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1. INTRODUCTION

J.HE p r e s e n t s tage in the development of the theory of
the liquid s ta te originated for the m o s t p a r t in the nu-
m e r o u s r e s e a r c h e s of Jacob Il ' ich Frenke l , which he
s u m m a r i z e d in his c l a s s i c a l book "Kinet ic Theory of
L i q u i d s . " M He was one of the f i rs t to point out that
the approximately equal p a r t i c l e densi ty in solid and
fused c r y s t a l s , and the consequent approximate equal-
ity of t h e i r intevmolecular in teract ion intensity, is
bound to make the s t r u c t u r e and the c h a r a c t e r of t h e r -
m a l motion of the a toms and molecules n e a r l y the s a m e
in both p h a s e s . This gives r i s e to the known p a r a l l e l -
i s m between the physical p r o p e r t i e s of solids and
liquids, and c r e a t e s a r e a l b a s i s for the theory of the
p r o c e s s e s that r e l a t e both p h a s e s . The views devel-
oped by Frenke l proved equally fruitful for both the
theory of c r y s t a l s and the theory of l iquids. These
views presupposed the i n c r e a s i n g d i s o r d e r in r e a l
c r y s t a l s with r i s i n g t e m p e r a t u r e , and the p r e s e n c e
of e l e m e n t s of o r d e r in l iquids. The notion of defects
(in the broad s e n s e ) in c r y s t a l s and of t h e i r ro le in
t h e r m o d y n a m i c , e l e c t r i c , kinetic, and optical p r o p e r -
t ies of r e a l sol ids was a m o s t important s tep in the
development of so l id-s ta te theory. On the other hand,
the ideas of s h o r t - r a n g e o r d e r and s t rong interact ion
between the p a r t i c l e s of a liquid, and the i r specific in-
fluence on i ts physical p r o p e r t i e s , has given r i s e to a
new b r a n c h of phys ics , the s ta t i s t ica l theory of l iquids.

We shal l a t tempt to review briefly the p r e s e n t
s ta tus of s t a t i s t i c a l theory of s imple l iquids, confin-
ing ourse lves to non-quantum theory. Except for liquid
hel ium and to s o m e extent liquid neon, al l monatomic
liquids can be sat i s factor i ly descr ibed by c la s s ica l
m e t h o d s .

The lack of a s imple and readi ly visual ized model
for l iquids, one capable of serv ing a s the " z e r o t h a p -
p r o x i m a t i o n " in the building of a theory of l iquids (in
c o n t r a s t with the per fect-gas and i d e a l - c r y s t a l models
in the theory of gases and solids) m a k e s the develop-
ment of the theory ex t remely difficult. The m a t h e m a t -
ical difficulties encountered on the path towards the
development of the theory of the liquid s ta te of m a t t e r
a r e so great , that only a s ta t i s t ica l theory of s imple
monatomic l iquids is feasible a t p r e s e n t . Liquefied
i n e r t g a s e s and fused meta l s a r e r e a l examples of s i m -
ple l iquids. We can a l so include, with some degree of
approximation, cer ta in monatomic liquids with m o l e -
cules and force fields that have some m e a s u r e of s p e c -
ific s y m m e t r y .

Many p r o b l e m s in the s ta t i s t ica l theory of l iquids
have been recent ly d i scussed in detai l in reviews and
books. C2"6^ We have there fore at tempted to pay m o r e
attention h e r e to questions that a r e re lat ive ly new o r
insufficiently explained in the review l i t e r a t u r e . Many
p r o b l e m s in the theory of liquids w e r e not touched
upon at al l .

2. EQUILIBRIUM CORRELATIVE FUNCTIONS

1. Definition of c o r r e l a t i v e functions. The m a t h e -
mat ica l tool of m o d e r n theory of l iquids and dense
gases i s that of molecu lar dis tr ibut ion functions o r
c o r r e l a t i v e functions, C2»3»7^ the m a i n p r o p e r t i e s of
which will be l i s ted briefly. For an equil ibrium s y s -
tem of N p a r t i c l e s contained in a volume V and hav-
ing a t e m p e r a t u r e T, the coordinate p a r t of the Gibbs
dis t r ibut ion function is equal to

UN (qi,
kT Г (2.1)

where QN —configuration integral that normalizes DJJ
to unity and UN —total interaction energy of the sys-
tem particles. As already mentioned, we assume that
the position of each particle is completely character-
ized by the coordinates of its center of mass. The cor-
relative functions F s ( q 1 , . . . , qN) can be defined as

Fs(qv . . . . qs) =

so that the expressions
(2.2)

dW(qv

s=\, 2,
(2.3)

define the probabi l i t ies of definite configurations of
groups compr i s ing s p a r t i c l e s , r e g a r d l e s s of the p o -
si t ions of the remaining N — s p a r t i c l e s of the s y s t e m .
This leads to the normal izat ion conditions

^r[Fs+1(qv . . . , q . + 1 ) d q m = ^ . (q 1 . •••- 4s)- (2-5)
v

In addition, the functions F s a r e , by definition, s y m -
m e t r i c a l with r e s p e c t to permutat ion of the coordinate
t r i p l e t s of the different p a r t i c l e s , and should satisfy
the conditions of weakening c o r r e l a t i o n

(2.6)

as the d i s tance between p a r t i c l e s increases. '- '- '

239



240 I . Z. F I S H E R

From (2.1) and (2.2) we can obtain an integro-dif-
ferential equation connecting various functions F s

with different indices. If we assume that the total in*
teraction energy UN is the sum of paired interactions

then we obtain as equations for F s

(2.7)

^i^Fstldqs^ = O, (2.8)

w h e r e v = V/N, the l i m i t be ing taken a s N and V b e -

c o m e inf in ite. U s d e n o t e s the i n t e r a c t i o n e n e r g y of

the c h o s e n group of s p a r t i c l e s

^ = 1 < г 2 < 5 Ф ; , - (2.9)

In the homogeneous case, far from the walls bound-
ing the system, all positions of a single particle are
equally likely. For a pair of particles, likewise, only
the relative distance is significant, and not the gen-
eral position or orientation. In this case, thus,

F,(a) = l. (2.Ю)

q. q') = *(|q-q'D- (2.11)

Similar simplifications hold also for F s with s > 2
(but s « N). We can also introduce the conditional
correlative functions F s ( q 1 ( . . . q s | q s + 1 q s + p ) ,
which would define the conditional probabilities of the
positions of a group of s particles for fixed positions
of a different group of p particles, independently of
the positions of the remaining N — s — p particles of
the system. The rule for the product of probabilities
then yields
P /„ _ ,_ , FS+P(4I qs. qs+i qs*p)

(2.12)

For example, in the homogeneous case with s = p = 1
we obtain therefore

•fi(q|q') = ^2(q> q') = g(|q —q'|)> (2.13)

so that the function g( r ) of (2.11) is simultaneously
also the conditional simple (unitary) correlative func-
tion and is therefore called the radial distribution
function of the system particles. The probability that
the relative distance between an arbitrary pair of par-
ticles will increase from r to r + d r is

dw (r) = g (r) 4яг2 dr (2.14)

The d e v i a t i o n of the funct ion g ( r ) f r o m unity i s the

s i m p l e s t and m o s t i m p o r t a n t c h a r a c t e r i s t i c of t h e

o r d e r e x i s t i n g in a l iquid.

2. M e a n v a l u e s . Knowledge of the funct ions F s e n -

a b l e s us t o d e t e r m i n e m e a n v a l u e s M s of the type

Ms= qJs). (2.15)

s-л
x Fs(qv q i . . . dqs. (2.16)

We a r e i n t e r e s t e d p r i n c i p a l l y in quant i t i es of the add i-

t i v e type, Mj, and of the b inary type, M 2 , wi th f ( q , q ' )

= f ( | q - q ' | ) i n the h o m o g e n e o u s c a s e . We then obtain

f r o m (2.10), (2.11), and (2.16)

(2.17)

(2.18)

w h e r e i t i s a s s u m e d that N and V a r e v e r y l a r g e .

