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J.HIS paper gives a summary of the present state of
the theory of magnetic and electrical properties of
matter in the metallic state. In this survey we cannot
avoid recalling the great contribution which was made
to the development of the present quantum theory of
solids in general and to the theory of metals in par-
ticular by Jacob Il'ich Frenkel, one of the great theo-
retical physicists of the first half of our century.

At the start of the scientific activity of J. I. Frenkel
(in the Twenties), there arose in the electron theory
of metals, which had its beginnings in the work of
Drude and Lorentz (cf., for example, И ) , a difficult
situation, since the classical statistical foundations of
this theory were completely compromised by the well-
known catastrophe in the theory of the specific heat of
an electron gas. At the same time there had already
occurred the development of the Bohr quantum theory
of the atom and the beginning of the building up of a
consistent quantum mechanics. It was in just this
period that there appeared the papers of J. I. Frenkel
in which, with his profound physical intuition and theo-
retical talent, he placed the first building blocks in that
strong foundation on which there later developed the
great structure of the present-day quantum theory of
solids. In connection with the theme of this paper we
recall from the many articles of J. I. Frenkel four
papers which are of fundamental significance; they
contain essentially many of the elements of the present
theoretical treatment of magnetic and electrical prop-
erties of metals.

The first of these papers ^ was published in 1924
and is entitled "Theory of the Electrical Conductivity
of Metals." In it, for the first time, on the basis of
the Bohr picture of the nuclear structure of the atom,
there was given a quantitative formulation of the idea
of electrons wandering around in a metal, which appear
as the result of collectivization of the valence electrons
of the isolated atoms of metallic elements when they
are condensed in the form of a metal. Frenkel's cal-
culation retained completely all of the positive results
of the classical Drude-Lorentz electron theory of
metals (including the important derivation of the
Wiedemann-Franz law) and at the same time com-
pletely eliminated the difficulty with the specific heat,
since the electrons of a Bohr atom even at 0°K have a
large zero-point energy. It was this paper of J. I.
Frenkel which should also be regarded as the begin-
ning of the present theory of collectivized conduction
electrons in crystals of metallic type. This theory
of migrating electrons, which solved the difficulty
with the specific heat and rehabilitated the very hy-
pothesis of conduction electrons in metals, could not,

however, at that time explain the differences between
metals and dielectrics. (For dielectrics one was r e -
quired to introduce additional assumptions about the
absence of collectivized electrons.) In addition, there
remained open the question of why the mean free path
of conduction electrons is so large at low tempera-
tures if it is determined from the magnitude of the
specific electric and thermal conductivity of metals.
The approach to the solution of these difficulties in the
theory of migrating electrons was indicated in another
paper of J. I. Frenkel M written by him in 1927 and
presented at the International Physics Conference in
Como (Italy); this paper was entitled, "A New Devel-
opment in the Electron Theory of Metals." In this
paper for the first time modern quantum mechanics
was applied to the solution of problems of metals; it
was shown that specific properties of electrons in a
crystal lattice, and in particular the anomalously large
value of the mean free path of conduction electrons
(compared to the size of the lattice constant a) can
be explained by starting from the concept of the wave
nature of the electron. An ideal regular lattice, ac-
cording to the laws of quantum mechanics, is " t rans-
parent" to the electron waves. Only a disturbance in
the regularity of the crystals (interstitial atoms and
displacements, vacancies at lattice sites, dislocations,
disordered thermal vibrations of lattice atoms, etc.)
lead to a scattering of the electron waves. It is this
picture, presented in the report of J. I. Frenkel at
Como, which lies at the basis of the whole present-
day theory of kinetic effects in crystals.

The third paper of J. I. Frenkel which should be
mentioned here was published by him in 1928 M a n ( j
was called "Elementary Theory of Magnetic and
Electric Properties of Metals at Absolute Zero . "
The most significant part of this exceptionally simple
and clear, but at the same time physically profound
work is Sec. 2, in which he gives the first quantum
mechanical explanation of the phenomenon of ferro-
magnetism in metals, as a purely electrical effect
resulting from exchange electrostatic interactions
between electrons in metals of the transition groups.
This derivation may with complete justification be r e -
garded as the beginning of the whole present-day quan-
tum theory of ferromagnetism (theory of spontaneous
magnetization).* From the point of view of models,
this paper can be regarded as the starting point in the

*The paper of W. Heisenberg.L5] in which a similar explanation
of the quantum mechanical nature of ferromagnetism was given on
the basis of a model of localized electrons, was published after
the paper of J. I. Frenkel.[4]
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c o n s t r u c t i o n o f t h e t h e o r y o f f e r r o m a g n e t i s m o n t h e

b a s i s o f t h e s o - c a l l e d c o l l e c t i v e e l e c t r o n m o d e l .

F i n a l l y , t h e f o u r t h p a p e r o f J . I . F r e n k e l ^ w a s

w r i t t e n b y h i m i n c o l l a b o r a t i o n w i t h Y a . G . D o r f m a n

i n 1 9 3 0 a n d i s e n t i t l e d , " S p o n t a n e o u s a n d I n d u c e d

M a g n e t i z a t i o n i n F e r r o m a g n e t i c M a t e r i a l s . " T h e

a u t h o r s o f t h i s p a p e r d e s e r v e t h e c r e d i t f o r t h e f i r s t

t h e o r e t i c a l c l a r i f i c a t i o n o f t h e h y p o t h e s i s o f r e g i o n s

o f s p o n t a n e o u s m a g n e t i z a t i o n , w h i c h i s a t t h e b a s i s o f

t h e w h o l e p r e s e n t p h y s i c a l t h e o r y o f m a g n e t i z a t i o n

p r o c e s s e s i n f e r r o m a g n e t s ( c f . , f o r e x a m p l e , M ) .

O f c o u r s e , t h e s e f o u r p a p e r s w h i c h w e h a v e m e n -

t i o n e d d o n o t e x h a u s t t h e w h o l e r i c h c o n t r i b u t i o n t o t h e

s c i e n c e o f s o l i d s a n d m e t a l s w h i c h w a s m a d e b y J . I .

F r e n k e l i n h i s s c i e n t i f i c w o r k , b u t t h e s e p a p e r s a r e

a l r e a d y e n o u g h s o t h a t o n e m a y w i t h f u l l j u s t i f i c a t i o n

r e g a r d J . I . F r e n k e l a s o n e o f t h e f o u n d e r s o f t h e p r e s -

e n t q u a n t u m t h e o r y o f m e t a l s . *

1 . F U N D A M E N T A L E L E C T R O N I C C H A R A C T E R I S -

T I C S O F T H E M E T A L L I C S T A T E O F M A T T E R

B e f o r e w e c h a r a c t e r i z e t h e p r e s e n t s i t u a t i o n i n t h e

t h e o r y o f m a g n e t i c p r o p e r t i e s a n d e l e c t r i c a l c o n d u c t i v -

i t y o f c r y s t a l s , w e m u s t r e c a l l t h e b a s i c p h y s i c a l f e a -

t u r e o f t h e m e t a l l i c s t a t e , w h o s e e x i s t e n c e e n a b l e s u s

t o s p e a k o f m e t a l s a s s u b s t a n c e s o f a s e p a r a t e c l a s s

w h i c h c a n b e u n i q u e l y d i s t i n g u i s h e d f r o m a l l o t h e r

m a t e r i a l s . T h i s f u n d a m e n t a l c h a r a c t e r i s t i c i s t h e

p r e s e n c e i n m e t a l l i c c r y s t a l s o f t h e s y s t e m o f c o n -

d u c t i o n e l e c t r o n s o f w h i c h w e h a v e a l r e a d y s p o k e n , t

W h a t p r o p e r t i e s d o t h e s e c o n d u c t i o n e l e c t r o n s h a v e ?

F i r s t w e m u s t p o i n t o u t t h a t t h e s e m i c r o p a r t i c l e s a r e

F e r m i p a r t i c l e s h a v i n g s p e c i a l q u a n t u m c h a r a c t e r i s -

t i c s . E 1 4 ^ T h e m a n y - e l e c t r o n w a v e f u n c t i o n o f a s y s -

t e m o f F e r m i p a r t i c l e s d e s c r i b i n g t h e q u a n t u m s t a t e s

i s a n t i s y m m e t r i c J w i t h r e s p e c t t o i n t e r c h a n g e o f t h e

c o o r d i n a t e s o f a n y p a i r o f p a r t i c l e s i n t h e s y s t e m .

T h i s o n e f a c t a l r e a d y p r o d u c e s a v e r y e s s e n t i a l s t a -

t i s t i c a l c o r r e l a t i o n i n t h e m o t i o n o f F e r m i p a r t i c l e s

( t h e P a u l i p r i n c i p l e C 1 4 3 ) . T h e e n e r g y s p e c t r u m o f

s u c h a s y s t e m a l s o h a s v a r i o u s c h a r a c t e r i s t i c f e a -

t u r e s . T h e s e c a n m o s t e a s i l y b e e x p l a i n e d i f w e f i r s t

r e c a l l t h e p r o p e r t i e s o f a n i d e a l g a s o f F e r m i p a r -

t i c l e s , i . e . , a g a s o f d y n a m i c a l l y n o n - i n t e r a c t i n g c o n -

d u c t i o n e l e c t r o n s . B e c a u s e o f t h e a n t i s y m m e t r y o f

t h e w a v e f u n c t i o n o f t h e g a s ( w h i c h f o r a n i d e a l g a s

* T o b e c o m e f a m i l i a r w i t h t h e o r i g i n a l p a p e r s o f J . I . F r e n k e l

o n t h e p r o b l e m s of t h e p h y s i c s o f m e t a l s , w e r e c o m m e n d t o t h e

r e a d e r s h i s m o n o g r a p h o n t h e s u b j e c t t ' ] a n d a l s o t h e s e c o n d v o l -

u m e of t h e C o l l e c t e d W o r k s ( S e c . I ) ; [ 1 0 ] cf. a l s o h i s p a p e r a t t h e

K u r n a k o v s k u l e c t u r e s . [ " ]

T M o r e d e t a i l s c o n c e r n i n g t h e e m p i r i c a l c r i t e r i a for t h e m e t a l -

l i c s t a t e o f m a t t e r c a n b e f o u n d , f o r e x a m p l e , i n t h e s u r v e y b y

t h e a u t h o r t " ] o r b y t h e a u t h o r a n d V . I. A r k h a r o v . t " ]

t T h a t i s , t h e w a v e f u n c t i o n o f t h e s y s t e m c h a n g e s s i g n w h e n

we interchange the coordinates of any pair (i, к = 1, 2,3, ... , N)
of particles:

• * - £

b )

F I G . 1 . D i s t r i b u t i o n f u n c t i o n for a n i d e a l g a s o f f e r m i o n s :

a ) a s a f u n c t i o n o f q u a s i m o m e n t u m fik ( o r w a v e n u m b e r k ) ;

b ) a s a f u n c t i o n of e n e r g y e fo r t h e c a s e o f a q u a d r a t i c d i s p e r -

s i o n l a w . T h e q u a n t i t i e s k 0 a n d £ a r e r e s p e c t i v e l y t h e l i m i t i n g

w a v e n u m b e r a n d t h e l i m i t i n g F e r m i e n e r g y .

h a s t h e f o r m o f a d e t e r m i n a n t m a d e u p f r o m t h e w a v e

f u n c t i o n s o f t h e i n d i v i d u a l e l e c t r o n s ) , t h e P a u l i p r i n -

c i p l e h o l d s i n i t , a c c o r d i n g t o w h i c h i n e a c h q u a n t u m

state with a given quasimomentum к there can be at
most one electron with a given spin projection cr2

