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INTRODUCTION source is considerably narrower than that of a thermal

Ε source, the effective temperature of a fluorescent
LECTROMAGNETIC radiation is produced by three source is considerably higher. In general the effective

kinds of sources: thermal radiation, fluorescence, and temperature associated with the radiation from a flu-
oscillators. The spectral distributions of the radiation orescent material is much higher than the actual tem-
from these sources are quite different. The spectral perature of the material — that is to say, fluorescent
distribution from a thermal source is approximately materials radiate "cold light."
the same as that of a black body, while the spectrum Since they produce essentially monochromatic radi-
of a fluorescent source is much narrower than that of ation, oscillators are usually characterized by the fre-
a black body. Oscillators, on the other hand, produce quency and power of the radiation. Oscillators can also
essentially monochromatic radiation. be characterized by an effective temperature, just as

The radiation intensity of an absolutely black body fluorescent sources. Because of the extremely narrow
and its spectral distribution are described completely bandwidth and high power of the radiation they produce,
by the Planck formula, where the single parameter the effective temperatures of oscHlators are character-
upon which both intensity and spectral distribution de- istically very high. For example, oscillators in the
pend is the temperature. The intensity and spectral centimeter range produce radiation with an effective
distribution of a fluorescent source cannot, however, temperature of 1015 — 102s degrees,
be characterized by a single parameter (for instance, Oscillators are conventionally used in the long-wave
temperature). It is possible, on the other hand, to de- region (radio waves, centimeter waves); on the other
scribe fluorescence radiation in terms of an effective hand, in the submillimeter, infrared, and optical re-
temperature: the effective temperature of a fluorescent gions, the principal radiation sources are thermal
source is defined as the temperature of a black body sources and fluorescent sources. At the present time,
which produces the same intensity within some fre- no one has been successful in building an oscillator in
quency interval. This definition is not unique since the infrared or optical regions, by electronic techniques
it depends on the size of the frequency interval. It is or any other methods.
also obvious that when defined this way the effective In recent years, methods of generating and amplify-
temperature depends on frequency, i.e., the effective ing radio waves by induced transitions in quantum-
temperature is different in different portions of the mechanical systems (molecules, atoms, ions, etc. J1"4·8

spectrum. have been developed to a high degree.
Because the spectral distribution of a fluorescent The development of molecular oscillators and para-
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magnetic amplifiers (masers) was stimulated by the
appearance of papers that proposed the use of induced
transitions for the generation and amplification of sub-
millimeter, infrared, and optical waves. An analysis
of these methods is given in the present review.

The radiation mechanism in masers is fundamen-
tally different from the mechanism in fluorescent and
thermal sources. Quanta are emitted by hot bodies
and fluorescent sources as a result of spontaneous
transitions of the atoms, molecules, etc. from high
(excited) levels to levels of lower energy. Quantum
emission occurs in the absence of quanta of the same
frequency, being caused by the zero-point vibrations
of the electromagnetic field. Because the probability
of spontaneous emission falls off at lower frequencies,
the quantum fluorescence yield in the infrared region
is quite small. This is probably the reason why useful
fluorescent materials for the infrared have not been
successfully developed at the present time.

Thus, to obtain radiation in the infrared (especially
in the far infrared) it is necessary to use induced
transitions; the probability of quantum emission is
considerably higher in induced transitions.

In an oscillator or amplifier in which induced tran-
sitions are used, it is necessary to produce states
which are not thermodynamic equilibrium states; these
are called negative-temperature states. In systems in
thermodynamic equilibrium, and systems character-
ized by positive temperatures, the populations of the
energy levels are smaller in higher energy levels. On
the other hand, in negative temperature states, (even
if over a limited energy range) there is an inverse
distribution of populations over the levels: the popula-
tions of the energy levels increase with energy. In
negative-temperature states quanta can be emitted
under the effect of radiation incident from external
sources. Thus, quantum-mechanical systems in
negative-temperature states can be used as radiation
amplifiers or oscillators. Although the sensitivity of
quantum-mechanical amplifiers is reduced at higher
frequencies because of spontaneous emission, it is
reasonable to expect that a considerable increase in
sensitivity can be achieved at infrared wavelengths as
compared with that of existing devices used in this
wavelength range. In references 5 and 6 it has been
proposed to use spectral lines of various materials in
high-sensitivity radiation detectors which would be free
from noise due to spontaneous emission.

One of the most important parameters in a negative-
temperature system is the "number of active particles,"
i.e., the difference in the number of systems produced
per unit time in the upper level and the lower level.
This number determines the power which can be radi-
ated by the system.

Another important parameter is the quantity

к = ·—^—-— where | d | 2 is the square of the dipole-

moment matrix element between the levels considered,

η is the number of active systems and Δω is the width
of the spectral line. As will be shown in Sec. 8, к
enters into the oscillation condition for oscillators and
also determines the gain of amplifiers. Because mole-
cules in gases are distributed over a large number of
rotational levels, in the centimeter range к is a thou-
sand times smaller for gases than for paramagnetic
ions in crystals, in spite of the fact that dipole mo-
ments of paramagnetic ions are a hundred times
smaller. These relations obviously also hold for the
infrared. For this reason solids are the most prom-
ising working materials for the generation and ampli-
fication of infrared waves.

The development of coherent sources of infrared
and optical radiation is a pressing problem. For in-
stance, the availability of coherent sources in the op-
tical and infrared regions would make possible a tre-
mendous increase in the sensitivity and resolving
power of spectroscopic devices. Infrared and optical
waves can also be used, like radio waves, for the
transmission of information (the volume of trans-
mitted information increases as the frequency of the
radiation is increased and decreases as the spectral
width is reduced) etc.

In the present paper we shall review all papers
published in recent years in which suggestions have
been made for obtaining negative temperatures in
gases and solids; we shall also discuss the features
of oscillators and amplifiers that operate at infrared
and optical wavelengths. The last section of the second
part of the paper is devoted to quantum-mechanical
radiation detectors.

I. METHODS OF OBTAINING NEGATIVE-TEMPERA-
TURE STATES

1. Negative Temperature

At the present time the concept of a negative tem-
perature is widely used in the description of maser
oscillators and amplifiers, because systems in nega-
tive-temperature states amplify, by stimulated emis-
sion, electromagnetic radiation which is incident upon
them.

The conditions under which "negative absorption"
of radiation occurs were first formulated by V. A.
Fabrikant.7

The concept of a negative temperature was first
introduced78· to describe a nonequilibrium distribution
of Li nuclei over Zeeman levels when the number of
nuclei in a higher energy level is greater than the
number in a lower level.

The concept of a negative temperature is widely
used at present to describe the operation of maser
oscillators and amplifiers.

Suppose that a quantum-mechanical system has two
energy levels and that each level contains an arbitrary
population (Fig. 1). At thermodynamic equilibrium the
distribution of population over the levels is given by
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FIG. 1. Distribution
of particles in two levels
for various values of the

T-*0' Г-*»»' T"-0' temperature T.

the Boltzmann distribution function

Ni = Ae~1^, (1.1)

where A is a normalization factor, Nj is the popula-
tion of the i-th level, ej is the energy of the i-th
level, к is the Boltzmann constant and Τ is the ab-
solute temperature. It follows from Eq. (1.1) that the
population of the higher energy level is smaller than
that of the lower level for any value of the temperature.

In the absence of thermodynamic equilibrium the
population distribution between the two levels can be
arbitrary. When the population in the higher energy
level is smaller than in the lower level the system
can be described formally by a function of the form
in Eq. (1.1) with some positive temperature T. To
describe a nonequilibrium system, in which there is
a larger population in the higher energy level, Τ
must be negative because of the form of the function
in Eq. (1.1). Hence, states of the system in which the
upper level has a larger population than the lower
level are called negative temperature states.

When the entire population is in the upper energy
level, the system can be characterized by a tempera-
ture Τ —- — 0° К and when the entire population is in
the lower energy level the state of the system corre-
sponds to a temperature Τ —·• + 0° К. When the upper
and lower levels are equally populated the state of the
system corresponds to a temperature Τ —- ± ». It
should be noted that the system energy is a minimum
at Τ — + 0° К and a maximum at Τ — - 0° К.

The negative temperature concept can be extended
to systems with an arbitrary number of levels; in
these cases the distribution of population over the
quantum-mechanical states of the system is described
by a distribution function fr. The distribution func-
tion fp is proportional to the probability of finding
elements of the system in the r-th quantum-mechan-
ical state, and is normalized as follows':

2/г = лг. (i.i')
r

where N is the total population of the system and the
summation is taken over all states of the system. All
systems that can be described by distribution functions
fall into two classes:

1. Systems in which the probability of finding ele-
ments in a quantum-mechanical state characterized
by an energy e is reduced as the energy is increased
over the entire range of states, i.e.,

/i < /m, if ε, < (1.3)

/, > /m, if ε, < гп, (1.2)

where the subscripts I and m take on all possible
values.

2. Systems in which the following inequality holds
for the levels e; and e m

In systems of the first class, in particular, systems
in thermodynamic equilibrium, the distribution func-
tion f (e r , T) is either the Fermi-Dirac distribution
function or the Bose-Einstein distribution function,
depending on the statistics which characterizes the
elements of the system:

f(eT, T) = (1.4)

where g r is the degeneracy of a given energy level
and μ is the chemical potential.

In thermodynamic equilibrium the only parameter
in Eq. (1.4) is the absolute temperature T, which is
always positive.

In nonequilibrium states of a system the distribu-
tion of population over levels cannot be characterized
by a single parameter (temperature). However, for
a system of the first class, the population distribution
for any two levels can be characterized by a function
such as (1.4) with a positive value for T. These states
of the system are called positive-temperature states.

In systems of the second class, which are always
nonequilibrium systems, the population distribution
for the levels corresponding to the inequality in (1.3)
can be described formally by a function of the form
given in (1.4) if the parameter Τ (temperature) is
negative. Systems which satisfy (1.3) are called
negative-temperature systems with respect to the
levels ej and e m .

Systems of the first class and second class inter-
act differently with monochromatic electromagnetic
radiation at a frequency

co= е м 7 е ' . (1.5)

A positive-temperature system absorbs the electro-
magnetic radiation incident upon it, while a negative
temperature system (with respect to the levels e m

and e;) amplifies radiation if this radiation is at a
frequency ω = ( e m - q )/K.

The number of photons emitted by the system per
second in making a transition from the state charac-
terized by m to the state characterized by I is

I* = wml (η λ-|-1) / m (1 Τ /,). (1.6)

The upper sign corresponds to Fermi statistics, the
lower sign corresponds to Bose statistics; wmj is the
quantum-mechanical probability for emission of a pho-
ton and8 n^ is the number of photons associated with
the radiation oscillator denoted by λ.

The number of photons absorbed by the system per
second is

= wlmnKfl
(1.7)

Subtracting (1.7) from (1.6), and taking account of the

fact that w m j = wj m , we have
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The first term in Eq. (1.8) is proportional to the,

number of photons and is to be associated with stimu-

lated emission or resonance absorption. On the other

hand, the second term (1.8), which is independent of

the number of photons, characterizes the spontaneous

transitions in the system. In order for the system to

amplify incident electromagnetic radiation, it follows

from Eq. (1.8) that the following condition must be

satisfied:

/m-/i>0, (1.9)

that is to say, the system must be in a negative tem-

perature state with respect to the levels m and I

( e m > e^). The condition given in Eq. (1.9) is neces-

sary but generally not sufficient for amplification be-

cause there may be other pairs of levels in the system

for which the transition frequency ω is the same, but

for which the temperature is positive.

Thus, the sufficient condition for amplification is

Xwml{fm-fi)>0, (1.10)

where the summation is carried out over all pairs of

indices for which e m — ej = Κω.

