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1. INTRODUCTION

.T present about three hundred isotopes of light nu-
clei (Ζ & 36) are known, and considerable experimen-
tal material concerning their properties has been accu-
mulated. Even a superficial analysis of the available
data shows that in the region of light nuclei there should
exist hundreds of as yet undiscovered isotopes, stable
with respect to heavy particle emission. In the present
paper we shall give a summary of the main properties
of isotopes whose existence is conjectured and, in con-
clusion, discuss very briefly the question of the bound-
aries of the region of stable nuclei.

In Sec. 2 we shall consider neutron-deficient iso-
topes with Ζ > N. For the prediction of their proper-
ties we use the fact that (as it follows from charge
invariance) the properties of two isotopically conju-
gate nuclei [a nucleus (A, Z1? Nj) is said to be iso-
topically conjugate to the nucleus (A, Z2, N2), if Z^
= N2 and Nj = Z2 ] coincide except for Coulomb cor-
rections and corrections for the neutron-proton mass
difference. (For a bibliography on this question see
reference 2.) Using the fact that these corrections
are easily taken into account, we can establish the
main properties of the whole series of isotopes with
Ζ > Ν from the known properties of the experimen-
tally studied nuclei with Ν > Z. New phenomena
should be observed in the neutron-deficient nuclei —
proton and two-proton radioactivities; Sec. 3 is de-
voted to this problem, where we roughly delineate the
region of nuclei where these phenomena may occur
and also consider the main properties of two-proton
radioactivity.

Section 4 is devoted to nuclei with a large neutron
excess. The procedure described above no longer
gives anything new, but one can still make various pre-
dictions by basing oneself on the empirical and semi-
empirical regularities in the binding energies of neu-
trons and protons, and the locations of levels with dif-
ferent values of the isotopic spin T.

The general question of limits of stability of nuclei
is discussed briefly in Sec. 5.

2. NEUTRON-DEFICIENT ISOTOPES

The total energy of the nucleus (Α, Ζ, Ν), or,
briefly, (A, Z) can be written as

2 = EA (T) + Ec (A, Z) + c2 (Zmp + Nmn),

to the specifically nuclear interaction between the nu-
cleons in the nucleus; E c (A, Z) is the energy of Cou-
lomb interaction of the protons, and m p and m n are
the mass of the proton and neutron respectively. Be-
cause of the charge invariance of nuclear forces,
E A (Τ) depends only on A and on the isotopic spin Τ
of the ground state of the particular nucleus. Usually
E-^(T) increases with increasing T. Therefore the
ground state corresponds to the minimum possible

Ι Ζ — Ν I
value of Τ for given A and Z, i.e., Τ = .

Δ

The only exceptions from this rule are the nuclei with
A £ 34, for which E-^(O) is greater by ~ 0.5 Mev
than Ε A ( l ) . This part of the total energy does not
change when we go from the nucleus (A, Z) to the
isotopically conjugate nucleus (A, A— Z). In first
approximation the Coulomb energy is

EC(A, Z)~
Z(Z-l)

A1'*
Q ~ 0.6 Mev (2)

and represents the energy of electrostatic interaction
of the Ζ protons with one another; each of the protons
interacts with the ( Ζ — 1) other protons; the numer-
ical coefficient corresponds to the assumption that all
the protons are distributed with equal probability over
the interior of a sphere of radius R « 1.45 x A1/3

x 10~13 cm, and that the probability of finding a proton
at a given point in space is independent of the positions

2 ( 2 — 1)
of the other protons; the expression 0.6 T-JTJJ is

(1)

where E A ( Τ) is that part of the energy which is due

the average value (mathematical expectation) of the
Coulomb energy under these assumptions.

We mention that direct measurements of the charge
density distribution in the nucleus from electron scat-
tering by nuclei4 give a considerably smaller effective
radius of the nucleus — about 1.05 A1//3 x 10~13 cm; one
therefore might expect that the factor in the expression
for the Coulomb energy would be 0.83 Mev in place of
the value 0.6 Mev, which is in agreement with data on
the energies of light nuclei. Actually, there are all
sorts of factors which reduce the average value of the
Coulomb energy compared with the value given above
from elementary computations. These are the so-
called exchange and correlation corrections.3'5 The
first of these is related to the fact that the protons are
identical particles, and tends to reduce the Coulomb
energy. The correlation correction arises from the
effect of nuclear and Coulomb forces on the shape of
the wave function for the two protons which are located
close to one another. The sign of this correction de-
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pends on the detailed form of the nuclear interaction.

As a general conclusion we may state that the ex-

pression (2) for the Coulomb energy is approximate; it

is therefore natural that the coefficient Q in it should

be chosen empirically from data on energies of nuclei

and not from the nuclear radius; it is also natural that

even after this is done there should remain notable dis-

crepancies between the formula and experiment. Thus,

for example, for Ζ = 3 (cf. the two right-hand columns

of Fig. 1) the Coulomb energy per proton is 0.6 Mev

smaller than according to formula (2). Knowing the

energy of Li8 and applying formula (2) to the compu-

tation of the energy of B8, we come to the conclusion

that B8 is unstable. Actually B8 is stable, its exist-

ence can be observed in experiment, and it has a bind-

ing energy for the proton of ~ 0.2 Mev (instead of

— 0.4 Mev according to the formula).

So we see that the second term in (1) can be com-

puted without difficulty, while the third term is un-

known. This enables us from the experimentally

known mass zM^ t o obtain the value of the nuclear

energy E A ( T ) and then, using it, to calculate the

mass NMA of the isotopically-conjugate nucleus.

Thus, charge invariance makes it possible to deter-

mine the total energy of the neutron-deficient nucleus

(A, Z) (with Z>N = A - Z ) , if the mass of the nu-

cleus (A, A —Z) is known. Moreover, it follows from

charge invariance that the wave functions of the nuclei

(A, Z) and (A, A - Z) coincide provided that one in-

terchanges neutrons and protons. Therefore, the two

nuclei have very similar properties, and consequently,

from the known properties of one of them, one can

predict the properties of the other.

All these simple considerations are applicable only

to light nuclei (A & 50), in which the Coulomb energy

is still small compared to the nuclear energy and

where, consequently, one can still use the idea of

charge invariance.

In analyzing experimental data it is more conve-

nient not to use formula (1), but rather the formula for

the binding energy of the nucleons which is easily ob-

tained from it.6 If we denote by En(A, Z) and

Ep(A, Z) the binding energies of the neutron and pro-

ton in the nucleus (A, Z), then it follows from (1) and

(2) that the binding energy of the Z'th proton in (A, Z)

is expressed in terms of the binding energy of the Z'th

neutron in the isotopically conjugate nucleus (A, A - Ζ)

as follows:

Ep(A,Z)=En(A,A-Z)-AEnp, (3)

where

/ .2.3.4 ,5 ,6 .7 .8 .9 ,W,f1, ft t/3 ,».«,№,/? >f8

np = [Ec(A,Z)-Ee(A-l,Z-l)]

:[Ec(AfA-Z)-Ec(A-i,A-Z)]

Υ ι 5

= 1.2

(2Z— 1) 1 / 3

Z — 1

( 2 Z — 1 ) 1 / 3

2Z

Mev. (4)

The second term in the square brackets is very small

for real nuclei (no more than a few percent), and we

shall neglect it throughout.* Remarkably, ΔΕ η ρ turns

out to be independent of A and N. Therefore, for all

of the isotopes of a given element, one can use the

same value for the quantity ΔΕηρ, determined, for ex-

ample, from the difference ΔΕ0 of the energy for re-

moving a neutron and a proton in the even self-conju-

gate nucleus (2Z, Z):

AEnp * AE0 = En (2Z, Z) - Ev (2Z, Z). (4')

Formulas (4) and especially (4') are in beautiful

agreement with the present known values of E n and

Ep, as one sees from Fig. 1. Comparing the experi-

mental data with the computations from (4) (the sec-

ond on the right of the graph in Fig. 1), we see that

qualitatively formula (4) is valid for all the light nu-

clei, while for obtaining quantitative results, it can be

used beginning with Ζ = 6. However, it is better al-

ways to use the average experimental values, (the

last column in Fig. 1) or the values of ΔΕ0 (which

are indicated by the thick dark squares in Fig. 1). The

points for Ne21 and Na20 which are not contained in

this general picture show the inaccuracy of the pres-

ent value for the mass of Na20.

