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JRENG the 50 years elapsed since the discovery
(in 1912) of diffraction of x rays by crystals and the
development of the dynamic theory of the crystal lattice
(1915), the physics of plasticity and strength has turned
from a descriptive science with only formal premises
into a major division of solid state physics, based on
reliable experimental researches and on fully devel-
oped theoretical notions. The development of the phys-
ical theory of plastic deformation and failure is closely
connected with the work of J. I. Frenkel, whose varied
interests included basic problems in the theory of me-
chanical properties of both crystalline and non-crystal-
line solids. The present development of theoretical
ideas and experimental methods of research on the real
structure of solids has prepared the ground for the de-
cisive stage in the development of the physics of plas-
ticity and strength, namely the direct investigation of
the atomic mechanism of plastic deformation and fail-
ure. This is most clearly pronounced in the case of
crystalline bodies.

1. STRENGTH OF CRYSTALLINE BODIES AND

STRENGTH OF INTERATOMIC BONDS

In 1926 Frenkel ^ showed that in the simplest
model of a crystal atomic planes are ruptured or
shifted whenever the elastic strains reach a critical
value, on the order of several per cent. For example,
for a simple cubic lattice the critical cleavage stress
in the case of slipping of atomic planes is т0 = G/2TT
(G —shear modulus), while in the case of separating
planes the critical s tress is a0 = 0.2 E (E —Young's
modulus). For a long time the values obtained for
the rupture and shear strengths of crystals appeared
to be unreasonably high and the discrepancy between
the theoretical and real strength of crystals, amount-
ing to several orders of magnitude, was discussed in
the literature many times. Attempts at a more rigo-
rous account of the lattice structure and of the char-
acter of interatomic bonds in the calculation of the
theoretical strength did not result in appreciable
changes in Frenkel's estimates. Thus, the value
customarily assumed for the shear strength of a face-
centered metal is usually that of MacKensie, C23 T O / G
= У30. The interatomic bonds are thus strong enough
to withstand elastic strains of several per cent, and
any premature failure should be ascribed to imper-
fections in the real crystals.

At the present time the full utilization of the inter-
atomic bond strengths is no longer an unrealizable
dream, for theoretical strength has been reached both

in crystals practically free of imperfections (dislo-
cations ) and in defective crystals in which the dislo-
cation mobility is suppressed. Characteristic exam-
ples are given in Table I.

In silicon crystals without dislocations or with im-
mobile dislocations, the theoretical strength of the in-
teratomic bonds is realized almost completely, but
here, too, the maximum elastic strain obtained in ex-
periment apparently corresponds to the creation of
new dislocations not in the ideal lattice, but on chem-
ical inhomogeneities or surface defects. In filamen-
tary crystals (whiskers) the dislocations lie as a rule
along the axis, thus preventing the multiplication of
dislocations, needed to produce noticeable plastic de-
formation. Filamentary crystals with nearly theoret-
ical strength have been obtained by now for a great
variety of materials with different types of interatomic
bonds and crystal structures (metals with face-cen-
tered and body-centered cubic, hexagonal, and other
lattices, oxides such as ZnO or A12O3, alkali-halide
compounds, nitrides, carbides, graphite, organic crys-
tals, and others ) > 3 ' - ' Hexagonal metals have high ten-
sile strength in a direction perpendicular (and paral-
lel) to the base because the effective cleavage stresses,
which cause the motion of the dislocations in the glide
planes, are reduced in this crystal orientation. The
ultimate strength coincides here practically with the
yield point, which occurs when critical cleavage stress
is reached for the most favorable glide system. In
materials with finely dispersed structure such as hot
worked steel, the dislocations, the interphase bounda-
ries, and other imperfections are very dense. This
makes plastic deformation so difficult that the strength
of the material approaches the strength of the inter-
atomic bonds. For comparison we also list in Table I
data on the strength of quartz filaments and fused
quartz, whose high strength is apparently due to the
elimination of the most dangerous surface defects,
just as in the Ioffe effect.

Roughly speaking, the strength of a solid ap-
proaches the theoretical value in two limiting cases
—in bodies without defects and in bodies greatly
spoiled by defects. In all other cases the macroscopic
strength is lower than theoretical (frequently by two
or three orders of magnitude). Naturally, the theoret-
ical strength is attained in this case, too, but only in
highly localized fashion, in the overstressed portions.
Therefore the process of deformation and failure of
solids cannot be understood without a specific analysis
of the real structure of the body and its variation dur-
ing the loading process.

272



P H Y S I C A L T H E O R Y O F P L A S T I C I T Y AND S T R E N G T H

Table I. Shear and rupture strength of certain materials
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Source Material

7
8
9

10
11
12
13

Dislocation-free Si crystals at 900°C
Si crystals at room temperature
Defect-free portions of LiF crystals
NaCl crystals in water (Ioffe effect)
Filamentary crystals of Si
Filamentary crystals of Fe
Filamentary crystals of Cu
Filamentary crystals of Ag
Filamentary crystals of NaCl
Zn crystals; tension perpendicular to base. . . .
Be crystals; compression perpendicular to base.
Sb wire (30 \L diameter)
Steel after hot working
Quartz filaments
Fused quartz . . . .•

0.12
>2

1.2
_
—

6
2.2
3.3
3

0.7
_

1.6
—

—
>2

_
3.6
3.6
4.9
2.8
4
2,6

0.1-5
_

0.25
1.2

10-25
19
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2. IMPERFECTIONS Ш CRYSTALS

Until recently the discrepancy between theoretical
and experimental data on strength and other structure-
sensitive properties of crystals were meaninglessly
"explained" as being due to the imperfections in the
real structure of the crystal. Yet is was J. I. Frenkel
who started to construct the physical theory of lattice
imperfections, which by now has become an important
independent branch of solid state physics and has
found brilliant experimental confirmation. Frenkel
first introduced the notion of vacancies ("holes") and
interstitial atoms in a crystal lattice. He also studied
quantitatively, together with T. A. Kontorova, the
atomic model of the edge ("transverse") and screw
("longitudinal") dislocations, introduced the notion of
twin ("orientational") dislocation, etc.

From the purely geometrical point of view, lattice
defects can be classified by the number of directions
in which the inelastically distorted region has macro-
scopic dimensions, with dimensions in the remaining
directions that are microscopic, on the order of sev-
eral interatomic distances (Fig. 1). The vacant sites,
the interstitial atoms, and the impurity atoms are
zero-dimensional (point) defects, dislocations and

chains of point defects are one-dimensional (linear
defects), and boundaries between crystallites and
mosaic blocks, stacking faults, and twin boundaries
are two-dimensional (surface) imperfections. The
natural unit for measuring the energy of defects is
the quantity Gb3 for point imperfections, Gb2 for
linear imperfections, and Gb for surface imperfec-
tions, where G is the shear modulus and b is the
minimum parameter of the lattice translation. For

3 • • •

2
y . .

FIG. 1. Various defects in fee lattice. 1 —Vacancy; 2 — inter-
stitial atom; 3 — edge dislocation; 4 — stacking fault. The plane
of the figure corresponds to the (110) plane, and the [001] direc-
tion is horizontal.
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FIG. 2- Dislocation in simple cubic lattice,
a) Edge dislocation; b) screw dislocation. The
Burgers contour is shown by the heavier line,
and the Burgers vector is indicated by the arrow.

example, the energy of vacancies is about 0.2 Gb3, the
energy of dislocations (per unit length) is usually
estimated at 0.5 Gb2, while the surface energy of the
crystal is on the order of 0.1Gb.

Point defects. In addition to the isolated vacancies
and interstitial atoms investigated by Frenkel, '-5-' mod-
ern theory considers more complicated point defects;
in particular, bivacancies in cubic face-centered and
diamond lattices turn out to be more mobile than single
vacancies. Electric effects observed in the deforma-
tion of ionic crystals, are connected with the presence
of oppositely charged vacancies and interstitial ions.
The interaction between point defects and electrons
leads to the appearance of various color centers.

Experimental data as well as model calculations
(especially with electronic computers) have made it
possible to determine more precisely the distribution
of atoms near point defects and to explain some of the
experimentally observed facts. It turns out, for ex-
ample, that in f.c.c. lattices interstitial atoms are
located not in the centers of the edges, but displace
one of the lattice atoms from its site, forming with it
a pair ("dumbbell") oriented along the axis of the
cube with the center of gravity in the site (see Fig. 1).
[6,7] гр^е n e j g n t of the barr ier that prevents recom-
bination of the Frenkel pair (vacancy—interstitial
atom) depends sharply on the orientation, since spon-
taneous annihilation of a pair occurs if the distance
between the partners is less than two interatomic dis-
tances for pairs oriented along [100] and less than
four distances for pairs along [110]. Recently point
defects were observed in an ion projector. ^ Accu-
mulations of point defects are observed in an electron
transmission microscope.

Line defects. The most important role in plastic
deformation and rupture is played by the dislocations.
Geometrically, a dislocation is completely defined by
the Burgers vector b, which is equal to the circula-
tion of the displacement vector u along an arbitrary
contour L enclosing the dislocation:

• дщ (2.1)

along the dislocation line, and the non-closure is equal
to the Burgers vector (Fig. 2). Consequently the Burg-
ers vector of a dislocation in a crystal is equal to the
lattice translation vector.

The angle ф between the dislocation line and the
Burgers vector defines the orientation of the disloca-
tion. If ip = 90°, the dislocation is called an edge dis-
location* and is the edge of the incomplete atomic
plane that is made discontinuous inside the crystal
(Fig. 2a). If ф = 0, the dislocation is called a screw
dislocation (Fig. 2b), the crystal actually consisting
of a single atomic plane bent along a helical surface.
The dislocation is the axis of the helix and the Burg-
ers vector is equal to the pitch of the screw.

