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INTRODUCTION tudes. There are only isolated relations between them

Ti and a general understanding of how many functions of

HE dynamical properties of elementary particles, what variables are of interest to us, and how these
which manifest themselves when the particles interact, functions are connected with experimentally observed
are very complex, since there are an infinite variety phenomena.
of transformations of particles into one another in The simplest types of amplitudes are those which
which the numbers and character of the particles describe electromagnetic and certain other properties
change. To describe the structure of these interac- of particles. Electromagnetic form factors are func-
tions one must give a set of functions, called scatter- tions of a single variable (the momentum or wave
ing amplitudes, or generalized form factors. Finding vector), so that they can be related to a definite spa-
these scattering amplitudes is the main problem of the tial structure by using the Fourier transform. In this
theory of elementary particles. At present there ex- way we get an illustrative interpretation,
ists no system of equations for determining the ampli- We begin our presentation with the nonrelativistic
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example of the description of the simplest fixed sys-
tem of charges, which can serve as a model for the
atom. After introducing with this example the main
quantities which are needed for the formal apparatus
of the theory (Sec. 1), we go on in Sec. 2 to the general
formulation of the problem of the relativistic theory of
elementary particles and in Sec. 3 to the general prop-
erties of scattering amplitudes and the theory of dis-
persion relations.

The theory of elementary particles was developed
as a field theory, following the example of quantum
electrodynamics. Gradually, however, with the devel-
opment of the physics of strongly interacting particles
it became clear that the connection between fields and
particles is not so direct. It is only in the realm of
weak interactions that we can, from the types of par-
ticles observed in experiment, reconstruct the fields
associated with them. For this reason two lines of
development began. The first was the construction of
more complicated (i.e., less naive) models of fields.
The second was to free oneself altogether from the
concepts of field theory. Actually these lines of attack
are not mutually contradictory. The point is that in
field theory there are really no methods for solving
problems, aside from perturbation theory. Except for
it, one can obtain only general relations based on gen-
eral properties of fields. The idea naturally arises of
starting the development of the theory from this stage,
by formulating some general properties for quantities
which have a more direct physical interpretation than
the field. The elements of the scattering matrix are
quantities of this sort. An outline of the theory of the
scattering matrix, in which field theory is not used
directly, is the main content of this article.

The remaining two sections are devoted to appli-
cations.

1. FORM FACTORS AND THEIR SPECTRAL REP-

RESENTATION

1. Form factors. The simplest picture of a particle
is a small sphere with some stationary distribution of
electric charge. Its structure is determined by the
dependence of the charge density on distance to the
center of the particle. We shall denote this function
by ep(r ) or, in order to emphasize the assumed
spherical symmetry of the charge distribution, by
ep(r 2 ) (where e is the charge on the electron, and is
introduced here as a convenient unit for measurement
of charge).

Formally, to describe the structure of such an elec-
trostatic system we can equally well use quantities r e -
lated to the function p ( r 2 ) via Fourier or Laplace
transformations.

The quantity

distr ibut ion is spher ica l ly s y m m e t r i c , p = p ( r 2 ) , the
form factor is a function of the s ingle var iab le q2. We
shal l denote it by f = f( — q 2 ) . Then (1.1) can be wr i t ten
as

( 1 # 2 )

(1-3)

qf( - q2) = 4л ^ rQ (r2) s i n qr drt

о

= ^ \ qf (-q') sin qrdq

We note that f is a real quantity, as is obvious from
(1.2).

We also introduce the quantity I, which is related
to p via the Laplace transformation:

rQ(r2) =

From (1.2) and (1.4) it follows that

(1.4)

da\ (1.5)

The relation (1.5) is called the spectral representation
of the form factor, while the function I (a2) is the
spectral density.

We express the total charge of the system

e \ Q dr = eQ

and the moments of the charge distribution

in terms of the form factor and the spectral density.
From these definitions it follows that

d.6)

2. Asymptotic p r o p e r t i e s and types of r e p r e s e n t a -
t ions . Using the s p e c t r a l density Ha*), one can con-
veniently d e s c r i b e the s i m p l e s t types of charge d i s -
t r ibut ions .

Suppose, for example, that l(a2) i s different from
z e r o only in the neighborhood of the value a = I / a
(i.e., Ца2) — (7г/а 2 )б(а 2 -1/а 2 )) . Then according
to (1.4) and (1.6)

p-r/o (1.8)

Such a distribution corresponds to the simplest model
of the electron shell of an atom of radius a. The ex-
pansion (1.4) can thus be interpreted as a description
of the charge distribution as a set of " s h e l l s " with
radii a = 1/OJ.

When a — 0, the distribution (1.8) describes a
point charge:

is called the form factor of the system. If the charge
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From (1.4) we see that small values of a are im-
portant for the distribution at large r. Suppose that
l(a2) is different from zero only for a > д. Then

For r —- °° we can expand the integrand of the last
expression in powers of /3. If

then

(1.10)

We see that asymptotically the charge density falls
off exponentially and that the character of the falloff
is determined by the threshold argument of the spec-
tral density, the value ц. (For ц = 0, the charge den-
sity falls off according to a power law.)

Conversely, the asymptotic behavior of the spectral
density and the form factor is determined by the be-
havior of p ( r 2 ) as г — 0.

If r p ( r 2 ) is finite, then according to (1.4) the inte-
gral

L = \ /(a2) da2 = 4n2(/-Q)r=io,
Ц2

should exist, i.e., Ца2) falls off like l/a2A-, where
\ > 1. From (1.5) we find that the asymptotic expres-
sion for the form factor has the following form:

(1.11)

For the case where p(0) is finite, i.e., L = 0, the
form factor falls off faster:

V_ (1.12)

where

If r p ( r 2 ) goes to infinity for r — 0, i.e., if the in-
tegral L does not exist, then f( — q2) falls off for
q2 —«• °° more slowly than according to formula (1.11).
In fact, in this case, starting from (1.5), we can write
the asymptotic expression for f ( - q2) in the following
form:

/I

where a and b are numbers chosen so that a « 1
« b. Suppose that the asymptotic behavior of l(a2)
is given by a power law, so that

then

/ ( - q 2 ) -

From the condition L = °° and the finiteness of

/

tained within the following limits:

— — , = Li it follows that the exponent is con-

The coefficient С in (1.13) can depend weakly (for
example, logarithmically) on q2.

We see that every distribution which can be repre-
sented in the form of the spectral resolution (1.5) leads
to f(— °°) = 0, if the total charge of the system is fi-
nite. If the form factor tends to a constant for q2 — °°,
f ( - °°) = const, we can, by subtracting this value, get
back to the previous case:

(a2)

Taking the Fourier transform, we have

(1.14)

(1.15)

This means that the case of f(— » ) ^ 0 means that
there is a point charge Qo = f(— °°) at the center of the
particle. From (1.14) and (1.15) it follows that the total
charge of the system is

(1.16)

Eliminating f(— °°) from (1.14) and (1.16), we can
write the spectral representation of the form factor
in the following form:

2)
(1.17)

The representation (1.17) allows us to treat the case

where f ( - q2) — « . This will occur if L t = / d a l[a *
r Z ( a 2 ) d a 2 a

= °°, while the integral L2 = J 4 exists. We
then also have Qo = °°, i.e., the system contains an
infinite point charge which compensates the distributed
charge described by the spectral density Ha2), where
in the limit a —» °°, l(a2) either tends toward a con-
stant or goes to infinity, but in such a way that the total
charge f(0) of the system is finite. As we shall see
later, such a system is a model for the electron in
quantum electrodynamics.

3. Dispersion relations. We present another formal
procedure which will be very important in what follows.
First we rewrite the fundamental formula (1.15) for the
spectral representation of the form factor in the follow-
ing form:

(1.18)
t'—t

№Г

We note that, from the meaning of the form factor, the
function f (t) is defined for negative values of the ar-

(1.13) gument t = - q 2 < 0, and the function l(t') for positive
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values of the argument t ' = a > 0. For convenience
we have introduced a lower integration limit t 0 in
(1.18), assuming that l(t') = 0 for t ' < t 0 (where, in
particular, t 0 may be equal to zero).

Now we introduce the complex variable t = x + iy
and use formula (1.18) to define the function f(t) over
the whole complex t plane. Let us find the properties
of this function. First we find the value of Im f( t) .
From (1.18) it immediately follows that

from which we see that:
1) for у * 0, i.e., off the real axis, bn f * 0;
2) for у = 0 and x < t0, the denominator of the in-

tegrand does not vanish within the range of integration,
the integral is finite and therefore bn f(t) = 0, in
agreement with the meaning of the definition (1.4) of
the form factor;

3) for x > t 0 and у — 0, bn f(t) is different from
zero because of the region near the zero of the de-
nominator of the integrand, x' — x. Therefore

y 'Wo '"

This same result could have been obtained directly
from (1.18) by using the well-known relation

Im- пУ6(х'-х).
x'-x-iy - \y\

Thus the function f ( t ) has discontinuit ies along the
line which i s p a r t of the r e a l ax i s , f rom x = t 0 to
x = «=. As we approach this l ine from above and
below, b n f ( t ) takes on different v a l u e s :

(1.19)

(x>t0). (1.20)

F u r t h e r m o r e we see from (1.18) that if the function
f ( t ) ex i s t s for r e a l t < 0, then it ex i s t s for al l c o m -
plex t, w h e r e f(°°) = 0. Thus f ( t ) i s an analytic
function in the t plane with a cut along the b r a n c h
line x > t 0 . The function f ( t ) has no s ingular i t ies
except those as soc ia ted with the branch l ine.

Using (1.20), we can r e w r i t e (1.18) a s follows:

(1.21)

Integral re la t ions like (1.21), which e x p r e s s an
analytic function in t e r m s of i t s imaginary p a r t on a
b r a n c h l ine, a r e usual ly cal led d i sper s ion r e l a t i o n s .
The d i s p e r s i o n r e l a t i o n (1.21) i s equivalent to the
a s s e r t i o n that the function f ( t ) i s analytic in this
domain. In fact i t can be obtained from the Cauchy
formula by deforming the contour of integrat ion to
the form shown in Fig. 1. We note that the integral
along the c i r c l e of infinite rad ius goes to z e r o because
l(x>) = o, which in turn follows from the f initeness of

the charge of the sys tem, Li = — J — ,

FIG. 1

Relation (1.20) r e m a i n s valid a l so for the c a s e
where the form factor i s not r e p r e s e n t a b l e in the
form (1.5), but w h e r e the s p e c t r a l r e p r e s e n t a t i o n
(1.17) e x i s t s . In this c a s e the analytic function with
the s ta ted p r o p e r t i e s is the function

/ ( 0 - / ( 0 ) .
t :

'o
4. F o r m factors and sca t te r ing ampl i tudes . The

form factor of a p a r t i c l e is m o r e d i rec t ly re la ted to
quantit ies that a r e m e a s u r e d exper imental ly than is
the densi ty d i s t r ibut ion of t h e c h a r g e in s p a c e ; i t i s
there fore a m o r e fundamental quantity in the theory
of e l e m e n t a r y p a r t i c l e s . Actually t h e s t r u c t u r e of a
p a r t i c l e can be studied by m e a s u r i n g the sca t te r ing
of t e s t p a r t i c l e s .

Let us cons ider the formulat ion of such a p r o b l e m
in nonrelat iv i s t ic quantum m e c h a n i c s . Suppose the
t e s t p a r t i c l e (we shal l call it an e l e c t r o n ) with point
charge e and m a s s m is s c a t t e r e d by the p a r t i c l e
with m a s s M and charge dis t r ibut ion e p ( r 2 ) . We d e -
note by k t and k 2 the initial and final m o m e n t a of the
elect ron, by Pj and p 2 the init ial and final m o m e n t a
of the p a r t i c l e , and by fiq the change in momentum
in the scat ter ing,

bq = P l - p s = k 1 - k 1 . (1.23)

We r e f e r all quantit ies to the c e n t e r of i n e r t i a of the

colliding p a r t i c l e s :

Pi + P2 = К + К = 0, &V = 2pJ (1 - cos 6),

where в is the scattering angle in the с enter-of-mass

system.
Suppose that the scattering occurs under conditions

for which perturbation theory (Born approximation)
is applicable. Then the scattering amplitude F, which
is related to the differential cross section da by the
formula

da = | F21 do, (1-24)

w h e r e do i s the e lement of solid angle in the c . m . s . ,
i s given by the Born formula

(1.25)

_ mM
where m is the reduced mass m = — , and

m +M

£/(q) =



THE D Y N A M I C A L P R O P E R T I E S O F E L E M E N T A R Y P A R T I C L E S 11

is the corresponding Fourier component of the poten-
tial energy of the electron in the field of the scatterer
U ( r ) . We can represent the function U(r) in the form

where Ф(г) is the electrical potential of the scatterer.
Since

Д ф ( г ) = - e g (г2),

we have

w h e r e f ( - q 2 ) i s t h e f o r m f a c t o r of t h e s c a t t e r e r . T h u s

(1.26)

a n d

(1.27)

We n o t e t h a t f o r m u l a (1.26) c a n a l s o b e w r i t t e n a s

d-28)

w h e r e <p(q) = e / q 2 i s t h e F o u r i e r c o m p o n e n t of t h e

p o t e n t i a l of a p o i n t c h a r g e , < p ( r ) = e / r .

F o r m u l a (1.28) h o l d s w h e n t h e q u e s t i o n i s s o f o r -

m u l a t e d t h a t t h e t e s t p a r t i c l e i t s e l f d o e s n o t a p p e a r ,

b u t o n l y i t s f i e ld , i n w h i c h t h e p a r t i c l e u n d e r i n v e s t i -

g a t i o n i s s c a t t e r e d . F o r m u l a s (1.25) a n d (1.28) a r e

a l s o v a l i d f o r t h e s c a t t e r i n g of p a r t i c l e s w i t h d i s t r i b -

u t e d c h a r g e i n a n a r b i t r a r y e x t e r n a l p o t e n t i a l <p ( i n

t h e B o r n a p p r o x i m a t i o n ) .

2 . THE S C A T T E R I N G A M P L I T U D E

1. F o r m u l a t i o n of t h e p r o b l e m i n r e l a t i v i s t i c q u a n -

t u m t h e o r y . In n o n r e l a t i v i s t i c t h e o r y o n e c a n c o n s i d e r

a p a r t i c l e of f i n i t e s i z e w i t h a g i v e n s p a t i a l d i s t r i b u -

t i o n of c h a r g e . O n e c a n a s s i g n t o t h e p a r t i c l e e i t h e r

t h r e e d e g r e e s of f r e e d o m ( p o i n t m a s s ) o r s i x d e g r e e s

of f r e e d o m ( r i g i d b o d y ) . T h i s i s i m p o s s i b l e i n a r e l a -

t i v i s t i c t h e o r y , s i n c e t h e t h e o r y of r e l a t i v i t y d o e s n o t

a d m i t t h e e x i s t e n c e of a b s o l u t e l y r i g i d b o d i e s . T h e

d i s t r i b u t i o n of c h a r g e a n d m a s s m u s t d e p e n d on t h e

s t a t e of m o t i o n of t h e p a r t i c l e , i . e . , i t i s a d y n a m i c a l

q u a n t i t y . T h e n t h e p a r t i c l e m u s t b e d e s c r i b e d a s a

s y s t e m w i t h a n i n f i n i t e n u m b e r of d e g r e e s of f r e e d o m

( a d e n s i t y a t e a c h p o i n t ) . T h e d i f f i c u l t i e s a s s o c i a t e d

w i t h t h i s f a c t a l r e a d y c a m e t o l i g h t i n t h e d e v e l o p m e n t

of t h e t h e o r y of t h e e l e c t r o n a n d r e m a i n e d u n r e s o l v e d

w i t h i n t h e f r a m e w o r k of t h e c l a s s i c a l e l e c t r o d y n a m i c s

of L o r e n t z . F o r t h i s r e a s o n c l a s s i c a l r e l a t i v i s t i c t h e -

o r y i s r e s t r i c t e d t o t r e a t i n g p o i n t p a r t i c l e s . T h i s t r e a t -

m e n t m a k e s s e n s e i n t h e l i m i t w h e r e o n e c a n a v o i d t h e

f a m i l i a r p a r a d o x e s a s s o c i a t e d w i t h p o i n t c h a r g e s ( i n -

f i n i t e e n e r g y of t h e e l e c t r o n , e t c ) . A c t u a l l y t h e n e c e s -

s i t y f o r i n c l u d i n g q u a n t u m e f f e c t s a r i s e s b e f o r e t h e

i n t e r n a l c o n t r a d i c t i o n s of t h e c l a s s i c a l t h e o r y of t h e

p o i n t e l e c t r o n b e g i n t o h a v e a n e f f e c t .

In r e l a t i v i s t i c q u a n t u m t h e o r y t h e s i t u a t i o n i s a t

o n e a n d t h e s a m e t i m e m o r e c o m p l i c a t e d a n d s i m p l e r .