The spontaneous emission represented by the sec-

ond term in Eq. (1.8) is responsible for the noise in

quantum-mechanical amplifiers,3"5'9~11>61 since the

strength of the spontaneous emission is independent

of the number of photons incident upon the system.

Below we shall consider methods which can be used

to produce negative temperatures in the infrared and

optical regions.

2. Selection of Molecules in Molecular Beams by
Means of Inhomogeneous Electric or Magnetic
Fields

The method of selecting molecules by levels, used

in ammonia masers,1 '4 9 can also be used for selecting

molecules in the infrared and optical regions.12'13 For

example, the transition frequency between various ro-

tational levels j — j + 1 of the ammonia molecule,

NH3, is given by the formula

о = 2Я(/+1), (2.1)

where В is the rotational constant of the molecule
(Fig. 2).

j :

J-i\

FIG. 2. Splitting of rotational levels
into two inversion sublevels. The arrow
indicates an allowed transition.

Levels with j ~ 10 are fairly well populated at
room temperature. Consequently, in accordance with
Eq. (2.1), ammonia gas at room temperature exhibits
rather intense lines at wave lengths λ of the order of

several hundred millimeters.

Each rotational level is split into two inversion sub-

levels. The wavelength corresponding to the transi-

tion between inversion levels depends on the quantum

numbers j and к (к is the projection of j on the
symmetry axis of the molecule) and lies between
1 and 2 cm. If a beam of these molecules passes
through a quadrupole focuser, the beam at the output
of the focuser contains molecules in the upper inver-
sion levels.

The inversion state of the molecule changes for
dipole transitions between rotational levels,14 so that
a beam of molecules selected in this way is charac-
terized by a negative temperature not only for transi-
tions between neighboring inversion levels, but also
for rotational-inversion transitions. A quadrupole
focuser can also be used to select other molecules15

(HDO, CH2O).
A major shortcoming of this method is the fact that

only a relatively small number of active molecules*
can be obtained. Molecular beam sources presently
available are capable of producing beams with maxi-
mum fluxes of 1015 particle/cm2 · sec in each of the
rotational levels.

3. Excitation of Gas Molecules by Means of a Gas
Discharge

It has been recently pointed out16'17 that negative
temperatures can be produced in a gas discharge by
electronic excitations of the molecules or atoms of
the gas. In the work referred to, the stationary proc-
esses characteristic of the passage of an electron
beam through a gas are considered. A fixed electric
field F is applied to the system (Fig. 3).

Gas Electrons

\ \

FIG. 3. Arrangement for
exciting gas molecules with
an electron beam.

4
I >

The constant В = 2.98 x 105 Mc/sec for the NH3

molecule. For ND3, В = 1.54 x 105 Mc/sec; j is the
quantum number for the total angular momentum of
the lower rotational level.

Elastic collisions of electrons with the gas atoms
in the presence of the external electric field F re-
sult in electron "heating", i.e., the mean kinetic en-
ergy of the electron can be appreciably greater than
the mean kinetic energy of the gas atoms. Inelastic
collisions of the first kind between electrons and
atoms cause excitation of the atoms, whereas inelas-

*The number of active molecules is equal to the difference be-
tween the number of molecules in the upper and lower energy levels.
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tic collisions of the second kind cause the atoms to
make transitions from higher to lower energy levels.

The number of atomic transtions per unit time
from a state with energy ej t o a state with energy e2

(e 2 > e t ) due to collisions of the first kind is

(3.1)

where 012 is the lifetime for a transition from level 1
to level 2, σ12 is the cross section for a collision of
the first kind between an electron with energy e and
an atom, ν is the relative velocity of the electron
and the atom, (v is actually the electron velocity)
and dn (e) is the number of electrons per cubic centi-
meter with energies between e and e + de.

Similarly, the number of transitions in the reverse
direction, from e2 to elt is

(3.2)

where σ2 1 is the cross section for collisions of the
second kind. The limits of integration are different
in Eqs. (3.1) and (3.2): in Eq. (3.1) the integration is
taken from some initial energy e2 — e t, which repre-
sents the minimum electron energy required for exci-
tation of the atom.

For simplicity we assume that the electronic en-
ergy distribution is Maxwellian, with a temperature
T e ; as indicated above, T e » T a , where T a is the
temperature of the gas atoms. Then, in Eqs. (3.1)
and (3.2) we have

dn (ε) = ae-e/MV/2flfe. (3.3)

Using the principle of detailed balancing18 we can now
write

8 Л г ( ει) = ε2σ2ΐ ( e

2 ) ;

From (3.1), (3.2), and (3.4) it follows that
β2-βι

(3.4)

(3.5)

Equation (3.5) indicates that the lifetime in the higher
energy state is somewhat shorter than in the lower
state if the atomic transitions are due solely to colli-
sions with electrons.

The change in the number of atoms Nj and N2 in
levels ej and e2 per unit time, due to collisions of the
first and second kind, is

- • ^ + -£*-, (3.6)dt dt

where N2 is the number of atoms in the e2 level. In
the stationary state dN/dt = 0, and from Eq. (3.5) it
follows that

N2

•V,
(3.7)

Thus, the distribution of atoms over levels is a Boltz-
mann distribution with a temperature equal to the elec-

tron temperature T e . Taking account of the degener-
acy of the atomic levels we obtain an obvious extension
of Eq. (3.7):

" gl
(3.8)

where gj is the degeneracy of the i-th level.
When the atomic transitions from higher energy

levels to lower levels are not due exclusively to colli-
sions of the second kind, but to other processes as
well, for example, radiative decay, the distribution
over atomic levels differs from that given in (3.7) and
(3.8).

In this case the stationary distribution can be ob-
tained by analysis of the change in the population of a
given level. If the lifetime for radiative decay in the
i-th level is TJ, then

dt

_ N1 N. (3.9)

If τ2 « 02i> then in the stationary state we have

ег-ei

N
- ΞΞ: "τ С (3.10)

Comparison of (3.7) and (3.10) shows that the distribu-
tion of atoms over energy levels differs from the
Boltzmann distribution because of the factor τ 2 / θ 2 1

« 1.
If we introduce an additional energy level, to be defi-

nite, say a higher level, it follows from (3.10) that

In Eq. (3.11) we find the Boltzmann factor

(3.11)

exp -ί — " ' ί < 1 since e3 > e2; however, the factor
l_ л e J τ Й

in front of the exponential 3 2 1 can be greater than

unity for certain values of the parameters, and the
ratio N 3/N 2 can be greater than unity; this case is
equivalent to the existence of a negative temperature
with respect to the levels designated 3 and 2.

It is apparent from the preceding discussion that
negative temperatures are produced if TJ < fljj ; this
situation sets a limit on the electron density, since
Ofi1 is proportional to the density of the electron gas.

The oscillation conditions in a system depend cru-
cially on the number of active atoms N3 - N2. With all
other conditions being equal, it is desirable to have a
high density, i.e., the pressure in the system should
be high. At high densities the absorption of photons
produced by spontaneous transitions in other atoms
becomes important. This effect tends to increase the
lifetime of the atom in the excited state. The effect is
useful when it increases the lifetime of the atom in the
upper level 3, that is to say, the upper level must be
optically connected with the ground state (allowed transi-
tion). Under these conditions the system can operate
at higher densities. However, if the ground state is
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optically connected to the lower negative temperature

level 2, a high density is undesirable, since it in-

creases the relative population of level 2.

In reference 16 neon is considered as an example.
The upper level 3 and the lower level 2, between
which a negative temperature state is maintained, are
the 2s4 and 2p10 levels. The 2p10 level decays to a
lower level in a time τ2 ~ 10~8 sec. At a pressure of
approximately 10 mm Hg the lifetime of the upper level
2s4 is estimated to be τ3 » 60 τ2. In order to obtain

N3 = 10 cm at an electron gas temperature kTe

= 2.9 ev, we must.take τ3/θ31 = 3 χ 10~5. The exact

value of the cross section for excitation of the atom

to the 2s4 level by an electron is not known; however,

if we assume that this cross section is σ « 10~17 cm2,

the electron density in the beam is found to be η ~ 5

χ 10lu cm . These values of density and temperature
are reasonable for electron beams that can be achieved
in practice.

The ratio Τΐ/θχ\ is essentially the same for all
levels i with optically allowed transitions since rf *
and θΐι are each proportional to the square of the
dipole moment matrix element for the transition being
considered.19·20 As can be seen from Eq. (3.11), nega-
tive temperatures cannot be obtained in this case. If
both levels are optically connected to the ground state,
optical transitions between the levels themselves are
forbidden by the selection rules (in the first approxi-
mation ) and these levels cannot be used in practice
for obtaining radiation.

At least one of the two levels in the system must
thus be associated with an optically forbidden transi-
tion. This level is excited in electron collisions as a
result of exchange effects between the incident elec-
trons and the electrons in the atom. The excitation
cross section for this process is generally smaller
than for optically allowed transitions.

In the example considered above, the lower level
in the negative-temperature system is associated with
an optically forbidden transition. The small excitation
cross section for this level (by electron collisions)
favors the production of a negative temperature. How-
ever, in such cases, the level being considered may
be optically connected with some other excited meta-
stable level of the atom. The existence of a large
number of such metastable levels and a high cross
section for excitation by electrons to the level in
question can increase the population of the lower level.
This effect is enhanced by possible capture by the
metastable atom of a photon which is produced in
emission from the level being considered.

This situation does not arise in neon. In reference
16 it is proposed to reduce the concentration of meta-
stable neon atoms by the addition of a small amount of
a quenching gas, for example, argon.

Another method of obtaining negative temperatures
is based on the interaction between atoms of two differ-
ent gases (Fig. 4).

FIG. 4. Level diagram for
two interacting gases: x) oper-
ating gas, y) quenching gas.

•£'

-e?

If the energies of any two excited atomic levels in

the two gases differ by a small amount Δ, the cross

sections for inelastic collisions between these atoms

can be appreciable. Under these conditions an atom

can be excited by colliding with another atom as well

as by collisions with electrons. In interatomic colli-

sions the atoms exchange excitation energy. If this

effect is to disturb the equilibrium distribution (3.7),

obviously the probability of excitation transfer by the

atoms must exceed the probability l/θοΐ of electronic

excitation of the atom to a given level.

In this approximation we can obtain the equilibrium

distribution of atoms over excited energy levels. For

simplicity, let us assume that the atomic energy dis-

tribution is Maxwellian with a temperature T:

(3.12)

where e = p2/2M is the kinetic energy of the atom; the
constant a is determined from the normalization con-
dition

dn = n, (3.13)

and η is the number of gas atoms in the given excited
state per cubic centimeter.

Let us assume that the excitation energy of gas x,
which we will denote by Ex, is greater than the exci-
tation energy of gas y, denoted by E^, i.e., E^-E^
= Δ. Then the probability of excitation of χ atoms by
у atoms is

(3.14)

Here, the constant a is determined from the condition

a\ (3.15)

where щ is the number of excited у atoms per cubic
centimeter, σ χ ν is the cross section for transfer of
excitation from а у atom to an χ atom, and ν is the
relative velocity of the atoms.

For the inverse process

(3.16)

where σ ν χ is the cross section for the inverse proc-
ess and аУ, as in Eq. (3.15), is determined by the
density of у atoms in the ground state 1.