Sometimes it proves to be more convenient to use

the following formula for the mass difference of dis-

tant mirror nuclei:

*For two mirror nuclei with |Z - N| = 1, formula (4) goes over

Ϊ ^into the well-known relation Δ Ε η ρ = Ϊ.2(Ζ - In the general
case of isotopically conjugate nuclei with |Z - N| > 1 one must
take into account the fact that the denominator in (4) is equal to
(2Z - 1)̂ 3, and not to A^, i.e., it does not depend on N.
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;(Ζ-ΛΤ)ΔΜΟ, (5)

2 2 2 2

- Α_ιΜ A+i for odd A,

} for even A.

where

and

Using (3) — (5), one can, on the basis of the exten-
sive experimental data concerning E n for nuclei with
Ν > Z, find the binding energies of the protons in the
conjugate nuclei with Ζ > Ν and establish whether the
latter are stable with respect to emission of heavy
particles. (It is clear that, as a rule, for Ζ > Ν the
threshold for emission of a proton should lie lower
than the threshold for emission of n, d, a etc.) In
addition, one is able also to establish other properties
of these nuclei: mass defects, energies and periods of
β decay, the occurrence of proton and two-proton
radioactivities.

All of the neutron-deficient isotopes and their prop-
erties which are predicted in this way are collected in
Table I, which is given at the end of the paper and
which contains also the series of neutron-rich nuclei
concerning which we will talk later. We illustrate the
method of construction of the table with an example.

It is known that the nucleus nNa2 5 exists with a
binding energy E n ( N a 2 5 ) = 8.84 Mev. The nucleus
which is isotropically conjugate to Na25 is the as yet
unknown isotope 14 Si25. By means of (3) we find the
binding energy of a proton, E p (Si2 5) = E n (Na 2 5) - 5.2
= 3.64 Mev., i.e., this isotope is stable with respect
to proton emission. Using the tabulated data1 we cal-
culate the mass defect of this nucleus: 11 Mev. We
obtain the energy of the β + decay, Si25 — Al25 (ground
state) from the known masses of Al ' : Εβ +
= M(A124) + m H - 3.64 - M(A125) - 1.02 = 11.6 Mev.

If the masses of these nuclei were known, the max-
imum energy of the /3+ decay could be estimated
crudely from the formula

Mev (6)

[here 2.6 Mev = 2 ( m e + m n - nan) c2 ], which relates
the end points of the β decays in isotopically conjugate
nuclei and follows directly from (1) and (2). According
to (4) we obtain for Si25, Εβ + = 4.0 + 7.3 = 11.3 Mev
[it is known that Eg- (Na2 5) =4.0 Mev], which differs
by only 3% from the value of 11.6 Mev given above.

The half-life of Si25 can also be evaluated starting
from data on the decay of the conjugate nucleus Na2 5.
To do this we must take the experimental log ft ( = 5.2)
for Na25 and, using the value obtained above for the
β+ decay energy of Si25, find the half-life of this nu-
cleus. (The quantity ft is determined by the shape of
the wave function, and, if the considerations of charge
invariance are correct, the ft values for transitions

of the same type in conjugate nuclei should be iden-
tical. ) In this way one obtains Tj/2 (Si2 5) ~ 0.5 sec.

In estimating β decay periods one must keep in
mind the possibility of "superallowed" transitions
without change of isotopic spin. The point is that one
of the consequences of charge invariance is the exist-
ence of similar states in nuclei with the same value
of A, but with different relative numbers of neutrons
and protons [for example, (A, Z) and (A, Z —1)].
The spatial parts of the wave functions ip (A, Z) and
ψ (Α, Ζ — 1) of the similar states are identical with
one another, and the states themselves are obtained
from one another by replacing one of the protons in
the nucleus (A, Z) by a neutron. The value of log ft
for transitions between similar states (called "super-
allowed" transitions) has the minimum possible value
^3.5, since in such a transition there is practically no
readjustment of the nuclear wave function.

The j3+ decay energy for "superallowed" transi-
tions (A, Z + 1) — (A, Z) is given very simply:

-1.8) Mev (7)

[where 1.8 Mev = c2 (2m e + m n — mjj)] and changes
very little with change in A for a given value of Z. If
Εβ+ exceeds the threshold given by (7), the " super -
allowed" transitions begin to compete with transitions
to the ground state. As an illustration, we show in
Fig. 2 the decay schemes of the isotopically conjugate

0+-

№5 Γ TO

1312 0* T=f

0 r TO

5M7

2mec*

0.6%

FIG. 2. Decay scheme of the isotopically conjugate nuclei C14

and O14.

nuclei 6 C | 4 and 8Og4. The first of these can decay only
to the ground state of N14 (for this transition, log ft
« 9.0). The O14 nucleus is raised considerably above
N14 because of the additional Coulomb energy as com-
pared with C1 4. For this reason, the transition to the
excited Τ = 1 state of N14 (at 2.31 Mev) is allowed
energetically, this state being the analog of the ground
states of C14 and O14. Because of the small value of
log ft ( = 3.5), this transition is dominant (99.4% of all
decays). Many (and beginning with Ζ > 20, practically
all) of the neutron-deficient isotopes predicted here
should undergo j3+ decay with ΔΤ = 0 and subsequent
cascade emission of γ rays. In such cases the values
of Εβ+ given in Table I characterize the sum of the
maximum energy of the positrons and the energies of
the succeeding γ transitions. The values of the maxi-
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mal energy of positrons for "superallowed" transi-
tions vary from ~ 5 Mev for calcium to ~ 8 Mev for
selenium, while the half-lives (for log ft « 3.5) vary
from ~ 0.5 to ~ 0.07 sec.

A confirmation of this is the set of values of the
half-lives of the series of /3+-active isotopes already
known with Ζ = 13 - 25, for which Εβ+ > (1.2 Z/A1/3

- 1.8) Mev (for example, Al24, Ca38, V46, and Mn 5 0).
For lighter nuclei, because the energy is low,

"superallowed" transitions are quite slow (for ex-
ample, o* 1 min for O1 2), and therefore more often
the transitions to the ground state are most important.

The example of Si25 considered above gives a good
illustration of the method for constructing the table,
and we shall not belabor this point any further.

Below we give a list of stable isotopes which are
located, according to our estimates, on the limits of
stability with respect to proton emission:

Li6, Be7, B8, C9, N12, O13, F1 7, Ne17, Na20 <19?), Mg19(18?\ Al23, Si23(22?>,
P27, S26, Cl31, Ar30, K35, Ca35<34?\ Sc40(39?>, Ti39, V43<42?\ Cr43, Mn46, Fe45,
Co5°(48?), Ni48, Cu54, Zn55(54?), Ga60(59?\ Ge69, As64(?\ Se62(61?).