The s i m p l e s t e x a m p l e of a quantity of type M 2 i s

the i n t e r a c t i o n e n e r g y U J J of the s y s t e m p a r t i c l e s a s

g i v e n by (2.7). A long wi th the k inet ic contr ibut ion w e

obtain f r o m (2.18) for the tota l e n e r g y of t h e s y s t e m

(2.19)

In s i m i l a r fashion, but w i th a s o m e w h a t m o r e c o m p l i -

cated proof, w e obta in a l s o an equat ion for the p r e s -

s u r e in the s y s t e m ^

(2.20)

w h e r e the p r i m e d e n o t e s d i f ferent iat ion. The l a s t

equat ion i s a p a r t i c u l a r c a s e of a m o r e c o m p l i c a t e d

e x p r e s s i o n for t h e e l a s t i c t e n s i o n s in the l iquid in

t e r m s of the function F 2 . U 4 - ' A s i m p l e e x p r e s s i o n

c a n b e obta ined in t e r m s of g( r ) for the quadrat ic

fluctuations of the number of p a r t i c l e s in a c e r t a i n

v o l u m e G i n s i d e the s y s t e m

NG (g (r) - (2.21)

B y s i m p l e c a l c u l a t i o n w e obta in f r o m (2.1) and (2.2) ^

In v i e w of the known r e l a t i o n b e t w e e n the d e n s i t y fluc-

tuat ions and the c o m p r e s s i b i l i t y , w e obta in fur ther-

m o r e

< 2 ' 2 2 >

Many o t h e r t h e r m o d y n a m i c and m e c h a n i c a l c h a r a c -

t e r i s t i c s of a l iquid o r a d e n s e g a s c a n b e e x p r e s s e d

in t e r m s of the funct ions Fj and F 2 . Thus, for m o s t

l iqu ids of i n t e r e s t in our theory, i t i s su f f ic ient to

know only the two l o w e s t - o r d e r c o r r e l a t i v e funct ions

F t and F 2 .

3. S c a t t e r i n g of l ight and x r a y s by l i q u i d s . The

c o r r e l a t i o n s e x i s t i n g b e t w e e n the p a r t i c l e p o s i t i o n s

in a l iquid d e t e r m i n e the c h a r a c t e r of the s c a t t e r i n g

of e l e c t r o m a g n e t i c w a v e s by an e n t i r e a g g r e g a t e of

p a r t i c l e s , and t h i s c a n a l s o b e t r a n s l a t e d into the l a n -

g u a g e of the rad ia l d i s t r i b u t i o n function. F a m i l i a r c a l -

c u l a t i o n s CJ>3>43 y i e l d for the i n t e n s i t y of the s c a t t e r e d

w a v e s :
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where

4я

(2.23)

(2.24)

a n d I o i s t h e i n t e n s i t y of s c a t t e r i n g b y a s y s t e m of i n -

d e p e n d e n t p a r t i c l e s . In (2 .24) , X i s t h e w a v e l e n g t h a n d

^ t h e s c a t t e r i n g a n g l e .

F o r w a v e s i n t h e o p t i c a l r e g i o n , t h e l e n g t h 1/s ( e x -

c e p t f o r v e r y s m a l l a n g l e s &) i s m u c h l a r g e r t h a n t h e

" c o r r e l a t i o n r a d i u s , " a t w h i c h g ( r ) d i f f e r s f r o m u n i t y .

C o n s e q u e n t l y t h e f u n c t i o n [ s i n ( s r ) ] / s r c a n b e r e -

p l a c e d b y i t s v a l u e f o r r = 0 ( i . e . , b y u n i t y ) , a n d w e

o b t a i n

(2.25)

T h i s e x p r e s s i o n i s i n d e p e n d e n t of t h e s c a t t e r i n g a n g l e

a n d w e o b t a i n , i n c o n n e c t i o n w i t h (2.21) a n d (2.22), t h e

s a m e r e s u l t a s i n t h e u s u a l t h e r m o d y n a m i c t h e o r y of

s c a t t e r i n g of l i g h t b y d e n s i t y fluctuations.

T h e s i t u a t i o n i s d i f f e r e n t i n t h e c a s e of x r a y s ,

w h e r e t h e l e n g t h 1/s i s c o m m e n s u r a t e w i t h t h e i n t e r -

a t o m i c d i s t a n c e s i n t h e l i q u i d , s o t h a t f u r t h e r s i m p l i f i -

c a t i o n of (2.23) i s i m p o s s i b l e . If w e i n t r o d u c e t h e r e l -

a t i v e s c a t t e r i n g i n t e n s i t y i ( s ) = I ( s ) / I 0 , w e c a n w r i t e

(2.26)(i (,S) - 1) s = i 5 - <( (g (r) - 1) r sin (sr) dr.

H e r e t h e r i g h t h a l f c a n b e r e g a r d e d a s a s i n e - t r a n s -

f o r m a t i o n of t h e F o u r i e r f u n c t i o n [ ( 4 7 r / v ) ( g ( r ) - l j ] r .

T h e i n v e r s e t r a n s f o r m a t i o n y i e l d s

(r) - 1) г = ) - 1) s sin ( « ) ds. (2.27)

C o n s e q u e n t l y , if w e d e t e r m i n e t h e f u n c t i o n i ( s ) e x -

p e r i m e n t a l l y f o r s o m e l i q u i d , w e c a n c a l c u l a t e g ( r )

f o r t h i s l i q u i d .

3 . S T R U C T U R E OF S I M P L E LIQUIDS

F o r m a n y m o n a t o m i c l i q u i d s , x - r a y d i f f r a c t i o n d a t a

i n d e e d y i e l d e d t h e r a d i a l d i s t r i b u t i o n f u n c t i o n s g ( r ) ,

a n d i n s o m e c a s e s t h e t e m p e r a t u r e d e p e n d e n c e of g ( r )

c a n b e e s t a b l i s h e d o v e r a w i d e r a n g e of t e m p e r a t u r e s

( s e e t h e r e v i e w s C M ] ) . A t y p i c a l g ( r ) c u r v e i s s h o w n

s c h e m a t i c a l l y i n t h e f i g u r e . It f o l l o w s f r o m t h e s e d a t a

t h a t a s h o r t - r a n g e d e n s i t y ( r a d i a l ) o r d e r e x i s t s i n

s i m p l e l i q u i d s w i t h i n a d i s t a n c e of s e v e r a l a t o m i c d i -

m e n s i o n s , w i t h p r e f e r r e d s t r a t i f i e d d i s t r i b u t i o n of t h e

n e i g h b o r s of e a c h p a r t i c l e . T h e i m p o s s i b i l i t y of r e -

s o l v i n g t h e p e a k s of t h e f u n c t i o n g ( r ) i s d i r e c t l y c o n -

n e c t e d w i t h t h e d i s p l a c e m e n t s of t h e p a r t i c l e s f r o m

c e r t a i n l a y e r s i n t h e c l o s e s t v i c i n i t y of a c e r t a i n p a r -

t i c l e t o o t h e r l a y e r s . At d i s t a n c e s e x c e e d i n g s e v e r a l

a t o m i c d i m e n s i o n s , g ( r ) = 1, a n d t h e r e l a t i v e d i s t r i -

b u t i o n of t h e p a r t i c l e s i s c o m p l e t e l y d i s o r d e r e d . Wi th

i n c r e a s i n g t e m p e r a t u r e o r w i t h d e c r e a s i n g d e n s i t y of

t h e l i q u i d , t h e p i c t u r e s h o w n i n t h e f i g u r e b e c o m e s

m o r e d i f fuse , t h e p e a k s b e c o m e l e s s p r o n o u n c e d , a n d

t h i s c o r r e s p o n d s t o a d e c r e a s e i n t h e d e g r e e of s h o r t -

r a n g e o r d e r . H o w e v e r , t r a c e s of o r d e r of t h e s a m e

t y p e r e m a i n a l s o i n t h e g a s e o u s s t a t e of m a t t e r ( e x -

c e p t f o r t h e c a s e of i n f i n i t e d i l u t i o n ) .

