
SOVIET PHYSICS USPEKHI VOLUME 5, NUMBER 1 JULY-AUGUST 1962

LINEAR ELECTROMAGNETIC PHENOMENA IN A PLASMA

A. A. RUKHADZE and V. P. SILIN

Usp. Fiz. Nauk 76, 79-108 (January, 1962)

J-HE theory of linear electromagnetic processes in
a plasma is now in a state of intense flax. These
processes can, to a certain extent, be set in corre-
spondence with oscillations and waves, but these,
naturally, do not cover all the possible electromag-
netic processes in a plasma. We are deeply con-
vinced that the theory of linear processes is the
foundation of plasma electrodynamics, and the theory
of many nonlinear electromagnetic phenomena is
based on it. In the present review we pay principal
attention to those linear processes which, in our
opinion, are the basis for the nonlinear electrody-
namics of a plasma.

The spatial dispersion of the dielectric constant*
is important in many cases of linear plasma electro-
dynamics. The general problems involved in linear
electrodynamics of media with spatial dispersion
are discussed in our earlier review. '-3-'

Certain linear electromagnetic processes in an
equilibrium Maxwellian electron-ion plasma are
treated in M on the basis of such an electrodynamic
theory. In the present review we pay little attention
to such a plasma, but consider the electromagnetic
properties of plasma under rather general assump-
tions concerning the particle-velocity distribution
function. Particular attention will be paid here to
linear electromagnetic phenomena in a nonequilib-
rium plasma.

1. THE COMPLEX DIELECTRIC CONSTANT TEN-
SOR OF A PLASMA

In linear electrodynamics, electromagnetic prop-
erties of a medium are defined with the aid of the
material equation ̂ 1>3^

D[ (r, 0 = J dt' J dx% (t-f, r, r') E, (r\ t'). (1.1)
—CO

For spatially-homogeneous media, the kernel of the
integral equation (1.1) depends on the difference
r — r ' . It is convenient in this case to represent the
electromagnetic field by a Fourier integral in the
form of a set of plane monochromatic waves
exp (ik>r — iojt). For such waves, relation (1.1)
becomes

D[ (ш, к) = е{) (со, к) Ef (со, к), (1.2)

*Naturally, spatial dispersion can be neglected for many phe-
nomena that can occur in a plasma. The electrodynamics of such
phenomena is treated elsewhere (see, for example, the books L1>2J)
and will therefore not be discussed in detail here.

where

k)= \ dt г, r) (1.3)

is the complex dielectric-constant tensor, which char-
acterizes the electromagnetic properties of the me-
dium. The dependence of the tensor €ц(ш, к) on the
frequency defines the frequency dispersion of the di-
electric constant, while the dependence on the wave
vector defines the spatial dispersion.

To calculate the dielectric constant tensor explic-
itly we must specify a definite model of the medium.
A particular advantage of plasma from the theoretical
point of view is that it comprises a system of weakly-
interacting particles:

e2iV1
Y.T.

The presence of the small parameter makes it pos-
sible to formulate the plasma theory. A plasma can
be conveniently described by means of a kinetic equa-
tion with self-consistent field

at at

U s i n g t h e k i n e t i c e q u a t i o n (1.4) w e c a n o b t a i n a n

e x p r e s s i o n f o r t h e d i e l e c t r i c c o n s t a n t t e n s o r of t h e

p l a s m a . In t h e c a s e of a p l a s m a w i t h o u t s t r o n g f i e l d s ,

t h e d i e l e c t r i c c o n s t a n t t e n s o r h a s , w h e n p a r t i c l e c o l -

l i s i o n s c a n b e n e g l e c t e d , t h e f o r m t

^ I I Y я kv Л „
" ~ш~) >l

(1.5)
where foa(P) *s the distribution function of particles
of kind a in the ground state of the plasma. The in-
tegral in the right half of (1.5) is of the Cauchy type,
and therefore €jj(w, k) has, as a function of the com-
plex variable w, singularities only on the integration
contour,t i.e., for real values of us.

For a plasma in a strong magnetic field Bo, neg-
lecting particle collisions, we obtain from (1.4)^

*[vB]•= v x B.
*No general expression whatever has been derived so far for

eij(<u,k) with account of the particle collisions. A consistent
account of particle collision can be made only when the spatial
dispersion can be neglected.l-1'4^

*Strictly speaking, this situation prevails only if account is
taken of the fact that the particle velocity cannot exceed the ve-
locity of light. On the other hand, say in the case of a nonrela-
tivistic Maxwellian distribution, ец(<а, к) has a singularity in the
vicinity of an infinitely remote point.
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ew (w, k) = 6i;- -

X

where

я . Vj (T) kL \
>l ш J

ос (P)
(1-6)

V ( t ) = c o s Q O T - s i n Q o r .

In the absence of an external magnetic field (Bo —* 0)
we have

V ( T ) = V , R ( T ) = - V T , Р ( т ) = р .

T h e d i e l e c t r i c c o n s t a n t t e n s o r ( 1 . 6 ) c o i n c i d e s i n t h i s

c a s e w i t h ( 1 . 5 ) . W i t h t h e a i d o f ( 1 . 5 ) a n d ( 1 . 6 ) w e c a n

c a l c u l a t e s p e c i f i c e x p r e s s i o n s f o r t h e d i e l e c t r i c c o n -

s t a n t o f a p l a s m a , u s i n g t h e v a r i o u s e x p r e s s i o n s f o r

t h e p a r t i c l e d i s t r i b u t i o n f u n c t i o n s

2. ELECTROMAGNETIC PROPERTIES OF AN ISO-
TROPIC PLASMA
In an isotropic plasma the particle velocity distri-

bution function in the ground state, foa(P)> is a func-
tion of the absolute value of the momentum p. The
dielectric constant tensor of the plasma (1.5) can be
represented in this case by

в|;(ш, к)= ( б 1 ; . - ^ ) е * ( с о Д ) + А * 1 е 1 ( т , fc). (2.1)

The longitudinal and transverse dielectric constants,
ê  and e t r respectively, are given in accord with
(1.5) by

a
- гяб (to - kv) J ,

-kv
a

— inb (со — kv) J ,

w h e r e the s y m b o l P d e n o t e s that t h e s i n g u l a r i t y at

the point о; = к • v must be taken in the sense of prin-
cipal value. Expressions (2.2) can be readily inte-
grated with respect to the angles. We give here the
formulas for the imaginary parts of e^(w,k) and
е*г(ш, к ) , characterizing the absorption of the lon-
gitudinal and transverse waves in a plasma

i" (со, к) = - 2 •
| A |3

$1-^ for to2 < kV,

0 for co2>fc2c2,

(со, к) =

- 2 - to] A I Sia
forco2>A;2c2,

(2.3)

where %xot = mac
2/Vl - w2/k2c2 . It follows from

these formulas, in particular, that electromagnetic
waves with phase velocities greater than the veloc-
ity of light с will not be absorbed in an isotropic

plasma, since and vanish when w2 > k2c2.
In the low-frequency limit w/k — 0 we obtain

from (2.2)

e1(O,A)=

(2.4)

The function e^(0, k) characterizes the behavior of
the static field of a charge in the plasma at large
distances. The quantity r s c r , on the other hand, is
the screening radius of the scalar potential of the
field of a point charge M

I r-rp I
(2.5)

In the case of a Maxwellian plasma, r s c r coincides
with the Debye screening radius. M

It follows from (2.4) that in the absence of particle
collisions the transverse dielectric constant of an
isotropic plasma has a pole ~ 1/w at low frequencies
(a) — 0). This corresponds to the presence of a finite
conductivity, due to the Cerenkov dissipation of the
waves in the plasma. We note that the transverse di-
electric constant (2.4) corresponds to the frequency
range of the anomalous skin effect in a plasma. ^5>63

At high frequencies k/w —• 0 (ш » к (v e > i)), when
spatial dispersion can be neglected, we obtain

) = 1 - ^ r . (2-6)

where

In the limit к = 0 the imaginary part of the dielectric
constant tensor vanishes. However, if we take into
account the weak spatial dispersion due to the ther-
mal motion of the particles in the plasma, we obtain
from (2.3) a small but nonvanishing imaginary part
for the tensor е^(с»), к), and this leads to absorption
of electromagnetic waves in the plasma.

As is well known, both longitudinal and transverse
waves, which vary with the coordinates and with the
time as exp (ik>r - iwt), are possible in an iso-
tropic medium. The dispersion equations that estab-
lish the connection between the frequency and the
wave vector к in longitudinal and transverse waves
have respectively the form t1 ' 3^

e1 (со, к) = 0,

- —j- ь (ш. А) = 0.

