SOVIET PHYSICS USPEKHI

VOLUME 5, NUMBER 2

SEPTEMBER-OCTOBER 1962

PRESENT STATE OF THE THEORY OF LIQUIDS

I. Z. FISHER
Usp. Fiz. Nauk 76, 499-518 (March, 1962)

1. INTRODUCTION

THE present stage in the development of the theory of
the liquid state originated for the most part in the nu-
merous researches of Jacob II’ich Frenkel, which he
summarized in his classical book ‘‘Kinetic Theory of
Liquids.”’ (13 He was one of the first to point out that
the approximately equal particle density in solid and
fused crystals, and the consequent approximate equal-
ity of their inteimolecular interaction intensity, is
bound to make the structure and the character of ther-
mal motion of the atoms and molecules nearly the same
in both phases. This gives rise to the known parallel-
ism between the physical properties of solids and
liquids, and creates a real basis for the theory of the
processes that relate both phases. The views devel-
oped by Frenkel proved equally fruitful for both the
theory of crystals and the theory of liquids. These
views presupposed the increasing disorder in real
crystals with rising temperature, and the presence

of elements of order in liquids. The notion of defects
(in the broad sense) in crystals and of their role in
thermodynamiec, electric, kinetic, and optical proper-
ties of real solids was a most important step in the
development of solid-state theory. On the other hand,
the ideas of short-range order and strong interaction
between the particles of a liquid, and their specific in-
fluence on its physical properties, has given rise to a
new branch of physics, the statistical theory of liquids.

We shall attempt to review briefly the present
status of statistical theory of simple liquids, confin-
ing ourselves to non-quantum theory. Except for liquid
helium and to some extent liquid neon, all monatomic
liquids can be satisfactorily described by classical
methods.

The lack of a simple and readily visualized model
for liquids, one capable of serving as the ‘‘zeroth ap-
proximation’’ in the building of a theory of liquids (in
contrast with the perfect-gas and ideal-crystal models
in the theory of gases and solids) makes the develop-
ment of the theory extremely difficult. The mathemat-
ical difficulties encountered on the path towards the
development of the theory of the liquid state of matter
are so great, that only a statistical theory of simple
monatomic liquids is feasible at present. Liquefied
inert gases and fused metals are real examples of sim-
ple liquids. We can also include, with some degree of
approximation, certain monatomic liquids with mole-
cules and force fields that have some measure of spec-
ific symmetry.
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Many problems in the statistical theory of liquids
have been recently discussed in detail in reviews and
books. [27€] We have therefore attempted to pay more
attention here to questions that are relatively new or
insufficiently explained in the review literature. Many
problems in the theory of liquids were not touched
upon at all.

2. EQUILIBRIUM CORRELATIVE FUNCTIONS

1. Definition of correlative functions. The mathe-
matical tool of modern theory of liquids and dense
gases is that of molecular distribution functions or
correlative functions, (%37} the main properties of
which will be listed briefly. For an equilibrium sys-
tem of N particles contained in a volume V and hav-
ing a temperature T, the coordinate part of the Gibbs
distribution function is equal to

_ Un(dqu ---5 9)
.y (IN)ZQN1 exp{——N—iﬁ_N}, (2.1)

where QN —configuration integral that normalizes Dy
to unity and Uy —total interaction energy of the sys-
tem particles. As already mentioned, we assume that
the position of each particle is completely character-
ized by the coordinates of its center of mass. The cor-
relative functions Fg(qy,...,qQy) can be defined as

Dn(qy, ..

Foldy - a0=v"\ ... {Dv(as -0 ap)da., - day,
V vV
(2.2)
so that the expressions
. dq; ... dq,
dw,(qp DR qs)=ﬁs(q17 R | qs)*ql?iy
2.3
s=1,2, ..., N, (@-3)

define the probabilities of definite configurations of
groups comprising s particles, regardless of the po-
sitions of the remaining N -s particles of the system.
This leads to the normalization conditions

1
v Fl@da=1,

Vv

(2.4)

1
i S Fs+1(q17 R qs+1)dqs+1=Fs (qv LS qs)' (2'5)
v

In addition, the functions Fg are, by definition, sym-
metrical with respect to permutation of the coordinate
triplets of the different particles, and should satisfy
the conditions of weakening correlation

Fo(ay, -0 @) —>Fi(qy) - Fy(q5)

as the distance between particles increases. (7]

(2.6)
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From (2.1) and (2.2) we can obtain an integro-dif-
ferential equation connecting various functions Fg
with different indices. If we assume that the total in~
teraction energy UN is the sum of paired interactions

Uv= 2 ®y= 23 O(g—q) (2.7)
1<i<iN 1<iSieN
then we obtain as equations for Fgl[™]
oF Wy | 1 ¢ 0Dy,
kTa—qf‘_I”Fsﬁhi ?S;Tlpsddq&l:()s (2.8)

where v = V/N, the limit being taken as N and V be-

come infinite. Ug denotes the interaction energy of

the chosen group of s particles
U= 2 ®,;.

1<i<iss

(2.9)

In the homogeneous case, far from the walls bound-
ing the system, all positions of a single particle are
equally likely. For a pair of particles, likewise, only
the relative distance is significant, and not the gen-
eral position or orientation. In this case, thus,

(2.10)
(2.11)

Fl(q)=11
Fi(q, 9)=g(lq—q')).

Similar simplifications hold also for Fgq with s > 2
(but s << N). We can also introduce the conditional
correlative functions Fg(qy,...9g!4s+1--58s4p)s
which would define the conditional probabilities of the
positions of a group of s particles for fixed positions
of a different group of p particles, independently of
the positions of the remaining N —s —p particles of
the system. The rule for the product of probabilities
then yields
Fop (@, -0y sy Gsi1s -+ -5 Gssp)
F‘ (ql’ "t Fp(Gss1s -++5 Gsap)
(2.12)

L ST qs+p)=

For example, in the homogeneous case with s =p =1
we obtain therefore

Fiqlqy=Fy(q, q)=g(lg—d']): (2.13)

so that the function g(r) of (2.11) is simultaneously
also the conditional simple (unitary) correlative func-
tion and is therefore called the radial distribution
function of the system particles. The probability that
the relative distance between an arbitrary pair of par-
ticles will increase from r to r+dr is

dw(r)=g(r)

4Anr2 dr

- (2.14)

The deviation of the function g(r) from unity is the
simplest and most important characteristic of the
order existing in a liquid.