Comparison of this list with the table of isotopes
known at present 1 leads to the conclusion that it is
possible to discover approximately ninety new neutron-
deficient isotopes of the light nuclei.

All of the neutron-deficient isotopes which are pre-
dicted by the method described above are collected in
Table I, in which there are also given some nuclei
predicted on the basis of the data of Sec. 4 (cf. below).
The general appearance of the region of stable nuclei
is apparent from the upper part of Fig. 3.

2 4 6 8 α Β «• «>J8 Z0Z2Z4 262S3032&3638W Ζ

+ predicted isotopes which are
stable with respect to η and
ρ emission

? p-stability unknown

° possible 2p-activity
~ isotopes known to be unstable

for η or ρ emission.

With regard to the method applied above for deter-
mining the stability of neutron-deficient isotopes, we
should make the following remark: many of the nuclei
predicted (and, in particular, all those lying on the
limits of the stability region) are located right near
the threshold for proton emission.

The wave functions of these nuclei should therefore
extend to considerably greater distances than is the

case for their isotopically conjugate colleagues which
are located far from the limit of stability. (At large
distances, ip ~ e~Kr, where κ = ν2μΕ/Κ2 , Ε is the
binding energy of the last nucleon.) The wave func-
tions of the conjugate nuclei (A, Z) and (A, A —Z)
are in this case rather different from one another.
(This manifests itself very clearly when the energy
of the nucleus which is being considered is close to
the threshold for emission of an S neutron. In the
case of neutrons with I * 0 or in the case of protons,
the wave function spreads out only slightly because of
the influence of the centrifugal or Coulomb barrier
which tries to hold it back.) In this connection there
arises the question of the applicability of the idea of
isotopic invariance for estimating the energies of these
more or less stable nuclei. In addition one can ques-
tion the validity of (2) — (5) for nuclei with Ζ > 10,
where the Coulomb energy becomes comparable with
the nuclear energy. However, it is easy to see that
estimates using (2) — (5) give too low values for the
binding energy of a proton in neutron-deficient nuclei;
consequently, if the nucleus is stable according to our
computations, it is certainly stable in actuality. As a
matter of fact, the procedure actually used is that in
considering the neutron-deficient nucleus (A, Z) one
takes the wave function ip of the conjugate nucleus
(A, A - Z) and uses it to calculate the energy (1) of
the nucleus (Α, Ζ): Μ (ψ, Hip), where Η is the Hamil-
tonian of this nucleus. In doing this one actually has to
calculate only the second and third terms in (1), since
the value of the first term is taken from data concern-
ing the nucleus (A, A — Z). But there is a rigorous
theorem that the matrix element (ip, Hip) calculated
with inexact wave functions (ip in our case) is always
greater than the exact value (φ, Ηφ) calculated with
the exact wave function of the nucleus (A, Z ). The
statement given above follows from this.

In conclusion we mention that the best practical
means for obtaining neutron-deficient isotopes of
light nuclei are the (p, xn) and (He3, xn) reactions,
as well as reactions using multiply charged ions. It
should however be remembered that because of the low
Coulomb barr ier the boiling off of protons will not be
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hindered and that therefore the cross section for for-
mation of neutron-deficient isotopes should be small.

3. PROTON AND TWO-PROTON RADIOACTIVITY

At the limit of stability of neutron-deficient nuclei
with respect to decay with proton emission one should
observe a new physical phenomenon: protonic radioac-
tivity.6a However, the probabilities for detecting this
phenomenon are quite small.6a For a lifetime with re-
spect to p-decay greater than 1 — 10 sec, the effect
will be strongly masked by β+ decay. On the other
hand, for half-lives for p-radioactive nuclei less than
10~12 sec, it seems to be impossible to observe the de-
layed emission of the proton even by using thick-
layered emulsions or Wilson chambers. The half-life
of proton-radioactive isotopes can be determined ap-
proximately from the formula

(8)log 7\/2 (sec) ^0.43Zi/3/(z)-22,

where χ is the ratio of the energy of the emitted pro-
ton to the height of the Coulomb barrier; for χ « 1

0.6 ( ?/(.r)-0.6.rrV2[arccos//2-x1/2(l-a;)1/2]
\ "

(9)
To the interval Tj/2 = 10~12 — 10 sec there correspond
energies of the emitted protons up to 0.04 Mev for Ζ
= 10; 0.1 - 0.35 Mev for Ζ = 20; 0.2 - 0.7 Mev for
Ζ = 30, and 0.35 — 1.1 Mev for Ζ = 40. The accuracy
of all these computations of masses of neutron-defi-
cient nuclei is, of course, insufficient for predicting
for precisely which of the isotopes the half-lives with
respect to proton radioactivity will fall between the
limits given above. However, it is clear that this phe-
nomenon must be sought close to the stability limits
given above (or among the various heavier nuclei
which are not considered here).

Because of the very high binding energy of neutrons
for these isotopes, all of them are stable with respect
to a decay from the ground state.

There is also the possibility of observing another
new effect which is much more interesting than proton
radioactivity. We are speaking of the phenomenon of
two-proton radioactivity6 which is characteristic for
the nuclei of elements with even Ζ which are located
near the stability limits. Because of pairing effects,
for such nuclei, even when there is still a positive
binding energy for a single proton, there can already
occur an instability with respect to simultaneous emis-
sion of two protons. Such an instability can give rise
to two-proton radioactivity of various isotopes which
are stable with respect to proton and a decay.

Let us give an example. The nucleus F1 5 is un-
stable with respect to the decay F1 5 — O14 + p, which
occurs with the liberation of an energy of 2.3 Mev.
However, the neighboring even nucleus Ne16, as one
sees from Table I, is stable with respect to the decay
Ne16 — F1 5 + p, which requires, as can be shown on

the basis of Sec. 2, the expenditure of an energy be-

tween 0.5 and 1.8 Mev. Consequently, the Ne 1 6 — Fe 1 5

+ ρ decay is energetically impossible, while the Ne 1 6

— O14 + 2p decay occurs with liberation of an energy

between 0.5 and 1.8 Mev, which is much less than the

height of the Coulomb b a r r i e r of the Ne 1 6 nucleus for

a doubly charged particle (~ 6 Mev). Thus the nu-

cleus Ne 1 6 should have the property of two-proton

radioactivity.

Other nuclei which may also be 2p-radioactive a r e :

S25<24?\ A129(28?), Ca3 3(3 4 ? ),

Cr42, Fe4 4 ( 4 3 ? ) , Ni46<47?),

etc.

