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JZiVER, since Landau postulated a definite form for
the spectrum of the thermal oscillations of helium Π,
the question of the thermal structure of this liquid
has been the most vital problem in the theory of
superfluidity. In fact, all our ideas on the behavior
of helium Π are based on the idea that there are two
types of thermal excitations, making up its normal
component. We have, however, no direct data on
these thermal excitations; all we know about them has
been initially postulated by Landau. Although the
hypotheses concerning their nature do not contradict
many of the experimental facts, a direct confirma-
tion of the existence of such thermal excitations is
nevertheless quite essential.

Let us recall briefly the nature of the spectrum of
thermal excitations of helium II, proposed by Landau
as long ago as in 1947.

Of the two types of excitations, which were called
phonons and rotons, the phonons have the greater
wavelength. The connection between the energy of
such a quasi-particle and its momentum is given by
the linear law

E = cp, (1)

where с is the velocity of ordinary sound in helium П,
approximately 240 m/sec, while Ε and ρ are the
energy and momentum of the quasi-particle, respec-
tively. Essentially these are none other than sound
waves propagating in helium II, quantized in a
suitable manner, and regarded as wave packets. The
phonons have a continuous energy spectrum.

The second type of thermal excitations — rotons —
has a shorter wavelength than the phonons. It is
postulated that the connection between the energy and
momentum has in this case a parabolic character:

(2)
νμ

In this equation Δ denotes the energy gap between the
main unexcited state and the first excited level, p0

is the momentum possessed by the roton while in the
unexcited state, and μ is the effective mass of the
roton (Fig. 1). The rotons have a continuous spec-
trum above the energy gap, and the most populated
levels are located near the minimum of the curve.
Feynman visualizes rotons as vortex rings similar
to smoke rings. Then the momentum of the stationary
roton is due not to its translational motion as a whole,

FIG1.

but to a motion around a cylindrical surface bent into
a closed ring. According to the latest calculations of
Khalatnikov2 the roton parameters have the following
numerical values:

~ = 8.9°K, -|-= 1.99 Α"1, μ = 0.26?ηΗβ.

Landau has established that the number of phonons
increases with the temperature as T3, while the
number of rotons increases exponentially with an
exponent — Δ/kT. Thus, phonons predominate at low
temperatures, while at a temperature on the order of
0.6° К rotons begin to predominate and are responsible
for practically all the physical properties of helium Π
at temperatures above 1°. We know that Landau3 has
developed a thermodynamic theory of helium II by
calculating the values and the temperature behavior
of all the most important thermodynamic functions of
both the roton part and the phonon part of the normal
component.

Let us indicate once more that both types of
thermal excitations form the normal component of
helium Π. The overall density of these excitations
determines the effective density of its normal compo-
nent, which must be treated phenomenologically as
that part of liquid helium II, which is involved in the
thermal motion at a given instant and at a given
temperature.

Unlike the normal component, the superfluid
component of helium II does not contain any thermal
excitations, either phonons or rotons, and represents
a medium in which the quasi-particles of both types
are distributed in a discrete manner. In such a de-
scription we can say that the temperature of the
superfluid component, containing no thermal-energy
quanta, is zero independently of the temperature of
the helium II. The density of the normal and super-
fluid components was measured at different tempera-
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transparent to wavelengths shorter than 3.95 A.
The sharpness of the Bragg cutoff, shown in Fig. 5,

is determined in practice by the resolving power of
the spectrometer. After the helium II has scattered
the primary beam with the Bragg cut-off, the second-
ary beam, scattered at a definite angle to the primary
one, should duplicate the Bragg cut-off of the primary
beam. However, this cut-off will be shifted towards
the longer waves. The magnitude of the shift will
depend on the angle at which the scattered beam is
observed. This is illustrated in Fig. 6, taken from
the article by Larsson et al.10 The procedure de-
scribed is essentially analogous to that proposed by
Feynman to investigate the scattering of a monochro-
matic neutron beam.