R e l a t i v i s t i c q u a n t u m t h e o r y f r o m t h e v e r y o u t s e t d e a l s

w i t h p r o c e s s e s i n w h i c h t h e n u m b e r of p a r t i c l e s i s n o t

c o n s e r v e d ( r a d i a t i o n a n d a b s o r p t i o n of p h o t o n s a n d

m e s o n s , p a i r f o r m a t i o n , e t c ) . T h u s , i n r e l a t i v i s t i c

q u a n t u m t h e o r y , o b j e c t s w i t h a f ixed n u m b e r of d e -

g r e s s of f r e e d o m a r e i m p o s s i b l e i n p r i n c i p l e . I t d e a l s

w i t h s y s t e m s w i t h a n i n f i n i t e n u m b e r of d e g r e e s of

f r e e d o m ; t h e s e a r e u s u a l l y d e s c r i b e d b y f i e l d s .

On t h e o t h e r h a n d , t h e e x i s t e n c e of p r o c e s s e s in

w h i c h t h e n u m b e r of p a r t i c l e s i s n o t c o n s e r v e d , i . e . ,

p r o c e s s e s i n w h i c h s o m e p a r t i c l e s a r e t r a n s f o r m e d

i n t o o t h e r s , s h o w s t h a t t h e p a r t i c l e s c a n n o t b e p o i n t -

l i k e . T h i s i s a d i r e c t c o n s e q u e n c e of t h e u n c e r t a i n t y

r e l a t i o n . L e t u s g i v e s o m e s i m p l e e x a m p l e s .

1) A h y d r o g e n a t o m c a n d e c a y i n t o a p r o t o n a n d a n

e l e c t r o n . We k n o w t h e e n e r g y I r e q u i r e d f o r e x c i t i n g

t h i s p r o c e s s ( t h e b i n d i n g e n e r g y ) . It c a n b e w r i t t e n

a s I ~ m v 2 / 2 , w h e r e m i s t h e e l e c t r o n m a s s a n d v

i s i t s o r b i t a l v e l o c i t y . T h e u n c e r t a i n t y r e l a t i o n e n -

a b l e s u s t o d e t e r m i n e t h e r a d i u s of t h e h y d r o g e n a t o m ,

a ~ K / m v .

2) A neutron can decay into a proton and а ж meson.
The energy required for this process is I ~ дс, where
/л is the тг-meson mass. From the uncertainty re la-
tion it follows that the neutron radius is a ~ К/цс.

From the general point of view it is not significant
that we usually regard the hydrogen atom as being a
composite particle and the neutron an elementary par-
ticle. This is related only to the fact that in the first
case the binding energy is small compared to the rest
energy of the electron me2, while in the second case
it is almost equal to the rest energy цс2. The differ-
ence is only a quantitative one.

This discussion suggests a natural approach to the
problem of the structure of a particle in relativistic
quantum theory. There is no need to ascribe to the
particle any internal degrees of freedom. The struc-
ture of the particle is determined by those same de-
grees of freedom of the system (fields) which deter-
mine the processes of scattering and transformation
of particles. The particle itself is only one of the
states of this system. The simplest process of elas-
tic scattering of the particle in a given electromag-
netic field is also actually a complex phenomenon, in
which there participate, in principle, all the degrees
of freedom of the system. Let us suppose that we
have found this amplitude and that its form, corre-
sponding to formulas (1.25) and (1.28), is

i . e . , p r o p o r t i o n a l t o t h e c o r r e s p o n d i n g F o u r i e r c o m -

p o n e n t of t h e f i e ld < p ( q ) . T h e n f ( q ) w i l l , b y d e f i n i -

t i o n , b e t h e f o r m f a c t o r of t h e p a r t i c l e , a n d t h e c o r -

r e s p o n d i n g s p a t i a l s t r u c t u r e p ( r ) i s d e t e r m i n e d b y

t h e F o u r i e r t r a n s f o r m
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Thus the p r o b l e m of the s t r u c t u r e of p a r t i c l e s r e -
duces complete ly to the problem of s c a t t e r i n g of p a r -
t i c l e s . H e r e each p a r t i c l e in the s c a t t e r i n g problem
is c h a r a c t e r i z e d only by i ts m o m e n t u m and energy
(and i t s spin s t a t e ) , i .e . , by those var iab les which
a r e a t t r ibuted to the point p a r t i c l e in quantum
m e c h a n i c s .

2. The s c a t t e r i n g m a t r i x and the invar iant a m p l i -
tude. The genera l p r o b l e m of s c a t t e r i n g in re la t iv i s t ic
quantum theory is formulated a s follows. We know
that, a t t ime t = — °°, the s y s t e m is in s ta te a. We
a r e r e q u i r e d to find the probabil i ty that, at t ime
t = +<*>, it will be in s ta te b. This probabi l i ty is ex-
p r e s s e d in t e r m s of the probabi l i ty amplitude Sba:

. . . I О I I / О 1 \

Wba=\oba\". \Л.1)

T h e s e t o f q u a n t i t i e s S b a i s c a l l e d t h e s c a t t e r i n g m a -

t r i x S .

T h e s t a t e s a a n d b a r e c h a r a c t e r i z e d b y d e f i n i t e

n u m b e r s o f p a r t i c l e s N a a n d N b ( d i f f e r e n t i n g e n e r a l ) ,

t h e m o m e n t a o f t h e s e p a r t i c l e s , t h e i r p o l a r i z a t i o n s ,

a n d o t h e r p r o p e r t i e s . In p r a c t i c e , t w o t y p e s o f i n i t i a l

s t a t e s a r e o f i n t e r e s t : 1) N a = 1, w h e r e w b a d e t e r -

m i n e s t h e p r o b a b i l i t y o f d e c a y o f t h e p a r t i c l e i n t o s e v -

e r a l p a r t i c l e s i n s t a t e b ; 2 ) N a = 2 , w h e r e W b a d e t e r -

m i n e s t h e p r o b a b i l i t y o f c o l l i s i o n o f t h e t w o p a r t i c l e s

i n w h i c h t h e y a r e c o n v e r t e d i n t o a s e t o f p a r t i c l e s i n

s t a t e b . I n p a r t i c u l a r , i f N b = 2 a n d t h e p a r t i c l e s i n

s t a t e b a r e t h e s a m e a s t h o s e i n s t a t e a , W b a d e t e r -

m i n e s t h e p r o b a b i l i t y f o r e l a s t i c s c a t t e r i n g ( f o r e x -

a m p l e , o f a n e l e c t r o n b y a p r o t o n ) .

T h e s c a t t e r i n g m a t r i x i s u s u a l l y w r i t t e n i n t h e f o r m

S=i + iT, ( 2 . 2 )

w h e r e 1 i s t h e u n i t m a t r i x . T h e m a t r i x T i n d i c a t e s

t h e o c c u r r e n c e o f t h e p r o c e s s ; i f T = 0 , t h e r e i s n o

s c a t t e r i n g ( f o r e x a m p l e , w h e n N a = 1, T = 0 m e a n s

t h a t t h e p a r t i c l e i s s t a b l e ) .

T h e f i r s t f u n d a m e n t a l p r o p e r t y o f t h e s c a t t e r i n g

m a t r i x i s i t s r e l a t i v i s t i c i n v a r i a n c e . B u t t h i s a s s e r -

t i o n a s s u m e s t h a t t h e s t a t e s a a n d b a r e a l s o a s -

s i g n e d i n a n i n v a r i a n t w a y . A c t u a l l y i n p r a c t i c e , f o r

s i m p l i c i t y , o n e u s u a l l y i n t r o d u c e s c e r t a i n n o n i n v a r i a n t

q u a n t i t i e s i n t h e d e f i n i t i o n o f t h e s t a t e o f a p a r t i c l e ,

for example, a normalization volume О within which
the system is contained. These noninvariant quanti-
ties appear only in the intermediate stages of the cal-
culation of cross sections and life times and vanish
in the final expressions which have physical signifi-
cance. It is therefore convenient to extract the corre-
sponding normalization factors from the matrix ele-
ments of T.

First, using the conservation of energy and momen-
tum, we write

Г,„ = (2я) 4 6( Р ь -р„)Г,„, (2.3)

where p a and рь are the 4-momenta of the initial and
final states and б is the four-dimensional б function.
We also write Гьа in the following form:*

/2Qeo

(2.4)

where п is the normalization volume, ea the energy
of the particle, £ a an arbitrary factor; the index a
runs over all particles in both the initial and final
s ta tes . t

According to (2.1), (2.2), and (2.3), the probability
of transition per unit time has the formj

In order to find the differential probability dw for
transition into an infinitesimal final-state interval
characterized by having the particle momenta in the
interval p^ to p̂ g + dpp, we must multiply (2.5) by
the statistical weight pu of the final state

= П W = П (|ji (2.6)

where the subscript /3 refers to the particles in the
final state, mo is the mass of the particle and

[1, x>0,
0.«(*)

j l, x]
~[0, x-

From (2.5), (2.4), and (2.6), we get
->i-Na

- P, _4 \uba I* П f- П U
(ЗД a 2e° f> (2.7>

where the index a refers to particles in the initial
state, and /3 to those in the final state.

We shall apply formula (2.7) to the two fundamental
problems of scattering theory.

1) Decay of a particle, N a = 1. The quantity of in-
terest is the invariant d-r"1, the differential probabil-
ity for decay in the rest system of the particle. Then
ea = e a = m a and

2(2Я)
t»-« I Uba |*6 (Pb - Pa) П

(2.8)
•The factors in (2 .4 ) can be understood as fo l lows. Suppose

the particle is described by the wave function ф = Aei k*. jf ц,е

particle has spin zero, the normalization condition has the form

i.e. A=f/V2Qe, f = l . If the particle has spin Уг, the normalization

condition can be chosen in the form \il>*i|> d*x=AA — Q = l and

A= i_= u, where f = у2m, and u is a four-component spinor,
у ZL2&

normalized s o that uu = l ( u = u * y 4 ) .

tFrom now on w e u s e the natural s y s t e m of units in which

fi=c = l . Then the momentum, energy, and mass have the same

dimensions, those of inverse length (or inverse time).

*Here we have used the relation

[S (Pb -Pa)\2 =
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2) Collision of two particles, Na = 2. The quantity
of interest is the differential cross section

do = — dw , (2.9)

where j is the current density of the colliding par-
ticles. In determining it we can use the system of the
center of mass of the colliding particles. Then

Q
(2.10)

where vt and v2 are the particle velocities and p is
their common momentum. The numerator of (2.10) is
an invariant:

P К + e2)=/ =

and

F r o m (2.9), (2.7), and (2.12) we get

d a =
( 2 я )

(2.11)

(2.12)

- Щ ) 9 (ев).

(2.13)

From formulas (2.8) and (2.13), which give the ex-
pressions for the invariant quantities dr"1 and da,
we see that the quantities UDa are also invariant. They
are called the invariant scattering amplitudes. We note
that the dimensionality of \J^a depends on the choice of
the factors £j.

In the special case of elastic scattering, formula
(2.13) becomes

da = I2S№ + P\- ft)#

X d(p^-ml), (2.14)

where pj and p2 are the momenta of the particles
after scattering, and A = if^l-

In the center of mass system, we find from (2.14)
a.»

da = Ubafdo. (2.15)

If we choose £j = | 2 = 1» t h e n ^ = 1 and U^a i s d imen-
s ion l e s s . If | x = V2m t , £2 = V2m2 , then Л. = 4 m t m 2

and U has the dimensions of ( length) 2 , i .e . , the s a m e
dimens ions a s the F o u r i e r component of the potential
energy. We note that if we wr i te (2.15) in the form
(1.24):

da=\F\2do

then

F= --.

(2.16)

(2.17)

which c o r r e s p o n d s p r e c i s e l y to the form of (1.25),
s ince in the nonre la t iv i s t ic l i m i t m 1 m 2 / ( e 1 + e 2 ) = m .

3. Kinematic invar iant s . Let us f i r s t cons ider the
kinematic c h a r a c t e r i s t i c s of the s i m p l e s t p r o c e s s
which can o c c u r for s table p a r t i c l e s : two p a r t i c l e s
coll ide and a r e changed into two (usual ly different)

FIG. 2

p a r t i c l e s . Such a p r o c e s s i s d e s c r i b e d by the d i a g r a m
shown in Fig. 2, which we shall cal l a t e t r o d e . F o r
simpl ic i ty we shall t r e a t the case where all the p a r -
t ic le s a r e s p i n l e s s . The general izat ion to the c a s e of
p a r t i c l e s with spin will be given l a t e r ( s e e i tem 6 ) .

The momentum and energy conservat ion law can
be wri t ten as follows:

Pi + P2 + P3 + Pi = 0, (2.18)

where pj and p 2 a r e the 4-momenta of the colliding
p a r t i c l e s and — p 3 and — p 4 a r e the m o m e n t a of the
p a r t i c l e s formed in the coll is ion. In addition to the
four equations (2.18), the 4-momenta pj a r e con-
nected by the re la t ions

pt = mi. (2.19)

which e x p r e s s the energy in t e r m s of the momentum
(mj i s the m a s s of the p a r t i c l e ) . Thus the 16 c o m -
ponents of the four 4-momenta a r e d e t e r m i n e d by 8
independent quant i t ies . Of t h e s e , s ix a r e d e t e r m i n e d
by the choice of the r e f e r e n c e f r a m e , s ince the genera l
Lorentz t rans format ion contains six p a r a m e t e r s (the
t h r e e angles which d e t e r m i n e the or ientat ion of the
space axes , and the t h r e e components of the velocity
of the r e f e r e n c e s y s t e m ) . Thus the physical p r o c e s s
of s c a t t e r i n g is d e t e r m i n e d by a p a i r of invar iant
quant i t ies . *

It i s e a s y to show direct ly , by using (2.18) and (2.19),
that only two invar iants can be formed from the four
v e c t o r s Pj.

Thus the condition of re la t iv i s t ic invar iance of the
s c a t t e r i n g amplitude U m e a n s that it i s a function of
the two i n v a r i a n t s . To m a k e the t r e a t m e n t s y m m e t r i c ,
it i s convenient to cons ider t h r e e r a t h e r than two in-
v a r i a n t s , which a r e given by

( 2 - 2 0 )

It i s easy to show, using (2.18) and (2.19), that t h e s e
t h r e e invar iants a r e re la ted by the formula

(2.21)

We shal l w r i t e the invariant amplitude U as U ( s , t, u ) .

*It is easy to obtain in similar fashion the number of indepen-
dent invariants determining the collision process in which the total
number of particles before and after collision is equal to nC»4.
The number of components of 4-momenta is 4n. Equations (2.18)
and(2.19) give n + 4 relations. Counting the six parameters for
Lorentz transformations, we are left with 3n— 10 invariants.
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The invariants s, t, u can be expressed in terms
of the momentum p s and z s , the cosine of the scatter-
ing angle in the c m . system of the colliding particles.
Let the time and space components of pj be given as
follows:

/>i=(8i> Ps). el = pl + ml,
p.2=(e2, - p j , &l = pl + ml,

Then

Asp\ = [s- {тг + m%y] [s - (mx - m2)
2],

4sp? = [s- (m3 -j- m^} [s - (m3- m4)
2]

It = k-s + ipj,'.z. - <">-"iH"S-"5)

(2.22)

(2.23)
(2.24)

2u = h - * - iPsP'sz3 + s

In the case of elastic scattering (
Ps = Ps) formulas (2.26) become

m3, m 2 = m4,

t=-2pl(l-zs

Bi-e,)». }
(2.27)

4. Symmetry of the scattering matrix. In addition
to Lorentz transformations, we should still consider
discrete transformations: space inversion P, time
reversal T and charge conjugation C, as well as
combinations of them—combined inversion CP and
"total (or strong) reflection" CPT. All amplitudes
for scattering processes satisfy the requirement of
invariance with respect to T and CPT (and conse-
quently also CP). Invariance with respect to P and
С holds for strong and electromagnetic interactions.
In the case of the tetrode (a process of transformation
of two spinless particles into two spinless particles)
invariance with respect to P is automatically satisfied.
In fact the process is characterized only by the pair of
space vectors p s and p s . Reflection means the t rans-
formation p s — — p s , p s — — p s , which is equivalent
to rotation through IT about an axis perpendicular to
the ( p s , p s ) plane.* This also follows from the fact
that s, t, u are invariant with respect to the reflection
P i - - P i - *

The transformation T means a reversal of the proc-
ess, i.e., replacement of the initial states by final states
and vice versa, and change in the signs of the momenta
Pi. This corresponds to replacing ej by - ê  in (2.22),
where now p 3 and p 4 are the 4-momenta of the initial
states and - p t and - p 2 those of the final states. Since,
from the above remarks and from P-invariance, we
can also replace Pj by - p j , T (or TP) means r e -

versing the 4-momenta, Pi — - P i - The invariants s,
t, u are left unchanged. Consequently the requirement
of T-invariance implies a symmetry of the scattering
matrix elements, i.e.,

Uba(s, t, u) = Uab(s, t, u). (2.28)

The transformation CPT* is an improper rotation
of four-dimensional space-time (i.e., one associated
with a crossing of the light cone), in which all the
components of a four-vector change sign. It is equiv-
alent to the reflection p a —- - p a of all the components
of the 4-momentum. How do we interpret the negative
sign of the time (energy) component of the 4-momen-
tum? The equations of relativistic quantum field theory
always contain solutions with both positive frequencies
w = e and negative, ш = - e. To the first of these
there correspond operators for absorption of particles
with energy e, and to the second operators for emis-
sion of particles with energy e. Thus the transforma-
tion CPT means replacing particles by antiparticles
and initial states (i.e., absorption) by final states
(emission). Thus the requirement of СРT-invariance,
which can be proved rigorously in field theory for a
quite wide class of interactions, means that

Uab(s, t, u) = t, u), (2.29)

•The requirement of invariance with respect to P (conserva-
tion of parity) imposes a restriction on the internal parity of the
particles. The product of the internal parities of all four particles
should equal + 1, If this is not the case, the process is forbidden
(U^O).

where a and b denote states of antiparticles with the
same momenta as in the particle states a and b.

