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1. INTRODUCTION

THE purpose of the present article is to examine the
existing attempts at a classification of the elementary
particles. All contemporary studies in this direction
start from the phenomenological scheme of Gell-Mann—
Nishijima (hereafter called G-M—N), which is based
on the introduction of a new property of particles—the
strangeness. As is well known, besides the properties
and conservation laws that are directly connected with
the behavior of particles in the ordinary pseudo-euclid-
ean space-time, particles have intrinsic or isotopic
properties which characterize, in particular, their
assignment to a definite charge multiplet or family.
These properties include the isospin T, the baryon
number N, the strangeness S, and also the often used
combination called the hypercharge, Y=N+S. We
have as the fundamental relation for the electric charge

S N , Y
Q=T3+7"|‘7=73+ 5

which holds for all baryons: nucleons (p,n), hyperons
(A,Z,=), and also for the mesons: m and K. On the
other hand, rather paradoxically, the leptouns: e, u, v,
and the photons, not to speak of the hypothetical gravi-
tons, occupy a secondary position in the development
of classifications of the particles, and the problem of
characterizing their isotopic properties is still far
from solved.

1t is already some time since proposals began to
be made for considering the isotopic properties of
particles in a space of three, four, or more dimen-
sions of one type or another (Euclidean or pseudo-
euclidean). An extremely successful theoretical in-
terpretation of the G-M—N phenomenological scheme
was given by d’Espagnat and Prentki (hereafter E — P),
who took as the basis a three-dimensional space in
which reflections as well as rotations are considered.
At the same time Salam and Polkinghorne (hereafter
S — P) developed a scheme with a four-dimensional
space, which leads to very similar, though not iden-
tical, results. These papers are quite well known,
and the methods have been expounded in a number of
books!*? and review articles.>%12 Later, in Sec. 2,
we shall give only a very brief summary of the re-
sults of these papers.

But both the phenomenological scheme of G-M—N

and the theories of E— P and S — P are by no means con-

clusive, even apart from certain differences between
their results. For one thing, this can be seen from
the following two important facts. The theory of E—P

introduces eight independent constants for the inter-
action between baryons and 7 and K mesons, whereas
the experimental data indicate that there are certdin
uniformities in these interactions. Secondly, in the
schemes that have been mentioned the leptons are en-
tirely ignored, and the question is even left open as to
whether it is desirable to characterize them in terms
of isotopic spin and strangeness.

During the last three or four years a large number
of papers have appeared which attempt to get further
with the problem of the systematics of particles. Many
of these authors start from a natural desire to sketch
a dynamical picture of the interactions of the particles.
Since, however, the present level reached by experi-
mental and theoretical studies of the properties of
elementary particles is inadequate for a unique classi-
fication, these attempts make essential uses of differ-
ent and often competing schemes of the intrinsic sym-
metries of the interactions of particles (‘‘global,’’
“‘fundamental,’”’ and ‘‘general’’ symmetries). These
schemes correspond to one or another kind of equal-
izing treatment of groups of particles, for example,
the treatment of all baryons as states of a single
baryon field B and of all 7 and K mesons as states
of a meson II (see Sec. 3). In present attempts at
classification of the particles the point of view of in-
trinsic symmetry is also used in treating such ques-
tions as the relative intensities of various interac-
tions, the structure of particles, the explanation of
the mass spectra of particles, parity conservation
or nonconservation in various interactions, and so
on. With such a treatment the answers to such ques-
tions can of course be only qualitative, but this does
not decrease their importance. In Sec. 3 we shall
consider papers that use various schemes with dy-
namical pictures of the interactions, and the classi-
fications of particles that are obtained in this way.

In a number of papers (by Yang and Tiomno, by
Salam and Taylor, and by D. Ivanenko together with
M. Mirianashvili, A. M. Brodskii, G. A. Sokolin, and
others) attempts have been made to describe the in-
trinsic properties of particles in the framework of
ordinary four-space, by using various representa-
tions of the Lorentz group that have usually not been
taken into account, in particular the so-called anoma-
lous spinors (cf. Sec. 4). Besides this, there have
been attempts at a unified description of all matter on
the basis of a nonlinear spinor field theory and new
quantization rules (mainly in papers by Heisenberg
and by a number of Soviet authors, see Sec. 5), and
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also there have been some preliminary discussions

on a unified theory of matter, including gravitation,

in the spirit of a topological geometrization of a single
theory (papers by Wheeler and his co-workers). Also
a number of authors, in particular Sakata, are now en-
gaged in the development of rather similar models of
compound particles constructed from a small number
of fundamental fields — see Sec. 6. Questions con-
nected with the classification of leptons will be touched
on in Sec. 7.

Our task is the exposition of the main ideas bearing
on the systematics of particles that have been raised
in recent years. It must be agreed at once that so far
none of these attempts has led to any final result.
Moreover, in the last few years no result of an impor-
tance comparable with that of the introduction of
strangeness has been obtained in an altogether con-
vincing way. In spite of this we think that an analysis
of the existing attempts at the classification of par-
ticles, both baryons and mesons, and also leptons, is
extremely useful and can give indications of the most
promising lines of study and stimulate further experi-
ments both in the field of cosmic rays and in that of
work with the powerful modern electron and proton
accelerators.

2. THE THEORY OF STRANGENESS
a. Three-Dimensional Isospace

To overcome difficulties that arise in the study of
processes of production of strange particles (hyper-
ons and K mesons), Gell-Mann® and Nishijima® pro-
posed a classification of particles into charge multi-
plets. This is based on the extension of the concept of
isotopic spin (isospin) to strange particles and on the
introduction in a phenomenonological way of a new
quantum number S —the strangeness — whose physical
meaning is a shift of the center of charge of the multi-
plet. The particles are grouped into the following mul-
tiplets: the isosinglet A°, the isodoublets

. /P = BON . E* N = .
NP2 (T k=T )i K=imK*,  (2.1)
and the isotriplets
=y 7Ty
=2 ]; m= sz) . (2.2)
23 Ty

The strangeness is connected with the electric charge
of the particle in the following way:

N S
Q:T3+7+7- (2.3)
The strangeness is conserved in strong and electro-
magnetic interactions (AS = 0); in weak interactions
it is not conserved, and in nonleptonic decays of
strange particles the selection rule that holds is
AS = x1.
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The G-M—N scheme made it possible to predict
certain particles, ZO, E’O, I~{°, and it is a remarkable
fact that these were later found experimentally.

d’Espagnat and Prentki’ used the full group of or-
thogonal transformations in three-dimensional iso-
space and assumed the existence of isospinors of the
first and second kinds,8 which transform differently
under reflections in the isospace, to give a mathemat-
ical interpretation of strangeness and thus provide a
theoretical foundation of the scheme of G-M—N. They
introduced an isoparity operator U (the number of
isofermions minus the number of antiisofermions)
with the eigenvalues +1 for isospinors of the first
kind and —1 for isospinors of the second kind, and,
by assuming that the doublets N and K are isospinors
of the first kind and the doublets = and K are of the
second kind, showed that

S§S=U—-N (2.4)

(on this basis the triplets ¥ and 7 are isopseudo-

vectors and A is an isoscalar). Then the expression

(2.3) for the charge takes the form
Q=T+ 5. (2.5)

It must be particularly emphasized that here we
have the first successful attempt to use a difference
of the properties of spinors under reflections.

Thus the interaction Hamiltonian is invariant with
respect to the full orthogonal group in three dimen-
sional isospace, i.e., there is conservation of the iso-
spin T and the isoparity U. The conservation of
strangeness then follows from the conservation of
the baryon number N. It must be noted that in a num-
ber of papers® 101! there are suggestions about non-
conservation of N (cf. Sec. 4).

The E — P formalism restricts the number of ele~
mentary particles. Whereas with the natural restric-
tion |Q| = 1 the Gell-Mann scheme allows the fer-
mions Q" (S=-3, T=0) and Z*(S=+1, T=0)
and the bosons w* and w~, which have not been found
experimentally, the existence of these particles is for-
bidden in the E — P scheme by the conservation of the
isoparity U (cf. also reference 12). We note that
there are indications, as yet only preliminary, of the
existence of charged bosons of strangeness S = +2,
observed by Wang Kang-Ch’ang in Dubna in 1959.13

Still, despite the absence of contradictions with the
existing experimental data and despite a certain ele-
gance of the mathematical formulation, the G-M—N
scheme has its weak sides. First, it is unable to give
a dynamical picture of the observed mass spectrum
of baryons; and second, it includes too many interac-
tions and allows a great deal of arbitrariness in the
choice of the coupling constants. By requiring invari-
ance of the Lagrangian of the strong interactions with
respect to charge conjugatioh one can show!? that the
theory will contain eight real coupling constants:



Table I, Table of the elementary particles. The main empirical characteristics and the classification of mesons and baryons
into charge multiplets.*

Class of | Gra-| Pho- Mesons Baryons
particles |vita-|tons Leptons
tons 7 mesons K mesons nucleons hyperons
Particle g v |[vv|ewer| prpo nt | n® K* | K| Ko ‘ %o p n A9 o+ ) 5= g0 =-
M(a!::) 0 0|0 1 206.9 273.30 264,3 966.92 974,55 1836.12 1838.65 2183.30 2328.34 | 2333.02 | 2341.73 | 2566.6 | 2581.9
Lifetime 1,22 (K7 2 LO00x) g 040100 | 2.50-10710 | 0.8.10-10)<c0. 110710 1,59 10-19) 4.5. 1010 ‘10
o | o jool| oo [2,26-1078]2,56.1078 |<4-10-18 s x 1010 . . . <0.1- 59- 510 1.9.-10
(sec) * 107 g, 61108
Spin | 2 | 1 |1/2 l 1, { 1, l 0 0 th 1y
T 1y 1/, 0 1 1,
Isospin
T3 +-1 l —1 0 |+Yo|—Ya| =] +Ya| +1/e —1, 0 +1 ‘ 0 l —1 +12 —1/s
Strangeness S 0 ’ +17 —1 0 —1 —1 9
Baryon number N 0 0 +1 +1
Isoparity U 0 +1’~1 41 —1 +1 0 0 1

* i ; ; : S~ T T4 To e
. At the present time the f?llowmg antibaryons have been discovered: p, n, A°, 3, 3° 37, The values of the mass, lifetime, and spin for the antibaryons are
the same as the corresponding values for the baryons; the isotopic charactetistics (T, S, N, U) of antibaryons differ in sign from the corresponding values for

the baryons.
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L= g2V (i) TN + g.i2 (éy5) X WE + g5 [A (ty5) 72
+ Bt (i) A+ g8 (iys) TAE + f, [NTEK + K*ZvN)
+ 1, [NKA + AK*N]| + f5 [E1,t2K* 4 K121,5]

+ 1, [E,K*A 4+ AKT,E], (2.6)

which is unsatisfactory. In order to put further re-
strictions on the coupling constants, it is necessary to
extend the isospace, increasing the number of dimen-
sions and introducing more general invariance prop-
erties, i.e., a higher intrinsic symmetry of the ele-
mentary particles.