(2.7)

(2.8)
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At high frequencies, when the spatial dispersion of
the dielectric constant is weak, we obtain for the
spectra of the longitudinal and transverse oscilla-
tions

O)2 = co3, (2.9)

U)2 = CO5 + /IV. (2.10)

It follows therefore that in an isotropic plasma the
phase velocity of the transverse waves is greater
than the velocity of light, and these waves are con-
sequently not attenuated (neglecting particle colli-
sions). As regards the longitudinal waves, they like-
wise do not attenuate when ш\ > к2с2, but do attenuate
when ш2 < k2c2, and in the case of the spectrum (2.9)
the decrement is (ш — ш — iy)

0) =
• (№>

B . j _
( 2 Л 1 )

J

In accordance with (2.3), the imaginary part of the
longitudinal dielectric constant e^"(a),k) is deter-
mined by the particle distribution in the plasma. We
can therefore determine in principle the particle ve-
locity distribution by measuring the decrement of
the longitudinal waves. It must be noted that the ions
make practically no contribution to the imaginary
part e^"(w, k). This method therefore can yield
only the plasma electron distribution function.

At low frequencies, when the spatial dispersion
of the dielectric constant plays a decisive role, the
electromagnetic waves are greatly attenuated in the
isotropic plasma. There is, however, a case when
low-frequency longitudinal waves attenuate little in
an isotropic plasma. We refer here to non-isother-
mal electron-ion plasma, in which the mean thermal
energy of the electrons is much greater than that of
the ions. In this case, at phase velocities intermedi-
ate between the ion and electron thermal velocities
(к (vj ) « u) « к ( v e ) ) , we have

Q ) - l e

k" (.vl)
(2.12)

where

coLle= - ; {v? ) = \ = dpo»/o..

The imaginary part of the longitudinal dielectric con-
stant is in this case a small quantity

(iMOOc (2.13)

where

We note that in accordance with (2.13) the wave ab-
sorption in the non-isothermal plasma is due to the
thermal motion of the electrons. The expressions
for the frequency and for the decrement of the waves
are

Y =
<Be>

0)3
2(0? i

e'"(ш, к). (2.14)

The corresponding formulas for a Maxwellian plasma
are given in M .

In conclusion, we discuss briefly the concept of
permeability of a plasma. It is frequently stated that
the permeability of a plasma is equal to unity. Actu-
ally, however, the concept of permeability is not fully
defined. The permeability of an isotropic medium

[i3]

-l
|i (a, *) = { 1 —^£r [в1 (и, &)-ef(<o, ft)]} . (2.15)

The static permeability of a medium is defined here
as the limit

jtft (0, 0) = lim lim|x(co, к).

We can readily see that /л(ш, к) for an isotropic
plasma differs from unity, whereas ^ ( 0 , 0) = 1.
That the concept of permeability has a restricted
meaning can be seen from the following formula,
which holds true for a Maxwellian electron plasma:

ft) - / Л Oe , / m e (A _ffl2me

V 2 c» | ft |» К я г Д кЪТ,I H (<•>, к) |s
(2.16)

At low frequencies, when ш < kV кТе/т.д , the imag-
inary part of the permeability is positive, \х"(ш, к)
> 0 (as is usually assumed in electrodynamics when
spatial dispersion is neglected C7>8^). To the contrary,
at high frequencies (w > kV K T e / m e ), correspond-
ing to weak spatial dispersion, the imaginary part of
the permeability is negative, /*"(w,k) < 0. This is
not surprising, however, since the imaginary part of
the permeability does not determine the absorption
in the medium at all.

3. ANISOTROPIC PLASMA IN THE ABSENCE OF
STRONG FIELDS

In the absence of strong fields produced by ex-
ternal sources, a plasma can be anisotropic because
the particle velocity distribution is anisotropic in the
ground state. One can readily visualize a great
variety of examples of anisotropic plasma without
external strong fields. We consider here the case
of greatest practical interest, that of beam aniso-
tropy of a plasma. By this we mean a plasma in
which a definite quasi-neutral group of particles has
along with thermal motion also directed motion with
constant velocity u. This involves frequently inter-
action between an unbounded quasi-neutral beam of
charged particles and the plasma. The dielectric
constant tensor of such a plasma can be calculated
with the aid of (1.5). We give here, however, a dif-
ferent method of determining the dielectric constant
tensor of an anisotropic plasma consisting of an un-
bounded beam of charged particles (moving plasma)
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in a p l a s m a at r e s t . Using the additivity of the con-
ductance as a function of the p l a s m a density, we can
w r i t e

ei;- (со, к) = ей1 (со, к) + в* (со, к) - (3.1)

, Ш /where qj(a>,k) and е[^(ш,к) are the dielectric
constant tensors of the beam and of the stationary
plasma, respectively, in a laboratory frame fixed
in the stationary plasma. The expression for
е№(ш, k) is obviously determined from (2.1) and
(2.2). To obtain the dielectric constant of the beam
in the laboratory frame we use the Lorentz t rans-
formation formulas for the induced current and
charge densities. As a result we obtain^1>9^

(со, k) = -£- aim {вЙГ (со', k') - 6

ц (

eff (со, к), (3.2)

where ец (со', к ') is the dielectric constant tensor
of the beam in the moving system of coordinates con-
nected with the beam, determined by formulas such
as (2.1) and (2.2). It must be borne in mind that in a
moving system of coordinates the particle density is
determined with account of the Lorentz contraction
of the volume. The quantities ш' and k' are the
transformed frequency and wave vector

, Ш—uk

(3.3)

T h e t e n s o r s and have the form

(3.4)

In t h e n o n r e l a t i v i s t i c b e a m v e l o c i t y l i m i t , u « c ,

f o r m u l a s (3.3) a n d (3.4) s i m p l i f y t o

to'—>co — u k , k'—> k,

С^ч 1 ^ CJj i ~T~ • —, , P • ,- > —— Qi ; -Л "- .

For the dielectric constant tensor of the plasma we
obtain in this limit

, (со, k) = i * I B ' ' r M l ' / ' 1 \

)', к) - щк} - и (3.6)

Expression (3.6) is also readily derived from (2.5).
A characteristic feature of our anisotropic plasma,

which contains beams of charged particles, is insta-
bility with respect to small electromagnetic oscilla-
tions of the system. As is well known, a charged par-
ticle moving in a medium radiates electromagnetic
waves. If not one charged particle but a whole beam
moves in the medium, the collective radiation of the
beam particles may cause the electromagnetic field

i n t h e m e d i u m t o i n c r e a s e w i t h t i m e . T h i s m e a n s

t h a t a s y s t e m c o m p r i s i n g a m e d i u m a n d a b e a m of

c h a r g e d p a r t i c l e s ( i n o u r c a s e , t h e a n i s o t r o p i c

p l a s m a ) i s u n s t a b l e a n d d e c a y s i n t i m e .

In d e t e r m i n i n g t h e i n t e r a c t i o n b e t w e e n a b e a m of

c h a r g e d p a r t i c l e s a n d a p l a s m a i t i s c u s t o m a r y t o

s o l v e i n e a c h s p e c i f i c c a s e a s y s t e m of k i n e t i c e q u a -

t i o n s f o r t h e p l a s m a a n d f o r t h e b e a m . T h e r e i s n o

n e e d f o r t h i s , h o w e v e r . It i s s u f f i c i e n t t o s u b s t i t u t e

i n t h e d i s p e r s i o n e q u a t i o n f o r t h e e l e c t r o m a g n e t i c

w a v e s i n a n a n i s o t r o p i c m e d i u m E1 > 33

CO2

= 0 (3.7)

t h e e x p r e s s i o n (3.2) f o r t h e d i e l e c t r i c c o n s t a n t t e n -

s o r . U n s t a b l e e l e c t r o m a g n e t i c o s c i l l a t i o n s of t h e

s y s t e m c o r r e s p o n d t o s o l u t i o n s of t h e d i s p e r s i o n

e q u a t i o n (3.7) w i t h p o s i t i v e i m a g i n a r y p a r t , I m w ( k )

> 0, w h i c h i s a l s o c a l l e d t h e b u i l d u p i n c r e m e n t of

t h e w a v e s i n t h e p l a s m a . In t h e a b s e n c e of s t r o n g

f i e l d s t h e d i s p e r s i o n e q u a t i o n (3.7) f o r o u r a n i s o -

t r o p i c p l a s m a b r e a k s up i n t o t w o e q u a t i o n s

_ «e _ [ e(D-tr ( _ l ] = 0, (3.8)

_ i £ e<2)tr (со, ft) - ^ [e<l>'ti (to', ft') - l]}[e<2>i (to, к)

(3.9)

T h e f i r s t of t h e s e e q u a t i o n s i s t h e a n a l o g of t h e d i s -

p e r s i o n e q u a t i o n f o r t r a n s v e r s e w a v e s ( i n t h e a b -

s e n c e of a b e a m i t g o e s o v e r i n t o t h e e q u a t i o n f o r

t r a n s v e r s e w a v e s ) , w h i l e t h e s e c o n d i s t h e a n a l o g

of t h e e q u a t i o n f o r l o n g i t u d i n a l w a v e s i n a p l a s m a .