The probability of a two-proton decay is much less
than for one-proton decay since it contains a product
of two penetration factors of the Coulomb barrier. In
fact, it is not hard to see that probability of two-proton
decay in which the protons carry off energies e and
Ε — e must have the form:

w{e, Ε-ε)
Υε(Ε-ε)

where a is a constant and ψ € (R) is the value of the
Coulomb function Fo, corresponding to the proton with
energy e at the nuclear radius R. (It is assumed that
the protons are emitted with zero orbital angular mo-
mentum. ) For protons which are far below the barrier,

(10)

where Ζ is the charge of the nucleus A, m is the
proton mass, and

a,(e,

As we see from this formula, the most probable case
is the emission of the two protons with the same energy
e = E/2, since then the expression in the numerator of
the exponential is a minimum. From this it follows
immediately that the total decay probability

Ε

w(E)=<\ ds-w(e,E-e)~aexp j --^
55 (ID

has exactly the same form as if we emitted a doubly
charged particle with mass 2m — a diproton for which
the Coulomb barrier is twice as high as for the proton
[cf. (11) and (10)]. Therefore, the lifetime of isotopes
with respect to two-proton radioactive decay, for a
much larger energy interval than for proton radioac-
tivity, falls in the region convenient for detection
(Tj/2 = 10~12 to 10 sec). Two-proton radioactivity can
be observed successfully (for example, by using thick
emulsions or Wilson chambers) also in those cases
where the decay occurs almost instantaneously ( Tj/2

Ζ 10~19 sec), since there should be a strong correla-
tion between the energies of the two emitted protons.
Thus, the probability of 2p decay in which one of the
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protons obtains the energy fraction (0.5 + κ) and the
other proton the fraction (0.5 — κ) is proportional to

2 I 1

— 7 = — κ2 \ . Consequently, to d e m o n s t r a t e
η V Ε Ιexp <-

the two-proton mechanism of radioactive decay it is
sufficient to show that the distribution of differences
of energy of the two sub-barrier protons does not have
statistical character, but is concentrated in the neigh-
borhood of a zero value for this difference.

The interaction of the pair of protons which are
emitted by 2p -radioactive nuclei, not only inside the
nuclear potential well, but also under the barrier,
must of course result not only in an energy correla-
tion, but also in the associated definite angular corre-
lation of the protons.

Two-proton radioactivity must, of course, be dis-
tinguished from the usual chains of successive ρ
decays of the type:

Zr 6 9

γ β 9

Sr67 Λ Rb6 6 Λ Kr 6 5 Λ Br6 4 Λ Sc 6 3

S r 6 8 ^ R b 6 7 - ^ Kr66 (Br65) Sc 6 4

t

However, as Fig. 4 illustrates, the transition from
such a successive emission of protons to two-proton
radioactivity occurs smoothly. Suppose that the energy
E p odd °f binding of the odd (2m + 1) st proton is neg-
ative, i.e., that the nucleus with Ζ = 2m + 1 is unstable.
So long as the binding energy of the next even (2m + 2) nd
proton Ep even is also negative and only a little less
than Ep odd» we have the usual chain of successive
acts of ρ-decay. When E p e v e n becomes such a small
negative quantity that the binding energy for two pro-
tons | E p p | > 8 | Ε ρ even I ( Fig. 4a), 2p-decay begins to
compete noticeably with the usual sequence of ρ-decays.
If the binding energy of the (2m + 2) nd proton E p even
is a positive quantity, but less than the half-width of
the level from which the emission of the (2m + 1) st
proton occurs, the processes are "simultaneous" and
"successive" emission of two protons is already in-
distinguishable (Fig. 4b). As an example, we give the
decay scheme of the nucleus Be6 which is investigated
in reference 7

(Be6 -» ρ + Li5

Finally, in the case where E p e v e n is such a large
positive quantity that the levels of emission of the
(2m + 2) nd and (2m + 1) st protons do not overlap,
we come to the " p u r e " case of two-proton radioac-
tivity (Fig. 4c).

In concluding this section, we note that one can, in
the case of neutrons, also observe phenomena analo-
gous to two-proton radioactivity. Since there is no
Coulomb barr ier here, the centrifugal barr ier is pres-
ent only for I * 0 and hinders the emission of neutrons
only slightly. Consequently, the levels from which the
emission of the (2m + 2)nd and (2m + l ) s t neutrons
occurs are, as a rule, very broad and overlap. There-
fore, for neutrons one can hardly ever have the vari-
ant of 2n decay corresponding to that shown in Fig. 4c,
but it is entirely possible to have the successive emis-
sion, but with overlapping of levels, or the variant of
type Fig. 4b. Multiple evaporation of neutrons from
highly-excited nuclei (especially heavy nuclei) is
well known. Such an evaporation proceeds in several
stages in which the successively evaporated neutrons
do not interact with one another, and the levels which
occur before and after the evaporation of each of the
neutrons do not overlap. In our case, however, we are
talking precisely about simultaneous emission of a
pair of neutrons, correlated in angle, and consequently
also in energy by virtue of the interaction of the neu-
trons with one another. It is precisely such a corre-
lation which must be investigated in the experimental
observation of the phenomenon which we are consider-
ing, in order to distinguish it from the trivial cascade
"evaporation" transitions. A convenient method for
detecting two-neutron correlation may be the study of
coincidences of delayed neutron pairs emitted by nu-
clei which have an excess of neutrons after a preced-
ing β decay.

4. NUCLEI WITH A NEUTRON EXCESS

In this case we can no longer use the extremely
simple procedure of Sec. 2, since, for nuclei with
Ν > Ζ, it gives nothing new compared with that which
is already known. It is physically clear that nuclei,
with an excess of neutrons and with energy close to
the threshold, must have very much looser structure
than the nuclei in the middle of the stability region.
Because of this, many of the properties of the nuclei

p odd

ι ι ι ι
=2m*22nrt

a b c

FIG. 4. Possible 2p-decay schemes.
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located near the limits of the stability region may dif-
fer markedly from the properties of their more stable
colleagues. In particular, the use of the self-consist-
ent potential inside the nucleus may already be a poor
approximation. This makes much more difficult any
attempts at theoretical calculations in this region,
and justifies the use of methods based on the extrapo-
lation of empirical regularities.

The first method for prediction is based on regu-
larities in the energies of excitation of levels with
different isotopic spins.8

Making use of the known data concerning binding
energies of light nuclei, one can construct curves on
which are marked the energy differences of the lowest
levels with isotopic spins T = 0 , 1, 2, 3 . . . for nuclei
with even mass numbers A (cf. Fig. 5). The smooth

E, Mev
20

iO

Να"

\v

4 8 12 16 20 ΖΊ 28
a

Ε, Mev /
/

• 1

=
'

28 32 36 40

b
48 52 A

FIG. 5. Difference in energy of levels with different isotopic
spins, a) O — energy differences of first states with Τ = 1 and
Τ = 0; •-energy differences of first states with Τ = 2 and Τ = 0;
b) X — energy differences of first states with Τ = 3 and Τ = 1;
Δ —energy differences of first states with Τ = 2 and Τ = 1.

character of the curves thus obtained (the solid lines)
enables us to extrapolate the curves into the regions
where there are as yet no experimental data. (The
extrapolated portions of the curves are shown as
dashed lines.) By means of such an extrapolation
one can predict the binding energies of certain as yet
undiscovered isotopes. Thus, for example, from the
curve (Fig. 5a) it is clear that for nuclei with mass
number A = 30, the first state with Τ = 2 should lie
at approximately 13.7 Mev above the first state with

Τ = 0, and approximately 13.2 Mev above the first
state with Τ = 1; the first level with Τ = 0 in the
system of 30 nucleons corresponds to the ground state
of the nucleus Ρ 3 0 (Ν = Ζ), the first level with Τ = 1
to the ground state of the nucleus Si30 ( Ν - Ζ = 2),
and finally the first level with Τ = 2 corresponds to
the ground state of the nucleus Al30 ( Ν - Ζ = 4). Thus,
for A = 30 the nuclear part of the energy for the state
with Τ = 2, E A = 3 0 ( 2 ) [cf. (1)] is 13.7 Mev greater
than E 3 0 (0). In order to find the actual difference in
energies of the nuclei Al30 and Si30, one would have
to include the differences in Coulomb energy and the
mass difference of neutron and proton.