2. Mean values. Knowledge of the functions Fg en-
ables us to determine mean values Mg of the type

M, = (2.15)

1<ii<in<. . . <Cis

F@y -0 G-
<N

By simple calculation we obtain from (2.1) and (2.2) (7]
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=  N(N—1)...(¥N—s+1
i, =N )mf( S+)§,_,§f(ql,.--,qs)

. q)dy, ... d,. (2.16)

X Fo(qy -

We are interested principally in quantities of the addi-
tive type, M;, and of the binary type, M,, with f(q,q’)
=1f(|g—q’|) in the homogeneous case. We then obtain

from (2.10), (2.11), and (2.16)

m=§ i, (2.17)

M=ZE V105 () r2ar, (2.18)

i 8

=)

where it is assumed that N and V are very large.
The simplest example of a quantity of type M, is
the interaction energy Uy of the system particles as
given by (2.7). Along with the kinetic contribution we
obtain from (2.18) for the total energy of the system
3 m
E=N{?kT+TnS(D(r)g(r)r2dr}. (2.19)
0
In similar fashion, but with a somewhat more compli-
cated proof, we obtain also an equation for the pres-
sure in the system (7]
K 2 (oo,
p=—v——3—;— Q @' (r) g (r)ridr,
0
where the prime denotes differentiation. The last
equation is a particular case of a more complicated
expression for the elastic tensions in the liquid in
terms of the function FZ.E"‘] A simple expression
can be obtained in terms of g(r) for the quadratic
fluctuations of the number of particles in a certain
volume G inside the system

o

(ANe)* =NG{1+4Tn S (g (" — 1)r2dr}.
4]

(2.20)

(2.21)

In view of the known relation between the density fluc-
tuations and the compressibility, we obtain further-
more

T i ¢,
La _§_§)T=1+~z}n—§(g(r)-1)r2 dr.  (2.22)

Many other thermodynamic and mechanical charac~
teristics of a liquid or a dense gas can be expressed
in terms of the functions F; and F,. Thus, for most
liquids of interest in our theory, it is sufficient to
know only the two lowest-order correlative functions
FI and Fz.

3. Scattering of light and x rays by liquids. The
correlations existing between the particle positions
in a liquid determine the character of the scattering
of electromagnetic waves by an entire aggregate of
particles, and this can also be translated into the lan-
guage of the radial distribution function. Familiar cal-
culations [1:3:4] yield for the intensity of the scattered
waves:
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1) = o {115 (g )~ ) 2200 ear} - 2:23)
[1]
where
s=4Tnsin~g—, (2.24)
and I is the intensity of scattering by a system of in-
dependent particles. In (2.24), A is the wavelength and
¢ the scattering angle.
For waves in the optical region, the length 1/s (ex-
cept for very small angles ¢) is much larger than the

‘‘correlation radius,’’ at which g(r) differs from unity.

Consequently the function [sin (sr)]/sr can be re-
placed by its value for r = 0 (i.e., by unity), and we
obtain

1(s)=10{1+f‘5t S (g(r) — 1)r2dr}. (2.25)

0

This expression is independent of the scattering angle
and we obtain, in connection with (2.21) and (2.22), the
same result as in the usual thermodynamic theory of
scattering of light by density fluctuations.

The situation is different in the case of x rays,
where the length 1/s is commensurate with the inter-
atomic distances in the liquid, so that further simplifi-
cation of (2.23) is impossible. If we introduce the rel-
ative scattering intensity i(s) = I(s)/I;, we can write

(i (51— 1) s ="K (g (1) — 1) rsin (sr) dr. (2.26)

0

Here the right half can be regarded as a sine-trans-
formation of the Fourier function [(47r/v)(g( r)y-1 )]r
The inverse transformation yields

(g (N —1)r=50y { (((5)— 1) s5in (rs) ds.

0

Consequently, if we determine the function i(s) ex-
perimentally for some liquid, we can calculate g(r)
for this liquid.

(2.27)

3. STRUCTURE OF SIMPLE LIQUIDS

For many monatomic liquids, x-ray diffraction data
indeed yielded the radial distribution functions g(r),
and in some cases the temperature dependence of g(r)
can be established over a wide range of temperatures
(see the reviews [8:91), A typical g(r) curve is shown
schematically in the figure. It follows from these data
that a short-range density (radial) order exists in
simple liquids within a distance of several atomic di-
mensions, with preferred stratified distribution of the
neighbors of each particle. The impossibility of re-
solving the peaks of the function g(r) is directly con-
nected with the displacements of the particles from
certain layers in the closest vicinity of a certain par-
ticle to other layers. At distances exceeding several
atomic dimensions, g(r) = 1, and the relative distri-
bution of the particles is completely disordered. With
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increasing temperature or with decreasing density of
the liquid, the picture shown in the figure becomes
more diffuse, the peaks become less pronounced, and
this corresponds to a decrease in the degree of short-
range order. However, traces of order of the same
type remain also in the gaseous state of matter (ex-
cept for the case of infinite dilution).

It was found that near the melting temperature the
distances to the first peak of g(r), and sometimes
also to the second peak, very nearly correspond in
many cases to the distances between the nearest sites
(or correspondingly to the next-nearest sites) in crys-
tal lattices of the same substances before the melting.
We can further introduce the quantities

in "y min

%\ gy,

Zy=— (3.1)
0
where rymin —abscissa of the first minimum on the
g(r) curve, equal to the average number of nearest
neighbors of a certain particle in the corresponding
liquid ( ““first coordination number’’ of the liquid). We
can analogously define some of the next higher coordi-
nation numbers z,, z3,... The numbers z, and some-
times also z,, or z, and z3, were also found in many
cases to be close to (but somewhat smaller than) the
coordination numbers inthe corresponding crystals.l:s'm]
These properties are manifestations of the ‘‘quasi-
crystalline’’ short-range order in simple liquids. Of
course, these properties still do not indicate in any
way the presence, even in small volumes, of an ap-
proximate crystalline order in the sense of structural-
anisotropy effects or translational periodicity. The
absence of such quasi-crystallinity, at least in simple
liquids with non-directional and non-saturating inter-
particle forces, actually follows from estimates of the
rms fluctuations of the coordination numbers zj.[311]
The coordination numbers in a liquid, unlike in a crys-
tal, are not constants characterizing the type of crystal
lattice, but merely mean values of the number of near-
est neighbors, and should be subject to thermal fluctu-
ations. If H is a certain region that is immovably
connected with some particle at the point qg, then the
quadratic fluctuation of the number of particles in this
region is