For the convenience of readers we present a table
of the elementary particles, which gives in addition to
the basic empirical data the isotopic characteristics
of the baryons and mesons as they follow from the
E — P scheme {(Table I).

b. Four-Dimensional Isospace

The idea of extending the three-dimensional iso-
space to a four-dimensional space was first proposed
by Pais!® as a continuation of his work!®!" in which he
had attempted to set up a correspondence between the
baryons and the various spinor representations of the
full three-dimensional rotation group. The framework
of such a treatment was too narrow, however, to in-
clude in the scheme the = hyperon, which was dis-
covered soon after the publication of the paper.

To find a way out of the resulting difficulty, Pais
proposed the introduction of a four-dimensional in-
trinsic space.

As is known from the general theory of representa-
tions of rotation groups, the four-dimensional rotations
defined by the six infinitesimal-rotation operators
Teg=~Tga (@,p=1,2,3,4) can be represented as
direct products of operators Tij and Zj (i=1,2,3)
of independent three-dimensional rotations, which
are defined by

1 1 m
Ti=7(T4i+Tjh)’ Zi_= "2‘(]4{,“7’]’?1) (2°7)
and satisfy the following commutation rules:
(T;. T,]=iTy; [Z; Z;}=iZ,, [T, Z;]=0. (2.8)

Thus the representations of the four-dimensional ro-
tation group are specified by two numbers (T, Z*),
and the sum T’ + Z’ fixes the irreducible represen-
tations of this group: to half-integral T’ + Z’ there
correspond the double-valued spinor representations,
and to integral T’ + Z’ there correspond the tensor
representations.

Regarding the baryons as belonging to the spinor
representations and the mesons to the tensor repre-
sentations and assuming that the electric-charge op-

erator has integer values, i.e., that
Q=T Zy- —[, for baryons

and
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Q=71,--7, for mesons,

Pais arrived at a classification of the particles in
terms of the representations of the four-dimensional
isotopic-rotation group, in which, for example, the
nucleon doublet is successfully described by the repre-
sentation (4, 0), but which predicts doubly charged
particles, which have so far not been observed. In
spite of its importance as a stimulus, the Pais scheme
was abandoned because of the defect just mentioned
and certain other difficulties.

By using the tensor representations of the four-
dimensional isotopic-rotation group for both mesons
and baryons, Salam and Polkinghorne!® avoided the
difficulties of the Pais scheme and arrived at a sys-
tematics that is similar in its main features to the
phenomenological classification of G-M—N. The op-
erator for the electric charge is given by the formula

Q="Ty+7, (2.9)

for all particles (in the notations of the paper in ques-
tion Ty = 73, Z3 = u3). The connection with the Gell-
Mann scheme becomes clear if we note the fact that

T; has the meaning of the third component of the iso-
spin, and Zg = 3S-+ N = 3U. One of the interesting
features of the S — P scheme is the complete symmetry
between the baryon and meson fam1hes which can be
seen from Table II.

Table II. The systematics of Salam and

Polkinghorne
Representation Particles T3 ? Z3
' Py +1/2, ~1/2‘ 172
(1/2, 1/2)
l 20, 2 {4172, —1/2‘ —1/2
0 I
§ (1. 0) | =, 30, 3- 0, —1 0
e |
@
(0.0) ! A° 0 ‘ 0
| i
. 1) ? 0 +1, 0, —1
K*, Ko ) 172, —1/2 4172
(1/2. 1/2)
RoK- | 41/2,—1/2 —1/2
8
§ (1. 0) nt, w0, w | 1,0, —1 0
=
(0. 0) ? 0 o
(0. 1) ? 0 +1,0, —1

In the original form of this classification!® the rep-
resentation (4, 3) in the meson family was associated
with the 9 mesons, and the representation (0, 1) with
the 7 mesons. In a later paper, however, which took
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account of the identity of 8 and 7, the K mesons were
put in correspondence with the representation (%, %).
Like the Gell-Mann systematics, this scheme predicts
some particles not yet discovered; the ‘‘free’’ repre-
sentations in Table II correspond to these particles.
In the boson class there are two such representations,
(0, 0) and (0, 1). The first of these can be associ-
ated with the so-called p’ meson, assumed on various
grounds by a number of authors, and the second can be
assigned to the D meson.2?

A treatment of the particles that is closely similar
to the S — P classification has recently been suggested
by G. Sokolik. All known baryons and mesons can be

divided into groups: two four-isovectors (g) and (Ié),

an antisymmetric isotensor of the second rank, which
breaks up into two irreducible representations (0, 1)
and (1, 0), which correspond to the triplets (Z*, =0
Z7) and (7%, 7%, 77); two singlets A% and p°. It is
easy to see that the representation that breaks up into
these irreducible representations is given by matrices
which satisfy the Duffin-Kemmer algebra

BuBiBs + BrBvBr = duuBa + OavBy

and the ¥ function of all 16 elementary particles
transforms according to this representation.

In connection with the extension of the isospace to
four dimensions the question arises as to its Euclidean
or pseudoeuclidean character. Although the majority
of authors incline toward the Euclidean four-isospace,
this question is not yet finally settled.

There are two main objections against the pseudo-
euclidean isospace:?1:22 the difficulties that arise in
the definition of the probability amplitude and in the
setting up of the commutation relations. Both of these
objections are based on the absence of an analog of the
Lorentz condition in the isospace, which is due to the
absence of the concept of translation in the isospace.*

3. THE DYNAMICAL TREATMENT OF THE CLASSI-
FICATION OF PARTICLES

As we have seen, the starting point of the present
theory of the ‘“strong’’ particles is the systematics of
Gell-Mann and Nishijima as interpreted mathematically
by d’Espagnat and Prentki. Later there has been a
tendency toward an equalizing treatment of the interac-
tion of all the baryons, primarily the interaction with
pions —the Gell-Mann® scheme of ‘‘global’”’ symme-
try, in which a universal interaction of the four baryon
doublets with pions was introduced. In this the K
coupling played only a subordinate role. On the other
hand, Tiomno,? developing some ideas expressed in

*One can, however, as A. M. Brodskil has shown, introduce a
distinguished direction in the isospace, a certain vector k;, and
require that in the momentum representation a condition like the
Lorentz condition shall hold (:k,_‘A" & = 0].
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a preliminary way by Schwinger,25 suggested the idea
that there is a ‘“‘fundamental’’ symmetry that mani-
fests itself in a universal coupling of the baryon—K-
meson interaction; here it is the interaction with pions
that plays a secondary role. A natural generalization
of these two schemes, which are in a certain sense al~
ternatives, has been the recent papers of Feinberg and
Giirsey® and also of Souriau®’ and of Umezawa and
Visconti,?® which use a ‘“‘general’’ symmetry as the
basis for introducing a universal interaction with a II
field which unites the 7 and K meson fields. Such a
scheme is attractive in that it contains only one inter-
action constant and admits of a rather elegant mathe-
matical treatment, for example, in the framework of

a seven-dimensional intrinsic space. Pais and other
authors?¥,30:26 have shown, however, that such ultra-
equalizing schemes, which possess a very high degree
of symmetry, are in contradiction with experiment at
a number of points.

A very important problem in the theory of baryons
and mesons is that of constructing a dynamical inter-
action scheme and a corresponding classification of
the elementary particles in such a way as to obtain
the observed mass spectrum. The models of global,
fundamental (‘“‘cosmic’’ in the terminology of Sakurais!),
and general symmetry determine different approaches
to the attempt to solve this problem.

All three of these models assume a hypothesis
which is widely accepted at present, that nucleons and
hyperons are different states of the same particle —
the baryon (B) —in analogy with the concept of the
proton and neutron as two states of the nucleon. Thus
it is assumed, just as in the case of p and n, that in
the absence of interactions that remove a degeneracy
the masses of the various baryons are equal. Accord-
ing to all appearances the mass difference of p and n
is due to electromagnetic interactions, namely to the
interference of the electric and magnetic terms of the
interaction energy,33-% and so also are the mass dif-
ferences between charged and neutral = hyperons,3®
= hyperons,¥ pions,” and K mesons.®%® It must be
noted, however, that up to now there have been no
completely convincing calculations of the mass
differences.

The question arises as to what causes the mass
differences between the various baryon multiplets.
From the point of view of global symmetry the inter-
action of all the baryons with the pions is a universal
one, which is the so-called strong coupling with the
constant g% /4r ~ 15 for the case of the ps-ps inter-
action. Only the inclusion of the interaction with the
K mesons, which is assumed to be moderately strong,
g% /47 ~ 0.1 g% /47, removes the degeneracy and leads
to the mass differences between the various multi-
plets.?! On the other hand, according to the hypothesis
of fundamental symmetry the universal interaction is
that between baryons and K mesons, and only the in-
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clusion of the additional interaction with the pions re-
moves the degeneracy and leads to the mass differ-
ences.’”3? To explain the mass differences in the
framework of the model of general symmetry it is
necessary to introduce interactions of a special
type.30,40,41

Let us now turn to the main conclusions regarding
the systematics of elementary particles that follow
from the theory of global symmetry.

a. Global Symmetry

The theory of global symmetry is based on the in-
troduction of baryon doublets??