It c a n b e s h o w n t h a t t h e o n l y s o l u t i o n s of (3.8) c o r r e -

s p o n d t o d a m p e d o s c i l l a t i o n s of t h e s y s t e m . '-1-' B e i n g

i n t e r e s t e d i n u n s t a b l e o s c i l l a t i o n s o n l y w e p r o c e e d

n o w t o a n a l y z e (3 .9) . F o r t h e s a k e of s i m p l i c i t y w e

c o n f i n e o u r s e l v e s t o n o n r e l a t i v i s t i c b e a m v e l o c i t i e s

u « c * E q u a t i o n (3.9) a s s u m e s i n t h i s l i m i t t h e f o r m

(to - uk, ft) + s'2» (<o, ft) - 1 = 0. (3.10)

U n s t a b l e o s c i l l a t i o n s m u s t o b v i o u s l y b e e x p e c t e d

first at frequencies ш ( u > ' = w - u - k ) for which the
imaginary parts of e ( 1 ) ' (w', k) and e< 2 ) (w,k) are
negligibly small compared with their real parts . It
is precisely in this region of frequencies ш and ш'
that weakly attenuating longitudinal waves, the exci-
tation of which can cause the system to become un-
stable, exist in the beam and in the stationary plasma.
This situation obtains at high frequencies, when the
thermal motion of the particles can be neglected, and

•See
plasma.

for the interaction between a relativistic beam and a
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also in a non-isothermal plasma at frequencies k ( v i )
« ш and w' « k ( v e ) , when the thermal motion of the
electrons is significant. Expressions such as (2.6)
and (2.12) for the beam and for the stationary plasma
determine the entire manifold of unstable oscillations
of the system in the absence of an external magnetic
field. It is possible to obtain here both high-frequency
instabilities, corresponding to excitation of electron
oscillations, and low-frequency instabilities, corre-
sponding to excitation of plasma sound in the system.

At high frequencies ш and w', when the particle
thermal motion can be neglected, Eq. (3.10) assumes
the form

1 — •
(CO— Uk)2

(3.11)

where w01 and w02 characterize the densities of the
beam and of the plasma, respectively.* In the case
of low beam densities, when a)01 « w02, we obtain
from (3.11)

(3.12)

We see therefore that when | u • к | < w02 the plasma
oscillations become unstable. The maximum insta-
bility takes place when | u • к | ~ w02 and corresponds
to excitation of high-frequency electron oscillations,
described by the dispersion equation (2.9), in the
stationary plasma.

In the case when the beam and the plasma densi-
ties are comparable (u)01 ~

 шогЬ unstable high-fre-
quency oscillations of the system correspond to the
following solutions of (3.11):

(3.12')

which are valid when [ u • к | « ш0 1 ) 2 .
We now consider the case of a cold beam moving

in a non-isothermal hot plasma. Neglecting the ther-
mal motion of the beam particles, we take into ac-
count the thermal motion of the electrons in the sta-
tionary plasma. We assume here that the following
inequalities are satisfied:

In this case (3.10) assumes the form

i = 0 . (3.13)

I n t h e c a s e o f s m a l l b e a m d e n s i t i e s w e g e t

/ O ) 2 . , ^ 0 ) 0

2

r \~Ч*
( 3 . 1 4 )

I t f o l l o w s t h e r e f o r e t h a t t h e s y s t e m o s c i l l a t i o n s b e -

c o m e u n s t a b l e i f

*The index 1 pertains throughout to the beam, and the index 2
to the plasma.

We readily see that these instabilities correspond
to excitation of low-frequency (sound) oscillations,
described by the dispersion equation (2.14), in the
stationary plasma. These oscillations can also occur
at beam velocities lower than the electron thermal
velocity in the stationary plasma.

In conclusion we consider a beam, representing a
non-isothermal plasma, moving in a non-isothermal
but stationary plasma. The thermal motion of the
ions will be neglected both in the beam and in the
stationary plasma and the following inequalities are
assumed satisfied

k{vl)1€a>' €k(vt)u

к { vt) 2 < о < к { ve) 2.

In this case the dispersion equation (3.10) must be
written in the form

1 +
« £ i « i u - l « 2 M 0 i

0)2 ( 3 . 1 5 )

I n t h e c a s e o f l o w b e a m d e n s i t i e s t h e a p p r o x i m a t e

s o l u t i o n o f ( 3 . 1 5 ) h a s t h e f o r m

coon
u-te2 (3.16)

If

A2 U £ > , ( u k > *

e x p r e s s i o n ( 3 . 1 6 ) d e s c r i b e s u n s t a b l e o s c i l l a t i o n s c o r -

r e s p o n d i n g t o t h e e x c i t a t i o n o f l o w - f r e q u e n c y w a v e s

i n a s t a t i o n a r y p l a s m a . I n t h i s c a s e t h e t h e r m a l m o -

t i o n o f t h e e l e c t r o n s i n t h e b e a m d o e s n o t p l a y a n

a p p r e c i a b l e r o l e . W h e n t h e b e a m a n d p l a s m a d e n -

s i t i e s a r e c o m m e n s u r a t e , t o t h e c o n t r a r y , t h e c h a r -

a c t e r o f t h e w a v e e x c i t a t i o n d e p e n d s a p p r e c i a b l y o n

t h e t h e r m a l m o t i o n o f t h e b e a m e l e c t r o n s . I n d e e d ,

u n s t a b l e o s c i l l a t i o n s o f t h e s y s t e m c o r r e s p o n d i n

t h i s c a s e t o s o l u t i o n s o f t h e f o r m

(3.17)

w h i c h a r e v a l i d i n t h e r e g i o n

CO2

1+ •. ...2. +
2
-tel

2h
 X% (Uk)2

It is easily seen that these instabilities are the con-
sequence of excitation of low-frequency (sound)
waves in the entire system as a whole.

The foregoing instabilities can be called hydro-
dynamic, since they are not connected with the imag-
inary part of the dielectric constant and can be de-
scribed by using the equations of two-liquid and
single-liquid hydrodynamics of a plasma, with dis-
sipation neglected. One must not think that the elec-
tromagnetic oscillations of the plasma are stable if
there are no hydrodynamic instabilities. The solu-
tions of the dispersion equation (3.10), with the imag-
inary parts е( 1 >^"(и/, к) and e<2)*"(w, k) neglected,
are then real. An account of the imaginary parts of
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t h e s e q u a n t i t i e s l e a d s t o t h e f o l l o w i n g e x p r e s s i o n f o r

t h e a t t e n u a t i o n d e c r e m e n t ( o r b u i l d u p i n c r e m e n t ) o f

t h e e l e c t r o m a g n e t i c w a v e s i n t h e p l a s m a

I r a f E < ! > 1 ( " - U k ' •• - ( 3 . 1 8 )
л— uk,

(со, к)]

) I (», к)]

When у > 0 the electromagnetic waves attenuate, and
when у < 0 they increase with time, and the system
is unstable. These instabilities, which depend essen-
tially on the imaginary part of the dielectric constant
tensor, are called kinetic. Without going into a de-
tailed analysis of the kinetic instabilities of the
plasma,* we note merely that in accord with (2.3),
(2.6), (2.12), and (2.13) the values of Iroe^w.k) and

—— Re ех(о), к) are positive when w > 0 and are odd
аш

f u n c t i o n s of t h e f r e q u e n c y . It f o l l o w s t h e r e f o r e t h a t

the value of у determined from (3.18) can become
negative only at frequencies ш 4 k«u, i.e., when the
beam velocity is either greater than or of the same
order as the phase velocity of the wave.

From the foregoing brief analysis of the interac-
tion between a plasma and a low-density beam of
charged particles it follows that an electromagnetic
wave is excited in the plasma when the beam velocity
is of the same order as the phase velocity of the
wave. As a consequence there are two instability
regions, one at high frequencies, corresponding to
excitation of electron oscillations, and one at low
frequencies, corresponding to excitation of sound
in the plasma.

4. ELECTROMAGNETIC WAVES IN A PLASMA SIT-
UATED IN A STRONG MAGNETIC FIELD

In the preceding two sections we considered the
electromagnetic properties of a plasma in the ab-
sence of strong fields. Under real conditions the
plasma is frequently in a rather strong magnetic
field. We shall therefore proceed to investigate such
a plasma. We begin our analysis with a case in which
the particle velocity distribution functions foa(p) are
isotropic. In this case the dielectric constant tensor
of the plasma (1.6) can be transformed i ^ 1 1 0 ^

о — тЫ„— k,v.
(4.1)

where

„{») = — IV i \m -^- )Jm, V, (Jm) ,

H e r e J m a n d J m a r e t h e B e s s e l f u n c t i o n o f o r d e r m

a n d i t s d e r i v a t i v e , t h e a r g u m e n t b e i n g

b -

A s t h e i n d e p e n d e n t c o o r d i n a t e a x e s w e c h o o s e

( x , y , z ) = ( B x [ k x B ] / k B 2 , [ B x k ] / k B , a n d B / B ) ,

a n d kj_ a n d v ^ a r e t h e p r o j e c t i o n s o f t h e c o r r e s p o n d -

i n g v e c t o r s o n t h e p l a n e p e r p e n d i c u l a r t o t h e v e c t o r

B .