It w a s found t h a t n e a r t h e m e l t i n g t e m p e r a t u r e t h e

d i s t a n c e s t o t h e f i r s t p e a k of g ( r ) , a n d s o m e t i m e s

a l s o t o t h e s e c o n d p e a k , v e r y n e a r l y c o r r e s p o n d i n

m a n y c a s e s t o t h e d i s t a n c e s b e t w e e n t h e n e a r e s t s i t e s

( o r c o r r e s p o n d i n g l y t o t h e n e x t - n e a r e s t s i t e s ) i n c r y s -

t a l l a t t i c e s of t h e s a m e s u b s t a n c e s b e f o r e t h e m e l t i n g .

W e c a n f u r t h e r i n t r o d u c e t h e q u a n t i t i e s

4д
v

g(r)r*dr, (3.1)

where г 1 т ^ п —abscissa of the first minimum on the
g(r) curve, equal to the average number of nearest
neighbors of a certain particle in the corresponding
liquid ("first coordination number" of the liquid). We
can analogously define some of the next higher coordi-
nation numbers z2, z 3 , . . . The numbers zj, and some-
times also z2, or z2 and z3, were also found in many
cases to be close to (but somewhat smaller than) the
coordination numbers in the corresponding crystals.'-8"10-'

These properties are manifestations of the "quasi-
crystall ine" short-range order in simple liquids. Of
course, these properties still do not indicate in any
way the presence, even in small volumes, of an ap-
proximate crystalline order in the sense of structural-
anisotropy effects or translational periodicity. The
absence of such quasi-crystallinity, at least in simple
liquids with non-directional and non-saturating inter-
particle forces, actually follows from estimates of the
rms fluctuations of the coordination numbers z^.'-3'11-'
The coordination numbers in a liquid, unlike in a crys-
tal, are not constants characterizing the type of crystal
lattice, but merely mean values of the number of near-
est neighbors, and should be subject to thermal fluctu-
ations. If H is a certain region that is immovably
connected with some particle at the point q0, then the
quadratic fluctuation of the number of particles in this
region is

, q'|q0)

-*"i(q

нн
K'i(4'\4o)}dqdq'. (3.2)

gfr)
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With proper choice of the region H, we can obtain
from this estimates of the fluctuations of the coordi-
nation number zt, z 2 , . . . In this case the function
Fi(q|qo) = g ( | q - q j ) can be taken directly from
x-ray diffraction data, and the function F 2 (q, q' | q 0)
= F 3 (q, q', q 0) can be approximately expressed in
terms of combinations of g( r ) with the aid of the
"superposition approximation" (see below); it can
further be shown that this leads only to a reduction
in the estimate for ( A N J J ) 2 . Such calculations were
carried out for a large number of monatomic liquids
and it turned out that in almost all cases z t fluctu-
ates by about 20% and more, while z2 fluctuates by
35—40% and more. ^ ^ So high a level of coordination-
number fluctuation is utterly incompatible with the
notion of approximate crystalline order of liquid par-
ticles in a small volume, and the short-range order
in simple liquids must be understood only in the den-
sity sense.

4. SUPERPOSITION APPROXIMATION

1. Integral equation for the radial distribution func-
tion. The fundamental equations (2.8) interrelate the
infinite totality of correlative functions F s , s = 1,2,
. . . , which cannot be solved in the case of a liquid.
But we have seen that it would be sufficient to know
only the functions F t and F 2 for most problems, and
only the function g(r ) in the homogeneous case. It
would therefore be of importance to the theory of
liquids to obtain a closed equation for g ( r ) . The sim-
plest approximate method of obtaining such an equation
involves terminating the chain of equations (2.8) at the
equation with s = 2 by introducing Kirkwood's "super-
position approximation"

FA* q', q") = g ( | q - q ' | ) g ( | q - q * | ) g ( | q ' - q ' | ) (4.1)

(it is assumed that Ft = 1). With the aid of the condi-
tional correlative functions this can also be written in
the form

(q I q'. q") = ^i (4.2)

from which it is clear that the approximation (4.1)
does not take into account the correlation in the in-
fluences that the particles at the points q' and q"
have on the probability of the position of the third
particle at the point q. Therefore the superposition
approximation can reflect only very crudely the actual
correlations between the particles in the liquid. None-
theless, the construction of a theory of liquids in such
an approximation is of certain interest, and this prob-
lem has been the subject of many investigations. We
note that the approximation (4.1) turns out to be suffi-
ciently accurate in the case of a gas that is not too
dense, and also in a dense gas or liquid with large
distances between particles, as is clear from the r e -
mark made in connection with (4.2).

The substitution of (4.1) in (2.8) with s = 2 leads
after some transformations to a closed nonlinear in-
tegral equation for the function g ( r ) , namely t'-'

2я
rv j g (*) t<u}(g(e)- l )e<*e

(4.3)

where

(4.4)

Thus, the kernel of the integral equation is itself de-
pendent on the unknown function. Equation (4.3), with
specified thermodynamic parameters v and T, deter-
mines the radial distribution function g (r ; v, T) from
the specified intermolecular potential Ф(г), and
thereby solves in principle (in the approximation
considered) the basic problem in the theory of simple
liquids. Equation (4.3) with different notation was de-
rived also in £12^.

The actual solution of (4.3) for a specified function
Ф(г) can be obtained only by numerical means. De-
tailed solutions were obtained by Kirkwood and his
co-workers for the case of a model of solid noninter-
acting spheres E13^ and for a model of solid spheres
with Lennard-Jones interaction: ^

Ф (r) = + 00 for r < a,

for r>a.
(4.5)

In this case the parameters a and e were chosen to
make the potential Ф ( r ) correspond most closely to
the properties of the actual potential in gaseous argon
(this can be done by comparing the calculated and ex-
perimental values of the Joule-Thomson coefficient and
other properties).

The results of calculations for a " r e a l i s t i c " poten-
tial (4.5) and their discussions can be found in ^ u^ and
other papers, C2>3.6.15H and will not be discussed in de-
tail here. We note merely that the function g(r, v, T),
obtained for large intervals of v and T, together with
the thermodynamic properties of the studied model
calculated from this function, agrees qualitatively with
the known properties of real simple liquids, including
such complicated phenomena as the liquid—gas phase
transition and the critical phenomena. The quantitative
results, however, are not quite so satisfactory; for ex-
ample, the calculated pressure and entropy in the liquid
state were found to be noticeably lower than their actual
values in liquid argon.

2. Behavior of g ( r ) at large distances and stability
limit of the homogeneous phase. At large values of r,
the function g ( r ) deviates little from unity, and if in
addition the potential Ф(г) vanishes with sufficient
speed, then (4.3) can be linearized and investigated in
general.'-3'16-' Analysis shows that the asymptotic form
of g ( r ) for large r is
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+ flB), (4.6)

where a n and /?n a r e d e t e r m i n e d by the p r o p e r t i e s of
Ф ( г ) and g ( r ) for smal l r, while A n and 6 n r e m a i n
indeterminate in the l i n e a r approximation. It is obvi-
ous that, in accordance with (4.6), the genera l c h a r a c -
t e r of g ( r ) r e p r e s e n t s c o r r e c t l y the exper imental ly
known p r o p e r t i e s of g ( r ) . It is poss ib le to show
further that the solutions of (4.3) r e t a i n the physical
meaning of a binary dis tr ibut ion function of a c e r t a i n
stable sys tem only if al l | a n | *• 0. In the opposite
c a s e , if at l e a s t one an vanishes , the functions g ( r )
descr ibed by (4.3) correspond to absolutely unstable,
i .e., nonexistent, s tates .C 1 6 ^

The foregoing proper ty can be used to define the
stabil i ty l imi t s of a homogeneous phase (gas or l iquid)
as the l ines on the v - T plane, where the s m a l l e s t of
the a n vani shes . This leads to the following analyt-
ical conditions for the l imit of absolute stabil i ty of a
homogeneous phase M

- = 1 , (4.7)

(4.8)

These equations in p a r a m e t r i c form ( in t e r m s of the
p a r a m e t e r /3) d e t e r m i n e the l ine v = v ( T ) of the s t a -
bility l imit of the sys tem. With the aid of (2.20) we
can then obtain an analogous l ine on the p - T plane.
Equation (4.7) was f i r s t der ived in W^.