S mm () me (5, wm () e

where
A0 F0 . A0L-30
YV == = ' = = . 3.2
s - (3.2)

The Lagrangian for the interaction of baryons with
pions then has the form

Lay=gna Pyn+ gza Paa+ g (Pra+ Pax), (3.3)
where
Py = ([(pysp — nysn) 70+ 1/ 2(pys nn’ + nys pro)],
Prg Pan=i[(Zy,2 — YOy, YO + 2 (S, Yo
+ )7"\75 Tra)) i [(7°y5Z° — 22
+ V22,2 + Ty, Z%0)]. (3.4)

Furthermore, because of the universality of the
interaction,

ghn= gon= g% (3.5)

Preliminary calculations made by Gell-Mann in
lowest order in the coupling with the K mesons led
to the relation

my-{-mg _ 3mg-m,
2 A ’
which is in fairly good agreement with the experimen-
tal data.

The further development of the idea of global sym-~
metry, leading to a classification of the elementary
particles, was carried out in a series of papers by
Schwinger. Although in the first pa.per,25 which was
of a preliminary nature, the author assumes that the
interaction of the baryons with K mesons is symmet-
rical and that the interaction with the pions introduces
the asymmetry, in his subsequent papers Schwinger?!
uses the idea of global symmetry and constructs a dy-
namical theory of the particles, including leptons, and
systematically applies the concept of successive de-
creases of symmetry with the inclusion of weaker and
weaker interactions. Let us consider the main rela-
tions of Schwinger’s theory.

We shall describe all particles by a many-compo-
nent Hermitian field x, which breaks up into a Fermi
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field ¢ and a Bose field ¢. It is at once evident that
the spins of particles now known are confined to the
values 3 for fermions and 0 and 1 for bosons, and that
the strong interactions involve particles with the mini-
mum spins, 1 and 0. Schwinger assumes that the Bose
field with spin 1 represents an essentially different
family of particles, including in particular the photon.

The existence of intrinsic degrees of freedom is
expressed by an additional increase of the numbers
of components of the fields y and ¢. It is shown that
in spite of the difference in the three-dimensional in-
terpretations of the baryons (N and = belong to the
representation of the three-dimensional group of iso-
topic rotations with T =4, and A and Z to the rep-
resentations with T = 0, 1, respectively), there is a
possibility of giving them a unified description in a
four-dimensional intrinsic space. In fact, the same
set of matrices T, (@ =1,2,3,4) of four-dimen-
sional rotations can be regarded as belonging both to
the representations T = 0,1 and also to the represen-
tation T = }; in this sense it is said that the four-
dimensional description realizes a unified symmetry
for the representations T =% and T = 0,1 of the
three-dimensional rotation group.

Using the idea of the global symmetry of the pion-
baryon interaction, Schwinger next prescribes that the
nucleonic charge N is a common property of the bary-
ons, which does not depend on the value of the isospin,
and that the pion field is the dynamical agent that de-
termines the nucleonic charge. The Lagrangian of the
pion-baryon interaction then has the form

in = ;,’anm'% {W(i) ﬁvsvw(;) + b Bysivipin

*'Pu)ﬁ\’si"ll?(oﬂrw(uﬁva\’% ' W)} . (3.6)

where ¢y is the pion field and ;) are the baryon
fields, with the index (i) indicating the representation
of the three-dimensional isotopic rotation group; 8 and
vs are Dirac matrices referring to ordinary space; t
is the isotopic-spin matrix; and v is the matrix of the
nucleonic charge N (we recall that the spinors ¥ are
real):

(3.7

In Eq. (3.6) the pion field ¢4, is described by a self-
dual antisymmetric tensor (a possibility first pointed

out by Salam and Matthews*?);
0 —ing in, O
iy 0 —im, O
o=\ —in, im, 0 0 (3.8)
0 0 0 0

The difference between baryons with integral and
half-integral isospins is introduced by the interaction
of baryons with K mesons, which also, according to
Schwinger, destroys the four-dimensional symmetry
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in the representations (3 and ¥ ;) and thus leads

to mass differences between the charge multiplets.
The dynamical effect of the electromagnetic field

is to reduce the three-dimensional symmetry to a two-

dimensional symmetry, in which there is the generally

valid relation

Q=Ts++ Y, (3.9)

where Y is the hypercharge, numerically equal to the
isoparity U. It is not hard to show that the electro-
magnetic interactions are invariant with respect to
reversal of the charge,

RZ'QRo= -0,

where RQ is the unitary operator-of charge reversal,
given by

(3.10)

Ro=Ryen(Ty+5Y ). (3.11)
Here Ry is the unitary operator for reversal of the
nucleonic charge (R};=+1). Furthermore the signs
of N and Y change along with the sign of Q.

The interactions that involve leptons possess lower
symmetry than those considered above. Therefore for
the description of the leptons Schwinger assumes the
representation T =1 of the three-dimensional rotation
group, and combines the leptons into a charge triplet.
Here

Q=T, (3.12)

with the eigenvalues 1, 0, —1.
In analogy with the nucleonic charge N, a leptonic
charge L is introduced, which is represented by the

matrix
0 —i
A= (i 0) '

The leptonic charge (lepton number) was first intro-
duced by Konopinski and Mahmoud,*? who showed that
if we regard u*, v, and ¢~ as leptons (L =+1) and
u~, ¥, and e* as antileptons (L = —1), then by pos-
tulating conservation of the lepton number one forbids
all unobserved reactions involving leptons (for ex-
ample, u* —e*+e*+e”, etc.), whereas all the ob-
served reactions are allowed. We note that the theory
of the two-component neutrino is incompatible with
this definition of leptons and antileptons (in fact, ac~
cording to this theory u* —e*+ v + V).

The existing symmetry in isotopic properties be-
tween heavy bosons and baryons leads to the idea of
the existence of a family of bosons that realizes the
representation T = 1 of the three-dimensional rota-
tion group. The exceptional position of the photon in
this classification and the formal possibility of identi-
fying it with the third component of a three-dimensional
isovector provide a possible answer. Thus we arrive
at the concept of a family of bosons with spin 1 that
consists of the photon (m =0, Q = 0) and two charged

(3.13)
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vector particles Z*, which have a nonvanishing rest
mass.

Since the charged Z particles play the role of part-
ners of the electromagnetic field Schwinger, and also
Salam and Ward,*! assume that the interaction constant
of Z particles with fermions is a universal electro-
magnetic coupling e’/tic. I this is true, then the coup-
ling with the charged Z field leads to a further con-
traction of the intrinsic symmetry, which will probably
permit a description of the general mechanism of the
weak interactions in terms of a hypothetical intermedi-
ate charged Z particle. This interaction must have
even less symmetry than the electromagnetic inter-
action; it will destroy the invariance under the electric-
charge reversal RQ, Eq. (3.11), although it will be in-
variant under two-dimensional isotopic rotations (con-
servation of Q).

Studying the interactions of leptons with z* par-
ticles, which destroy invariance under RQ, Schwinger
showed that such interactions must automatically de-
stroy invariance under space reflection Rg:

Lzi=g72" By, (¢ — ivs {ts, 8.) ;- (3.14)
Here t=t; or ty; ZH =2V or 2§ [2Z},= (2" xiZ")/

2V%; t;(i=1,2,3) are 3 x 3 isotopic matrices; and
Y7 is the lepton wave function ].
It is easy to see that Ly; is invariant under the

product

R =R,Rg, (3.15)

i.e., it conserves the combined parity.*®

An analogous relation had also been established
somewhat earlier in a paper by one of the writers and
G. A. Sokolik,*® which started from the idea of a com-
bined description of the ordinary and isotopic spaces,
and even reached conclusions about possible transi-
tions from one space to the other. Very similar ideas
on the connection of intrinsic (isotopic) properties
with ordinary ‘‘external’’ properties have also been
developed by Yukawa,!! Pais,* Vigier,* and Raiskij.?

To assure that the neutrino mass is zero, one must
require invariance under the transformation

Yy —> [1 48 (1 — 8) iv; — 8)] ¥y, (3.16)

which is an extension of the Salam-Touschek transfor-
mation®!+52:%8 to the entire family of leptons. This in-
variance leads to conservation of the so-called neu-
trino charge n, for which the corresponding current
is

2= 5 0BV (1 — 1) ivs — 1) . (3.17)

The neutrino charge of the 4 meson and the electron
then has the sign opposite to the sign of the electric
charge, and the neutrino charge of the neutrino is
represented by the matrix v;, whose eigenvalues have
the meaning of the spin projection along the direction
of motion of the neutrino. Thus a neutrino with n=+1
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(—1) can be regarded as a right-circularly (left-
circularly) polarized neutrino. In lepton-pair produc-
tion processes that involve the charged Z field the
neutrino charge is conserved. Therefore a positively
charged lepton is created with a right-circularly po-
larized neutrino, and a negatively charged lepton with
a left-circularly polarized neutrino.

The law of conservation of the neutrino charge is
quite independent of the conservation of leptonic charge
(cf. also Pauli’); for example, a neutrino (L =+1)
can accompany either a positron or a u~ meson. Thus

~
2" - 4 Vg e* - Vg,

e+ ;ln
where the indices L and R denote left-handed and
right-handed polarization. A similar theory of the
neutrino has also been developed by Nishijima.® This
theory does not coincide with the two-component the-

ory. From the conservation of the leptonic and neu-
trino charges it follows that

(3.18a)
(3.18b)

or

Z —>p +4v, oOr

(3.19a)
(3.19b)

w— e -+ vp+4vi,

p'—>e"+;R+;L.
In an analogous way we can construct the interaction
of charged Z particles with baryons:

1
V2
Charged Z particles thus provide a coupling between
lepton pairs and baryon pairs, playing the role of inter-
mediate bosons, which have been considered in a num-
ber of other papers (cf. Sec. 7).