Applying the principle of detailed balancing, as in
(3.4), we have from Eqs. (3.14) and (3.16)

^ i « = 2|e-Sf. (3.17)
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The rate of change of the number of χ atoms in the
excited state with an energy E x is found from Eqs.
(3.14) and (3.16):

dn*

~dt
- W nx W (3.18)

In the stationary state dnx/dt = 0; when (3.17) is sub-
stituted in (3.18) the latter assumes the form

(3.19)

К the atoms are excited by electron impact only,
then obviously we write in place of Eq. (3.19)

4 = ̂ e hT* . (3.20)

Thus, collision transitions between close-lying lev-
els in different atoms cause a departure from the dis-
tribution produced by electronic excitation given in
(3.20). Under these conditions the probability of find-
ing an atom in the upper of the two levels being con-
sidered in two different atoms is smaller than the
value given by (3.20), whereas the probability of find-
ing an atom in the lower level is larger. Hence, it is
possible to obtain negative temperatures in the gas
between levels whose distribution is given by (3.20)
and levels subject to an excitation mechanism such as
that described above for collisions between different
atoms, whose distribution is given by (3.19).

A shortcoming of this method of obtaining negative
temperatures is that strong transfer of excitation in
collisions between two kinds of atoms requires that
the levels be close together, in which case the effect
of redistribution of atoms over the levels is small.

A mixture of Hg at a pressure of 10~3 mm Hg and
Kr at a pressure of 10 — 50 mm Hg is analyzed in
reference 16. The mercury 9JP and 64F levels lie
close to the 5S5 metastable level of krypton so that
populations of the 9JP and 6JF levels can be increased.
Under these conditions a negative temperature is to be
expected with respect to the 6JD level.

The metastable 3S t level in He also lies close to
the 2s4 level in Ne considered above. This situation
can also be exploited to increase the population of the
2s4 level, thereby providing a negative temperature in
the Ne system considered above.

A similar situation prevails when two or more
levels in the same atom lie close together in energy.
The 2s2, 2s3, 2s4 and 2s5 levels in Ne have approxi-
mately the same energy and the population of the lower
of the two 2S5 levels could be increased greatly, there-
by producing a negative temperature with respect to the
2p10 level.

The relatively low density of excited atoms is a
great disadvantage in both of these methods of obtain-
ing negative temperatures in a gas by means of elec-
tron beams.

It should be noted, however, that, in principle, there
is no limitation in this method on the frequencies cor-
responding to transitions between the negative tem-
perature levels. A somewhat different method of ob-
taining negative temperatures has been an^yzed and
studied experimentally in reference 79.

A glow discharge was used to excite mercury vapor
to which hydrogen had been added. The hydrogen
strongly perturbs the mercury atoms in the 63P level;
the 73Sj — 6 3 P 0 > 1 2 transition is then used to obtain a
negative temperature. Another mercury tube was used
to investigate the transmission through the discharge
tube containing the mixture of mercury and hydrogen
vapors. The results of the experiments indicate that
in certain cases the transmission factor can be greater
than unity. The authors point out that the theoretical
interpretation of the experiment is difficult because of
the lack of reliable data for discharges of this kind.

4. Pulse Method of Obtaining Negative Temperatures
in Semiconductors*

A great deal of data is available concerning the op-
tical properties of semiconductors.21 These data are
well explained by the band theory of solids.21'22 Elec-
tromagnetic absorption spectra in semiconductors are
due basically to the following: 1) electron transitions
from valence bands to conduction bands; 2) transitions
from impurity levels into bands, 3) internal band ab-
sorption, associated with the presence of free carriers;
4) absorption by the crystal lattice.

In this section we consider the possibilities of ob-
taining negative temperatures between bands and be-
tween impurity levels and associated bands which have
been proposed in reference 23.

According to the band theory of solids, a semicon-
ductor can be described by a series of energy bands
which represent forbidden and allowed electron states.
In a pure semiconductor there are no electrons in the
upper energy band (conduction band) at Τ — 0 while
the energy states in the lowest band (valence band)
are completely filled by electrons. If a semiconductor
contains impurities, these impurities form additional
levels which, as a rule, are located in the forbidden
band. There are two kinds of impurities in a semi-
conductor: impurities that can give electrons to the
conduction band (donors) and impurities that can
trap electrons from the valence band (giving rise to
conduction by holes), called acceptors. The distribu-
tion of electrons over energy levels in a semiconductor
at thermodynamic equilibrium is described by the
Fermi distribution function

/(e) = (4.1)

T h e possibility of obtaining negative temperatures in semicon-
ductors between cyclotron-resonance levels and between levels in
impurity atoms is considered in reference 80, which appeared while
the present paper was in press.
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where the chemical potential μ is determined from
the normalization condition

(4.2)

where N is the total number of electrons. For elec-
trons in the conduction band*

E, C ( B ) = (4.3)

For discrete spectra the integral in Eq. (4.2) is re-
placed by a summation over quantum-mechanical
states.

A negative temperature can be obtained in a semi-
conductor by ionizing the impurities or the valence
band by a pulsed electric field. The peak value of the
pulse is chosen to cause impact ionization of the va-
lence band or the Zener effect. The number of elec-
trons in the conduction band then increases sharply.
The number of electrons ejected into the band is de-
termined by the breakdown conditions (the strength
of the electric field and the length of the pulse).

If the pulse decays rapidly enough, all the electrons
are transferred to the lowest energy levels of the as-
sociated band if their lifetime in the band is long
enough. The electron density and crystal tempera-
ture must be chosen to obtain a state which is more
or less degenerate; this is equivalent to a negative
temperature with respect to some narrow range of
free higher energy levels in the valence band. In
accordance with Eq. (1.3), for a negative temperature,
the condition f (e) s 0.5 must obtain for some region
close to the bottom of the conduction band and f (e)
< 0.5 for some region close to the top of the valence
band (Fig. 5).

f(e)

Valence band \
I \Conduction band

FIG. 5. Energy distribution of electrons in a semiconductor.
The solid line is the thermodynamic equilibrium distribution. The
dashed line is the nonequilibrium distribution corresponding to a
negative temperature between the valence band and the conduction
band.

The large electron densities required for degener-
acy mean that rather high electric fields must be ap-
plied to the sample. A number of theoretical and ex-
perimental papers24"29 treat problems connected with
electrical breakdown in semiconductors; in the pres-
ent review, breakdown in semiconductors will not be
considered in detail. It should be indicated, however,
that according to the work cited above, breakdown of
valence semiconductors takes place in fields in which
the mean energy of the conduction electrons is of the

*A11 the considerations given here also apply for holes.

same order of magnitude as the ionization potential.
The field Fi at which the mean electron energy is of
the same order as the ionization potential e ss ej is
determined from the condition

F;

(ha0m.)2

«on (ε;)
(4.4)

where m is the effective mass of the carrier, ω0 is
the frequency of the optical vibrations of the lattice,
τΟη is the relaxation time of the carrier with respect
to optical vibrations of the lattice [cf. Eq. (4.16)].

The energy distribution of conduction electrons in
a strong electric field, which takes account of colli-
sions with lattice vibrations,27 is of the form (Fig. 6)

= /V"exp - (4.5)

where

R
iC'm'kT

Here F is the applied electric field, u is the velocity
of sound in the semiconductor, Μ is the mass of the
lattice atom, n0 is the density of atoms in the lattice,

FIG. 6. Energy distribution of electrons in a conduction band
as a function of the strength of the applied electric field. The num-
bers on the curves increase with increasing field strength. Beyond
the ionization threshold (ε̂ ) the distribution function falls off ex-
ponentially.

к is the Boltzmann constant, Τ is the lattice temper-
ature, and C2 and D2 are interaction constants for the
acoustic and optical lattice vibrations respectively.

The energy distribution of the electrons in the con-
duction band is approximately a Boltzmann distribution
with an effective temperature T e » T.

When the electric field is switched off two processes
take place in the semiconductor: 1) nonequilibrium
carriers recombine, and 2) the temperature of the
nonequilibrium carriers is reduced to the temperature
of the crystal. Negative temperatures can obtain in a
semiconductor only when the characteristic time for
the second process is much smaller than the lifetime
of the nonequilibrium carriers т с . At the present time
there is no general theory which allows us to deter-
mine the time т с. There are a number of experimen-
tal methods of determining тс, however, but these give
inconsistent values.T4>TS As a rule, т с is determined
by nonradiative transitions and is associated with the
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presence of impurities and defects in the lattice.
A theoretical analysis of the time t during which

a negative temperature obtains (the thermalization
time of nonequilibrium carriers) in semiconductors
is given in reference 30.

By nonequilibrium (fast) carriers we mean elec-
trons* (holes) with an initial energy e0 which is ap-
preciably higher than the mean thermal energy or de-
generation energy (if the gas is degenerate), but
which does not exceed the threshold for collision ioni-
zation of the valence band ej.

Electron thermalization in crystals is due primarily
to scattering on lattice vibrations. Impurities do not
play an important role in slowing down electrons be-
cause the energy lost by an electron in collision with
an impurity atom (of order m/M, where Μ is the
mass of the impurity atom) is much smaller than the
energy lost in emission of a phonon, i.e., small com-
pared with the energy lost in lattice collisions.

Electron thermalization can be analyzed by consid-
ering the kinetic equation for the electron momentum
distribution in the conduction band of the crystal f (p).
In the kinetic equation we must take account of the
Fermi degeneracy of the electron gas since this factor
becomes important in the final stages of thermaliza-
tion, at which point the quantum states are almost com-
pletely filled. The electron-electron collision term can
usually be neglected since it does not contribute directly
to the reduction of the mean electron energy. However,
at high electron densities electron-electron collisions
can have an important effect on the form of the distri-
bution function so that this effect will be taken into
account.

For simplicity we shall assume an isotropic disper-
sion relation e = p2/2m. Since there is no external
field, the distribution function depends only on the
electron energy, i.e., f (p) = f (e).

We expand the collision integral by the usual
method,28 in powers of the small quantity Kwq /e (p),
where Ku>q is the energy of a phonon with momentum
q; this procedure yields the following equation for
f(e):

9/(ε)
at

where

( 4 · 6 )

2p

2p

qdq'

where В (q) is the square of the matrix element for
the electron-phonon interaction and nq is the number
of phonons with energy Kau

•Hereinafter we consider only electrons in the conduction band,
although the results also apply for holes in the valence band.

and V is the volume of the crystal.
The electron-lattice collision time

2p
τ is

(4.7)

(4.8)

where ν is the electron velocity and I is the mean
free path. We multiply Eq. (4.6) by ep (e) , where the
density of states of electrons with energy e is

3 ^

ρ (ε) = ^ » >

and integrate over the electron energies, thereby ob-
taining

dE
dt ' (4.9)

Here Ε = J ep (e) f (e) de is the mean electron
о

energy.
The first term in the integral of Eq. (4.9) describes

the loss of electron energy due to spontaneous phonon
emission; the second term arises from electron diffu-
sion in energy space. As will be evident below, taking
account of the second term in the integral of Eq. (4.9)
in scattering of electrons on acoustic lattice vibra-
tions leads to a logarithmic infinity in the time re-
quired for establishing equilibrium between the elec-
trons and the lattice. The second term in Eq. (4.9)
need not be taken into account in the analysis of ther-
malization of electrons to an energy which is greater
than the lattice temperature.

Let us consider the thermalization of an individual
electron and neglect degeneracy. In this case,

/(ε)ρ(ε) = δ(ε-

I. For acoustic phonons31

Using (4.4) and (4.10), we obtain from (4.9)

(4.10)

( 4 Л 1 )

(4.12)

where a0 is expressed in the following way in terms
of the mobility in scattering on acoustic vibrations of
the lattice w:

*„ — 5 . (4.13)
3 γη w(T) (kT)2

The time to go from energy EQ to energy Ε is

(4.14)

It is important that the thermalization time t de-
pends only on two semiconductor constants, the mobil-
ity and the velocity of sound. When Eo » E, the time
to reach an energy corresponding to T » 300° К for
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electrons in Ge (w » 3600 cm2 ν ι sec"1 at room

temperature and u « 4.94 χ 105 cm/sec) is t и 4.5
x 10~10 sec; for electrons in

Si (ш% 1200 cm zv"' sec"1 and и % 8.5.105 cm/sec),

t es 5.1-ΙΟ"11 sec .