Thus the single amplitude U (s, t, u) describes
four different processes: a — b , b —• a, 6—* a, a — b .

After treating P, T, and CPT, it is obviously un-
necessary to treat charge conjugation separately.

5. The principle of universality. The treatment of
CPT-invariance suggests the possibility of generaliz-
ing it. Let us consider the conservation law (2.18).
Two of the four-momenta in that equation (p t and p2)
have positive time components p 1 0 = elt p 2 0 = e2, while
two (p3 and p 4 ) have negative time components p 3 0

= - e3, p 4 0 = - e4. The process Б — a differs from the
process a — b in having the roles of p 1 ( p 2 and p3, p 4

interchanged in this sense. But Eq. (2.18) can always
be satisfied if two of the four momenta have positive,
and two have negative, time components. They corre-
spond to processes in which the colliding particles are
those for which pj 0 > 0, and the scattered particles are
those for which p^0 < 0; in addition, particles should be
replaced by antiparticles if the sign of p£0 is opposite
to that indicated in (2.22).

We use the term reaction to mean the set of all
processes contained in this sense in Eq. (2.18) and the
diagram of Fig. 2. The process a — b, together with
those which are equivalent to it according to (2.28) and
(2.29), we call the s-channel of the reaction. The dia-
gram of Fig. 2 thus contains three channels:

*See, for example, ['].
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1) channel s: 1 + 2 — 3 + 4 ,
2) channel u: 1 + 4 — 3 + 2 ,
3) channel t: 1 + 3 — 2 + 4 .
The meaning of the notation is obvious: the numbers

correspond to the indices for the momentum, the bar
over a number denotes the antiparticle; the colliding
particles are on the left (pj0 > 0), the scattered par-
ticles on the right (pi0 < 0). The kinematic formulas
which we found in item 3 referred to the s-channel.
Keeping the definition (2.20), we can express the in-
variants s, t, u in terms of the center-of-mass mo-
menta p£, p{, p u , p u corresponding to the t and u
channels, and the cosines of the scattering angles,
zt, z u . We obtain formulas analogous to (2.26) (sub-
stituting s — u , t —t , 2 — 4 ) :

Pi = (eiPu)> P4 = ( e 4 . - P u ) . Рз = (~ез, -pi),Pi = (-e2, pi),

= [в — (m2 +,m3)
2] [u -(m2 — m3)

2],

2s = h — и — ipuPuzu -\— (ml — ml) (ml — ml)

and (substituting 2—* 3, s — t , u — u ) :

Pl = (ei> Pt)>ft = (83> — P|)./)2 = ( — B

2 ' ~Pl')>

h = (Pt Pt)IPtPi> w t = e i + е з = E2 + e4, < = W

(2.30)

2s=h—t — 4p,p'tzt - Y (m{ - ml) (ml - mj),

2a = h - 1 + iptp'tzt + T К - О К - О-

(2.31)
The variables s, t, u for the different reaction chan-

nels have different physical meanings and different
ranges of variation. Thus, for the s-channel the in-
variant s represents the square of the energy in the
center-of-mass system, while t and u are the squares
of the momentum transfers (i.e., the squares of the
difference of the 4-momenta of one of the incident and
one of the scattered particles). In the u channel, the
invariant u is the square of the energy, and in the t
channel, t is the energy squared; in each case the
other two invariants are the squares of the momentum
transfers. The range of the variables in the s-channel
is determined by the conditions

and similarly for the u and t channels

The conditions | z r | < l (r = s,t, u) can be expressed
as a single condition determining the range of the vari-
ables corresponding to all channels. It has the form'-2-'

where

sut >as+bu+ct,

ha = (m\ml — т\т\) (m\ + ml — m* — ml)
hb = (m\m\ - m\m\) (m\ + mj — mj — m\),
he = (m\m\ — mlml) (ml + m\ - m\ - iraj).

(2.32)

F o r a g r a p h i c a l d e s c r i p t i o n of t h e r a n g e s of t h e

v a r i a b l e s c o r r e s p o n d i n g t o t h e d i f f e r e n t c h a n n e l s ( t h e

" p h y s i c a l r e g i o n s " ) , i t i s c o n v e n i e n t t o u s e t r i l i n e a r

c o o r d i n a t e s i n t h e p l a n e . We c o n s t r u c t ( F i g . 3) a n

e q u i l a t e r a l t r i a n g l e w i t h a l t i t u d e h , a n d r e g a r d t h e

s i d e s of t h e t r i a n g l e a s c o o r d i n a t e a x e s , p e r p e n d i c u l a r

t o w h i c h w e m e a s u r e t h e v a l u e s of s , u , t ( t h e i n s i d e

of t h e t r i a n g l e b e i n g t h e p o s i t i v e d i r e c t i o n ) . I t i s

e a s i l y s e e n t h a t f o r e v e r y p o i n t i n t h e p l a n e t h e s u m

of t h e t h r e e t r i l i n e a r c o o r d i n a t e s i s e q u a l t o t h e a l t i -

t u d e of t h e t r i a n g l e , i . e . , s + u + t = h . T h e C a r t e s i a n

c o o r d i n a t e s of a p o i n t i n t h e p l a n e a r e v = 7 ? ( s - u )

( a b s c i s s a ) a n d t ( o r d i n a t e ) . T h e e q u a t i o n c o r r e -

s p o n d i n g t o a n e q u a l i t y s i g n i n (2.32) d e t e r m i n e s t h e

b o u n d a r y of t h e t h r e e p h y s i c a l r e g i o n s , w h i c h d o n o t

i n t e r s e c t . T h e a s y m p t o t e s of t h e c u r v e s a r e t h e a x e s

s = 0, в = = 0, (2.33)

a n d t h e b o u n d a r y c u r v e s i n t e r s e c t t h e a s y m p t o t e s

a l o n g t h e l i n e
as+bu + ct = 0. (2.34)

F i g u r e 4 g i v e s e x a m p l e s of t h e p h y s i c a l r e g i o n s f o r

s o m e r e a c t i o n s .

If t h e m a s s of o n e of t h e p a r t i c l e s i s g r e a t e r t h a n

t h e s u m of t h e o t h e r t h r e e , mi > m 2 + m 3 + m 4 , a f o u r t h

r e a c t i o n c h a n n e l i s p o s s i b l e , c o r r e s p o n d i n g t o t h e d e -

c a y
l

F o r t h i s d e c a y c h a n n e l , i n t h e r e s t s y s t e m of t h e d e -

c a y i n g p a r t i c l e ,

px = ( « ! , 0), рг = ( - e2 — p 2 ), p3 = ( - e 3 - p,), Pi = ( - E 4 - р4)Л

|

s = m\ + ml — 2/»!^,

u = m\-\-m\ — 2пг184,

's=O

(2.35)

FIG. 3
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FIG. 4. Physical regions for the reactions: a) n + IT — n + ir,
b ) N + 7r->N+7r; с) К + n —n + n; d) /i + v — e + v

All t h r e e i n v a r i a n t s a r e p o s i t i v e . T h e p h y s i c a l r e g i o n

i s i n t h e i n t e r i o r of t h e t r i a n g l e a n d i s i n s c r i b e d i n t h e

h e x a g o n

*=.(»»i — m2y, s = ( m s + m 4 ) 2 ,

If some of the masses are zero, the hexagon degener-
ates into a polygon with a smaller number of sides.

The generalization of the CPT-theorem, which we
mentioned earlier, arises from the fact that if we apply
the CPT-transformation not to all the particles partici-
pating in the reaction, but to each of them independ-
ently, the expression for the invariant amplitude does
not change. Thus the same amplitude U (s, t , u) de-
scribes all the channels of the reaction. We may refer
to this as the principle of universality of the reaction
amplitude. There exists no rigorous proof of this the-
orem. An argument in its favor is that in any Feynman
diagram describing the given process, any of the ex-
ternal lines may be regarded either as a particle in
the initial (final) state, or as an antiparticle in the
final (initial) state, without changing the internal
structure of the diagram.

It is important to note that, strictly speaking, the
assertion of the principle of universality is an empty
statement if we do not make some basic remarks.
Actually the regions of variation of the variables
s, u, t are different in the different reaction channels
and do not overlap. What is the difference between a
single function U, defined in all three regions, and
three different functions, each defined in its own r e -
gion? In making our assertion for the single function
U (s, u, t ) we have naively assumed that it is given by

s o m e d e f i n i t e a n a l y t i c e x p r e s s i o n w h i c h i s m e a n i n g f u l

f o r a l l v a l u e s of t h e v a r i a b l e s ( w h i c h i s a c t u a l l y t h e

c a s e if w e c o n s i d e r i n d i v i d u a l F e y n m a n d i a g r a m s ) .

T h u s , t o e x p r e s s o u r s e l v e s m o r e p r e c i s e l y , i n f o r m u -

l a t i n g t h e p r i n c i p l e of u n i v e r s a l i t y w e s i m u l t a n e o u s l y

a s s u m e t h a t t h e r e a c t i o n a m p l i t u d e i s a n a n a l y t i c f u n c -

t i o n ; c o n s e q u e n t l y , a s s i g n i n g i t i n o n e of t h e p h y s i c a l

r e g i o n s d e t e r m i n e s i t s v a l u e o v e r t h e w h o l e d o m a i n of

a n a l y t i c i t y , i n c l u d i n g b o t h t h e o t h e r p h y s i c a l r e g i o n s

a n d a l s o n o n p h y s i c a l r e g i o n s , a m o n g t h e m t h e r e g i o n s

of c o m p l e x v a l u e s of t h e v a r i a b l e s . T h u s a n i m p o r t a n t

q u e s t i o n i s t h a t of t h e d o m a i n of a n a l y t i c i t y of t h e f u n c -

t i o n U, i . e . , t h e l o c a t i o n a n d n a t u r e of i t s s i n g u l a r i t i e s .

We n o t e t h a t t h e p r i n c i p l e of u n i v e r s a l i t y c a n b e

p r o v e d , s t a r t i n g f r o m t h e e q u a t i o n s of q u a n t u m f i e l d

t h e o r y , t o t h e s a m e e x t e n t a n d i n t h e s a m e c a s e s w h e r e

o n e c a n p r o v e t h e a n a l y t i c i t y of t h e a m p l i t u d e . M

6. G e n e r a l i z a t i o n t o p a r t i c l e s w i t h s p i n a n d i s o s p i n .

So f a r w e h a v e a s s u m e d t h a t t h e s t a t e of a n y p a r t i c l e

c a n b e c o m p l e t e l y d e t e r m i n e d b y a s s i g n i n g i t s m o m e n -

t u m . If t h e p a r t i c l e s p o s s e s s a s p i n , t h e s c a t t e r i n g a m -

p l i t u d e U i s a m a t r i x i n t h e s p i n q u a n t u m n u m b e r s . If

w e d e n o t e t h e p r o j e c t i o n of t h e s p i n of t h e i - t h p a r t i c l e

by щ and its spin by si, then for the case of the
tetrode, for example, this matrix has (2s1 + l ) ( 2 s 2 + l )
(2s3 + l ) ( 2 s 4 + l ) elements U ^ ^ ^ . But the elements
of this matrix are not independent, since we must sat-
isfy the condition of invariance of the scattering ma-
trix under rotations. If we introduce the spin ampli-
tudes Uj, whose transformation properties are known,
the problem reduces to finding the linearly independent
invariants 1^ which can be constructed from the am-
plitudes щ and the momenta p^. Then

в, 0/* (2.37)

where the U^ are invariant functions and v is the
number of linearly independent invariants 1 .̂ Thus
the difference between the cases of particles with spin
and without spin reduces to the fact that the scattering
is now characterized by v amplitudes U^ instead of
one invariant amplitude U.

In practice, in finding the number v, it is convenient
to use the law of conservation of angular momentum,
after which it is not difficult to construct the necessary
number of invariants Ijj. Let us now consider some of
the most important tetrode amplitudes, using the nota-
tion introduced in item 5.

1) Particles 1 and 3 are nucleons (spin V2), 2 and 4
are pions (spin 0); the s-channel is the scattering of
a pion by a nucleon, the t-channel the annihilation of a
nucleon-antinucleon pair into a pion pair. We consider
a state with definite angular momentum j in the t-
channel. Then the pion pair has orbital angular mo-
mentum j and parity (— 1 )K The nucleon pair can be
either in a singlet state with orbital angular momen-
tum j and parity ( - 1 ) J + 1 (since the internal parities
of nucleon and antinucleon are opposite), or in a
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triplet state with orbital angular momentum I = j , j ± 1
and parity ( - 1 )^+1. Of the four states for a nucleon
pair, in two (the triplet states with I = j ± 1) the pari-
ties coincide with the parity of the nucleon pair. Con-
sequently v = 2 and

(2.38)

(2.39)

U = A(s, и, г)/х + 5 (s, и, t)I2.

Now it is easy to construct the invariants

I2 = u(-p3){p2-pi)u(p1),

where u(p) is the four-component spinor amplitude
for a nucleon.

2) Particles 1 and 3 are nucleons, 2 is a photon and
4 a pion (channel s is photoproduction of pions on nu-
cleons, t is the annihilation of a nucleon pair into a
photon and a pion). Let us consider the t-channel.
For a given angular momentum j , the photon, and
consequently the photon-pion system, can be in two
states with opposite parities (electric or magnetic
multipole fields). As we saw above, the nucleon pair
can be in four states, two even and two odd. Conse-
quently v = 4.

3) Particles 1 and 3 are nucleons, 2 and 4 are pho-
tons (channel s is the Compton scattering on a nu-
cleon, channel t is the pair annihilation into two pho-
tons). Let us consider the t-channel. For a given
angular momentum, the two-photon system can have
at most two even states and one odd, while the pair
can have two even and two odd states. Consequently

v = 6.
4) All four particles have spin У2. F ° r a given an-

gular momentum, there are 4 initial and 4 final states.
We can treat the amplitude as a matrix U a o , where
the subscripts a and /3 take on values 1, 2, 3, 4, where
1 denotes the singlet state and 2, 3, 4 are the triplet
states with Z = j , j + 1 , j — 1. In the general case, the
process is described by 16 amplitudes. However, in
practice this number is reduced because of additional
symmetries. Let us look at some examples:

a) Elastic scattering (a and b are the same par-
ticles). It then follows from T-invariance that Voa

= Uap, v = 10.
b) Parity conservation. Then the transitions I

—li. 1 are absent if the particles a and b have the
same internal parity, while the transition I — I is out
if they have opposite parity; v = 8.

c) Elastic scattering with parity conservation:
v = 6.

d) Elastic scattering of identical particles: v = 7
if there is no parity conservation; v = 5 if parity is
conserved (e.g., proton-proton scattering).

e) Processes involving a neutrino (for example,
/3 decay and the accompanying scattering). Because
the neutrino has only one polarization, v = 8.

f) Processes involving two neutrinos (for example,
\L decay): v = 4.

Let us also look at processes involving three par-
ticles (a " t r iode") .

1) Suppose that two particles (of momenta p t and
p 3 ) with spin V2

 a r e transformed into one spinless
particle (with momentum — p 2 ) . In the rest system
of the final particle, the particles which annihilate have
angular momentum 0. There are two such states: ^ Q
(s = 0, I = 0, g = - ) and 3 P 0 (s = 1, I = 1, g = +)
(where s is the spin and g the parity of the state).
The corresponding invariants have the form

= u{-p3)ybu(p1).