For other values of ip, dislocations of mixed ori-
entations are obtained (Fig. 3). In the general case
the dislocation line is an arbitrary curve in space,
along which the Burgers vector remains "constant
(although the orientation of the dislocation may vary).
In Fig. 3 the orientation of the dislocation goes over
gradually from that of an edge dislocation (through
the mixed state) into that of a screw dislocation. Like
vortex lines in hydrodynamics, the dislocation lines
cannot be discontinuous inside the body and must
either close on themselves (dislocation loops), emerge
from the free surface, or else branch into other dislo-
cations. In the latter case a theorem analogous to
Kirchhoff's law for currents applies: if all the disloca-
tions are regarded as moving towards the node, the
sum of the Burgers vectors should be equal to zero.

As can be seen from Fig. 3, the dislocation is the
boundary between the region of the glide plane along
which a displacement equal to the Burgers vector took
place. If the direction of the shear is perpendicular to
the boundary of the region, the dislocation has an edge
orientation, if it is parallel, it has a screw orientation.

The elastic strains and stresses around the disloca-
tions are proportional to the Burgers vector, while the
dislocation energy is proportional to the square of the
Burgers vector, and consequently two dislocations r e -
pel each other if their Burgers vectors make an acute
angle, and attract each other if this angle is obtuse.

If a circuit were made up of translation vectors so that it
would be closed in an ideal lattice, then this circuit
(Burgers circuit) would remain open if constructed

*In some translations an edge dislocation is inappropriately
called a "line" dislocation, although any dislocation is a line
defect.
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FIG. 3. Curvilinear dislocation which changes
its orientation from edge type (A) (through mixed
type) to a screw dislocation (B). a) Atomic ar-
rangement; b) dislocation as boundary of section
of local slip region (part of the glide plane is
shown shaded). The Burgers vector is designated
by the arrow.

As a result of this attraction, the dislocations may
coalesce (dislocation reaction).

Various direct methods have been developed for the
observation of dislocations in crystals:'-9-' selective
etching, decoration, x-ray microphotography, transmis-
sion electron microscopy (directly or by the moire pat-
tern), investigation of the topography of the crystal sur-
face in an optical or electron microscope and in electron
and ion projectors, and observation of stresses around
the dislocation by the photoelasticity method.

Surface defects. The surface defects most fre-
quently encountered in crystals, namely the block
boundaries, are actually arrays and networks of dis-
locations. The simplest examples are shown in Fig. 4.
A family of parallel edge dislocations (Fig. 4a) forms
a small-angle boundary of blocks turned through an
angle в = b/h relative to each other about an axis par-
allel to the dislocations, (b is the Burgers vector and
h is the distance between dislocations). This relation
was verified many times in different crystals.

If the block-rotation axis does not lie in the plane
of the boundary, then the block separation surface
should be made up of at least two intersecting dislo-
cation families (Fig. 4b). The quadruple nodes in the
dislocation networks are usually not favored from the
energy point of view and break up into pairs of triple
junctions in accordance with the scheme of Fig. 4c.
The result is a hexagonal network of the type of Fig.
4d.

As the block disorientation angle increases, the
dislocations forming the boundaries come closer to-
gether and when the disorientation is on the order of
15—20° they lose their individuality. A large-angle
boundary is formed, namely a surface defect which
does not consist of line defects. The atomic structure
of such boundaries is under study at the present time.*

*Extensive large-angle boundaries can be made up in individ-
ual cases of three-dimensional (but not planar) networks of dis-
locations. [10]

Other types of surface defects which cannot be r e -
duced to an aggregate of line defects are the twin
boundaries and stacking faults. A stacking fault is
essentially a twin layer one atom (see Fig. 1) or two
atoms thick. In single-atom lattices with closest
spherical packing (fee and hexagonal) the stacking
faults are produced in { i l l } planes in which the cor-
rect sequence of the atomic layers is violated (for
example ABCBCABC in Fig. 1).

Partial dislocations. The ordinary (perfect) dis-
locations considered above, with a Burgers vector
equal to the lattice translation vector, are not bounda-
ries of a two-dimensional imperfection. A different
type of linear imperfection is formed by boundaries
of stacking faults, which is discontinuous inside the
crystal (partial dislocations) (Fig. 5a), and jogs on
twin boundaries (twinning dislocations ) (Fig. 5b).
The Burgers contour for a partial dislocation is con-
structed in such a way as to make the contour closed
not in an ideal crystal, but in a crystal with a through
stacking fault. In similar fashion, for a twinning dis-
location, the Burgers contour should be closed in a
crystal with plane (coherent) twin boundary. When
so defined, the Burgers vector of partial and twinning
dislocations is smaller than the lattice translation
vector.

Perfect dislocations that lie in closely packed
planes can dissociate into partial dislocation with for-
mation of a stacking-fault strip between them. In fee
crystals (Fig. 5c) the dissociation is in accordance
with the reaction

1 [110] = 4 [211] + 1 [121].

The partial dislocations A and В repel each other
with a force (per unit length) F w Gb2/27rr, which is
counteracted by the surface tension y0 of the stacking
fault. As a result, the equilibrium width of the split
dislocation is ~ Gb2/27ry0. In aluminum ( y 0 = 200
erg/cm 2) the dislocations practically do not dissoci-
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FIG. 4. Dislocation structure of block boundaries, a) Vertical
wall of dislocations (inclination boundary), characteristic of
polygonization and fault blocks; b) example of boundary made up
of a network of dislocation; c) more stable network, made up of
network (b) by splitting the quadruple nodes into triple ones;
d) dislocation grid in KC1, disclosed by the decoration method
(Dekeyser and Amelinckx).[9J

ate while in copper (y0 = 40 erg/cm 2) the width of
the strip is equal to 8b.*

The dissociation of the dislocation is clearly ob-
served in a transmission electron microscope in many
face-centered metals, graphite, talcum, and other ma-
terials. Twinning dislocations can be observed not only
by transmission in an electron microscope, but also
by the method of selective etching.

FIG. 5. Partial dislocations in fee lattice. The plane of the
figure is (110), and the [112] direction is horizontal, a) Partial
Shockley dislocation (stacking fault denoted by dashed line);
b) twinning dislocation (jog on the twin boundary); c) split edge
dislocation, consisting of partial dislocations A and В and a

stacking fault strip AB between them.

3 . P L A S T I C D E F O R M A T I O N AS M O T I O N O F D E -

F E C T S

I r r e v e r s i b l e d i s p l a c e m e n t of l a t t i c e d e f e c t s ( a n d

o n l y t h i s t y p e of d i s p l a c e m e n t ) c a u s e s i r r e v e r s i b l e

c h a n g e s i n t h e f o r m of t h e c r y s t a l ( p l a s t i c d e f o r m a -

t i o n ) . In e v a l u a t i n g t h e r o l e of t h e d i s p l a c e m e n t of

d i f f e r e n t s t r u c t u r a l d e f e c t s , J . I . F r e n k e l e m p h a s i z e d

t h e d i f f e r e n c e b e t w e e n d i f f u s i o n f low, c a u s e d b y m o -

t i o n of p o i n t d e f e c t s a n d p l a s t i c f low, c a u s e d b y t h e

m o t i o n of t h e d i s l o c a t i o n s .

U n d e r t h e i n f l u e n c e of a s t r e s s a i n a b o d y w i t h

l i n e a r d i m e n s i o n s o n t h e o r d e r of L, t h e m o t i o n of

p o i n t d e f e c t s ( f o r t h e m o s t p a r t , v a c a n c i e s ) r e s u l t s

i n a r a t e of p l a s t i c d e f o r m a t i o n '-12-'

y_ D <тй„
L? kT

( 3 . 1 )

*We note that different experimental methods y ie ld for y 0

resul ts which do not a lways coincide.

w h e r e D i s t h e s e l f - d i f f u s i o n c o e f f i c i e n t , fi0 — a t o m i c

v o l u m e , L = / i f R / 2 f o r a s p h e r i c a l g r a i n w i t h r a d i u s

R. D i f f u s i o n p l a s t i c i t y p l a y s a m a j o r r o l e i n t h e c r e e p

o f f i n e - g r a i n m a t e r i a l s a t h i g h t e m p e r a t u r e s . In a l l

o t h e r c a s e s , a s a r u l e , t h e m a i n c o n t r i b u t i o n t o p l a s t i c

d e f o r m a t i o n i s m a d e b y m o t i o n n o t o f p o i n t d e f e c t s , b u t

o f d i s l o c a t i o n s .

T h e m e c h a n i s m s o f d i s p l a c e m e n t o f d i s l o c a t i o n s i n

t h e g l i d e p l a n e ( p l a n e p a s s i n g t h r o u g h t h e d i s l o c a t i o n

l i n e a n d t h e B u r g e r s v e c t o r ) a n d p e r p e n d i c u l a r t o i t

a r e d i f f e r e n t . In t h e f o r m e r c a s e ( g l i d e ) t h e a t o m s

a r e d i s p l a c e d o n l y t h r o u g h s m a l l d i s t a n c e s ( s m a l l e r

t h a n t h e l a t t i c e p a r a m e t e r ) , w h i l e i n t h e s e c o n d c a s e

( c l i m b ) t h e i n c o m p l e t e a t o m i c p l a n e s a r e e i t h e r i n -
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FIG. 6. Formation and conservative climbing of prismatic dis-
location, a) Planar accumulation of vacancies (section through
the accumulation axis); b) collapse of the accumulation a pro-
duces a dislocation ring (prismatic dislocation); c) migration of
the atoms along the dislocation leads to climbing of the ring as
a whole (section through the plane of the ring).