(<т2 = ± Й/2). As is well known, it then follows C14^ that
the distribution function (whose values give the rela-
tive number of occupied states with a given k) f(k)
in the ground state, with the lowest value of the energy
of the system (at 0°K), has the form of " a Fermi
step"C1 43 (Fig. la). Thus, in the quasimomentum
space Йк there is a certain surface, the Fermi sur-
face, which corresponds to the quantum state with the
maximum electron energy e (к) = e0 occupied by them
at 0°K. The " internal" region of k-space which is
limited by the Fermi surface (the energy values being
less than this value: e < e0) corresponds to occupied
states, i.e., to those with f(k) = 1, while the "outside"
region, outside the Fermi surface (with larger energy:
e > e 0 ), corresponds to free states, i.e., to those with
f(k) = 0. If the gas of conduction electrons is ideal,
then the dispersion law has the usual quadratic char-
acter*

e(k) = -^-A2, (1.1)

where 2тгй is Planck's constant and m is the mass of
a free electron. The Fermi surface in this case has
the form of a sphere whose radius (Йк0) is determined
by the density of the electron gas n, since n = (8тг/3 )kjj.
C143 in a real crystal the conduction electrons do not
form an ideal gas of free particles moving in a zero
potential field. In this case each conduction electron
moves in the periodic, self-consistent field produced
first of all by the atomic nuclei and the non-collecti-
vized inner electron shells of the atoms which form in
the aggregate a crystal lattice of "heavy" positively-
charged 2on_cores_, and secondly by all the other collec-
tivized electrons. The quantum mechanical solution of
the problem in such a self-consistent, periodic field
(Bloch, C15^ Peierls E16^) showed that the energy spec-
trum e(k) of an individual electron has a band struc-
ture, i.e., it exhibits a series of quasi-continuous en-
ergy bands separated by regions of forbidden energies

Tk, If,)

Г/у)-

* T h e e n e r g y d i s t r i b u t i o n f u n c t i o n f ( e ) i n t h i s c a s e w i l l h a v e

t h e f o r m o f a " p a r a b o l a , " c u t t i n g of f a t e 0 = £ (c f . F i g . l b ) .
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FIG. 2. Energy spectrum of collectivized electrons in a crys-
tal lattice showing quasi-continuous bands of allowed energy
values (shaded regions): a) separated by forbidden regions (en-
ergy gaps Ле ) or, b) partially overlapping.

( g a p s ) o r s h o w s a p a r t i a l o v e r l a p ( F i g . 2 ) . T h e w a v e

f u n c t i o n of t h e e l e c t r o n t h e n h a s t h e f o r m of a p l a n e

w a v e m o d u l a t e d w i t h t h e p e r i o d of t h e l a t t i c e :

where Йк is the quasi-momentum vector which plays
the role of a quantum number, n numbers the band
(zone), and u n (k, r ) is a function with the period of
the crystal lattice. From the form of the function
(1.2) it follows that the electron can be found with equal
probability at any site in the lattice. This also defines
the "freedom" of the conduction electron in the peri-
odic field of the lattice. The form of the modulating
function u n(k, r ) , aside from its symmetry properties
which are determined by the crystal symmetry, de-
pends on the specific form and magnitude of the poten-
tial energy of the electron in the lattice. It is also es-
sential to note that the dispersion law e (к) for an
electron in a lattice no longer has the simple quad-
ratic character (1.1), but can have a very complex
form which is determined both by the symmetry prop-
erties of the crystal (since the function e(k) is a pe-
riodic function of к with a period proportional to the
period of the reciprocal lattice, E1*] and is also a mul-
tiple-valued function of к —for different bands and a
specific form of the lattice potential). The complex
nature of the dispersion law €(k) for an electron in a
crystal is a mathematical and physical expression of
the fact that the electron under these conditions is not
a " f ree" microparticle, and that essentially we are
dealing with a more complicated quantum-mechanical
system: electron + lattice of ion cores (the latter, in
view of its large mass, can be treated as a fixed source
of a force field*); therefore the conduction electron in
a metal, within the framework of the band model, should
be treated as a sort of quasiparticle (cf. below), having
a more complicated dispersion law than the free elec-
tron. In certain special cases (and for a restricted
range of values of the quasi-momenta, for example,

*In other words we are dealing with the so-called adiabatic
approximation. Including the motion of the ionic lattice is nec-
essary in calculating the kinetic coefficients, which depend es-
sentially on lattice vibrations, for phenomena of superconduc-
tivity, or effects of polarization of the lattice, as, for example,
in ionic crystals, etc.

_a_ b с
FIG. 3. Filling of energy levels of bands of allowed energy

values of the electron energy spectrum in crystals in the ground
state (at 0°K). a) Metal with non-overlapping bands; b) semi-
conductor or insulator; c) metal with overlapping bands.

n e a r t h e e x t r e m a of t h e e n e r g y s u r f a c e s e ( k ) = c o n s t ) ,

t h e e n e r g y of a n e l e c t r o n i n a l a t t i c e c a n b e g i v e n f o r -

m a l l y i n a f o r m a n a l o g o u s t o (1.1), b u t w i t h t h e m a s s

of t h e f r e e e l e c t r o n m r e p l a c e d b y a n o t h e r q u a n t i t y
m e f f > w h i c h i s c a l l e d t h e e f f e c t i v e m a s s of t h e e l e c -

t r o n i n t h e l a t t i c e :

e(k) =
2meff

/c2 (1.3)

a n d w e t r e a t t h e w h o l e a g g r e g a t e of e l e c t r o n s a s a g a s

of q u a s i p a r t i c l e s w i t h e f f e c t i v e m a s s e s . * S i n c e i n t h e

c a s e of a c o m p l e x d i s p e r s i o n l a w t h e c o n d u c t i o n e l e c -

t r o n s i n t h e b a n d t h e o r y a r e s t i l l F e r m i p a r t i c l e s , f o r

t h e m a l s o w e h a v e t h e s a m e d i s t r i b u t i o n f u n c t i o n i n t h e

g r o u n d s t a t e (cf. F i g . 1) a n d t h e r e e x i s t s a F e r m i s u r -

f a c e : e ( k ) = €0 = f. Only now t h i s s u r f a c e i n t h e g e n -

e r a l ( n o n - i s o t r o p i c ) c a s e d o e s no t h a v e t h e f o r m of a

s p h e r e , b u t i s s o m e c o m p l i c a t e d s u r f a c e d e t e r m i n e d

b y t h e f o r m of t h e func t ion e ( k ) . S i n c e t h e e n e r g y

s p e c t r u m of a n e l e c t r o n in t h e c r y s t a l h a s t h e f o r m of

b a n d s s e p a r a t e d by f o r b i d d e n r e g i o n s , i n f i l l i ng up t h e

e n e r g y l e v e l s w i t h e l e c t r o n s f o r t h e g r o u n d s t a t e w e

m a y e x p e c t two c a s e s t o o c c u r : E i t h e r t h e F e r m i e n -

e r g y f c o r r e s p o n d s t o a l e v e l w i t h i n a n a l l o w e d b a n d ,

o r i t j u s t c o i n c i d e s w i t h t h e u p p e r m o s t l e v e l of o n e of

t h e b a n d s , j u s t a t t h e e d g e of a g a p ( F i g . 3 ) . t In t h e

f i r s t c a s e t h e e n e r g i e s of t h e e x c i t e d s t a t e s of t h e s y s -

t e m w i l l no t b e s e p a r a t e d f r o m t h e e n e r g y of t h e g r o u n d

s t a t e b y a g a p ( t h e c a s e of a m e t a l ) , w h i l e i n t h e s e c -

ond c a s e t h e r e w i l l b e a g a p ( t h e c a s e of a n i n s u l a t o r

o r s e m i c o n d u c t o r ) . T h u s t h e b a n d t h e o r y g i v e s a c r i -

t e r i o n f o r t h e m e t a l l i c a n d n o n - m e t a l l i c s t a t e s of m a t -

t e r . C12J T h e g r e a t s u c c e s s of t h e b a n d t h e o r y i n c l u d e d

a l s o t h e a c h i e v e m e n t of t h e f o l l o w i n g i m p o r t a n t r e -

s u l t s : t h e d e t e r m i n a t i o n of t h e l i n e a r d e p e n d e n c e on

*The effective mass methodt17] is a special case of mass
renormalizatian, which is widely used in quantum electrodynam-
i c s . M

tOne should not think that having the energy e0 = £ coincide
with the upper edge of the allowed band is a rare exceptional
case. The point is that the number of levels (places) in the band
is equal to twice the number of lattice s i tes (because of the
spin degeneracy), so that for divalent atoms the number of elec-
trons is precisely equal to the number of levels in the band.
However, such a situation will not occur for all crystals made
up of divalent atoms, since the bands may overlap and then
e0 = £ will always lie "within" a band (cf. Fig. 3b).
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temperature for the electronic specific heat of met-
als, ^19-l the temperature behavior of electric and
thermal conductivity, E14^ the weak paramagnetism of
metals (Pauli^20^), the diamagnetism of conduction
electrons (Landau^21-')) and others. It is important
to point out that all the results of band theory which
agree with experiment arise not from the specific form
of the dispersion law e(k), which usually was selected
from crude models, but rather from the general stat is-
tical properties of the conduction electrons, from the
fact that they form a system of fermions.*

In connection with our last remark, one can a priori
imagine the following two alternative possibilities for
the further development of the theory of metals. First,
it might be that on the basis of the successes of the
band theory in its one-electron variant, one might s im-
ply postulate that the conduction electrons form a sys -
tem of non-interacting fermions with a complicated
and theoretically unknown dispersion law. Going fur-
ther, starting from this hypothesis and invoking gen-
eral considerations concerning the symmetry of crys-
tals and using Fermi statistics, one might attempt to
develop the quantum mechanics of the motion of such
quasi-particles in external static electric and mag-
netic fields, invariable electromagnetic fields, in-
cluding the effects of lattice vibrations, etc., and on
the basis of such considerations make calculations of
both the equilibrium statistical quantities for a metal
(specific heat, magnetization, binding energy, etc.) ,
as well as of the kinetic coefficients (electrical and
thermal conductivity, galvanomagnetic effects, cyclo-
tron resonance, etc.) ; in addition, by making a com-
parison of these results with experimental data one
might attempt to establish the form of the energy
spectrum of the quasi-particles and the shape of their
Fermi surface. This is precisely the path which has
been followed by I. M. Lifshitz and his coworkers £23^
in a long series of paperst which develop a consistent
phenomenological theory of metals on the basis of the
hypothesis of a complicated character of the energy
spectrum of the Fermi quasi-particles—the conduction
electrons in metallic crystals. In these papers a de-
tailed investigation is made of the various topological
possibilities for Fermi surfaces, and in particular, a
classification is introduced in them in which one dis-
tinguishes between open and closed surfaces. There
is developed in detail a quasi-classical mechanics and
quantum mechanics of Fermi particles with an arbi-
trary dispersion law. Lifshitz et al. introduced phys-
ically more reasonable definitions for the effective
mass in terms of the geometrical characteristics of
the Fermi surface. The concept of "holes" is more
accurately described in terms of the nature of the dis-

persion law. Calculations are made of magnetic sus-
ceptibility (the de Haas—van Alphen effect, cf. below,
Sec. 2), galvanomagnetic phenomena, electrical con-
ductivity, cyclotron resonance, etc.*

These papers opened up a new and fruitful direction
in the present electron theory of metals, in which one
has by no means exhausted all the possibilities for
further specific applications. However, in this phe-
nomenological approach there still remains unsolved
the most important question of the theory of metals,
the origin of the complicated dispersion law, the form
of this law, and the effect of electron interactions on
the properties of the system of conduction electrons.
The solution of these problems is the subject of the
second direction along which people are thinking and
developing the theory of metals at the present time.