The ratio of the times required to go from energy

Eo to Ε for Eo » Ε in two different semiconductors

χ and у is

(4.15)

Equation (4.12) has a simple physical meaning. The
energy lost by the electrons in emission of an acoustic
phonon is Kwq = uq. Since scattering on acoustic pho-
nons is spherically symmetric, and the maximum mo-
mentum of the radiated phonon is twice as large as the
electron momentum, Ka>q ~ (2meu2)^2. The frequency
of collisions is associated with the energy loss and is
expressed in terms of the lattice collision time (4.8);
we must take account of the fact that there is an en-
ergy loss in only one out of 2nq + 1 collisions. Thus,

dE

П. Thermalization of fast electrons by optical lat-
tice vibrations in a valence semiconductor is described
by Eqs. (4.6) and (4.9) when the electron energy Ε
» Κω0, where Κω0 is the energy of an optical phonon
(Κω0 и кТр, Tj) is the Debye temperature).

In this case31

3 I

• Wv_ dE_ _ _ КЮЬ '

kfn«fc<B0 ' dt ~ | / ? л „ „
__ „ : _ ι χ A = • ,(4.16)

where К is the reciprocal lattice vector and D2 is the
optical phonon interaction constant, which is analogous

toC 2

The time to go from energy Eo to Ε is

(4.17)

Taking С2 я D2 and comparing the thermalization
times for optical and acoustic phonons, we find

г opt 10"2.

A negative temperature can be produced in a semi-
conductor only when the electrons in the conduction
band and the holes in the valence band are highly de-
generate and a r e thermalized by the crystal lattice.
The degree of degeneracy depends on the temperature
(mean energy) of the electron gas and its density.
Reduction of the mean energy of the electron gas
causes a marked increase in thermalization time so
that electrons can recombine before the negative tem-
perature is produced. For this reason it is desirable
to increase the density rather than to reduce the en-

ergy.* It is pointed out in reference 24 that energy
exchange is stronger in electron-electron collisions
than in collisions with acoustic phonons even at elec-
tron densities of η ~ 1014 c m " 3 (for Τ < Τχ) and e
> kTD the interaction with optical phonons can be
neglected).

Thus, at the electron densities necessary for ob-
taining negative temperatures, the form of the d i s t r i -
bution function may be assumed known and taken as :

f(s) = {e~^ + i)'\ (4.18)

where μ is the chemical potential and θ is the tem-
perature of the electron gas.

The thermalization process means essentially that
the temperature θ is reduced to the temperature of
the lattice T. We have already determined the ther-
malization time for electrons without taking account
of degeneracy or the second term on the right-hand side
of Eq. (4.9). Now, using Eq. (4.9) we can determine
the time for the temperature of the electron gas to
change from θ0 to Θ, taking account only of the inter-
action with acoustic phonons.

Introducing Eq. (4.18) in the usual way, we have
from Eq. (4.9)

dt
(4.19)

where

8*Q(e)/(e)*s.

Equation (4.19) is a differential equation for θ (t)
which reduces to integration of elementary functions
for sufficiently strong degeneration, i.e., when
μ/кЭо » 1· Under these conditions, the usual proced-
ure for expanding the integrals32 for E, Et/2 and μ
yields

db

'd~f
(4.20)

where

(Jlh)* f Ъп

and η is the electron density.

Integrating Eq. (4.20) we have

Tin

nk
tan

_1 nk

/6 μ,
9 0 - tan

ι
/ π2ί:2 \2

- г ) С 1 + м 8 0
_1 nk (4.21)

When θ —• Τ, the first term in the brackets in Eq.
(4.21), which derives from the second term on the

*The electron density, however, must not be high enough to
give a negative dielectric constant in the frequency region of in-
terest.
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right-hand side of Eq. (4.9), approaches infinity in
logarithmic fashion, corresponding to an infinite time
for establishment of equilibrium between the electrons
and the lattice. When θ > Τ, the logarithm in Eq. (4.21)
can be neglected and the thermalization time is given
by the following expression:

ί«= _^1-(θ _β). (4.22)

To compare the thermalization time with and without
degeneracy [cf. Eq. (4.14)], it is convenient to replace
the temperature θ by the mean electron energy e in
Eq. (4.22). Then ( 0O » Θ)

where

12μ§

Although Eqs. (4.14) and (4.22), have different forms,
both give thermalization times of the same order of
magnitude.

Thermalization of a degenerate electron gas on op-
tical phonons can be neglected because in cases of
practical interest the mean electron energy is less
than Κωο when degeneracy is important. Thus, the
thermalization of the electron gas in a semiconductor
can be divided into two stages: 1) thermalization on
optical vibrations of the lattice to an energy of approxi-
mately Κω0, with a short characteristic time (4.17),
and 2) a further thermalization on acoustic vibrations
with a much longer characteristic time, as described
by (4.14) and (4.21).

Thus, the time during which a negative temperature
obtains is determined basically by thermalization of
the electrons from an energy Κω0 to an energy corre-
sponding to the required degree of degeneracy, with
the sole mechanism being the interaction with acoustic
lattice vibrations.

We now consider in greater detail the pulse method
for producing negative temperatures between impurity
levels and the associated band in a semiconductor.
For impact ionization, the field for which there are
N-n electrons in the impurity levels in the stationary
state is found from the following condition:

/ дт \ O n F a / ΛΓ „\ Λ (A OQ\

where β is the probability of recombination of conduc-
tion electrons with the impurity levels, a is the colli-
sion ionization coefficient (field dependent), N is the
number of donor impurities per cubic centimeter, η
is the number of electrons in the conduction band and
gT is the probability of thermal ejection into the con-
duction band (per second).

Direct ionization of impurities by the field (Zener
effect) is described by the equation,

n)-pn2 + gT(N-n)^0, (4.24)

where γ is the probability of ionization of an impurity
atom by the field (per second).

Thermal ejection can be neglected at low tempera-
tures in Eqs. (4.23) and (4.24). Then, if the number of
electrons in the impurity levels is to be smaller than
ΔΝ (ΔΝ « N), when Eq. (4.23) holds, we require that

<>••

(4.25)

when Eq. (4.24) holds, this requirement becomes

(4.26)

The impurity levels are emptied by the mechanism
which first satisfies one of the inequalities given above
at low fields.

If a satisfies the condition in (4.25) for some field
while γ has not reached the value aN, the impurity
population is reduced to ΔΝ by impact ionization, and
vice versa. From a knowledge of the distribution func-
tion for the conduction electrons in a strong field we
can obtain the field dependence of the collision ioniza-
tion coefficient if ionization is treated as a perturba-
tion. When scattering on optical lattice vibrations can
be neglected (low temperatures and shallow impuri-
ties), a is given by:33

F2

r[ i'l / Ί 4 5

(4.27)

where Γ (χ) is the gamma function, I is the impurity
ionization potential, and σ0 is the maximum ionization
cross section

The probability of ionization of an impurity atom by
the field can be estimated if we know the probability
for ionization of the ground state of the hydrogen atom;
we change the ionization potential in the appropriate
formula and replace the ordinary mass by the effective
mass. We have34

3eftF (4.29)

The expression (4.29) for y(F), shows that with a
sufficiently strong field we can always satisfy the con-
dition in (4.26), i.e., the required emptying can always
be achieved by virtue of the Zener effect. The situa-
tion is somewhat different with Eq. (4.25) for a. The
exact dependence of a on field intensity F cannot be
determined for very strong fields. Hence, the condi-
tion in (4.25) will not be satisfied if the coefficient β
is very large. However, β is probably small because
in a strong field electrons cannot recombine via the
transfer of only a single phonon. On the other hand,
the quantity g-p in Eq. (4.23) can be large in a strong
field because of the Frenkel effect.35 The last two
mechanisms can provide the required emptying even
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before the Zener effect. Estimates show that marked
emptying of shallow impurities (for example Sb in
germanium) occurs at fields of 20 v/cm.

As has been indicated above, the production of a
negative temperature between impurity levels and the
associated band is possible so long as the lifetime of
the excited carriers т с is greater than the thermali-
zation time t, which is actually determined by
Eq. (4.14), i.e.,

t c > — Ц . (4.30)

In Eq. (4.14) it is assumed that Eo » Ε while Ε « kT,

where Τ is the temperature of the semiconductor lat-

tice. On the other hand, for impurity recombination

т с is given by the expression

x?>*vac{N — n), (4.31)

where ν is the electron velocity and σ 0 is the cross
section for nonradiative recombination.

Since the existence of a negative temperature re-
quires that there be degeneracy in the conduction band,
the temperature of the crystal must satisfy the famil-
iar relation

Τ < 2ятГ1к-1ъ.гп3.

From (4.30), (4.31), and (4.32), it follows that

(4.32)

(4.33)

For the impurity36 Sb in Ge (a c RS 5 x 10 1 3 cm2,
m * 2.5 x 10" 2 8 Γ), we find from Eq. (4.33) Τ < 1.3°К.

The impurity concentration at the required temper-
ature is found from the condition in (4.32)

kmT (4.34)

An estimate for electronic Ge at Τ = 1°K gives
η « 4.2 x 1014 cm"3; thus, we find from (4.31) т с

и 0.5 x 10"8 sec.
It should be noted that the oscillation condition

(Sec. 8) imposes a limitation on the minimum number
of electrons in the conduction band.

The estimates given above show that for Ge and
other impurity semiconductors negative temperature
states can be obtained in principle. However, the
necessity of using low temperatures and of switching
the field off rapidly imposes great difficulties.

In interband transitions the electric field required
for producing a sufficient concentration of electrons
in the conduction band is a sensitive function of the
width of the forbidden band. Thus, high intensities
and relatively short pulses are required in semicon-
ductors with large forbidden bands. If the effective
mass of the carrier in the semiconductor is not small
compared with the mass of the electron, the concen-
trations needed for degeneracy imply high currents
and high powers; in this case it is difficult to keep the

sample at a low temperature. This is why it is diffi-
cult to obtain negative temperatures in such familiar
semiconductors as germanium and silicon. The pro-
duction of negative temperatures is facilitated through
the use of semiconductors with narrow forbidden bands
and carriers with small effective mass (for example,
InSb) if the lifetime of the nonequilibrium carriers is
long enough. It should be noted that the lifetime of
nonequilibrium carriers in interband recombination
in pure crystals is, as a rule, many times greater
than the lifetime of nonequilibrium carriers with re-
spect to impurity levels.

At the present time it is still difficult to choose
semiconductor materials suitable for the production
of negative temperatures because the characteristics
of highly purified semiconductor compounds are not
known.

5. Production of Negative Temperatures Between
Levels in the Same Band in Semiconductors
("Negative Mass Amplifiers")

In reference 37 the suggestion is made that elec-
tromagnetic waves can be amplified by so-called
negative-mass carriers in a semiconductor; the mass
of these carriers is "negative" because in moving
through a field these carriers can transfer their en-
ergy to the field, i.e., they exhibit negative losses.

Consider an electron with energy e (p) (Fig. 7)
in a conduction band in a semiconductor.* In inter-
acting with radiation this electron can absorb a photon
of energy Κω and, by this means, be transferred to a
higher energy level; this electron can also radiate a
photon and drop to a lower energy level. The proba-
bility of these two processes depends on the level
structure of the band, i.e., the matrix element for the
transition and the level density of the final state.

FIG. 7. Energy diagram for a conduction
band: £(p) is the energy of an electron with
momentum ρ, ε| is the lower boundary of the
conduction band, 6j is the upper boundary of
the conduction band.

e(p)

When the matrix elements for absorption and emis-
sion of photons are the same, as is generally the case,
the probability of a transition from the level e (p) to
e (ρ) + Κω or e (ρ) — Κω is determined by the density
of final states. Thus, the probability of induced emis-
sion of a photon by the electron will be greater than
the probability of absorption if the density of final
states ρ (e -Κω) is greater than ρ (e + Ηω) and vice
versa. When the electron energy covers several
states an average must be taken over these states.