Different procedures were used in different labora-
tories to analyze the scattered beam. Larsson,
Palevsky, et al.10 used for this purpose a "chopper"
with curved slits, which could be rotated together
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with the three-meter beam used to mount the propor-
tional counters, about the sample with the helium II.

The group headed by Yarnell12 used a spectrometer
of the crystal-monochromator type with a rock-salt
single crystal. The monochromator and the sample
were located 1.5 meters apart, and a multiple-slit
collimator was located between the two. After being
reflected from the crystal, the neutrons covered a
distance of 1.4 meters and were registered by the
counters. The distribution of the intensities along the
spectrum of the scattered neutrons at different tem-
peratures, obtained by Larsson, is shown in Fig. 7.

The results of the experiments are illustrated by
Ε vs. ρ curves. Henshaw11 gives (Fig. 8) the
expected shape of the dispersion curve and compares
it with his own measurements. Larsson10 et al. give
(Fig. 9) the portion of the curve near the maximum of

Experimental setup (dimensions in cm)

Neutron spectrometer

Counters (B10F3)

Collimator (slit),
21 slits (width
0.318 cm, height
7.62 cm)

L
4 X 10" neu-
tron/cm2-sec

23 \

Beryllium plug Collimator Liquid-helium target Trap
(at liquid-nitrogen (aperture (diameter 25.4, height
temperature 3X6) 7.62)

FIG. 4
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tures in direct and indirect experiments.4'5 The tem-
perature dependence of the ratio of the density p n of
the normal component to the density p\ of helium at
the λ point is shown in Fig. 2. The dots in this figure
represent the results obtained by Peshkov from meas-
urements of the velocity of second sound, while the
circles are the direct results measured by
Andronikashvili.

Attempts to determine the internal structure of
helium II by one method or another began quite some
time ago. One such method, used by various investi-
gators, is based on neutron-diffraction analysis.
Harst and Henshaw,6 as long ago as in 1955, used for
this purpose a beam of monochromatic neutrons of
1.04 A wavelength. The scattering of neutrons by
helium was investigated by Egelstaff and London,7

and also by Sommers, Dash, and Goldstein.8 Appa-
rently, however, these experiments yielded no in-
teresting physical results.

A major shift occurred when Feynman and Cohen9

pointed out the possibility of determining the energy
spectrum of the thermal excitations of helium Π, and
outlined the principal features of an experiment aimed
at investigating inelastic scattering of cold neutrons
by helium Π.

Feynman and Cohen have shown that in the inter-
action between cold neutrons and helium II at liquid
temperatures, on the order of 2° К and below, the
predominant role is played by the quanta of thermal
excitations produced by the neutrons. This process
takes place, however, at neutron wavelengths shorter
than 16.5 A, since longer-wave neutrons cannot gen-
erate anything.

It was found that neutrons at wavelengths on the
order of 10 A could generate only long-wave phonons.
Only neutrons with wavelengths less than 10 A are
capable of generating phonons of high energy and
rotons.

However, in order for the generation of one excita-
tion to be a two-particle process, it is necessary that
the energy of the incident neutron not be too high.
Only then will the conservation laws of the energy
and momentum make it possible to determine the de-

pendence of the energy of excitation Ε (ρ) on its
momentum p.

Following these theoretical investigations, highly
significant results were obtained in many researches,
and have led literally to a triumph of the Landau
theory, along with representing in themselves a high
point in neutron-physics research.

I have in mind the work by Larsson, Palevsky, et
al.10 performed with the Stockholm reactor, the work
by Henshaw11 performed with the Chalk River
(Canada) reactor, and finally the work by Yarnell,
Bendt, et al.2 carried out with the Omega-West
reactor in Los Alamos.

The principal part of the work was the same in all
the investigations. A beam of cold neutrons of known
wavelength was inelastically scattered by the helium
II. Ultimately the roton, produced by the interaction
between the neutron and the group of atoms, moves
away from the scattered neutron. The kinematics of
the scattering is governed by the conservation laws:

Here Kpj/2m is the energy of the incident neutrons,
Kp|/2m the energy of the scattered neutron, Ε (ρ)
the energy of the excitation produced in helium II, and
ρ the momentum connected with this excitation.