From the preceding discussion it follows that the
classification of baryons and mesons according to
Schwinger does not differ from the classification of
d’Espagnat and Prentki, although it must be noted that
pions can be introduced into this scheme in two alter-
native ways: either as a self-dual antisymmetric tensor
(3.8) or as a four-vector (a charge triplet m and a
charge singlet o). Thus the scheme contains the pre-

Lzn =

gZZ““é"PﬁYu('f"iYsp {13—;—93 f}+)¢. (3.20)
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diction of a new neutral boson with T=0 and S=0.
The classification of the leptons and the family of Z
particles can be put in the form of Table III.

Thus we have before us an interesting attempt at a
dynamical description of all known elementary par-
ticles, and the scheme predicts three new particles:
a o meson and Z* and Z~ particles. Moreover,
Schwinger regards it as possible to include in the
scheme also the interaction with the gravitational
field, which, in his opinion, should lead to a degree of
symmetry still lower than that of the weak interactions.

b. Fundamental Symmetry

As has already been stated, in his first paper,? de-
voted to the dynamical theory of elementary particles,
Schwinger introduced the idea of a symmetrical inter-
action of baryons with K mesons within the framework
of four-dimensional isospace. The interaction of bary-
ons with pions introduces a preferred direction in one
of the three-dimensional subspaces, and thus destroys
the four-dimensional isotopic symmetry of the baryons;
in analogy with the introduction of the electric charge
Q, the corresponding invariant property associated
with rotation around the preferred axis enables us to
introduce the nucleonic charge N, equal to +1 for
baryons, —1 for antibaryons, and 0 for mesons. De-
veloping this theory, Schwinger shows that the K me-
sons have an analogous property of a type of charge
that is realized dynamically by the coupling with the
pion field. Thus there is introduced the hypercharge
Y, with Y =+1 for K*, K® and Y= -1 for K-, K.
The baryons that have isospin T =} also possess hy-
percharge. Although this classification is not essen-
tially different from that of d’Espagnat and Prentki,
still it must be emphasized that Schwinger treats the
hypercharge from the dynamical point of view (as a
consequence of the interaction of pions with K me-
sons ), and not from the geometrical point of view
[the isoparity in Eq. (2.4) was defined as a reflection
operator in three dimensional isospace].

Table III. Classification of the leptons according to Schwinger.
The Z° boson is identified with the photon

S::E:lgf, Leptons Antileptons Z bosons
v 3
Particle nt e~ T _ et 7+ 70 z-
(vg) | (VL) (VR) | (vL)
Lepton
number L +1 —1 0
T 1 1 1
Isospin
Ta| +1 0 —tf —t 0 +1 +1’ 0 |—1
Neutrino _ !
charge n =] +1 1 4+t +H1) +1 | —1] —1 0
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The idea of the fundamental baryon—K-meson inter-
action received further development in a paper by
Tiomno,?* who in addition used an extremely general
seven-dimensional auxiliary space (see also refer-
ence 57) for describing the intrinsic properties of
particles. The empirical basis for this is the obser-
vation that the combination of a half-integral isospin
for K mesons on one hand with an integral isospin for
A and Z hyperons on the other, which is the basis of
the G-M—N classification, is not the only possible one,
but follows from the relation

Q=T+ 5. (3.21)

It turns out that an alternative scheme is possible if
one starts from the relations

Q:[a+J31
Y =J,+ 7,

(3.22)
(3.23)

where I, J3, and J} are new quantum numbers. It fol-
lows from the fact that @ and Y are integers, that I3,
J3, and J} must be simultaneously integers or half-
integers. This leads to the classification of Table IV.
Tiomno then goes on to put a mathematical founda-
tion under his proposed empirical scheme, as the in-
vestigation of d’Espagnat and Prentki did for the
G-M~—N phenomenological scheme. Since each of the
numbers I3, J3, and J} takes the two values +3 (for
baryons), their irreducible representation will be
given by 8 X 8 matrices. Therefore the wave function
of the baryons must have 8 components, which agrees
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with the number of known baryons: N, =, A, £. As
is well known, eight-component spinors correspond
to a seven-dimensional space,8 which is constructed
as the direct sum of a three-dimensional isospace
and a four-dimensional hypercharge space. Denoting
the hyperspin vector by

J=(M231 M31v M12)7 (3.24)

we have

Jy=4 My, I =Ly, (3.25)

Generally speaking, the requirement of invariance
of all rotations in the seven-dimensional space is not
needed as yet, since it leads to the prediction of three
new particles, partners of the K mesons, which have
not been observed so far. Therefore Tiomno requires
invariance with respect to independent rotations in the
three-dimensional isospace (conservation of Ij) and
in the four-dimensional hyperspace (conservation of
J3 and Jj). The mesons are then described by a tensor

rl...rm )
(ri=1,2,3; h=1,23, 4

B
Ao,

(3.26)

of rank m in the isospace and rank n in the hyper-
space. As is known from the theory of representations
of rotation groups, the maximum eigenvalues of I and
d3 (or J3) will be m and n, respectively. From the
condition that the maximum electric charge is 1, we
have

m-tn=1.

Table IV. Classification of particles in the doublet approximation

Field T K B
Charge states | qo | me K+ x° %o e P n z* ¥o 70 5 g0 g
Is 1{0} —1 0 0 0 | 172 |—1/2] 4721 —1/2| 172]—1/2] 1/2|~1/2

Ja 010 0 1 0 —1 | 1/2 1721 172 12| —172]|—1/2] —1/2|—1/2

Js VARG 0 o —1 0 172 1721 —1/2 | —1/2| 12| 172 —1/2|—1/2

Ys=—12—(Js+Jé) 00 0| 472 | 172 |—1/21—172] 172 | 172] o 0 0 0 | —1/2|~—1/2
23=%(Ja—fé) 010 0| 1/2 1—172] 1j2 |—1/2} © 0 12 1/2|—12f—172] 0 0

Ty=L3--Zs 10 —t | 172 | —y2¢ 172 [—12] 172 t—172| 1 0 0o | —1 1721 —1/2




THE CLASSIFICATION OF THE ELEMENTARY PARTICLES

Thus there are two possibilities for mesons:

a) m=1, n=0 (isospin 1),

b) m =0, n=1 (hyperspin 1).

The first case corresponds to the pions, the second
to the K mesons. In fact, it is well known that the
pions form three charge states, and it is now proposed
to describe the four charge states of the K mesons by
a Hermitian hypervector
07{1
oy
AN
oy

=

The Hamiltonian for the interaction of baryons and
K mesons is written in the form

Hy = gt " 9T, (3.27)

where I‘“ (u=1,...,4) are matrices which act on the
hypercharge components of the baryon field ¢ and com-
mute with the isospin matrices. In addition, they sat-
isfy the relations

Tuly Iy = 20,y (3.28)

As Tiomno points out, the arguments given above
are based on a wider group of transformations than
that used by d’Espagnat and Prentki. In fact, only by
choosing a certain definite representation of the I';,
and then writing Jﬂ‘I‘u in the form of isospinors can
one get a Hamiltonian

Hy =g[N (A +i3t) K+ B (A= i21) K’ +Herm. adj.

1(3.29)
k= (5)0 Koo (2F)
() w=( )

which agrees formally with the Hamiltonian (2.6) of
E — P" and Salam!* in the parts that refer to the inter-
action with the K mesons.

The scheme of Tiomno is symmetrical with respect
to all baryons as long as the electromagnetic and pion
interactions are not introduced: the former introduces
a preferred direction in the isospace (a mass differ-
ence between the charged and neutral components of a
given charge multiplet), and the latter leads to a pre-
ferred direction in the hypercharge space (a mass
difference between the different charge multiplets).

A rather elegant mathematical interpretation of
the Tiomno scheme has been developed in a paper by
Feinberg and Giirsey.?® A rotation in the hypercharge
four-space can be represented as the product of two
commuting three-dimensional rotations:

where

(3.30)

() p->exp {3 i(l+T)Zu} v, (3.31)

(II) $—>exp {%z (1—T,) zu} ¥, (3.32)

where .
By = (Fuly — [,T,).
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It is easy to see that the transformation

(IT)  p—> ap— ibZ ¥, (3.33)

commutes with (I) and (II). It is the analog of the
Pauli-Glirsey transformation®°® for the case of a
four-dimensional Euclidean space, which is isomor-
phous to three-dimensional rotations. Thus the Tiomno
scheme can be described in the framework of a four-
dimensional intrinsic space.

In a number of papers of Dallaporta and his co-
workers, which are characterized by starting from
the idea of an equalizing ‘‘general’’ symmetry of the
baryon-pion-kaon interaction, an attempt is made to
give a qualitative explanation of the observed mass
spectrum of the baryons by using the seven-dimen-
sional intrinsic space of Tiomno. As has been shown
in references 58 and 59, in the four-dimensional hy-
perspace one can introduce two groups of three-
dimensional rotation generators: Y, the hypercharge
spin, and Z, the hyperspin number, so that there is
the following connection between Y; and Z3 and
Tiomno’s quantum numbers J3 and Jj:

lafP o2 =1,

J3:Y3+Z3,

(cf. Table IV).