Thus, in order for an individual electron to radiate
under the effect of an external field, it must be in a
state for which

*These considerations also apply for holes in the valence band.
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Эр (β)

δε (5.1)

i.e., the density of states must fall off with increasing
energy.

For isotropic dispersion we can write e (p) = e0

+ (p — po)
2/2m near the top and bottom of the band,

where the constants e0 and p0 are respectively the
limiting values of energy and momentum; the sign of
dp (e )/9e determines the sign of the effective mass of
the carrier m, which is given by

(5.2)
" " dp* •

It follows from Eq. (5.2) and from the dispersion rela-
tion that the effective mass is positive for an electron
in levels in the lower part of the conduction band and
negative for levels in the upper part of the conduction
band. Thus, an electron can radiate by stimulated
emission if it is in a negative mass state, i.e., if it is
in the upper part of the conduction band.

The situation can be illustrated by a classical analy-
sis of the behavior of an electron in a semiconductor
in the presence of an electric field. Suppose that the
electron is in a negative mass state with energy e (pi).
In the electric field F the electron experiences a force
- e F (Fig. 8). To be definite we shall assume that the
field direction is such that the force which acts on the
electron is in the direction of positive momentum p.
Because of the field, in a time dt the electron goes
from momentum p l f to p t + dp, where dp = -eFdt .

FIG. 8. Diagram of pos-
sible transitions for two elec-
trons in a conduction band
under the effect of an applied
external field; the magnitudes
of the momentum are the same
but the directions are different.

PiP>*dP

In the new state the electron energy is less than the
original energy; the net effect is an energy transfer
from the carrier to the electric field, i.e., amplifica-
tion of the field. However, for an electron which is in
an initial state of the same energy e but different mo-
mentum P2 (Fig. 8), so that e (pj) = e (p2), the transi-
tion to the new state p2 + dp corresponds to an increase
in electron energy because of the external field. Thus,
in negative mass states we can have both amplification
and absorption of the energy of the external electro-
magnetic field. If we now average over electron states
of a given energy, as shown above, the total effect is
amplification of the external field applied to the semi-
conductor, in accordance with the quantum-mechanical
analysis given earlier.

It should be noted that the foregoing applies to an
individual electron in a negative mass state. In semi-
conductors, however, there is always a finite number
of electrons and the behavior of these electrons in the

field must be analyzed by statistical methods. It is
then found that a system in thermodynamic equilibrium
can only absorb electromagnetic radiation, regardless
of the sign of the effective mass of the carrier.

We now consider two electrons: in a time dt one of
these, under the effect of the field, goes from energy
ej to a higher energy e2 with absorption of field en-
ergy; the other goes in the reverse direction (Fig. 9).

FIG. 9. Diagram showing
simultaneous transitions under
the effect of an external field
with the absorption and emis-
sion of energy.

PiPt+ap

It is clear that the external field will be amplified
only if the probability of finding an electron in level
e2 is greater than the probability of finding an electron
in level e t . In thermodynamic equilibrium the level
population falls off with energy so that amplification
is impossible.

In order to obtain amplification by means of nega-
tive mass carr iers , as in other cases, thermodynamic
equilibrium must be disturbed and the system must be
in a state in which the number of transitions from
higher levels to lower levels is greater than the num-
ber of transitions in the opposite direction. As will
be shown below, this state is a negative temperature
state.

Since the number of electrons in a state with energy
e is proportional to the density of levels ρ (e) , the
analysis given above for a single electron must be
modified to take account of the distribution over levels.
The difference between the number of transitions per
unit time in which there is absorption and induced
emission, under the effect of η photons, is

nW {Q (ε) ρ (ε - Щ / (ε) [1 - / (ε - Ш)\

where W is a quantity which is proportional to the
square of the matrix element for the interaction of a
photon with an electron in the semiconductor. It fol-
lows from (5.3) that the following relation must hold

/(ε)>/(ε — %ω) (5.4)

if the induced emission is to be stronger than the absorp-
tion. This relation is in complete agreement with the
general requirement on the form of the distribution
function for states in which a system can amplify
(negative temperature states) given above in Sec. 1.

It should be emphasized that this result is independ-
ent of the sign of the effective mass of the carr ier .

In reference 37, two methods have been proposed
for using carr iers with negative effective mass in a
cw semiconductor amplifier. Both methods are based
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< 0 up to the large

0 for F—- °°j. It isi s

on an energy analysis and it is proposed to obtain
negative-loss states by applying a fixed electric field
to the semiconductor. This field is intended to serve
as a source of energy for amplification.

The condition in (5.4) was not taken into account in
reference 37, however, and a number of authors38"41

have shown that the analysis in reference 37 does not
actually prove that a negative-mass amplifier is pos-
sible. Indeed, a negative-mass semiconductor ampli-
fier or oscillator must be analyzed in terms of the
possibility of disturbing thermodynamic equilibrium
and obtaining states which satisfy the condition in (5.4).
In reference 37 it is proposed to use the stationary
state in an isotropic band in a fixed electric field; how-
ever, it can be shown by direct calculation that it is
impossible to obtain states which satisfy (5.4) in a
semiconductor25"28 [cf. Eq. (4.5), Sec. 4]. The distri-

bution function is such that ^

ι , „ . *• ы /9f(eF)values of the field l·—^——

also impossible to obtain amplification in very strong
fields (scattering of electrons on lattice phonons can be
neglected) even if collision ionization and the Zener
effect are neglected. In this case, the electron will
move periodically between the top and bottom of the
allowed band so that electron states with positive and
negative mass are equally probable. Thus, for an
isotropic effective mass it is impossible even in prin-
ciple to obtain states with negative losses under sta-
tionary conditions; in the foregoing we have also neg-
lected additional difficulties associated with ioniza-
tion of the valence band and interactions with optical
phonons in strong fields.

In the second method it is proposed to use me aniso-
tropic effective mass effect; in this case the mass can
be negative for certain direction of the quasi-momen-
tum p.

For example, the energy structure of the valence
band of germanium for heavy holes is of the form
shown in Fig. 10. For this level structure a carrier
at certain points inside a cone of angle θ has a nega-
tive effective mass in the direction of py. This result
follows directly from the curves in Fig. 11. In the ab-
sence of a field the carriers lie within a circle close
to the origin of coordinates if the temperature of the
sample is low.

A fixed electric field F is now applied in the χ
direction; the carrier moving in the field enters a re-
gion in which its effective mass in the у direction be-

FIG. 10. Possible cross sec-
tion for equipotential surfaces in
a plane.

Negative mass cone е(р„\

FIG. 11. Curve showing
the dependence of energy Ε
on momentum p y for
p x = const.

comes negative, so that it can amplify an oscillating
electric field applied along the у axis. In this case
negative-mass states are achieved at relatively small
carrier energies so that losses due to ionization and
emission of optical phonons are negligible.

It is proposed in reference 37, that under the effect
of the field the carrier is displaced inside the negative
mass cone, since scattering on the acoustic vibrations
of the lattice is neglected; it is also assumed that upon
reaching an energy equal to the energy of an optical
phonon the carrier radiates instantaneously and re-
turns to the origin of the coordinates. This assump-
tion corresponds to an infinitely large optical-phonon
interaction constant D2 so that D2/C2 —• °° . However,
in actual semiconductors these constants are of the
same order of magnitude and the distribution function
is "spread out" in the direction of p y . Although the
distribution function has not been computed for this
case, it would appear that it is again impossible to ob-
tain a distribution which satisfies (5.4). Certain au-
thors have proposed that radiating states with negative
mass can be obtained by using fixed electric and mag-
netic fields simultaneously.42 It is shown in reference
41, however, that negative temperature states cannot
be obtained in this way.

Thus, the application of fixed fields to a semicon-
ductor cannot produce negative temperature states for
transitions inside a single band. As in transitions be-
tween different bands, one might expect to produce
negative temperatures within a single band by using a
pulse technique in a semiconductor; however the prac-
tical realization of this idea is not very likely because
times t RJ 10"10 — 10"12 sec are involved.

6. Production of Negative Temperatures by Double -
Resonance Methods

In maser amplifiers that operate at centimeter
wavelengths negative-temperature states are frequently
produced by allowing the quantum-mechanical system
to interact with an auxiliary high-frequency (pumping)
field.43'72'73

Consider a three-level system (Fig. 12). Suppose
that radiation of frequency ω13 is applied to the sys-
tem and that the intensity of radiation is such that
levels 1 and 3 are saturated; under these conditions
we can produce a negative temperature between levels
1 and 2 or 2 and 3.

In reference 44 it was first proposed to obtain se-
lection by means of an auxiliary high-frequency pump-



716 BASOV, KROKHIN, and POPOV

FIG. 12. Three-level system.

ing field in amplifiers in which spin systems are used,
bi these systems the level populations are given by

the equations

in.

+ W32(n3-n2),

dn3 Г Ишя
Ν1.ω3

(na - η,), (6.1)

where nj is the population of the i-th level, N = n t

+ n2 + n3, Τ is the temperature of the system, ω^ is

the frequency of the transition between the levels de-

noted by i and j and wy is the probability of a tran-

sition from level i to level j under the effect of ther-

mal excitation. For thermal equilibrium

for i < j where W31 and W32 are the probabilities for

the transition between levels 3 — 1 and 3 — 2 respec-

tively. In Eq. (6.1) it is assumed that Κω^ « kT.

When the intensity of the pumping radiation is high,

so that W31 » W32, an approximate solution of the sys

tem is (6.1) is

(6.2)

The use of pumping radiation in the optical region for

changing populations in Zeeman levels was first pro-

posed in reference 45. If circularly polarized radia-

tion is used, it is possible to effect a redistribution

over the Zeeman levels since, transitions take place

which satisfy the selection rule As = + 1 or As = - 1,

depending on the direction of polarization (s is the

quantum number that characterizes the projection of

the angular momentum of the system in a given level

in the field direction). For example, for the level

system shown in Fig. 13, an excess population can be

obtained in the Sj/2 level with s = + 2 if circularly po-

larized radiation is used to induce transitions charac-

terized by As = + 1, provided the relaxation time be-

tween s = ± i- levels is appreciably greater for Sy2

than the lifetime of the atom in the excited state Pj/2>

with s = + 5; as a rule this condition is satisfied. In

spontaneous emission the transitions As = +1 and

As = 0 are equally probable, so that an excess popu-

FIG. 13. Level diagram showing
Zeeman splitting.

P'A

1

1 ч-
lation accumulates in the S y2, s = level. In this
case it is assumed that the relaxation time between
the Py2, s = ±g is large compared with the lifetime
in the P)/2 level for transitions to the Sy2 level. If
it is small, a population accumulates in the S]/2,
s = + 2 level, as before, since transitions from Pj/2,
s = -g to Sj/2» s = ± 2 are equally probable. The
ratio of the number of atoms with Sj/2> s = + 2 to the
number of atoms with Sy2, s = — 2 is equal to the
ratio of the relaxation times between these levels to
the reciprocal probability for excitation from Sy2> s

= - 2 tO PJ/J, S = +2

(6.3)

where n2 is the number of atoms in the S

state, щ is the number of atoms in the S
y2,

1(/2,

s = +
s = —

state, W is the probability of excitation from S]/2» s
= —2 to Pj/2, s = +2 and τ is the lifetime of the atom

in the S]/2. s = +2 state.] / 2

The transition frequency for adjacent Zeeman levels

is

eH
2nmc

~2.9-106Я sec"1 (6.4)

where Η is the strength of the magnetic field in cgs

units. In realizable fields Η » 105 and ω/2π « 3 x 101 1

sec"1, yielding radiation in the millimeter wavelength

region. For this reason the Zeeman splitting cannot

be used for obtaining radiation at infrared or optical

wavelengths.