creased or shortened, and this calls for mass transfer
—a diffusion of the vacancies or of the interstitial
atoms. In both cases the speed of plastic deformation
is given by a formula such as (see Sec. 4 for more
details)

e = Nvb, (3.2)

where N is the density of the dislocations and v their
velocity. The dislocations may glide with velocities up
to that of sound, as first predicted by Frenkel and Kon-
torova. If the density of the mobile dislocations is N
= 108 cm" 2 , the limiting velocity of plastic deforma-
tion accompanying the glide of the dislocation reaches
105 sec" 1 . If it is recognized that the force acting per
unit dislocation length in the field of stress a is equal
to F = b<x, the rate of the climb of the dislocation, lim-
ited by self diffusion, is

v =
2nD oQ0

bhi(R/r0) ~k~T (3.3)

where R is the radius of the grain and r 0 is the r a -
dius of the dislocation core, which captures or emits
point defects. From (3.2) and (3.3) we obtain for the
rate of plastic deformation accompanying the climb
of the dislocations

oQ,
1п(Д/г0) кТ

(3.4)

C o m p a r i s o n of (3.1) a n d (3.4) s h o w s t h a t t h e c o n t r i b u -

t i o n f r o m c l i m b e x c e e d s t h e c o n t r i b u t i o n f r o m dif fu-

s i o n p l a s t i c i t y b y a f a c t o r 37rNR 2 /2 l n ( R / r 0 ) , i . e . , b y

s e v e r a l o r d e r s of m a g n i t u d e . E v e n w h e n r 0 ~ b a n d

R ~ ( 1 0 3 — 1 0 * ) b , a c l i m b of f ive o r s i x d i s l o c a t i o n s

g u a r a n t e e s t h e s a m e r a t e of p l a s t i c d e f o r m a t i o n a s

t h e d i f f u s i o n flow of a l l t h e p o i n t d e f e c t s a l o n e .
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FIG. 7. Jump-like motion of dislocations in NaCl. Method of
continuous selective etching. L*3]

W h e n g l i d i n g d i s l o c a t i o n s c r o s s , j o g s w h i c h d o n o t

l i e i n t h e g l i d e p l a n e f o r m o n t h e d i s l o c a t i o n s . F u r t h e r

g l i d i n g of t h e d i s l o c a t i o n s f o r c e s t h e j o g s t o c l i m b a n d

t o l e a v e a t r a i l of c h a i n s of v a c a n c i e s o r i n t e r s t i t i a l

a t o m s . C o n s e q u e n t l y , a l a r g e n u m b e r of p o i n t d e f e c t s

a r e p r o d u c e d d u r i n g t h e c o u r s e of p l a s t i c d e f o r m a t i o n

a n d c h a n g e t h e d e n s i t y , e l e c t r i c r e s i s t i v i t y , t h e di f fu-

s i o n c o e f f i c i e n t , a n d o t h e r p r o p e r t i e s of t h e c r y s t a l .

An a n o m a l o u s l y h i g h r a t e of c l i m b i s o b s e r v e d f o r

d i s l o c a t i o n l o o p s t h a t r e s u l t f r o m a c o l l a p s e of flat

a c c u m u l a t i o n s of v a c a n c i e s ( F i g . 6 ) . T h e p o i n t d e f e c t s

m i g r a t e i n t h i s c a s e n o t o v e r t h e v o l u m e of t h e c r y s t a l ,

b u t a l o n g t h e d i s l o c a t i o n s , c a u s i n g t h e g r o w t h of a n i n -

c o m p l e t e a t o m i c p l a n e o n o n e s i d e of t h e l o o p , d u e t o

t h e a t o m s t h a t a r e r e l e a s e d d u r i n g t h e c l i m b o v e r t h e

o p p o s i t e s i d e of t h e l o o p .

P a r t i a l d i s l o c a t i o n s m o v e a s a r u l e b y s l i p p i n g

( t h e s t a c k i n g f a u l t s p r e v e n t c l i m b i n g ) . C o n s e q u e n t l y ,

p a r t i a l d i s l o c a t i o n s w i t h a B u r g e r s v e c t o r t h a t d o e s

n o t l i e i n t h e p l a n e of t h e s t a c k i n g f a u l t a r e p r a c t i c a l l y

i m m o b i l e ( s i t t i n g d i s l o c a t i o n s ) . A t a n g e n t i a l d i s p l a c e -

m e n t ( s l i p ) of t w i n n i n g d i s l o c a t i o n s a l o n g t h e b o u n d a r y

of t h e t w i n c a u s e s a n o r m a l d i s p l a c e m e n t of t h i s b o u n d -

a r y .

S i m u l t a n e o u s m o t i o n of d i s l o c a t i o n s m a k i n g u p a

b l o c k b o u n d a r y a l s o l e a d s t o p l a s t i c d e f o r m a t i o n . F o r

a c r y s t a l m a d e of b l o c k s w i t h d i m e n s i o n L, w i t h a v -

e r a g e d i s o r i e n t a t i o n a n g l e 0, t h e r a t e of d e f o r m a t i o n

i s

• ов
e = 7 7 ' (3.5)

w h e r e v i s t h e s p e e d of t h e b o u n d a r y . F o r m u l a (3.5)

c o i n c i d e s , of c o u r s e , w i t h f o r m u l a (3 .2) .

T h e m o t i o n of d i s l o c a t i o n s i s o b s e r v e d m o s t e f f e c -

t i v e l y e i t h e r d i r e c t l y i n a t r a n s m i s s i o n e l e c t r o n m i -

c r o s c o p e o r b y t h e s e l e c t i v e e t c h i n g m e t h o d . R e p e a t e d

e t c h i n g f i x e s t h e i n i t i a l a n d f ina l p o s i t i o n s of t h e d i s -

l o c a t i o n s , w h i l e c o n t i n u o u s e t c h i n g d u r i n g t h e t i m e of

d e f o r m a t i o n m a k e s i t p o s s i b l e t o fol low t h e k i n e t i c s of

t h e d i s l o c a t i o n d i s p l a c e m e n t ( F i g . 7 ) . T h e m o s t c o m -

p l e t e i n f o r m a t i o n i s o b t a i n e d u s i n g e l e c t r o n m i c r o -
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a r, =
Gb

FIG. 8- Motion of dislocations in stainless steel. Motion pic-
ture frames taken in a transmission electron microscope. The
first five dislocations are numbered!14]

scopes equipped with an attachment for deforming the
specimen under the beam and with a motion picture
camera. An example of pictures that illustrate the
motion of dislocations in stainless steel is shown in
Fig. 8.

4. MATHEMATICAL FORMALISM OF DISLOCATION
THEORY

In the preceding sections we used, in simplified
form, certain formulas of dislocation theory. At the
present time the formalism of the theory has been
rather fully developed, and many plastic deformation
phenomena can be rigorously described. C15"20^

Dislocations in elasticity theory. Long after they
were experimentally observed in crystals, disloca-
tions were regarded in the mathematical theory of
elasticity as linear elastic-field singularities char-
acterized by condition (2.1) or by even more general
conditions. C21] Dislocation theory is now as insepa-
rable a part of elasticity theory as is the theory of
vortices in hydrodynamics or the theory of currents
in electrodynamics.

In a cylindrical coordinate system (r, cp, z) the
stresses around a straight edge dislocation in an un-
bounded isotropic medium with a Poisson coefficient
v are given by

L
2v

sin(p Gb
2я(1 —v) r

coscp
2я(1—v) r (4.1)

( t h e a z i m u t h <p i s m e a s u r e d f r o m t h e d i r e c t i o n of t h e

B u r g e r s v e c t o r ) ; f o r a s c r e w d i s l o c a t i o n

a - G Ь

(4.2)

T h e e l a s t i c f ie ld of a n a r b i t r a r y d i s l o c a t i o n c a n b e

w r i t t e n i n t h e f o r m of a c o n t o u r i n t e g r a l . In p a r t i c u l a r ,

f o r d i s p l a c e m e n t s a r o u n d a d i s l o c a t i o n c i r c u i t c h a r a c -

t e r i z e d b y a B u r g e r s v e c t o r b , i . e . , c h a r a c t e r i z e d b y

c o n d i t i o n (2.1), t h e f o l l o w i n g B u r g e r s f o r m u l a h o l d s
1 t r u e

и г =-ьа
dt'
~R~ 8я(1 — f - , (4.3)

where п is the solid angle subtended by the contour L
from the point r, and R = г - r ' . It was recently shown
E23^ that in the general case, including that of a bounded
body and an isotropic medium, the influence functions
for the dislocations coincide with the stress functions
Ф (a = curl Ф) for a concentrated force. In particular,
we can use in place of the Burgers formula

«i = bj <J> dLhO^}. (4.4)
x.

The elastic dislocation field can also be constructed
from a stress function x (a = curl (curl x )*),'-16-'

I r - r' I d x ' '

s y m m e t r i c a l t e r m ) , (4.5)

where ец^ is the unit antisymmetrical tensor.
The energy of interaction between a dislocation and

an arbitrary field of s tresses a can be expressed also
in the form of a contour integral. Variation yields for
the configuration force dF acting on an element dL of
the dislocation line the expression

dFj = eijh dLp^b^ (4.6)

The interaction energy of two dislocations can be ac-
cordingly written down in the form of a double contour
integral. [ 2 4 : 1

Rigorous solutions have been found for the simplest
cases of moving dislocations. C2^-27] in addition to the
static force (4.6), a dislocation displaced in a moving
medium also experiences a "Lorentz" force propor-
tional to the speed of the dislocation and to the speed
of the medium. E27^

The theoretical stress field around the dislocations
in crystals can be checked not only indirectly (from
the configuration of the dislocation lines), but also
directly by the photoelasticity method. Figure 9a
shows a photograph of the stresses around edge and
mixed dislocations in a silicon plate, obtained by the
method of ^2S^. The stress rosettes are in good agree-
ment with (4.1).