The baryon—K-meson interaction is hypercharge-
independent, that is, both Y and Z are conserved;
the pion-baryon interaction is charge-independent
(in the sense of the doublet approximation, in which
all baryons have the isospin %), that is, I is con-
served. Thus:

T =Y, Zs (3.34)

4 3 )
L=Lg+ L,=iF kg XQ,GE' X, +ig D XT,6G5M Xn;,(3.35)
=1 =1

where ) and Tj are operators that act respectively
on the hypercharge and isospin coordinates of a 32-
component spinor X that describes the baryons; Gj
is a 32 x 32 matrix that is the extension to this case
of the ordinary Dirac matrix y;. Introducing instead
of @ matrices Qj

, —i9Q,,.9; for k=1, 3,
== iQ, ,Q, for k=2 4,
we get a new Lagrangian for the baryon—K-meson in-
teraction, which in the combination Ly destroys the
four-dimensional symmetry of the hypercharge space
and can lead to a difference between the masses of N
and =:19,%
4
L, = hgl X (iFQy + iF'QG,) GiHX @, (3.36)

In fact, the constant of the K coupling will now be
F—~F for N and F + F’ for =; then Y is no longer
conserved, and the constants of the motion are Yj
and Z.

In a recent paper by Dallaporta and Pandit®® an at-
tempt is made to explain the difference of the masses
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of A and %, owing to which we have instead of the two
doublets of Gell-Mann a singlet A and a triplet Z.
This is accomplished by the introduction of an inter-
action Lagrangian which differs from the preceding
formalism in that the fictitious neutral particles Y?
and Z° enter in a symmetrical way. In other words,
it is proposed to take a linear combination of the old
Langrangian L; and a new Langrangian Ly in which
Y0 «— 29

Zn = Ln + bL;n

where b is a real constant. It then turns out that the
resulting Lagrangian is of exactly the form (2.6). In-
stead of eight coupling constants, however, one now in-
troduces just four parameters, g, F, F’, and b. The
connection between the constants of the two theories

is given in the following equations:

§1=8:=83= 8,

& _fo_Ju_b—t

¢ h  fs b1 (3-37)
fs _ ta _ F'4F

h™ fa F—F"

In the Lagrangian f.,r the coupling of the £ hyperon
with the 7 field is proportional to (1 + b), whereas
the coupling of the A hyperon with the = field is
(1-Db). In the opinion of these authors this fact must
lead to different masses for & and A.

The complete Lagrangian for the interaction of
baryons with the K and 7 fields is invariant under
rotations in a three-dimensional ‘‘effective’’ isospace;
that is, there is conservation only of the ‘‘effective’’
isospin T:

T=7Z11, (3.38)

which coincides with the ordinary isospin of d’ Espagnat
and Prentki. In addition to this, Y3 will be conserved.
The series of papers by Dallaporta and his collabora-
tors is of particular interest because it reflects the
evolution of views that were first concerned with at-
tempting to have fundamental and even general sym-
metry, and then departed from it to a certain extent.
Let us now consider the papers of Sakurai, in which
the author has developed in detail ideas® about a sym-
metrical baryon—K-meson interaction (fundamental,
or, in the author’s notation, ‘‘cosmic’’ symmetry).
Sakurai®! draws a parallel between the electromagnetic
and pion couplings, on one hand, and between the pion
and K-meson couplings, on the other. The electromag-
netic coupling does not allow processes with change of
the electric charge of the particles involved, whereas
the pion coupling can lead to such a change; similarly,
the pion coupling cannot change the hypercharge of the
interacting particles, whereas such a change occurs
with the K coupling. The wn-B interaction is charge-
independent, and consequently possesses the corre-
sponding intrinsic symmetry, which is destroyed by
the electromagnetic interaction. By analogy we can
expect that the K coupling is more symmetrical than
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the 7 coupling, and that the latter destroys this higher
degree of symmetry. From this point of view the K
coupling distinguishes neither baryons with different
values of the hypercharge (Y =+1, 0, —1), nor K
and anti-K mesons (Y = +1, —1, respectively); just
as the 7 coupling is charge-independent, we can say
that the K coupling is hypercharge-independent.

The corresponding Hamiltonian for the K coupling
is of the form

H,=V2G,[NYK*+NZK* + (BYK* — 8ZK")] -+ Herm. adj.
(3.39)

+ 0
where Y = (f(")’ Z = (;_) are the so-called doub-

lets of the ‘“first kind’’ [ecf. Eq. (3.1)].

On examining in detail the theoretical and experi-
mental arguments that are the basis for the model of
global symmetry, Sakurai concludes that so far these
arguments do not allow us to say anything definite in
its favor. Moreover, a calculation of the mass differ-
ence = — =% based on the model of global symmetry®
gives the wrong sign, whereas the corresponding cal-
culation with the model of fundamental symmetry gives
the correct sign of the mass difference, with the value

Mmg- — Mge 2 Im,.

The Hamiltonian for the interaction of pions with
baryons is constructed in such a way that the 7-B
interaction will destroy the four-dimensional symme-
try of the baryons. There are two possible types of
N-m and =-m interaction that are symmetrical in N
and =:

(NN +EvE) w and (VTN —E1E) n.

The symmetry between N and = is destroyed if we
assume that these two interactions occur together. In
this case it turns out that the = field is not directly
coupled with the pion field (g&, =0).

This fact led Sakurai® to the interesting prediction
that the anomalous magnetic moment of the = hyper-
ons is zero:

B(E)=p(E)=0.

The situation is different as to the destruction of
the symmetry between the doublets Y and Z. In this
case the interaction with the field must lead to a trip-
let £ and a singlet A. In view of the small mass dif-
ference A —Z, Sakurai supposes that gaos . and gy
are equal in magnitude. In the case gayy =g3sr
there would be four-dimensional symmetry; therefore
one chooses gasr = —gxxy. On this assumption A
and £ must be grouped into doublets of the ‘‘second

kind’’:
= LY
Vz(——Z")' ”2(2- )

(3.40)

The fact that the K coupling and the 7 coupling
give rise to different four-dimensional symmetries
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for the baryons with Y = 0 was first noted by
Schwinger.21

Thus the 7-B interaction is characterized by two
constants gny and gax g = —g85 7. In this sense the
model of fundamental symmetry corresponds to the
requirement of a minimum number of constants.%

Later Sakurai®!»3? makes an assumption about a
possible connection between all the constants of the
m-B interaction, by introducing a sort of ‘‘quantiza-
tion of the coupling constants’’: for = (S = —2) the
constant is equal to zero, for A and £ (S=-1) it
is of moderate size, and finally, it is largest for N
(S =0). Similar considerations lead to an idea of
Schwinger,? that the magnitude of the effective
‘‘charge’’ of the 7-B interaction is given by the value
of Y+ B=2B+ 8. If we accept such an assumption,
then the Lagrangian for the 7 coupling will be of the
form

Ln=gx [l—Van+~;—f>< Sx —+ (A2 +§Au)] . (3.41)

c. General Symmetry

We now consider the papers in which general sym-
metry is used as the basis for introducing a universal
interaction between the baryon field and the combined
m and K meson field.

In the paper of Feinberg and Glirsey a general 32-
component B field

B=B(p, n, 2, Y%, —2° —3%°, —E° —E),

is introduced, and its intrinsic rotations are written
in the form

B =Bespli(ol+e¥ +8J)},

where o, p, £ are 8 X 8 rotation matrices that com-
mute with each other. Thus each baryon can be asso-
ciated with definite values of the I-spin, the J-spin,
and the J’-spin introduced by Tiomno.?* We can in-
troduce three reflection operators, each changing the
sign of one of these spins:

SQ:(I!#! Js, J3)—(—1s, Js, J;), (3.42a)
St Iy, Ty, T)— (s, =5, J}),  (3.42D)
S%: (L3, Js, J)—  ({, I3 —J3)- (3.42¢)

These reflections are a natural generalization of
the operation of charge symmetry for nucleons, for

which
p 14
S, <n> — (n> 15

In fact, SQ corresponds to the symmetrical inter-
action of baryons with pions, and S%1 and SS2 to the
interaction with K mesons.

The interaction Lagrangian for the fields B, =, K,
which is invariant under the transformations (3.42),
will have the form

L=L,+ L, =Tr{Gy,BIB*y,+ G,y;BKB*y, + Herm. adj.
(3.43)

where 7, K are 8 x 8 matrices for pions and K me-
sons, respectively (cf. also reference 62), and the
pions and K mesons are the components of a seven-
vector.

In this connection we call attention to the recent
studies of Souriau?’ and of Umezawa and Visconti,?®
who by developing arguments that are essentially the
same as the preceding principles of ‘‘general’”’ sym-
metry arrive finally at a Lagrangian of the form

Gg=1,...,7),

where the matrices I‘j, which are the generalization
of the Dirac matrices for this case, generate a corre-
sponding Clifford group.

Since the Lagrangian (3.43) describes a completely
symmetrical interaction of baryons with 7 and K
mesons, to obtain the mass differences of the baryons
one must introduce additional interactions of a special
type, which destroy this general symmetry. We may
mention a suggestion made by Pais,®! that the K* and
K® mesons have different relative parities, so that an
interaction between them of the type

= gWy, [0, ¥ (3.44)

K*Kox* 4~ Herm. adj. (3.45)

will introduce an asymmetry into the Lagrangian (3.43);
but such an assumption leads to a larger mass differ-
ence between K* and K.

For their part, Feinberg and Giirsey have made a
detailed study of various forms of interaction of the
type K2r% and B2K2, which had been suggested earlier
by various authors,®>4! and have found that only an in-
teraction of the type

4
Li= Y Nyv(a< by) N,KtK

i=1

(3.46)

[Nj are the well known Gell-Mann doublets, Eq. (3.1),
and a and b are arbitrary real numbers] leads to
splitting of the masses of the baryon supermultiplet.
In concluding our brief exposition of the papers
devoted to the classification of particles on the basis
of the global, fundamental, and general symmetries,
we must admit that, as is justly remarked in articles
by various authors right up to the beginning of 1960,
at present there are still no conclusive arguments in
favor of a particular type of symmetry. It appears,
however, that the more general and, one may perhaps
say, more elegant general symmetry has too much
equalizing effect and does not agree with a number
of experimental facts.