Thus, by measuring the energy and the momentum
of the neutrons scattered at a definite angle to the
direction of the primary monochromatic beam, or,
what is the same, by measuring the wavelength of the
primary and of the scattered neutrons, we determine
the energy and momentum of the roton produced as a
result of the inelastic scattering. The connection be-
tween the energy and momentum, empirically deter-
mined in this experiment, should confirm or refute
the Landau relation. The same experiments should
yield all three parameters of the roton: Δ, Po, and μ.

The cold neutrons are obtained in all three inves-
tigations from a nuclear reactor operating at 600
— 800 kw thermal power with a total neutron flux on
the order of 1012 neutron/sec-cm2 on the inside of the
outlet channel.

The experimental setups for the Swedish and Los
Alamos reactors are shown in Figs. 3 and 4. The
neutron flux from the active zone of the reactor passes
in both cases through a beryllium plug, which serves
as a filter, and then through a collimator to the speci-
men, i.e., to an aluminum Dewar vessel filled with
liquid helium II, cooled to a low temperature.

If the energy spectrum of the neutrons is repre-
sented by a Maxwellian curve, then the polycrystalline
beryllium filter will cut off all the neutrons of wave-
length shorter than 3.95 A (Fig. 5). Almost all these
neutrons experience Bragg reflection from the corre-
sponding crystallographic planes. The quantity 3.95 A
is twice the largest interplanar distance in the beryl-
lium crystals. The beryllium filter is practically
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the roton part of the spectrum. Finally, Yarnell and
co-workers12 give (Fig. 10) the complete dispersion
curve, covering the momentum interval from 0.5 A"1,
corresponding to the end of the phonon part of the
curve, up to 2.5 A"1, in the region far past the mini-
mum of the roton part.

Yarnell: f- = 8.65°K,^= 1.92 А'1, ц = 0,16отИе;

Larsson: •— = 8.1"K; -γ-=1,90 Α"1, μ = 0.16 mHc.

The width of the Д/к gap is 8.65° К at Τ = 1.1° К
after Yarnell and 8.1° К at Τ = 1.5° К after Larsson.
Thus, the agreement is excellent not only between the
two experiments, but even between experiment and
theory. It must be noted, nevertheless, that Larsson's
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value of the gap width is somewhat too low compared
with that given by Yarnell.

Further investigation of the dependence of the width
of the gap on the temperatures has led Larsson to
plot the curve shown in Fig. 11. Yarnell, in turn,
gives an empirical temperature dependence of the gap
width in the form Δ/k = (8.68 ± 0.0084)T7 deg K.

Let us consider now in greater detail the tempera-
ture-dependence curve of the gap width. As can be
seen from the experimental data, the energy of roton
production decreases as the temperature approaches
the λ point. Thus, the probability of formation of a
roton increases not only because the temperature Τ
increases in the exponent, but also because the gap
width decreases. A notable change in the gap width
begins at temperatures 1.8 — 1.9° K, i.e., in the
region where, according to other data, the rotons
begin interacting with each other.13 At the same time,
the width of the dispersion curve also increases
sharply.

Can we assume that the investigations reported in
this survey have resolved completely the problem of
the character of the Landau curve ? Not so long ago
Pitaevskii14 investigated the question of how the
Landau dispersion curve terminates in the region of
high momenta. It turned out that at high energies
and momenta there exists a certain stability threshold
for roton-type oscillations. We designate it pk- The
roton should decay beyond the stability threshold. It
can do so, however, in various ways, neither of which

i'K
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FIG. 12

can be given theoretical preference. To solve this
problem he therefore proposed the use of a neutron
beam. The behavior of the scattered neutron beam
should depend on which of the decay channels is
actually realized.