The foregoing method can be used, in p a r t i c u l a r ,
to d e t e r m i n e the mel t ing-crys ta l l i za t ion l ine of a
s imple subs tance . If the repuls ion forces between
molecules a r e approximated by a power law, this
leads to the following approximate expres s ion for the
melt ing curve ^18-'

= -А + ВТ"1, (4.9)

w h e r e A, B, and m can be expres sed in t e r m s of the
p a r a m e t e r s of i n t e r m o l e c u l a r interact ion. The law
(4.9) a g r e e s well with the exper imenta l data for s imple
s u b s t a n c e s . ^19-'

5. MORE ACCURATE APPROXIMATIONS IN THE
THEORY OF LIQUIDS

t h a n t h e s u p e r p o s i t i o n a p p r o x i m a t i o n , l e d t o e x c e e d -

i n g l y c o m p l i c a t e d a n d c u m b e r s o m e e q u a t i o n s , w h i c h

w e r e n o t i n v e s t i g a t e d f u r t h e r . A n e w f o r m a l i s m u s i n g

s p e c i a l c o r r e l a t i v e f u n c t i o n s r e l a t i n g o n l y t h e p a r t i c l e s

t h a t i n t e r a c t d i r e c t l y w i t h a c h o s e n p a r t i c l e , w a s i n t r o -

d u c e d i n '- 2 1 -'. F o r s t r i c t l y s h o r t - r a n g e f o r c e s t h i s

l e a d s t o a s y s t e m o f t w e l v e e q u a t i o n s w i t h t w e l v e u n -

k n o w n f u n c t i o n s ( i n a c c o r d w i t h t h e l a r g e s t n u m b e r o f

g e o m e t r i c a l l y p o s s i b l e n e a r e s t n e i g h b o r s ) .

S i n c e t h e s u p e r p o s i t i o n a p p r o x i m a t i o n i s e x a c t w h e n

t h e p a r t i c l e d e n s i t y i n t h e s y s t e m i s l o w , i t i s n a t u r a l

t o a t t e m p t t o m a k e t h i s a p p r o x i m a t i o n m o r e s u i t a b l e

f o r l a r g e r d e n s i t i e s b y i n t r o d u c i n g i n t o t h e r i g h t h a l f

o f ( 4 . 1 ) a c o r r e c t i o n f a c t o r

( 5 . 1 )

A f u n c t i o n cp i n t h e f o r m o f a c e r t a i n i n f i n i t e s e r i e s

i n p o w e r s o f t h e d e n s i t y , c o n s t r u c t e d w i t h t h e a i d o f

t h e g r o u p i n t e g r a l s o f t h e t h e o r y o f r e a l g a s e s , w a s

f o r m a l l y o b t a i n e d i n E 2 2 ^. T h i s s e r i e s c a n b e u s e d i n

p r a c t i c e o n l y f o r a g a s .

In E23H t h e r e w a s i n t r o d u c e d a ^ y p e r s u p e r p o s i t i o n "

a p p r o x i m a t i o n

Ft (q, q', q", q")

_ ^з(q- q'. ч")-'?з(ч. q'. ч'")^ъ(с\, q", <\"')F3(t\\ q". q'")
- F2 (q, q') F2 (q, q") F.2 (q, q'") /7(q', q") F2 (q\ q'") Ft (q\ q"') '

(5.2)

b y w h i c h t h e i n f i n i t e c h a i n (2.8) i s t e r m i n a t e d o n e l i n k

f a r t h e r t h a n i n (4 .1) . In c o n j u n c t i o n w i t h (5.1), t h i s

l e a d s t o a s y s t e m of t w o e q u a t i o n s f o r cp a n d g ( r ) .

It i s s h o w n t h a t i n t h e c a s e of a g a s t h e s e e q u a t i o n s

y i e l d c o r r e c t v a l u e s f o r t h e f i r s t v i r i a l c o e f f i c i e n t s .

T h e f i r s t t e r m s of t h e e x p a n s i o n of cp i n p o w e r s of

t h e d e n s i t y a r e

<p(q. q' . q")

= i + M / (I q - q'" I) / (I q ' - q'" I) / (I q" - q'" I) rfq" + • • •,

(5.3)
w h e r e _ q>(lqi)

/ ( | q | ) = e « ' - 1 , (5.4)

w h i c h c o r r e s p o n d s t o a s i m i l a r a p p r o x i m a t i o n g i v e n

i n ^ 2 2 ^ .

A p p r o x i m a t e e x p r e s s i o n s f o r g ( r ) , w h i c h a r e m o r e

a c c u r a t e f o r a g a s t h a n (4.3), c a n b e o b t a i n e d b y a p a r -

t i a l s u m m a t i o n of t h e d i a g r a m s of t h e t h e o r y of r e a l

g a s e s . С 2 4 " 2 6 ! F o r example, the equation derived in '-36-'
can be wr i t ten in the form

In f(t))]tdtj (g

1. Review of different t h e o r i e s . Many a t tempts w e r e kT Ing (r) -{ Ф(/•) + ™ W ^ [<D(t) + kT(l —;
made recent ly to obtain for the l o w e r - o r d e r c o r r e l a t i v e ° lr-oi
functions closed equations which a r e m o r e a c c u r a t e
than the superposi t ion approximation. Some of these
could apparent ly s e r v e in fact as a b a s i s for the con-
st ruct ion of a m o r e exact theory of s imple l iquids, but
as far as we know, t h e r e is s t i l l no published paper, with
detai led calculat ions and with d i scuss ions , employing
this theory. We l i s t s o m e of the new t h e o r i e s .

A genera l method of construct ing approximations
to the exact equations in (2.8) was investigated in ̂ 2°И.
These approximat ions, which a r e appreciably b e t t e r

•(0

( 5 . 5 )

a n d t a k e s a c c o u n t o f m o r e s i m p l e d i a g r a m s t h a n i n t h e

c a s e o f ( 4 . 3 ) . E q u a t i o n s s i m i l a r i n f o r m a r e g i v e n

i n C24.25] _ A l t h o u g h i n p r i n c i p l e a l l t h e s e e q u a t i o n s

a r e e x a c t o n l y f o r a g a s t h a t i s n o t t o o d e n s e , o n e c a n

h o p e t h a t i n t h e c a s e o f a l i q u i d t h e y l e a d t o b e t t e r a p -

p r o x i m a t e r e s u l t s t h a n i n t h e s u p e r p o s i t i o n a p p r o x i m a -

t i o n .
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2. Variational theories. The free energy of a large
but finite system of particles can be expressed in
terms of the highest order correlative function F N
in the form

qN, (5.6)

w h e r e A J J — f r e e e n e r g y o f a p e r f e c t g a s . R e g a r d i n g