Thus we have two ampli tudes if par i ty is not conserved,
or one if i t i s conserved. The invar iant I2 c o r r e s p o n d s
to the t r a n s f o r m a t i o n of a nuclon p a i r into a pion or
(the other channel of the s a m e r e a c t i o n ) of a nuclon
and a pion into a n u c l e o n ) , * i .e . ,

U = g(t)I2, (t = (Pl + p3n (2.41)

2) Suppose that two particles with spin У2 (Р1.Р3)
are transformed into a particle of spin 1 ( — p 2 ) . In the
system of the center of mass of the annihilating par-
ticles, their angular momentum is unity. There are
four such states: two odd, 3 S t ,

 3 D t , and two even, 3 P t

and 'P j . If parity is conserved, the process is deter-
mined by two amplitudes. If the internal parity of the
produced particles is negative (vector field), the cor-
responding invariants can be chosen in the formt

= U ( - p3) y^U (Pi) йц ( - p2),

= и (— /»3) (YnYv - YvYn) B Ы av. (— P2) (Pi + P*)v' (2.42)
I3 = u(-p3)u(pj a»(— p2) (pt-р3)ц,

w h e r e a^ a r e the ampli tudes for the vec tor p a r t i c l e ,
which form a vector satisfying the condition

an(-jPa)/>2p.= 0; (2.43)

t, I2 and I3 are connected by the relation

4 m / 1 - / 2 - 2 / 3 = 0, (2.44)

where m is the mass of particles 1 and 3.
3) Suppose that particles 1 and 3 are spinless, while

particle 2 has spin 1; then only one state of the annihi-
lating particles has spin 1 (I = 1, g = — 1). There is
one invariant

= % (Pi — (2.45)

In a similar way one can treat the scattering prob-
lem when the particles have isospin. The number of
invariant amplitudes can be counted by using conser-
vation of the isospin T, and then one can construct the
corresponding invariants in isospin space.

•Concerning the significance of processes with three stable
particles, cf. Sec. 3, item 4.

tThe matrices у are defined so that the Dirac equation has
the form pu (p) = mu (p) (p = y ^ ) .
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1) Scattering of a v meson by a IT meson. The
isospin of the pion is unity. The two pions have iso-
spin T = 0, 1, 2. Consequently the scattering is de-
termined by three amplitudes

If X is the pion amplitude (a vector in isospin space),
the invariants can be written as :

(2.46)

2) Pion-nuclon scattering (or annihilation of nucle-
ons into pions). The nucleons have isospin V2, so the
two nucleons can have isospin T = 0 and 1. Conse-
quently the scattering is determined by two amplitudes.
If Xi and Хг a r e the meson amplitudes, and vj and v2

the nucleon amplitudes (spinors in isospin space), the
invariants have the form

/ i i ? x i i ( ^ i ) I ( 2 - 4 ? )

where TJ are the Pauli matrices.
3) A triode of two nucleons and one pion. There is

one invariant

(2.48)

another arbitrary instant t2, then the unitarity relation
relating two infinitesimally close instants in time is
equivalent to the usual (Hamiltonian) equations of
motion in quantum mechanics, which are also used
(taking into account the relativistic kinematical prin-
ciples ) in the quantum theory of fields. The scatter-
ing matrix S = S (°°, - °°) transforms the state at the
initial time tj = - °° ("incident particles") into the
state at the final time t 2 = °° ("scattered particles").
Thus the unitarity relation (3.1) is a less restrictive
(i.e., more general) statement than the equations of
motion of the quantum theory of fields. H e i s e n b e r g ^
proposed the idea that in general the only observable
physical quantities which should appear in the theory
of elementary particles are the states at t = - » and
t = » . If this idea i s correct, then relation (3.1) may
pretend to the role of the fundamental equation of the
theory. In the following we shall consider the conse-
quences which can be obtained from the unitarity r e -
lation (3.1).

2. The imaginary part of the amplitude. The optical
theorem. If we write the matrix S in the form (2.2),
relation (3.1) takes the form

3. UNITARITY AND ANALYTICITY

1. The unitarity relation. So far we have used only
the properties of invariance of the scattering ampli-
tude under Lorentz transformations and discrete t rans-
formations. These invariance requirements may be
called the kinematical principles of the theory. A dy-
namic principle of the theory is the requirement of
unitarity of the scattering matrix:

SS*=i, (3.1)

where S+ denotes the matrix which is the Hermitian
conjugate of S, and 1 is the unit matrix. The unitarity
of the matrix S guarantees conservation of normaliza-
tion and orthogonality of states in the reaction. The di-
agonal elements of relation (3.1) express the simple
fact that the sum of the probabilities of transition from
a given initial state to any final state is equal to unity:

In order to make clear why this simple property is
put forth as a dynamical principle, we note that one
might also formulate the dynamical principles of clas-
sical mechanics and quantum mechanics in similar
fashion. In classical mechanics the equations of motion
are a canonical transformation of the generalized co-
ordinates and momenta. The same holds in quantum
mechanics, where the canonical transformation is ac-
complished by means of a unitary matrix. Thus, if by
S (t2, tj) we understand a matrix which transforms a
state at an arbitrary instant of time tj into a state at

or

—Т*)= —ТТ*,

= — 2J TbnT*

(3.2)

(3.3)

where n denotes those states of the system into which
states a and b can transform. We shall call them
intermediate states. Furthermore, if we take account
of the symmetry of the T matrix (2.28), i.e.,

Tba-T*b=2iImTba,

then (3.3) takes the form

2lmTli='2 ТъаПп. (3.4)
n

A state n is characterized by: 1) the number of par-
ticles, which we shall denote by v; 2) the momenta of
the particles p^ (i = 1 . . . v); 3) the internal quantum
numbers of the particles, including their masses,
spins, etc. In this paragraph we shall, for simplicity,
assume that a given number v of particles corresponds
only to one set of particles and that the spins of all the
particles are zero. Then

V
2 - - 2 I I S

V i=l
(2я)»й

(3.5)

U s i n g the e x p r e s s i o n s (2.3) and (2.4) for T b a in t e r m s

of the a m p l i t u d e s U b a , and tak ing the n o r m a l i z a t i o n

volume to be Й = 1, we get

- Pa)Im Uta = (

where

(3.6)
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F r o m (3.6) we can eas i ly get the well-known r e l a -
tion cal led the optical t h e o r e m . Let a and b be the
s a m e two-par t ic le s t a t e . Then U a a r e p r e s e n t s the
ampli tude for e las t ic s c a t t e r i n g a t z e r o angles . Com-
par ing (3.6) with the genera l expres s ions for the c r o s s
sect ion (2.13), we obtain

1ш.иаа = ̂ -а, (3.7)

where a is the total scattering cross section, (i.e.,
the sum of the cross sections for elastic scattering
and all cross sections for transformation of particles
a into any other particles), X = k\^\, and I is de-
fined by formula (2.11). ЕЕ we normalize the scattering
amplitude according to (2.16), the optical theorem takes
the form

(3.8)

Relation (8) is valid both in the center-of-mass system
as well as in the rest system of one of the colliding
particles. Correspondingly p denotes the momentum
of the incident particle in one or the other system.

3. The principle of analyticity. Relation (3.6) is very
remarkable. It may claim to be the fundamental dynam-
ical system of equations describing the scattering am-
plitude. In fact, it relates the imaginary part of the am-
plitude for a given process with the square of an expres-
sion in terms of the amplitudes for other processes.
For each of these amplitudes in turn one can write a
relation of the form (3.6). This would give a system
of equations for determining the amplitudes if the un-
known quantities appeared everywhere in the form of
amplitudes. However, the left side of (3.6) contains not
the amplitude, but its imaginary part. Consequently we
still need a relation connecting the imaginary part with
the real part. Such relations exist for analytic functions
and can be expressed by means of Cauchy's formula.
They are usually referred to in the theory of elementary
particles as dispersion relations, in analogy to the r e -
lations first obtained by Kramers and Kronig for the
dielectric constant as a function of frequency. We take
as our fundamental postulate that the scattering ampli-
tudes are analytic functions of those invariants r on
which they depend. There exists no complete proof of
analyticity of the amplitudes, but in certain cases it
can be proven on the basis of the general equations of
the quantum theory of fields. ^3>5^

An analytic function is determined by the location
and nature of its singularities. We shall assume that
the amplitude Uba has those singularities whose pres-
ence follows, as we shall see later, from (3.6), and has
no others. Then in principle it becomes possible to
obtain a system of equations for the amplitudes start-
ing from the fundamental principles of invariance,
universality, unitarity, and analyticity.*

However, their practical construction in complete
form meets with serious difficulties. These difficul-
ties are related to the complexity of the analytic prop-
erties of the amplitudes, the nature of which can be
explained in the following way: the unitarity property
(3.1) is a/relation connecting the real scattering am-
plitudes, i.e., the amplitudes as functions of the kine-
matic invariants whose values lie in physical regions.
But the analytic properties of the amplitudes are de-
termined by all their singularities, including those
which lie in regions of non-physical values of the in-
variants, including also complex values. Thus a com-
plete investigation of the singularities requires the
continuation (extrapolation) of relation (3.6) into the
region of non-physical values of the invariants. The
function defined by (3.6) then ceases to be a real func-
tion, and the question of its analytic properties arises.

We may say that the principle of analyticity com-
pensates (though we cannot say whether this compen-
sation is complete or only partial) for the incomplete-
ness of the unitarity requirement (3.1) as a dynamical
principle. Above it was pointed out that the Hamiltonian
form of quantum mechanics means the examination of
the matrix S(t 2 , t t ) , whereas (3.1) contains only
S (°o, - oo). A treatment of continuous time develop-
ment, i.e., the matrix S (t2, tj) in quantum mechanics
or quantum field theory leads to the necessity for treat-
ing intermediate virtual states. The construction of a
theory here on the basis of relation (3.1) apparently
does not recognize virtual states: the intermediate
states in (3.1) are real. But in practice the use of the
analytic properties of amplitudes requires one to con-
sider non-physical regions which, to a certain extent,
is equivalent to bringing in the treatment of virtual
states.

The development of the principle of analyticity looks
schematically as follows: Let us consider one of the
channels of a reaction described by the amplitude U.
Let r = p a be the energy invariant for this channel
(r = Wj). Let M r be the minimum total mass of par-
ticles in states appearing on the right side of (3.6).
Then the imaginary part of U, considered as a func-
tion of the invariant r, is equal to zero for r < M^
and is different from zero for r > ш\. Then we can,
as explained in Sec. 1, item 3, represent U as a func-
tion of the complex variable r in the form (1.21)

(3.9)

where С is independent of r [or in the form (1.22)].
The point r = м£ is a singular point of the function
U(r) , the segment of the real axis from the point
r = M|. to r = «о is a b r a n c h l ine. The value of U ( r )
for r e a l r should be considered as the l imit ing value
on the upper side of the cut, i .e.,

•This idea was first put forward by M. Gell-Mann and devel-
oped by L. D. Landau. W

) ! = | 8 | - > 0 . (3.10)

Formula (3.9) is not completely correct; it explains
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only the scheme for expressing the amplitudes in
terms of their imaginary parts . Since the amplitudes
describe a series of channels for the reaction, the
imaginary part is also determined by applying the uni-
tarity relation with respect to all the channels. Even
if we treat the amplitude as a function of one of the
variables r for fixed values of the others, we cannot
restr ict our treatment to channel r alone, since the
number of channels is greater than the number of in-
dependent variables and the energy variables for the
different channels are not independent. Let us make
this clear on the example of a tetrode amplitude, which
is a function of the three invariants s, u, t, connected
by equation (2.21). We shall consider U ( s , u , t ) as a
function of s for fixed t, denoting it by U ^ s ) . The
imaginary part of V^(s) is determined by two chan-
nels: in one of them the energy variable is s, while
in the other it is u = h - s - 1 . Therefore

ft 11 \
(3.11)

or
h — t—Ml

imU" (3.12)

Thus the representation of the function Щ(в) (the dis-
persion relation in the variable s ) contains integrals
over both edges of the cut in the s plane: one (on the
right) from the point s' = M | to s' = °°, and the sec-
ond (on the left) from s' = - « to s ' = h - t - M u . We
note that when s > M| , i.e., on the right cut, the value
of U t ( s ) for real s is defined as Ut(s) = Ut(s + iO),
but the corresponding value on the left cut is Ut(s)
= U t (s )u_u+io = Ut(s - iO), i.e., it is the limiting value
of the function on the lower edge of the cut.

It is important to note that bn U s (or Im U u ) is
determined according to (3.6) in the physical region
of the corresponding channel, while the limits of the
physical region with respect to s (or u) depend on t.
Therefore, the integration in (3.11), even for the
case where s and t lie in the physical region, may
include non-physical domains. The problem arises
of continuing Im U into these regions. The solution
of this problem requires a more detailed treatment
of the structure of the unitarity relation.

4. Poles of the amplitude. Let U be the amplitude
for some tetrode. Let us consider one of its channels,
r, in which there is a one-particle state among the in-
termediate states. In other words, this means that
there exists a particle whose internal quantum num-
bers coincide with the corresponding quantum numbers
of the initial (a) and final (b) states of the two par-
ticles in channel r of the tetrode. We extract the cor-
responding term in (3.6) (v = 1), denoting it by U ( 1 )

i.e.,

(3.13)

where q is the 4-momentum of the intermediate par-
ticle, ц its mass, p a the total 4-momentum of the ini-
tial state ( p | = r ) . Using the notation

R =
)r=ll2 = ga

we get from (3.13)

Im Ua

(3.14)

(3.15)

From (3.15), on the basis of the analyticity principle
[cf. (3.9) or (1.20)], we obtain

(3.16)
• , n - r '

Formula (3.16) is valid for any complex values of r;
for r — u2 we assume that one takes the limit from
above, i.e., r — r + i O , or n2 = n2-i0.

The pole character of the amplitude U ( 1 ) is specific
to a one-particle intermediate state. For v > 1, be-
cause of the appearance of more integrations in (3.6)
in comparison with (3.13), the intermediate states will
not lead to an expression of the type (3.15). Therefore,
as a rule many-particle states must lead to singulari-
ties of the form of branch points. The nature of the
singularities will depend essentially on the behavior of
of the amplitudes appearing in the integrands.

Let us discuss the structure of the expression for
R (3.14). Each of the amplitudes U a l , Ubi describes
a " t r i o d e " (Fig. 5), i.e., the decay of a particle (of
mass j^) into two (nij and m 2 ) . The triode amplitude
(cf. Fig. 5) can be considered as a function of the three
invariants pf, p | , and r = ( p t + p 2 ) 2 or, for p\ = mf,
p | = m?., as a function of the single variable r. The
conservation laws

c a n b e s a t i s f i e d o n l y w h e n

ц > т 1 + т е а , (3.17)

where the physical region of the variable r contains
only a single point

However, we can consider the triode amplitude U a l ( r )
in the case where condition (3.17) is not satisfied, i.e.,
where particle /x is stable. In fact, we actually do con-
sider the amplitude as a function of its arguments over
the whole domain of variation of the latter, both in phys-
ical as well as in non-physical regions, and the conser-
vation laws will still be taken into account in the uni-
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center-of-mass system of a, /3), and can be inter-
preted as the Born amplitude, i.e., as the Fourier
transform of the potential

FIG. 6

tarity relation (3.6). Thus, despite the fact that, for
a stable particle, the triode (cf. Fig. 5) does not de-
scribe a real process, it determines the pole part of
the tetrode amplitude. We may say that U a i (^ 2 ) = g a

is the analytic continuation of the decay amplitude as a
function of Ц2 from the region of real decay (3.17) into
the region of a stable intermediate particle.

Formulas (3.15) and (3.16) can be illustrated by the
diagrams shown in Fig. 6. The upper part of Fig. 6a
shows the amplitude of the triode U a l , the lower for
Ujj!- The diagram of Fig. 6b shows the pole part of
the amplitude of the tetrode U ( 1 ) . The upper and lower
vertices have the same meaning as in the diagram of
Fig. 6a; the line joining them corresponds to the pole
factor l/(/x2 — r ) , which represents simply the Green's
function of a free particle of mass ц. Thus the dia-
gram of Fig. 6b is identical in meaning to a Feynman
diagram of second order constructed on the basis of
the primary interaction described by the three-prong
vertices of Fig. 6a. We note that g a and g^ are
equivalent to the renormalized coupling constants
(charges) in the usual field theory and ц is the r e -
normalized mass.

If we assume that many-particle intermediate
states give a small contribution to Im U compared
with one-particle states, the pole part of the ampli-
tude is a first approximation. Then, in second ap-
proximation we may include two-particle intermedi-
ate states, substituting the first (pole) approximation
for them in (3.6). Thus, iterating (3.6) successively
and using the relation of U to Im U (dispersion r e -
lations ), we can in principle obtain the perturbation
series. This will be a series in powers of the con-
stants g.

Let us illustrate, with the pole amplitudes as an
example, the important role played by the universality
principle in the method of constructing the theory be-
ing developed here. Suppose, for example, that chan-
nel s of the tetrode we are considering describes the
elastic scattering of particle a by particle /3. Then
channel t corresponds to the annihilation of a pair
a + a with formation of a pair j3 + J3. Suppose that
there exists a one-particle state in channel t, but no
such states in other channels. Then, according to
(3.16),

U"

U{" (r) = - (3.18)

(the Yukawa potential, which for ц = 0 becomes the
Coulomb potential). Thus we may say that the inter-
mediate state of the annihilating channel generates
the potential for the elastic channel.