4. ANOMALOUS SPINORS AND BOSONS

We shall now discuss attempts to describe the in-
trinsic (isotopic) properties of particles while re-
maining in the framework of ordinary space, by re-
sorting to previously unused possibilities for different
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behaviors of spinors under reflections. It is in fact
well known that if we define the square of the reflec-
tion operator as the identical transformation we get
for the reflection operator the values I= =1, but that
if we define the square of reflection as rotation through
27, then from the formulas for the transformation of
spinors under rotations we find that this multiplies a
spinor by -1, i.e., a single reflection will correspond
to multiplication by I = +i. Thus in general we have
for inversion of all three space axes

L R A (4.1)

and for time reversal

P =0V VaVay ¢.2)

where pg and p; can independently take the values +1
and xi. Such differences in the behavior of spinors
were first considered by Yang and Tiomno® (cf. also
reference 64), who suggested that there could be four
classes of spinors, A, B, C, D (;DA, ;bB, ¢C, ¢D),
corresponding to the values pg =+1, —1, +i, —i. The
extension to the case of time reversal was made in
reference 65. It is convenient to introduce the obvious
z/)AA, #AB, and so on. It is important to note that the
difference between spinors of different classes is only
a relative one and exists only in the presence of both
fields; it must also be kept in mind that the presence
of the coefficients +1, +i corresponds to representa-
tions of the Lorentz group that are supplemented in
different ways.

It was suggested®® that by using the classes A, B,
C, D one could assign individual spinors to the vari-
ous particles: D spinors to the electron and the u
meson, a C spinor to the neutrino, and spinors A and
B, respectively, to the proton and the neutron.

These ideas were developed by Marianashvili® and
later by Giirsey,% who pointed out that bilinear combi-
nations of spinors, and thus, in the spirit of the fusion
method, boson functions, can be formed by taking
spinors of quite different classes, for example szzpC;
we then arrive at bosons that are multiplied by =i on
reflections of the coordinates, and not by £1, as in the
case of scalars and pseudoscalars. In a natural way
it is proposed to put the K mesons in correspondence
with such bosons with imaginary spatial parity. In the
Giirsey classification the various baryons, including
hyperons, are characterized by the classes A, B, C,
D, and thus strangeness is connected with the spatial
parity P. It must be noted that for the classification
of particles Yang and Tiomno®? and Giirsey®® use only
spinors differing in spatial parity.

Later, mainly in papers by Soviet authors (the
papers by D. Ivanenko with A. M. Brodskii and with
G. A. Sokolik and the mathematical studies of I. M.
Gel’fand’s group), attention was called to the possi-
bility of introducing new, so-called ‘‘anomalous’’
types of spinors, which differ even more deeply in
behavior under inversions from ordinary (‘‘normal’’)
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spinors, owing to the use of the permissible additional
factor of 7;.57:%8

To obtain the anomalous spinor representations of
the Lorentz group we must turn our attention to the fol-
lowing theorem.® Let Iyj be the rotation operators in
ordinary space, where j denotes one of the space axes,
and let P be the operator for inversion of all three co-
ordinates and T the operator for reversal of the time
axis. Then, as can easily be seen,

{Ta;, Py={l,;, T}=0
and in addition

[P, Iij] =[T7 [ij]=0-

These relations can at the same time be regarded as
the conditions for the determination of the representa-
tions of P and T. The theorem in question asserts
that these relations can be satisfied either by commut-~
ing (anomalous) representations of P, T,

PT =TP, (4.3)

or by anticommuting (ordinary or normal) represen-
tations,

PT=TP. (4.4)

What has been said can be illustrated intuitively by
examining the various reflections in the case of a vec-
tor, whose components are formed in the usual way
from bilinear combinations of spinors. It then turns
out that in the case of the vector one can obtain a re-
flection not only with the ordinary normal transforma-
tions of the spinors,

(x1,2,3—>—1144): ¢ =Py, where P=vy,,
(t' ——1):9' =T, where T =yy,y;,

but also with anomalous transformations P’ and T,
where either P’ = P and T/ =iP, or else P’ =iT and
T’ = T. Consequently, the reflection of all four coor-
dinates, which is equal to y; in the normal case, is
equal to i in the anomalous case. It can be seen from
this that in the normal case reflection of all four axes
reduces to a product of two rotations, for example in
the planes (t,z) and (X,y); on the other hand, in the
anomalous case this operation cannot be reduced to
four-dimensional rotations. It must be noted that a
deep difference between spinors in spaces of even and
odd numbers of dimensions shows itself in the fact that
anomalous spinors can be introduced only in an even-
dimensional space. It is curious to recall that in found-
ing the theory of spinors Cartan® briefly indicated the
existence of two possibilities for the reflection trans-
formations of spinors, corresponding to the occurrence
of an additional factor 7y; in the way that has been dis-
cussed. At the same time, Cartan did not make the
distinction between normal and anomalous spinors,
which is based on including the factor y; either for
space reflections or for time reflection (A. M. Brodskii).
It must be remembered that the anomalous spinors
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are realizations of representations of the product of
the proper Lorentz group and the group of reflections,
whereas the full Lorentz group ordinarily means the
proper Lorentz group supplemented by the reflection
of one or three axes.

We shall denote ordinary (normal) spinors by yi!
and y?? (spinors of types I and II), and anomalous
(““mixed’’) spinors by ¥!? and y*' (spinors of types
II and IV). Here the first upper index refers to space
reflection and the second to time reflection. We then
have:

P> yauyp!' under P and 7T, (4.5a)
P2 — auyub®™  under P and 7, (4.5b)
FREN [ Ysauyup'® under P, (4.5¢)
| ayyup'? under 7, ’
21
. AuYuy under P, (4.5d)

. Ysauyup?! under 7T

(ay is a unit vector normal to the hyperplane in which
the reflection occurs).

Furthermore, by using the possibility of a further
division of spinors into classes A, B, C, D, we arrive
at 64 distinct types of spinors,% which it is convenient
to designate, for example, by zpiAZD, etc. In a number
of cases the transformation matrices of these spinors
are equivalent by unitary transformation, and we can
speak only of a relative difference. When, however,
we take into account the antilinear transformations
associated with antiparticle conjugation, the equiva-
lence is destroyed.

From the point of view of our present argument the
most important point is the relative difference in the
behavior of the spinors under space and time reflec-
tions. We have here characterized spinors by two
pairs of indices a, b and «, 8. The index a takes
the value 1 (or 2) for the presence (or absence) of
a factor y; for space reflections. The index b gives
an analogous characterization of the behavior under
time reflection. The indices «, B take four values
(-1, 0, +1, +2) corresponding to the appearance of
a factor (i) for space reflections and a factor (i)B
for time reflection (classes A, B, C, D). The es-
sential difference between spinors is characterized
by the absolute values of the differences (a—b) and
(a—pB). Since for ‘““mixed’’ spinors the Dirac equa-
tion with a mass will be invariant only with respect
to the strong inversion (combined parity) PS = PC,
we introduce the self-adjoint spinors®

W (1) = 3 (1 v9) - (1= v 9],
W (2) = [(1 = va) b+ (1 i) ).

To characterize the behavior of the spinors ¥ under
the strong inversions PS and TS (TS = TC, where T
is the Wigner time reversal), we need only the pair
of indices J =a + o, K=b + 3. Furthermore the
quantity

(4.6a)
(4.6b)

N=J—K=(a--b)+ (a—8) 4.7)
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is conserved modulo 4. It is tempting to take N to

be the baryon number, (a—b) for the hypercharge Y,
and the difference (8- «) for the strangeness; we
then arrive at Eq. (2.4):

N=Y-8§.

It must be emphasized that according to this point
of view the baryon number is not conserved precisely,
in contradiction with the usual assumption. To be sure,
the baryon number will be conserved with high proba-
bility, since four baryons are required for an annihi-
lation, and this process will be hindered because of
other conservation laws. Recently, on the basis of
astronomical considerations, Wheeler!® has suggested
that the existence of a rather sharp upper limit on
masses indicates the possibility of nucleon annihila-
tion on a cosmic scale.

In the light of what has been said it is natural to try
to characterize leptons by ‘‘normal’’ spinors, assign-
ing the various factors +1, i, v to the particles e, v,
u, and baryons by the ‘““mixed’’ spinors ¥ (1) and
¥ (2). Very similar proposals as to the possibility of
describing baryons by anomalous spinors have been
made by Ogievetskii and Chou Kuang-Chao,’® Salam,”
Taylor,” and McLennan.™

A somewhat different type of classification of par-
ticles by means of anomalous spinors has recently
been proposed by G. A. Sokolik,’™ who had in view a
special connection with an empirical classification of
particles made by V. I. Gol’danskii.” The essential
point is that from the two anomalous ('2, y*') and
two normal (!, y?%) four-component spinors consid-
ered above one can construct two anomalous scalar
doublets, one of which (together with its adjoint) is

K* K0
K° ) (K‘) and

the other (and its adjoint) to the following combina-
tions of pions and the hypothetical p meson (the ¢

assigned to the K-meson doublets

meson of Schwinger??):
, N N L O Qn .
n ,/Q _
a0 g and
Vi T

The direct products of the two normal spinors and
the two anomalous scalars give four eight-component
anomalous spinors, which are assigned to the four
baryon isodoublets of Gell-Mann, Eq. (3.1). On the
other hand, Gell-Mann’s hypothetical baryon iso-
singlets ©* and Z~ are associated with normal
spinors, and the hypothetical mesons w* and «™,
with normal scalar representations. Finally, for the
lepton family, u is given by a normal four-component
spinor, and e and v, by an anomalous eight-compo-
nent spinor.

Despite the fact that attempts to construct a classi-
fication of particles on the basis of anomalous and
normal spinors are still only of a preliminary nature,
such a possibility of managing a description of the
intrinsic properties of particles without any isotopic
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space, in the framework of just ordinary four-space,
is an attractive one. It must be used both in the for-
mation of an invariant Lagrangian for the four-fermion
weak interaction (B decay and other processes), and
also for the interaction of fields in nonlinear field
theory.