A N a s a f u n c t i o n a l o f F N , r e q u i r i n g t h a t A N b e m i n i -

m a l w i t h r e s p e c t t o v a r i a t i o n s o f F N , a n d i m p o s i n g

t h e n o r m a l i z a t i o n c o n d i t i o n o n F N w e c a n r e a d i l y o b -

t a i n a s o l u t i o n f o r F N i n t h e f o r m o f a G i b b s d i s t r i b u -

t i o n ( 2 . 1 ) , n a m e l y F N = V ^ D N -

A v a r i a t i o n a l t h e o r y f o r t h e d e t e r m i n a t i o n o f c o r -

r e l a t i v e f u n c t i o n s , w h i c h r e d u c e s t o a n a p p r o x i m a t e

r e p r e s e n t a t i o n o f F N i n t e r m s o f a p r o d u c t o f a c e r -

t a i n n u m b e r o f a u x i l i a r y f u n c t i o n s o f s i m p l e r s t r u c t u r e

a n d s u b s e q u e n t d e t e r m i n a t i o n o f t h e ' f a e s t " s u c h f u n c -

t i o n s b y s o l v i n g t h e c o r r e s p o n d i n g v a r i a t i o n a l p r o b l e m ,

w a s p r o p o s e d i n '-2 7-'. D e p e n d i n g o n t h e n u m b e r a n d

c h a r a c t e r o f t h e f a c t o r s i n w h i c h F N i s e x p a n d e d , a p -

p r o x i m a t i o n s o f d i f f e r e n t d e g r e e s o f a c c u r a c y c a n b e

o b t a i n e d . A c t u a l l y , o n l y a f e w v e r y r o u g h a p p r o x i m a -

t i o n s w e r e c a l c u l a t e d i n t h a t p a p e r . A n a n a l o g o u s t h e -

o r y , b a s e d o n a g r a n d c a n o n i c a l d i s t r i b u t i o n a n d u s i n g

t h e t h e r m o d y n a m i c p o t e n t i a l O N * n p l a c e o f t h e f r e e

e n e r g y A N , w a s d e v e l o p e d i n [ 2 8 ] .

It i s p o i n t e d o u t e v e n i n ^ 2 7 J t h a t a d i f f i c u l t y a r i s e s

i n v a r i a t i o n a l t h e o r y o n g o i n g o v e r t o a s y s t e m t h a t

e x p a n d s w i t h o u t l i m i t ( a t c o n s t a n t d e n s i t y ) , i n v i e w

o f t h e a p p e a r a n c e o f i m p r o p e r i n t e g r a l s i n t h e f r e e

e n e r g y , w i t h v a l u e s t h a t d e p e n d o n t h e m e t h o d u s e d

t o g o t o t h e l i m i t a s V, N —• ° ° . A m o r e r i g o r o u s

a n a l y s i s s h o w s C29>30H t h a t t h e i n i t i a l v e r s i o n s o f t h e

v a r i a t i o n a l t h e o r y a r e i n c o r r e c t i n m a n y o t h e r r e -

s p e c t s ; f o r e x a m p l e , a v e r y c o m p l i c a t e d p r o b l e m

( a n d o n e i n c o r r e c t l y s o l v e d i n t 2 7 » 2 8 3 ) i s t h a t o f a c -

c o u n t i n g i n t h e v a r i a t i o n o f t h e f r e e e n e r g y f o r t h e

r e l a t i o n s b e t w e e n t h e a u x i l i a r y f u n c t i o n s e m p l o y e d ,

r e l a t i o n s n e e d e d t o s a t i s f y t h e n o r m a l i z a t i o n c o n d i -

t i o n s f o r ( 2 . 5 ) o r f o r t h e i r l i m i t i n g e x p r e s s i o n s a s

V — » .

A c o r r e c t v a r i a t i o n a l t h e o r y l e a d i n g t o i n t e g r a l

e q u a t i o n s f o r t h e c o r r e l a t i o n f u n c t i o n s w a s d e v e l o p e d

in С29,зоз_ F o r a i a r g e D U t finite system of particles,
the author introduces a system of "correlat ion" func-
tion ip3, cpit... and a system of "pseudocorrelation"
functions i/)2> Фз> • • • defined by the relations

Fa= П ^ ( q i , q,) П <Ps(qi. q,-. q*)

. . . q > , ( q i , ( « > 2 ) , ( 5 . 7 )

. . . * w ( q i . •••.qw). < 5 - 8 >

B e c a u s e o f t h e c o n n e c t i o n s e x i s t i n g b e t w e e n t h e F s

a n d b e t w e e n F s a n d F N » t h e f u n c t i o n s ips a n d F 2 o r

<ps c a n i n p r i n c i p l e b e e x p r e s s e d i n t e r m s o f e a c h

other , and it is a s s u m e d that this can actual ly be done.
To obtain r e a l approximate r e s u l t s it i s n e c e s s a r y to
impose some limitations on the functions <pa and фа

in the course of minimizing the free energy. The fol-
lowing approximations are considered in^ 2 9 ' 3 ^:

1) <Pn+i = 1 f ° r а^ n - a> a n d 2 ) Фт = 1 f o r all
m >: /3, where a and /3 are certain integers. For ex-
ample, the approximation {a = 3, /3 + 4} reduces to
the approximate relations

г|)2(Ч1, q3-) q,-,

... dqN, (5-10)

^s(qi> q2. 4a) = ^ii.4v 4i)Fi(4v q s ) ^ ^ . qs)q>3(qi. q2. q3),
(5.11)

and the value of (5.9) should be substituted in the right
half of (5.10). By going over to continuously increas-
ing values of a and /3, we can obtain a sequence of
more and more accurate approximations. The ques-
tion of the limiting transition N, V — °° and the func-
tional relationships between the cps or between the 4>s

remains vital in this theory, too. Its author was able,
however, to develop a rigorous theory of "renormali-
zation" of the free energy, which eliminates these dif-
ficulties and yields reliably correct results.

6. NONEQUILIBRIUM CORRELATIVE FUNCTIONS

1. Correlative functions in phase space. We proceed
now to review the status of the theory of kinetic prop-
erties of simple liquids. The theory can be expressed
in the language of correlative functions of particle
groups. These functions should now be defined in the
phase space of the group, and can depend explicitly on
the time. If qj, Pi is the assembly of coordinates and
momenta of the i-th particle and dTj =dqidpi, then
the correlative function F s = F s ( q 1 , . . . , q s ; P j , . . . p s ; t)
is defined by the relation

dW(qlt . .., qs; plt .. ., ps; t) = i
s= 1, 2, ..., TV, (6.1)

where dW ( q l f . . . , q s ; p t , . . . , p s ; t ) is the probability
of observing simultaneously the coordinates and the
momenta of the selected s particles at the instant t
near the specified values, independently of the posi-
tions and momenta of the remaining N —s particles.
As in the equilibrium case, the functions F s should
be symmetrical and should satisfy normalization con-
ditions such as (2.4) and (2.5), except that integration
in coordinate space is replaced by integration in the
total phase space of the corresponding particles. In
the special case of statistical equilibrium, the distri-
butions of the coordinates and of the momenta are in-
dependent, and for a Maxwellian momentum distribu-
tion we obtain

= F°s(q, . . . , qs)(2nmkT) П ~2mkf) '(6.2)
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where F s —ordinary equi l ibr ium c o r r e l a t i o n functions
in the space of the p a r t i c l e coordinates .

Conditional c o r r e l a t i v e functions of var ious types
can a l so be introduced in the absence of equi l ibr ium.
Some of t h e s e will be encountered below.

In analogy with the equi l ibr ium c a s e , the function
p a i r s F s and S s + 1 m u s t satisfy a c e r t a i n i n t e g r o -
differential re la t ionship between them. If we a s s u m e
the s y s t e m as a whole to be closed, we have on the
bas i s of the Liouville theorem

dFN __ dFN

dt
3FN p,

dt + 2
9FN

i = 0, (6.3)

where Kj —force acting on the i-th p a r t i c l e . Multiply-
ing this by V " ( N " s ) d T s + 1 . . .dTN and integrat ing over
all the phase space of the (s + 1 ) - s t , . . . N-th p a r t i c l e s ,
we obtain after s i m p l e t r a n s f o r m a t i o n s in the l imit as
N, V —- °° the following equat ions: t ?> 3 1^

_
dt

dqt m ' 9 P i V ' 9qt J\

= 1 У (6.4)

H e r e U s i s defined in (2.9), and Xj denotes the ex-
t e r n a l force acting upon the i-th p a r t i c l e . It is easy
to check that when Xj = 0 the equil ibrium functions
(6.2) satisfy the equations in (6.4).