Calculation of the stresses due to the dislocations
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FIG. 9. Internal stresses due to dislocations in silicon.
Polarization inframicroscope. a) Stresses around the dislocations;
the long lobes of the birefringence rosettes lie along the Burgers
vector; b) macro- and microstresses.

permits a new treatment of the theory of internal
stresses, since it is precisely the dislocations that
serve as a rule as main source of internal stresses
in crystals. This raises anew the question of classi-
fication of internal s tresses. Each dislocation yields
in principle a field that decreases slowly (as l / r ) .
The fields of the neighboring dislocations, becoming
superimposed, can either produce long-range ma-
croscopic stresses, or can cancel each other out at
distances on the order of the distance between dislo-
cations (microstresses ). Figure 9b shows examples
of both macrostresses (horizontal row of dislocations
in the upper part of the figure ) and microstresses
(vertical row of dislocations on the left). It is appar-
ently necessary to review the present x-ray diffrac-
tion treatment of internal stresses, and re-base it on
a theoretical pattern of x-ray scattering by crystals
with different dislocation configurations. E29^

Macroscopic description of dislocations. For bodies
with a large number of dislocations it is advantageous
to introduce for the dislocations a distribution function
fb(n, r ) , where df = fjjdVdfi is the summary length
of the dislocations with Burgers vector b, passing
near the point -r through the volume dV and located
within the solid angle dti about the direction n. The
summary density of the dislocations (the summary
length of dislocation lines per unit volume )

(4.7)

determines in first approximation the latent energy,
the increase in the volume, the additional electric r e -
sistivity, and other effects.

Macroscopic stresses and lattice rotations are de-
fined by means of the so-called macroscopic disloca-
tion density tensor /3^, the ij-th component of which
is equal to the j-th component of the summary Burgers
vector of all the dislocations crossing a unit area
perpendicular to the i axis.'-16-' It is obvious that

(4.8)

In (4.7) and (4.8) it is necessary to take into account
in the integration only the positive directions of the
vector b (to integrate over a hemisphere ). In crys-
tals, the Burgers vectors run through a discrete set
of values (in practice it is sufficient to take into ac-
count only several values), and the integrals with r e -
respect to b are replaced by sums. As a result, the
tensor /3jj is made up of dyads of the type Pibj, which
describe the flux P of dislocations with Burgers vector
b. E3°] If the mixed dislocations are arbitrarily broken
up into parts with pure edge orientation and parts with
pure screw orientation, the longitudinal component of
P (along the Burgers vector) will describe the den-
sity of the screw dislocations, and the transverse com-
ponent (perpendicular to b) will describe the density
of the edge dislocations. In particular, in a simple
cubic lattice, in which the Burgers vectors are directed
along coordinate axes aligned with the axes of the cube,
the diagonal terms of /3jj describe the density of the
screw dislocations, and the non-diagonal terms the
density of the edge dislocations. ̂ 31-̂

While the Burgers vector b is defined in accord-
ance with (2.1) as the circulation of the displacement
vector, the tensor /3 corresponds in analogous fashion
to the circulation of the elastic distortion e, compris-
ing the symmetrical elastic deformation tensor e and
the antisymmetrical lattice rotation tensor ш, equiv-
alent to the axial rotation vector OJ,

e=e-fco = e — w X /,

= - Rot e = - Rot e + -^- - / div ш,

(4.9)

(4.10)*

where I is the unit tensor. The diagonal terms of e
correspond to elastic elongation (compression),
while the non-diagonal terms correspond to elastic
shear, the first index corresponding to the plane of
the shear and second to the direction of the shear.

It follows from (4.10) that the trace of /3, corre-
sponding to the total density of the screw dislocation,
is determined by the divergence of the rotation vector,
which in the presence of dislocations is no longer
equal to zero:

Sp p = — 2 div ca. (4.11)

*Rot = curl.
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The tensor к = dw/dx, which is the transpose of the
tensor Grad и describes the lattice curvature. If the
lattice curvature and the microscopic elastic deforma-
tions of the crystal are determined by experiment (for
example, from x-ray diffraction or optical measure-
ments), relation (4.10) enables us to calculate the
macroscopic density of the dislocations causing the
given lattice distortion field.

If there are no macroscopic elastic strains (or
s t resses) , then (4.10) and (4.11) lead to simple rela-
tions between the dislocation density and the lattice
curvature-

If the spherical components of the tensors /3 and
к vanish, the tensors themselves coincide. This con-
sequence was used many times for an experimental
check on the theory.

In ordinary elasticity theory we obtain from (4.10),
in the absence of dislocations,

- ^ = Rote (4.13)

(div w = 0) or, in transposed form,

(Rot e)* = Grad m. (4.13')

In order for the differential relation (4.13') to yield
uniquely the rotation vector ш from the known defor-
mations, the tensor (curl e)* must be potential.
Putting

Rot(Rote)*= -T), (4.14)

we obtain the Saint Venant compatibility conditions in
the form TJ = 0, where TJ is the so-called strain in-
compatibility tensor.

In the presence of dislocations, Eqs. (4.10) and
(4.14) lead to an expression for the strain incompati-
bility in terms of the macroscopic dislocation den-
sity t«]

:-i [Rot B*+(Rot p*)*]. (4.15)

Therefore the tensor /3, like the incompatibility ten-
sor, completely determines the internal s tresses . We
must, however, emphasize that it is wrong to attempt
to determine the total dislocation density (4.7) and the
plastic deformation from the tensor /3.

To describe the motion of the dislocations, we need
the third-rank tensor

Nijh = ^ (rib) ^ dQ tyi^fc/ь, (4.16)

where v = v ( b , n ) i s the velocity of dis locat ions having
a d i rec t ion n and a B u r g e r s vector b , with, of c o u r s e ,
v 1 п.* In a simple cubic lattice, subject to the limita-

*In the case of gliding dislocations, v is parallel to the edge
component of the Burgers vector n x b x n and depends on the force
acting on the glide plane in the b direction (i.e., on the tangen-
tial stress t , acting on the glide plane in the glide direction).
In the climb of dislocations, v is perpendicular to the glide plane
and depends on the force acting in the b direction on the plane
perpendicular to the edge component of the Burgers vector. In the
case of quasi-viscous glide of the dislocations, when v = /zt, the
dislocation motion tensor has the form

tions indicated on p. 281, к = i ^ j corresponds to
gliding edge dislocations, i * j = к corresponds to
gliding screw dislocations, and i * j * к * i corre-
sponds to climb of edge dislocations.

The gliding of the dislocations produces plastic
shear parallel to the glide plane and to the direction
of the Burgers vector. Climb of the edge dislocations
involves plastic contraction (or dilatation) of the
crystal in the Burgers vector direction. In general
the macroscopic plastic distortion e p is connected
with the tensor of dislocation motion in the following
fashion (see С 3 2 ] ) :

E (4.17)

hence

•(Nm-Nm). (4.17')

P l a s t i c d i s tor t ion can be broken up into a s y m m e t -
r i c a l p a r t , the t e n s o r p las t ic deformations e p , and an
a n t i s y m m e t r i c a l p a r t , which is the t e n s o r of p las t ic
rotations w-P, equivalent to the rotation vector ы р

шР = 1(ЛГ..._лг...). (4.18)

If the displacement of the dislocations is not uni-
form, dislocations accumulate within the crystal at a
rate

fLtJV /V \ (A 1Q\

The corresponding conservation equation for the dis-
tribution function has the form

Differentiating (4.17') with respect to the coordinate j ,
we obtain

f5 = Rot8*\ (4.21)

If there are no dislocations in the initial state
( e p = 0), integration of (4.21) yields

P = Rotep. (4.21')

From a comparison of (4.10) and (4.21') it follows
that the overall distortion is potential

Rot (e + RP) = 0. (4.22)

Consequently, the summary distortion can be repre-
sented in the form of a gradient of a certain vector u
(total displacement vector)

e + 8P = Grad u. (4.23)

This is precisely the vector u involved in the equa-
tions of the dynamic theory of elasticity, which con-
serves its usual form

QU = Div a (4.24)

(p is the density of the material) even in the presence
of moving dislocations.
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If there are no dislocations, we can find in accord-
ance with (4.10) and (4.21') the elastic displacement
vector (as is usually done in elasticity theory) and
the plastic displacement vector, respectively. In the
general case these vectors do not exist, and only the
total displacement vector can be determined.

With Njjk specified, Eqs. (4.17), (4.19), (4.23),
(4.24), and Hooke's law form the complete system of
equations of the dynamic theory of elasticity for bodies
with dislocations. If e p (or e p ) is specified, Eqs.
(4.17) and (4.19) in this system are replaced by (4.21')
or (4.21), respectively.

Hollander recently proposed a four-dimensional no-
tation for bodies with moving dislocations. ^33^

Nonlinear theory. When the crystallographic planes
have appreciable curvature, it is necessary to take into
account the distortion of the lattice metric. The cor-
responding nonlinear generalizations of dislocation
theory were indicated by several authors (see the r e -
views in !-19-l). These employ the formalism of non-
Riemannian geometry, with the tensor of local macro-
scopic dislocation density corresponds to a Cartan
twisting of space

where Г ^ are the affine-connectivity coefficients.
Nonlinear effects of a different type should be taken

into consideration when examining the stresses and
strains near a dislocation nucleus, ^34^ where the elas-
tic distortions are so great that they cannot be de-
scribed by linear theory. An account of higher-order
constants makes it possible to estimate correctly the
decrease in crystal density due to the dislocations as
well as other effects. The distortions in the nucleus
of dislocation have an inelastic character and can be
regarded only by using atomistic notions.