—_— 3 W 1 ,
(ANpP =Ny +— S Fo(q, 4" q0)
EH

—F(q|90) F1(q" | o)} dq dy’. 3.2)

gf)
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With proper choice of the region H, we can obtain
from this estimates of the fluctuations of the coordi-
nation number z,, z,,... In this case the function
Fi(algqy) =g(la—q,l) can be taken directly from
x-ray diffraction data, and the function F,(q,q’|q,)
= F3(q, q’, 9y) can be approximately expressed in
terms of combinations of g(r) with the aid of the
‘‘superposition approximation’’ (see below); it can
further be shown that this leads only to a reduction
in the estimate for ( E\I—ﬁ)z. Such calculations were
carried out for a large number of monatomic liquids
and it turned out that in almost all cases z; fluctu-
ates by about 20% and more, while z, fluctuates by
35—40% and more. 1! So high a level of coordination-
number fluctuation is utterly incompatible with the
notion of approximate crystalline order of liquid par-
ticles in a small volume, and the short-range order
in simple liquids must be understood only in the den-
sity sense.

4. SUPERPOSITION APPROXIMATION

1. Integral equation for the radial distribution func-
tion. The fundamental equations (2.8) interrelate the
infinite totality of correlative functions Fg, s =1, 2,
..., which cannot be solved in the case of a liquid.

But we have seen that it would be sufficient to know
only the functions F; and F, for most problems, and
only the function g(r) in the homogeneous case. It
would therefore be of importance to the theory of
liquids to obtain a closed equation for g(r). The sim-
plest approximate method of obtaining such an equation
involves terminating the chain of equations (2.8) at the
equation with s = 2 by introducing Kirkwood’s ‘‘super-
position approximation’’

Fs(q. 4", ¢)=g(lga—q'g(la—q"Ng(ld’ —q") “4.1)

(it is assumed that Fy = 1). With the aid of the condi-
tional correlative functions this can also be written in
the form :

Fi(qlq q)=F (qq)F(q]|q") 4.2)

from which it is clear that the approximation (4.1)
does not take into account the correlation in the in-
fluences that the particles at the points q’ and q”
have on the probability of the position of the third
particle at the point q. Therefore the superposition
approximation can reflect only very crudely the actual
correlations between the particles in the liquid. None-
theless, the construction of a theory of liquids in such
an approximation is of certain interest, and this prob-
lem has been the subject of many investigations. We
note that the approximation (4.1) turns out to be suffi-
ciently accurate in the case of a gas that is not too
dense, and also in a dense gas or liquid with large
distances between particles, as is clear from the re-
mark made in connection with (4.2).
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The substitution of (4.1) in (2.8) with s = 2 leads
after some transformations to a closed nonlinear in-
tegral equation for the function g(r), namely RY

iing (N + 0 +2-({ | 8mtar}g@—nede=0,
0 “ir-el (4.3)

where
g={ 0 Wgwa. (4.4)

Thus, the kernel of the integral equation is itself de-
pendent on the unknown function. Equation (4.3), with
specified thermodynamic parameters v and T, deter-
mines the radial distribution function g(r; v, T) from
the specified intermolecular potential &(r), and
thereby solves in principle (in the approximation
considered ) the basic problem in the theory of simple
liquids. Equation (4.3) with different notation was de-
rived also in [12],

The actual solution of (4.3) for a specified function
&(r) can be obtained only by numerical means. De-
tailed solutions were obtained by Kirkwood and his
co-workers for the case of a model of solid noninter-
acting spheres [13] and for a model of solid spheres
with Lennard-Jones interaction: (14

O(r)=+ o for r<a,

o =te{(£)"~(£)} for r>a } “s

In this case the parameters a and € were chosen to
make the potential &(r) correspond most closely to
the properties of the actual potential in gaseous argon
(this can be done by comparing the calculated and ex-
perimental values of the Joule-Thomson coefficient and
other properties ).

The results of calculations for a ‘‘realistic’’ poten-
tial (4.5) and their discussions can be found in [14] and
other papers, [%3:6:15] and will not be discussed in de-
tail here. We note merely that the function g(r,v, T),
obtained for large intervals of v and T, together with
the thermodynamic properties of the studied model
calculated from this function, agrees qualitatively with
the known properties of real simple liquids, including
such complicated phenomena as the liquid—gas phase
transition and the critical phenomena. The quantitative
results, however, are not quite so satisfactory; for ex-
ample, the calculated pressure and entropy in the liquid
state were found to be noticeably lower than their actual
values in liquid argon.

2. Behavior of g(r) at large distances and stability
limit of the homogeneous phase. At large values of r,
the function g(r) deviates little from unity, and if in
addition the potential &(r) vanishes with sufficient
speed, then (4.3) can be linearized and investigated in
general. [3,16] Analysis shows that the asymptotic form
of g(r) for large r is
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g(r) =141 3 A,e-tonicos (B, +8,), (4.6)
)
where a, and 8, are determined by the properties of
&(r) and g(r) for small r, while Ay and 6, remain
indeterminate in the linear approximation. It is obvi-
ous that, in accordance with (4.6), the general charac-
ter of g(r) represents correctly the experimentally
known properties of g(r). It is possible to show
further that the solutions of (4.3) retain the physical
meaning of a binary distribution function of a certain
stable system only if all |ap| = 0. In the opposite
case, if at least one «p vanishes, the functions g(r)
described by (4.3) correspond to absolutely unstable,
i.e., nonexistent, states.[16]

The foregoing property can be used to define the
stability limits of a homogeneous phase (gas or liquid)
as the lines on the v-T plane, where the smallest of
the ap vanishes. This leads to the following analyt-
ical conditions for the limit of absolute stability of a
homogeneous phase [3]

— § w0 (o @gwalra-1, @
S sin |3r4ﬁr cos ﬁr{ \ O () g (t) dt} r2dr=0. (4.8)