When this is done one finds that the total energy of
Al30 is greater than the energy of Si30 by approximately
9 Mev. It is easy to see that the nucleus Al30 is stable
with respect to decay into heavy particles. Conse-
quently, Al30 should be a β emitter. Similarly, one
evaluates the energies of decay of various other iso-
topes F 2 2 , Na26, S38, P 2 6 , Cl30, which are given in
Table I.

A second method9 is based directly on extrapolation
of the binding energies of neutrons in nuclei with the
same value of A. Here it is important to take into ac-
count the following simple considerations. Nuclei with
an excess of neutrons do not exist if all the discrete
levels are already filled with neutrons. The number
of levels, when one takes account of the neutron spin,
is always even. Therefore, if there exists a nucleus
containing an odd number of neutrons, (2m + 1), then
there is also room for the next (2m + 2)nd neutron.
Still, the absence of a nucleus with an odd number of
neutrons does not exclude the existence of the neigh-
boring isotope with an even number of neutrons. (For
example, He6 exists, even though He5 is unstable by
1 Mev.) Because of the "pair ing" of the neutrons,
the binding energy of the (2m + 2)nd neutron is al-
ways greater than the binding energy of the preceding
(2m + l ) s t . This rule is rigorous within the limits
of the shell model. It can be violated only when this
model becomes meaningless, as, for example, in the
case of the very lightest nuclei of the type Η4, Η5,
etc. (if they exist).

In Fig. 6 are shown curves for the binding energy
of the last neutron E n ( Ζ, Ν) as a function of the num-
ber of protons Ζ for a fixed number of neutrons N.
From Fig. 6 one sees that E n (Z, 2n + 2) > E n (Z, 2n+l)
always. Therefore, for example, from the existence
of Be1 1 (Ζ = 4, Ν = 7) and C15 (Ζ = 6, Ν = 9) it defi-
nitely follows that Be12 and C16 exist. Extrapolating,
we find that the estimated binding energy of the neu-
tron in Be12 is ~ 2 Mev and the β decay energy 12 —13
Mev, while for C16 we obtain respectively ~ 3 Mev and
~ 8 Mev.

In order to proceed even further in taking account
of the number of neutrons, we must refer to some of
the data of the shell model.
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FIG. 6. Binding energy En(Z,N) of a neutron in a nucleus as
a function of the number of protons Z, for fixed values of N.

If we compute the energy of pairing interactions of
several neutrons which are in the same shell, on the
assumption that the radius of the neutron-neutron in-
teraction is much less than the shell radius, we obtain
the following simple result: 1 0 if the interaction of two
neutrons in this shell is B, the interaction of three
neutrons is also equal to B, while the interaction of
four neutrons is 2B, i.e., the neutrons behave as if
they were linked in pairs. The physical meaning of
this result is entirely clear: if the radius of the forces
between neutrons is small, this means that the neu-
trons can interact with one another onljr when their
relative orbital angular momentum is equal to zero,
i.e., when they are in an S state with respect to one
another. But, according to the Pauli principle, no
more than two neutrons can be in an S state with r e -
spect to one another r and consequently the neutron
can interact only with some one other neutron among
those present in the particular shell. Thus, if the
number of neutrons in the shell is even (2m), the
energy accumulated from the interaction energies of
the Bm pairs is mB. If now we add to the shell an-
other neutron, it cannot find a companion since all
the neutrons are already joined in pairs. Therefore
in this case the total energy of interaction remains
equal to its previous value mB.

For the validity of all these arguments it is neces-
sary that: a) the shell model be a good approximation
for the particular nucleus; b) the binding energy of
neutrons not be large (above it was already pointed
out that this is the condition that the orbit radius be rela-
tively large, cf. Sec. 2); and c) that there be no pro-
tons in the particular shell, since in this case the pic-
ture would be seriously complicated because of the
neutron-proton interaction.

Now let us look at the experimental data. As one
sees from the examples of isotopes of oxygen with
A > 16 and isotopes of Ca with A < 40 (the neutrons
fill the d5/2 and f7/2 shells respectively), the com-
bining of neutrons into pairs around the two magic
nuclei is carried out in exact accordance with the

recipe given above; for example, for the oxygen iso-
topes the neutron binding energy E A (Ν )d5/2 depends
on the number Ν of neutrons in the d5/2 shell as
follows:

Ε"
4,

'(!)»
15

Ε1* (2),
8.07

Ε1

3

9 (3),
.96

£20 (4)

7,65,

i.e., the energy of the neutron in the d5/2 shell in the
field of the magic nucleus O16 is equal to ~ 4.15 Mev,
while the pairing energy for the neutrons is ~ 8.07
- 4.15 =* 4 Mev.

If the proton shell is not closed, then within the
limits of this neutron shell there occurs a very marked
drop in E; one can imagine that the first neutrons can
interact with the " f r e e " protons (above a closed shell)
(once again one neutron with each proton), while the
succeeding neutrons can no longer do this. As an ex-
ample, we consider the d5/,2 shell in Ne1 8, the nucleus
with two protons beyond O16:

Ε20 (2),
16,9

£ 2 1

6,
(3),
8

Ε 2 2 (4),
10.4

£ 2 3

5
(5),
.2

E2i (6)
8.9.11,4

When one needs 1, 2, or 3 protons to close a shell,
the binding energy of the neutrons is reduced com-
pared with the binding for the closed shell. However,
within a particular neutron shell (with holes in the
proton shell), Ε changes very little, in contrast to the
case of the presence of excess protons.

We give an example of the filling of the f7/2 shell
by neutrons in the isotopes of K, where the proton
shell is not closed:

7.9 10,0 7.4 10.8 .

On the basis of these remarks we can formulate the
following rough rule: 9 if there exists a nucleus with one
neutron in a particular shell (for example, C1 5 in
which there is one d5/2 neutron), then there also exist
the heavier isotopes of this element in which there is
a filling of the whole neutron shell (C 1 6, C17, C18, C19,
and C 2 0 ) .* Referring to Fig. 2, in which each box cor-
responds to a nucleus (Ν, Ζ), we immediately see that,
from the experimental fact of the existence of N16 and
N17 there follows the existence of the heavy isotopes
N18, N1 9, N 2 0 " 2 3 , O 2 1" 2 4 and F 2 2 " 2 5 etc. Extrapolation
of the curves of Fig. 6 with Ν = 11 and 12 enables us
to estimate the binding energies of neutrons in N18

(~ 1.5 Mev), N 1 9 ( ~ 5 M e v ) , F 2 2 (~ 3 - 4 Mev), and
F 2 3 (6 — 8 Mev).

Extrapolation of the curve with Ν = 10 shows the
possible existence of B15 with two neutrons in the d5/2

shell and consequently, on the basis of the principle of
constancy, the existence also of B1 7 and B1 9. The ex-
istence of the odd neutron nuclei B14, B1 6 and B1 8 is
less probable. One can, with considerable assurance,

*From the examples given here it follows that this rule can be
violated only in nuclei where the filling of the next shell has begun.
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assert that the odd-neutron nuclei Be13'15'17, Li10, and

He9 do not exist.