As in the equi l ibr ium c a s e , only the two functions
F t and F 2 a r e of p r i m a r y i n t e r e s t . We note that the
kinetic theory of gases is based exclusively on knowl-
edge of the function Fj , because in a rare f ied gas the
t r a n s p o r t of m a s s , momentum, and energy is effected
a l m o s t completely by the motion of the p a r t i c l e s
t h e m s e l v e s . In a liquid, to the c o n t r a r y , the g r e a t e r
p a r t of the momentum and energy flow is connected
with the interact ion between p a r t i c l e s , and knowledge
of the function F 2 i s e s sent ia l for m o s t p r o b l e m s .

2. Initial conditions. Revers ibi l i ty and i r r e v e r s i -
bil ity. Except for s ta t ionary nonequil ibrium s ta tes
and a few other specia l p r o b l e m s , it i s n e c e s s a r y to
solve (6.4) subject to definite initial conditions. A
typical c a s e is when the dis tr ibut ion of the p a r t i c l e
groups is specified at s o m e initial instant of t ime t
= t 0 : Fs(qu...,qs;p1,...,ps;t0) = fs(qu ..., q s ;
P i , . . . , p s ). We single out h e r e a c a s e when the in i-
t ial s ta te of a group of p a r t i c l e s is specified p r e -
cisely, for example, for s = 1

Л ( Ч . P; 'o) = ™ ( q - 4 o ) 6 ( P - P o ) . (6.5)
where q 0 and p 0 a r e two constant v e c t o r s . In this c a s e
the solution should have the form F t ( q , p, 11 q0, p 0 , t 0 )
and has the meaning of a conditional probabil i ty of ob-
serving a p a r t i c l e n e a r the phase point q, p at the in-
s tant t, if we know that the par t ic le was at the point
q0> p 0 at the instant t 0 . An analogous problem can also
be formulated for s > 1.

If the init ial d is t r ibut ion fs was not an equil ibrium
one, as for example in (6.5), then in accordance with

the proposed ergodic p r o p e r t i e s of the investigated
sys tem, we expect that in the absence of external
forces the s y s t e m will a r r i v e after a corresponding
re laxat ion t ime at an equil ibrium s tate with a probabi l-
ity d is t r ibut ion (6.2). However, the equations (6.4)
p r e s e n t c e r t a i n difficulties in the investigation of such
relaxat ion p r o c e s s e s , and also s ta t ionary i r r e v e r s i b l e
p r o c e s s e s such as v iscosity, heat conduction, etc,
s ince these equations a r e r e v e r s i b l e in t ime and r e -
main invar iant under the s imultaneous subst i tutions
t — - t and pi —- - p i . Essential ly, l ike the init ial
Liouville equation (6.3), these a r e st i l l dynamic and
not s ta t i s t ica l equations. The s i tuation r e m a i n s the
s a m e , of c o u r s e , even if the infinite chain of equa-
tions (6.4) is t e rminated, for example, with the aid of
the superposi t ion approximation, as was done in ^3 2J
in the hope of obtaining i r r e v e r s i b l e kinetic equations
for Fi and F 2 in l iquids.

In o r d e r to obtain solutions that d e s c r i b e i r r e v e r s -
ible p r o c e s s e s it is n e c e s s a r y e i ther to solve (6.4)
under initial or other supplementary conditions for
F s which a r e a s y m m e t r i c a l with r e s p e c t to the pas t
and to the future, or e l se change over to new d i s t r i -
bution functions F s or to equations that a r e explicitly
i r r e v e r s i b l e with r e s p e c t to t ime for these functions.
The l a t t e r can be attained by using functions F g o b -
tained by averaging o r spreading the exact functions
F s and the i r equations of motion over suitably chosen
m i c r o s c o p i c a l l y - s m a l l t ime in te rva l s . The i r r e v e r s -
ible equations obtained in this m a n n e r for F s a r e
cal led kinet ic.

A typical and well known example where the r e l a x -
ation problem is solved with the aid of r e v e r s i b l e
equations, but the supplementary conditions have a
p r e f e r r e d d i rect ion in t ime, is Landau 's calculation
of the damping of p l a s m a osci l la t ions . ^33-' Green has
s i m i l a r l y demonst ra ted that i r r e v e r s i b l e phenomena
in s imple liquids can be studied in pr inc ip le by s t a r t -
ing from the r e v e r s i b l e equations (6.4). И A m o r e
genera l method is that of the kinetic equations. A
highly perfected theory of kinetic equations was d e -
veloped by Bogolyubov, ^ but is effective only for gas
s y s t e m s . Kirkwood proposed for the functions F s in
a liquid kinetic equations modeled after the equations
of the theory of Brownian motion. In spite of the a p -
prox imate c h a r a c t e r of this theory, it i s at p r e s e n t
the bes t developed. A brief descr ipt ion of this method
will be given in the following sect ions .

3. Scat ter ing of slow neutrons in a liquid. It is in-
t e r e s t i n g in many p r o b l e m s to know, along with the
functions F s defined above, the nonequil ibrium d i s -
tr ibution functions only in configuration or only in
momentum space, for example

/%(qi. ••-, q s ; 0

• ps; t)dVl...dpt, (6.6)= ] q.; Pi

and analogously for F s ( P i , . . . , p s ; t ) , and also to know
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different conditional distribution functions in each of
these spaces.

Of particular interest are the two functions
F i ( q , t | q ° , t 0 ) and Fj(q,t |q ' ° , t 0 ) , where q° corre-
sponds to the initial position of the same particle as
in the main argument F t , and q'° corresponds to the
initial position of some other particle. In a homoge-
neous system which is in equilibrium on the whole,
these functions can depend only on the distances be-
tween the points q and q° or q'° and on the time in-
terval t - t 0 :

The functions p(r, t) and g ( r , t ) are natural kinetic
generalizations of the number density (per particle)
and the radial distribution function g o ( r) of the static
theory, into which they go over when t vanishes

o(r, Л_»б(г) 1
, / у { as t^O. (6.9)

The sum

G(r, , t) (6.10)

corresponds to the average density of all the particles
at the instant t, at a distance r from the point where
a certain chosen particle was situated at t = 0. As
t —• °o or r —' oo we have p ( r , t ) — 0 and g ( r , t ) — 1,
respectively.

Just as the function gp(r) for a real liquid can be
reconstituted from the results of x-ray scattering, the
functions p ( r , t ) and g(r, t ) can be reconstituted from
the results of slow-neutron scattering. '-34-' If we denote
by d 2o/dnde the effective cross section (per particle)
for elastic scattering in a unit solid angle and a unit en-
ergy interval, we obtain for the coherent and incoherent
scattering, respectively,

1 ' t ) d r d t ' ( 6 Л 1 )

• t ) d T d L ( 6 Л 2 )

Here к„ and к are the wave numbers of the incoming
and scattered neutrons, к = k - k 0 , w = e/K, a —length
for the scattering of a neutron by nuclei of a given
kind, and the brackets ( . . . ) denote averaging over
the spin and isotopic states of the nuclei. The inverse
Fourier transformation with respect to к and ш yields
G ( r , t ) and p ( r , t ) , and consequently also g ( r , t ) .

Thus, a detailed investigation of the scattering of
slow neutrons can yield in principle more complete
information on the structure and thermal motion in a
liquid than x-ray methods. The reason lies in the
simple fact that the time necessary for the slow neu-
tron to traverse the average interatomic distance in
the liquid is comparable with the characteristic times
of thermal motion of the atoms, whereas the x-ray
quantum covers this distance too rapidly and its scat-
tering is determined by the instantaneous distribution

of the particles. Unfortunately, a reliable experimen-
tal determination of the energy spectrum of neutrons
scattered at different angles is a very complicated
problem, as yet unsolved. One can hope, however,
for success in this direction in the nearest future.

7. LANGEVIN EQUATION FOR THE MOTION OF A
LIQUID MOLECULE

1. Derivation of the Langevin equation. Kirkwood
has proposed a theory for the kinetic processes in
simple liquids, constructed in close analogy with the
well known theory of Brownian motion. In this sec-
tion we consider the equation of motion of an individ-
ual liquid particle, following ^35^. This makes graph-
ically clear how the time averaging procedure as ap-
plied to reversible laws of dynamics leads to irre-
versible dissipative effects.