M a n y p a p e r s h a v e b e e n d e v o t e d t o t h e i n v e s t i g a t i o n

o f t h e e l e c t r o m a g n e t i c p r o p e r t i e s o f a m a g n e t o a c t i v e

p l a s m a ( s e e M a n d t h e l i t e r a t u r e c i t e d t h e r e ) . O n e

o f t h e m o s t i n t e r e s t i n g p h e n o m e n a i n a m a g n e t o a c t i v e

p l a s m a i s c y c l o t r o n a b s o r p t i o n o f e l e c t r o m a g n e t i c

w a v e s . K u d r y a v t s e v a n d T r u b n i k o v ^ 1 1 " 1 3 ^ h a v e s h o w n

t h a t c y c l o t r o n a b s o r p t i o n a n d r a d i a t i o n o f a p l a s m a i s

e s s e n t i a l b o t h f o r t h e e n e r g y b a l a n c e o f t h e h o t p l a s m a

a n d f o r t h e p a r t i c l e v e l o c i t y d i s t r i b u t i o n .

W e s h a l l c o n s i d e r b e l o w t h e e l e c t r o m a g n e t i c p r o p -

e r t i e s o f a m a g n e t o a c t i v e p l a s m a u n d e r r a t h e r g e n -

e r a l a s s u m p t i o n s c o n c e r n i n g t h e f o r m o f t h e p a r t i c l e

v e l o c i t y d i s t r i b u t i o n , a n d i n d i c a t e w h e n t h e d i s t r i b u -

t i o n f u n c t i o n s c a n b e d e t e r m i n e d f r o m e x p e r i m e n t s

o n t h e a b s o r p t i o n o f e l e c t r o m a g n e t i c w a v e s i n a

p l a s m a . W e s h a l l h e n c e f o r t h b e i n t e r e s t e d e s s e n t i a l l y

i n a n o n r e l a t i v i s t i c p l a s m a , w h e n

where n is the refractive index. However, for a
correct description of the absorption of waves with
phase velocities that are comparable with the veloc-
ity of light, we shall use the exact relativistic formu-
las for the anti-Hermitian part of the dielectric con-
stant tensor. With this restriction, the-investigation
of the dispersion equation of the electromagnetic
waves

JA%-ft 1 f t J --^ B j ; («>,k)[=O (4.2)

still remains complicated, since the diagonal as well
as all the nondiagonal terms of the dielectric constant
remain significant. However, if the thermal motion
is a small effect, or, to the contrary, the decisive
effect, the situation becomes much simpler. Indeed,
in the two limiting cases, when

К <fa> ю

o r w h e n

to—"»£2a

to—">й„

to — mQa
- cos Ф

:—mi2n

• C O S * > 1 ,

( 4 . 2 a )

( 4 . 2 b )

w e c a n u s e i n t h e i n v e s t i g a t i o n o f ( 4 . 2 ) t h e f o l l o w i n g

e x p r e s s i o n f o r t h e d i e l e c t r i c c o n s t a n t t e n s o r : '-1 0^

*For deta i l s s e e

ig e t 0 , ( 4 . 3 )

V 0 . 0 e j

w h e r e e i j a n d e f j a r e r e s p e c t i v e l y t h e H e r m i t i a n
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and anti-Hermitian parts of the dielectric constant
tensor. In our case of nonrelativistic plasma (па

= e a B / m a c ) and subject to condition (4.2a), we ob-
tain from (4.1)*

- 2 2
a m>l

2m-2. /i >2m-2
' (lc)2. /i

H _ _ чп mSana
s ZJCO(<D« —fi»)

a
Zl Zl

„2 ,,,2m

a m>l
— IBUO) \QJ 2"lm!(2m-l)!!>

«?= * - Z J -5Г

,Л2 . 2m. /T \2m
ma a f -LI m

a m>0

f I
( ш - т й „ ) Ш./ 2mm!(2m-i-l)!! ' (4.4)

w h e r e

Wma= —

F o r a n e q u i l i b r i u m M a x w e l l i a n p l a s m a w e h a v e

T e r m s t h a t t a k e i n t o a c c o u n t t h e s p a t i a l d i s p e r s i o n

i n (4.4) a r e s i g n i f i c a n t o n l y n e a r t h e r e s o n a n t f r e -

q u e n c i e s u> ~ m 0 t t . In t h e o p p o s i t e l i m i t i n g c a s e ,

w h e n c o n d i t i o n (4.2b) i s s a t i s f i e d , t h e c o r r e c t e x -

p r e s s i o n f o r t h e H e r m i t i a n p a r t of t h e d i e l e c t r i c

c o n s t a n t i s o b t a i n e d f o r m > 1 f r o m (4.4) b y t a k i n g

t h e l i m i t kj^ = 0. On t h e o t h e r h a n d , n e a r t h e f i r s t

a b s o r p t i o n l i n e m = 1 w e h a v e

B ? = l -

coua ( 4 . 5 )

3 J
0 ) 2 •

I t i s i m p o s s i b l e t o e x p a n d i n p o w e r s o f k z [ c o n d i t i o n

( 4 . 2 a ) ] o r k g 1 [ c o n d i t i o n ( 4 . 2 b ) ] , i n t h e c a l c u l a t i o n o f

t h e a n t i - H e r m i t i a n p a r t o f t h e d i e l e c t r i c c o n s t a n t t e n -

s o r , w h i c h d e t e r m i n e s t h e c y c l o t r o n a b s o r p t i o n l i n e

s h a p e , f o r t h e n t h e r e q u i r e d i n f o r m a t i o n c o n c e r n i n g

t h e s h a p e o f t h e a b s o r p t i o n l i n e i n t h e p l a s m a w i l l b e

l o s t . U s i n g o n l y e x p a n s i o n i n p o w e r s o f k ^ , w e o b -

t a i n f r o m ( 4 . 1 )

• F o r m u l a s ( 4 . 4 ) d o n o t t a k e t h e t r a n s v e r s e D o p p l e r e f f e c t i n t o

a c c o u n t , a n d a r e t h e r e f o r e v a l i d w h e n < u - m Q o < K m O a < v ^ > / c 2 .

C o n c e r n i n g t h e d i e l e c t r i c c o n s t a n t f o r t h e o p p o s i t e l i m i t i n g c a s e

s e e M .

? \ _ _
Z J

'-tt)')""!

т\

»-*'nO'

f o r
(4.6)

0 for со2 >/clc2.

We have introduced here the following notation

/ m a = {
for со2 < klc2,

1И1

for Ш2 > k*c\

0 for со2 > J

for o>2 < A|c2,

for Ш2 > к\сг,

for со2 > m2Q? + Ale2

for /n > 0,
for m < 0,

±а ("О =
V klc

We note that the contribution of the ion terms to
the expression for e | is small. We therefore con-
fine ourselves in (4.6) only to an account of the elec
tron terms. In the case of purely perpendicular
propagation the formulas (4.6) become appreciably
simplified.

We have

Г i V 16— *2J
 l b

m>0

for Ш<7иПа,

for ш > mQa;

m>0

! ^ ) for <B<mQf,

for (o > mQe.
(4.7)
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The resultant formulas for the anti-Hermitian part
of the dielectric constant are relativistic, and are
therefore suitable also for the description of absorp-
tion of waves with phase velocities comparable with
the velocity of light. In the range of nonrelativistic
plasma temperatures it is necessary to retain in the
expressions for ef, I m a , and Ijm the higher-order
terms in %x and in g ± Q ,(m). This corresponds to
an account of the higher-order terms of the expan-
sion in the powers of (v 2 )/c 2 . In the case of a non-
relativistic plasma we have

\ _ 2;m!-2

F\m\a[ щ j .

е?=г-
\т\\

щ (4.8)
where the function F|m|Q,(x) is defined by the rela-
tion

For a nonrelativistic Maxwellian plasma we have

Having obtained general formulas for the dielec-
tric constant tensor, let us investigate the propaga-
tion of electromagnetic waves in a magnetoactive
plasma. Substituting the dielectric constant (4.3)
in (4.2) we obtain the following equations for the
ordinary and extraordinary waves in the plasma

(ef—g2 — Ei82) sin2
e2 —gts^)* sin4 4% cos2

(4.9)
At frequencies for which the anti-Hermitian part

of the dielectric constant tensor is small compared
with the Hermitian part, the absorption of the waves
is relatively weak. This occurs when condition
(4.2a) is satisfied and the anti-Hermitian part of the
dielectric constant is exponentially small, and also
under condition (4.2b) with m > 1, when the ratio of
the anti-Hermitian part to the Hermitian part is of
the order of (n{va)/c)!'mK In these frequency
regions we can neglect in the first approximation
the anti-Hermitian part efj(w, k) in (4.9). If the
small anti-Hermitian part eaj(w,k) is taken into
account with accuracy to linear terms, using (4.9),
then the coefficients of wave absorption are ex-
pressed in terms of the efj(u),k). In accordance
with (4.6)—(4.8), the efj(w,k) are expressed in turn
in terms of the particle velocity distribution func-
tions. By measuring the coefficient of wave absorp-
tion we can therefore determine in principle the
plasma particle distribution functions. We note that

these functions can be obtained only for n2 > 0, i.e.,
in the transparency region of the medium.