However, three-level quantum-mechanical systems

of this kind can be used to transform optical and infra-

red radiation into radiation in the centimeter wave-

length range, where high-sensitivity detectors are

available.

It should be noted, that when semiconductors are

considered, the quantity m in Eq. (6.4) is the effective

mass of the carrier; the effective mass can be appre-

ciably smaller than the mass of the electron. In this

case the transition frequency ω in realizable fields

of 105 oe can approach the limits of the infrared region.

A shortcoming of this method of obtaining negative

temperatures is that presently available radiation

sources are not powerful enough to achieve saturation

in the pumping transition. For example, for a transi-

tion frequency ω/2π = 10 u sec"1 (λ ~ 3μ), with a

dipole moment d и 10~18 cgs units and Δω/ω ~ 10 ~e,

the power required for saturation is
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Л05 w/cm2. (6.5)

The pumping power can be reduced by several orders
of magnitude if resonators are used; however, the re-
quired power is still quite high and in practice the
pumping transition is far from saturation.

It follows from the system (6.1) that the ratio of the
populations in levels 2 and 3 is independent of the
pumping power; this ratio is given by

^3 = - ^ . (6.6)

This relation obtains when the population in levels 2
and 3 due to transitions caused by the pumping radia-
tion is larger than the population characteristic of
thermal equilibrium in these levels; that is to say, the
minimum power required for producing a negative
temperature is determined from the condition

»n\, (6.7)

where W is the probability of a transition under the
effect of the pumping radiation [cf. Eq. (6.1)] and n|>
is the population of level 2 at thermal equilibrium.

Using Eq. (7.3) for the transition probability, when
the level width due to collisions is approximately equal
to the Doppler width (in this case minimum pumping
is required), we obtain the following inequality:

сШ<та (
2n\dvl\*wat

(6.8)

For example, for the level scheme shown in Fig. 12,
with ω13/2π = 1 χ 1014 sec"1, ω32/2ττ = 3 χ 1013 sec"1,

Δω/ω и 10"6 w3i = w32 = 107 sec"1, w21 = 108 sec"1,
1 810"18 cgs esu, and Τ » 300° К, the required

power is

Ρ > 1(Г3 w/αηΐ (6.9)

Thus, to obtain negative temperature states between

levels 3 and 2 it is necessary, as follows from Eq.

(6.6), that W21 > w32; in addition, the pumping power

must satisfy the condition in (6.8). When the transi-

tion frequency is increased, the required power is re-

duced, as follows from (6.8). The production of nega-

tive temperature states is thus facilitated; on the other

hand the number of active molecules is reduced.

In reference 46 it is proposed that atomic levels in

gaseous potassium be used to obtain a negative temper-

ature in the wavelength range λ ~ 3.14μ. A level dia-

gram for potassium, and the pertinent lifetimes, are

shown in Fig. 14. In this case the pumping radiation

causes transitions between the 4s and 5p levels while

the negative temperature is maintained between the 5p

and 3d levels. It is suggested that pumping radiation

can be obtained from a potassium lamp by means of a

filter which selects radiation corresponding to the

4s-5p transition while removing radiation correspond-

ing to the 4s-4p transition. The vapor pressure of the

зо-

to ••

FIG. 14. Level diagram for potassium.

potassium vapor must be such that the line width is due
primarily to the Doppler effect. The required potas-
sium vapor pressure can be achieved at Τ = 435° К and
ш this case Δω/ω = 1.2 χ 10"6. In reference 46 it is

stated that sufficient pumping power can be obtained

with a 15-watt potassium lamp operated with forced

cooling. According to the authors of reference 46, the

radiation power at the required frequency (4s-5p tran-

sition) is 0.6 mw for a lamp volume of 5 cm3.

In reference 47 the use of pumping radiation is con-

sidered for obtaining negative temperature states in

solids; in solids the level width is much broader than

in gases and for this reason the power required to ob-

tain negative temperature is greater than that given

in (6.5).

If the pumping power source has a broad spectrum,

and the lines are broad, as is the case in solids, some-

what less power can be used. Nevertheless the power

of presently available sources is still inadequate for

obtaining negative temperatures in solids.

The most promising materials for obtaining nega-

tive temperatures in solids would seem to be single-

crystals that contain impurity atoms of the rare earths;

these have narrow spectral lines associated with elec-4 8

tron transitions between levels in unfilled inner shells.

It is interesting to note that recently obtained spec-

tra of certain organic materials at liquid-nitrogen tem-

peratures exhibit lines with widths as narrow as 1 or 2

cm"'. 4 8 a These materials may turn out to be suitable

for obtaining negative temperature states by the double-

resonance method.

An experimental investigation of the possibility of

obtaining a negative temperature state between the

82D and 72P levels in cesium is reported in reference

79.

The cesium atoms are excited from the 62S]/2 level
to the 82Ру2 level by a helium lamp. If inert gases
(for example, helium) are added to the cesium vapor,
the cesium atoms make transitions from the 82P!/2 level
to the 82D3/2 level; it then becomes possible to pro-
duce a negative temperature between the 82D and 72P
levels.
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In the experiments the authors observed that the in-
tensity of the radiation from the cesium atoms was in-
creased when the intensity of the excitation radiation
from the helium lamp was increased. This effect can
be explained by a negative temperature between the
82D and 72P levels in cesium. However, the authors
point out that the experiment does not give really direct
verification of a negative temperature in the cesium.

II. GENERATION AND AMPLIFICATION OF ELECTRO-
MAGNETIC WAVES BY NEGATIVE TEMPERATURE
SYSTEMS

7. Interaction of Radiation with Negative-Temperature
Systems

A system in a negative-temperature state amplifies
radiation incident upon the system. If certain condi-
tions are satisfied — the oscillation conditions, the
negative-temperature system becomes unstable and
oscillates.1

By analogy with positive-temperature systems,
which are characterized by an absorption coefficient,
a system in a negative-temperature state can be char-
acterized by an emission coefficient a (ω) which de-
scribes the growth of the amplitude squared (radiation
intensity) I = οΓ2/4π of the wave transmitted through
the system. This problem has been considered to some
extent in reference 79. For small values of intensity,
in which case saturation can be neglected, the follow-
ing relation holds:

strong saturation

/ (I) = / (0) (7.1)

where 1(0) is the initial value of the field intensity,
at the point χ = 0, and I (I) is the same quantity at
χ = I, where I is the length of path traversed by the
wave. The emission coefficient12 α (ω) is related
to the probability of a stimulated transition Wm n by
the following expression:

Wn

α (ω, /) =

1/t

Wmnbe>n (7.2)

(7.3)

where a ) m n is the frequency of the transition, ω is
the frequency of the incident radiation, d m n is the
matrix element of the dipole moment between the lev-
els being considered, τ is the mean lifetime of the
system in the excited state, and η is the number of
active molecules per unit volume.*

At high intensities (saturation), the inequality

^<T , <7-4>

holds in (7.3), and the dependence of intensity on dis-
tance is more complicated. In the limiting case of

•Equation (7.3) applies when the line broadening associated

with the lifetime τ i s greater than that due to other causes, for ex-

ample, the Doppler effect in beams, wide carrier bands in semicon-

ductors, etc.

(7.5)

The spectral distribution of radiation which passes
through such a medium is also affected. Because the
direction, polarization, and frequency of the photons
produced in stimulated emission are exactly the same
as those of the incident photons, any change in the spec-
tral distribution of the radiation is due to the line shape
alone.

Suppose that broadband low-intensity radiation is
incident on a system, so that (7.1) holds.

At distances I < I/a (k)mn). we add to the initial
intensity Ι (ω, 0) an intensity with a spectral compo-
sition in the form of the spectral line

/ (ω, l) = I (ω, 0) [1 + α (ω) Ι]. (7.6)

At distances I » I/a (ojm n), before saturation sets
in, the spectral distribution of the radiation is much
narrower than the spectral line (Fig. 15). The width
is given by

In 2
a(amn)l

(7.7)

At high intensities (saturation), the spectral dis-
tribution of the radiation stimulated by the incident
photons is retained (Fig. 15).

Thus, when spontaneous emission is produced in a
sample of sufficiently large dimension, and the spec-
tral distribution of the spontaneous emission is given
by the line, the output from the sample is essentially
monochromatic at a frequency close to the peak of the
spectral line associated with the spontaneous emission.

In the analysis given above we neglect reflection of
the radiation at the boundaries of the sample, i.e., it
is assumed that there is no feedback in the system. In
a certain sense the radiation produced under these
conditions is similar to fluorescence radiation; it is
distinguished from the latter, however, by the narrower
spectral distribution.

In addition to the process described above, in which
the number of photons is increased by stimulated
emission, the sample exhibits radiation due to spon-
taneous transitions. The overall spectral distribution
of the radiation (spontaneous and stimulated) can be
obtained as follows (Fig. 16).

We consider the radiation produced by spontaneous
and induced transitions in a plane layer dx; for the as-
sumed nonsaturation conditions

(7.8)

where β (ω) is the intensity of the spontaneous emis-
sion per unit length of sample in the χ direction in
the solid angle of interest to us do. Integrating, we
have

(7.9)
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FIG. 16. Layer of a negative tempera-
ture medium with a cross section of 1 cm2

and length dx.

where

Thus, for a thick sample I » I/a (w m n ) the
spectral distribution consists of a very narrow line
I (ω) eal superimposed on the background due to spon-
taneous emission β (ω)/α (ω).

It should be noted that while the width of the stimu-
lated emission line is reduced as the sample dimen-
sions are increased, the spectral distribution of the
spontaneous emission background is independent of
sample dimensions.

For saturation conditions, Eq. (7.8) is replaced by
the following expression:

(7.10)

where

for (ш-со т п)2<'

Integrating Eq. (7.10) we have

Ι (ω, Ζ) = (7.11)

In this case the narrow spectral line Ι (ω, 0) is super-
imposed on the broad background, whose intensity in-
creases linearly with sample dimensions.

As the thickness of the sample is increased the ra-
diation approaches the continuous background while the
intensity of the spectral line (superimposed on this
background) is reduced.

It should be pointed out that for sufficiently large
sample dimensions the spectral distribution of the
thermal radiation due to a spectral line of width Δω
will be considerably broader than Δω.

8. Oscillation Condition

In the preceding section we have considered the
transmission of radiation through a negative-temper-
ature medium without taking account of effects which

FIG. 15. Narrowing of the spectral distribution of radiation
transmitted through a medium with negative losses in the ab-
sence of saturation.

arise at the boundaries of the sample. When these
effects are neglected the radiation is similar to fluo-
rescence. If there are reflecting boundaries in a
negative temperature system, however, there is a
positive feedback effect: photons reflected from the
boundaries can return to the point in space from which
they originate in the same state in which they were
emitted from this point. Because of this positive feed-
back, the system can oscillate when certain conditions
(oscillation condition) are satisfied.

For a maser oscillator containing a resonator with
quality factor Qres m which one oscillation mode can
be excited, the oscillation condition1 is written

p = *5£_. | d | . (8.1)

where β is the feedback factor (for oscillation β > 1),
No is the number of active molecules which enter the
resonator per second, V is the volume of the reso-
nator, | d | is the dipole moment matrix element and
l/τ = Δω is the width of the spectral line. It is con-
venient to rewrite Eq. (8.1) in the symmetric form

Р = -^тЬ—?- sCii i c> 1, (8-2)

where n0 = NOT/V is the number of active molecules
per unit volume

In the optical and infrared regions it is essentially
impossible to excite only one mode in the neighborhood
of a given frequency, because the linear dimensions of
a typical resonator are of the order of the radiation
wavelength. Hence, in the optical and infrared wave-
length regions we must consider resonators in which
higher modes are excited simultaneously, so that a
given frequency corresponds to several modes. Under
these conditions, just as in the one-mode case, self-
excitation or oscillation is achieved when the power
radiated in a given mode by the medium with negative
losses is greater than the energy loss in this mode,
i.e., when

Praa>Pioss, (8.3)

where P r a c j is the power radiated by the negative
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temperature system and Pioss i s t n e power lost in
the resonator.