0

These equations in parametric form (in terms of the
parameter §) determine the line v = v(T) of the sta-
bility limit of the system. With the aid of (2.20) we
can then obtain an analogous line on the p-T plane.
Equation (4.7) was first derived in [173,

The foregoing method can be used, in particular,
to determine the melting-crystallization line of a
simple substance. If the repulsion forces between
molecules are approximated by a power law, this
leads to the following approximate expression for the
melting curve (18]

Pp= —ALBT", (4.9)

where A, B, and m can be expressed in terms of the
parameters of intermolecular interaction. The law
(4.9) agrees well with the experimental data for simple
substances. [19]

5. MORE ACCURATE APPROXIMATIONS IN THE
THEORY OF LIQUIDS

1. Review of different theories. Many attempts were
made recently to obtain for the lower-order correlative
functions closed equations which are more accurate
than the superposition approximation. Some of these
could apparently serve in fact as a basis for the con-
struction of a more exact theory of simple liquids, but
as far as we know, there is still no published paper, with
detailed calculations and with discussions, employing

this theory. We list some of the new theories.
A general method of constructing approximations

to the exact equations in (2.8) was investigated in cze],
These approximations, which are appreciably better
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than the superposition approximation, led to exceed-
ingly complicated and cumbersome equations, which
were not investigated further. A new formalism using
special correlative functions relating only the particles
that interact directly with a chosen particle, was intro-
duced in (211, For strictly short-range forces this
leads to a system of twelve equations with twelve un-
known functions (in accord with the largest number of
geometrically possible nearest neighbors ).

Since the superposition approximation is exact when
the particle density in the system is low, it is natural
to attempt to make this approximation more suitable
for larger densities by introducing into the right half
of (4.1) a correction factor

Fy(q, ¢, q)=¢g(q-q'Dg(a—qNg(a —a")og g 9)-

(6.1)

A function ¢ in the form of a certain infinite series
in powers of the density, constructed with the aid of
the group integrals of the theory of real gases, was
formally obtained in £221, This series can be used in
practice only for a gas.

In [28] there was introduced a ‘‘hypersuperposition’’
approximation
Folg, 9°. 975 Q")

_ 3,9, 9")Fy(q, 4, 4") F3(q, 9",
Folg. 9') F2 (g, q

1) Fy(q’, 97, 47)

F "y Fy NF, (4§ ) F g, 47
"YFs(q, 9"y F2(q', q47) qa) £ (q”, q)(sz)

by which the infinite chain (2.8) is terminated one link
farther than in (4.1). In conjunction with (5.1), this
leads to a system of two equations for ¢ and g(r).

It is shown that in the case of a gas these equations
yield correct values for the first virial coefficients.
The first terms of the expansion of ¢ in powers of
the density are

%@ 9,9
=i+ {/laapr(a—ahi(a—a"hda+ ...,
(5.3)
where _®dqn _
Jah=e T —1, (5.4)

which corresponds to a similar approximation given
in [22],

Approximate expressions for g(r), which are more
accurate for a gas than (4.3), can be obtained by a par-
tial summation of the diagrams of the theory of real
gases.[24726] For example, the equation derived in (%61
can be written in the form

e ™Q
iing )+ 00+ 5\ { wo+rra—go
0 [r—o|
+lng()tdt} (s(@)—1)ede=0 (5.5)

and takes account of more simple diagrams than in the
case of (4.3). Equations similar in form are given

in [24.25]  Although in principle all these equations

are exact only for a gas that is not too dense, one can
hope that in the case of a liquid they lead to better ap-
proximate results than in the superposition approxima-
tion.
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2. Variational theories. The free energy of a large
but finite system of particles can be expressed in
terms of the highest order correlative function Fy
in the form

AN=A?V+% S S {(Un+kT InFy) Frdqy ... dqy, (5.6)
v vV
where A%I —free energy of a perfect gas. Regarding
AN as a functional of Fy, requiring that Ay be mini-
mal with respect to variations of Fy, and imposing
the normalization condition on Fyy we can readily ob-
tain a solution for Fy in the form of a Gibbs distribu-
tion (2.1), namely Fy = VNDy.

A variational theory for the determination of cor-
relative functions, which reduces to an approximate
representation of Fy in terms of a product of a cer-
tain number of auxiliary functions of simpler structure
and subsequent determination of the ‘‘best’’ such func-
tions by solving the corresponding variational problem,
was proposed in L2l Depending on the number and
character of the factors in which Fy is expanded, ap-
proximations of different degrees of accuracy can be
obtained. Actually, only a few very rough approxima-
tions were calculated in that paper. An analogous the-
ory, based on a grand canonical distribution and using
the thermodynamic potential Qyy in place of the free
energy Ay, was developed in (28],

It is pointed out even in [?"] that a difficulty arises
in variational theory on going over to a system that
expands without limit (at constant density), in view
of the appearance of improper integrals in the free
energy, with values that depend on the method used
to go to the limit as V,N — «. A more rigorous
analysis shows [23:3%] that the initial versions of the
variational theory are incorrect in many other re-
spects; for example, a very complicated problem
(and one incorrectly solved in [2%%8]) ig that of ac-
counting in the variation of the free energy for the
relations between the auxiliary functions employed,
relations needed to satisfy the normalization condi-
tions for (2.5) or for their limiting expressions as
V—w,

A correct variational theory leading to integral
equations for the correlation functions was developed
in (2301 For a large but finite system of particles,
the author introduces a system of ‘‘correlation’’ func-

tion @3, ¢4, ... and a system of ‘‘pseudocorrelation’
functions ¢, 3, ... defined by the relations
= F i i i1 Kl
Fo=, L Fs W, L, e 1)
@ ey @) (52> 2) .7)
= i1 Y » i it
Fv= M _ e ey 1 e(a 45 g0
B UNT( TR A N (5.8)

Because of the connections existing between the Fg
and between Fg and FN, the functions yg and F, or
@g can in principle be expressed in terms of each
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other, and it is assumed that this can actually be done.
To obtain real approximate results it is necessary to
impose some limitations on the functions ¢g and yg
in the course of minimizing the free energy. The fol-
lowing approximations are considered in[2%,30,

1) ¢ne1=1 forall n= o, and 2) Py =1 for all

m = 3, where « and B are certain integers. For ex-
ample, the approximation {a =3, 8 + 4} reduces to
the approximate relations

FN;" H ¥, (q;, (lj) ) H V3 (q;, q;: q5) (6.9)
11N UKi<y<hgN)
1
Fo= =5y - ( Fnda, ... dgy, (5.10)
v v
Fy(qys 92 93) = F2 (1 €2) F5(qy, q5) F2 (D 93) 93 (910 D20 G3),
(5.11)

and the value of (5.9) should be substituted in the right
half of (5.10). By going over to continuously increas-
ing values of « and B, we can obtain a sequence of
more and more accurate approximations. The ques-
tion of the limiting transition N, V— « and the func-
tional relationships between the ¢g or between the yYg
remains vital in this theory, too. Its author was able,
however, to develop a rigorous theory of ‘‘renormali-
zation’’ of the free energy, which eliminates these dif-
ficulties and yields reliably correct results.