Attempts to include interactions between the elec-
trons have been made repeatedly and long ago, t but
because of the complexity of this problem, the many-
electron theory is still only in its initial stage of de-
velopment. The difficulty in solving the many-electron
problem consists in the fact that the energy of interac-
tion of electrons cannot be regarded as small com-
pared to the kinetic energy of the system. In fact, the
energy of Coulomb repulsion of two electrons in a
crystal, at the usual average distance between elec-
trons of the order of the lattice constant (a ~ 10~8cm)
is equal to e2/a ~ 1О-20/1О~8 ~ к г 1 2 erg, while the
Fermi energy £ of an electron in a metal at normal
densities (n ~ 1O22 cm"3) is also of this same order
of magnitude. Consequently, the ratio of these ener-
gies is ~ 1. Thus we are deprived of the possibility
of introducing a small dimensionless parameter into
the theory, which could then treat the electron inter-
action and use it for developing a scheme of computa-

*This question is discussed in detail in the survey of V. L.
Bonch-Bruevich.f"]

tA detailed description of the method and a bibliography of
the papers are given in the survey paper of I. M. Lifshitz and
M. I. Kaganov.M

•Landaut"] pointed out that in a system of Fermi quasi-par-
ticles it is not always consistent to neglect the interaction be-
tween quasi-particles. He therefore proposed a more consistent
phenomenological treatment of the properties of fermion sys-
tems-the theory of a Fermi liquid. The basic assumption of this
theory is that the interaction of fermions in a liquid is taken into
account by the self-consistent field of the surrounding particles,
so that the system energy can no longer be regarded as the sum
of energies of individual fermions, but only as a functional of
their distribution function. The energy of individual particles is
then determined as the variational derivative of the energy den-
sity of the whole liquid in momentum space. Silint25] treated in
particular the problem of the extension of the whole scheme of
the theory of Fermi liquids according to Landau (in its original
form it had been developed for a system of fermions of the type
of He') to the case of conduction electrons in metals. The theory
of a Fermi liquid has also confirmed all the conclusions ("sta-
tistical") of the band model, and has of course made some im-
provements in them.

tOne of the first papers on the many-electron treatment of
crystals is the paper by Heisenberg. ts] For the development of
this work, cf. the survey papers by the author,[12>"] Bonch-
Bruevich.t"] and ter Haar.P7] which contain a detailed bibliog-
raphy.
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tion according to the usual theory of small perturba-
tions .

In the general case, a system of N interacting
electrons with a potential U ( r - r ' ) is described by
the Hamiltonian

where rj and Pj are the coordinates and momenta of
the electrons, U(r) is their potential energy in the
field of the lattice. Thus, each particle moves in a
field which is equal to the sum of the "external" field
of the lattice and the field of interaction with all the
other electrons 2} U(rj — r n ) . It is just this last

n(*j)
term which includes all the difficulties of the theory,
since it introduces a non-additivity in the problem, as
a result of which in the wave equation for determining
the system wave function НФ = ЕФ (where E is the
energy of the system) we cannot use the Fourier
method for finding a solution in the form of a product
of wave functions Ф(г) depending on the coordinates
of just one particle. Therefore all of the efforts of
theoretical physicists are devoted to the "struggle"
with the double sum appearing in (1.4).

As has been pointed out by S. P. Shubin (cf. page 38
in the survey С26^ and^12-'), for the system of electrons
in a crystal one can establish various properties which
are insensitive to the specific form of the interaction
between the particles. One can show that, independent
of the form of interaction, the electrons in a crystal
are not localized, that the energy spectrum must have
a band character, and finally that the accelerating ef-
fect of a constant electric field is given in the general
theory by the same formula as in the one-electron ap-
proximation. (For more details, cf. Sec. 5 in the sur-
vey E12^). However, these conclusions are so general
that they cannot be used practically for calculating the
specific quantities characterizing the properties of
metals. Thus we again come to the need somehow to
include the effects of the binary sum in (1.4). One
method may be simply to drop this sum, or in a
"softer" formulation to include it by some means in
the first additive term on the right of (1.4). In this
case we will be dealing with a one-electron theory
with a "renormalized" additive potential. This is
essentially the usual formulation of the band theory
of Bloch and Peierls. E14-' In quantum mechanics, how-
ever, there were already developed long ago more cor-
rect approximate methods for solving problems of
many interacting microparticles. In studying the prop-
erties of many-electron atoms, it was made clear that
one can with good accuracy introduce the concepts of
individual states of electrons moving in a certain ef-
fective, self-consistent field produced by the aggre-
gate action of the nuclei and all the other electrons

(the Hartree-Fock method*). Recently it has also
been shown that nucleons in atomic nuclei, like elec-
trons in the shells of atoms, form closed shells and
behave as if they moved in a self-consistent field.
Brueckner in a series of papers '-23-' has developed a
new, more complete version of the self-consistent
field method for nucleons in nuclei. Unlike the
Hartree-Fock method, where one treats the motion
of individual particles in the effective field of all
(N —1) electrons, in the Brueckner method the inter-
action between pairs of particles is treated exactly,
and one considers the motion of such pairs in the
smoothed-out effective (self-consistent) field of the
remaining (N —2) particles. A defect of these meth-
ods when applied to crystals, as compared to their
use in problems concerning atoms and nuclei, is that
whereas in the case of atoms and nuclei it is rela-
tively simple to establish a direct comparison be-
tween the calculated energies of discrete levels and
their experimental values obtained from spectroscopic
experiments, in a crystal such a comparison is diffi-
cult. In the latter case one must, as a rule, compare
with experiment the calculated microscopic character-
istics: binding energy, specific heat, kinetic coeffi-
cients, in whose calculation one must make many inter-
mediated simplifying assumptions, and we are left with
an unknown error which is introduced by them into the
final result.

During recent years, in the quantum theory of many
particles, there has also been developed with success
still another approximation method which is called the
method of quasi-particles, or the method of collective
variables (cf., for example, ^2 2 > 3 0>2 7^). This method is
especially suited for describing the motion of many-
particle systems, and is related to the special class
of their degrees of freedom which show a definite
collective character and in which the individuality of
the initial particles essentially disappears from view,
since their interaction plays the main role. A typical
example of this method is the description (in the lin-
ear harmonic approximation) of the thermal vibra-
tions of crystal lattices by using phonons which deter-
mine the collective degrees of freedom of the ionic
cores coupled to one another in the lattice. Another
example of this method is the description of weak ex-
citations (vibrations) of the spontaneous magnetiza-
tion in a ferromagnet, by using ferromagnons or spin
waves (which also are a sort of collective degree of
freedom), caused by the exchange interaction of elec-
tron spins in crystals. In the general case in a com-
plicated system of interacting quantum particles, all
the degrees of freedom can be separated into individ-
ual ones (for example, electrons in an atom or a crys-
tal moving in the self-consistent effective field) and

*Cf., for example, paper ["]
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into collective ones (such as phonons, ferromagnons,
excitons in semiconductors, etc.)-*

The method of collective variables is, however, un-
suited to our problem of explaining the origin of the
complicated dispersion law for conduction electrons
in crystals of metallic type. This method "works"
essentially for calculating branches in the energy
spectrum of the system for those elementary excita-
tions (quasi-particles) which are either small (so
that the ratio of their number to the total number of
degrees of freedom may be taken as a small dimen-
sionless parameter in the theory) as is the case in
the theory of spin waves in ferromagnets at low tem-
peratures, or where the form of the interaction energy
admits such a unitary coordinate transformation that
the "undesirable t e r m s " associated with the double
sum in (1.4) disappear, as is the case in the harmonic
approximation for the case of thermal vibrations of a
crystal lattice (cf., for example, Sec. 105 in ^3 1-'). In
the case of a system of interacting conduction elec-
trons, however, both these conditions are not realized,
since the number of quasi-particles in the system is
equal to the number of particles one starts with, and
the energy does not have a harmonic character.

The whole theory of collective behavior of systems
of many particlest was used with success for metals
and made it possible to improve our picture of the
ground state of the conduction electrons and to intro-
duce corrections associated with their dynamical cor-
relations in calculating certain statistical and kinetic
quantities for metals. These successes are associ-
ated with the plasma variant of the method of collec-
tive description of interactions. The experimental

*In the survey of tet HaarP'J a simple example is given of
such a splitting of degrees of freedom for a system of two parti-
cles of mass m, and m2 with radius vectors r, and t2, momenta
p, and pa, interacting through a potential U(rI—ra) and placed in
the gravitational field of acceleration g. The Hamiltonian of
this system according to (1.4) has the form

Я = Ж.+Ж
If we introduce the relative coordinates of the particles г and
the center of mass R and the conjugate momenta p and P, H
takes the form

M

т> *
M

This Hamiltonian describes the collective motion of the center
of mass and the individual motion of the quasi-particles, with
the effective (reduced) mass p, moving in the self-consistent ef-
fective field with the potential U(r). This method is well known.
For example, it is used in solving the problem of the simplest
atomic system, the one-electron hydrogen atom (when one in-
cludes the nuclear motion), in treating excitons in superconduc-
tors as electron hole pairs, etc.

tHere we should mention the papers of Bohm and Pines,i"J
Zubarev.M Zyryanov,M Tomonaga;[35l cf. also the survey of
Pinest"] and ter Haar.f27]

and theoretical investigations of plasmas* have shown
that electrons in plasmas exhibit a strong correlation,
and they are therefore more similar to a liquid than
to a gas. Because of their high mobility, the electrons
have a strong screening action, so that the interaction
potential between the charges in the plasma is not the
Coulomb potential ~ e 2/r, but has the form of a
screened potential: ~ (e/r)e" r ' ^-D > where A.j)
= (m(v2)/127rne2)1^2 is the screening radius, or Debye
length (here n is the density of particles in the plas-
ma, (v 2 ) is the mean squared velocity of the par-
ticles ). In magnitude, \ D at normal densities of con-
duction electrons in metals (n ~ 1023 cm" 3 ) is of the
order of the lattice constant (~ 10~8 cm). The second
effect which occurs in the plasma is the nature of vi-
brations of the charges around their equilibrium posi-
tions and is called plasma oscillation. For these oscil-
lations there exists a non-zero minimum frequency
whose magnitude is equal to Wpias = (4mtie2/m)1/2. For
ordinary densities of conduction electrons in metals
<*>plas is ~ 1016 sec" 1 . Thus the energy quanta for
these vibrations (plasmons) are Kwpias — Ю"1 1 erg

p

s 10 e V . F r o m the p l a s m a m o d e l of a m e t a l i t f o l -

l o w s that t h e conduct ion e l e c t r o n s c a n p a r t i c i p a t e both

in c o l l e c t i v e m o t i o n ( p l a s m a o s c i l l a t i o n s ) a s w e l l a s

in individual motions. The Debye wavelength Хц is a
convenient characteristic parameter of the theory in
studying these two types of motions. For phenomena
which are associated with distances larger than Xj),
the system behaves as "collective," as a gas of os-
cillators—plasmons. For phenomena with a charac-
teristic distance smaller than A.£>, the system behaves
like a system of quasi-individual particles which in-
teract weakly via a screened potential. These conclu-
sions are obtained both in the classical theory of
plasma, as well as in the quantum theory. The latter,
however, holds only under the condition that the Debye
wavelength A.£> is sufficiently large compared to the
de Broglie wavelength of the corresponding particle
A-B = Й/р. For example, in his survey of the plasma
model of metals, Pines'-36-' gives a detailed computa-
tion of the correlation corrections to the energy of an
electron gas (i.e., corrections because of dynamical
interaction) associated with the long-range and short-
range (compared to \^) parts of the Coulomb repul-
sion of electrons with antiparallel spins. He also
considers the effect of electron interaction on differ-
ent physical properties of metals and the question of
the excitation of plasma oscillations in connection with
the characteristic energy losses of fast electrons
passing through metals. Some of these "correct ions"

*By a plasma we mean a gas of positively and negatively
charged particles with a density of the order of 10" cm"1, which
is of great importance in phenomena of electrical discharges,
thermonuclear processes, etc. The electron gas in a metal is
distinguished by the fact that in it the positive charges form a
crystal lattice, while the density of the electrons reaches very
large values, ~10" cm"3.
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will be discussed by us later in Sees. 2 and 3 in pre-
senting specific results concerning the description of
magnetic properties of metals and their electrical
conductivity.