Concerning the heavier nuclei with neutron excess,

one can assert, by applying the principles formulated

above, that there exist many such nuclei. (Some of

them are indicated by the crosses in Fig. 3.) In ac-

tuality, however, the region of nuclei with neutron

excess seems to extend much further. This is indi-

cated by the computations of P. E. Nemirovskii11 and

A. Cameron.12 We shall give more detail concerning

the computations by Nemirovskii later on, and concern-

ing the limit of stability obtained by him and shown in

Fig. 2. Cameron in his computations used an extended

Weizsacker formula in which, to a certain extent, one

takes account of the shell structure of the nucleus. His

result is also shown in Fig. 2. Although the computa-

tional results concerning the limits of the stability re-

gion can obviously not pretend to high accuracy, they

still show the existence of a large number of as yet

undiscovered neutron-rich nuclei.

It is interesting to note that the limit obtained by

Cameron for the region of stability of neutron-deficient

nuclei* actually coincides with that obtained above (cf.

Sec. 2) from considerations of charge invariance.

All the nuclei predicted in this paragraph, for which

one can make an estimate of binding energy, lifetime,

etc., are recorded in Table I. The number of such nu-

clei, as one sees from Fig. 3, is only a small part of

a total number of stable neutron-rich nuclei.

We should separately consider the interesting ques-

tion of the existence of certain of the lightest nuclei:

n2 (dineutron),13 n4 (tetraneutron), H5 (cf. refer-

ences 14 — 17), and He8 (cf. references 9, 17).

At present it is generally considered that the dineu-

tron does not exist. This conviction is based on the

fact that there is no bound ^Q state of the n-p system

(the energy of the virtual state is +69 kev). By virtue

of the charge invariance of nuclear forces, this should

also be the case for the n-n system. If, however, we

admit the possibility of deviations from charge invari-

ance, then the question of the dineutron is no longer so

obvious. It is easy to show that increasing the radius

of the n-n interaction by only ~ 3% compared with the

n-p interaction (and retaining the same magnitude of

the interaction) leads to the appearance of a bound

state for two neutrons.

It is known at present that the hypothesis of charge

invariance is satisfied in the low energy region to an

accuracy of the order of one or a few percent. Thus,

it is still not possible with certainty to assert that the

dineutron does not exist. Attempts to estimate the

binding energy of the other nuclei enumerated above

by using various extrapolations do not permit one to

make any definite statements except that, if these nu-

clei exist, then they have only a slight stability. The

problem of the existence of all of these nuclei can only

be solved experimentally.

One general approach to the problem consists in de-

termining the location of levels with large values of

isotopic spin Τ in the systems with 4, 5, 7, and 8 nu-

cleons, in particular in the already known nuclei18 with

low A. For example, if one knows the position of the

level with Τ = 3/2 in Li7, then by using the method de-

scribed at the beginning of this paragraph one could

determine the energy of decay of the assuredly un-

stable nucleus He7. Experimentally the simplest

method for studying levels with large Τ is to look for

narrow resonances in nuclear reactions. Let us con-

sider, for example, the question of the tetraneutron

n4.* If such a nucleus exists, then this means that for

the system of four nucleons there is a level with Τ = 2,

and it should occur in various nuclear processes, say,

in the scattering of neutrons by tritium, Η3 (η, η) Η3.

The distinction between the resonance associated with

the level with Τ = 2 (if it exists at low energies) from

possible resonances with Τ = 1 will consist in the

anomalously small width of the Τ = 2 resonance. In

fact, the width of a resonance is directly proportional

to the probability of decay of the state; all the states

with Τ = 1 should, in the case we are considering, de-

cay extremely rapidly, since the number of nucleons

which constitute the "intermediate nucleus" is very

small. On the other hand, the states with Τ = 2 should

decay much more slowly (by a factor of 100 — 10,000)

since the decay (state with Τ = 2) — η + Η3 is associ-

ated with a change of isotopic spin by one unit (n and

H3 each have Τ = V2) and,consequently, can occur only

as a result of a deviation of nuclear interactions from

precise charge invariance. This of course is true only

for relatively low energies, so long as final states with

Τ = 2 are energetically impossible (for example,

break-up into four particles, 3n + p). For η + Η3, the

threshold for break-up into four nucleons is 8.49 Mev

(in the c.m.s.) and, if there is a level with Τ = 2 in

this interval, it should appear as a narrow resonance

(with a width of 0.1 — 10 kev). The discovery of such

a resonance would show very convincingly the exist-

ence of the tetraneutron n4. Precisely the same con-

siderations are applicable to the reactions (D + H3,

Li7 + n) etc. If in these reactions one detects narrow

resonances in the energy range (in the c.m.s.) £ 2.2

Mev, and £ 10.8 Mev, this will be a very strong argu-

ment in favor of the existence of H5 and He8 respec-

tively. Since the existence of He8 seems to be quite

probable, the study of the Li7 + η reaction would be

especially interesting.

In addition to such experiments, one can attempt to

observe directly the formation of these nuclei (if they

exist) in various nuclear reactions.

*This limit is not shown on Fig. 3.

*We note that n4 may exist even if the super-heavy isotope of
hydrogen H4 does not. The point is that the only means for decay
of n4 is the break-up into four neutrons, n4 -• 4n, and n4 is stable
for any arbitrarily small positive binding energy. In the case of H4

this is no longer the case, since the decay Η4 -» Η3 + η is possible;
H4 is stable only when its binding energy with respect to the break-
up Η4 -» ρ + 3n exceeds the binding energy of H3, i.e., 8.49 Mev.



738 B A Z ' , G O L ' D A N S K I I , a n d Z E L ' D O V I C H

One can look for the dineutron in various ways (cf.
also reference 19). For example, by preparing the di-
neutron (if n2 exists) in the reaction η + Be9 —· 2 a
+ n2 + 2 Mev, one can attempt to observe the formation
of the short-lived activity B1 2 in the reaction

]\τΐ4 + η2—>-Β12 + α + 3.2 Mev

[One can also use other (n2, a) reactions which should
occur on very many light nuclei. ] Another method for
detecting n2 may be experiments in which one meas-
ures the angular correlation between the neutrons as
a function of, the distance between the target and the
detectors (Fig. 7). The point is that because of the
very large radius of the dineutron there must be a high
probability of diffraction break-up of n2 — 2n in the
passage of n2 through matter. Therefore, if n2 exists,
it will break up in passing through a scatterer (Fig. 7),

Neutron beam

Scatterer

FIG. 7.

and the neutrons formed should be highly correlated in
direction. The probability of recording coincidences
of two neutrons by counters Cj and C2 should be pro-
portional to 1/R2. If n2 does not exist, one will r e -
cord only chance coincidences, and the counting rate
will be proportional to l/R 4. Thus, by measuring the
number of counts as a function of R, one can satisfac-
torily isolate the effect of formation of n2.

Experiments searching for H5 can also be carried
out by looking for delayed neutrons in the reactions
Li7 (7, 2p)H 5, H 3 (H 3 , p)H 5 , Li6 (π", ρ) Η5, and by ob-
serving these reactions in emulsions where, for exam-
ple, in the case of Li6 (π~, ρ) Η5 r=r He5 —» He4 + n, one

should see tracks of ρ and H5 (with an energy around
20 Mev and a range of 600μ) emerging from the point
of stopping of the π", at an angle of 180° with respect
to one another, and one should also see an electron
track at the end of the range of the H5.

A good method for searching for He8 may be the
study of the stopping of π~ (or a study of the n, 2p
reaction) in emulsions filled with Be9 nuclei. In the
case of the Be9 (π", ρ) He8 -r~ Li8 -rt Be8* — 2a reac-
tion, one should observe, starting from the point of stop-
ing of the π" me son and directed at an angle of 180° to one
another, tracks of ρ and He8 (where the energy of
the He8 nucleus is around 12 Mev, and its range 60μ),
and at the end of the track of the He8 nucleus (if the
β decay goes to the ground state of I i 8 ) one should
see two electron tracks and two oppositely directed
and identical tracks of a particles.