6. NONEQUILIBRIUM CORRELATIVE FUNCTIONS

1. Correlative functions in phase space. We proceed
now to review the status of the theory of kinetic prop-
erties of simple liquids. The theory can be expressed
in the language of correlative functions of particle
groups. These functions should now be defined in the
phase space of the group, and can depend explicitly on
the time. If qj, p; is the assembly of coordinates and
momenta of the i-th particle and drj = dq;dpj, then
the correlative function Fg = Fg(qy,...,qg; Py»«--Ps; t)
is defined by the relation

dv; ... dv,

AW (qy, -y G5 Py - o0 Py 8)=F TR0
s=1,2, ..., N, 6.1)
where dW (qy,...,qs; Py»--.,Ps; t) is the probability

of observing simultaneously the coordinates and the
momenta of the selected s particles at the instant t
near the specified values, independently of the posi-
tions and momenta of the remaining N -s particles.
As in the equilibrium case, the functions Fg should
be symmetrical and should satisfy normalization con-
ditions such as (2.4) and (2.5), except that integration
in coordinate space is replaced by integration in the
total phase space of the corresponding particles. In
the special case of statistical equilibrium, the distri-
butions of the coordinates and of the momenta are in-
dependent, and for a Maxwellian momentum distribu-
tion we obtain

3
F,=F'(q, ..., q,)(2amkT) 2’

I eXp(\ — ;—77> . (6.2)

(o)
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where F°S —ordinary equilibrium correlation functions
in the space of the particle coordinates.

Conditional correlative functions of various types
can also be introduced in the absence of equilibrium.
Some of these will be encountered below.

In analogy with the equilibrium case, the function
pairs Fg and Sg,; must satisfy a certain integro-
differential relationship between them. If we assume
the system as a whole to be closed, we have on the
basis of the Liouville theorem

dFy _ OFn
dt ot + E

(IgighN)

OFN p; oF N
R

aq; m
(1<igh)

K, =0, (6.3)
where K; —force acting on the i-th particle. Multiply-
ing this by v~(N-s) dTg,y...d7N and integrating over
all the phase space of the (s+1)-st,...N-th particles,
we obtain after simple transformations in the limit as
N,V — « the following equations:[%31]
oF, aF, p; , OF, U,
Gt 2 {0‘Ii o ap; (Xi# aq; >}
(<iss)

1 W, 5,1 OF,

- 2 S i, 841 ; 1de+1

v - daq;  op;
(1<iss)

(s=1,2, ... (6.4)
Here Ug is defined in (2.9), and Xj denotes the ex-
ternal force acting upon the i-th particle. It is easy
to check that when Xj = 0 the equilibrium functions
(6.2) satisfy the equations in (6.4).

As in the equilibrium case, only the two functions
F; and F, are of primary interest. We note that the
kinetic theory of gases is based exclusively on knowl-
edge of the function Fy, because in a rarefied gas the
transport of mass, momentum, and energy is effected
almost completely by the motion of the particles
themselves. In a liquid, to the contrary, the greater
part of the momentum and energy flow is connected
with the interaction between particles, and knowledge
of the function F, is essential for most problems.

2. Initial conditions. Reversibility and irreversi-
bility. Except for stationary nonequilibrium states
and a few other special problems, it is necessary to
solve (6.4) subject to definite initial conditions. A
typical case is when the distribution of the particle
groups is specified at some initial instant of time t
=19t Fg(dyr...58g; P1s---sPgi tg) = f5(dyy .- -, Qs
Pi)-..,Psg). We single out here a case when the ini-
tial state of a group of particles is specified pre-
cisely, for example, for s =1

Fi(q, p; t)=Vo(g—gqo)d(p—po), (6.5)
where q; and p, are two constant vectors. In this case
the solution should have the form F(q,p,t|d, Py, tg)
and has the meaning of a conditional probability of ob-
serving a particle near the phase point q,p at the in-
stant t, if we know that the particle was at the point
Qp, Pp at the instant t,. An analogous problem can also
be formulated for s > 1.

If the initial distribution fg was not an equilibrium
one, as for example in (6.5), then in accordance with
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the proposed ergodic properties of the investigated
system, we expect that in the absence of external
forces the system will arrive after a corresponding
relaxation time at an equilibrium state with a probabil-
ity distribution (6.2). However, the equations (6.4)
present certain difficulties in the investigation of such
relaxation processes, and also stationary irreversible
processes such as viscosity, heat conduction, etc,
since these equations are reversible in time and re-
main invariant under the simultaneous substitutions

t — —t and pj — —pj. Essentially, like the initial
Liouville equation (6.3), these are still dynamic and
not statistical equations. The situation remains the
same, of course, even if the infinite chain of equa-
tions (6.4) is terminated, for example, with the aid of
the superposition approximation, as was done in [32)
in the hope of obtaining irreversible kinetic equations
for F; and F, in liquids.

In order to obtain solutions that describe irrevers-
ible processes it is necessary either to solve (6.4)
under initial or other supplementary conditions for
Fg which are asymmetrical with respect to the past
and to the future, or else change over to new distri-
bution functions f‘s or to equations that are explicitly
irreversible with respect to time for these functions.
The latter can be attained by using functions Fs ob-
tained by averaging or spreading the exact functions
Fg and their equations of motion over suitably chosen
microscopically-small time intervals. The irrevers-
ible equations obtained in this manner for Fg are
called kinetic.