We isolate a certain particle in the liquid, say the
first, and write its law of motion

W = K1, (7.1)

where Kt is the total force exerted on the isolated
particle by all the remaining particles. For simplicity
we assume that there are no external forces and that
the liquid itself is in equilibrium. We represent the
force Kt as the sum of its mean value and a fluctuat-
ing part

K1 =
 1{(K1)T) + G,(<), (7.2)

where (... )T denotes time averaging over an interval
of length т, and J ( . . . ) denotes statistical averaging
over the states of all the remaining particles with the
phase position of the first particle fixed:

x ^ (Q°,po (7.3)

For the sake of brevity, Q and P denote the totality
of coordinates and momenta of all N— 1 particles,
except the first, and the zero superscript denotes
that a variable belongs to the initial instant of time t,
for which the equation of motion (7.1) has been writ-
ten out. The zero superscript of F^-i indicates equi-
librium distribution. The duration т is assumed very
small on a microscopic time scale, but covering a
large number of changes in the values of the instanta-
neous force Kj.

We interchange the sequence of integration with
respect to the time and with respect to the initial
states in (7.3), and go over to integration in the total
phase space of the system, introducing the corre-
sponding б-functions

T

We then change over from the phase variables at the
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i n i t i a l i n s t a n t o f t i m e t o t h e p h a s e v a r i a b l e s a t t h e i n -

s t a n t t + s . T h e J a c o b i a n o f s u c h a t r a n s f o r m a t i o n i s

e q u a l t o u n i t y , a n d f r o m t h e L i o u v i l l e t h e o r e m a n d

f r o m t h e r u l e f o r t h e p r o d u c t o f p r o b a b i l i t i e s w e h a v e

f u r t h e r m o r e

= л О ) ( ч ; , P ; , Q , P ) =

W e c a n t h e r e f o r e w r i t e

;J. (7.5)

|q;,

But the equilibrium function F\ is merely the Max-
wellian momentum distribution function, so that

w h e r e

ДР; = P;-P;° = 5 к, («+*') л-.

(7.7)

(7.8)
An analogous expansion for the б-functions yields

s (P;5 - P?) = e (P; - P; - дР;>= в (Р; - P°) - дР; щ б (Р; - Р

0,)

Substituting all this into (7.6) and recognizing that in
che case of equilibrium the mean value of the force Kt

is equal to zero, we obtain after some calculations

>| а л l
AT dp}./ vN~'

X FT-1 (Q, P I q?, P?) rfQ dP. (7.10)

dt
(7.12)

which is accurate to terms that vanish as т —* 0, and
in which the zero superscript of p t was omitted.

If there exists a small time interval т* such that
the forces Kj(t) and Kj( t+s ' ) are not correlated
over a time s' > т*, then the quantity

\ 1(K1

(7.13)

does not depend on s when s > т* (and by virtue of
the homogeneity, it is also independent of t) so that

the operation — J ( . . . ) d s in (7.11) is superfluous,

and we have

(7.14)

F o r t h e s a m e r e a s o n , i n a c c o r d w i t h (7.2), t h e r a n -

d o m f o r c e G j ( t ) i s u n c o r r e l a t e d a t t h e i n s t a n t s t = 0

a n d t = s > T * , a n d s i n c e i n a c c o r d w i t h (7.2) w e a l s o

h a v e i{(G1)T) = 0, E q . (7.12) i s t h e o r d i n a r y L a n g e v i n

e q u a t i o n , k n o w n f r o m t h e t h e o r y of B r o w n i a n m o t i o n , ̂ 3 6

a n d t h e t w o c o i n c i d e w h e n /3 = c o n s t . T h e s t o c h a s t i c

e q u a t i o n (7.12) c o n t a i n s t h e d i s s i p a t i v e e f f e c t s e x p l i c -

i t l y , o w i n g t o t h e f i r s t t w o t e r m s i n t h e r i g h t hal f .

2. F r i c t i o n c o e f f i c i e n t . T h e q u a n t i t y /3, d e f i n e d b y

(7.14) a s a n i n t e g r a l of t h e a u t o c o r r e l a t i o n f u n c t i o n

of t h e f o r c e K t , d e p e n d s g e n e r a l l y s p e a k i n g o n t h e

m o m e n t u m of t h e f i r s t p a r t i c l e , o w i n g t o t h e m e t h o d

u s e d f o r a v e r a g i n g ( f i x e d v a l u e s of q j a n d p t ) . F r o m

(6.4) w e r e a d i l y s e e t h a t /3 c a n d e p e n d o n l y o n p\. If

w e t h e r e f o r e i n t r o d u c e t h e q u a n t i t y

P o, л 2А71 op in -i c\

* = ?• dV~ - ( ' . 1 5 )

We have left out small terms that vanish as т —- 0.
The integrand contains a tensor-dyad. For a homoge-
neous liquid this tensor is proportional to the unit
tensor, and it is natural to introduce a scalar quan-
tity /3 equal to

(7.11)

where the integrand contains the usual scalar products,
and where a simple change in the variable of integra-
tion was made relative to (7.10). The substitution of
(7.10) and (7.11) into (7.1) and (7.2) leads to an equa-
tion of motion for a single particle in the form

t h e n (7.12) t u r n s i n t o t h e o r d i n a r y L a n g e v i n e q u a t i o n

£ = _ l I p i + G i ( 0 ( ( 7 . 1 6 )

b u t w i t h a v e l o c i t y - d e p e n d e n t f r i c t i o n c o e f f i c i e n t /3*.

T h e q u e s t i o n of t h e d i f f e r e n c e b e t w e e n 0 * and /3 i s

d i s c u s s e d i n C35^, w h e r e i t i s s h o w n t h a t f o r c o n -

d e n s e d s y s t e m s t h e d e p e n d e n c e of t h e f r i c t i o n c o e f f i -

c i e n t on t h e v e l o c i t y i s no t v e r y i m p o r t a n t .

M o r e i n t e r e s t i n g i s t h e q u e s t i o n of t h e m a g n i t u d e

a n d t e m p e r a t u r e d e p e n d e n c e of /3. D i r e c t c a l c u l a t i o n

b y m e a n s of (7.14) i s i m p o s s i b l e a t p r e s e n t , s i n c e w e

d o no t know t h e e x a c t s o l u t i o n s of (6.4) u n d e r t h e i n i -

t i a l c o n d i t i o n s of i n t e r e s t t o u s . A n e s t i m a t e of /3 i n

terms of the molecular potential Ф(г) and the equi-
librium radial distribution function go(r) is given in
C35^ in the form

'/2 (7.17)

where Д is the Laplace operator. Thus, the tempera-
ture dependence of /3 is determined completely by the
temperature dependence of go(r). Analogous esti-
mates were obtained also in [37,38] _

In view of Einstein's relation, we have D = kT//3,
where D is the self-diffusion coefficient. If D is
known for a certain liquid, the theoretical result
(7.17) can be directly verified. Thus, for argon near
the triple point we have D e x p = 2.06 x 10"5 cm 2/sec,
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whereas the value calculated from (7.17) is Dtheor
= 2.60 x 1O~5 cmVsec.M which is quite satisfactory.
An experimentally obtained function g o ( r) and the
Lennard-Jones potential for argon were used in the
calculations. Analogous calculations were carried
out in C38H for neopentane, which also led to results
having the same order of magnitude, but with a greater
difference between D t h e o r and D e X p than in the case
of argon.

In connection with the estimates of the reliability of
the theory made in the references just mentioned, the
following remark is in order. The use of Einstein's
relations is valid only for an ideal gas or for truly
Brownian particles. In the general case it should be
replaced by the relation^39-'

dv JT (7.18)

which depends essentially on the isothermal compress-
ibility of the medium. Therefore the results mentioned
above for Dtheor should be recalculated, and this may
influence appreciably the comparison with DeXp.
8. KIRKWOOD'S THEORY OF TRANSPORT PROC-

ESSES IN SIMPLE LIQUIDS
1. Equations for the averaged correlative functions.