The plasma model introduced a fresh point of view
in the problems of metals and made it possible, to a
certain extent, to overcome the limitations of band
theory in its one-electron form. However, it was not
free of model simplifications, so that one cannot r e -
gard the plasma treatment of a metal as consistent
and complete and suitable for a rigorous description
of the properties of strongly interacting systems of
conduction electrons, and certainly not for explaining
the origin of the complicated dispersion law, the form
of the Fermi surface, etc. The most annoying and
weak point of the plasma theory of metals is the fact
that for actual densities of conduction electrons in
real metals, the characteristic plasma Debye wave-
length Л.£) is comparable in order of magnitude with
the de Broglie wavelength Ag for electrons at the
Fermi surface. One therefore cannot take over to
the case of electrical conduction in metals the con-
clusions of the classical plasma theory. In regions of
space with linear dimensions of the order of Ад ~ Ag
it is already necessary explicitly to take into account
specific quantum effects (of the type of diffraction of
electron waves, etc.) . Therefore the conclusions of
plasma theory are closer to the real situation in met-
als in the case of heavy metals, where the condition
Aj} > Ag is already more or less satisfied. Just be-
cause of this fact, the plasma model gives fairly good
results for those effects for which the characteristic
wavelength I satisfies the condition I > Ад (for ex-
ample, the scattering of sound waves with wavelength
A > AD, etc.) .

In recent years there has been begun a very inten-
sive development of rigorous quantum-mechanical
methods for treating problems of solid state physics.
In this connection we should make one important r e -
mark concerning the features of solids (including
metals ) as systems of many interacting quantum par-
ticles. ^26-' These bodies have a very large number of
degrees of freedom (~ 1O23), and consequently their However, as has been shown by theoretical calcu-

energy spectrum has an unusual richness in levels. lations using the new quantum-statistical methods
From quantum statistics it is well known (cf., for (density matrix, Green's function, etc.), such a
example, Sees. 5, 7 in ^37^) that the average spacing smearing may not occur, or it may be relatively
between neighboring levels D(E) is given by the formula small. Therefore, in real many-electron systems

,e_soE) with arbitrary interactions, in some sense one r e -
tains the concept of a Fermi surface as the surface

where S(E) is the entropy of the system, and is pro-
portional to the number of particles. Therefore the
distance between levels is a negligibly small quantity
exp ( —1023). Because of this superhigh density of lev-
els, it follows that condensed bodies are not in rigo-
rously stationary states. This is due first of all to the

greater than the distance between levels given above.
Secondly, there is still the natural quantum broaden-
ing of energy levels associated with the uncertainty
relation for energy and time: ДЕ At ~ K. These cir-
cumstances lead one to the conclusion that in a micro-
scopic treatment of the physical properties of con-
densed macrobodies one should, as a rule, use not
quantum mechanics, but quantum statistics; one should
not concern oneself with determining the eigenfunc-
tions of a quantum mechanical system and its energy
spectrum, but rather with finding the statistical oper-
ator or the density matrix, 3 7-' which are the quan-n-
tum mechanical analogues of the distribution function
of classical statistics. This is precisely the direction
in which the development of the most consistent quan-
tum treatment of the problems of solid state theory is
going at present. * Before presenting the results of
the application of quantum statistical methods to the
problems of metals which we are interested in, let us
first, following Herring, ^^ consider the purely qual-
itative explanation of the influence of electron inter-
actions on the nature of the distribution of the elec-
trons over quasimomenta, which in the non-interacting
system of fermions has the form of a Fermi step-func-
tion (cf. Fig. 1). If we start from the notion that ini-
tially, in the interacting system, the distribution
function had such a step shape, then when we include
the electrostatic repulsion of electrons they can no
longer remain permanently in states with a definite
value of the vector k. Because of the action of the
forces between the particles, they experience an ac-
celeration and therefore will at some time move
faster than was assumed in the case of the absence
of interaction. Because of this the distribution f (k)
"below" the Fermi surface will now be less than
unity and "above" it it will be different from zero.
At first glance one might think that the Fermi step
function (cf. Fig. 1) would, as a consequence, get
smeared out completely (just as should occur for
an ideal Fermi gas at temperatures which are con-
siderably above the degeneracy temperature, T

at which the distribution function experiences a sharp,
discontinuous change. Consequently, also in the case
of a system of interacting particles there are excited
states of the many-electron system which, although
they are somewhat changed in form, still in the strict

fact that the energy levels of the system always suffer
broadening because of unavoidable interactions with
the surrounding medium. This broadening is always

•Aside from the surveys previously mentioned,[*2> 26> 27] in
which some use is made of the density matrix, we should also
mention special surveys devoted to this problem.[3'~40]
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sense can be described as having holes in certain
states just below the Fermi surface and excited elec-
trons immediately above the Fermi surface. However,
this analogy of the states of a many-electron system
with the states of an ideal gas of Fermi particles is
valid only for states in the immediate vicinity of the
Fermi surface. The point is that if we imagine the
states of a system of interacting particles as having
an excited electron or a hole in states very remote
from the Fermi surface, then the electron-electron
"collisions" will be so intense and the excited elec-
tron or hole will shift so rapidly into other "momen-
t u m " states that the initial states (which are very
far from the Fermi surface) cannot at all be regarded
as stationary. However, as the excited states approach
the Fermi surface, the collisions become very rare
and such initial states differ very little from stationary
states. Thus, in the space of quasi-momenta there
will exist a surface such that when one passes over
it the probability of occupation of the possible one-
electron states suffers a jump, and in the immediate
neighborhood of which there may exist quasi-particles
of the type of electron and hole which can transport
current, be accelerated in an external field, etc. This
surface is the Fermi surface. It exists in a metal and
does not exist in an insulator in which the energy of
the ground state is separated by a gap from the energy
of the first excited states. However, a Fermi surface
does not exist for every system of fermions. For ex-
ample, as pointed out by Luttinger, t*23 a system of
interacting deuterium atoms, subjected to Fermi sta-
tistics, in its ground state forms a molecular crystal
of D2 molecules and shows no traces of a Fermi sur-
face in its distribution of particles over momenta.
Therefore the existence of a Fermi surface seems to
depend on the nature of the forces between the fermi-
ons. At this point there is still no complete under-
standing of the theory. For example, Luttinger ^ 2 ^
investigated a case where the forces between particles
can be expanded in perturbation series (convergent in
the usual sense). However, the question still remains
whether the system of conduction electrons in a metal
satisfies this requirement. One can only again appeal
to the good agreement with experiment of the numer-
ous results of the band theory and the phenomenological
theory of fermions. Mathematically, quantum mechan-
ical treatments at present are as a rule carried out
using the Green's function method (cf., for example,
the surveys 11*3-45])* -phis method is analogous to the
well-known method of the Green's function in mathe-
matical physics, where this function plays an auxiliary

*The Green's function method was first developed for prob-
lems of the quantum theory of fields,["'"I UoTa which it was
borrowed for solving problems of many interacting particles in
the non-relativistic quantum theory of condensed bodies. The
first papers where this method was applied for systems of inter-
acting fermions are due to Midgal and Bonch-BruevichM (cf.
also the collection of translationsL49]).

FIG. 4. Schematic picture of
the distribution function f(k) for
a system of interacting fermions
(0 < Af(k0) < 1).

I

role in finding the solution of differential equations.
Of especial interest is the so-called temperature
Green's function, C46^ by means of which one can very
conveniently define the statistical characteristics of
quantum systems of many particles over a wide range
of temperatures. By means of temperature Green's
functions, for the case of a system of interacting elec-
trons, one can find the distribution function in the fol-
lowing general form:

dE 1 ГкоЛБ)

1.5)

where к is the Boltzmann constant, 7 (k, crz) is the
renormalized energy of the quasi-particle, "iil^jZ is
a mass operator taking into account the interaction
between particles, and F ^ z is a quantity describing
the damping of quasi-particles caused by all of their
interactions (among themselves and with other sources
of field), £ is the chemical potential of the system,
i.e., the Fermi energy. If we neglect damping and the
mass operator, expression (1.5) goes over into the
usual Fermi distribution function for a gas of non-
interacting fermions, with a dispersion law

As was shown, for example, in E42^, even when one
includes the quantity §№ in Г, it turns out that there
is an abrupt change in the distribution function; the
surface where this occurs is the Fermi surface for
the system of interacting particles. There is every
reason to believe that this jump differs little from
unity and that the distribution function has the form
shown schematically in Fig. 4. One can also show
that the volume in к space, bounded by the surface
of discontinuity of the distribution function for the
system of interacting fermions, is equal to the volume
bounded by the Fermi surface of an ideal gas of fermi-
ons. Thus the interaction can deform the Fermi sur-
face, but it cannot change the volume bounded by it.
In the isotropic case the Fermi surface preserves its
spherical form even when interactions are included.
These computations can also be generalized to the
case where the system of interacting fermions is
placed in the periodic field of an ionic lattice. Here
one can have three cases: one of them corresponds to
a metal, where the Fermi surface lies within an en-
ergy band, and the two others to the case of semicon-
ductor or insulator where there is a completely filled,
or a completely empty band. Thus one can in a certain
sense say that the many-electron theory has already
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given a basis for band theory in its phenomenological
form. One should also mention that the phenomeno-
logical theory of the Fermi liquid due to Landau E243
also finds its justification in the microscopic quantum-
statistical theory of many particles (ef., for example,
the appendix to the survey C24"^).

So far it has been assumed that the metallic crystal
consists of a system of collectivized conduction elec-
trons (arising from the valence electrons of the iso-
lated atoms) and a lattice of ionic cores with closed
electron shells which are in s-states, i.e., having
completely compensated orbital and spin-angular mo-
menta (mechanical and magnetic). This is the case
for the so-called normal or non-transition metals. In
addition there also exist metals made up of atoms of
the transition elements, which have incomplete inner
d- or f-shells of electrons. These metals are called
transition metals. The electrons of the incomplete
shells, when they condense into a crystal, take an ac-
tive part in the formation of the collective electron
properties, and thus introduce many special features
into the physical properties of transition metals as
compared with the properties of non-transition metals.
Here one must also distinguish transition metals made
up of atoms with incomplete d-shells (metals of the
iron group, with an incomplete 3d-shell, the palladium
group with an incomplete 4d-shell, and the platinum
group with an incomplete 5d-shell) and those with in-
complete f-shells (the rare-ear th metals with an in-
complete 4f-shell and the actinide metals with an in-
complete 5f-shell), i.e., we must distinguish between
d-metals and f-metals. This difference is caused by
the difference in effective radii of these shells rela-
tive to the distance between lattice sites—between
nearest neighbors in the crystal. In the d-metals,
the d-shells overlap considerably for neighboring
sites, and this results in a collectivization of these
electrons which, together with the former valence
electrons, form a complex system of conduction elec-
trons for the transition d-metals. These metals have
a high density of conduction electrons which manifests
itself, for example, in a high value of the electronic
specific heat, E19^ a more complicated distribution of
electron density in space, and also a more compli-
cated form of the Fermi surface and the dispersion
law. In them the conduction electrons occurring from
collectivization of the former d-shells also have an
increased value of their effective mass (in the band
picture, the d-electrons correspond to a very narrow
energy band in the spectrum). But in the case of the
f-metals the radii of the f-shells are so small that
the corresponding electron clouds in crystals are
almost completely non-overlapping, and therefore the
incomplete f-shells are practically bound tightly to
the ion cores. Thus in the f-transition metals these
cores have an unfilled electron shell with non-zero
spin and orbital mechanical and magnetic angular mo-
menta. This fact also results in many specific fea-

tures of the electronic properties of the f-metals. The
above description shows clearly that the problem of
the transition metals has a significance of its own in
the general problem of the theory of the metallic state
of matter (for more details, cf. the survey'-50-').