The power lost in the resonator can be expressed
in terms of the quality factor for a given mode

η £'storQ>
П°*а~ Qres '

where ESf.or = ϊίωΝ is the energy stored in the reso-
nator and N is the number of photons in the system
for a given mode.

The power radiated by the system can be computed
from the spontaneous decay lifetime. Let the lifetime
for radiative decay of a system of ρ oscillators in a
frequency band given by the line width Δω be τ; the
probability of radiative decay in a given mode is then

px
(8.4)

The probability of stimulated emission W s under
the effect of N photons in a given mode is N times
greater than the probability given in (8.4):

W* = Jx- ( 8 · 5 )

If a system of volume V contains nV active mole-
cules, the power radiated in a given mode is

hbmNV

px
(8.6)

Thus, the oscillation condition (8.3) leads to the ex-
pression

7lco NnV . ω . . . , ч

pX
(8.7)

i.e.,

сорт

If the volume V is free space, the quantity ρ is

P = (8.8)

In semiconductor oscillators the lifetime τ depends
on the number of free carr iers η and can be expressed
in terms of τ0 the value for some carrier concentration
n0:

* = =£-·· (8.9)
The condition in (8.7) now assumes the form

1. (8.10)
ωρη0 χα

As we have noted in the introduction, the dimensionless
quantity that determines the quality of a negative tem-
perature system is

κ = | < * 1 2 | ^ . (8.11)

where | d | 2 is the square of the dipole-moment matrix
element, η is the difference in the populations in the
upper and lower levels, and Δω is the width of the
spectral line.

The square of the dipole moment matrix element is
related to the spontaneous decay lifetime by the ex-
pression

τ =
3ftc3 (2π) 3

(8.12)
32π3ω3|ώ|2 '

In gas systems Δω/2π » 2 χ 107 cps at a pressure
of the order of 1 mm Hg, | d | 2 « 10~36 cgs esu, and
the maximum number of active molecules for a given
rotational level can equal the total number of mole-
cules in the rotational level, i.e., η = n1/Zroi where
щ is the total number of molecules per cubic centi-
meter at a pressure of 1 mm Hg and 2 Г О ^ is the rota-
tional partition function. For ΣΐΟι « 103 in a gas we
find Kg a s < 10~3. For paramagnetic ions in a crystal
Δω ~ 10~2 ω, ω/2π ~ 1011, | d [2 « 10"3 8 and for a
paramagnetic ion concentration of approximately 1%
we find Kp < 0.1.

When considering semiconductor materials, it is
convenient to replace | d | 2 in Eq. (8.11) by the lifetime
for radiative transitions (8.12). Substituting τ from
Eq. (8.9) in Eq. (8.12) we obtain the following expres-
sion for к:

In this case к is a nonlinear function of the density of
active particles n.

For the semiconductor crystal InSb, in which

c " 1lQ-\ -^ ~ 3 · 1013 sec" 1, η ~ 1017, r0 ~ ΙΟ"6

 s e c

К I S

for ηο = 5·1Ο16

21

κ ^ 1.

The power Ρ radiated by the maser oscillator when
the oscillation condition is well satisfied is determined
by the number No of active molecules produced per
unit time: 1

2
(8.14)

When a semiconductor system is pulsed, the maximum
power is

p , _ η %<s>

max = у Jl
(8.15)

where At is the length of the radiation pulse (the order
of the electron thermalization time in the semiconduc-
tor if the thermalization time is shorter than the life-
time ).

In cw maser oscillators the bandwidth is of the
order of the frequency spread όω due to spontaneous
emission:4 9

(8.16)

In pulse operation the bandwidth is determined by the
radiation pulse At since δω « l/Δί.

In the infrared and optical regions, radiation sources
are conventionally characterized by an effective temper-
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ature. The effective temperature of an oscillator can

be obtained if we assume that the power radiated by the

oscillator in the frequency interval determined by the

bandwidth (8.16) is equal to the power radiated in the

same frequency interval by a black body. The energy

flux from a square centimeter of surface of a black

body at a temperature Τ is given by the Rayleigh-

Jeans law when kT » Κω

* = ̂ · (8-17)

c(l-q)

For a semiconductor cube with sides I

r Innlhc2

I eff- =^ , *
,8.18)

An estimate of the effective temperature for the case

η = ΙΟ17 cm"3, I 1 31 cm, and ω/2π « 3 χ 1013 yields

Τ1 eff >Ю13 degrees.

In the present section we have considered the oscil-
lation condition when the resonator can support several
modes characterized by quality factors which are ap-
proximately the same. The case in which oscillation
takes place in several different modes simultaneously
requires separate analysis.50

9. Resonators

As has been noted above, simple modes cannot be
used in a resonator in the infrared and optical regions
because the resonator dimensions would be small and
the quality factor would be low for this kind'of opera-
tion.

A resonator consisting of two parallel reflecting
plates has been suggested in reference 13. The quality
factor for this configuration has been computed and
found to be rather high. This kind of resonator is
analogous to the Fabry-Perot interferometer used in
optical work. An experimental investigation of this
resonator in the millimeter wavelength region is re-
ported in reference 76.

A more detailed analysis of resonators of this kind,
which takes the spontaneous noise characteristic into
account, is given in reference 46. If the radiation
wavelength is small compared to the distance between
the plates and the dimensions of the plates, the geo-
metric-optics approximation can be used. In order
to compute the quality factor of a resonator of this
kind we must estimate the energy losses caused by
reflection at the walls and by radiation through the
lateral surfaces. The energy lost by reflection at the
walls is

dE = E^-{i-a), (9.1)

where Ε is the total energy in the resonator; cdt/L

is the number of reflections from the walls (separated

by distance L) in a time dt; a is the reflection co-

efficient; с is the velocity of light. Integrating Eq.
(9.1) we have

(9.2)

Consequently the characteristic damping time (photon
lifetime) is

L
-»-C(i-a)·

This lifetime is related to the resonator bandwidth:

(9.3)

Δω = — , (9.4)

which can be expressed in terms of the quality factor

Q of the resonator

Thus,

l-a)·

(9.5)

(9.6)

An estimate of the quality factor for L = 1 cm,

a = 0.95, and ω/2π = 1014 sec" 1 (λ = 3μ) yields

bi addition to the energy losses due to reflection

from the plates, there is a loss of energy due to radia-

tion through the lateral surfaces of the resonator

(Fig. 17)*

,„ „claaudt

dE= -E~—
(9.7)

where D is the transverse dimension of the resonator

and θ is the diffraction angle.

FIG. 17. Energy loss due to radiation
through the lateral surfaces of a resonator.

From Eq. (9.7) it follows that (20 « λ/D « 1)

E = Eoe D,

i.e.,

, _ D _

Consequently

Q' =

(9.8)

(9.9)

(9.10)

An estimate of the value of Q' for D = 1 cm and

ω/2π = 1014 sec" 1 yields Q « 108. It is obvious from

this value that diffraction is not important for the con-

ditions described here.

In resonators of this type, high Q can be obtained

only when the parallelism of the plates is very good.

In practice, the Q is determined by the parallelism

of the plates.

*To reduce the loss and the number of resonator modes, the
lateral walls can be made of a dielectric material; this approach
has been suggested in reference 78.
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If the plates are not strictly parallel, the deviation
angle is increased by an amount )30 for each reflection
(Fig. 18). Thus, the beam "walk-off" time due to non-
parallelism is of order

where η is the maximum number of reflections the

FIG. 18. Energy loss due to nonparallel-

ism of the plates.

beam can experience before leaving the system; this
quantity is determined by the condition

Then

, 1

The quality factor is

(9.12)

(9.13)

(9.14)

For Q" » 106, L = D = 1 cm, and ω/2ττ = 10 u sec"1

we have /30 » 10~3 «a 3". The high resonator Q ob-
tained at short wavelengths shows that it is completely
feasible to use dielectric resonators; in these reso-
nators reflection occurs at the boundary between two
media with different dielectric constants. In a semi-
conductor oscillator the resonator can be the material
itself, since semiconductors have high dielectric con-
stants (e ~ 10) up to the infrared region. On the other
hand, the high dielectric constant of semiconductors
means that it is difficult to extract the radiation from
the material, because the radiation incident on the sur-
face at oblique angles experiences total internal re-
flection. Hence, modes which propagate at small
angles to the surface of the sample have high Q and it
is reasonable to assume that oscillation will take place
primarily in these modes. The problem of extracting
radiation from systems which support a large number
of modes is one of considerable difficulty.

To compute the noise in maser amplifiers we must
know the number of modes which have high Q at a
given frequency. We have shown above that the Q as-
sociated with reflection from the resonator walls is
smaller than that due to "divergence" resulting from
diffraction. Because of this relation between the qual-
ity factors, a rather large number of modes which
propagate within some angle &, which is greater than
the diffraction angle, will have high Q.

By analogy with Eq. (9.9) we can write the lifetime
for photons reflected from the resonator surface at an
angle $

г» = 4 · (9.15)

We equate Eq. (9.15), which gives the reflection life-
time, and Eq. (9.3), to find the angle d-, inside of which
the quality factor is large,

η _ (1 — ct)D шД
L — Qc m

(9.16)

It follows that the number of high-Q modes in a
resonator is equal to the total number of modes in a
volume LD2, multiplied by the solid-angle ratio

2

From Eqs. (9.8), (9.16), and (9.17) we have

Pres=- (9.18)

For the kind of resonator considered above (L = D
= 1 cm, Δω/ω = 10"3, and ω/2π = 1014 sec"1), we find

Pres^lO". (9.19)

It is desirable to reduce the surface of the reflecting
plates in order to reduce the number of modes; for
example, when D = 0.1 cm the number of modes is
reduced to 102.

Coupling to a single mode, or a small number of
modes, can be achieved by means of the diffraction
pattern at the edge of the plate46 and a lens (Fig. 19).

FIG. 19. Coupling

to a small number of

modes by means of a

lens.

mirror

Since parallel bundles of rays incident on the lens at
different angles are focused at different points in the
focal plane, a small-aperture mirror located in the
focal plane can be used to obtain a coupling with single
modes. Below we consider the conditions that must
be satisfied to obtain coupling to one mode by means
of a lens. Suppose the radiation from the resonator
passes through one of the plates of the resonator. If
the reflection coefficient is a, the extracted power is
smaller than the power incident on the wall by a factor
( 1 - a ) .

For mode separation to be realized, the angle be-
tween the propagation directions of neighboring modes
must be larger than some minimum value. This angle
can be estimated as follows. A standing wave exists
between the two resonator plates, separated by a dis-
tance L, when the length L is a multiple of an integral
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number of half-wavelengths, i.e.,

2L = </>., (9.20)

where q is an integer.
For radiation propagated at a small angle to the

normal to the surface of the plate, the analogous con-
dition can be written in the form

2L
(9.21)

It is obvious that the minimum angle 0t in Eq. (9.2)
corresponds to the value qt = q + 1. This angle is
precisely equal to the angle between the propagation
directions of neighboring modes

«HiJ- (9.22)

If the resonator has a finite Q, and thus a finite trans-
mission bandwidth, a given mode does not propagate at
a given angle, but rather within a range of angles Δ01(

which can be obtained in similar fashion. From the
condition

(9.23)

(9.24)

we can show that

where Q is the quality factor of the resonator; the
quality factor and maximum bandwidth Δω are related
by the expression

~ (9.25)

If neighboring modes are to be separated the condition
θχ > Αθχ must be satisfied; this condition means that

4π(1-α)<1. (9.26)

In the derivation of Eq. (9.26) it is assumed that the
quality factor of the resonator is determined by the
reflection losses [Eq. (9.6)].