A typical and well known example where the relax-
ation problem is solved with the aid of reversible
equations, but the supplementary conditions have a
preferred direction in time, is Landau’s calculation
of the damping of plasma oscillations. 3] Green has
similarly demonstrated that irreversible phenomena
in simple liquids can be studied in principle by start-
ing from the reversible equations (6.4). (5] A more
general method is that of the kinetic equations. A
highly perfected theory of kinetic equations was de-
veloped by Bogolyubov, (7] put is effective only for gas
systems. Kirkwood proposed for the functions fs in
a liquid kinetic equations modeled after the equations
of the theory of Brownian motion. In spite of the ap-
proximate character of this theory, it is at present
the best developed. A brief description of this method
will be given in the following sections.

3. Scattering of slow neutrons in a liquid. It is in-
teresting in many problems to know, along with the
functions Fg defined above, the nonequilibrium dis-
tribution functions only in configuration or only in
momentum space, for example

TR Ry
=§. R

s Qs; Pry -0 Pss 1) dpy ... dp,, (6.6)

and analogously for Fg(py,...,Pg; t), and also to know
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different conditional distribution functions in each of
these spaces. '

Of particular interest are the two functions
Fi(q,t|q%ty) and Fy(q,t]q’%ty), where q° corre-
sponds to the initial position of the same particle as
in the main argument F;, and q’% corresponds to the
initial position of some other particle. In a homoge-
neous system which is in equilibrium on the whole,
these functions can depend only on the distances be-
tween the points q and q° or q’® and on the time in-
terval t—t,:

6.7)
(6.8)

The functions p(r,t) and g(r,t) are natural kinetic
generalizations of the number density (per particle)
and the radial distribution function gy(r) of the static
theory, into which they go over when t vanishes

e(r, t)—8(n) 1
g(r, )—>go(r) )

Fi(q, t|q°, t)=Ve(lg—q°|, t—1,),
Filg, 119, t)=g(lq—q’°|, t—1,).

as t—0, (6.9)

The sum

G(r, ty=0o(r, )+g(r, t) (6.10)

corresponds to the average density of all the particles
at the instant t, at a distance r from the point where
a certain chosen particle was situated at t = 0. As
t— o or r — « we have p(r,t) — 0 and g(r,t) — 1,
respectively.

Just as the function gy(r) for a real liquid can be
reconstituted from the results of x-ray scattering, the
functions p(r,t) and g(r,t) can be reconstituted from
the results of slow-neutron scattering. 341 1f we denote
by d%s/dQde the effective cross section (per particle)
for elastic scattering in a unit solid angle and a unit en-
ergy interval, we obtain for the coherent and incoherent
scattering, respectively,

do’ (a)2k

dgdezznhko's SeXP[i(”"—mt)]G(lrlq tydrdt, (6.11)
” 2y 2 k .
o LMK (expliur—at)l@(|r], drde. (6.12)

Here ky and k are the wave numbers of the incoming
and scattered neutrons, k = k—kj, w =¢/H, a —length
for the scattering of a neutron by nuclei of a given
kind, and the brackets (...) denote averaging over
the spin and isotopic states of the nuclei. The inverse
Fourier transformation with respect to ¥ and w yields
G(r,t) and p(r,t), and consequently also g(r,t).
Thus, a detailed investigation of the scattering of
slow neutrons can yield in principle more complete
information on the structure and thermal motion in a
liquid than x-ray methods. The reason lies in the
simple fact that the time necessary for the slow neu-
tron to traverse the average interatomic distance in
the liquid is comparable with the characteristic times
of thermal motion of the atoms, whereas the x-ray
quantum covers this distance too rapidly and its scat-
tering is determined by the instantaneous distribution
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of the particles. Unfortunately, a reliable experimen-
tal determination of the energy spectrum of neutrons
scattered at different angles is a very complicated
problem, as yet unsolved. One can hope, however,

for success in this direction in the nearest future.

7. LANGEVIN EQUATION FOR THE MOTION OF A
LIQUID MOLECULE

1. Derivation of the Langevin equation. Kirkwood
has proposed a theory for the kinetic processes in
simple liquids, constructed in close analogy with the
well known theory of Brownian motion. In this sec-
tion we consider the equation of motion of an individ-
ual liquid particle, following (35], This makes graph-
ically clear how the time averaging procedure as ap-
plied to reversible laws of dynamics leads to irre-
versible dissipative effects.

We isolate a certain particle in the liquid, say the
first, and write its law of motion

i _ g
=K,

L (7.1)

where K, is the total force exerted on the isolated
particle by all the remaining particles. For simplicity
we assume that there are no external forces and that
the liquid itself is in equilibrium. We represent the
force K; as the sum of its mean value and a fluctuat-
ing part

K1= 1<(K1)t>+01(t), (7.2)

where (...); denotes time averaging over an interval
of length 7, and 1(. ..) denotes statistical averaging
over the states of all the remaining particles with the
phase position of the first particle fixed:

W= e § o § {3 )

V.1 (Q°, P°| g2, p?) dQ° dPo. (1.3)

For the sake of brevity, @ and P denote the totality
of coordinates and momenta of all N—1 particles,
except the first, and the zero superscript denotes

that a variable belongs to the initial instant of time t,
for which the equation of motion (7.1) has been writ-
ten out. The zero superscript of Fy_; indicates equi-
librium distribution. The duration 7 is assumed very
small on a microscopic time scale, but covering a
large number of changes in the values of the instanta-
neous force Kj.

We interchange the sequence of integration with
respect to the time and with respect to the initial
states in (7.3), and go over to integration in the total
phase space of the system, introducing the corre-

sponding 6-functions
T

(K)o = = (s §

(K (¢ +9) P (@, Play, p)
0

% 8 (q;° —qy) 6 (p," — p$) dQ° dP° dq;° dp}°. (7.4)
q, ap,

We then change over from the phase variables at the
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initial instant of time to the phase variables at the in-
stant t+s. The Jacobian of such a transformation is
equal to unity, and from the Liouville theorem and
from the rule for the product of probabilities we have
furthermore

(°’4(Q° P g, p)FN (4}, p°) =
FV(q), i, Q P)=FN\:(

We can therefore write

M(Kp)e = vt \dsg... | K,

F3 (q1, , , Vg
¥ ((?12_0[’?_0‘;_ 8(q;" —q7) & (p;" — py) dQdP dq, dp,.