5. THE CLASSIFICATION OF PARTICLES IN
NONLINEAR SPINOR THEORY AND UNIFIED
GEOMETRIZED THEORY

a. Nonlinear Spinor Theory

Let us now turn to the classification of elementary
particles that arises on the basis of the unified non-
linear spinor theory. Without going into details, we
recall that evidently one of the promising attempts
to pass beyond the bounds of existing relativistic the-
ory and construct a unified theory of all particles,
while also removing difficulties with divergences, is
that found in the nonlinear generalization of field the-
ory. To speak briefly, we shall start from an idea of
de Broglie,”® who has suggested that matter is based
on a field with the minimum spin s = . This idea is
to some extent a translation into modern language of
an idea of Kelvin and Helmholtz, who tried to construct
matter from rotating structures in the ether. The
roots of such a theory of matter even go back to the
‘‘vortices’’ of Descartes. By the combination of spins
one can hope to get arbitrarily large spins or zero
spins. For obtaining the functions of compound par-
ticles de Broglie suggested the method of ‘‘fusion,’’
in which the ¢ function is set equal to #;,, and cer-
tain supplementary conditions are imposed on ; and
P. A graphic example is the attempt of de Broglie,
which was developed by Kronig,’ A. Sokolov, and
others, to construct a neutrino theory of light by com-
bining pairs of neutrinos to make photons. There was
a weak point in the method of fusion, owing to the ab-

sence of an energy of interaction between the particles.

If we take the point of view of the unified spinor
theory, then we must introduce into an equation of the
Dirac type a nonlinear term to describe the interac-
tion of the spinor field with itself. In fact, since there
are no other fields, there is nothing left for the basic
field to interact with except itself! Possible forms of
nonlinear added terms have been indicated by one of
the present writers and A. M. Brodskii.™

This idea received an important development when
Heisenberg® dropped the mass term from the non-
linear Dirac equation, on the assumption that the
masses of the elementary particles must arise as a
consequence of the self-interaction. As the quantiza-
tion rules, Heisenberg proposes changes in the values
of the anticommutators, which evidently make it possible
to avoid the divergences characteristic of the linear the-
ory. Recently D. F. Kurdgelaidze®! and Mitter® have
proposed to take for the propagator in the nonlinear
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case a radially symmetrical four-dimensional solution
of the nonlinear equation. Referring to the literature?®
for details, we only remark that within the framework
of this scheme one can get finite values of the mass

of the fundamental particle, the nucleon, a series of
values for meson masses, as yet in only rough agree-
ment with experiment, and also finite values for the
electric and mesonic charges. Although there is so
far only rough correspondence with the experimental
data, we have here an impressive attempt at the con-
struction of a unified theory of matter.

Here, however, we are interested in the general
relationships of the nonlinear spinor theory as re-
gards the classification of particles, and to a certain
extent these relationships do not depend on the details
of the formalism.

The cornerstone of the theory is the spinor equa-
tion with the mass term omitted and a nonlinear term
of pseudovector character added:

oy

Yo £ ypysy (EYuYs‘P) =0. (5.1)
N

The choice of the pseudovector invariant [and not the
simplest scalar ¥ ()] from among all the possibili-
ties is made on the basis of the requirement of invari-
ance not only under space rotations and Lorentz trans-
formations, but also under the Pauli—Giirsey transfor-
mations 34-%

P —> a+ by C YT,

P—> a*P+ b*TCy,, (5.2)

where
a2 |4 |82 =1, $=v*y, OnCl=—vh, "= —c,

and the T transposition affects the Dirac indices, and
under the Salam—Touschek transformation, 52,5

P —> eiav-‘xp, Y— Ee“wS. (5.3)

The first transformation is isomorphic to a rotation
group in three-dimensional space and determines two
independent quantum numbers J and J3 (J% = J% + J2
+ J§), which are identified with the vector isospin and
the third component of the isospin. The second trans-
formation leads to the conservation of 2Jy, the num-
ber of fermions minus the number of antifermions.
The connections between the numbers J, J;, and Jy
and the charge Q, the strangeness S, the baryon num-
ber N, and the lepton number L are given by the for-
mulas:

Q=Tst-2, (5.42)
N=Jy+2¥, (5.4b)
L=Jy-2, (5.4c)
S=1y—ly, (5.4d)

where lq and IN are to take arbitrary positive and
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negative values, whereas, in accordance with the ex-
perimental data, S takes the values S =0, +1, 2; that
is, S is fixed modulo 4. We note that the basic non-
linear equation is invariant under a one-parameter
continuous group of conformal transformations which
is a simple dilation of space-time:

Y —>1"%p (zn, In) (5.5)

Zp—> NLyy

(n is real).

Because of the invariance of the fundamental equa-
tion and of the commutation relations under these
transformations, we can define in the Hilbert space a
‘“‘semiunitary’’ (since it multiplies the eigenvectors
by real coefficients) operator Oy such that

Onp (2, 1) Oy =0’y (a0, In).

For an infinitesimal transformation A (sic)

(5.6)

On=n%

A is a new quantum number with integral and half-
integral eigenvalues, which are identified with the
quantum number Iy /2. Then, as can be seen from
Eqs. (4.5a) and (4.5d), lQ has the meaning of the
isospin.

Thus it is possible to classify all the elementary
particles according to the values of the quantum num-
bers J3, JN, IN/2, and lQ/2, as is shown in Table V.

b. Gravitation and the Unified Nonlinear Spinor Field
Theory

The prospect of obtaining all ordinary matter, i.e.,
the elementary particles, on the basis of a nonlinear
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theory leads us to pose the question of including gravi-
tation in such a scheme. Obviously we must distinguish
the question of the possibility of constructing gravitons
as quanta of the weak gravitational field, having the
spin S = 2, in terms of excited states of the fundamen-
tal spinor, from the problem of constructing a unified
theory that reduces the complete field of the guy to
spinors. The starting point of the arguments must be
the expression for the covariant derivative of a spinor,

viv={ 5 Tu ) ¥, 6.7
where for the present case the parallel-displacement
coefficients I') introduced by V. A. Fock and one of
the writers replace the Christoffel symbols. This en-
ables us to write the Dirac equation in generally co-
variant form and take into account the effects of gravi-
tation on fermions.

It is important to note that the coefficients I‘u are
not determined uniquely in terms of the corresponding
metric quantities v,, the generalized Dirac matrices,
which in this case are functions of the coordinates and
the time. As we have pointed out previously, one can
include the vector potential Ay of the electromagnetic
field in the expression for the covariant derivative.

Besides this, as Kita® has remarked, the covariant
derivative can be complemented with a vector and a
pseudovector that are bilinear in @, so as to take into
account the effects of strong and weak couplings. By
constructing the A, from ¥ we get typical nonlinear
terms of the form 3 to be added to the nonlinear equa-
tion. As Kita points out, however, it is impossible to
construct the g, or the y, themselves from the y,

Table V. Classification of particles on the basis of the nonlinear theory

Particles v et v v e wtoowT (mt oo e K+ K K% k7 » n 7 AY s+ 20 w- | ElE-
Js o tr2—12 42—12| 0 0 |10 —1 |1/2—4/2 1/2—1/2} 1/2 —1/2 12 —1/2] 0 1 0 —1 |[1/2—1/2
I 0| —1/2—-1/2 172 42| 4214200 0|0 0 0 0 172 172 —12 —4j2 | 12 172 172 172 |[1/2 12
{

_g 0 12 442 —1j2 —172| 1 —1 00 O |1/2 14/2—1/2—1/2/ 1/2 /2 —1/2 —1/2 | 0 0 0 0 |—1/2—1;2
I
% 0 172 1/2 —12 —1/2 | 12—1/21 00 0|0 0 0 0O 172 172 —12 —1/2 | 1/2 472 172 172 {172 1/2
l
szﬁg 0 1 0 0 —t]| 1—1{10—1}{1 0 0—t 1 0 0 —1 |0 1 0 —1]0 —1
IS
\:JN—.L?'\ 0 o 0 0 0l 0 O0j00 0/0 0 0 O {1 1 —t —1 |4 1 1 1|1 1
[
,=J‘\,4% of -t —t 1 t1|—t 1|00 0{06 o0 0 0 | 0O o0 6 040 0 o0 0] o0 O
S=lg—Iy 0 0 0 0 0l 1—1t o0 01 41— 1 0 0 0 0 =1 —1 -1 —t{-2 —2
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so that for the time being we must retain a dualistic
point of view, distinguishing between the geometrical
quantities gy, and the quantities that describe ordi-
nary matter. Kita proposes to take as fundamental
three fields, using along with gravitation and the field
of the strongly interacting particles (baryons) also
neutrinos, electrons, and photons, and hopes to con-
struct all other particles from them. Recently Kita
and Predazzi®® have tried to treat muons as excited
states of electrons.

In this connection we must deal briefly with a very
recent attempt to construct a geometrized picture of
the world, which has been put forward by Wheeler. As
is well known, the success of the Einstein theory of
gravitation, in which gravitation is associated with
the curvature of space-time in accordance with
Riemannian geometry, has aroused the hope of also
explaining electromagnetic, mesonic, and other fields
geometrically. For this purpose many attempts to
generalize the Riemannian geometry in various direc-
tions were made in the 1920’s: the unsymmetrical
metric (Einstein), generalization of the affine-
connection coefficients (Eddington, Weyl), use of a
twisted, not merely curved, space (Cartan), intro-
duction of a fifth coordinate (Kaluza, later Jordan
and Tiri), and other generalizations. The additional
geometrical quantities arising from an extension of
the geometry were used for the description of the elec-
tromagnetic field, and even of the mesonic field
(Schrodinger ). Despite the mathematical elegance
of many of these researches, they did not lead to
any physical results.