For simplicity we have here treated the case of
spinless particles. In the presence of spin, formula
(3.13) will also contain a summation over the spin
states of the intermediate particle. As a result, the
expression 1/(д 2 -г) is replaced by the appropriate
Green's function for this particle, which will also have
a pole at r = /A

Let us give examples of the location of poles of the
tetrode amplitude.

1) Scattering of an electron by a proton or muon
(channel s ) . There is a one-particle state (photon)
in the annihilation channel t. There is a pole for
t = 0.

2) Electron-electron scattering. Annihilation of the
pair into a photon occurs in channels t and u, i.e.,
there are poles for t = 0, u = 0.

3) Scattering of а ж* meson by a proton (channel s ) .
The single-particle state (neutron) occurs in channel
u (ir~ + p — n ) . There is a pole at u = m n .

4) Neutron-proton scattering. There are poles at
t = m -̂ (p + p —» 7г°) and u = m,» (p + n —» 7r+ ). In ex-
amples 3 and 4 we have not included electromagnetic
forces (photon poles).

5. Two-particle intermediate states. Let us con-
sider now the part of the tetrode amplitude which is
associated with two-particle intermediate states. De-
noting it by U< 2 ), we get from (3.6)

= ^ ^ UbiUM (pa-4l- ? 1) б {q\ -

This amplitude describes channel s, in which t
= —2p c ( l —cos в) < 0 ( p c is the momentum in the

(3.19)
The notation here is the same as in (3.6): Ub2 and U a 2

are the amplitudes for transitions from states b and a,
which are the final and initial state for the given chan-
nel (to be specific, we shall call it the t channel), qt

and q2 are the four-momenta of the particles in the
intermediate state, and m t and m 2 are their masses.

Working in the center-of-mass system, we can r e -
write (3.19) as follows:

\2Uhd0, (3.20)

where W is the total energy, q is the value of the mo-
mentum of the intermediate particle (W = Vt~= V q 2 + m |
+ Vq2+m?, ) and do is the element of solid angle in the
center-of-mass system.

From (3.20) we see that Im U<2> is finite and goes
to zero for q = 0 (W = т ] + т 2 ) , i.e., at the threshold
of the reaction with formation of two intermediate par-
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t i d e s . From this it follows, as we have already pointed
out earlier, that two-particle states can lead to singu-
larities of the amplitude in the form of branch points,
and to dispersion relations of the type (3.9).

Let us consider in more detail the structure of
expression (3.20). Each of the amplitudes UD2, U a 2

and U ( 2 ) = U ^ which appears there is a tetrode am-
plitude and is a function of two variables, for which
we may choose t = W2 and the cosine of the scattering
angle in the center-of-mass system. Let us denote the
cosines of the angles between the initial and final mo-
menta by z, between initial and intermediate, by Zj,
and between final and intermediate by z2, i.e.,

(3.21)
do = dz% d<f.

As the simplest special case, let U a 2 be independent
of scattering angle: U a 2 = U a 2 ( t ) . Such a case is real-
ized, for example, when U a 2 is described by the pole
amplitude U a 2 = R/(/x2-t), or when one of the particles
interacts weakly and is described by first-order per-
turbation theory, while the second has arbitrarily
strong interaction (for example, scattering of an elec-
tron by a proton or а 7Г meson), so that (cf. the dia-
gram in Fig. 7)

TT Fn2(t) fn oo\

In this case it follows from (3.20) that U< 2 ) is also
independent of scattering angle:

where

(3.23)

(3.24)

We note that U^2 is proportional to the partial ampli-
tude corresponding to orbital angular momentum 1 = 0.

If U a 2 has the form (3.22), then U ( 2 ) for real t > ц2

can be written in the form

where

Im F (t) = j^ir

This relation corresponds to the triode diagram of
Fig. 8.

In the general case where both amplitudes depend
on angles, it is convenient to choose z t and z2 as in-

FIG. 8

tegration variables. To do this we must make use of
the relation

Formula (3.20) then takes on the following form:
1 *}

9

— z\ cos q>.

llowin

z ) Ua2 {t'

where

К = (1 - za) (1 - 2 J ) sin2ф = 1 - z J - z\ - z\ + 2zzA. (3.26)

The limits of the inner integration are the roots of the
function К

tf = / ( I - (3.27)

i.e., the values of z t for <p = 0 and <p = тг. Here the
dependence on z appears explicitly in the integrand
(3.20).

6. Triangle diagrams. We now go on to discuss the
complications that may arise in constructing the dis-
persion relations because of the form of the unitarity
relation. Let us begin with the simplest case, where
we are dealing with a function of a single variable t,
and the imaginary part of the amplitude is given by
formulas (3.23). For simplicity we shall assume that
the masses of the particles in the final state are iden-
tical and equal to M, while in the intermediate state
they are identical and equal to m. The masses of the
particles in the initial state will be assumed to be
smaller than M and m.

The establishment of the form of the dispersion
relation for U < 2 ) ( t) is simple for the case where
M < m. Then the physical region for the intermediate
reaction 2 — b lies at t > 4m2, i.e., it is further than
the physical region for the reaction a —* b, which oc-
curs for t > 4M2 (Fig. 9a). The branch point for the
amplitude U ( 2 ) , i.e., the threshold for formation of
the intermediate particles, t = 4m2, lies within the
physical region of the reaction a —• b. Therefore the
dispersion relation has the very simple form*

where

A (t) --= Im U (t).

(3.28)

(3.29)

*The function A in formula. (3.28) and other similar functions
are usually called the absorptive part of the amplitude, this term
being retained even when A is not given by formula (3.29) and, in
particular, may be complex (cf. below).
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FIG. 10

The situation is different when M is greater than
m, so that the threshold for the reaction of formation
of the intermediate particles lies outside the physical
range of the reaction a — b (Fig. 9b), and the unitar-
ity relation does not have any immediate physical mean-
ing in the region 4m2 < t < 4M2. To establish the form
of the dispersion relation for this case, we shall con-
sider the parameter M2 as the independent variable and
require that the function U(t) = U(t, M2) be an ana-
lytic function of the variable M2. * Then the problem
reduces to the analytic continuation of the function
U (t, M2), defined for M2 < m 2 by formulas (3.28),
(3.29), (3.23), and (3.24), to the region M2 > m 2 .

Let us consider an example where the amplitude
Uba is determined by a pole in the s channel. (The
amplitude U ( 2 ) corresponds to the triangle Feynman
diagram of Fig. 10. t ) Thus, let

1

— ^ 5 ^
^ ^
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FIG. 11.

The p r o b l e m r e d u c e s to i n v e s t i g a t i n g the ana lyt ic

p r o p e r t i e s of the function a o ( t , M 2 ) . * F o r | £ ( t , M 2 ) |

> 1, the d e n o m i n a t o r of the in tegrand in (3.32) i s dif-

f e r e n t f r o m z e r o and the funct ion a0 i s r e g u l a r . A

s i n g u l a r i t y a p p e a r s a t that v a l u e t = tx f o r w h i c h

f ( t , M 2 ) e n t e r s the r e g i o n of in t egra t ion ( — 1, + 1 ) .

F r o m the condi t ion f2 = 1, w e find

{ m ' P \ (3.34)

where

= (Pi - <?i)2 =

(3.30)

(3.31)

Pj and qt are the four-momenta of the particles in the
final and intermediate states, p = V (t /4) - M 2 ,
q = V (t /4) — m2 are the corresponding momenta in the
center-of-mass system. In the expression for the func-
tion A = Dn U<2) (3.23), the dependence on M2 is con-
tained only in the last factor U^2. According to (3.24),
(3.30), and (3.31),

where

and

a (t M2) = dz2

z.2-Z,(t,M*)

г_4т2_|_2(Л^— д/2) -j

l/Vt —4m>) (t — 4M2) ' }

(3.32)

(3.33)

*We note that M2 =p\ is a kinematic variable completely equi-
valent to t=(p, + p,)2. It is natural to assume that the amplitude
is an analytic function of all kinematic invariants, including those
which we previously assumed to be given parameters. Thus, M2

may be regarded as a complex variable, and the value of the am-
plitude for a given particle mass Mo as the limit when M2 -Mj+iO.

tThe investigation of the analytic properties of the amplitude
for triangle and square diagrams was first carried out by Karplus,
Sommerfield, and Wichmann.M The me od described here, based
on the unitarity relation, is due to Mandelstam.W

In Fig. 11 we show the dependence of £ on t for

M
2 > m 2

the values
F o r g i v e n M , the point tx c o r r e s p o n d s to

j - 1 (Af» < Ml),
C(tlt Af2)= + 1 (Мг>М\),

\ 0 (M2 = Ml).

Let us follow the variation of tx as M2 increases,
starting from values M2 < m 2 . For M2 < m2, tx < 4m2

and the singularity of a o ( t ) lies to the left of the lower
integration limit in (3.28); a o (t) and A(t) are real in-
side the integration region, as they should be, because
A(t) is the imaginary part of the amplitude in the phys-
ical region. As M2 increases, tj approaches the point
t = 4m2, remaining to the left of it. Thus, when M2

reaches the value m 2 and exceeds it, a o ( t ) ceases to
be regular within the region of integration in (3.28),
and consequently we retain for U(t) the form of the
dispersion relations (3.28) in which the non-physical
region 4m2 < t < 4M2 appears, where A(t) is the ana-
lytic continuation of the function Im U ( t ) . However,
when M2 reaches the "anomalous" value

М2 = Л/? = те2 + ц2, (3.35)

the point tj reaches the lower limit of the integral
(3.28), t 0 = 4m2, and its further continuation requires
an additional investigation of the behavior of ao(t, M2)
in the neighborhood of the point M2 = M2,, despite the
fact that, with further increase in M2, tj once again
goes out of the region, to the left of the point t = 4m2.

The point t t is a branch point for the function a o ( t ) ,
and the latter is regular in the t plane with a cut ex-
tending from the point tx toward the left to infinity.
But the point tx itself is a function of the complex

•The results presented here can, of course, be obtained by
carrying out the explicit integration in (3.32).
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variable M2. Let M2 = M c + e (e = a + i/3, /3 > 0).
Then tj = 4m2 - (l//u2) ( a2 - /32 + 2ia/3). With increas-
ing M2, keeping an infinitesimal positive imaginary
part, the point tj moves along the curve shown by the
dotted line in Fig. 12. When a < 0 (M2 < M c ) , it
moves along the upper side of the real axis; for a > 0,
it goes over onto the left edge surrounding the point
t = 4m2. Thus a o ( t ) for M2 > M c is continued analyt-
ically as a function in the t plane with a cut from the
point t t along the dashed curve in Fig. 12. In this
case (M2 > M2;), the integral (3.28) becomes meaning-
less, since the integration contour, the real axis, in-
tersects the branch line. The analytic continuation of
the integral (3.28) can be accomplished by deforming
the integration contour into the contour С which is
shown by the solid line in Fig. 12. In fact, for M2 < M c

the contour С is equivalent to the section of the real
axis 4m2 < t < °°, while for M2 > M c it does not inter-
sect the branch line.

Thus in the "anomalous" case (M2 > M c ) the dis-
persion relation has the form

XT lt\ — — \ A(t">dt> dt'

This integral can also be written as an integral along
the real axis

( 3 . 3 6 )

w h e r e

A' (t) =
A(t) (t:

A(t- Ю) -A(t+ Ю) (t < 4m2).

I n S e c . 1 w e e x p l a i n e d t h e r e l a t i o n b e t w e e n t h e f o r m

f a c t o r o f a p a r t i c l e , i . e . , a q u a n t i t y p r o p o r t i o n a l t o t h e

s c a t t e r i n g a m p l i t u d e U ( t ) , a n d i t s s p a t i a l s t r u c t u r e .

A c c o r d i n g t o ( 1 . 1 0 ) , t h e c h a r a c t e r i s t i c d i m e n s i o n o f

t h e p a r t i c l e R o i s d e t e r m i n e d b y t h e l o w e r l i m i t o f t h e

d i s p e r s i o n i n t e g r a l . I n t h e n o r m a l c a s e i t i s s i m p l y r e -

l a t e d t o t h e m a s s o f t h e i n t e r m e d i a t e p a r t i c l e s

_1_
m

F o r e x a m p l e , i n t h e c a s e o f a n u c l e o n , m i s t h e p i o n

m a s s . I n t h e a n o m a l o u s c a s e

R -

1

w h e r e t t m a y b e s i g n i f i c a n t l y s m a l l e r t h a n m 2 , a n d

t h e r a d i u s o f t h e p a r t i c l e c o r r e s p o n d i n g l y l a r g e r .

A g o o d i l l u s t r a t i o n o f t h e a n o m a l o u s c a s e i s m a t o f

t h e d e u t e r o n . T h e t r i a n g l e d i a g r a m s h o w i n g t h e s c a t -

t e r i n g o f a n e l e c t r o n b y a d e u t e r o n i s g i v e n i n F i g . 1 3 a ;

t h e l e t t e r o n e a c h l i n e d e n o t e s t h e c o r r e s p o n d i n g p a r -

a X А

F I G . 1 3

л * \

b

t i d e . I t i s e a s y t o s e e t h a t h e r e w e a r e d e a l i n g w i t h

t h e a n o m a l o u s c a s e w h e r e

w h e r e M i s t h e n u c l e o n m a s s , a n d

is the binding energy of the deuteron. The expression
for the deuteron radius

gives the well-known relation from the elementary
theory of the deuteron.

Another example of the anomalous case, which al-
ready deals with a "truly elementary" particle, the S
hyperon, is explained in Fig. 13b.

We have considered the case where the amplitude
Ub2 has the form (3.30). It is not difficult to consider
the more general case where Ub2 has the structure of
a dispersion integral of type (3.9) in the variable s2,
i.e.,

- * С As(t,s',)ds't (3.37)

Then

and

-l
It is obvious that the dispersion relation for U(t) r e -
tains the form (3.28) for the " n o r m a l " case, where
SO s iwr2

2 < MC*
We would have arrived at the same results by con-

sidering the case where Ub2 is determined by the pole
in channel u, i.e.,

U R

or w h e r e Ub2 h a s t h e r e p r e s e n t a t i o n (3.9) .

We h a v e r e s t r i c t e d o u r s e l v e s to the c a s e of equal

m a s s e s of p a r t i c l e s in the i n t e r m e d i a t e (m^ = m 2 = m )

and final ( M t = M 2 = M ) s t a t e s . In the c a s e of unequal

masses, the general picture is similar. If Mj > mt + ц,
i.e., if the particle Mt is unstable, the singular point
tj becomes complex.
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7. Square diagrams. The unitarity relation, applied
to channels t and u, allows us to establish the form of
the dispersion relation for the amplitude U(s , t ) con-
sidered as a function of the variable t for a given value
of s. Here, naturally, t may take on all values, in par-
ticular, those referring to the physical region of channel
s or to non-physical regions. The value of s itself is
assumed to be fixed in the physical region of channels
t or u (i.e., | z | < 1, for example, s < 0 for elastic
scattering). Now our problem is the continuation of
the dispersion relation into the region of arbitrary
values of s, referring to the physical region or non-
physical region of channel s. By carrying this out we
obtain a representation for U(s , t ) as a function of both
variables.

Our problem is the following. Let the amplitude
U(t, z ) be expressed by the dispersion integral

where A(t, z) is real in the physical region (z2 < 1)
and is determined by the unitarity relation (3.20). We
must find the continuation of the functions A(t, z) and
U(t, z) for arbitrary z.*

Let us consider relation (3.25) for a very simple
example, applying it to the dependence of U on two
variables. (This amplitude corresponds to the Feyn-
man diagram of Fig. 14.) Let Ufc,2 and U a 2

 D e deter-
mined by the poles in the s channel:

(3.38)

Then (3.25) takes the following form:

where

( 3 - 3 9 )

К is determined by formula (3.26), z* by formula
(3.27), p, q, and p ' are respectively the center-of-
mass momenta of the final, intermediate, and initial
states, £t and f2

 a r e given by formula (3.33) for M
= Mj or M2 (the mass of each of the two particles in
the initial or final state).