5. ATOMIC STRUCTURE OF DISLOCATIONS

In 1938 Frenkel and Kontorova first proposed an
atomic dislocation model. E35^ They considered the
motion of chains of atoms, bound by quasi-elastic
forces, on a rigid backing made up of similar chains,
forming a periodic force field (Fig. 10). The equation
of motion for the k-th atom has the form

mih= - ^ ^ + 6 ^ - 2 6 , ) , (5.1)

where £k —displacement of the k-th atom from the

equilibrium position, m —mass of the atom, a —coef-

ficient of quasi-elastic coupling, U = T/11 — c o s , I

к V b /
—force field. The displacement | is then regarded as
a continuous function of к and a transition is made
from the system (5.1) to the differential equation

m ^ = _ ^ + a i ! L , ( s i ' )

which is solved under the assumption that the shear

FIG. 10. The Frenkel-Kontorova model, a) Unperturbed state;
b) edge dislocation (positive).

propagates gradually along the chain with constant
velocity v, (i.e., uniform dislocation motion). In this
case

I (k) = | arctg exp [ - £ (kb - vt) ] , (5.2) <

where

к *2 l / a 1/1 v*
=-2V AY l~^

(5.3)

is the width of the dislocation, which experiences rela-
tivistic contraction as v approaches the velocity of
sound с = b V a/m . The dislocation energy is

where

(5.4)

(5.5)

Going over to macroscopic constants, the energy of
the stationary dislocation per unit length amounts to
about 0.3 Gb3. The lowest energy is possessed by dis-
locations corresponding to slip in the closest packing
directions. Estimating £0 from (5.5) for different slip
directions in several metals, Frenkel and Kontorova
observed a correlation between Шй and the experimen-
tal data on the plastic properties of these metals. Sim-
ilar attempts to determine the directions of easy slip
from the energy of the corresponding dislocations
were made subsequently by many workers (see, for
example, C36.3?]). According to (5.4), the dislocation
energy does not depend on the position of the center
of the dislocation relative to the atoms of the backing,
so that uniform motion of the dislocation does not ne-
cessitate the application of the external forces. Frenkel
and Kontorova assumed that this conclusion that the
slip of the chain is unhindered is connected with neg-
lect of the displacement of the atoms in the backing.
However, if the discrete nature of the chain is taken
into account in calculating the dislocation energy, then
the Frenkel—Kontorova model gives a finite resistance
to slip even for an absolutely rigid backing, and this
can be interpreted as the critical cleavage stress i\

*arctg = tan"
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necessary for displacement of the dislocation. E38^
When v « c, calculation yields an exponential depend-
ence of Tjj on the width of the dislocation Л,

The dislocation is described by the solution

(5.6)

where X is proportional to a/b, where a is the inter-
planar distance. Consequently, the more tightly the
atoms are located in the slip direction and the farther
the slip plane is away from the neighboring planes,
the greater the mobility of the dislocations. The well-
known empirical rule for selecting the possible slip
elements using the reticular density of the planes and
directions, agrees precisely with this result. An esti-
mate based on (5.6) shows that when a = 2b the crit-
ical cleavage stress is vanishingly small, when a
= 0.5 b it already reaches a very large value (т^
~ 0.004G), and when a ~ b it amounts to 10"5—10"4G,
which is customarily observed in experiment.

Recently Kontorova generalized Eq. (5.1) by includ-
ing the terms that are anharmonic in the interaction
of the chain atoms, and traced the correlation between
the plasticity and heat conduction. ^39^ In many inves-
tigations (see the reviews С15>17^) higher harmonics
of the potential of the backing were taken into account,
and, in particular, the conditions under which the dis-
locations dissociate were investigated. Indenbom and
Kratokhvil used a potential U made up of parabolic
and straight-line sections. In this case the system of
difference equations (5.1) can be solved rigorously,
and the resistance of the lattice to the motion of the
dislocations is higher than would follow from (5.6),
with Tfc reaching 6 x l 0 " 3 G for T O / G = У10 and
6 x 10"4G for T O / G = Узо. The model of Eq. (5.1) was
also extended to the two-dimensional case in ^17^.

The Frenkel-Kontorova model was applied also to
other physical problems (epitaxy, ^4°3 domain bounda-
ries in ferromagnets, '-41-' interphase boundaries, ̂ 42-'
and inflexions on dislocations ^43-1).

A shortcoming of the Frenkel dislocation model is
that only the short-range interactions in the atomic
chain are taken into account. In fact, because of in-
teraction with neighboring chains, long-range forces
appear inside each chain, and a limiting transition to
the theory of elasticity is impossible without an ac-
count of these forces. This shortcoming is eliminated
in the Peierls—Nabarro model (see the review '-15-'),
comprising two elastic half-spaces separated by a
glide plane XY, in which the tangential s tress т is
nonlinearly dependent on the difference between the
tangential displacement u on both sides of the plane
of separation

bG 2яи (z)
Ь

(5.7)

The equation for elastic equilibrium of the half space,
subject to boundary conditions (5.7), is

(5.9)

which at large distances from the center of dislocation
goes over into the solution of the theory of elasticity.
The dislocation energy has a periodic dependence on
the position of its center, and the resistance of the
lattice to the motion of the dislocation corresponds
to the critical cleavage stress

(5.10)

("Peierls force"). As in the Frenkel-Kontorova
model, the dislocation energy is of the order of Gb2,
the mobility of the dislocation depends exponentially
on its width, and the width is proportional to the ratio
a/b. Different generalizations of the Peierls-Nabarro
model (for screw dislocations, for anisotropic bodies,
for specific crystal structures, etc) are given in the
reviews C15>17^.

In many works, the atomic structure of the disloca-
tion was calculated by lattice-theory methods under
different assumptions concerning the form of the po-
tential of the interatomic interaction. C37>44^ As a rule,
the width of the dislocation is found to be very small,
and the lattice resistance to the motion of the disloca-
tion much higher than in the Frenkel-Kontorova and
Peierls-Nabarro models. This discrepancy in the
results is due not only to the crude models, but also
to the substitution of differential equations for the dif-
ference equations under conditions when this proce-
dure is not valid.*

6. MOBILITY OF DISLOCATIONS

The estimates given above for the static resistance
of the lattice to the motion of dislocations are known
to be too high, since they have been actually obtained
under the assumption that the dislocation is directed
exactly along the close-packing direction. Actually
the dislocation may consist of segments located along
the close-packing direction and joined by kinks (Fig.
11). In this case it is possible to overcome the poten-
tial barr ier separating the neighboring troughs of the
potential relief by moving of the kinks along the dislo-
cation line. In the case of a sinusoidal potential r e -
lief

2я
(6.1)

where т^ is the lattice resistance to the motion of
dislocations without kinks (see Sec. 5), the form of the
kink is described by the Frenkel—Kontorova equation

6(1 — v) . 2яи(х) _ Г du dx'
a s m 6 3 d ? ^ 7 ?

(5.8)

•According tot"], tk is determined by the Fourier spectrum
U[£(k)], and a sinusoidal relief U(f) corresponds to the special
case of an exponentially terminated spectrum. Recently I.M.
Lifshitz investigated the solution of the system of difference
equations (5.1) for an arbitrary smooth function U(£) and estab-
lished that тк falls off with increasing dislocation width Л not
exponentially, but as Л"5.



P H Y S I C A L T H E O R Y OF P L A S T I C I T Y AND S T R E N G T H 283

TF - 2b* (6.4) •"

ch2-

FIG. 11. Kinks on dislocations. A - Single kink; В - double
kink; U — lattice potential field relief.

, . 2я
= bXh Sin -r- X — bX.

(6.1 ' )

Here Шо —linear dislocation energy, т —external shear
stress acting on the glide plane in the glide direction.
According to Seeger et al E43^ the width of a single kink
i s Л о = VTT&Q/2T\ , t h e e n e r g y of a s i n g l e k i n k i s W o

= 4Л0Ь
2т^/7г2, the length of a double kink is Aw (A0/ir)

x 1п(16тк/7гт), etc.
Thermal fluctuations give rise to double kinks, some

of which are immediately annihilated, but some survive
and migrate along the dislocation with speed v0 * стЬ3/
kT (Lothe et al [ 4 3 ^ ) , until they are annihilated by kinks
coming from the opposite direction. The speed of the
dislocation is

v = 2nbvn
(6.2)

where n is the running density of the kinks surviving
at a given level of s tresses.

Lothe and Hirth^43-' considered such cases of inter-
nal friction and creep, in which n was limited by the
annihilation by opposing kinks. Calculation of the par-
tition function yielded the estimate

<6-3 )

It follows from the condition (6.2) that in this case the
speed of the dislocations is proportional to т, and the
activation energy of the process is independent of the
stress .

As т increases, the stress dependence of the prob-
ability of creation of stable kinks manifests itself more
and more strongly, and the function v = V ( T ) becomes
nonlinear. As т approaches т^, the number of stable
kinks should increase rapidly, while the speed of the
dislocations approaches the speed of the kinks.

At large dislocation speeds, the resistance of the
lattice is determined not so much by the potential r e -
lief as by the different dynamic effects. Even Frenkel
and Kontorova ^35^ pointed out the important role of
momentum transfer from the dislocation to the sur-
rounding lattice. In their model this corresponded to
an account of the mobility of the backing atoms. It
was assumed that the atoms of the backing are ca-
pable of fluctuating about their equilibrium positions
independently of each other, with frequency w, and
are excited by the passing dislocation. The energy
lost by the dislocation is equivalent to a resistance

w h e r e b * i s t h e l a t t i c e p a r a m e t e r a l o n g t h e d i s l o c a t i o n ;

f o r t h e o t h e r s y m b o l s s e e S e c . 5. T h e r e s i s t a n c e t o t h e

m o t i o n of t h e d i s l o c a t i o n t e n d s t o z e r o f o r b o t h s l o w a n d

v e r y f a s t d i s l o c a t i o n s .

L e i b f r i e d a n d N a b a r r o c o n s i d e r e d t h e d i s l o c a t i o n - t o -

l a t t i c e m o m e n t u m t r a n s f e r d u e t o s c a t t e r i n g of p h o -

n o n s . E453 In t h i s c a s e t h e p r i n c i p a l r o l e i s p l a y e d b y

t h e n u c l e u s of t h e d i s l o c a t i o n ; w h e r e t h e s u p e r p o s i t i o n

of t h e e l a s t i c w a v e s a n d t h e f ie ld of d i s l o c a t i o n i s d i s -

t u r b e d . T h e e f f e c t i v e r e s i s t a n c e of t h e l a t t i c e i s p r o -

p o r t i o n a l t o t h e s p e e d of t h e d i s l o c a t i o n . A s i m p l i f i e d

e s t i m a t e ( w i t h o u t a c c o u n t of t h e r e d u c t i o n i n t h e c r o s s

s e c t i o n d u r i n g t h e s c a t t e r i n g of l o n g - w a v e p h o n o n s )

y i e l d s

i_v_-
1 0 ~ 8 ' (6.5)

w h e r e e i s t h e d e n s i t y of t h e t h e r m a l - o s c i l l a t i o n e n -

e r g y .