Thus we can cite certain accomplishments of the
treatment of the general properties of the system of
conduction electrons in metals. This system is an
aggregate of interacting fermions. The ground state
of the system has a large zero-point energy (the
Fermi energy). In the space of quasi-momenta there
is a surface of discontinuity of the distribution func-
tion—the Fermi surface. The energy spectrum of
this system is continuous.* Excitations of individual
type have the character of excited electrons and holes
(because of the complicated dispersion law, these ex-
citations also have a more complicated character than
was assumed in the elementary band model). In addi-
tion, in the excitation spectrum there may also be
Bose branches associated with plasma oscillations
of the electron system and also with vibrations of the
spin system (spin waves ).t As an illustration, we
now consider qualitatively the explanation of two
typical electronic properties of metals: magnetic
properties (Sec. 2) and electrical conductivity (Sec. 3).

2. MAGNETIC PROPERTIES OF METALS

The system of conduction electrons and the lattice
of ion cores of a crystal, like any system of moving
electrically charged particles, has definite magnetic
properties. In this system, as in any magnet, there
exist together two magnetic "tendencies," dia- and
paramagnetic. The first is associated with the in-
duced action of external electromagnetic fields on
the molecular currents in the material, which pro-
duce a diamagnetic moment in the body which is di-
rected opposite to the field producing it (Lenz's law).
The paramagnetic tendency is associated with the or i -
entation effect of external magnetic fields on the in-
trinsic magnetic moments of the microparticles of
the matter. In addition, the internal interactions be-
tween the particles of the system have an essential
influence on the magnetic properties. Thus the car-
r iers of magnetism in metals as in other bodies are

*In many metals, however, because of the interaction of con-
duction electrons with the lattice vibrations (phonons), effective
attractive forces appear between them which produce a gap in
the energy spectrum and lead to the phenomenon of superconduc-
tivity. A more detailed treatment of this question would go be-
yond the realm of the present survey (cf., for example, the sur-
veysf"1"] or the monograph!"]).

tin principle one can also imagine the existence of Bose
branches in the spectrum of collectivized electrons of a crystal
with excitations possessing a charge (in contrast to the un-
charged excitations of the type of excitons, ferromagnons, etc.).
However, so far in experiment such branches of the electron
spectrum have not been observed. (Cf., concerning this question,
paperM).
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the electrons and the atomic nuclei. Nuclei and elec-
trons differ markedly in the magnitude of their mag-
netism. This is caused by the fact that the quanta of
electronic magnetism (the Bohr magneton ц-g
= efi/2mc s 10~20 cgs emu) and of nuclear magnetism
(the nuclear magneton д п = eK/2Mc =s 10~23 cgs emu;
here M is the mass of the nucleon which is equal to
1836.5 times the electron mass m) differ by almost
a factor of 2000 (juB/jun = 1836.5). We therefore con-
sider only the stronger magnetism of the electrons.*
Here we should distinguish between the magnetism of
the conduction electrons and the ion cores, and also
between the cases of transition and non-transition
metals.

A. Magnetic properties of conduction electrons and
ion cores in non-transition metals. As is well known,
the electron has an intrinsic magnetic moment associ-
ated with its spin. The magnitude of this moment is
•/3~jt*B, and it may be directed only in two ways rela-
tive to the axis of quantization—the direction of the
external magnetic field: ±/^g. In addition, the elec-
trons in a metal carry out "orbi ta l " motions associ-
ated with a quasi-momentum k. The external field H
will change this motion, producing a Larmor preces-
sion of the electrons whose magnetic moment causes
a diamagnetic effect. The quantum nature of the elec-
tron, primarily the Fermi character of its energy
spectrum, results in particular para- and diamagnetic
effects in metals. Generally speaking, these effects
always exist together, and they should strictly speak-
ing be treated simultaneously. But since, as a rule,
the paramagnetic effect is greater than the diamag-
netic, one can approximately treat them separately.

Al. Spin paramagnetism of the conduction electrons
(Pauli C2°]). The system of conduction electrons in the
approximation of the ideal Fermi gas, in its ground
state has no resultant spin magnetic moment, since
all the unit cells in the quasi-momentum space are
occupied by two electrons with opposite spin projec-
tions. This is one of the examples of the fact that the
Pauli principle (the antisymmetric character of the
wave function) in systems of fermions leads to a fun-
damental dependence of their energy on their magnetic

W-o)

•Naturally the magnetic properties of systems of atomic nu-
clei in metals have various specific features associated with the
interaction of conduction electrons and nuclei of the type of
hyperfine structure for isolated atoms. The deviation of the wave
function of the conduction electrons from zero in the region oc-
cupied by the nuclei makes this interaction (the contact Fermi
interaction) very important and is the cause of specific features
of nuclear magnetic properties in metals. Concerning this prob-
lem, cf. the surveyst99'100]. The magnetic interaction between
conduction electrons and atomic nuclei in ferro- and antiferro-
magnetic metals has taken on special interest in connection with
the discovery of the Mossbauer effect,[101] which gives the pos-
sibility of measuring the magnitude and sign of the effective
magnetic field, acting on a nucleus, produced by the electron
system in the crystal. This problem is discussed in more detail,
for example, in the surveyt50] and also in[105].

H-0,1-0 И*0, 1-0 НФО, 1*0
а ) Ь ) с)

FIG. 5. Distribution functions of electrons with different spin
projections, omitting exchange and correlation corrections, a) in
the absence of magnetic field (H = 0); b) in the presence of a
magnetic field in the unmagnetized state (H Ф 0, I = 0); c) in the
magnetized state (H ф 0, I Ф 0).
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m i o n s . T h i s i s p r e c i s e l y t h e c a u s e of t h e s p e c i f i c
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t u r n i n g o n of t h e f ie ld , t h e d i s t r i b u t i o n f u n c t i o n s *

г*(е) for the electrons with different spin projections
do not differ from one another (Fig. 5). After turning
on the field, there occurs a lifting of the spin de-
generacy and the functions f+(e) and f~(e) "shift"
relative to one another by an amount 2^gH along the
energy axis (i.e., by the amount of energy which is
required to change the sign of a spin projection in the
field to its reverse) . This shift in the levels destroys
the equality of the energies for the states with oppo-
site projections of the spin, and therefore destroys the
equal population of states with opposite projections, so
that it no longer corresponds to a minimum in the en-
ergy of the system. Electrons shift over from the
" r a i s e d " distribution to the "lowered" one, so that
one again has a common Fermi surface (cf. Fig. 5),
but in doing this a magnetization appears in the fer-
mion gas. If we neglect the change in the distribution
function f(e) over the energy interval ~ ц^И (this
is justified for fields & 104 Oe, since the energy /ij$H
is then equal to ~ 10~20 x Ю4 ~ 10"1 6 erg, and conse-
quently is 104—105 times smaller than the Fermi en-
ergy ~ 10"12— 10~u erg), the magnetization produced
by the field will be equal to

and consequently the paramagnetic susceptibility will
be

*We are speaking here of the distribution function in energy
f(e), and not with respect to wave vector f (k). In the case of a
quadratic dispersion law, it has the form: f (e) = 4тг/Ь3 (2m)*" x
е й for e < £, and f(e) = 0 for e> £(cf. Fig. lb).
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Хрт(е1)~ц|/(£), (2.2)

i.e., in first approximation it will be determined en-
tirely by the electron levels in the neighborhood of the
Fermi surface. One can also show that in this same
approximation Xpm(el) i s independent of the tempera-
ture T. In fact, because of the high degeneracy of the
electron gas, only the thermally excited electrons will
participate in the paramagnetism, and their density in
first approximation is determined by the ratio of the
temperature T to the degeneration temperature of the
Fermi gas в = £/k, i.e., nx = n(kT/£). Each electron
of the total number n^ will behave like a classical
particle with magnetic moment nj$, i.e., it will be sub-
ject to the Curie l a w ^ for susceptibility: x = п т ^ в /
ЗкТ. Replacing n^ by its expression written above,
we find for the susceptibility of the Pauli magnetism
of a Fermi gas

- з ^ . (2.3)

Table I. P a r a m a g n e t i s m of conduction
e lec t rons in alkali m e t a l s

(for

From this we see that Xpm(el) ш ^ s approximation
actually is independent of T. A more exact calculation
shows that Xpm(el) depends weakly on T. Including
the interaction changes somewhat the value of Xpm(el)-
Thus, for example, Hartree-Fock exchange corrections
to the energy increase the susceptibility Xpm(el)> since
they reduce the Fermi energy. On the other hand, Cou-
lomb correlation corrections raise Xpm(el) a n d there-
fore partially compensate the effect of exchange cor-
rections. For example, for alkali metals we give in
Table I values of Xpm(el) calculated for an ideal Fermi
gas and with corrections for correlation. We also give
values of the mean distance between "neighboring"
electrons r s in units of the Bohr radius. From Table I
we see that the compensation of "correct ions" for cor-
relation improves with increasing r s . * Experiments
for determining xpm (by the method of paramagnetic
resonance) for example, for lithium E55^ give a value
Xpm = (2-° ± 0.3) x 10~6 (at room temperature), which
is in good agreement with the calculated theoretical
value 1.87 x 10~6. The many-electron theory of fermion
systems ^i2^ and the theory of the Fermi liquid ^24b^ also
give correlation corrections like the plasma model.

A2. Orbital diamagnetism of conduction electrons
(Landau E21J). From classical electrodynamics it is
known that a magnetic field H directed along the z
axis will cause an electron moving in this field to
undergo a precession with a Larmor frequency шц
= eH/mc. The circular precession around the z axis
can be resolved into a sum of two mutually perpendic-
ular linear periodic motions along the x and у axes.
As was first shown by Landau, t21^ in quantum me-
chanics these motions are quantized according to the
law for a linear harmonic oscillator, with the discrete
energy spectrum

Metal

Li
Na
К
Rb
Cs

3.22
3,96
4.87
5.18
5.57

id
*pm(el)

X106

1.17
0.64
0.48
0.44
0.38

corr
*pm(el)
xio"

1.90
0,85
0.60
0.52
0.43

(2.4)

where n = 1 , 2 , 3 , 4 . . . a r e the quantum numbers of the
o s c i l l a t o r s . The motion along the z axis is not quan-
tized, but r e m a i n s f ree with a continuous energy s p e c -
t r u m p | / 2 m . Knowing the energy s p e c t r u m of the
e l e c t r o n in a magnetic field, one can by using the usual
formulas of s ta t i s t ica l physics E8bH calculate the d ia-
magnet ic susceptibi l i ty Xdm(el) °f t h e F e r m i gas of
e l e c t r o n s . It i s equal to one-third of i t s paramagnet ic
susceptibi l i ty (2.3). In the band theory, where one
takes into account the effect of the ionic la t t ice, the
expres s ion for Xdm(el) * s m o r e complicated. In
p a r t i c u l a r , the c o r r e c t i o n to Xdm(el) depends e s s e n -
tial ly on the shape ( c u r v a t u r e ) of the F e r m i sur face
and may have e i ther a posit ive o r a negative sign, or
may be fundamentally ani sot ropic . In Table II we give
a c o m p a r i s o n of the theoret ica l ly computed values of

Xdm(el). Xpm(el)' m d Xdm(ion) of the ionic c o r e s
with exper imenta l m e a s u r e m e n t s of the total s u s c e p t i -
bility of alkali m e t a l s at room t e m p e r a t u r e . F r o m
Table II we see that the theory gives too high (in a b -
solute value) values for the Landau diamagnet i sm.
This presumably indicates the crudeness of the theory
for this purpose .