It is true that the more probable case is the β de-
cay He8 (0+) — Li8* (1+) (excited state of Li8 at 3.22
Mev), and not the formation of Li8 in the ground (2+)
state. In such a case there would be emitted at the
end of the He8 track only one electron, which however
would not prevent a completely definite identification
of the Be9 (ττ~, ρ) He8 reaction. In addition, such a
decay of He8 opens a path for its identification by the
appearance of delayed neutrons (Li 8 * — Li7 + n), for
example in the reactions Be1 0 (γ, 2p) He8, Β 1 1 (γ, 3ρ)
He8 or the reactions given above.

One should, of course, remember that a capture of
the type (π", ρ) is extremely improbable. As A. T.
Varfolomeev reported, having observed altogether
twelve cases of the reaction Be9 (ττ~, η) Li8 in 6,000
captures of π" by Be9 nuclei in emulsions,2 0 he saw
no events which could be interpreted as the reaction
Be9 (π~, ρ) He8. (It is true that his emulsions were
sensitive not only to electrons, but also to high-energy
protons.)

The case of Be9 (n, 2p) He8 (with the decay He8

— Li8 — Be8) is also very characteristic and could
easily be identified. The threshold for this process
is close to 40 Mev, and it is most reasonable to use
neutrons with an energy up to 100 Mev. The cross
section for the Be9 (n, 2p) He8 reaction in this energy
range is apparently 1O~28 — 1O~27 cm2, judging from the
fact that the total cross section for formation of all the
isotopes of beryllium in the reactions C12 (n; 2p, xn) Be
(where χ = 0 — 4) under the action of 90 Mev neutrons2 1

is equal to (6.3 ± 1.5) x 1O"27 cm2.

5. SOME REMARKS CONCERNING THE LIMITS OF
THE STABILITY REGION

Before concluding this summary, let us consider
briefly what is known at present concerning the limits

too 200 Ζ

m

FIG. 8
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Ty2 given for transitions to the %~
level of F 1 7 (3.1 Mev).

Ty2 given for transitions to the %+

level of Ne"(0.2 Mev)

Ty2 given for the transition to the 1+

level of Al24 (0.5 Mev)

(β")

Ty% given for the transition to the %
level of Si17 (0.9 Mev)

Tyt given for the transition to the
~1.5 Mev level of P2»

Tyt given for the transition to the %
level of P 2 9 (~1.4 Mev)

Ty% given for the transition with ΔΤ-0

Ty2 given for the transition with ΔΤ-0

Ty3 given for the transition with'
ΔΤ-0

(β-)

Tyt given for the transition with ΔΤ-0

Tyt given for the transition with ΔΤ-0

Tys given for the transition to the
~2.7-Mev level of C a "

Ty2 given for the transition with ΔΤ-0
For all the following isotopes, Ty}

assumed to refer to transitions
with ΔΤ - 0
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TABLE (Continued)

24

25

26

27

28

29

30

31

32

33

Element

Chromium. . . .

Manganese- • •

I r o n . . . .

C o b a l t . . . .

N i c k e l . . . .

C o o p e r

Z i n c

G a l l i u m . . . .

G e r m a n i u m . . .

A r s e n i c . . . .

Ν

18

19
20
21
22
23

19
20
21
22
23
24

20
21
22
23
24
25

20
21
22
23
24
25
26

20
21
22
23
24
25
26
27

20
21
22
23
24
25
26
27
28

23
24
25
26
27
28
29

24
25
26
27
28
29

30

25
26
27
28
29

30

26
27
28
29
30

Λ

42

43
44
45
46
47

44

45
46
47
48
49

46
47
48
49
50
51

47
48
49
50
51
52
53

48
49
50
51
52
53
54
55

49
50
51
52
53
54
55
56
57

53
54
55
56
57
58
59

55
56
57
58
59
60

61

57
58
59
60
61

62

59
60
61
62
63

(M-A), Mev

<18

9
-2 .3
-7.6

-16.8
—21.2

16.6

5.9
-0.8

—10.1
—16.1
—23.8

11,3
4.4

-5.8
—11.9
—20.9
—25.7

20
12.2
2.1

-5.2
-14.1
—20.2

-«27 .4)

25.8

18.2
7.1

-0.1
—10
—16.2
—24.8
—30

37
27.9
17.1
9
—1.6
—8.8

-17.8
—23.6
—31.8

16 2
5,3

-2.4
-12.4
-18,7
-26.8
-30.6

16.1
7.2

-3.2
-10.1
-18.9
-23.7

-29.5

15.6
3.9

-3.5
-13.2
-18.4

-25.5

14.5
6.3

-3.7
-10
-17,4

E p, Mev

- « 0 . 2 )

1,9
3.4
3.6
5.2
5,3

0

-0.6
0.8
0.9
2.5
2.5

2,2
2,4
3.4
3.4
4.7
5.1

—1,1
—0.2
—0.3

0.9
0.8
2,1

>1.9

1.4

1.5
2.3
2.4
3.4
3.4
5
6.6

—3 7
—2.2
—2.5
-1.5
—0.9

0.1
0.4
1.1

>1.7

0 4
0'.7
1.2
2.2
2.7
2.7

>3.6

-3.2
- 2
-1.6
- 1
-0.3

0.7

-0.8
0.5
1
1.9
2.3

3.6

- 3
-2,2
-1.9
-0.8
-0.5

E n > Mev

<17.4
19.7
13.7
17,6
12.8

19.1
15.1
17.7
14.4
16.1

15.3
18.6
14.5
17,4
13.2

16.2
18.6
15.4
17.3
14.5
15,5

16
19.5
15.6
18.3
14.6
17
13.5

17.5
19.2
16.5
19
15,6
17,4
14.2
16,6

19.3
16
18.4
14,7
16.5
12.2

17,3
18.8
15.3
17.2
13,2

14.2

20,1
15.8
18,2
13.6

15,5

16,7
18.4
14,8
15.7

Εβ, Mev

«13.8)

14.5
8!2

10.4
5.7
6

(17.9)

(12.5)
15
10
11.8
6.2

11.1
13.5
9.3

10^8
6,3
6,4

(17)
(13)
14,7
10,6
12
6.6

12.6

15.1
11.3
13.2
9.2

<10,2
6
6,9

(13.6)
15,0
11.2

<13.2
7

16 8
13.1
14.4
10.2
12

<6,8
7,3

(15.7)
(10,7)

(17.8)
13
14.4
9.5

10.1

(14,5)
15,7

Τι/2β. sec

(0.2)

0.2
0,2
0,2

(1.1)
(0.4)

(0.2)

(0.2)
0.2
0.2
0.2

(0.4)

<0.2
<0.2
<0,2

0.2
0.2
0,2

«0,2)
«0.2)
<0.2
<0,2
<0.2
<0.2

0.1

0.1
0.1
0,1
0.1

<0.2
<0.2
<0.2

(0.1)
0.1
0.1
0.1

(0.18)

<0 1
<0.1
<0,l
<0.1
<0.1
<0.1

<o,i

«0.1)
(<o.i)
<0.1

<0,l
(<o.i)
<0,l
<0.1
<0,l
<0.1

<0.1

(<o,i)
<o,i

Remarks

Also stable are the still undiscovered
isotopes with A-62-63

Also stable are the still undiscovered
isotopes with A • 63-65

The isotopes with A - 64-67 are also
apparently stable
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TABLE (Concluded)
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34

35

36

37
ι

38

39

40

I

Element

S e l e n i u m . . . .