In the inner integral of (3.39), by introducing the
factor V2, the integration along the real axis may be
replaced by an integration along the contour С of

*The method of investigating the analytic properties of ampli-
tudes on the basis of the unitarity relation is due to Mandelstam.P]
In our presentation we follow Gribov.M

FIG. 15

Fig. 15, circling the branch line of the function VK~ .
For z2 < 1 we have £1>2 > 1 and z\ < 1 in the absence
of anomalous mass relations. The integral over ъл

reduces to the residue at the point Z! = £^:
••i 2 л

i

J (*i—£ 4)
} (3.40)
|

Now the problem reduces to investigating the analytic
properties of a (z , t ) for z > 1. The singularities of
the integrand are the following: z2 = £2 (a pole) and
z2 = zf (branch points), where

- 1 ) . ( 3 . 4 1 )

S i n c e ? 2 > 1 ( f o r t > 4 m 2 a n d i n t h e a b s e n c e o f

a n o m a l o u s m a s s r e l a t i o n s ) , t h e f i r s t s i n g u l a r i t y i s

o u t s i d e t h e r e g i o n o f i n t e g r a t i o n ( 3 . 4 0 ) . F r o m ( 3 . 4 1 )

i t f o l l o w s t h a t f o r z 2 < 1 t h e b r a n c h p o i n t s a r e c o m -

p l e x . F o r z = 1 , z f = ? x = 1 . F u r t h e r m o r e , f o r z > 1 ,

z 2 m o v e s t o t h e r i g h t a n d z j t o t h e l e f t o f t h e p o i n t ? t .

z j t a k e s o n i t s m i n i m u m v a l u e a n d t o u c h e s t h e i n t e -

g r a t i o n c o n t o u r z j = 1 f o r z = ? ! • T o c o n t i n u e a ( z , t )

i n t o t h e r e g i o n z > ? ! , i t i s n e c e s s a r y ( j u s t a s i n i t e m

3 f o r t h e t r i a n g l e d i a g r a m ) t o i n v e s t i g a t e t h e b e h a v i o r

o f t h e f u n c t i o n i n t h e n e i g h b o r h o o d o f t h e p o i n t z = ? 4

f o r c o m p l e x v a l u e s o f z . I t t u r n s o u t t h a t t h e b r a n c h

l i n e c i r c l e s t h e p o i n t z 2 = 1 , a n d t h u s t h e c o n t i n u a t i o n

of (3.40) is an integral along the deformed contour С
(Fig. 16). Here the point z = ?t is not a singular point
of the function a(z, t ) , which remains real also for
z > ?!• A singularity appears when z j reaches the
values zj = ?2. Then the integration contour С en-
circles the pole of the integrand zx = £1# Since

Im

for z2 > £2>

Iin a (z, t) — - (3.42)

According to (3.41), z j reaches the value £2 for z = z c

where

1). (3.43)

Since ?! and ?2 are functions of t, Eq. (3.43) is a
curve in the z , t plane (or the s,t plane) on which
the function A(t, z) has a singularity. Thus A(t, z)
can be represented as a dispersion integral in the vari-
able z or s:
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where p = Im A, while s is related to z by the linear
relation (2.31). Here we designate the same quantity
by A(t, z ) , p(t, z) or A(t , s ) , A(t, s ) . Thus the am-
plitude U(t, s) in the example considered here has the
following double spectral representation:

<3-45>

where p is real and different from zero in the region
with the boundary given by curve (3.43). This region
is shaded in Fig. 17. We note that this is a non-phys-
ical region within which the two variables s and t are
positive and greater than 4ju2 and 4m2 respectively.

The results obtained above no longer hold in the
case of the anomalous mass relation M2 > m 2 + д2.
We shall not treat this case here.

8. The Mandelstam representation. Now we can
formulate the general statement, due to Mandelstam, ^
concerning the analytic representation of the tetrode
amplitude. It is expressed by the following formula:

С Г Qt(s\u')ds'du' f Г Q,(U', f)du'df \ ,„ . f i *
+ i ) (s--s)(u--u)^) ) (u'-u)(f-t) J >• W - * ° '

w h e r e p\ a r e r e a l funct ions of the c o r r e s p o n d i n g v a r i -

a b l e s , wh ich a r e d i f ferent f r o m z e r o wi th in the r e g i o n

of p o s i t i v e v a l u e s of t h e i r a r g u m e n t s , bounded by c e r -

ta in c u r v e s .

B y U ( s , u, t ) w e h e r e m e a n that p a r t of the a m p l i -

tude w h i c h depends on both independent v a r i a b l e s . In

addit ion, the ampl i tude m a y c o n t a i n a p a r t depending

on on ly o n e of the v a r i a b l e s s , u, t, which i s e x p r e s s e d

by p o l e t e r m s of type (3.15) and o n e - d i m e n s i o n a l d i s -

p e r s i o n i n t e g r a l s of the type (3.28) .

A r i g o r o u s proof of the M a n d e l s t a m r e p r e s e n t a t i o n

b a s e d on f ie ld t h e o r y or on the p r i n c i p l e s of a n a l y t i c i t y ,

u n i v e r s a l i t y , and un i tar i ty h a s not b e e n obta ined a s y e t .

We h e r e p r e s e n t t h o s e a r g u m e n t s wh ich m a k e t h i s r e p -

r e s e n t a t i o n e x t r e m e l y natural .

F i r s t of a l l , l e t us c o n s i d e r the g e n e r a l i z a t i o n s

w h i c h fo l low d i r e c t l y f r o m the r e s u l t s of our i n v e s t i -

gat ion of the s i m p l e s t e x a m p l e ( s q u a r e d i a g r a m ) o b -

ta ined a b o v e in i t e m 4 . T h e r e w e u s e d t w o - p a r t i c l e

i n t e r m e d i a t e s t a t e s in the uni tar i ty r e l a t i o n for the t -

channe l . The a m p l i t u d e s of the i n t e r m e d i a t e p r o c e s s e s

w e r e d e t e r m i n e d by p o l e s in the s - c h a n n e l . Along with

t h e s e , w e c a n c o n s i d e r the i n t e r m e d i a t e a m p l i t u d e s with

p o l e t e r m s f rom the channe l and, in addit ion, w e c a n

u s e in s i m i l a r fash ion the uni tar i ty r e l a t i o n s for the s -

channe l (w i th i n t e r m e d i a t e p o l e a m p l i t u d e s for the u

and t c h a n n e l s ) o r the u-channe l ( p o l e a m p l i t u d e s

c o r r e s p o n d i n g l y for s and t ) . We would o b v i o u s l y o b -

ta in the s a m e e x p r e s s i o n (3.45) w i th s and t r e p l a c e d

4m*

by another pair of variables (s,u or u, t ) . The limit
of the integration region in (3.45) would be determined
by (3.43), in which the corresponding values of z would
be determined for the other channels and where, in
place of the masses m and \x, there would appear the
corresponding masses of the intermediate particles
for these other channels. Thus, the complete expres-
sion for the amplitude would have the form (3.46) with
the value pj determined by the function (3.42) (of the
appropriate variables). We note that this amplitude
corresponds to a set of square diagrams, i.e., the dia-
grams of Fig. 14 and others obtained from it by inter-
changing the external lines.

Furthermore, we can consider the case where the
intermediate amplitudes in the two-particle term of
the unitarity relation, for example, for the channel t,
are expressed not by pole terms, but by a dispersion
integral over s for a given t of the type (3.11). This
generalization is similar to that which was made in
par. 3 [cf. (3.37) et seq.]. We then again arrive at the
Mandelstam representation in which p is defined not
by (3.42), but by the formula M

( 3 - 4 7 )

where Aj and A2 are the corresponding absorptive
parts of the intermediate amplitudes. The lower limit
of integration in (3.46) is determined again by (3.43)
where, in place of цг, we must substitute the value of
the lower limit in the dispersion integrals for the in-
termediate amplitudes. Figure 18 gives a schematic
picture of the boundary curves and regions of defini-
tion of the functions pj for the reaction of scattering
of a pion by a nucleon.

The last step which remains to be done for justify-
ing the Mandelstam representation consists in the as-
sumption that inclusion of many-particle (v > 2)
states in the unitarity relation, in which the total mass
of the state is greater than the mass of the two-particle
state, leads to the same results except with a boundary
which is farther out. Then we arrive at formula (3.46),
in which the boundary of integration is determined by
the two-particle states, and where the function p in
some region is given by (3.42) and (3.47) and by addi-
tional, more complicated expressions.

Essentially the assertion expressed in the Mandel-
stam representation reduces to the fact that the func-
tion expressing the imaginary part of the amplitude in
the physical region is an analytic function of z, whose
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s i n g u l a r i t i e s a r e d e t e r m i n e d b y t h e m i n i m u m m a s s e s

o f i n t e r m e d i a t e p a r t i c l e s i n t h e c o r r e s p o n d i n g c h a n n e l .

W i t h i n t h e f r a m e w o r k o f p e r t u r b a t i o n t h e o r y t h i s

a s s e r t i o n c a n b e v e r i f i e d d i r e c t l y b y i n v e s t i g a t i n g t h e

a n a l y t i c p r o p e r t i e s o f t h e i n t e g r a l s c o r r e s p o n d i n g t o

t h e F e y n m a n d i a g r a m s . F o r t h e t r i a n g l e a n d s q u a r e

d i a g r a m s t h i s w a s d o n e b y K a r p l u s , S o m m e r f i e l d , a n d

W i c h m a n n . ^J L a n d a u ' - 1 1 - ' p r o p o s e d a g e n e r a l m e t h o d

f o r i n v e s t i g a t i n g t h e s i n g u l a r i t i e s o f a r b i t r a r y F e y n m a n

a m p l i t u d e s . In t h o s e c a s e s f o r w h i c h L a n d a u ' s m e t h o d

h a s b e e n a p p l i e d t o s p e c i f i c d i a g r a m s t h e r e s u l t s t u r n

o u t t o b e i n a g r e e m e n t w i t h t h e M a n d e l s t a m r e p r e s e n -

t a t i o n .

F r o m t h e r e p r e s e n t a t i o n ( 3 . 4 6 ) o n e c a n , o f c o u r s e ,

o b t a i n t h e u s u a l ( i . e . , s i n g l e - v a r i a b l e ) d i s p e r s i o n r e -

l a t i o n s . F o r e x a m p l e , f o r f i x e d t

U It, ,) = ±
v Я

:'' t)ds> u'; t)du' (3.48)

where M s and* Д1и are the minimum intermediate
mass in channels s and u,

(2(s)

t' — t
»• t')dt'
t' — t

со

я J

oo (2(u) '
_ 1 С Qt(u,f)df _ J С Q.,{u,f)df .
~ n ^ t . _ t - J t,_t , .

(3.49)

J

t i ( s ) a n d t i ( u ) a r e d e f i n e d b y t h e e q u a t i o n s f o r t h e

c o r r e s p o n d i n g b o u n d a r y c u r v e s .

F r o m (3.46) o n e c a n a l s o o b t a i n d i s p e r s i o n r e l a t i o n s

f o r o t h e r q u a n t i t i e s , f o r e x a m p l e , t h e p a r t i a l a m p l i -

t u d e s .

F o r m u l a (3.46) a s s u m e s a d e f i n i t e b e h a v i o r of t h e

s p e c t r a l f u n c t i o n s p i a t i n f i n i t y i n o r d e r t h a t t h e c o r -

r e s p o n d i n g i n t e g r a l s e x i s t . J u s t a s i n t r e a t i n g o n e -

d i m e n s i o n a l r e p r e s e n t a t i o n s , f o r m u l a (3.46) c a n b e

g e n e r a l i z e d t o t h e c a s e w h e r e p j t e n d s t o a c o n s t a n t

o r i n c r e a s e s a c c o r d i n g t o a p o w e r l a w . T h e n o n e c a n

f o r m , i n p l a c e of (3 .46) , a c o r r e s p o n d i n g r e p r e s e n t a -

t i o n w i t h s u b t r a c t i o n s . It i s a s s u m e d t h a t t h e f u n c t i o n s

Pi c a n n o t i n c r e a s e f a s t e r t h a n a p o w e r l a w , s i n c e t h i s

w o u l d m e a n t h a t t h e a m p l i t u d e h a s a n e s s e n t i a l s i n g u -

l a r i t y a t i n f i n i t y .

We s h o u l d e m p h a s i z e o n c e m o r e t h a t t h e M a n d e l -

s t a m r e p r e s e n t a t i o n h o l d s o n l y i n t h e a b s e n c e of a n o m -

a l o u s m a s s r e l a t i o n s . If t h i s i s n o t t h e c a s e , t h e a n a -

l y t i c p r o p e r t i e s of t h e a b s o r p t i v e p a r t s a r e m o r e c o m -

p l i c a t e d C1 2J a n d d o n o t l e a d t o f o r m u l a (3 .46) . F o r t h i s

s a m e r e a s o n , a s i m p l e g e n e r a l i z a t i o n of (3.46) t o t h e

c a s e of a m p l i t u d e s d e s c r i b i n g r e a c t i o n s i n w h i c h m o r e

t h a n f o u r p a r t i c l e s p a r t i c i p a t e i s i m p o s s i b l e . In f a c t ,

if w e w e r e t o c o m b i n e , f o r e x a m p l e , t w o o r m o r e p a r -

t i c l e s , w e w o u l d t h e n h a v e a s i t u a t i o n a n a l o g o u s t o t h e

t r i o d e o r t e t r o d e i n w h i c h o n e of t h e p a r t i c l e s h a s a

m a s s e q u a l t o W — t h e e n e r g y of t h e w h o l e g r o u p of

p a r t i c l e s . W i t h i n c r e a s i n g W, w e w o u l d e n c o u n t e r

a n o m a l o u s a n d c o m p l e x s i n g u l a r i t i e s .

Igm*

FIG. 18a. Region of definition of the functions Pi in the reac-
tion n + n -> n + IT.

u=0

t=O

FIG. 18b. Region of definition of the functions Px in the reac-

tion 17 + N-.7T + N.

4 . E L E C T R O M A G N E T I C S T R U C T U R E OF P A R T I C L E S

1. S c h e m e of c o n s t r u c t i o n of p e r t u r b a t i o n t h e o r y .

T h e o n l y s a t i s f a c t o r y p a r t of t h e t h e o r y of e l e m e n t a r y

p a r t i c l e s i s q u a n t u m e l e c t r o d y n a m i c s , i . e . , t h e t h e o r y

of i n t e r a c t i o n of e l e c t r o n s a n d p h o t o n s . We w a n t t o

s h o w t h a t q u a n t u m e l e c t r o d y n a m i c s c a n b e c o n s t r u c t e d

o n t h e b a s i s of t h e p r i n c i p l e s p r e s e n t e d a b o v e of a d y -

n a m i c a l t h e o r y of t h e s c a t t e r i n g m a t r i x , w i t h o u t u s i n g

t h e a p p a r a t u s of q u a n t u m f i e l d t h e o r y . S u c h a c o n s t r u c -

t i o n c o n t a i n s n o n e w p h y s i c a l r e s u l t s a n d t h e r e f o r e c a n -

n o t p r e t e n d t o r e p l a c e t h e p r e v i o u s t h e o r y a n d t o e l i m i -

n a t e t h e f u n d a m e n t a l c o n c e p t s of field t h e o r y , e s p e c i a l l y

s i n c e t h e p r i n c i p l e s of t h e S - m a t r i x t h e o r y , a n d i n p a r -

t i c u l a r t h e u n i v e r s a l i t y p r i n c i p l e , a r e e s s e n t i a l l y b a s e d

o n r e s u l t s of f ie ld t h e o r y . H o w e v e r , i t i s of i n t e r e s t

f o r s e v e r a l r e a s o n s . F i r s t , i t s a p p a r a t u s a n d m e t h o d

of c a l c u l a t i o n of h i g h e r a p p r o x i m a t i o n s i s s o m e w h a t

s i m p l e r . S e c o n d l y , w e d o n o t i n t r o d u c e s u c h c o n c e p t s
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as ' Ъ а г е " particles, which together with the concept
of a vacuum lead to infinities which are then eliminated
by a process of renormalization. The theory involves
only finite quantities (physical charges and masses)
and the construction of the amplitude on the basis of
the unitarity relation allows one to understand clearly
the significance of renormalization in field theory. In
the third place, it is important in principle to be able
to have another description, showing that the develop-
ment and generalization of the theory need not neces-
sarily stay within the framework of field theory.

Thus the starting point for us is the existence of
electrons (particles and anti-particles) and photons
with their assigned properties (mass, spin, etc.) . The
simplest reactions from the point of view of the number
of particles participating are shown in Fig. 19 by the
three tetrodes, where the straight lines correspond to
electrons and the wavy ones to photons. These are the
reactions: a) electron-electron scattering, b) scatter-
ing of a photon by an electron and annihilation of a pair
into two photons, and c) photon-photon scattering.

FIG. 20

To find the amplitudes we use perturbation theory,
which means the following: the larger the number of
particles participating in a process, the smaller its
amplitude. This means that in the first approximation
we may keep, in the unitarity relation, only the one-
particle intermediate states. The higher approxima-
tions can be obtained by iteration.

As we have seen (Sec. 3, item 4), the amplitudes in
this approximation are expressed in terms of triode
amplitudes. From electrons and photons we can con-
struct only one triode, which is shown in Fig. 20. The
other three triodes that one might imagine cannot oc-
cur: they do not, for example, satisfy the law of con-
servation of momentum.*

Thus in first approximation the amplitudes of
tetrodes will be expressed by pole terms of type (3.16).
The tetrode amplitude in Fig. 19a has poles in the t
and u channels which correspond to the Feynman dia-
gram of Fig. 21a (the intermediate particle is a pho-
ton). The tetrode amplitude of Fig. 19b has poles in

FIG. 21

the s and u channels (Fig. 21b) (where the interme-
diate particle is an electron). The tetrode amplitude
of Fig. 19c has no poles and, correspondingly, photon-
photon scattering does not occur in first approximation.