In the range of frequencies defined by (4.2b), the
anti-Hermitian part of the dielectric constant tensor
is greater than the Hermitian part when m = 1. This
causes the absorption of the electromagnetic wave to
occur over a distance on the order of the wavelength.
Consequently a correct analysis of electromagnetic
waves in a plasma in this frequency region, which
corresponds to the region of anomalous skin effect,
calls for a solution of a boundary value problem. Ci.5,6]

At high frequencies (w » Vmi/me fii) the ion
motion in the plasma can be neglected and the plasma
regarded as electronic. It is then necessary to in-
clude only the electronic terms in (4.4)—(4.8). The
expressions for the refractive indices for the ab-
sorption coefficients of waves propagating in an
electronic plasma at an angle to the magnetic field
are quite cumbersome C10J and are not essential here.
We give only the formulas for the angles t? = 0 and
t£ = TT/2. When !>=0 we obtain for the ordinary and
extraordinary waves

(4.10)

~dn
When & = 7г/2 we have

n\ = e2, _ — ief

dn

" 2 = е1--в7- "• =
V El У

as, (4.11)

We note that formulas (4.10) and (4.11) for the ab-
sorption coefficients к are valid only at those fre-
quencies for which n2 > 0.

For ordinary and extraordinary waves propagating
at an angle $ = 0 to the magnetic field at frequencies
defined by the condition (4.2a) we have near the first
resonance absorption line

(4.12)

It f o l l o w s t h e r e f o r e t h a t f o r t h e o r d i n a r y w a v e n 2 > 0

when ojjjg < 2П|, i.e., in the case of a sufficiently di-
lute plasma, while for the extraordinary wave we have
n\ > 0 when ш < fie. These are precisely the condi-
tions under which we can use (4.12) to determine the
electron distribution function in the plasma. We note
that when $ = 0 we can use for the anti-Hermitian
part of the dielectric constant tensor the nonrelativ-
istic formulas (4.8):

• 4n3e*mec
l e

An account of the relativistic effects of thermal mo-
tion on the electrons leads in this case to inessential
corrections. To the contrary, for waves propagating
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at an angle i? = тг/2 to the magnetic field, the absorp-
tion is due entirely to the relativistic effect of the
thermal electron motion. In the nonrelativistic anal-
ysis there is no wave absorption in the plasma at all
when i? = 7г/2, since efj( w, k) = 0. Near the first
resonance absorption line for the ordinary and extra-
ordinary waves propagating at an angle & = ж/2 to
the magnetic field we obtain

2 l—=2*

1—
(4.14)

where

ef = £a =

. 8 л 3 й ? т ? с 2 с 5 /" . ft)2 \ 3 ' 2 ,, /• 2 Q.
J 3 ^ V ~ f i l J ^•\Jn°c IE-,

for CO < &er
for Ш > Qe;

. 8

0
for eo < Qe,
for со > Q_.

It follows from these formulas that when to ~ пе the
refractive index of the ordinary wave is small and
reverses sign. For the extraordinary wave n | > 0
only in the case of a dilute plasma, when w(je < 2£2|.

In order to determine the electron distribution
function from measurements of the absorption co-
efficients it is necessary that the absorption in the
plasma be appreciable. In the nonrelativistic analy-
sis the electromagnetic waves propagating at an
angle & = 7г/2 to the magnetic field are not absorbed
in the plasma. However, an account of the relativ-
istic effects of thermal motion of the particles leads
to considerable wave absorption even at nonrelativ-
istic temperatures. Thus, for example, in a Max-
wellian plasma we have w = Sle/2, T e ~ 109, В ~ 104,
N ~ 1013, and n 1 ) 2 ~ 1. In this case /q ~ 10~3 and
к2 ~ Ю"2, i.e., the ordinary wave is completely ab-
sorbed over a length б ~ 100 cm, while the extra-
ordinary wave is absorbed within б ~ 10 cm (the
wavelength in this case is X ~ 1 cm). We note that

]

10"
1030e го »ЛГГ,

cyclotron absorpt ion, descr ibed by formulas (4.13)
p r e d o m i n a t e s over the absorpt ion due to p a r t i c l e
col l i s ions in the p l a s m a . When T e £ 3 x 108 this
condition is well sat isf ied over a wide range of
var ia t ion of В and N (B ~ 103—105, N ~ 10 1 3 —10 1 5 ) .

An investigation of the propagation of e l e c t r o m a g -
netic waves in the frequency range defined by the
condition (4.2a) with m > 1 is of no i n t e r e s t from
the point of view of determining the e lec t ron d i s t r i -
bution function in a nonrelat iv i s t ic p l a s m a . In this

frequency region the anti-Hermitian part of the di-
electric constant tensor contains along with an ex-
ponentially small factor also a factor on the order
of ((Vg^c)2 1 1 1 . Therefore cyclotron absorption of
waves in a plasma is practically always negligible
in this frequency range compared with the absorp-
tion due to particle collision.

So far we have discussed frequency regions de-
fined by condition (4.2a). As already noted, when
condition (4.2b) is satisfied, it becomes meaningful
to investigate the waves near resonance frequencies
with m > 1 by means of (4.9) —(4.11), using for the
Hermitian part of the dielectric constant tensor the
expression

«>Se - е н = 1 _ 4 ' , . (4.15)
^ to2 —Qa • & со (co2

Of p a r t i c u l a r i n t e r e s t i s t h e f r e q u e n c y r e g i o n n e a r

t h e s e c o n d r e s o n a n t a b s o r p t i o n l i n e . A t t h e s e f r e -

q u e n c i e s t h e a n t i - H e r m i t i a n p a r t o f t h e d i e l e c t r i c

c o n s t a n t t e n s o r i s s m a l l c o m p a r e d w i t h t h e H e r m i -

t i a n p a r t , a n d d i f f e r s f r o m i t o n l y b y a n a m o u n t

n ( v e ) / c . W e c a n t h e r e f o r e e x p e c t r a t h e r i n t e n s e

w a v e a b s o r p t i o n i n t h e p l a s m a . A c t u a l l y , w h e n

ы = 2Qe, in accord with (4.9) and (4.15), electromag-
netic waves can propagate only in a sufficiently dilute
plasma, in which ш§е < 4П| . In this case cyclotron
absorption predominates over collision absorption,
provided the following condition is satisfied E10^

0.17V < ВТ].

This condition is well satisfied over a wide range of
N, T e , and B, both in a laboratory plasma and in
ionospheric plasmat1 9^ ( F layer of the ionosphere).
In a plasma for which N ~ 1013, T e ~ 107, and
В ~ 104 we have for both waves n ~ 1 and к ~ 0.01,
i.e., they are completely absorbed within б ~ 10 cm.

We now consider electromagnetic waves at fre-
quencies close to the ion resonance frequencies
w ~ mfij. The investigation of electromagnetic wave
propagation in a plasma at ion cyclotron frequencies
is simplified if conditions (4.2a) and (4.2b) are satis-
fied, because the inequality e2 — g2 « e ^ holds true.
Taking this into account, we obtain from the disper-
sion equation (4.9) the following equations for the or-
dinary and extraordinary waves:

(4.16)

The component ej of the dielectric constant tensor,
and also the component g a , contain only ionic terms
in this case; the component g^ contains along with
ionic terms also the term wjje/wfie, due to the mo-
tion of the electrons. EUH Finally, for the component
e2 we obtain at ion cyclotron resonance frequencies
the following expression [see formulas (4.8)]

to2
F H . / . . ( W ) ' ( 4 Л 7 )
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Equat ion (4.16) c a n b e r e a d i l y i n v e s t i g a t e d for a l l

angles -3-. At frequencies ш ~ fii we obtain under
condition (4.2a) the following expression for the r e -
fractive indices of the waves:

,_(•>§, l + cos«d .

-cos2d—sin2d
uUi

= _ 0̂»_ 1
Cl)2 1 -f- COS2 0 '

(4.18)
We see therefore that n | < 0, i.e., the extraordinary
wave cannot propagate in a plasma near the first ion
resonance frequency ы ~ п{. For the ordinary wave

we have n\ > 0 with tan2 d- < This ob-Ч со2

viously takes place when w < Щ and for all angles i?
that are not too close to ж/2. For the absorption co-
efficient we now obtain

2(l-j»cossd) Г С «к ,2 (4.19)

Since ef is expressed directly in terms of the ion
distribution function, measurements of к at ^ = 0
enable us to determine the ion distribution function
of the plasma. We note that for ions we can practic-
ally always neglect the relativistic effects and use
(4.8) for e a . In a sufficiently hot plasma, cyclotron
absorption of waves by the plasma ions can become
appreciable. Thus, for example, in a Maxwellian
plasma with Tj ~ 107, В ~ 104, and N ~ 1014 we
have for a wave propagating at an angle & = 0 near
the first resonant frequency щ ~ 100 and к1 ~ 1,
i.e., such a wave is completely absorbed by the
plasma ions within б ~ 100 cm (the wavelength is
\ ~ 1 c m ) . *

Near the ion resonance frequencies, with m > 1
and condition (4.2a) satisfied, the anti-Hermitian part
of the dielectric constant tensor (4.8) contains, along
with the exponentially small term, also a small factor
of order ( (v^/c) 2 1 1 1 . Consequently the cyclotron
absorption is always smaller than the collision ab-
sorption.