But the equilibrium function Fg is merely the Max-
wellian momentum distribution function, so that

FY (@) % Q) P9)

Q. Piq, p)FY (g, p). (7.5)

(t+5)FR-1(Q, Play, p)

(7.6)

F3 (a5, Pl) - P12 —pi"? ’
Frape = <P~ zka1 ) 1— S K, (t+s")ds
+ 0 [(Ap))?), (7.7)
where
Ap,=p,—p"= SKl(t+s’)ds (7.8)

0
An analogous expansion for the §-functions yields

, , , , @ '
S(p2—p) = 6(p1»p‘1~Apl)=é(pl—p‘i)—Ap,a—ﬂé(pl—pﬁ)
+0[(Ap,Y]
8(q;"—q) =8(q; —q} — Aqy) = 8(q, — q7) + O (Aq;).(7.9)

Substituting all this into (7.6) and recognizing that in
che case of equilibrium the mean value of the force K,
is equal to zero, we obtain after some calculations

l<(K) - ml:?T_gfg, %
x\ ... S{ \ SKl(t+s)K1(t+s’)ds’}
- i
x FR¥(Q, qul, %) dQ dP. (7.10)

We have left out small terms that vanish as 7-— 0.
The integrand contains a tensor-dyad. For a homoge-
neous liquid this tensor is proportional to the unit
tensor, and it is natural to introduce a scalar quan-
tity B equal to
11 T 0 ’ ’
B=girt ) &\ MKt + 9Ky (5 + ) ds,
0 —8

where the integrand contains the usual scalar products,
and where a simple change in the variable of integra-
tion was made relative to (7.10). The substitution of
(7.10) and (7.11) into (7.1) and (7.2) leads to an equa-
tion of motion for a single particle in the form

(7.11)

W Bk 2 a" -G, (1), (7.12)
which is accurate to terms that vanish as 7— 0, and
in which the zero superscript of p; was omitted.

If there exists a small time interval 7* such that
the forces K,(t) and K{(t+s’) are not correlated
over a time s’ > 7%, then the quantity
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0 s
S ‘(Kl(t+s)K1(t+s+s'))ds’=S1(K1(t—}—s)K1(t+s+s’))ds'
-s 0 (7.13)
does not depend on s when s > 7* (and by virtue of
the homogeneity, it is also independent of t) so that
T
the operation %f( ..)ds in (7.11) is superfluous,
0
and we have
s
b= sy S LK, (0)K, (s)) ds. (7.14)
0

For the same reason, in accord with (7.2), the ran-
dom force G;(t) is uncorrelated at the instants t = 0
and t =s > 7%, and since in accord with (7.2) we also
have 1((G1 )7y =0, Eq. (7.12) is the ordinary Langevin
equation, known from the theory of Brownian motion, (%1
and the two coincide when 8 = const. The stochastic
equation (7.12) contains the dissipative effects explic-
itly, owing to the first two terms in the right half.

2. Friction coefficient. The quantity B, defined by
(7.14) as an integral of the autocorrelation function
of the force Kj, depends generally speaking on the
momentum of the first particle, owing to the method
used for averaging (fixed values of q; and p;). From
(6.4) we readily see that 8 can depend only on pf. If
we therefore introduce the quantity

2kT 3B

pr=p—20 L, (7.15)

then (7.12) turns into the ordinary Langevin equation

P B

7 —791+G1(t)y (7.16)

but with a velocity-dependent friction coefficient g*.
The question of the difference between g* and g is
discussed in (3%, where it is shown that for con-
densed systems the dependence of the friction coeffi-
cient on the velocity is not very important.

More interesting is the question of the magnitude
and temperature dependence of 3. Direct calculation
by means of (7.14) is impossible at present, since we
do not know the exact solutions of (6.4) under the ini-
tial conditions of interest to us. An estimate of 8 in
terms of the molecular potential &(r) and the equi-
librium radial distribution function gy(r) is given in
(35 in the form

p= [lmmg AD (r)- bo(7)r2dr:| , (7.17)
where A is the Laplace operator. Thus, the tempera-
ture dependence of 8 is determined completely by the
temperature dependence of gy(r). Analogous esti-
mates were obtained also in 37381,

In view of Einstein’s relation, we have D = kT/3,
where D is the self-diffusion coefficient. If D is
known for a certain liquid, the theoretical result
(7.17) can be directly verified. Thus, for argon near
the triple point we have Deyp = 2.06 x 1075 cm?/sec,

[
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whereas the value calculated from (7.17) is Dipeor

= 2.60 x 1075 cm?%/sec, [%] which is quite satisfactory.
An experimentally obtained function gy(r) and the
Lennard-Jones potential for argon were used in the
calculations. Analogous calculations were carried

out in (%] for neopentane, which also led to results
having the same order of magnitude, but with a greater
difference between Diheor and Dexp than in the case
of argon.

In connection with the estimates of the reliability of
the theory made in the references just mentioned, the
following remark is in order. The use of Einstein’s
relations is valid only for an ideal gas or for truly
Brownian particles. In the general case it should be
replaced by the relation[3%]

p=o(~2)i

which depends essentially on the isothermal compress-
ibility of the medium. Therefore the results mentioned
above for Diheor should be recalculated, and this may
influence appreciably the comparison with Dexp-

(7.18)

8. KIRKWOOD’S THEORY OF TRANSPORT PROC-
ESSES IN SIMPLE LIQUIDS

1. Equations for the averaged correlative functions.
From the theory of Brownian motion it is known that
in principle any problem in this theory can be solved
with the aid of the stochastic equation (7.16), provided
the distribution law is known for the random force
Gy(t). A simpler method of solving problems in the
theory of Brownian motion, however, is to study the
partial differential equations for the partition func-
tions of the Brownian particle. (%1 It is desirable to
‘obtain a similar method for the theory of liquids. This
was done in [35], where the generalized Fokker-Planck
equations were used as the kinetic equations for the
liquid particles.