W h e n t h e s p e e d o r f o r m of t h e m o v i n g d i s l o c a t i o n

c h a n g e s , i t s e l a s t i c f i e l d i s a l s o c h a n g e d a n d e l a s t i c

w a v e s a r e r a d i a t e d a s a r e s u l t . T h e c o r r e s p o n d i n g

radiation friction тд is completely analogous to radia-
tion friction in electrodynamics. In particular, the
problem of radiation of elastic waves by a screw dis-
location is equivalent to the problem of radiation of
electromagnetic waves by a charged filament. ^27^
Radiation friction in the motion of the dislocation in
a periodic lattice field was investigated by Seeger
and Burchhardt ( C U 3, p. 623). An estimate of the
amplitudes of the oscillations in the speed of disloca-
tion, made for the Frenkel-Kontorova and P e i e r l s -
Nabarro models, has shown that тд reaches an ap-
preciable value (on the order of 10~4G) only when
v/c ~ 0.2—0.4. Radiation friction connected with the
forced oscillations of the dislocation under the influ-
ence of phonons (thermal fluctuations ) turns out to
be even smaller. This effect, unlike slowing down
due to phonon scattering, is proportional to v 2/c 2. '-45-'

For rapidly moving dislocations we can also ex-
pect emission of elastic waves by the Vavilov—Ceren-
kov mechanism. An edge dislocation should obviously
radiate transverse waves over the entire spectrum if
its velocity is intermediate between the velocities of
the transverse and longitudinal waves. Eshelby has
noted E463 that since the velocity of the short-wave lat-
tice oscillations can be half as large as that of the
long-wave oscillations (the velocity of sound), a
screw dislocation moving with a velocity v > c/2 is
"supersonic" for part of the oscillation spectrum.
One can assume that this mechanism determines the
maximum attainable speed of the dislocation.

Many slowing-down mechanisms are connected

*ch = cosh.
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with relaxation phenomena in the field of the moving
dislocation. The motion of the dislocation is accompa-
nied by a local increase in the temperature in the
compression regions of the crystal and a decrease
in temperature in the dilatation regions. The transfer
of heat from the compressed to the dilated regions
leads to dissipation of energy (thermoelastic friction).
According to Eshelby '-47-' the thermoelastic effect cor-
responds to a very small lattice resistance

(6.6)

More appreciable relaxation losses are connected
with the motion (displacement, reorientation, etc) of
point defects. In particular, in solid solutions a local
change in the order takes place in the vicinity of the
dislocations. ^483 The corresponding lattice resistance
is small for slow dislocations (the region of local or-
dering does not lag the dislocation) and very fast dis-
locations (there is not time at all for the ordering to
take place).

A local change in the concentration of the impurity
atoms near the dislocation can lead to enforcement of
the remaining dislocations. E493 To tear away a dislo-
cation from a cloud of impurity atoms (Cottrell cloud)
it is necessary to overcome the forces of interaction
between the atoms and the dislocation, which can be
of different nature. The rupture s tress is

•f f^, (6.7)

where V —energy of the bond between the impurity
atom and the dislocation. At lower stresses the dis-
location is forced to migrate together with the Cottrell
cloud. A rough estimate ^49^ yields for the lattice r e -
sistance in this case

kTDb*V, (6.8)

where c 0 —atomic concentration and D —coefficient
of impurity atom diffusion.

The relaxation motion of other dislocations in the
field of the moving dislocation gives an energy dissi-
pation equivalent to the effective increase in the path
covered by the moving dislocation. The slowing down
of the dislocation by the relaxation motion of surface
defects that do not reduce to dislocation networks
(grain boundaries, ferromagnetic and ferroelectric
domains, ordering regions, etc) can also be esti-
mated if the relaxation mechanism is known.

Finally, the relaxation slowing down can also be
connected with the motion of atoms in the dislocation
core. The resistance to the motion is given by the
Einstein formula

k'f (6.9)

where D* is the effective coefficient of diffusion of the
atoms in the nucleus. '-50-'
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FIG. 12. Mobility of dislocations in crystals. 1 — Edge dis-locations at 300°K; 2 — screw dislocations at 300°K; 3 — screwdislocations at 77°K.
Experimental data on the mobility of dislocationswere obtained only recently. The most interestingare the results of Gilman and Johnston, C51>523 who in-vestigated by selective etching the speed of disloca-tions in LiF crystals as a function of the stress.Figure 12 shows the V(T) curves for 77 and 300°K.Motion of dislocations with noticeable velocity beginsat stresses on the order of the macroscopic yieldpoint. Increasing the stress by less than two orders

of magnitude causes the speed to increase by 11 or-
ders and to reach approximately 0.1 с

So weak a dependence of т on v is apparently evi-
dence that the resistance to the motion of dislocations
is determined in this case not by dynamic but by static
effects (overcoming certain potential bar r ie r s ) . As
can be seen from Fig. 12, a change in temperature
brings about a parallel shift of the curve along the
"log v " axis, so that we can estimate the activation
energy W, which amounts to about 0.7 eV at т = 1
kg/mm2. For a screw dislocation, the V ( T ) curve
can be well approximated by the formula*

v= 105-expf ~— ) (6.10)

( T and v are in cgs units). We note that a W ~ т" 1

relation is characteristic of processes connected with
nucleation (for example, the speed of domain bounda-
ries in ferroelectrics as a function of the electric field
intensity). Bombardment of crystals by neutrons, and

•However, Eq. (6.10) leads to W = 0.4 eV in place of W = 0.7
eV at т = 1 kg/mm2. This contradiction is apparently eliminated
if the experimental data are reduced by formulas similar to (6.2)-
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FIG. 13. Multiplication of dislocations by double cross slip,
a) Screw dislocation in initial glide plane; b) portion of disloca-
tion shifted along the cross-slip plane; c) dislocation continues
to move forward, vertical segments remain in place; d) dislocation
broke away and left behind it a loop lying in two intersecting
planes; e—f) one of the horizontal portions of this loop detaches
new loops, as in a Frank-Read source.

also prior plastic deformation, shift the V ( T ) curve
in the same direction as a decrease in the temperature.
In the latter case the shift of the curve along the т
axis agrees satisfactorily with the theoretical estimate
of the amplitude of the field of internal stresses pro-
duced by the dislocations formed during the plastic
deformation.

7. PLASTIC DEFORMATION AND HARDENING

During the course of plastic deformation, appre-
ciable changes, due to the interaction of the disloca-
tions among themselves and with other lattice defects,
take place in the dislocation structure of the crystal.
Theory predicts a large number of possible mecha-
nisms for such interactions. Many have already been
experimentally confirmed. But theory cannot point out
with certainty the precise mechanism that governs the
plastic deformation process in each specific case.
Consequently further progress in the physical theory
of plasticity is dependent on the results of direct ex-
perimental research on the mechanism of plastic de-
formation in different materials and under different
conditions.

We discuss below only the main aspects of disloca-
tion theory of plasticity.

Dislocation sources. To produce in the crystal
enough dislocations for plastic deformation and to
compensate the loss of dislocations by emergence to
the surface (and by annihilation inside the crystal),
dislocation sources must be present. Until recently
it was assumed that the main sources of dislocations
were segments of the dislocation network that sag
gradually under the action of the stresses, until they
lose mechanical stability and a new dislocation loop

FIG. 14. Dislocation structure of stainless steel after defor-
mation by 1% (a), 8% (b) and 96% (c). a) Flat accumulation of
dislocations appeared at the grain boundary; b) these accumula-
tions crossed dislocations of other slip systems and hexagonal
configurations were formed in many places; c) dense accumula-
tions of intertwining dislocations.

is detached (Frank-Read source ^ 5 3 ^). Such sources
were indeed observed experimentally in silicon, po-
tassium chloride, stainless steel, cadmium, and other
metals. However, the mechanism wherein dislocations
are multiplied with the aid of Frank-Read sources
turned out to be not as universal as assumed. Johnston
and Gilman^64^ found that dislocations moving in LiF
crystals create new loops directly via double cross-
slip (Fig. 13), in accordance with a mechanism which
was proposed earlier by Orowan. I-55-' Multiplication
of dislocations by this mechanism, and also the de-
tachment of loops from large jogs on moving disloca-
tions, was observed in different metals in a transmis-
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sion electron microscope. Etching, decoration, and
direct electron-microscopic observation have dis-
closed in various materials the creation of disloca-
tions on inclusions, precipitates, and other stress
concentrators. The occurrence of dislocation loops
by collapse of flat accumulations of point defects, pro-
duced during the quenching of metals, was investigated
in detail. The mechanism whereby dislocations are
produced by grain boundaries, with emergence of half-
loops to one side of the boundary, frequently observed
in the electron microscope, has been neither predicted
nor so far explained. This case should be accompanied
by changes in the dislocation density in the boundary.

Hardening. The density of dislocations and point
defects increases in the course of the plastic defor-
mation. Figure 14 shows by way of an example the
dislocation structure of stainless steel at different
stages of plastic deformation. ^56-'

If Q sources per unit volume each emit n loops of
radius R, the attained plastic deformation is

N

e =

and the dislocation density increases by

N = 2nRQn.