Rejecting all attempts of this sort and remaining
within the framework of Riemannian geometry, Wheeler,
along with Misner and other collaborators,!3:8%,8 jg
now making an attack on the topology, and bringing in
the modern quantum treatment of fields and particles.
These authors show that at the very smallest distances,
r ~ (hk/ c?’)‘/2 ~ 107% cm the quantum vacuum fluctua-
tions of the gravitational field, or of the metric, must
reach large values, owing to which space will be dis-
torted in various ways. Wheeler tries to associate
holes in space, connected by tubes, with the classical
model of electric charges, and sketches a preliminary
quantum interpretation of charges and the electromag-
netic field. In addition to a number of particular diffi-
culties, the conversion of such a ‘““geometrodynamics’’
into a unified geometrized theory of space-time, gravi-
tation, and ordinary matter encounters a fundamental
difficulty, owing to the necessity of including fermions
in a picture based on the Bose field of the gup. Be
that as it may, Wheeler’s series of papers, which con-
tain many interesting ideas and results, are a rather
impressive attempt at a revenge from the side of a
unified geometrized field theory, and perhaps the only
such attempt that is possible. For details the reader
is referred to the papers of Wheeler, the most impor-
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tant of which will be published in two collections de-
voted to the latest problems of gravitation.

6. THE HYPOTHESIS OF COMPOUND PARTICLES

Besides the attempt to construct the wave functions
of particles from the ¥ functions of other particles
taken as basic, along the lines of L.de Broglie’s
method of fusion or of the unified spinor theory of
matter, there have been proposed a number of models
of compound particles of more intuitive, and also
cruder, sorts. Fermi and Yang were the first to note??
that pions can be regarded as formed from nucleons
and antinucleons, on the assumption that at the very
smallest distances there is some enormous binding
energy, of unknown origin. The connection of such
ideas with those of the method of fusion and of the
unified spinor theory is obvious. Goldhaber® pro-
posed taking as the basis nucleons and K mesons.
The one of these models that has attracted most at-
tention is that of Sakata,™ which has been developed
by Maki,? L. Okun’,*® M. A. Markov,!-% 1. Polubari-
nov,% and others. It is proposed to take as the basis
nucleons and A hyperons, together with their anti-
particles. From these one obtains all other hyperons,
and also mesons, for example,

a=N+N, K=N1+A°,

S =N+N+A (6.1)

Thus here, as in other such models, hyperons are
regarded as excited states of nucleons and A hyperons.
A contact interaction of the basic baryons is construc-
ted according to the general rule of four-fermion inter-
actions; here, as usual, one can take a coupling of
scalar type, vector type, etc., with some constant of
the Fermi type. Concrete calculations have shown
that on such assumptions one can approximately re~
construct the various particles in the domain of strong
interactions, and also arrive at some possible new
particles. For all details we refer the reader to the
literature.

Developing these considerations, Sakata®® and his
collaborators propose to include leptons also in a uni-
fied system of matter. As the basis they take the three
leptons v, €7, and u~ and some new form of matter B”.
The nature of the field B* is so far not exactly speci-
fied. The question even remains open as to whether it
is like ordinary matter or is of the nature of charge,
or indeed whether it is to be understood only by going
further beyond the framework of usual theory. Then
the three main baryons can be represented as combina-
tions of the field B* with the various leptons:

P=PB'v; n=B'; 0= B*u". (6.2)
The mesons and the other hyperons can be constructed
as combinations of p, n, and A, according to the origi-
nal Sakata model. The disintegration of a baryon into
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B* and a lepton is extremely difficult, if it is possible
at all. It is further assumed that all the corpuscular
properties of the baryons (spin, statistics, etc.) are
due to the bare lepton, but the field B* in the baryon
provides its mass. In the generalized Sakata model
the effective Hamiltonian of the strong coupling is of
the form

H, = g 2. (10" %) (x0™*1), (6.3)

where the baryon wave function is

¥4
=% )
It is proposed to construct the theory of the weak in-

teraction on the basis of a product of currents in the
style of Feynman and Gell-Maunn:®7

Hy,=gug;, (6.4)

where
gu=Ju+ s

Ju=f {(nyp (14 v5) P) -+ (Aye (1 + v5)P)}s
Fu=11(evu (14 v5) v) + (yw (1 + v5) v)).

The Hamiltonian of the strong interaction is charge in-
variant, and also symmetrical in the three main baryons
(p, n, and A). This model provides directly for the
important symmetry

pPev, n«—-—»e', A(——)p,_7 (6.5)

noted by Gamba and by Marshak and Okubo.*

In concluding their interesting, although extremely
preliminary, considerations, Sakata and his collabo-
rators indicate the following obvious possibilities for
describing the coupling of the field B* with the leptons
L:

a) B* and L are points (atomlike model);

b) B*(L) is a point and L(B*) forms a cloud
(model of the type of nucleons);

¢) B* and L are interpenetrating fluids;

d) model of the vessel type: the lepton plays the
role of the vessel, which can be filled with the field B*.
We note, finally, the possibility that Sakata’s field
B* may be the result of a tight combination caused by

the nonlinear interaction of the field . There is in
essence a close connection between the Sakata model
and Thirring’s proposal99 to take as the basis for the
strong particles three spinor (Weyl or Majorana)
fields. By forming products of such fields (without
rest masses) one can obtain®®1% the functions for the
various elementary particles and conservation of the
baryon number N, the isospin T, the hypercharge Y,
and the combined parity PC. The invariance group of
the strong interactions, which has as generators N, T,
and Y, is isomorphic to the product of the two-dimen-
sional unitary unimodular group and two independent
one-dimensional unitary groups, i.e., translations; in
other words, it is isomorphic to the motions of a plane.

ELEMENTARY PARTICLES 945

On the other hand, the full three-dimensional unitary
group, which is the natural generalization of the strong
interactions, leads to doubly charged particles and to
a number of other states which are not observed, and
according to Thirring it must be rejected.

7. THE PROBLEM OF THE LEPTONS

In connection with the discovery of parity noncon-
servation in weak interactions there is now intensive
study of problems of the weak interactions, and in
particular of processes involving leptons. It is now
generally recognized that weak interactions of the
four-fermion type occur through a V-A coupling, as
has been indicated by Marshak and Sudarshan!® and
also by Gell-Mann and Feynman.®” These facts have
led to the appearance of new classifications of leptons
in which they are given isotopic characteristics such
as isospin and strangeness, as well as lepton number
and neutrino charge. The situation is not yet clear,
however, with regard to these points. Moreover, a
number of authors doubt in general the very possibil -
ity of such a classification, believing that leptons do
not have isotopic properties. The difficulty of treating
the isotopic properties of leptons is evidently due to
the fact they are mainly characterized by the weak in-
teractions, in which isospin and strangeness are not
conserved, even for strongly interacting particles.

In place of these properties a new one takes the
primary position, namely the helicity, which is most
clearly manifested in the neutrino, the case m, = 0.

In spite of this, a number of attempts at the classi-
fication of leptons have been put forward from various
quarters, which deserve attention, although they are
generally regarded as far from conclusive.

We have already considered the dynamical scheme
of Schwinger, in which the leptons appear in a natural
way, and interaction between them, and also that be-
tween baryons and leptons, occurs through hypothetical
intermediate vector Z particles, the mass difference
of e and u being explained by a special interaction
with hypothetical scalar 7) mesons. The introduction
of intermediate particles (both vector and scalar),
following an idea found in the classic paper of Yukawa,
is a characteristic feature of many systems for classi-
fying leptons. These hypothetical bosons are used in
attempts to explain the large mass difference y —e, and
also to deal with the weak interactions.?!l,4,102-103 1,
particular, the suggestion has been made that the uni-
versal V-A interaction is realized by means of a
charged vector boson coupled with fermion pairs.

Such a mechanism forbids processes between four
neutral or four charged fermions, which leads to
agreement with experiment by suppressing the proc-
esses 4 — 3e and u — e + y. The probability of this
process has been calculated as a function of the mass
of the intermediate boson and its magnetic moment;
for sufficiently large values of the boson mass the
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decay in question is extremely improbable.

Besides, as has already been stated, leptons have
been included both in the attempts at a systematics
based on anomalous spinors and in the nonlinear
spinor field theory.

On the other hand, there are a number of attempts
to construct a more phenomenological classification
of the leptons, ™ 110-11¢ 55 9 more or less natural ex-
tension of the Gell-Mann—Nishijima scheme to these
particles.

Sachs!!® has tried to apply the concept of an attrib-
ute a, which is essentially the same as the isoparity,
A = -1, to leptons as well as other particles. The
interesting suggestion that we should admit two types
of neutrino particles — the neutrino arising from the
decay of the neutron, and a neutretto arising from
the decay of the muon — has been developed by a num-
ber of authors, following Cini and Gamba.!’® Accord-
ing to Nishijima® this is possible with a four-compo-
nent treatment of the neutrino. Then in the case of
the four-component neutrino the leptons are e_, u,,
whereas for the two-component neutrino they are e_
and u._. A. M. Brodskiill” has pointed out that the
neutrino and neutretto can have different effective
kinematic magnetic moments, which are predicted on
the basis of the formalism of current interactions.

Moreover, independently of the lepton number, one
often introduces the neutrino charge, associated with
the helicity of the neutrino. Independently of this the
concept of a neutrino charge has been used by Ya. P.
Terletskiil!® for a classification of particles, which
somewhat in the style of the later Sakata model® tries
to construct particles by combining various charges.
In a paper by Umezawa and others!!® an attempt is
made to extend the concept of neutrino charge to all
particles. It then turns out that the neutrino charge
of baryons and mesons coincides with the hypercharge,
and for leptons it coincides with the attribute used by
Sachs. Here we see a curious example of the transfer
of typical leptonic properties to baryons.

Thus in spite of the incomplete nature of the treat-
ment of the leptons, the work of the last few years
has undoubtedly brought nearer the possibility of their
legitimate inclusion in the general classification of
the particles.
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