A3. The de H a a s - v a n Alphen effect. At low t e m p e r -
a t u r e s t h e r e is a very in teres t ing phenomenon, re la ted
to the diamagnet i sm of the conduction e lec t rons in
m e t a l s . This phenomenon cons i s t s of a per iodic ( o s c i l -
la tory ) dependence of the magnet ic susceptibi l i ty of a
l a r g e number of m e t a l s (beryl l ium, bismuth, zinc, tin,
magnes ium, indium, cadmium, gall ium, e t c . ) , d iscov-
e r e d by de Haas and van Alphen. E56H This effect is a

Table II. Diamagnetic susceptibi l i ty of conduction e l e c -
t r o n s of alkali m e t a l s (at room t e m p e r a t u r e )

*In this connection, see the note in Sec. 1 concerning the
domain of validity of the plasma model.

Metal

Li
Na
К
Rb
Cs

Xpm(el)
x i o '

1.87
0,84
0,59
0.51
0.42

^dm(el)
XIO6

—0.18
—0.25
—0.21
—0.21
—0.21

*dm(ion)

X 106

—0.05
—0.18
—0.31
—0.32
—0,42

*tot
xio 6

1.64
0.41
0.07

—0.02
—0.21

*exp X Ю6

1,97 — 2,11
0.65 — 0.74
0.36 — 0.49
0 , 1 1 — 0 . 3 3

—0.20 — 0.44
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FIG. 6. Schematic diagram of
the quantization of the energy of
conduction electrons in an exter-
nal magnetic field.

H-0

purely quantum effect (like all the equilibrium mag-
netic properties of materials'- ^) and is caused pr i-
marily by the high degeneracy of the conduction elec-
trons, and secondly by the effect of quantization of the
energy of these electrons in a magnetic field [cf. (2.4)].
In the absence of a magnetic field, the energy spectrum
corresponding to the progressive motion of conduction
electrons in the (x, y) plane is continuous (cf. Fig. 6).
When the external field H along the z axis is turned
on, the spectrum for these degrees of freedom, accord-
ing to (2.4), splits into narrow, discrete bands of width
ДЕ = 2JUBH [(n + V2 + 1) - (n + У2)] = 2 ц В Н , each of
which i s " s q u e e z e d " down into one d i s c r e t e level,
which is 2/^JJH -fold degenera te . F o r a given value of
the field H, the F e r m i level falls on one of these d i s -
c r e t e leve l s . If we now change the magnitude of the
field, we will change the d e g r e e of degeneracy of the
d i s c r e t e levels , i .e., they will be c o m p r e s s e d from
bands of another s ize 2/xgH', and the F e r m i level will
then jump per iodical ly from one level to another . This
should lead to osc i l la tory effects for all the equi l ibr ium
and kinetic c h a r a c t e r i s t i c s of conduction e lec t rons when
we change the value of the magnet ic field. With i n c r e a s -
ing t e m p e r a t u r e , when the F e r m i s tep begins to get
s m e a r e d out, the osci l lat ions will d iminish. Lifshitz
and Kosevich, ^57^ within the f ramework of the p h e -
nomenological theory of m e t a l s with an a r b i t r a r y d i s -
p e r s i o n law for fermions, have worked out a cons i s tent
and detai led theory of the de Haas—van Alphen effect.
The m o s t important conclusion of this theory is the
es tab l i shment of a regu lar i ty in the re la t ion between
the oscillation period Д(1/Н) (expressed in units of
the reciprocal field l/H) and the extremal cross sec-
tional area S m of the Fermi surface perpendicular to
the field H. Thus detailed investigations of the de Haas
-van Alphen effect in single crystals enable one to r e -
produce the shape of the Fermi surface and to deter-
mine the velocities of electrons at the surface, etc.
Comparison of the theory and experiment in static
fields of the order of 103—104 Oe has shown that in
metals, in which one observes most clearly the effect
of oscillation of the magnetic moment, there exist
anomalous groups of small numbers of electrons
(holes) with small values of the effective mass. A
further improvement and extension of the experiments
and theoretical calculations of this effect is an impor-
tant problem for the further development of the quan-
tum theory of metals. It should be mentioned that
Luttinger, within the framework of the many-electron
calculations using the Green's function method, has
shownE58J that in a magnetic field one obtains oscilla-

tory effects in period and amplitude of the same type
as in the calculation of Lifshitz and Kosevich, ^57^ but
that the phases of the oscillations are more complex
in nature.

A4. Diamagnetism of ion cores with closed shells.
In the case of non-transition metals, the electronic
shell of the ion cores of metal crystals are in an S-
state with completely compensated orbital and spin
magnetic moments. Therefore, the ion cores can
only make a diamagnetic contribution to the electron
magnetism of the crystal (cf., for example, Table II).
A calculation of the diamagnetic susceptibility of ion
cores is usually carried out by the method of the self-
consistent field for isolated atoms. In principle, of
course, one should in crystals include the mutual po-
larization of the ion cores and the influence on the
charge distribution in them of the conduction electrons.

B. Magnetic properties of conduction electrons and
ion cores of transition metals. C5(0 As already pointed
out at the end of Sec. 1, transition metals should have
specific electronic properties since in them in the for-
mation of the electron system an important part is
played not only by the former valence electrons of
the isolated atoms, but also by the electrons of the
unfilled d- and f-shells. Then, as already pointed
out above, in the case of the d-transition metals there
is a significant increase in the density of conduction
electrons because of the active participation in this
system of the former d-electrons, so that the mag-
netic properties of these metals are determined by
changes in the system of conduction electrons. In the
case of the f-transition metals, the f-electrons are
practically not collectivized and remain rigidly bound
to the ion cores, so that the magnetic properties of
this class of transition metals will essentially be de-
termined by changes in the structure of the ion cores,
by their strong paramagnetism. Before proceeding to
calculate the main types of magnetic states realized
in transition metals, let us consider the general ques-
tion of the possible magnetic properties of a system
of interacting fermions. We have seen on the example
of an ideal gas of Fermi particles that there is a very
strong "antimagnetic" tendency, since the ground state
of such a gas has no magnetic moment (because com-
plete compensation of the spin moments occurs within
the volume bounded by the Fermi surface). If, how-
ever, we include exchange interaction between the con-
duction electrons, then, as first shown by J. I. Frenkel,
M there also appears a tendency which is favorable
to the magnetization of the Fermi gas. In the approxi-
mation of the Hartree-Fock method; where we include
this interaction, the energy (expressed in Rydbergs)
of unit volume of the electron gas, for the unmagnetized
state is equal to

2.21 0,916 (2.5)

The first term in (2.5) is the kinetic energy (Fermi
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energy), and the second term is the exchange energy.
For the completely magnetized state the energy is

3.52 1-156
(2.6)

From a comparison of (2.5) and (2.6) one can easily de-
termine that for r s > 5.45 a gas of Fermi particles
should be magnetized to saturation, i.e., should be fer-
romagnetic. However, for example, in the case of the
alkali metal cesium, where r s = 5.57, ferromagnetism
is not observed. This disagreement with experiment,
as was first pointed out by Wigner, C593 is explained by
the fact that, in the expressions given for the energy
of a Fermi gas, the interaction has not been included
accurately enough. The difference between the exact
energy and expressions (2.5) or (2.6) is called the cor-
relation energy. This energy also is favorable to the
unmagnetized state of the electron system. In all the
non-transition metals the exchange energy cannot
overcome this demagnetizing tendency of the Fermi
energy and the correlation energy, so that in these
metals one does not observe the phenomena of ferro-
and antiferromagnetism. But in the case of the transi-
tion metals, where we have a high density of electron
levels at the Fermi surface, narrow energy bands and
large effective masses of electrons, the situation may
become more favorable for the exchange energy, and
the electron system may achieve a spontaneous mag-
netic moment, i.e., we may have the case of ferromag-
netism (or antiferromagnetism). These concepts are
the basis of the so-called collective electron model in
the theory of ferromagnetism. The most up-to-date
treatment of this model is given in the paper of
ShimizuC60^ (cf. also the survey C5°3).

Bl. Spin paramagnetism of collectivized electrons
in transition d-metals. If in the system of collectivized
electrons of d-metals the magnetizing tendency of the
exchange interaction is completely suppressed, the
metal will be in a paramagnetic state (if, of course,
the spin paramagnetism of the electrons in the crystal
exceeds the sum of the diamagnetic Landau effect and
the diamagnetism of the ionic cores with closed shells).
The electron paramagnetism of the transition d-metals
as a rule is much greater, for example, than the para-
magnetism of the alkali metals. This can be under-
stood even from formula (2.2) from which we see
that Xpm i s proportional to the density of electron
levels at the Fermi surface. The same quantity in the
transition d-metals is considerably greater than in
the non-transition alkali metals, which also explains
the increase in Xpm f ° r the first group. This conclu-
sion is confirmed by the fact that for the d-metals we
have a much higher value for the electron specific heat
than in alkali metals, and the specific heat is also pro-
portional to the electron density at the Fermi surface.
(This problem is discussed in more detail in ^61J and
also in the survey C50^).

B2. States of atomic magnetic order in transition
d-metals and alloys. In those cases where the ex-

change interaction in a system of former d-electrons,
subjected to considerable collectivization in a crystal,
"conquers" the antimagnetic tendency of the Fermi
energy and the correlation effects, in the low-tempera-
ture region (from 0°K up to the critical Curie or Neel
point), an atomic magnetic order may appear. This
can be either ferromagnetism, in which case the sys-
tem has a non-zero resultant magnetic moment (spon-
taneous magnetization), or antiferromagnetism, where
there is no resulting moment, but there is a spatially
ordered distribution of electrons with opposite projec-
tions of their spin magnetic moments.* Experiments
show that of the 24 transition d-elements (iron, pal-
ladium, and platinum groups) only in five metals of
the iron group does one have a state with atomic mag-
netic order: ferromagnetic in iron, cobalt, and nickel,
and antiferromagnetic in chromium and manganese. In
addition, there are a large number of alloys of these
metals which possess ferro- or antiferromagnetism.
Ferro- and antiferromagnets of this group of mate-
rials have characteristic features. Let us mention
some of the most typical. First, the average atomic
magnetic moments in these materials t differ consid-
erably in magnitude from the values of the magnetic
moments of isolated atoms and ions of these elements,
or from the moments of these ions in non-metallic
compounds. In addition the average atomic moments
are fractional (in units of /гц); for example in the
case of iron /ха̂ ф р е = 2.22/ug, for nickel /zat, Ni = 0-61,
etc. It is also important to point out that the ferro- and
antiferromagnetism of the d-metals and alloys as a rule
has a purely spin character and that the orbital mo-