Let us now turn to the structure of the triode of
Fig. 20. According to (2.42) it is described by two
constants

qv] %,
(4.1)

(4.2)

E l e c t r o d y n a m i c s i s obta ined i f w e s e t

gi = e, g 2 = 0,

w h e r e e i s the e l e c t r o n c h a r g e . The a r b i t r a r i n e s s in

the c h o i c e of the f o r m of the t r i o d e ampl i tude conta ined

in (4.1) c o r r e s p o n d s e x a c t l y to that wh ich e x i s t s in the

usual c o n s t r u c t i o n of the t h e o r y b a s e d on the i n t e r a c -

tion L a g r a n g i a n . *

We obta in the s e c o n d a p p r o x i m a t i o n if w e r e t a i n the

t w o - p a r t i c l e s t a t e s i n the un i tar i ty r e l a t i o n and s u b s t i -

tute for the a m p l i t u d e s of the i n t e r m e d i a t e t e t r o d e s the

f i r s t ( p o l e ) a p p r o x i m a t i o n . T h i s w i l l g i v e t h e a b s o r p -

t i v e p a r t s of the a m p l i t u d e s . The e x p r e s s i o n s for the

a m p l i t u d e s in t e r m s of t h e i r a b s o r p t i v e p a r t A i s g i v e n

by the d i s p e r s i o n i n t e g r a l

(4.3)

if A(r) tends to zero as r —* °°, so that this integral
exists. This case corresponds to the absence of di-
vergences in the Feynman integrals. If, however, A
tends to a constant or increases slowly (logarithmic-
ally), the amplitude is given in the form of a disper-
sion relation "with subtractions":

(4.4)

This case corresponds to a logarithmic divergence of
the Feynman integral, and (4.4) is equivalent to the
usual regularization. Here one must introduce the
constant U ( r 0 ) . For a power law behavior A ~ rn,
one must introduce n + 1 subtractions, i.e., one must
assign n + 1 constants, for example, the value of the
amplitude and its n derivatives at the point r0.

*The most general permissible form of the Lagrangian is the
following:

•The electron spin is $4, that of the photon 1; the two photons
cannot have angular momentum 1/г.

where А„ is the vector potential, F
tensor, ip the current density, and
netic moment.

the electromagnetic field
, the density of electromag-
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In quantum electrodynamics and other renormaliz-
able field theories, we meet only logarithmic diverg-
ences. This means that for them we can use disper-
sion relations with one subtraction. The absorptive
parts of the amplitudes constructed by iteration will,
in the higher approximations, have the same behavior
at infinity, which means that they will be renormaliz-
able. Renormalizable theories lead to such a behavior
of A that each iteration again leads to the necessity
for introducing additional constants, which shows that
it is impossible to construct the amplitude in the form
of a perturbation series.

Later we shall give examples of the detailed con-
struction of quantum electrodynamic amplitudes in the
simplest case, where they depend on only a single vari-
able.

2. Vacuum polarization. Let us consider a reaction
described by the tetrode of Fig. 19a, with the one dif-
ference that we have not electrons, but two distinct
charged particles a and b. The s channel of this
reaction describes the elastic scattering of particle a
by particle b, while the t channel describes the anni-
hilation of an a pair with conversion to a b pair. The
values of the particle spins will not be specified, and
we shall write the amplitude of the fundamental elec-
trodynamic triode (cf. Fig. 20) in general form:

t i d e s a or b also have pole behavior in the t chan-
nel:

,v (ft,) y^v (ft2)

(4.9)

Ual = W H (?) • Ubl = Zbe^aix (q), (4.5)

where a^ and /3^ are the characteristic 4-vectors
(currents) for particles a and b, which satisfy the
condition (continuity equation)

= 0, = 0, (4.6)

Z a e and Z^e are the charges of the particles, which
are assumed to be small in order that we satisfy the
requirements for the applicability of perturbation
theory (the iteration method).

The amplitude of the reaction we are considering
has a pole in the t channel (Fig. 21a). Thus, in first
approximation, according to (3.14)—(3.16) and (4.5),

'A- (4.7)

do. (4.8)

Here 2 denotes a summation over electron spins, m
is the electron mass, do is the element of solid angle
in the system of the c.m.s. of the pair. The amplitudes
for annihilation of an electron pair into a pair of par-

*The particles having the lowest mass are the most important,
as will be seen from the result.

where v(lq) are the four-component spinor amplitudes,
- kt and k2 are the 4-momenta of the electron pair. If
we choose the normalization

v (kf) v (кг) = 2m,

the coefficient Л2 in (4.8) will be equal to unity. Thus
zgg a v { V i_ y-TEpF j 2 { i {ki) yixV {kt))

The summation over polarization is carried out in the
usual way, and the integration is elementary. Also
using relation (4.5), we get

where a = е2/4тг = V13i.
Formula (4.10) shows that U* P ) differs from U( 1 >

by a factor which is a universal function of t. In fact,
comparing (4.7) with (4.10), we can write

(4.11)

where

The quantity P coincides with the vacuum polarization
operator which is defined in quantum electrodynamics.
We note that from (4.7) and (4.11) it follows that (since

( )

i.e., the correction reduces to replacing l/t by
l / [ t - P ( t ) ] in the photon Green's function.

From (4.12) one can obtain P( t ) directly by using
the dispersion relation

To obtain a second approximation we consider the
two-particle part of the unitarity relation. As inter-
mediate particles we may consider only electron pairs .*
We denote the amplitude in second approximation by
U*P) and its absorptive part by A^\ According to
(3.20) we get

P(t)

4m2
t'—t

-dt'. (4.14)

Substituting (4.12) and integrating gives the familiar
expression for the renormalized vacuum polarization
operator*

(4.15) t

where sin2 9 = t/4m2.
Formula (4.11) can be interpreted as follows: The

second approximation correction reduces to replacing
the current a,, in U( 1 > by au + 6au, where

*Cf., for example,!"].
f ctg = cot
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This means that particle a has a structure given by
the form factor

where

(4.16)

The first term corresponds to a point charge, the sec-
ond to a distribution which has a universal character
for all particles. We have seen [cf. (1.4) and (1.20)]
that the imaginary part of the form factor is related
to the charge distribution by a Laplace transformation.
Thus from (4.12) and (1.4) we find for the distributed
part of the charge 6p ( r 2 ) :

(4.17)

From this we see that the effective radius of the
distribution Ro ~ l/m. Integrating, it is not difficult
to obtain the familiar formula for the charge contained
within a small sphere r for r « l/m:

(4.18)

Of course, this formula is applicable only so long as
бе « е.

3. Structure of the electron. If one of the particles
(for example, b) is an electron, the amplitude U ^
has two poles corresponding to the t and s channels
(the Moeller formula):

(4.19)Й Л ) Yv °(*s)l I» (*i) Yv» (Pi)]

where p t and — p 2 are the momenta corresponding to
electrons in state b, s 2 = (р4 —k t )

2 .
As we have seen, the first term in (4.19) determines

a universal effect of vacuum polarization. The presence
of the second term is specific for the electron. It
brings about part of the amplitude for scattering of the
electron by particle a (second approximation), which
we denote by U<e), while its absorptive part will be
called A<e>.

According to (4.19) and (4.8), we obtain [cf. (3.23),
(3.32)]

= W " V l < t -

(4.20)

where [cf. (3.33)] £ = 1 + . *^ 2»
 z i s the cosine of

t — 4m
the angle between the electron in the intermediate state
and state b in the center-of-mass system, and ц is
the "photon m a s s . " *

*This is the quantity introduced to eliminate "infrared"' problems;
cf., for example,["].

Formula (4.20) can be written in the form

(4.21)

and correspondingly the amplitude for scattering of
the electron is

J can be interpreted as the vector form factor of
the electron which, as explained in Sec. 1, can be r e -
lated to the spatial structure of the particle. The gen-
eral expression for the vector form factor (cf. Sec. 1,
item 6) must have the form

Ff (t) = v(pt) [F(e) (t) Y | i + JL G(e» (t) ад,?,] v (Pl) (4.22)

and similarly

(4.23)

The two invariant form factors F ( e ) ( t ) and G ( e ) ( t )
determine the distribution of charge and magnetic mo-
ment of the electron. * f(t) and g(t) are the corre-
sponding absorptive parts of the form factors,

1тЯ«> (*) = /(«), (4.24)

Carrying out the summation over spin states of the
intermediate pair in (4.20) in the usual fashion and
doing the elementary integration, we obtain, compar-
ing with (4.21) and (4.23),

* (4.25)

Ш)- (4-26)

Furthermore, on the basis of (4.24), using the dis-
persion relations,

(4.27)

(4.28)

We arrive at expressions for the form factors which
give for Fif ^ the famUiar expression which in quantum
electrodynamics is called the renormalized vertex part
for the electron (second approximation). In particular,
it is easy to see that

dx
xYx(x-i)'

(4.29)

which states the familiar result due to Schwinger.
In conclusion, we make a remark concerning the

character of the renormalization of charge in the
scheme presented here for developing quantum elec-

*More precisely, the "anomalous moment." The "normal,"
i.e., Dirac magnetic moment of the electron, is, of course, con-
tained in the expression v
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trodynamics. At first glance, there appears to be no
renormalization here, since throughout we have dealt
only with finite quantities which admit of a direct phys-
ical interpretation. However, a renormalization is ac-
tually contained in the form of the dispersion relations
which we are using. Thus, for F<e)(t) and F<P>(t) we
applied the dispersion relations (4.27) and (4.14) "with
one subtraction." The dispersion relation without sub-
tractions is not admissible here, since the correspond-
ing integral for f(t) given by the expression (4.25) di-
verges [since f(°°) = const]. We chose the value of
F ( e >(0) in (4.27) to be equal to zero since this con-
stant, which does not contain the expansion parameter
a, is equivalent to the form factor F ( 1 ) (0) = 1, which
is contained in the first approximation. A more gen-
eral expression may also contain F(0) . Then the con-
dition

(Q) + F(e) (0) + FiP) (0) = (4.30)

is equivalent to a charge renormalization.
We note that, with respect to P ( t ) , (4.14) is a dis-

persion relation "with two subtractions." To it we
can add two terms, P(0) + tF^P^(O). The second term
is absorbed in (4.30), while the condition P(0) = 0
corresponds to a renormalization of the photon mass,
since the amplitude (4.13) (or the Green's function)
of the photon should have a pole at t = 0. For G ( e ) ( t )
the first approximation gives a zero value, in accord-
ance with the postulates of quantum electrodynamics
(4.2). Therefore G ( e ) ( 0 ) should be determined
uniquely by the second approximation. It is remark-
able that the form of g(t) [g(°°) = 0] in (4.25) gives
the possibility of using a dispersion relation without
subtraction (4.28).

4. The pion form factor. One of the most important
problems, which goes beyond the framework of quan-
tum electrodynamics, is the problem of the electro-
magnetic structure of strongly interacting particles.
The simplest of these is the problem of the electro-
magnetic structure of the lightest of the strongly in-
teracting particles, the IT meson. It cannot be com-
pletely solved, but it is interesting to treat the formu-
lation of this problem and see what can be obtained on
the basis of the two-particle part of the unitarity r e -
lation. C l 4 ]

Let us consider the same tetrode (cf. Fig. 19a) in
which particle b is а тг meson and particle a an elec-
tron. The s channel of this reaction represents scat-
tering of the meson by the electron, and the t channel
the conversion of an electron pair into a meson pair.
Radiative corrections associated with electromagnetic
interactions are small and can be neglected. Then the
general expression for the amplitude, in first approxi-
mation in the electromagnetic interactions and exact
with respect to the strong interactions, should have
the following form, which is determined by the photon
pole in the t channel:

where, according to (4.1), (4.2), and (2.44),

= Vv- = (Pi +

(4.31)

(4.32)

(p{ and Р} are the momenta of electrons and pions,
corresponding to the s channel). The quantity F ( t )
is the electric form factor of the pion.

We now consider the unitarity relation in the t chan-
nel. Since the internal parity of the pion is negative,
the parity conservation law and the angular momentum
conservation law forbid the transformation of two pions
into a single pion.* Thus, the first term in a unitarity
relation will be a two-particle term corresponding to
conversion of the pion pair into an intermediate pair.
As intermediate particles, we shall consider particles
with minimum mass, i.e., again pions. The threshold
of the reaction for formation of an intermediate pair
is t = 4m2, where m is the pion mass, which will co-
incide with the threshold of the physical region of the
t channel for this reaction. The threshold for inter-
mediate reactions with formations of pairs of other
particles (K mesons or baryons) lies at t = 4M2,
where M is the mass of the corresponding particle.
Since M > 2m, it is meaningless to consider such
two-particle intermediate states without simultane-
ously treating states of four or more pions.t

Thus, if we include in the unitarity relation only
pion pairs, we obtain an exact expression for the imag-
inary part of the amplitude in the region 4m2 < t
< 16m2.

According to (3.20) (for Л2 = 1) we have in this
region

Im U = ( 4 - 3 3 )

U a 2 i s t h e a m p l i t u d e f o r t r a n s f o r m a t i o n of a n e l e c t r o n

p a i r i n t o a n i n t e r m e d i a t e m e s o n p a i r , i . e . , i t i s g i v e n

b y t h e s a m e e x p r e s s i o n (4 .31) , b u t w i t h t h e i n i t i a l m o -

m e n t a p i r e p l a c e d b y t h e i n t e r m e d i a t e o n e s kj ( k = k j

+ k 2 ) :

(4.34)

is the amplitude for meson-meson scattering,
which we shall denote by U^.

From formulas (4.31)—(4.34) we obtain

I m F W = F*

*The transformation of a pair of pions into а К meson is for-
bidden by strangeness conservation, and the transformation into
one of the other strongly interacting particles (baryons) is forbid-
den by conservation of angular momentum and other quantum num-
bers.

transformation of two pions into three pions is also forbidden
by the laws of conservation of isospin and charge parity.
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or

(4-35)

where z is the cosine of the scattering angle in the
center-of-mass system.

The integral which appears in (4.35) is proportional
to the scattering amplitude in the p-state (1 = 1).* We
use the well-known representation for the scattering
amplitude

<4-36>

where the P/ are Legendre polynomials, aj is the par-
tial amplitude, which is related to the scattering phase
6[ by

or(t) = -i-(e 2 1 * '- l) , (4.37)

the coefficients in (4.36) are easily found from a com-
parison of formulas (2.15) and (2.16).

Substituting (4.36) in (4.35), we obtain

Im F(t) = F*(t) a (4.38)

Unfortunately, this interesting relation holds only
in the region t < 16m2, in which there is only elastic
meson-meson scattering. If it were valid for all t , t
then we could directly express F ( t ) in terms of 6 t ( t )
by means of (4.38).

In fact, by virtue of the reality of expression (4.38),
the phase F( t ) should coincide with the phase of a l f

i.e., should be equal to 6t. Representing F (t) in the
form

f > 4 m S '

we see that

Thus u(t) can be represented as a dispersion in-
tegral. Taking into account the normalization of the
pion charge,

F ( 0 ) = l , i.e., в(0)=0,

we obtain

F(t) =
i (10

(4.39)

The theory of the pion form factor presented above
obviously has only illustrative character. It is ex-
tremely interesting since it shows that one can formu-
late problems outside the framework of perturbation

*We note that in a p-state (i.e., one which is antisymmetric
with respect to interchange of the two mesons) we can have
mesons with isospin T = 1.

tQne can imagine a situation where the only region which is
important in the dispersion integral is the region t < 16ma. This
case is assumed to be realized when one proposes the hypothesis
of a strong resonance in the meson-meson scattering in p-states.

theory and indicates what restrictions are met in solv-
ing them in specific cases. From the practical point
of view we can compute the absorptive parts only in-
cluding two-particle states, in our particular example,
in the region t < 16m2. The inclusion of intermediate
states with three or more particles requires that we
treat amplitudes for processes in which more than
four particles participate (pentodes, hexodes, and
more generally polyodes), whose analytic properties
and spectral representations are too complex.

5. SOME APPLICATIONS OF THE THEORY OF DIS-
PERSION RELATIONS

1. Dispersion relations for meson-nucleon scatter-
ing. Here we present some important physical results
obtained by using the theory of dispersion relations.
These results refer to the scattering of ж mesons by
nucleons. It is therefore desirable to have a specific
form of the dispersion relations for the pion-nucleon
tetrode amplitude which gives the explicit dependence
on spin and isospin.

Let pj and kt denote the initial momenta of a nucleon
and meson, p 2 and k2 their final momenta, correspond-
ing to channel s (scattering). We use ut and u2 to
denote the amplitudes for nucleon states, containing
their dependence on spin and isospin variables, and
Xi and Хг f ° r th e isovector amplitudes of the mesons.
According to (2.47) we can write the amplitude for the
reaction U in the form

where U+ and U" are matrices which, in accordance
with (2.38) and (2.39), have the following form:

U± = a^(s,u,t)+^b±(s,u,t)k, (5.2)

where

(5.3)

and a and b are invariant functions.
Thus the process of scattering of a pion by a nu-

cleon (and processes which represent other channels
of the same reaction) are described by the four am-
plitudes a.*, b*. These functions have definite symme-
try with respect to permutation of the variables s and
u, which is called crossing symmetry.