At the frequencies determined by condition (4.2b),
greatest interest attaches, as in the case of an elec-
tronic plasma, to the region ш ~ 2Щ. In this fre-
quency region, in a plasma in which w^ > Зй^, the
quantities e|*, g^, and e|* are negative, and there-
fore n2 < 0, i.e., the ordinary wave cannot propagate
in the plasma. On the other hand, in a dilute plasma,
in which w2i < ЗЯ2 we have щ ~ 1 and /Cj ~ (vj)/c.
As to the extraordinary wave, we obtain

Q2G)2-(u);j.+Q
2)2

(4.20)

It follows therefore that n2 > 0 when 3fi2. In
sufficiently dense plasma the cyclotron absorption,

*For more details on the absorption of waves in the region of
ion cyclotron resonance frequencies see M-

described by formula (4.20), can become appreciable
and exceed the collision absorption in the plasma. CU3
Thus, for example, when Tj ~ 107, N ~ 1014, and
В ~ 104 we have n2 ~ 100 and к2 ~ 10. Such a wave
is completely absorbed within б ~ 10 cm (the wave-
length here is on the order of A. ~ 1 cm) and can be
used to heat ions in modern laboratory apparatus.

All the foregoing was based on the smallness of
the parameter п ( у а ) / с « 1. However, as shown by
Dnestrovskii and Kostomarov, ^ 5 ^ in the region of
large refractive indices this condition may be vio-
lated. When n(vQ,)/c ~ 1, an analytic investigation
of the electromagnetic waves is practically impos-
sible and it becomes necessary to solve the disper-
sion equations by numerical means. C153 In the lim-
iting case when n ( v a ) / c » 1, however, the situation
simplifies greatly because the asymptotic represen-
tations of the Bessel functions of large argument can
be used in the expression (4.1) for the dielectric con-
stant tensor. As shown in E16], this inequality can
be satisfied near the resonant frequencies ш ~ тпа

under condition (4.2a) for both electrons and ions,
and furthermore within a very narrow interval of
angles near ^ ~ 7r/2. The dielectric constant ten-
sor of a Maxwellian electron-ion plasma has in the
transparency region the form

k)=
where

0
0

о

0

0
0
633

(4.21)

en

Laa

p ,

= i -

1

/2W'

t

1

ш2 П 3

а (со—mQa)

2

<o2

aOa
ma V/i

R2

pma.

(4.22)
The dispersion equation (4.2) breaks up in this case
into three equations, which are the dispersion equa-
tions for the ordinary, extraordinary, and plasma
waves, respectively:

n* sin' e u = 0. (4.23)

F r o m t h i s w e obtain the r e f r a c t i v e i n d i c e s and the

a b s o r p t i o n c o e f f i c i e n t s of the e l e c t r o m a g n e t i c w a v e s

that a r e in r e s o n a n c e wi th the g y r o f r e q u e n c y of one

def in i te kind of p a r t i c l e s :

2й о)2 (mQa-o>) \fTa

/ s

n , = - = r
l \v»

йа—(о) / Г а

, / Pma
1 / n a 9~

, x 2 <*< — I/ -к- H2t>—" *

(4.24)



L I N E A R E L E C T R O M A G N E T I C P H E N O M E N A IN A P L A S M A 47

where
со — mQn

' n | cos ft I ш

T h u s , i n t h e l i m i t c o n s i d e r e d h e r e , t h e o r d i n a r y a n d

e x t r a o r d i n a r y w a v e s c a n p r o p a g a t e i n a p l a s m a w h e n

cx> < т й а , while the plasma wave can propagate when
ш > пхпа. This result agrees with the qualitative in-
vestigation of E15^.

Worthy of particular analysis is the frequency
range "w « fij, when the so-called magnetohydrody-
namic waves propagate in the plasma. We can con-
sider two cases: 1) cold plasma, when the thermal
motion of the particles can be neglected (limit of
two-fluid hydrodynamics), and 2) non-isothermal
plasma, when an account of the thermal motion of
the electrons is important (the limit of single-fluid
hydrodynamics ). C17H in the first case the anti-
Hermitian part of the dielectric constant tensor (4.8),
which describes the absorption of waves in a colli-
sionless plasma, is exponentially small, and for the
Hermitian part of €ij(a>, k) we have

/ 8 l 0 0 \
eu((o, k)= 0 8 l 0 , (4.25)

\0 0 ej

where

: = и - ^ , e i = i —

From the dispersion equation (4.2), which in this
limit separates into three equations,

=2 4 = 0,cos2

C2 I (4.26)
i sin2 ft -f- e2 cos2 ft '

we obtain the following spectrum of the magnetohy-
drodynamic and Alfven waves (it is customary in
hydrodynamics to express the frequency and the
decrement in terms of the wave vector):*

сое?

8?

*L

(4.27a)

(4.27b)
k2v\ cos2 ft

y= —»
. (k2c2 sin2

(A2C2COS2fl — CO2E?) —
2co3 (4.27c)

Here VA = cfij /w^ is the Alfven velocity; the values
of ef and ef are given by (4.8), with the electronic
terms making the main contribution. It should be
noted that in accordance with the requirement w
« Щ the solution (4.27b) is valid only in a very
narrow interval of angles near S- ~ 7r/2.

In conclusion we consider electromagnetic waves
*ctg = cot.

in a non-isothermal plasma, in which the mean ther-
mal energy of the electrons is considerably greater
than the ion energy, at low frequencies к sin
« ш « к cos i?(v e ) .

From the general expression for the dielectric
constant tensor (4.1) we obtain in this limit ^ ^

0 0
k) = l 0 (4.28)

0 - e23 e33j

w h e r e t h e f o l l o w i n g e x p r e s s i o n s h o l d t r u e f o r t h e

H e r m i t i a n a n d a n t i - H e r m i t i a n p a r t s of € j j : t

ец=0,

H
822 = Qf

л У ft sin2 ft
CO | COS ft I

H _ oi - l e
3 3 "" to2 ••• A2 cos2 ft <i>2> '

8 2 3 = —

е з з = —

яУ2 sin ft
K. COS лГййа

A3 | c o s 3 ft 1

We note that only the electron terms contribute to
the anti-Hermitian part of ejj(w,k), i.e., the wave
absorption is due to the plasma electrons.

The dispersion equation (4.2) separates in this
case into the following two equations

^ = 0.(4.29)

From this we obtain the spectrum of the magnetohy-
drodynamic and magnetic-sound waves propagating
in a non-isothermal plasma in the limit of single-
fluid hydrodynamics

= Y *"

Y = 0 ,

£ ± V(vl+vkf-ivXv*Hcos*®},

(4.30a)

( 4 . 3 0 b )

w h e r e v s = a j O i V ( v | ) / w _ l e i s t h e v e l o c i t y o f s o u n d

i n t h e n o n - i s o t h e r m a l p l a s m a . In t h e c a s e o f a M a x -

w e l l i a n p l a s m a f o r m u l a s ( 4 . 3 0 ) a s s u m e t h e c u s t o m a r y

form. С»""]

5. INTERACTION BETWEEN A BEAM OF CHARGED
PARTICLES AND A MAGNETOACTIVE PLASMA

In the presence of an external magnetic field, the
character of the beam instabilities in the plasma be-
comes highly varied, and any detailed examination of
this question is outside the scope of the present r e -
view.* To illustrate the simplicity of the general the-
ory developed in Sec. 3, we shall consider here only

*The interaction between a beam of charged particles and a
magnetoactive plasma has been treated in a tremendous number of
papers. Soon to be published is a book by Ya. B. FainbergM, de-
voted to this problem, where a detailed bibliography can be found
(see also t1-40])-

ttg = tan.
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low-frequency instabilities, corresponding to the ex-
citation of magnetohydrodynamic and magnetic-sound
waves by a nonrelativistic beam in a plasma, espe-
cially because this problem was solved most r e -
cently. C21.22:

Unstable solutions of the dispersion equation (3.7)
should be sought primarily in the region of the fre-
quencies w and w' where the absorption is small,
and therefore the anti-Hermitian parts of the dielec-
tric constant tensors of the beam е,ф'(ц)', k') and

/ni L J
of the plasma ejj (w, k), which are responsible for
the absorption of the electromagnetic waves, are
negligibly small compared with their Hermitian parts.
This frequency region includes, on the one hand, the
oscillations for which thermal motion of the par-
ticles is insignificant (these are the high-frequency
oscillations, the electron and ion cyclotron waves,
and also the low-frequency oscillations correspond-
ing to the limit of the two-fluid hydrodynamics), and
on the other hand, low-frequency oscillations of non-
isothermal plasma, which depend appreciably on the
thermal motion of the electrons and correspond to
the limit of the single-fluid hydrodynamics of a
plasma. E17^ In the former frequency region the di-
electric constant tensor ejj(oj, k) is determined by
expressions (4.3) —(4.5), while in the latter it is
given by (4.28). Expressions of this type for the
dielectric constants of the beam and the plasma
enable us to find the entire manifold of unstable
oscillations in the system in the presence of an
external magnetic field.