*Landau["] pointed out that, in the general case, the symme-
try of the crystal determines not only the symmetry of the scalar
function p(r) for the electron density, but also the symmetry of
the time-averaged vector function for the microdensity of elec-
tric current, j (r). All bodies can be divided into two classes:
j =/= 0 and j = 0. For j Ф 0 the integral of j over a unit cell of
the crystal, /j d-c is equal to 0, for otherwise there would appear
a large positive energy of the magnetic field of the microcurrents
which would appear within the volume of a body and this is ther-
modynamically unfavorable. However, in bodies with j Ф 0 there
can arise a non-zero macroscopic magnetic moment M = Ji x j d T
Ф 0. Therefore bodies with j ф 0 can in turn be divided into
two classes : those with M ^ O (ferromagnets) and those with
M = 0 (antiferromagnets). The symmetry of the vector function
j(r) can be regarded as a symmetry in the orientations of the
atomic magnetic moments. In diamagnets (at H = 0) j = 0, and
consequently magnetic moments are absent. In diamagnetic ma-
terials, moments cannot occur in general, while in paramagnetic
materials the magnetic moments (currents) are oriented in an
irregular fashion and are equal to zero on a time average. In
bodies with a "magnetic atomic structure" (i.e., j Ф 0) the mo-
ments ft x j dT in each unit cell of the crystal may be different
from zero for ferromagnets and equal to zero for antiferromagnets.

tBy the average atomic magnetic moment of a ferromagnet we
mean the ratio of the value of the spontaneous magnetization (ex-
trapolated to the value corresponding to 0°K) to the number of
magnetically active atoms per unit volume. In the case of anti-
ferromagnets, the same definition applies to the spontaneous
magnetization of the magnetic sublattice.
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ments practically do not participate in the magnetism
of these substances.* Investigations of magnetic scat-
tering of neutrons have shown C62^ that in the cases of
both ferro- and antiferromagnetic d-metals there is a
spatially ordered distribution of the spin magnetic mo-
ments. The usual theory of collectivized electrons
gives a simple qualitative explanation of the fractional
nature of the average atomic moments (cf., for ex-
ample, C6] and also the survey C5°H). The exchange
interaction shifts the electronic energy levels for
states with plus and minus spins relative to one an-
other (just as the external field in paramagnetic ma-
terials, cf. Fig. 5), and this leads to the appearance
of a resultant non-zero magnetization. Of course, the
average atomic magnetic moment as a rule must also
differ from the value of the moment for the isolated
atoms or ions, for the case of non-metallic compounds.
The reason for the absence of a contribution of the or-
bital magnetism in d-metals is still not completely
understood. From the point of view of the model of
collectivized electrons (within the framework of the
simplest picture of a gas of Fermi particles), the
whole contribution of the orbital states to the mag-
netism reduces to the Landau diamagnetism. In p r e -
cisely this same way the band model of collectivized
electrons cannot give a simple explanation of anti-
ferromagnetism in the d-metals (concerning this
question, cf. E63^ and also the survey E50H). The ex-
planation of antiferromagnetism (as well as the r e -
sults of neutron diffraction studies for d-metals)
requires an improvement of the band model and pr i-
marily the inclusion of the spatial inhomogeneities in
the distribution of the electron density of the d-elec-
trons in the crystal. This inhomogeneity is already
imposed in principle in the very form of the wave
function for an electron in a crystal [cf. formula (1.2)
above]. Obviously for d-electrons, which are sub-
jected to smaller collective effects than the outer
valence s-electrons, the modulating factor in (1.2),
u n(k, r ) will play a greater role than the plane-wave
factor е ^ * г , the spatial distribution of electron den-
sity in the crystal will approximate more closely the
localized distribution of the electrons in isolated atoms
and ions as well as in ionic or valence compounds. In
this connection a very important part is played by theo-
retical and, especially, experimental studies of form
factors for the scattering of x-rays and neutrons in
d-metals (cf., for example, ^ where a detailed bib-
liography of such studies is given, and the survey '-50-'),
which would give exhaustive information concerning
the actual shape of the electron density in crystals of
the transition metals. However, this question is still
by no means cleared up.t The problem of the electron

*The experimental proof of the spin nature of the magnetism
in metals is a familiar result of gyromagnetic experiments (cf.,
for example.t8]).

tHere we need only recall, for example, the very recent dis-
cussion in connection with the work of Weiss and deMarcoM on
the measurement of x-ray form factors in d-metals of the iron
group.

density in crystals is closely related to the question
of calculating the exchange interaction parameter (ex-
change integral) for d-metals. Here there are still
only two very crude approximations: calculation by the
elementary band model M and on the model of local-
ized electrons, which began from the work of Heisen-
b e r g M (cf., for example, t 6 6 ] and also the survey С5(Я).
Of course, these approximations cannot at all be r e -
garded as satisfactory from a quantitative point of
view. On the other hand, without a solution of this
problem, the problem of the criterion for a state
with atomic magnetic order in d-metals will remain
unsolved, i.e., we will not be able to understand why
we so rarely find such states in these metals.

Also important is the question of the participation
of the valence s-electrons in the magnetism of the d-
metals. Here two types of participation of these elec-
trons in magnetically ordered states are possible.
First, because of their exchange interaction with the
d-electrons which have a spontaneous moment (so-
called s—d-exchange ),^67^ these electrons will be
polarized and will therefore make a contribution to
the total moment of the crystal. This, so to speak,
is the passive role of the s-electrons in the ferromag-
netism of the d-metals. But in addition one may also
imagine a more active role, namely, their participa-
tion in indirect exchange interaction between d- and
d-electrons. ^68^ This last effect is especially impor-
tant in the case of ferromagnetism of highly dilute
solutions of d-metals in "diamagnetic solvents" (for
example, solutions of Mn in copper, silver, etc.^69-'),
where the ions of the d-metal are separated by dis-
tances of the order of tens of inter-atomic spacings
and one cannot speak of a " d i r e c t " exchange. (For
more details, cf., for example, the survey^-50^). The
same effect of indirect exchange between conduction
electrons apparently plays a predominant role in the
establishment of ferromagnetism in the rare earth
elements, to the treatment of whose magnetic prop-
erties we now turn.

B3. States of atomic magnetic order in the transi-
tion f-metals. Among the normal elements in the pe-
riodic table there are altogether 18 f-metals, and of
these 14 are rare earths (with an incomplete 4f-shell)
and four are actinides (with an incomplete 4f-shell).
Experiment shows that almost all of the rare-earth
metals at low temperatures are either ferromagnetic
or antiferromagnetic, or may be in both ferro- and
antiferromagnetic states (of course, in different tem-
perature ranges ). In contrast to the d-metals, the
f-shell because of its small radius practically suffers
no effect of crystalline collectivization, so that they
therefore behave in a crystal as localized formations.
Here one should only, of course, note that these elec-
tron shells are in a very definite surrounding and that
that the fields of neighboring atoms act on them. These
crystalline fields have a definite symmetry, so that
their action can lead to a lifting of degeneracy of the
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" f r e e " ionic states which, in turn, may lead to a
change in the magnetic properties (for more details,
cf., for example, the monograph of Van Vleck^70^ or
the survey E50^). Studies of magnetic properties of
r a r e earth metals are only just beginning. The reason
for this is that up to now it has not been possible to
obtain these metals in sufficient quantities and in a
reasonably pure state. However, their investigation
should disclose many interesting features because of
their specific electronic structure. Most interesting
in the case of these metals is the indirect character
of the exchange interaction between f-shells with ac-
tive participation of the 6s-conduction electrons.*

3. ELECTRICAL CONDUCTIVITY OF METALS

The conduction electrons in metals experience an
accelerating effect from an external electric field
Eext- The finite value of the electrical resistance, as
already pointed out in Sec. 1, is determined by the ef-
fects of inelastic scattering of electrons in the crys-
tal, in which the electrons transmit the energy accu-
mulated in the accelerating field to the lattice (Joule-
Lenz heat). Within the framework of the classical
electron theory of metals of Drude and Lorentz,'-1^
and also in the papers of J. I. Frenkel И there was
already obtained the familiar formula for the specific
conductivity a in terms of atomic constants:

ne2t
m* '

(3.1)

where n is the density of conduction electrons, m* is
their effective mass, e their charge, and т the relax-
ation time (mean free time between collisions). The
first three quantities characterize the mechanical pa-
rameters of the current carr iers , determined from
the dispersion law and the internal structure of the
particle, and the last, the relaxation time, is a purely
kinetic quantity determined by the character of the
non-equilibrium statistical processes which are at the
basis of the phenomenon of electrical conductivity of
metals. Thus, the problem of the theory of electrical
conductivity of metals consists on the one hand in ob-
taining a sufficiently accurate mechanical description
of the current carr iers in metals (i.e., the determi-
nation of their energy spectrum, or the equilibrium
density matrix, etc.), and secondly in a correct for-
mulation and a sufficiently precise solution of the
purely statistical (kinetic) problem of the behavior
of the system of current carr iers when subjected to
the action of an external electric field, and the inter-
action within the system itself of the current carr iers ,
as well as their interaction with other particles form-
ing the crystal (ion cores, various inclusions, etc.) .

•One should also consider the possibility of the appearance
of an indirect exchange between the electrons of the 4f-shell and
the active participation not only of the 6s-conduction electrons,
but also of electrons of the inner spin-saturated 5s- and 5p-
shells.t71] Concerning the rare earth metals, cf. the sur-
veyst19' »* " 1 .

The computation of the electrical conductivity (3.1),
as well as other kinetic coefficients (heat conductiv-
ity, Hall effect, etc.) starting with the work of Lo-
rentz, M has usually been carried out using the Boltz-
mannC1^ kinetic equation, where the distribution func-
tion f(k) of the current carr iers is determined for
non-equilibrium processes under the simultaneous
action of the external accelerating field and the "damp-
ing" processes of collision. For a stationary, non-
equilibrium process this equation has the following
form:

[Wjt +\~дГ)со11 ' (3.2)

The f i r s t t e r m on the left s ide of equation (3.2) (the
" d r i f t " t e r m ) d e t e r m i n e s the change in the (equil ib-
r i u m ) dis tr ibut ion function under the action of an ex-
t e r n a l e l e c t r i c field, while the second t e r m d e s c r i b e s
the effects of " c o l l i s i o n " of the c u r r e n t c a r r i e r s in
the meta l which a r e being a c c e l e r a t e d by the field. To
solve (3.2), i .e . , to find the non-equil ibrium d i s t r i b u -
tion function and then to calculate the value of the
e l e c t r i c a l c u r r e n t from the famil iar Lorentz for-
m u l a : M j = env (where the b a r denotes an average
s ta t i s t ica l value of the product nv) , one m u s t find the
specific form of the quantit ies (8f/8t)f and ( 8 f / 9 t ) c o u .
In the der ivat ion of the kinetic equation, one makes
var ious approximations which r e q u i r e justification in
each specific c a s e (cf. for m o r e detai l , for example,
Sees. 3 and 8 of Chapter 6 and Sees. 3 and 4 of Chap-
t e r 7 in the monograph ^ u ^, as well as the surveys
[97,98]^

The s t a r t i n g point for the " d e r i v a t i o n " of the ki-
netic equation is the genera l s ta t i s t ica l equation for
the density m a t r i x (which i s the analog of the Liouville
equation of c las s ica l s ta t i s t ica l m e c h a n i c s ; cf., for ex-
ample, Sec. 6 in the monograph ^ 3 7 ^ ) :

i%u = Seu — u.Se, (з.з)
where u is the density matrix (operator) of a quan-
tized system, and 3C is its Hamiltonian.* If we sepa-
rate out in the Hamiltonian the term depending on the
external electric field, which has the form
— e (Eext * S rj)> where rj are the coordinates of the

particles in the system (j = 1, 2,... N), equation (3.3)
takes the form

ihu = M>'u-uM'' + eEext [(2 r,.) u-u ( 2 г,-)]- (3-4)

Here 3C' is the Hamiltonian excluding the terms con-
taining the external field, and this in turn splits into
an additive part YjX0(rj) and an interaction V

= YJ ( r j— r j ' ) between the particles. Furthermore,
H'

if we go over from the density matrix for the total sys-
tem (which depends on the coordinates of all the par-
ticles ) to the reduced density matrices p ( r ) depend-

*The problem of the derivation of the kinetic equation in
quantum mechanics is treated, for example, in a paper of the au-
thor. ["] These questions are also considered in the mono-
graphsf74-76]-
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ing on one coordinate, and ст(г, г ' ) depending on the
coordinates of two particles, Eq. (3.3) finally takes
the form

ihQ = SeaQ - e 4 ? 0 + Spr (fo-oV) + еЕехЬ(гр - gr), (3.5)

where Sp r is the trace (spur) of the operator
( VIT-CTV), taken without summing over one of the
coordinates, namely r. The appearance in (3.5) of
the "binary" density matrix a(r , r ' ) expresses the
specific features of the system of interacting particles.
As pointed out in the preceding footnote, in '-73-' those
approximations were indicated which are usually used
in order to obtain the kinetic equation of the Boltzmann
type from the "exact" equation (3.5). The most impor-
tant assumption in this paper is the condition that the
time т between collisions [which enters, for example,
in formula (3.1)] should considerably exceed the dura-
tion of the collision At. As Peierls and Landau showed
(cf. C1*]), for example, for the "coll is ions" of conduc-
tion electrons with the thermal vibrations of a crystal
lattice, the duration of the collisions is At = K/kT.
Only when т » At are the assumptions valid which are
the basis of the derivations E14>733 of the kinetic equa-
tion from (3.3).