If the slope of the curve at the point of decay ex-
ceeds the slope of the curve near the origin, i.e., if
the roton moves with a velocity higher than the
velocity of ordinary sound in helium Π, it can emit a
photon just as an electron moving faster than light in
a given medium emits Cerenkov radiation. The emission
is produced within a time proportional to l/(p — Pk)3.
In this case the stable part of the curve terminates
with a slope equal to c, i.e., a slope equal to the
velocity of ordinary sound reached at the point ρ
= pfc. This is followed by a diffuse region which rep-
resents unstable excitations (Fig. 12).

Another possibility is the decay into two excita-
tions with identical directions of motion and final
momenta. The decay occurs at an energy equal to
twice the width of the gap. In this case the Ε (ρ)
curve has no continuation at all beyond ρ = pjj, de-
noting an instantaneous decay (Fig. 13).

In the third possible case, a decay into two excita-
tions that are scattered in different directions occurs,
again after reaching an energy equal to twice the
width of the gap. Here, too, the Ε (ρ) curve has no
continuation beyond ρ = p^. However, the tangent to
the final point is horizontal in this case (Fig. 14).

An investigation of these interesting questions
undoubtedly still awaits a solution in the nearest
time.

The problem of scattering of cold neutrons by
liquid has recently attracted the known Chinese
scientist Lee, who discovered parity nonconservation
in weak interactions. Together with Mohling15 he

zoo г'к
FIG. 11 FIG. 13
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FIG. 14

pointed out the possibility of direct determination of
the chirality of the rotons, i.e., a quantum number on
par with the other parameters, describing the state
and the nature of this quasi-particle.

By chirality, as is well known, is meant the
quantum number that results from projecting the
angular-momentum vector on the direction of the
momentum vector p. The chirality of a system
should be conserved in interaction processes.

When slow neutrons are scattered by helium II
atoms, there is no spin-orbit interaction. This
means that the neutron cannot generate a particle
with chirality other than zero without changing its
direction of motion. It follows hence that the effec-
tive neutron forward scattering cross section should
be zero if the chirality of the roton differs from zero.
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Thus, by studying the angular dependence of the
intensity of scattered neutrons, one can conclude
whether the rotons have their own angular momentum
or not. If, for example, it is found that the chirality
of the rotons is equal to zero and they do not have
angular momentum, then there would be no grounds
for speaking, from the physical point of view, of the
existence of two types of thermal excitation in helium
I. Actually, if the phonons, which certainly have
chirality equal to zero, and the rotons have no prop-
erties which distinguish one from another, there is
no sense in subdividing the excitation quanta into two
types. In this case one could assume that they merely
pertain to different portions of one and the same dis-
persion curve.
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It goes without saying that a clarification of these
problems is of exceeding importance for the under-
standing of the nature of thermal excitations.

To conclude this survey, a few words should be
said regarding the temperature dependence of sev-
eral thermodynamic functions, calculated on the
basis of the dispersion curve of Yarnell et al.16

Figure 15 shows how the authors have subdivided the
dispersion curve into sections (intervals): 1 —
phonon section, 2 — transition section, corresponding
to the maximum, 3 — roton section — low-energy
rotons, 4 — high-energy rotons.

It is seen from Fig. 16 that at temperatures up to
0.5° К only phonons come into play. At temperatures
above 1° К the main contribution to the entropy is
made by rotons of interval 3. Only near the λ point
do the high-energy phonons and the high-energy rotons
assume a definite significance.

For specific heat and entropy there is excellent
agreement with data of other experiments over the
entire investigated temperature interval shown in
Fig. 17.

No less excellent an agreement is obtained when

the values of the density of the normal component,
calculated by the authors, are compared with the
values determined in several other experiments.
Only the points obtained by Dash and Taylor at the
lowest temperature lie somewhat below the con-
tinuous curve (Fig. 18), and in the comparison of
the results for the velocity of second sound there is
a certain discrepancy between the data by these
authors and the experiments made by Pell and co-
workers (Fig. 19).

Note added in proof. Henshaw has recently found experimental-
ly that the dispersion curve terminates as indicated in Fig. 14.
However, being unacquainted with Pitaevskit's work, Henshaw
assumes without justification that he encountered a second maximum.
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