B r o m i n e . . . .

K r y p t o n . . . .

R u b i d i u m . . .

S t r o n t i u m . . . .

Y t t r i u m . . . .

Z i r c o n i u m · . .

JV

27
28
29

30

27
28
29

30

28
29

30

28
29

30

29

30

30

30

A

61
62
63

64

62
63
64

65

64
65

66

65
66

67

67

68

69

70

(Λί—A), Mev

14.7
3.2

-3.3

-11.7

25.3
14.1
6,5

- 2

22,3
14,5

4.9

34.3
25,5

15.9

34.6

24

36

45.4

E p , Mev

-0,8
0.7
0.9

1.9

- 3
-3.3
-2.2

-2.1

-0.6
-0.4

0.7

-4,4
-3.4

-3.4

-1.5

-0.5

-4.4

—1.8

E n , Mev

20
15

16,8

19.7
16.0

16,9

16.3

18

17,2

18

19

Εβ, Mev

(17,4)
12.2
13,1

(14,8)

Τι/:β, sec

(<o.i)
<0.1
<0,l

<0.1

«0 1)
«0.1)

«0.1)

«0.05)

Remarks

Also stable are the stil l undiscovered
isotopes with A- 65-69

Now known are isotopes starting
with A - 73

Now known are isotopes starting
with A - 76

Now known are isotopes starting
with A - 8 1

Now known are isotopes starting
with A - 8 1

Now known are isotopes starting
with A - 82

Now known are isotopes starting
with A - 86

of the region of stable nuclei. Nuclei with too great a

proton excess certainly do not exist. We can there-

fore confidently assert that to the right of a certain

line 1 (Fig. 8) there is not a single stable nucleus.

The exact location of the limiting line 1 is unknown.

In the region of low A this curve must pass through

the proton- and two-proton-radioactive nuclei enumer-

ated in Sec. 2. For large values of A the fundamental

means of decay of nuclei with excess Ζ are a decay

and fission. We can very roughly assume that the nu-

cleus (A, Z) is stable against fission if Z2/A & 40

(curve 2 in Fig. 8). Curves 1 and 2 should give a cor-

rect general picture of this region.

A considerably more complicated question is that

of the left-hand limit of the stability region, since fis-

sion and a decay no longer have a decisive role, and

the principal means for decay at this edge of the dia-

gram should be the emission of neutrons.

There are various indications that there can exist

nuclei with relatively very large values of the ratio

N/Z. In favor of this view, there speaks, for example,

the fact of the existence of neutron-rich isotopes of

uranium in nuclear explosions (for example, U256

which then goes over by a chain of β decays into the

isotopes of Fm and Es), as well as the recently ob-

tained data on observations of isotopes of californium

in the explosions of supernovae.21a Apparently the

only paper in which the question of stability of nuclei

with respect to neutron emission has been treated suf-

ficiently correctly is the paper of P. E. Nemirovskii.11

His conclusions are based on the available information

concerning the magnitude of the " optical" potential

U (r) describing the interaction of a neutron with a

nucleus. Choosing the magnitude, shape, and isotopic

dependence (i.e., dependence on A and Z) of the po-

tential U(r) from experiment, P. E. Nemirovskii cal-

culated the energies of the bound states for a neutron,

taking account of U (r) . The total number of bound

states obviously immediately gives us the maximum

number of neutrons in a nucleus with given Z. The re-

sults of the computation are shown in Fig. 8 by the

kinked curve 3. The limit of stability predicted in this

fashion should be close to correct for sufficiently heavy

nuclei. The accuracy gets worse when one goes to light

nuclei. For large values of Ζ and N, Nemirovskii's

curve practically coincides with that computed by Ca-

meron12 using the extended Weizsacker formula. Some

years ago Wheeler,22 considering the question of the

number of neutrons which can be attached to a heavy

nucleus, came to the conclusion that for Ζ ~ 90 — 100

there can exist nuclei with A = 500 — 600. It was

pointed out by Nemirovskii that the usual Weizsacker

formula, which Wheeler used, is not valid in the neigh-

borhood of the limits of stability. Moreover, it cannot

be extrapolated to such large values of A. For this

reason, Wheeler's conclusions are not trustworthy.

Another approach to the problem of super-heavy nu-

clei was made in reference 9, where the limiting case

of a very heavy nucleus consisting of neutrons alone is

considered. If such nuclei exist, their density is cer-
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tainly less than the density of ordinary nuclei, and we
may speak of a Fermi gas with low density. In such a
gas the kinetic energy of the colliding particles is small,
and the main role is played by the interaction of neu-
trons colliding in S states; thus, interaction occurs
only for pairs of neutrons with opposite spins.

Under these conditions the interaction in an S-state
is determined entirely by the scattering length, which
for the n-n system should be around a = -20 χ 10~13

cm. The sign of a corresponds to a mutual attraction
of the two neutrons. The cross section is then given
by the familiar formula

α V2

where a is the scattering length, ρ is the momentum
of the relative motion of the two neutrons. The scatter
ing of the particles affects the average energy of the
system like a weak interaction potential, for which

Ya

In the limit of very low density ρ < 0.001 p0 (p0 is the
nuclear density)

p<€— and σ = Ana2· = const,

the average potential energy of the particle is of the
order of — h~2/map; it is less than the kinetic energy
of the particle, which is proportional to p2/3; in this
isolated state, liquid is surely not formed. For ρ
> 0.001 p0, σ ~ 47τΚ2/ρ2 and, considering that ρ ~ p1/3,
we find that the potential energy is of the same order
and also depends on the density in the same way as the
kinetic energy (-^p2/3). Including only the pair inter-
actions numerically gives the result that the total en-
ergy is negative; U p o t = - % E; Up ot + Ek i n = - % Ek i n;
however, as pointed out in reference 9, this conclusion
(from which there would follow the existence of a neu-
tron liquid) is by no means conclusive; the influence
of triple collisions and collisions with higher multi-
plicity can easily change the sign of the energy; their
calculation is an extremely difficult problem which has
not been solved as yet. It therefore remains an open
question whether there exist nuclei consisting solely
of neutrons.

However, let us assume that such nuclei are pos-
sible. Because of the surface tension there must ex-
ist a definite critical size of the neutron drop, i.e., a
minimum number of neutrons for which one can have
a neutronic nucleus. If they exist, beginning with some
value of the number of neutrons No, then obviously
there exists a whole region of super-heavy nuclei, lo-
cated on Fig. 8 in the neighborhood of the neutron axis.
Then, depending on the size of this region, it either
touches the region of nuclei known to us (Fig. 8a) or
forms a separate island (Fig. 8b).

However, it may be that more exact computations
will show the impossibility of the existence of neu-
tronic nuclei. In this case, the whole set of stable

nuclei will be limited by the small, cigar-shaped island
in the (Ν, Ζ) plane shown in Fig. 8.

Note added in proof: Recently Brueckner, Gammel, and Kubis

[Phys. Rev. 118, 1095 (I960)] discussed the question of a neutron

liquid. Taking into account at low density only pair interactions

and the dependence of the scattering length on energy, the authors

come to the conclusion that a neutron liquid does not exist. This

conclusion is not final, since in this region, the density, although

it is small compared to the usual nuclear density, is not small com-

pared to I/a3.
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