In recent years, beginning with the well-known
papers of Bogolyubov, ^743 there has begun the syste-
matic theoretical investigation of improved methods
for calculating kinetic coefficients in solids, including
the electrical conductivity of metals. Let us discuss
briefly some of these methods.

First of all, we should recall papers in which at-
tempts have been made to improve the solution of the
usual kinetic equations which are used in the band
theory of metals and which were first introduced in
the papers of Bloch^15^ and Peier ls . t u » 1 6 ^ However,
these papers can hardly be regarded as very fruitful,
since they do not eliminate the initial crude assump-
tions which are at the basis of the whole method of
the Boltzmann kinetic equation as used in the elemen-
tary band theory of metals.

A presentation of this direction of work can be
found by the reader in the paper of MacDonald, White,
and Woods, ^77-' where they give a bibliography of ap-
propriate papers and a comparison of the theoretical
computations with experimental data for the electrical
conductivity of alkali metals.

Physically much more interesting and consistent
is the direction which involves an improvement in the
initial kinetic equation itself. Here we should mention
first of all the previously cited work of Bogolyubov E74^
as well as the work of Klimontovich and Temko, ̂ 78^
Silin, C™] Eleonskii, Zyryanov, and Silin. t 8 0 3 The im-
portant feature of these papers is the more correct
inclusion of the binary distribution function and also
the more accurate computation of collision integrals
without the assumption that the external field is small.
Unquestionably, this method for improving the kinetic
treatment of statistical phenomena in crystals is very
promising.

A very important direction in statistical mechanics
of irreversible processes was started in the papers
of Kubo and TomitaC81] and Kubo. C823 In these papers
there was proposed a method in which formally no
kinetic equation is introduced, but one carries out a
determination of the non-equilibrium kinetic coeffi-
cients directly by means of the density matrix which
describes the non-equilibrium system of interacting
particles. (In the case of the electrical conductivity
of metals this is the electron-phonon system.) The
advantage of the Kubo-Tomita method is that it per-
mits one simply to find a generalized Gibbs distribu-
tion for a non-equilibrium system, and then to use all
the advantageous features of the universal Gibbs
method for the case of irreversible processes. Kubo's
method was used for the particular case of electrical
conductivity in papers by Nakano, '-83-' Klinger, ^84-l Van
Hove and Verboven. E85^

Another variant of the theory of non-equilibrium
processes in solids was developed in papers of Van
Hove E861 and Kohn and Luttinger. E87] In this method
also one avoids the use of a kinetic equation of the
Boltzmann type. An attempt is made to solve the
equation of type (3.4) for the density matrix by using
perturbation theory (in the approximation linear in
the field), in which one includes damping. This method
enables one to obtain a more general transport equa-
tion which takes into account some of the non-diagonal
elements of the density matrix (which are dropped in
obtaining the usual kinetic equation, cf. E73^). This ap-
proach is especially attractive in those cases where
one must include higher terms in the interaction of the
current carr iers with the scatterers in the perturba-
tion theory series (for example, in the case of a com-
putation of the anomalous Hall effect in ferromagnets
[88]^

We also mention that, essentially, Kubo's method
is equivalent to the method of temperature Green's
functions (concerning this question, cf. Sec. 4 in the
survey E43^). In a paper of Konstantinov and Perel'C8 9^,
within the framework of the method of temperature
Green's functions, E45^ they have also used the diagram
technique of quantum electrodynamics ^ for the com-
putation of kinetic coefficients.

This briefly is the situation from the methodolog-
ical standpoint. Now let us also enumerate very
briefly the main results obtained in the theory of
electrical conductivity of metals.

For the case of normal (non-transition) metals,
within the framework of band theory two specific very
important questions were already solved concerning
the temperature behavior of the phonon part of the
electrical resistance of these metals. For the high
temperature region T > 0ц, where в is the Debye
temperature of the metal, there was obtained a linear
law p = aT. This result was already obtained by J. I.
Frenkel M from elementary arguments concerning
the fact that the cross section for scattering of elec-
trons by lattice vibrations is proportional to the square
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of the amplitude of the vibrations, which in turn is pro-
portional to the mean energy ~ kT. From this one
finds for the scattering probability 1/т ~ Т, and by
virtue of (3.1) we obtain a linear increase with tem-
perature for the specific electrical resistance p ~ aT.
In the low temperature region (T « # D ) , a different
result is obtained, which is found in the papers of
Bloch [ 1 5 : ! and Peier l s , [ 1 4 ) 1 6 : i and which is related to
the quantum statistics of Fermi and Bose particles.
On the other hand, the scattering cross section is pro-
portional to the change in the number of phonons with tem-
perature, which for T « 0 D is proportional to the cube
of the temperature ~ T3. Furthermore, the efficiency
of each collision varies with the square of the temper-
ature, so that the scattering cross section l/т varies
as T 5. From this it also follows that in the low tem-
perature range the phonon part of the electrical r e -
sistance of non-transition metals varies according to
a T 5 law. Both these conclusions are general in char-
acter and are not associated with any crude model pic-
tures. However, aside from the phonon part of the elec-
trical resistance, in real metals there are also other
mechanisms for scattering of the conduction electrons
which make a contribution to the electrical resistance.
First of all, we should recall the mechanism of scat-
tering by non-thermal lattice defects (foreign atoms,
vacancies at lattice sites, dislocations, etc.) . In such
a mechanism there is always a considerable non-
thermal part which makes a fundamental contribution
to the so-called residual electrical resistance of met-
als, which is obtained by extrapolating the p(T) curve
to T = 0°K. Also of great interest is the temperature-
dependent part of the electrical resistance, which is
caused by the scattering mechanism described above
(on lattice defects). This temperature dependence
can be determined first of all by the interference be-
tween the phonon and impurity mechanisms of scatter-
ing C9°] and also by the fact that the value, the potential,
and the nature of the distribution of defects in the crys-
tal lattice may vary with the temperature. E91^

Another question that has been treated is the prob-
lem of the deviations from Ohm's law in metals in
strong fields and at high current densities. For ex-
ample, a paper of Shabansku is devoted to this prob-

*We are unable here even to enumerate all the results obtained
in the theory of electrical conductivity of metals. Let us only re-
call some of them which are of general physical interest. First of
all, as already mentioned in Sec. 2, in paragraph A3, from the
Fermi character of the system of conduction electrons it follows
that one can have oscillatory effects for the kinetic coefficients
of metals, including their conductivity. This effect was observed
experimentally by Shubnikov and de Haas;[102] the most complete
theoretical explanation of this phenomenon is found in the frame-
work of the method of I. M. Lifshitz.t103] Special attention is de-
voted to the dependence of the electrical conductivity of metals
on the frequency of an external variable electromagnetic field.
Particular interest has been devoted to the study of the phenom-
enon of anomalous skin effect in metals,[la>] which occurs when

It i s k n o w n f r o m e x p e r i m e n t t h a t t h e e l e c t r i c a l c o n -

d u c t i v i t y of l i q u i d m e t a l s d i f f e r s l i t t l e f r o m t h e e l e c -

t r i c a l c o n d u c t i v i t y of s o l i d c r y s t a l l i n e m e t a l s . T h e

o n l y t h i n g t h a t h a p p e n s i s t h a t t h e r e i s a j u m p i n t h e

e l e c t r i c a l c o n d u c t i v i t y a t t h e m e l t i n g p o i n t , w h i c h i s

c o n n e c t e d w i t h t h e j u m p i n t h e s p e c i f i c v o l u m e of t h e

m e t a l a t t h i s t r a n s i t i o n p o i n t . L a n d a u a n d K o m p a -

neets Е93-1 pointed out the need in the case of liquid
metals to distinguish between the electrical resistance
at constant volume and at constant pressure. The first
quantum mechanical calculation of electrical resistance
for liquid metals was carried out in a paper by Shubin.
E94^ In this paper it was shown that a conduction elec-

tron in the non-periodic and almost uniform potential
will behave like an electron in a weakly periodic po-
tential ("almost free electron" in the band theory E14^).
It was also shown in this paper that if the thermal mo-
tion in a liquid metal can be treated as a small oscilla-
tion around the position of stable equilibrium, then
(despite the random distribution of the centers of os-
cillation) the specific resistance should vary with tem-
perature according to a linear law, p ~ T. In addition,
there was also pointed out a mechanism for scattering
of electrons on ions in the lattice by direct scattering,
which explains the residual resistance of liquid metals.
The temperature dependence of this contribution to the
electrical resistance also is linear, p ~ T. The theory
of electrical resistance of liquid metals was further
developed in a paper of Zyryanov, ^953 who, using the
plasma model of a metal and the calculations of the
phonon part of the electrical resistance (see paper E34J)
took account of scattering of the conduction electrons
on the "smal l-scale" (relaxational) fluctuations of the
ionic lattice and obtained a quantitative explanation of
the temperature dependence of the electrical resist-
ance of liquid metals and its jump at the melting point.

Investigations have also been made of the electrical
resistance of metallic, disordered, and ordering alloys.
We do not have the space here to discuss this interest-
ing question and refer the reader to the general mono-
graph on this problem recently written by A. A. Smir-

The transition metals also have fundamental peculi
arities with respect to electrical resistance. These
peculiarities are related first of all to the complex
character of the electronic system of these metals
(the system of conduction electrons includes, in addi-
tion to the former valence electrons, electrons from

the mean free path (at sufficiently low temperatures and high
frequencies) becomes comparable to or greater than the depth of
the skin layer. In this connection great interest has been shown
in studies of electrical conductivity taking account of the space-
time dispersion in a metal.[10!] The effect of electron-electron
collisions on the electrical resistance of metals has also been
considered. The calculations which have been made show that
the additional term in the electrical resistance caused by such
collisions has a temperature dependence of the form T2 (cf., for
example, Sec. 5 in Chapter б of the monograph!!"]).
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the unfilled d-shells), and secondly with the addi-
tional possibility of scattering on inner (d- and f-)
shells and on their spin states. A more detailed sur-
vey of this problem can be found in the paper of the
author and Izyumov. E503

In conclusion, we may state that the theory of the
electrical conduction and the magnetic properties of
metals, as well as their experimental investigation,
has received extremely broad development since the
work of J. I. Frenkel, who laid the foundation for this
branch of the present-day physics of solids.
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