As already indicated above, the electromagnetic
wave is excited in the plasma at low beam density,
only when the speed of the beam is of the order of
the phase velocity of the wave. Therefore, without
resorting to an investigation" of the dispersion equa-
tion (3.7), we can use the results of the preceding
section to determine the conditions imposed on the
beam velocity u (under which the oscillations in the
plasma will be unstable).* It is easy to see that
these conditions have the form u ~ c/n, where n
is the refractive index of the wave excited in the
plasma. Only solution of the dispersion equation
(3.7) can yield the frequencies and buildup incre-
ments of the oscillations and permits investigation
of the case when the beam and plasma densities are
comparable.

We proceed now to a more detailed investigation
of the excitation of magnetohydrodynamic and mag-
netic-sound waves (w, ш' « flj) in a plasma by a
nonrelativistic beam of charged particles. We con-
fine ourselves to the case when the thermal motion
of the particles in the beam can be neglected, i.e.,
when a>' » k-(va)i-

"The results of Sec. 3 remain in force if the beam moves along
the magnetic field. In the case of a homogeneous plasma, only this
formulation of the problem has physical meaning.

In the limit of two-fluid hydrodynamics, when
thermal motion of the particles can be neglected
both in the beam and in the stationary plasma, the
dispersion equation (3.7) separates into two equa-
tions

ш 2 Г
— s i - L

(ю—u

— =
(5.1)

со2 (ш —uk) a +
/г2 sin2 flu2 шоИ

CD2

f ] }

[ , , . „ „ , «fcsinflfra — uk) (oL. "12 [ c o l

/c2 s in § cos Ф-| ^ ^ a = 0 . УР-^)

F r o m (5.1) w e obtain

u k

"A1+»A2 У+ *»»А1- »A2 (5.3)
where v^j and уд2

 a r e the Alfven velocities in the
beam and in the stationary plasma, respectively.
From (5.3) it follows that when

(uk)* (5.4)

the system oscillations become unstable. These insta-
bilities correspond to excitation of magnetohydrody-
namic waves, described by the dispersion equation
(4.27a). It is easy to see that when u-k = 0, i.e., for
waves propagating transversely to the magnetic field,
there are no such instabilities in the plasma. In the
case of small beam density (VAI » VA2) the condition
(5.4) assumes the form (u • к) 2 > k V ^ 2 > 2 1 ' 2 a

An investigation of (5.2) for arbitrary angles $
and for arbitrary beam densities is quite complicated.
When J> = тг/2, Eq. (5.2) has only solutions corre-
sponding to damped oscillations in the system. When
•d- = 0, (5.2) separates into two equations, one of
which coincides with (5.1) and the other with (3.11).
In the case of a beam of low density we obtain from
(5.2) the following approximate solution

C0 = l (5.5)

which for VA2 < u < 42vj±2 describes unstable oscil-
lations corresponding to the excitation of magneto-
hydrodynamic waves in a stationary plasma.

Finally, in the case of a hot non-isothermal
plasma, when thermal motion of the beam particles
can be neglected, but the thermal motion of the elec-
trons in the stationary plasma must be taken into
account, the dispersion equation (3.7) has for & - тт/2
only solutions that correspond to damped oscillations
of the system. When t> = 0 this solution breaks up
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into two equations, one coinciding with (5.1) and de-
scribing the excitation of magnetohydrodynamic
waves, and the other coinciding with (3.13) and de-
scribing the excitation of plasma sound in the sys-
tem (for more details see E22^).

6. PARTICLE COLLISIONS IN A PLASMA

We now discuss another question which can be
fully answered with the aid of linear electrodynamics
of a plasma. We refer to the collision problem and
to radiation and absorption of electromagnetic waves
by plasma particles. The separation of radiation and
absorption of electromagnetic waves in a plasma
from particle collisions is only arbitrary. Conse-
quently, strictly speaking, both processes must be
considered in unified fashion, although there are
many examples in which these processes can be
separated.

Collisions of particles in a fully ionized plasma
were considered by Landau. E23^ He assumed that
the electrons and ions collide in a plasma in the
same manner as in vacuum. Actually, the colli-
sions of charged particles in a plasma differ from
collisions in vacuum because polarization of the me-
dium makes the field of charged particles in the
plasma different from the field of a particle in
vacuum. The polarization of the medium is de-
scribed by the dielectric constant tensor. Thus, for
example, for the field of a point charge at rest in a
plasma we can write the following expressions '-1'3-'

E ( r ) = — -Д- \ d k - ^ - j
' 3r J 2л а ( 6 . 1 )

л 2 кге^ (О, к) kj •

H o w e v e r , t h i s p a r t i c l e f i e l d c a n b e u s e d t o d e t e r m i n e

t h e s c a t t e r i n g o f t w o c h a r g e d p a r t i c l e s o n l y i f o n e o f

t h e s e p a r t i c l e s i s i n f i n i t e l y h e a v y . A n a c c o u n t o f t h e

m o t i o n o f t h e p a r t i c l e s , n a t u r a l l y , c o m p l i c a t e s t h e

m a t t e r . T h e C o u l o m b f i e l d o f a n o n r e l a t i v i s t i c c h a r g e

moving in a medium with a velocity v « с is deter-
mined by the following expression '-1'3-'

E (r) = -
ik(r-vf)

2л2 Sij (kv, k)
(6.2)

Here к • v plays the role of the frequency, and Kk
plays the role of the momentum of the electromag-
netic wave radiated by the particle (provided, of
course, that these quantities correspond to the trans-
parency region). It follows therefore that if only
Coulomb interaction is considered in the scattering
of nonrelativistic charged particles it becomes in
fact necessary to calculate the following matrix
elements: *

*The quantum method of analyzing the scattering of particles
is clearer than the classical method.

4яецев у dk <Pal I Pq> (6.3)

where E P
Q ; ,

and p'a, are the en-
ergy and momenta of the colliding particles before
and after collisions. In calculating the scattering
matrix elements one must bear in mind the energy
and momentum conservation laws.

If there is no strong magnetic field in the plasma
and the wave functions of the particles in the plasma
can be regarded as plane waves, the particle scatter-
ing probability assumes the form

l(Pa, Pa)=-f"

(Pa~Pa)i e U — о
Pa -Pi P a - P a

(Pa — I

Using the scattering probability w a o ( p a , р ' а ) , as
was done in E253, we can write down for the collision
integral of the plasma particles

(6.4)

In the classical limit (fi — 0) the particle collision
integral can be reduced to the form proposed by
Landau

where

Ki Kj
Г;Е;3- (kva, k) kj |* '

( 6 . 6 )

A s i m i l a r c o l l i s i o n i n t e g r a l w a s o b t a i n e d b y m a n y

a u t h o r s . C2 5~2 9H T h e m o s t i m p o r t a n t f e a t u r e o f t h i s

c o l l i s i o n i n t e g r a l i s t h a t i t t a k e s i n t o a c c o u n t b o t h

t h e s c r e e n i n g o f t h e f i e l d a t l a r g e d i s t a n c e s a n d t h e

r a d i a t i o n o f e l e c t r o m a g n e t i c w a v e s i n t h e p l a s m a . If

w e p u t e j j = 6j j ( v a c u u m ) , e x p r e s s i o n ( 6 . 6 ) g o e s

o v e r i n t o t h e w e l l k n o w n L a n d a u e x p r e s s i o n ' - 2 3 - '

— L, (6.7)

where u = va —

L =

and

dk *mas = ln
Qmax

is the so-called Coulomb logarithm. In such an anal-
ysis, of course, there is no screening of the field and
the integral with respect to dk must be artificially
cut off at small к > k m i n (which corresponds to
cutting off the Coulomb particle interaction at large
distances p m a x , owing to the Debye screening). We
note that the artificial cutoff of the interaction must
be made at small distances p >: pmin (i-e., at large
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к < k m a x ) . In the classical limit Pmin ~ e 2 AT,
while in the quantum limit p m i n ~ е2/Й (v). If po-
larization of the medium is taken into account, the
interaction of the particles is cut off at large dis-
tances automatically, because of the presence of the
dielectric-constant tensor in formula (6.6); at small
distances, on the other hand,* it is also necessary to
introduce in this case artificial cutoff at p = p m i n .