This symmetry is a consequence of the fact that the
s and u channels of this reaction are identical proc-
esses: scattering of a pion by a nucleon. Therefore,
when we interchange the momenta kj з== - k2, and con-
sequently s *£ u, and simultaneously interchange the
isospin indices a ^ /3, the amplitude U should not
change. Then it follows from (5.1) that U+ —-iU* for
к — - к , s s u , and, further, from (5.2)

b±

(s, в, 0 = ± o± (u, s, t), Л
(s,u,t)=4:b±(u,s,t). )

(5.4)
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W e n o t e t h a t i n t h e s p e c i a l c a s e of s c a t t e r i n g of a

m e s o n b y a p r o t o n , t h e c o r r e s p o n d i n g a m p l i t u d e s

a r e e x p r e s s e d a c c o r d i n g t o (5.1) a s f o l l o w s :

ия± = u-, u± = \ (и*. ± (5.5)

In order to establish the form of the dispersion re-
lations which these amplitudes satisfy, we must know
their following characteristics. First, the location of
the poles and the values of the residues at the poles,
which are determined by the masses of the one-particle
intermediate states and the amplitudes of the corre-
sponding triodes. Second, the location of the nearest
branch points, which are determined by the masses of
the two-particle states. Third, the nature of the be-
havior of the amplitudes at infinity.

The single-particle intermediate state (nucleon)
occurs in channels s and u. Using the results of
Sec. 3, item 4 and Sec. 2, item 6, we get for the pole
part of the amplitude

(5.6)

where M is the nucleon mass, g is a constant
[g = g(M2)] in (2.41).* Comparing (5.6) with (5.1)
and (5.2) gives for the pole part of the matrix U*

Ul -(-
1 >

i . e . , f o r t h e p o l e p a r t of t h e a m p l i t u d e s

e | o l = 0 , ]

(5.7)

(5.8)

Two-particle states represent a nucleon and pion
(mass M + m) in the channels s and u and two pions
(mass 2m) in the channel t. Thus for the amplitude
considered as a function of s for given t, the start
of the branch line is at the points s = ( M + m )2 and
u = (M +m) 2 .

Regarding the behavior of the amplitude at infinity,
on which the form of the dispersion relations depends
in the sense of the required number of subtraction
terms, we have no information except that which may
be obtained from comparison with experiment.

The dispersion relations without subtractions have
the formt

(s, u, t) =
(x, t)dx + -

at (x, 0
dx,

bf (x, t)
dx

(M+m)2

b+ (*, t)
dx.

J
(M+m)2 )(5.9)

•The role of g in the nucleon-meson triode is the same as that
of the charge e in the electron-photon triode. Therefore g is called
the nucleon-meson coupling constant.

tin relation (5.9) there may also occur terms c(t) depending
only on t.

In order to obtain dispersion relations with one sub-
traction, one should obviously, on the basis of (5.9),
form the difference

and

s, u, t) — a± (s0, u0, t)

b± (s, u, t) — a± (SO,MO,

w h e r e s 0 a n d u 0 a r e c e r t a i n f i xed v a l u e s of t h e v a r i -

a b l e s f o r g i v e n t .

T h e a b s o r p t i v e p a r t s a f 2 a n d b * 2 i n t h e p h y s i c a l

r e g i o n s a r e e q u a l t o t h e i m a g i n a r y p a r t s of t h e c o r r e -

s p o n d i n g a m p l i t u d e s a ± ( s , u , t ) a n d b ^ s . u . t ) :

af (x, t) = Im a± (x, h — x — t, t),

(5.10)

a n d s i m i l a r l y f o r b 1 > 2 . F r o m t h i s , a s a c o n s e q u e n c e of

t h e s y m m e t r y p r o p e r t i e s (5 .4) ,

a± (x, t) = ± af (x, t), }

bf (x, t)=^bt (x, t). )

2. D i s p e r s i o n r e l a t i o n s f o r f o r w a r d s c a t t e r i n g .

C o u p l i n g c o n s t a n t s of s t r o n g i n t e r a c t i o n s . T h e s i m -

p l e s t t h i n g f r o m t h e p o i n t of v i e w of c o m p a r i s o n w i t h

e x p e r i m e n t a l d a t a i s t o c o n s i d e r t h e d i s p e r s i o n r e l a -

t i o n s f o r t h e p i o n - n u c l e o n s c a t t e r i n g a m p l i t u d e a t z e r o

a n g l e , M i . e . , f o r t = 0. T h e n t h e w h o l e i n t e g r a t i o n r e -

g i o n i s i n t h e p h y s i c a l r e g i o n of t h e v a r i a b l e s . F u r t h e r -

m o r e t h e i m a g i n a r y p a r t of t h e a m p l i t u d e i s e x p r e s s e d ,

a c c o r d i n g t o t h e o p t i c a l t h e o r e m , i n t e r m s of t h e t o t a l

c r o s s s e c t i o n , a n d i s t h u s m e a s u r e d i n d e p e n d e n t l y .

Suppose that ш denotes the meson energy (both
initial and final, which coincide for the case of scatter-
ing at zero angle) in the rest system of the nuclei.
Then

(5.12)

( 5 Л З )

(5.14)

(5.15)

Correspondingly we shall use the notation

a± (s, u, 0) = a± (со), -i

b± (s, a, 0) = b± (to) j

a n d a c c o r d i n g t o (5.10)

af (x, 0) = Im a± (v),

bf (x, 0) = I m b ± (v),

w h e r e

(5.16)

The symmetry property (5.11) takes the form
ai (x, 0),= ± Ima±(v),
bi (x, 0)= T Im&^v).

We note that the arguments v are assumed to have an
infinitesimal positive imaginary part (v — v + iO).

Using all of these notations, we can on the basis of
(5.9)—(5.11) construct the dispersion relations directly
for the amplitudes
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г/* (s, и, 0) = г/* (ш).

We note that for a nucleon at rest
i.e.,

- k
U2 ~.y Ul =

so that

(5.17)

We write these dispersion relations in the following
form:*

2a>

CO
—

2q4) Im t/- (v) dv

«7<+> (со) = ff* (m)

. 2g* Г° v Im г/" (у) dv

(5.18)

(5.19)

(5.20)

where ш0 = m2/2M (the energy of the meson at the
pole), f = g(m/2M), q = Vw 2 -m 2 (momentum of the
meson).

Formula (5.18) is a dispersion relation without sub-
tractions. It obviously has a meaning if un U~(f) in-
creases more slowly than ~ v for v — » . f Formula
(5.19) is obtained from (5.18) by subtracting the quan-
tity ( ш / т ) Щ т ) . Formula (5.20) is a dispersion r e -
lation with one subtraction. For its existence we r e -
quire that Im U+ (v) increase more slowly than u2

for v —• » .

To apply the optical t h e o r e m , we use express ion

(5.5) re la t ing U* with the ampl i tudes for s c a t t e r i n g

of тг* mesons. Applying formula (3.7) to each of them
(in this formula I = qM, Л.а = 2M), we get

Im {7* (co) = -g- д(ая- ± о„*), (5.21)

where v^ is the total cross section for interaction of
а ж± meson with a proton.

If in accordance with the present data we assume
that as и - > «

H - ' я ± . (5.22)

w h e r e oyfc a r e c o n s t a n t s , the i n t e g r a l s a p p e a r i n g in

(5.19) and (5.20) c o n v e r g e . T h e s e r e l a t i o n s h a v e b e e n

u s e d for an e x p e r i m e n t a l t e s t of the d i s p e r s i o n r e l a -

t i o n s . An i m p o r t a n t r e s u l t obta ined in t h i s w a y w a s

the d e t e r m i n a t i o n of the c o n s t a n t f. They g a v e

f = 0.082 ± 0.015,

*If in (5.9) we add a term c(t), then in (5.18) there appear the
additional terms cl + C2U>.

tWe assume a power law increase. For slower increase (for ex-
ample, - v/\a.v) equation (5.18) i s not applicable.

g2 ~ 15. (5.23)

T h i s n u m b e r i s a m e a s u r e of the " s t r e n g t h " of

m e s o n - n u c l e o n i n t e r a c t i o n . ( F o r e l e c t r o m a g n e t i c i n -

t e r a c t i o n s the c o r r e s p o n d i n g quantity i s the c o n s t a n t

е 2 /4тт=У ш .)
3. Pomeranchuk's theorem. We have assumed that

the behavior of the imaginary part of the amplitude U*
for large ш is given according to (5.21) and (5.22) by
the law

(5.24)

where

C*=aS?-±o?*. (5.25)
The dispersion relations permit us to find from

these the behavior of the real part of the amplitude at
large w. From (5.19) and (5.20) we have for large ш

Re U* (со) < const, со, Re V (со) -+ со ( const + С" In —~) .(5.26)
( i ) - » o o 0 > - M J O N Я J

W e s e e t h a t i f C " * 0 , t h e r e a l p a r t o f t h e a m p l i t u d e

i n c r e a s e s f a s t e r t h a n t h e i m a g i n a r y p a r t . B u t i t i s d i f -

f i c u l t t o m a k e s u c h a b e h a v i o r a g r e e w i t h t h e c o n s t a n c y

o f t h e c r o s s s e c t i o n . F o r e x a m p l e , i n t h e n a t u r a l

m o d e l w h i c h l e a d s t o a c o n s t a n t c r o s s s e c t i o n a n d a

f i n i t e i n t e r a c t i o n r a d i u s , t h e i m a g i n a r y p a r t o f t h e

a m p l i t u d e f o r e l a s t i c s c a t t e r i n g i s g r e a t e r t h a n t h e

r e a l p a r t . * T o e l i m i n a t e t h i s c o n t r a d i c t i o n w e m u s t

a s s u m e t h a t C ~ = 0 , i . e . ,

This assertion is the content of Pomeranchuk's
theorem. E15^ We note that because of (5.27), the sim-
plest dispersion relation (5.18) has a meaning.

The Pomeranchuk theorem can be formulated as a
general relation between the asymptotic values of the
total cross sections for collision of a particle with a
certain particle and with its antiparticle, for the case
where these cross sections are constant and the real
part of the amplitude increases no faster than the
imaginary part. In fact, under these conditions the
scattering amplitude for the particle at zero angle for
large energies u> has the form

U = Ca>. (5.28)

* A f i n i t e r a d i u s R f o r t h e i n t e r a c t i o n m e a n s t h a t i n e x p a n d i n g

t h e a m p l i t u d e i n p a r t i a l w a v e s o f t h e t y p e

t h e i m p o r t a n t e f f e c t s c o m e f r o m I < l o ~ a > R . S i n c e | a ; | < 1 , i t t h e n

f o l l o w s t h a t | U ( < u ) | < R 2 U J , i . e . , R e U a l w a y s i n c r e a s e s n o f a s t e r

t h a n ~(o. S i n c e

I m a t = i - ( 1 — c o s 2 6 i e ~ 2 t ) ' ) . R e o , = 4 - < ? ~ 2 " < s i n 2 6 ;

( t h e f a c t o r e ' ' i s r e l a t e d t o t h e p r e s e n c e o f i n e l a s t i c p r o c e s s e s ) ,

i . e . , I m a ; c o n t a i n s a c o n s t a n t t e r m , a n d i t i s n a t u r a l t o e x p e c t

t h a t I m a ; 0 5 > R e a / ( a s , f o r e x a m p l e , i n t h e c a s e o f d i f f r a c t i o n . )
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Expression (5.28) is the limiting value of the function
of a complex variable U(z) for z = ш + iO and ш —* °o.
But then, over the whole upper half plane (since the
singularities of U lie on the real axis), the amplitude
must have the form

and consequently,

U{ — ш + £0)= — Cm.

Using crossing symmetry, according to which

where U is the amplitude for scattering of the anti-
particle. The argument of this amplitude in the phys-
ical region is z = w + iO. Thus

U (ш + £0) = U ( - <a - £0) = U* ( - ш + £0) = - С*ш,

i.e.,

Im If =ImU.

4. Peripheral collisions. An important consequence
of the principle of universality is the equivalence of the
analytic properties of the amplitude for different vari-
ables, which play essentially different roles kinematic-
ally in a given channel of the reaction. In the preced-
ing we have considered dispersion relations with r e -
spect to the variable s in channel s. Now let us look
at dispersion relations in the variable t in channel s.

The amplitude U(t, s) as a function of t for given
s we write in the form [cf. (3.11) and (3.16)]

, l')dl' 1 С Аг (s, и') du.'

T' — t
(5.30)

w h e r e M j a n d M | a r e t h e m a s s e s o f t w o - p a r t i c l e i n -

t e r m e d i a t e s t a t e s o f t h e c o r r e s p o n d i n g c h a n n e l s . F o r

s i m p l i c i t y w e h a v e h e r e a s s u m e d t h a t t h e a m p l i t u d e

h a s n o p o l e i n t h e u v a r i a b l e a n d t h e p a r t i c l e h a s n o

s p i n . F u r t h e r m o r e f o r s i m p l i c i t y * w e s h a l l a s s u m e

t h a t t h e s c h a n n e l c o r r e s p o n d s t o e l a s t i c s c a t t e r i n g

a n d t h a t t h e m a s s e s o f t h e p a r t i c l e s a r e t h e s a m e , s o

t h a t

t •= - 2p2 (1 - z), и = - 2p2 (1 + z), (5.31)

where z is the cosine of the scattering angle, p the
momentum in the center-of-mass system. If we use
(5.31) and introduce the notation U(t, s ) = U(z,p) and
similarly for At and A2, we can represent (5.30) as
follows:

U(z p)_ R ' JL С Л(г', P)dz'

Mi

z\, p)dz' (5.32)

Afl
21.2

*A11 of these assumptions are not essential. In the case of
particles with spin we should understand by u one of the invariant
amplitudes.

M
where z 0 = 1 + — j .

2p
Let us find the partial amplitude corresponding to

scattering in the state with angular momentum I:

(5.33)

The amplitude (5.33) differs from the amplitude a; in
(4.36) by a normalization factor:

wа, = 8я — а,.

Substituting (5.32) in (5.33), we find*

(5.34)

••i- \, Qi{z')A1{z',p)dz'

(5.35)

(5.29) where Q/ is the Legendre function of the second kind,

Qj(z') falls off rapidly for sufficiently large I as z '
increases (z' > 1). Thus the main contribution to
щ will come from the first term in (5.35), associated
with the pole part in the amplitude. ^16^ This result
has a simple physical interpretation. Since the ab-
sorptive part A(t) determines the interaction with
radius l/Vt~, for large angular momenta, i.e., large
impact parameters, the important role is played by
the largest radius, i.e., the smallest mass for the in-
termediate state (a one-particle state, if there are
such).

Suppose, for example, that р/ц « 1 (nonrelativis-
tic case). Then

2!+2

a n d a c c o r d i n g t o (5.35) a n d (5.34) w e h a v e

a w e l l - k n o w n r e s u l t of q u a n t u m m e c h a n i c s . F o r

д/р « 1, but Z/u/p » 1,

The partial amplitudes fall off exponentially with in-
creasing I.

Corrections to the first term (or the main contri-
bution when there are no one-particle intermediate
states) are contained in the integral term in (5.35).
Because of the drop-off of Q^(z'), we may choose such
conditions that the main part in the integral is due to the

*Of course, we are assuming here that the integrals (5.32)
exist, so that in the double integral obtained one can interchange
the order of integration. The results are not changed if we use
dispersion relations with subtractions.
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gion in the neighborhood of the lower limit. Then to
find щ it is sufficient to know the absorptive parts of
the amplitudes only in the region where they are deter-
mined solely by two-particle intermediate states. This
poses the problem of calculating partial amplitudes for
large I. ВЯ

The main problem of this paper was the presenta-
tion of the general theory of the scattering matrix, not
based on the apparatus of field theory. We have seen
that this scheme is equivalent to field theory in the r e -
gion of applicability of perturbation theory. The suc-
cesses of the present theory outside the realm of per-
turbation theory are as yet only episodic in character.
In principle, this theory contains a small parameter,
not connected with the smallness of interaction, which
allows us to hope that it can be extended. This is the
ratio of the masses of intermediate states to the small-
est masses present. On this basis, numerous attempts
have been made to construct a closed theory in the r e -
gion of low energies (cf. E18>19^) using only two-par-
ticle intermediate states. So far these, attempts have
not met with success. It appears that the amplitudes
at low energy depend essentially on the properties of
the processes at high energy. The treatment of many-
particle states meets with difficulties associated with
the complicated analytic properties of polyodes. At
present there exists no general algorithm similar to
the Feynman rules for constructing the part of the am-
plitude which is related to a given number of interme-
diate particles.
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