(7.1)

(7.2)

If t h e r a d i u s of l o o p d i v e r g e n c e i s c o n s t a n t , t h e r e l a -

t i o n b e t w e e n e a n d N i s l i n e a r :

N = bTie- ( 7 - 3 )

The proportionality of N and e was observed ex-
perimentally in single crystals of LiF, Е51^ where N
= 109e, in polycrystalline silver^57^ (N = 2 x lO^e),
and in other materials. According to (7.3), the di-
vergence radius is 7 x 10~2 cm in LiF and 7 x 10~4

cm in silver. In LiF, the divergence radius is equal
to the dimension of the experimentally observed large
loops, while in silver it exceeds by several times the
diameter of the substructure cells, which were sepa-
rated by dense networks of dislocations.

If the loops are emitted by sources with constant
frequency v and diverge with constant radial velocity
v, the plastic deformation increases in accordance
with (7.1) as the cube of the time

e (t) = (7.4)

Such a dependence was observed at the initial stage of
plastic deformation of single crystals of germanium,
and was maintained until the frontal dislocations
reached the free surface of the crystal, after which N
stopped growing and the deformation increased linearly
with t . ™

Plastic deformation leads not only to an increase
in the total dislocation density, but also to an increase
in the number of jogs on the dislocations, owing to the
mutual crossing of the dislocations.

The range of the dislocation loops is determined by
the obstacles of various types, most frequently grain
boundaries and sitting dislocations, arising as a result

FIG. 15. Series of Lomer-Cottrell barriers (B) occuring along
the line where a flat accumulation of dislocations crosses dis-
locations from another slip system; alloy Ni + 4% Al.M

of the dislocation reactions. The reactions that lead to
the formation of barr iers were analyzed in detail for
the fee lattice, ^59^ in which the splitting of the disloca-
tions in the intersecting slip planes can merge into
sitting dislocations of complicated structure, which
block both slip planes simultaneously. The best known
obstacles of this type are the Lomer-Cottrell disloca-
tions E49-i occurring in the reaction У2[110] + У2[011]
= У2 [101] with unification of only the frontal partial
dislocations, in accordance with the reaction У6 [211]
+ % [112] = % [101], and formation of a V-shaped
stacking fault along the edge [101] (Fig. 15). Other
similar reactions can produce, in accordance with t-59-',
stronger barr iers .

If the dislocations produced in the course of plastic
deformation are distributed at random, the amplitude
of the internal-stress field produced by them is approx-
imately equal to (1/2тг) GbVN. For the plastic flow to
continue it is thus necessary to increase continuously
the applied stress a in accord with the increase N.
In the case of condition (7.3) we have for т =* a/2

(7.5)

from which we obtain the usual quadratic hardening law
for polycrystals

a = ao + AGVe, (7.6)

where A ~ Vb/R .
If the dislocations emitted by different sources are

not distributed at random but form accumulations of
n dislocations of the same sign, then the structure of
the internal-stress field will be different. Each dis-
location of the accumulation will counteract the work
of the source with a stress on the order of Gb/R, so
that da и (Gb/R)dn. Taking (7.1) into consideration,
we obtain

Gb de (7.7)

When the number of sources M inside a sphere of
radius R is constant, (7.7) yields a linear law of
hardening with a hardening coefficient ~ G/M. In fee
metals, for example, linear hardening is observed in
the first two stages of plastic deformation,* and in the

•Three main stages are distinguished on the strain curves of
fee metals: easy slip (I), fast hardening (II), and dynamic recov-
ery (Ш).
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second stage M « 300 for all metals and depends very
little on the orientation of the crystal and on the tem-
perature. C6°3 usually the hardening in the second
stage is attributed to accumulations of dislocations
near the Lomer—Cottrell barr iers . E60^ However, the
experimental data can also be explained by the slowing
down of the dislocations by the jogs. If m is the linear
concentration of the jogs on the dislocation, and U
= aGb3 is the energy needed to produce a point defect,
then the stress required to move the dislocations with-
out thermal activation is

mil rr,
т = -p- = <xmGb.

(7.8)

The number of intersections generating the jogs is
proportional to the deformation. Therefore, so long
as the jogs are not annihilated, m ~ e and (7.8) gives
linear hardening. Under certain assumptions it be-
comes possible to explain the observed value of the
hardening coefficient. !-61-!

Recovery. Simultaneously with the strain harden-
ing, thermally activated recovery processes develop
during the course of plastic flow: the dislocation accu-
mulations diffuse, dislocations of opposite signs anni-
hilate each other, and unlike jogs on the dislocations
annihilate each other. As the stress increases, the
activation energy W(CT) of these processes decreases.
When the rate of recovery increases rapidly, a sharp
decrease takes place in the rate of hardening and a
changeover to the next stage of plastic deformation
occurs. The temperature and velocity dependences
of the critical s tress tr^ corresponding to this transi-
tion are determined from a relation of the type

- expК,- кт ) • (7.9)

For example, in an fee metal the transition to stage III
of the deformation is connected apparently with the dif-
fusion of the dislocation accumulations by cross-slip.
The activation energy of the cross-slip of the split
dislocations is determined by the energy of the stack-
ing fault and depends logarithmically on the s tress . E62^
In crystals with a diamond lattice, the transition from
stage II to stage III is explained by the emergence of
the dislocations from the accumulation by climbing,
which in this case is more probable than cross slip. ^63^

Another example of recovery is the annihilation of
jogs on the dislocation lines. This process can be de-
scribed by means of a kinetic equation of the type

m — Nov — vjrP,

where No is the density of the dislocation

(7.10)

forest,"
crossed by the moving dislocation, v c —speed of mi-
gration of the jogs along the dislocation. From (7.10)
we get m = m^ tan - 1V Nvvc t, where m M = V Nvc /v
is the limiting jog density. The corresponding plastic-
flow stress can be estimated from (7.8). An analysis
of the complete picture of hardening and recovery of
specific crystals is beyond the scope of the present

review. The main theoretical and experimental data
on the mechanism of plastic deformation of the most
thoroughly studied crystals can be found in the original
papers and reviews, which cover fee metals, ^6 0 > 6 1 '5 7^
hexagonal metals, E64^ germanium, H63>58] ionic crys-
tals,'-52-' and the simple cubic lattice (theoretical
model). E31^ Abundant material on metals, ionic crys-
tals, and crystals with diamond lattice is contained in
a recently published book'-65-' which, like the book^49^,
contains also fundamental information on the mecha-
nism of plastic deformation of heterogeneous crystals,
which are of great practical interest. The laws of
plastic flow of polycrystals (if slip along the grain
boundaries does not play an appreciable role) reduce
to the corresponding laws for single crystals. '-66-' Ex-
perimentally one usually obtains the following depend-
ence of the plastic-flow stress a on the grain diam-
eter d:

a = a* + kd~1'\ (7.11)

The quantity a* characterizes the resistance of the
crystal to the motion of the dislocations. The differ-
ence <r — <7* determines the effect of stresses that
press the dislocations against the grain boundary. In
order for the theoretical strength (G/27r) to be at-
tained as a result of the concentration of s tresses on
the end of the slip line (concentration coefficient
Vd/b ), the condition (7.11) with k ~ GVTD/2TT must
be satisfied. This estimate of к gives satisfactory
agreement with experiment.

8. FAILURE

In discussing the low strength of ordinary mate-
rials, J. I. Frenkel believed that the experimental
value of "rupture s t r e s s e s " corresponds to the de-
velopment of already existing cracks. According to
Griffith, the dimension I* of these cracks can be es-
timated from energy considerations. For example,
a through crack of length I in a plate of thickness h
has a surface energy 2hyl (y -surface energy) and
reduces the elastic energy of the body in a field of
stresses ст by an amount сг2Ы2/2Е. The additional
energy connected with the presence of the crack has
a maximum when I = I* = 2yE/cr2. When the stress is
larger than a, a crack with dimension I s: I* devel-
ops without obstacles, and this causes fracture of the
body.

While accepting Griffith's treatment of the magni-
tude of the destructive stresses, Frenkel noted sev-
eral shortcomings in the theory. When I < I* the
crack should close up spontaneously. The i rrevers i-
bility of the lengthening of the crack can be explained
only by assuming in addition that after the crack opens
up the surface energy у is decreased by adsorption of
surface-active substances (the Rebinder effect). Ac-
count must also be taken of the dependence of the sur-
face energy on the width of the crack. This dependence
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causes the width of the crack to drop gradually to zero
on approaching the edge, i.e., the crack does not have
an elliptical form, but ends in a sharp corner. Empha-
sizing, finally, that Griffith's theory does not even
raise the question of the origin of the generating
cracks, Frenkel pointed out in this connection the work
of A. V. Stepanov, who stated that the generation of the
cracks was not spontaneous, but resulted from the plas-
tic deformation that preceded the brittle fracture and
depended essentially on the anisotropy of the crystal.