From the theory of Brownian motion it is known that
in principle any problem in this theory can be solved
with the aid of the stochastic equation (7.16), provided
the distribution law is known for the random force
Qi(t). A simpler method of solving problems in the
theory of Brownian motion, however, is to study the
partial differential equations for the partition func-
tions of the Brownian particle. ̂ 36^ it is desirable to
obtain a similar method for the theory of liquids. This
was done in ^35 ,̂ where the generalized Fokker-Planck
equations were used as the kinetic equations for the
liquid particles.

In accordance with the physical ideas developed in
the preceding section, the irreversible motion of liquid
particles should be described in terms of correlative
functions in phase space, averaged over microscopic-
ally small time intervals:
Fs(q,, ..., qe; PL ..., pe; 0

T
Applying such an averaging operation to any of the
equations in (6.4) we obtain, after certain transforma-
tions similar to those of the preceding section, a sys-
tem of kinetic equations for the functions Fg. A com-
pletely rigorous but very cumbersome derivation of
these equations is given in E35 ,̂ while a simplified
derivation is given in E403. The equations obtained
are generalized Fokker-Planck equations. Thus, for
F1 we have

where X* is the sum of the external force and of the
additional force of statistical origin connected with the
non-equilibrium nature of the system. For simplicity
it was assumed in (8.2) that the mean velocity of liquid
flow u is equal to zero at the given place. Otherwise
p/m in the right half of (8.2) must be replaced by
(p/m) - u . The friction coefficient /3 in (8.2) is de-
fined by (7.14); the terms that vanish as т — 0 are
again neglected.

Analogously, we obtain for F 2

dF2

dt dF2

"ap~i
Л

dt
( 8 - 2 )

(8.3)
and similar equations can be obtained for Fs with
s > 2. The remarks made above concerning Eq. (8.2)
are valid for these equations, too. In addition, in ac-
cordance with E35 ,̂ it is assumed that in the six-di-
mensional configuration space of the particle pair the
friction-coefficient tensor breaks up into two diagonal
(and isotropic) three-dimensional tensors, so that
the scalar quantity /3 is the same in (8.3) as in (8.2).
The validity of such an assumption is not obvious, and
this question is discussed in ^413.

An interesting feature of Eqs. (8.2) and (8.3) is that,
in contrast to the initial equations (6.4), they are no
longer coupled, and each equation contains only one
function Fs. The different functions Fs are connected
with each other only implicitly, through the friction
coefficient (more accurately, friction tensors).

2. Viscosity and heat conduction of simple liquids.
The question of determining the coefficients of viscosity
and heat conduction from the kinetic equations (8.2) and
(8.3) was considered in C42»43 ,̂ and a simplified variant
of the theory was developed in '-44-'. Certain prelimi-
nary general results concerning the viscosity and heat
conduction in liquids were obtained in M (see aiso [5])_To simplify the problem, which is complicated enough
without this, it is assumed in all these papers that Д
= const and the effective external force connected with
the non-equilibrium nature of the system and contained
in X* is neglected.

The momentum or energy transfer consists of two
parts—"kinetic," connected with the motion of the par-
ticles, as in a rarefied gas, and "potential," connected
with the interaction between particles and of principal
interest in the case of a liquid. The most important
part of the problem is_to find the nonequilibrium binary
distribution function F 2 . Assuming the causes tending
to disturb the system equilibrium to be small, we can
put

^2=go( r){ 1+X} (8.4)

and use the smallness of the nonequilibrium correction
X- For example, in discussing the viscosity of a liquid
this leads to the following structure of the function x '-43-'
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(8.5)
where r = | r |, r —vector distance between the par-
ticle pair, q —vector of the center of mass of the par-
ticle pair, u = u(q) —mean velocity at the point q, and
4>Q(T) and ф2(?) —two auxi l iary functions, which m u s t
be d e t e r m i n e d from equations obtained by subst i tut ing
(8.5) in (8.3). These functions w e r e actually d e t e r -
mined and tabulated in ^43-' for liquid argon, by n u m e r i -
cal solution of the der ived equations. Calculation of
the v i s c o u s - s t r e s s t e n s o r with the aid of (8.4) and (8.5)
leads then to the following express ions for the s h e a r
and bulk v i scos i ty coefficients (the " k i n e t i c " c o n t r i -
butions a r e a l so taken into account)

mkT
~~ 2UJF "

"P (8.6)

( 8 Л )

w h e r e Ф' ( r ) is the i n t e r m o l e c u l a r potential .

Numer ica l calculation of the coefficient of s h e a r
viscosi ty for liquid argon using Eq. (8.6) yielded a
r e s u l t highly dependent on the friction coefficient
0_[42] •p w o d i f f e r e n t e s t i m a t e s for /3 gave for r\ c a l -
culated values 1.27 x Ю " 3 poise and 0.73 x 10~3 poise,
respect ive ly, w h e r e a s the exper imenta l value of TJ
for argon is 2.39 x 10~3 po i se . No calculat ions w e r e
m a d e for the coefficient of bulk v iscosi ty . The t e m -
p e r a t u r e dependence of rj and £ is essent ia l ly con-
tained in go ( r ) , and consequently the second t e r m in
(8.6) and (8.7) has pr incipal ly an exponential t e m p e r -
a ture dependence, in agreement with the exper imenta l
data.

It should be noted that the question of the boundary
conditions at r = 0 for the auxi l iary functions ф0 and
ф2 i s not fully c l e a r . The p a p e r s cited r e q u i r e that
these functions be finite when r = 0. This question
was d i s c u s s e d in C*i,45,46]j a n d t n e possibi l i ty of other
boundary conditions was demonst ra ted .

The coefficient of heat conduction in a s imple liquid
was calculated in ^ 4 3 3 . A v e r y c u m b e r s o m e computa-
tion has yielded

пкТ
( 8 . 8 )

Numerica l calculat ion for liquid argon gives к = 4.1
x 10~4 ca l/g-sec-deg, which is in sat i s factory a g r e e -
ment with the exper imenta l value 2.9 x 10~4 c a l / g - s e c -
deg.

3. General r e m a r k s on Kirkwood's theory. Kirk-
wood's theory is at p r e s e n t the only one that p e r m i t s
the kinetic coefficients for a liquid to be e x p r e s s e d in
t e r m s of i n t e r m o l e c u l a r forces and the part i t ion func-
tion of the liquid p a r t i c l e s . In addition to the p r o b l e m s
mentioned above, this theory was a l so used to ca lcu-

late the optical anisotropy o c c u r r i n g in a flowing
liquid, E46^ and the r e s u l t s w e r e again in sat i s factory
a g r e e m e n t with exper iment . Much work was done on
a general izat ion of Kirkwood's theory to include m u l t i -
component s y s t e m s and on applications of this theory
to i r r e v e r s i b l e p r o c e s s e s in these s y s t e m s .

Never the les s , Kirkwood's theory r e m a i n s only a p -
prox imate because of the very method it employs,
s ince the model of Brownian motion it uses cannot be
fully r e p r e s e n t a t i v e of the motion of a molecule in a
liquid. This i s p a r t i c u l a r l y manifest in the fact that
Eq. (8.2) does not yield the c o r r e c t express ion (7.18),
but of necess i ty leads to Eins te in ' s re la t ion in the form
D = kT//3.1-36-! One might there fore expect the theory
developed to be m o r e c o r r e c t for a ra re f ied gas, but
this is not the c a s e . In the l imi t of vanishing i n t e r a c -
tion, the equations for the viscosity and heat conduc-
tion coefficients do not coincide with the known ex-
p r e s s i o n s from kinetic theory of g a s e s . ^ F u r t h e r
development of the theory of kinetic p r o c e s s e s in
liquids st i l l r e m a i n s a very important p r o b l e m .
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