In accordance with the physical ideas developed in
the preceding section, the irreversible motion of liquid
particles should be described in terms of correlative
functions in phase space, averaged over microscopic-
ally small time intervals:

Fs(qli cety qs; p17 fe ps; t)

T

_ 1
——1:— o (dys -

vy g5 P - --s Py tHE)dE. (8.1)
Applymg such an averaging operation to any of the
equations in (6.4) we obtain, after certain transforma-
tions similar to those of the preceding section, a sys-
tem of kinetic equations for the functions Fg. A com-
pletely rigorous but very cumbersome derivation of
these equations is given in [35], while a simplified
derivation is given in [40], The equations obtained
are generalized Fokker-Planck equations. Thus, for
F, we have

oFy
P

9F p n aF,

aq m ap (8.2)

=i [mRrag ]}
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where X* is the sum of the external force and of the
additional force of statistical origin connected with the
non-equilibrium nature of the system. For simplicity
it was assumed in (8.2) that the mean velocity of liquid
flow u is equal to zero at the given place. Otherwise
p/m in the right half of (8.2) must be replaced by
(p/m)—-u. The friction coefficient 8 in (8.2) is de-
fined by (7.14); the terms that vanish as 7 — 0 are
again neglected.

Analogously, we obtain for f‘z

T 3 {Ehe G (x- g

(Igig?)

= 3 s [Ererg)

1€ig2)

(8.3)

and similar equations can be obtained for Fg with

s > 2. The remarks made above concerning Eq. (8.2)
are valid for these equations, too. In addition, in ac-
cordance with [35] it is assumed that in the six-di-
mensional configuration space of the particle pair the
friction-coefficient tensor breaks up into two diagonal
(and isotropic) three-dimensional tensors, so that
the scalar quantity g is the same in (8.3) as in (8.2).
The validity of such an assumption is not obvious, and
this question is discussed in [41],

An interesting feature of Eqs. (8.2) and (8.3) is that,
in contrast to the initial equations (6.4), they are no
longer coupled, and each equation contains only one
function Fg. The different functions Fg are connected
with each other only implicitly, through the friction
coefficient (more accurately, friction tensors).

2. Viscosity and heat conduction of simple liquids.
The question of determining the coefficients of viscosity
and heat conduction from the kinetic equations (8.2) and
(8.3) was considered in [4243] and a simplified variant
of the theory was developed in [4), Certain prelimi-
nary general results concerning the viscosity and heat
conduction in liquids were obtained in tel (see also [5]).
To simplify the problem, which is complicated enough
without this, it is assumed in all these papers that 8
= const and the effective external force connected with
the non-equilibrium nature of the system and contained
in X{ is neglected.

The momentum or energy transfer consists of two
parts— ‘‘kinetic,’’ connected with the motion of the par-
ticles, as in a rarefied gas, and ‘‘potential,’’ connected
with the interaction between particles and of principal
interest in the case of a liquid. The most important
part of the problem is to find the nonequilibrium binary
distribution function F,. Assuming the causes tending
to disturb the system equilibrium to be small, we can
put

Fy=g,(r){1+%} (8.4)

and use the smallness of the nonequilibrium correction
x. For example, in discussing the viscosity of a liquid
this leads to the following structure of the function %]
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X=2;2T [%(r%‘&r)—% divqu] ¢2(r)—{,—6—]%divqu-1po(r), |
8.5

where r = [r|, r —vector distance between the pa(r—
ticle pair, @ —vector of the center of mass of the par-
ticle pair, 4 =u(g) —mean velocity at the point ¢, and
Po(r) and P,(r) —two auxiliary functions, which must
be determined from equations obtained by substituting
(8.5) in (8.3). These functions were actually deter-’
mined and tabulated in [43] for liquid argon, by numeri-
cal solution of the derived equations. Calculation of
the viscous-stress tensor with the aid of (8.4) and (8.5)
leads then to the following expressions for the shear
and bulk viscosity coefficients (the ‘‘kinetic’’ contri-
butions are also taken into account)

o

n =’%§+ 15:5-1" g @ (r) go(r) b, (r) ridr, (8.6)
E= 00 g VO (Do (o) dr, (8.T)

0
where &’ (r) is the intermolecular potential.

Numerical calculation of the coefficient of shear
viscosity for liquid argon using Eq. (8.6) yielded a
result highly dependent on the friction coefficient
[3.[“2] Two different estimates for B gave for 5 cal-
culated values 1.27 x 1073 poise and 0.73 X 1073 poise,
respectively, whereas the experimental value of 7
for argon is 2.39 x 1073 poise. No calculations were
made for the coefficient of bulk viscosity. The tem-
perature dependence of n and ¢ is essentially con-
tained in gy(r), and consequently the second term in
(8.6) and (8.7) has principally an exponential temper-
ature dependence, in agreement with the experimental
data.

It should be noted that the question of the boundary
conditions at r = 0 for the auxiliary functions ¢, and
P, is not fully clear. The papers cited require that
these functions be finite when r = 0. This question
was discussed in [41:45,46] and the possibility of other
boundary conditions was demonstrated.

The coefficient of heat conduction in a simple liquid
was calculated in (%), A very cumbersome computa-
tion has yielded
2T
2uf

kT2 ﬂ

6B\ AT Jp

g (cDr(r)>’ go(r) (\r% — 1)6——1n;;‘1 ) ridr.
0

Numerical calculation for liquid argon gives k = 4.1

x 10~* cal/g-sec-deg, which is in satisfactory agree-
ment with the experimental value 2.9 x 1074 cal/g-sec-
deg. '

3. General remarks on Kirkwood’s theory. Kirk-
wood’s theory is at present the only one that permits
the kinetic coefficients for a liquid to be expressed in
terms of intermolecular forces and the partition func-
tion of the liquid particles. In addition to the problems
mentioned above, this theory was also used to calcu-

K ==

kT

i (8.8)

+
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late the optical anisotropy occurring in a flowing
liguid, [46] and the results were again in satisfactory
agreement with experiment. Much work was done on
a generalization of Kirkwood’s theory to include multi-
component systems and on applications of this theory
to irreversible processes in these systems.
Nevertheless, Kirkwood’s theory remains only ap-
proximate because of the very method it employs,
since the model of Brownian motion it uses cannot be
fully representative of the motion of a molecule in a
liquid. This is particularly manifest in the fact that
Eq. (8.2) does not yield the correct expression (7.18),
but of necessity leads to Einstein’s relation in the form
D = kT/B.t%] One might therefore expect the theory
developed to be more correct for a rarefied gas, but
this is not the case. In the limit of vanishing interac-~
tion, the equations for the viscosity and heat conduc-
tion coefficients do not coincide with the known ex-
pressions from kinetic theory of gases. (5] Further
development of the theory of kinetic processes in
liquids still remains a very important problem.
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