The expressions obtained above for the plasma-
particle collision integral are nonrelativistic and do
not take into account the relativistic effects of ther-
mal motion of particles in the plasma. To obtain a
relativistic expression for the collision integral we
must start not from (6.2) but from the formula

where

r e p r e s e n t i n g the field of a r e l a t i v i s t i c a l l y c h a r g e d

p a r t i c l e m o v i n g w i t h v e l o c i t y v in a m e d i u m wi th

dielectric constant ец(ш, к) (see ^.з]) . Ц (6.8)
is used for a plasma in the absence of a strong mag-
netic field, the collision integral is written in the
form (6.5), where C25^

т.. = ( ^ e ) 2 5 ^ L «kfifi (kvo -

(6.9)

In the nonrelativistic limit (c — °°) the expression
(6.9) goes over into (6.6). In the particular case of
an isotropic plasma, when the dielectric constant
tensor has the form (2.1), we obtain

4 (т., ^ 6 (kva - kvp)

11 (kva, к) : е ' г (кУ а . (6.10)

= e t r = 1 (vacuum),If we put in this expression
we obtain the well-known formula of Belyaev and
Budker.M

It follows from the foregoing that the radiation
and absorption of electromagnetic waves in a plasma
fits consistently in the kinetics of particle "colli-
sions." A similar conclusion was proposed earlier
(see C32>333), but only for a plasma in a state that
differs little from thermal equilibrium. At the pres-
ent time more and more attention is paid to plasma
far from equilibrium, for which the scheme proposed
to account for oscillations and waves in the plasma
is particularly suitable.

A similar analysis of the collision integral was
carried out also for a plasma in a strong magnetic
field. C34.35] jjj fljjg c a s e ^g scattering matrix ele-
ments (6.3) must be calculated by using the wave
functions of the charged particles in a strong mag-

*The quantum expression (6.4), of course, does not diverge at
large momentum transfers (i.e., at small distances). Concerning
the cutoff of interaction at small distances in the classical limit
see M.

netic field. The nonrelativistic particle collision
integral has in this case the form

тп„
0m, n —oo

а
"j_a °P±a i — nQp)

X

x{kz •+•
" l a Эр,,

X / a ( > z a . ( 6 . 1 1 )

w h e r e J n ( x ) i s t h e B e s s e l f u n c t i o n .

I n c o n c l u s i o n w e p o i n t o u t t h a t t h e c o l l i s i o n i n t e -

g r a l ( 6 . 5 ) c a n b e w r i t t e n i n a f o r m c o r r e s p o n d i n g t o

t h e F o k k e r - P l a n c k e q u a t i o n :

w h e r e t h e q u a n t i t i e s D j j a n d A i , c a l l e d t h e d i f f u s i o n

a n d f r i c t i o n c o e f f i c i e n t s , r e s p e c t i v e l y , a r e g i v e n b y

t h e f o l l o w i n g e x p r e s s i o n s

( 6 . 1 3 )

7 . F L U C T U A T I O N S O F E L E C T R O M A G N E T I C F I E L D

I N A P L A S M A

T h e t h e o r y o f t h e r m a l fluctuations i n m e d i a w i t h

s p a t i a l d i s t r i b u t i o n , p a r t i c u l a r l y i n a p l a s m a , c a n b y

n o w b e r e g a r d e d a s f u l l y d e v e l o p e d . * A c c o r d i n g t o

t h i s t h e o r y , t h e t h e r m a l fluctuations o f e l e c t r o d y -

n a m i c q u a n t i t i e s i n a p l a s m a a r e d e s c r i b e d b y t h e

d i e l e c t r i c c o n s t a n t t e n s o r . W e c a n t h u s c o n c l u d e

t h a t t h e c o m p l e x d i e l e c t r i c c o n s t a n t t e n s o r d e s c r i b e s

c o m p l e t e l y a l l t h e l i n e a r e l e c t r o m a g n e t i c p r o p e r t i e s

o f t h e p l a s m a . W e c a n t h u s s t a t e t h a t t h e p r i n c i p a l

a s p e c t o f l i n e a r p l a s m a e l e c t r o d y n a m i c s h a s b e e n

a c t u a l l y d e v e l o p e d . T h e r e m a i n i n g p r o b l e m i s t o

i n v e s t i g a t e t h e s p e c i f i c e l e c t r o m a g n e t i c p r o p e r t i e s

o f t h e p l a s m a f o r a s p e c i f i e d p a r t i c l e d i s t r i b u t i o n

f u n c t i o n a n d t o c a l c u l a t e t h e d i e l e c t r i c c o n s t a n t t e n -

s o r . A c t u a l l y , h o w e v e r , s u c h a s t a t e m e n t a p p l i e s

o n l y t o a n e q u i l i b r i u m p l a s m a . I n a d i l u t e p l a s m a ,

w h e r e p a r t i c l e c o l l i s i o n s a r e e x c e e d i n g l y r a r e , t h e

d i s t r i b u t i o n f u n c t i o n m a y d e v i a t e f r o m e q u i l i b r i u m

f o r a l o n g t i m e . O f c o u r s e , t h e t h e o r y o f t h e r m a l

f l u c t u a t i o n s , d e v e l o p e d i n ' - 3 - ' , c a n n o t b e u s e d f o r

s u c h a n o n - e q u i l i b r i u m p l a s m a . W e t h e r e f o r e d e -

s c r i b e i n t h i s s e c t i o n b r i e f l y t h e t h e o r y d e v e l o p e d

i n '-3 6-' f o r f l u c t u a t i o n s i n a n o n - e q u i l i b r i u m p l a s m a

* A r e v i e w o f s u c h a t h e o r y a n d t h e c o r r e s p o n d i n g b i b l i o g r a p h y

a r e c o n t a i n e d i n M ( s e e a l s o W ) .
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( see also '-37-'), and show that knowledge of the
dielectric constant tensor is not always sufficient.

We introduce the Fourier components of the
electric-field operator

Ё(со, Ь) = - ^ г ] dt^drEir, Qe*»'-*'. (7.1)

To determine the fluctuations of the electric field we
must calculate the quantum-mechanical mean of the
operator

-i {Ё, (со, k) Ei (со', k') + Ei (со', V)% (со, к)}. (7.2)

To determine the mean value of the operator (7.2) it
is sufficient to know the matrix elements of the elec-
tric-field operator, which we determine by starting
from the matrix elements of the particle current
density operator.

We consider the case when there is no strong mag-
netic field in the plasma and the wave functions of the
particles can be regarded as plane. The matrix ele-
ment of the particle current density a, correspond-
ing to the transition from state n to state m, has in
this case the form

} (7.3)eaamnexp | x [ ( p n - p m , r ) - ( £ n - £ m

where p n and E n are the momentum and energy of
the particle in the state n, while a m n are the Dirac
matrices. Substituting (7.3) into Maxwell's equations,
we obtain the matrix elements of the electric-field
operator
{m | £4(eo, k)| n) = - i ^ - eaAlj (со, к) а^„

where

(7.4)

Аа(ш> к ) = - ^ е г И и - к ) - /с2би••-Mi-

Formula (7.4) enables us to calculate the unknown
quantum-mechanical mean value of the operator (7.2).
Assuming the the distribution function of the particles
of kind a with respect to the momenta pa is defined
by the function ia(pa )> w e c a n writeE36^

o, k)£4(w', 't(co\ k')

> , к , (7.5)

H e r e t h e s u p e r i o r b a r d e n o t e s q u a n t u m - m e c h a n i c a l

a v e r a g i n g , a n d

(£4£3.)M, » = 4 2 ( 4 n e ° ) 2 i r A'ie (» . k) Af1 (со, k)

a

фа/а (Pa) { б [ CO - -1 {E (pa + fik) - E (Pa)} ]

£(p.)£(Pa+J.k) 2Ё (pa) E (po + i.k)

-blr

[E (p g -T.k)-
(7.6)

In the classical limit, as К — 0, we therefore obtain

^, к)

X \ dVaU (Ра) ^ф-S (со - кт„). (7.7)

In the particular case of an isotropic particle distri-
bution ia(pa), when the dielectric constant tensor
of the plasma is given by (2.1), formula (7.7) becomes

(Ра) S (со - kv0)

X I e' (u), A) |2.2 C* 0)2
(7.8)

In the case of an equilibrium Maxwellian particle dis-
tribution fô Po;), formulas (7.6)—(7.8) go over into
the well-known formulas of the theory of thermal
fluctuations. C1^

Using Maxwell's equations we can readily obtain,
with the aid of the formulas derived for the electric-
field fluctuations, expressions for the fluctuations of
the magnetic induction, the electric induction, the
charge and current densities induced in the plasma,
etc. We give here an expression for the flucutations
of the Lorentz force acting on a particle of kind a: E36

p

„) б (со - kvp) v'^

(7.9)
The theory of linear fluctuations in a non-equilibrium
plasma is directly connected with the kinetic "colli-
s ions" of the particles in the plasma (radiation and
absorption of waves in the plasma), and consequently
also with the recently developing quasi-linear ap-
proach to the plasma theory. C38>393 Actually, com-
paring formulas (7.9), (6.9), and (6.13) we can write
for the diffusion and friction coefficients contained
in the collision integral (6.12)

(7.10)

- e.?r(kva> k)} £№* (кт„, к) £(«) (кт„, к), ^

where

k)=

is the field produced by particle a, moving with
velocity VQ, in the plasma. If only the Coulomb field
is taken into account, the coefficient Djj corresponds
to the coefficient obtained in C29].

In conclusion we give an expression for the flue-
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tuations of the Coulomb field in a plasma situated in
a strong homogeneous magnetic field: C35^

' (со, к) A$rl (ш, к)

(Pa) (7-11)

ijjwhere 7ijj is the tensor that appears in the theory
of the dielectric constant of a plasma [see expres-
sion (4.1)].
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