At the present time, Frenkel's outline of a theory
of failure has been realized to a considerable degree.
For differently-shaped cracks developing in an arbi-
trary stress field, it was possible to calculate the con-
figuration force F acting on the corner of the crack,
and equal to the gain in elastic energy as the corner
moves through a unit length.'-67'68-' Thus, in the planar
case, for a crack located at the plane у = 0 between
the lines x = x t and x = x2, the force acting on the
corner x = x t is

v ) ( a ' + t ' ) ] (8.1)
4G

where the bar denotes the weighted mean stress acting
prior to the opening of the crack on the segment (xt, x2)

Equating the configuration force to twice the surface
tension we obtain the condition for equilibrium of the
crack

F = 2 Y , (8.2)

where у stands for the surface energy not at the cor-
ner, but in the central part of the crack. Therefore
the dependence of у on the width of the crack influ-
ences the energy only in the case of very narrow
cracks. To the contrary, the shape of both narrow and
broad cracks depends essentially on the law governing
the decrease of у with increasing width of the crack.
This problem has been considered both within the
framework of elasticity theory C69^ and for the atomic
model ,E7°1*

The mathematical apparatus of the theory of dislo-
cations can be successfully used to describe cracks,
with the discontinuities replaced by suitably placed
dislocations. ^68-l

The experimental researches have shown that the
development of a crack is accompanied as a rule by
intense plastic deformation near the corner of the
crack. This leads to an effective increase in the sur-
face energy (sometimes by one order of magnitude
and more) and to irreversibility of the spread of the

•Frenkel attempted to determine the dependence of the sur-
face energy on the thickness of the crack, but was unable to com-
plete the work, having discovered a mistake in the calculations.
Unfortunately, this mistake remained uncosrected in the posthu-
mous edition oft71]; see alsot™].

crack. Much experimental and theoretical data has
been accumulated on the effect of surface-active sub-
stances on failure (see the reviews ^7 3-'). It can be
assumed that the observed decrease in the work of
rupture, resulting from the addition of certain im-
purities, is connected not only with the reduction in
the surface energy, but also with the easing of the
plastic deformation that accompanies the development
of the crack. A correlation was also noted between
precipitation and the reduction in the strength due to
addition of an impurity. A calculation of the kinetic
energy connected with the opening of the crack en-
ables us to explain the experimentally observed stress
dependence of the speed of propagation of the crack. ^u^

The most significant progress has been attained
recently in the investigation of the problem of initia-
tion of cracks. Dislocation theory considers several
atomic mechanisms for the initiation of cracks, which
are essentially realizations of Stepanov's idea ^753 that
failure is initiated in places where plastic deformation
proceeds unevenly. Both geometric and force models
were investigated. In the former case the continuity
of the crystal is destroyed as a result of the unifica-
tion of chains of vacancies, generated by jogs on the
moving dislocations. E76^ This results in an initiating
crack with an obtuse corner (on an atomic scale)
(Fig. 16a). In the second case, the cracks are formed
in regions where there are large internal stresses due
to the dislocations. The crack produced has a sharp
corner (Fig. 16b). As can be seen from Fig. 16, geo-
metrical cracks are more stable than force cracks.
When the former cave in, additional work must be ex-
pended to form the dislocation loop (prismatic dislo-
cation ) along the contour of the crack.

The most important variants of formation of force
cracks are illustrated in Fig. 17 a-f. The variant most
frequently discussed in the literature is a) —uncom-
pleted shear, i.e., the accumulation of dislocations in
front of an obstacle. ^77-' The only possible sufficiently
strong obstacles are, apparently, the grain boundaries,
so that in single crystals the realization of such a
scheme has little likelihood. Unfortunately, many au-
thors use indiscriminately the scheme of Fig. 17a to
"explain" the fracture of single crystals. In poly-
crystals, the scheme of Fig. 17a gives a dependence
of the rupture stress on the grain diameter similar to
(7.11), with к ~ VyG , which is in good agreement with
experiment (see the review ^ 7 7 ^).

It was observed that in hexagonal polycrystalline
metals, incompleted shear at grain boundaries causes
failure not in accordance with scheme a), but on the
accumulation plane (Fig. 17b). t78^ Gilman attributes
this type of failure to local lattice expansion resulting
from nonlinear effects in the dislocation core (see
Sec. 4) . It is more probable that the failure is due in
this case to shear along the bent glide planes (see
Fig. 17c) C68^ —a geometric glide nonlinearity in the
curved lattice. The limiting case of the scheme of
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FIG. 16. Types of initiating cracks, a) 'Geometrical'
crack; b) 'force' crack. After subtracting the elastic dis-
placements, the thickness of crack (b) is equal to zero,
while that of (a) differs from zero.

Fig. 17c is rupture of a block boundary (Fig. 17d)
either as a result of crossing of the boundary by an
active glide plane, or as a result of stoppage of part
of the moving boundary, or finally, as a result of di-
vision of the boundary into parts as its orientation
changes. te8>79] The configuration of Fig. 17d was ob-
served experimentally in various crystals, in which
the glide plane coincides with the cleavage plane
(zinc, napthalene, and others). Accumulations of
dislocations on the intersection of the glide planes
can cause cracks in accordance with the scheme of
Fig. 17e. C8°] Cracks on the intersection between
glide lines were observed frequently in crystals with
MgO lattice, but the dislocation structure did not al-
ways correspond to the scheme of Fig. 17e. Failure
in accordance with the scheme of Fig. 17f was recently
observed in cadmium, E81J where the initiating crack
occurred in a region where tensile stresses from two
dislocation accumulations of opposite sign were super-
imposed. Judging from all data, the schemes of Fig. 17
do not cover all the possible dislocation mechanisms
of generation of cracks. (See, for example, the ideas

e) f)
FIG. 17. Different variants of crack generation, a) Uncom-

pleted shear after Zener-Mott; b) uncompleted shear after Roz-
hanskii and Gilman (cleavage of accumulation of dislocations);
c) crack in the glide plane as a result of shear in a curved lat-
tice; d) rupture of vertical wall of dislocation; e) crossing of
glide planes; f) crack between accumulations of dislocations of
opposite sign.

a) b)

a d v a n c e d b y OdingE 8 2 - ' c o n c e r n i n g t h e r o l e of d i s l o c a -

t i o n s i n t h e g e n e r a t i o n a n d d e v e l o p m e n t of c r a c k s i n

m e t a l s . ) O n e c a n e x p e c t t h a t t h e m o s t d i f f icu l t c a s e s

of g e n e r a t i o n of c r a c k s i n c r y s t a l s w i l l b e i n v e s t i g a t e d

i n t h e n e a r f u t u r e b o t h t h e o r e t i c a l l y a n d e x p e r i m e n -

t a l l y . *

T h e m a i n p r o b l e m i n t h e t h e o r y of f a i l u r e i s now

t h e a t o m i c m e c h a n i s m of p r o p a g a t i o n of c r a c k s . A c -

c o r d i n g t o Z h u r k o v a n d S a n f i r o v a , ^ 8 4 J t h e e n d u r a n c e

тст (lifetime of the material under load) is inversely
proportional to the steady-state creep rate and is well
described by the formula

/ U — Ш N
T a - e x p ^ - ^ j r - j . ( 8 - 3 )

«

It i s s t i l l u n c l e a r w h e t h e r t h e r a t e o f f a i l u r e i s d e t e r -

m i n e d b y t h e r a t e o f c r e e p o r v i c e v e r s a . ^ T h e a u -

t h o r s o f t h e s u r v e y h o l d o p p o s i t e o p i n i o n s o n t h i s s u b -

j e c t ( c o m p a r e C85H w i t h C 6 8 ] ) . t

T h e d e v e l o p m e n t o f t h e a t o m i c m e c h a n i s m o f g e n -

e r a t i o n o f p r o p a g a t i o n o f c r a c k s d o e s n o t s o l v e t h e

p r o b l e m o f t h e s t a t i s t i c a l c h a r a c t e r o f f a i l u r e , t o

w h i c h J . I. F r e n k e l a t t a c h e d g r e a t s i g n i f i c a n c e . ^ 8 6 -' T h e

p h y s i c a l t h e o r y o f f a i l u r e s h o u l d , o f c o u r s e , e x p l a i n n o t

o n l y t h e a v e r a g e s t r e n g t h o f a b o d y w i t h g i v e n s t r u c -

t u r e , b u t a l s o t h e s t r e n g t h d i s t r i b u t i o n c u r v e , t h e s c a l e

f a c t o r , a n d o t h e r r e g u l a r i t i e s t h a t n e c e s s i t a t e a s t a t i s -

t i c a l a p p r o a c h t o t h e a c c o u n t o f t h e r o l e o f d e f e c t s . A

s o l u t i o n o f t h i s p r o b l e m c a l l s f o r a d i s c o v e r y o f t h e

p h y s i c a l m e a n i n g o f t h e f u n c t i o n s a n d t h e p a r a m e t e r s

t h a t a r e i n v o l v e d i n t h e s t a t i s t i c a l t h e o r y o f s t r e n g t h .

A t t h e p r e s e n t t i m e o n l y t h e f i r s t s t e p s h a v e b e e n

m a d e i n t h i s d i r e c t i o n ( s e e '-87-' a n d a l s o t h e b o o k

9 . C O N C L U S I O N

In 1 9 5 0 , J . I. F r e n k e l w r o t e ( s e e M , p . 3 6 4 ) :

" I n s p i t e o f t h e p r o l o n g e d s t u d y o f m e c h a n i c a l p r o p -

*In polymers, the crack is frequently not merely a break in the
continuity, but a cavity braced by chains of unbroken bonds. In
the investigation of the strength of a body it is appropriate to use
in this case the model of a single-dimensional atomic chain.L'̂

TAccording to Zhurkov, the activation energy U greatly ex-
ceeds the activation energy of self diffusion Uj) and is approxi-
mately equal to the evaporation energy Uo. However, one can just
as well set the value of U in correspondence with the activation
energy for the creation of interstitial atoms, which is close to Uo.
Iri this case the rate of creep and of failure is limited by the cre-
ation of the interstitial atoms. The activation volume fi can be set
in correspondence with the quantity Ъ21, where I is of the order of

the distance between dislocations (b/7 is of the order of the angle

of disorientation of the blocks).
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erties of solids, particularly their plasticity, this
question has to this very day not only failed to r e -
ceive correct solution, but could not even be correctly
formulated. It can be stated that the introduction of
mobile dislocations and of a theory for their motion
was a first step towards solving the problem of plas-
tic deformation and hardness of crystals. At the pres-
ent time, however, there is still very little done to-
wards further development of the theory of plasticity
and its specific applications to particular bodies."

During the last decade the dislocation hypothesis
has found brilliant experimental confirmation, while
dislocation theory has become an inseparable part of
solid state theory. But while the principles of dislo-
cation theory can be regarded as developed, the same
cannot be said concerning the dislocation theory of
plasticity and strength. The development of clear
ideas concerning the atomic mechanism of plastic
flow and failure still calls for extensive experimental
and theoretical research.

Modern advances in experimental methods of the
study of defects in crystals enable us to hope that a
solution of this problem will not be long in coming.
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