aij£m for the trigonal
and hexagonal systems will be taken from C26^ ( s e e
Table 15 of C26!l). This was not done for other systems
in view of the simplicity of the derivation and the de-
sire to emphasize certain aspects. A summary of all
the values of ajj£m is given in Table III.

We shall not consider simultaneously terms of first
and second order in k, in view of the remark already
made concerning the smallness of the spatial disper-
sion. We shall therefore be interested not in the gen-
eral expressions (2.11)—(2.13), but in expression
(2.26) for the gyrotropic medium and the following
expression for a nongyrotropic medium

(2.33')

. k ) = eii И + ( — ) аЦ1т И « V m -

вГ/ (со, к) =

The tensor ejj(w, к) can, of course, always be diago-
nalized by choosing the corresponding (principal)
axes.t The direction of these axes for arbitrary s

*We point out a certain inaccuracy in[5J: the statements made
with respect to the values of а ^ ; т in tetragonal and cubic crys-
tals are valid only for the more symmetrical c lasses of these
systems [the schemes (2.29) and (2.31)-(2.32)]-

Uf the tensor Ejj (<y, k) is not Hermitian, then we must con-
sider ejj and s'[j separately, and the principal axes of these
tensors (more accurately, the eigenvectors, which in general are
complex) do not coincide in the general case. Unless otherwise
stipulated, we refer in the text, for the sake of brevity, only to
the tensor e[j, which is considered real.

does not coincide with either s or with the axes of the
tensor €jj (oj); if the axes of the tensor ejj (w) are
fixed (i.e., they are free of the degeneracies present
in cubic and uniaxial crystals), the axes of the tensor
€ij(o), k) are close to the axes of ejj(w), in view of
the smallness of the s-independent terms in (2.33).

In crystal optics with spatial dispersion, naturally,
a great interest is attached to those principal axes
ejj(w, k) , the direction of which coincides with s.
For rhombic crystals such axes are x, y, and z [ see
(2.28) and Table III]. If, for example, the vector в is
directed along the x axis, then the principal values of
the tensor ен(ы, к) are

Ei = exx (со, k) = ex.x (со) -j-

( i a

yyxx, E3 =

= eyy (со, к) = е^ (со)

"IT") -n) ,

In t e t r a g o n a l c r y s t a l s of c l a s s e s D 4 , C 4 V , D 2 ( j , a n d

f o r a v e c t o r s d i r e c t e d a l o n g t h e a x e s x a n d y,

t h e t e n s o r £ i j ( w , k ) t u r n s ou t t o b e r e d u c e d to t h e

p r i n c i p a l a x e s , a n d t h e p r i n c i p a l v a l u e s a r e d i f f e r e n t .

On t h e o t h e r h a n d if t h e v e c t o r i s d i r e c t e d a l o n g t h e z

a x i s ( a l o n g t h e 4 - f o l d a x i s ) , t h e n

Without dwelling on crystals of other systems, let us
proceed to cubic crystals. In this case (see Table Ш)

£xx = e + ^ и у {alSx + aiSl + a2sf}, гху = 2 ( ~ n j a3sxsy,

(2.34)

[ f o r c l a s s e s O, T(j a n d Oh, i n a d d i t i o n , a2 = a 4 ; t h e

f a c t o r t w o i n t h e e x p r e s s i o n s f o r e X y , e x z , a n d e v z

a p p e a r s i n c o n n e c t i o n w i t h t h e s u m m a t i o n i n (2.33) of

t e r m s p r o p o r t i o n a l t o s x s y a n d s y s x ] . It i s , t h e r e -

f o r e , o b v i o u s t h a t t h e a x e s of t h e c u b e x , y, a n d z a r e

t h e p r i n c i p a l a x e s of t h e t e n s o r , i f t h e v e c t o r s i s d i -

r e c t e d a l o n g a n y of t h e a x e s x , y, z . In t h i s c a s e t h e

c o r r e s p o n d i n g s e c o n d - d e g r e e s u r f a c e f o r a2 = a 4 d e -

g e n e r a t e s i n t o a s u r f a c e of r e v o l u t i o n ( e l l i p s o i d o r

h y p e r b o l o i d ) . If t h e v e c t o r s i s d i r e c t e d a l o n g t h e

b o d y d i a g o n a l s of t h e c u b e (| s x I = I s y | = | s z | = 1 / V J ) ,

t h e n

. l
a2 + a4),

(2.35)

[Part II of this article (Sees. 3 and 4) will be published
in one of the future issues of UFN. ]
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