Besides (9.26), another condition must be satisfied
if different modes are to be separated by means of a
lens: the radiation which passes through the face plate
of the resonator suffers diffraction because of the
finite dimensions of this plate D, and the diffraction
angle must be smaller than the angle between neighbor-
ing modes 0j. This requirement yields the condition

^>L, (9.27)

which is easily satisfied even when D < L, because in
practice D » λ in the infrared region. The require-
ments in (9.26) and (9.27) are easily satisfied in the
resonators for which the numerical estimates have
been carried out above; that is to say, it is possible
to couple to a single mode.

10. Amplifiers

As indicated above, quantum-mechanical systems
in negative-temperature states can be used to amplify
electromagnetic waves.

Several kinds of amplifiers (paramagnetic ampli-
fiers ) have already been developed for the centimeter
and decimeter ranges.51"58 The distinguishing feature
of these amplifiers is the extremely high sensitivity.
The high sensitivity is a result of the fact that these
amplifiers can operate at temperatures close to abso-
lute zero, so that the amplifier noise is due only to
spontaneous emission from excited ions.60"64

In principle, in the infrared wavelength region, just
as in the centimeter region, two kinds of amplifiers
can be used: 1) resonance amplifiers51 and 2) travel-
ing-wave amplifiers.52·56'58

A resonance amplifier is essentially a regenerative
amplifier in which feedback is realized through the ra-
diation field. The negative-temperature medium plays
the role of the amplifier. The power gain of an ampli-
fier of this kind is given by the feedback factor [ cf.
Eq. (8.1)]

— γ% I a I VresT •

The gain is65

:7Τ=β?Α°' (10.1)

where k0 is the power transfer function of the reso-
nator in the absence of the negative temperature me-
dium. The bandwidth of these amplifiers is reduced
as the gain increases, as in other regenerative ampli-
fiers. The nominal bandwidth of the amplifier is de-
termined either by the width of the spectral line or by
the resonator bandwidth, depending upon which is nar-
rower. The dependence of bandwidth on gain is given
by

Δω (к) hi
к χ

(10.2)

The expressions given above apply for a resonator
in which one mode is excited in the neighborhood of the
frequency being considered.

As has been noted above, it is impossible in prac-
tice, at infrared wavelengths to make a resonator in
which only one mode is excited at a given frequency.
On the other hand, because the Q is high in the infra-
red region, several modes must be used if adequate
bandwidth is to be obtained.

Let us assume that by means of some optical sys-
tem we couple to Μ different modes (Fig. 20) that
have approximately the same quality factors and lie
within a frequency interval ΔΩ.

If the quality factors of the individual modes are
such that these modes overlap in frequency, as shown
in the figure, the transmission bandwidth remains un-
changed as the gain factor к is varied so long as the
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FIG. 20. Bandwidth of a multimode amplifier: ΔΩ is the fre-
quency interval over which the optical system is coupled, ΔΟ is
the bandwidth of the resonator for a given mode, Δω is the fre-
quency spread of the radiative transitions in the medium in a
negative temperature state.

modes do not separate; when separation occurs the
gain exhibits dips at certain frequencies.

In essence, the simplest type of travelling wave
amplifier has been considered in Sec. 7. As was in-
dicated there, the gain and the bandwidth of this am-
plifier are determined by the width of the spectral line
and by the radiation coefficient, and depend on the op-
tical path traversed by the wave. The dimensions of
amplifiers in the centimeter wavelength range are re-
duced by means of so-called slow-wave structures, in
which the group velocity of the wave is small.58 Sys-
tems of this kind can also be used in the infrared re-
gion (Fig. 21).

: e sample

A / / / \

mirror detector

FIG. 21. Slow-wave system.

The noise in negative-temperature amplifiers can
be determined, as noted above, by the spontaneous
emission of the excited particles, if the temperature
of the remaining elements of the amplifier is low
enough. Below we estimate amplifier noise temper-
ature.

For simplicity, we shall consider a two-level sys-
tem with all the elements in the upper energy level.
The noise is a maximum in this case.*

Suppose that the system is located in a resonator
with quality factor Q and that one mode is excited at
the frequency considered. We also assume that the
width of the radiation line of the negative temperature
system is greater than the resonator bandwidth. The
radiation produced in the resonator is measured by a
detector which does not introduce additional noise
(for example, a noisy detector coupled to a resonator
by an independent element with a ferrite isolator which
operates at low temperatures). If the oscillation con-
dition is not satisfied and the system operates as an

•This applies for noise due to coherent spontaneous emission,
the possibility of which has been indicated in reference 66, cf. ref-
erence 77.

amplifier with gain k, the noise temperature can be
determined as follows. The radiation power measured
by the detector is increased if the temperature of the
resonator walls is increased because at nonzero reso-
nator temperatures there are thermal photons in the
resonator and these are amplified by the amplifier.
In accordance with the usual convention, the noise
temperature is defined as that resonator temperature
for which the noise power measured at the detector is
doubled.

For a given resonator temperature T, the number
of photons in a given mode is

n=(ekT-l)-K (Ю.З)

The probability of stimulated emission due to the ther-
mal photons becomes equal to the probability for spon-
taneous emission when η = 1; this relation then deter-
mines the noise temperature in question:

to
Πη~2 '

(Ю.4)

The sensitivity of the amplifier can also be charac-
terized by the number of photons which produce an out-
put signal twice as large as the amplifier noise. In this
case enough power must be introduced into the reso-
nator to produce a single photon. By definition the
quality factor is

(10.5)
^loss

where E s t O r is the energy stored in the resonator,
ploss i s the power lost in the resonator, ω is the
frequency of a given mode in the resonator. Taking
Estor = ^ ω а ш * ploss = Φ-ω (ч is the number of pho-
tons produced in the resonator per second), we find

ω

~Q '
(10.6)

When the resonator supports several modes Eq. (10.6)
becomes

η = ̂ , (Ю.7)

where Μ is the number of modes at frequency ω. The
factor Μ in Eq. (10.7) arises because when several
modes can be excited the spontaneous emission in each
mode is independent of that in other modes.

It should be noted that the noise temperature, in the
sense defined by Eq. (10.4), does not depend on the
number of modes in the resonator; on the other hand
the quantum sensitivity (10.7) is reduced as the num-
ber of modes increases.

Actually, in detection of the thermal radiation from
a hot body (for example, the walls of the resonator it-
self), the number of photons in the resonator increases
in proportion to the number of resonator modes. How-
ever, spontaneous emission noise, which is proportional
to the number of different modes, also increases. Conse-
quently, the sensitivity of a quantum mechanical am-
plifier with a multimode resonator (in which all modes
are excited) does not change as the number of modes
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is changed. However, since the number of photons in
the resonator increases in proportion to the number of
modes, the quantum sensitivity of the amplifier is re-
duced. For this reason, it is desirable to increase sen-
sitivity by using single-mode amplifiers when detecting
coherent external radiation.

The reduction in quantum sensitivity as the number
of amplifier modes is increased can be characterized
by an effective noise temperature; according to Eqs.
(10.4) and (10.7) this temperature is

Tett = T,noise M. (10.8)

When the width of the spectral line is smaller than
the resonator bandwidth, the noise temperature of the
amplifier is reduced by a factor Qluie/Q·67 Th i s in-
duction in noise arises as follows: when the width of
the spectral line is greater than the resonator band-
width, all the photons are produced by stimulated
emission of molecules; on the other hand when the
line width is smaller, stimulated emission is respon-
sible for only those photons which have frequencies
within the width of the spectral line. In this case the
noise temperature is

_
noise -

Tm ΔωЦпе (10.9)

where Дшцп е is the width of the spectral line and
Δ ω Γ 6 8 the bandwidth of the resonator. Equation (10.9)
shows that the noise temperature associated with spon-
taneous emission is reduced as the quality factor of the
resonator is reduced; in the limiting case, Δω Γ 6 8 /ω
» 1, Eq. (10.8) becomes

τ
1 noise —

(10.10)

that is to say, T n o i s e is determined by the bandwidth
of the amplifier, as in conventional amplifiers. Be-
cause resonator quality factors are rather high in the
infrared, and the quality factors of the spectral lines
are low, it is difficult to realize the conditions de-
scribed by Eq. (10.10).

Thus, noise temperature increases with increasing
frequency; at ω/2π « 3 x 1013 sec"1 we find T n o j s e

яз 1500° for an amplifier with single-mode coupling.
In multimode coupling the sensitivity of the amplifier
is inversely proportional to the number of modes.

For the noise temperature given above Т п о ^ 8 е

« 1500°, the power sensitivity of the quantum-mechan-
ical amplifier is (assuming one mode)

for a bandwidth of Δω » 2 χ 109 cps; this sensitivity
is considerably greater than that of bolometers usu-
ally used in the infrared region,68 which have sensi-
tivities of the order of 10"uw and bandwidths of
Δω/ω ~ 10"3. In this wavelength range the sensitivity
of quantum-mechanical amplifiers is a thousand times
greater than that of bolometers.

11. Quantum-Mechanical Radiation Detectors

In the preceding section it has been shown that the
sensitivity of maser amplifiers is reduced at higher
frequencies because of the noise temperature associ-
ated with spontaneous emission. At ω/2ττ я* 1013 sec"1

a maser amplifier can be expected to detect approxi-
mately 106 photons. At the same time it is known that
the sensitivity of γ-ray counters or photomultipliers
is great enough so that single photons can be detected.

It has been shown in reference 5 that the high sen-
sitivity of counters is due to the fact that there is no
noise due to spontaneous emission. In the same work
a microwave detector free from noise due to spon-
taneous emission was proposed. The principle of
operation of this detector is as follows (Fig. 22). Sup-
pose there are 2j + 1 equidistant energy levels, as
might be found, for example in the interaction of the

1 N I

• CL Z l
J

2J*i-

FIG. 22. Principle of operation of a quantum-mechanical de-
tector. 1) source of molecules, 2) selection system, 3) resonator,
4) second selection system, 5) second resonator.

magnetic moment of a molecule with an applied mag-
netic field. By means of an inhomogeneous magnetic
field, molecules in the lower energy level can be re-
moved from the beam, which then passes through a
cavity resonator tuned to the frequency corresponding
to the transition between adjacent levels. The radia-
tion to be detected enters the resonator and is absorbed
by the molecules, so that a fraction of the molecules,
proportional to the number of detected photons, is
raised to the first excited level. A second selection
system, located beyond the resonator, is used to iso-
late molecules in the first excited level. The molecu-
lar beam, processed in this way, then enters a region
of space in which there is a magnetic field in the oppo-
site direction to the original field. Under these condi-
tions the energy levels are inverted so that only the
second level (counted from the highest level) is popu-
lated. After a period of time this system radiates
(2j — 1) photons for each of the detected photons. Thus,
this system "multiplies" the original photons by a
factor of (2j — 1). A system of this kind is sensitive
to photons characterized by frequencies which lie
within the width of the spectral line. Since the fre-
quencies of the radiated photons are not related
uniquely to the frequency of the absorbed photons, this
system can be used as a detector, but not as an ampli-
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fier. More precisely, whereas this system is capable
of detecting photons over a relatively wide frequency
range, because of the molecule-resonator interaction
time the bandwidth of the system is determined by the
lifetime for spontaneous emission in the excited state
τ ss 106 sec for ω/2π « 3 x 1010 sec"1. Because the
quantum-mechanical system is initially in the lowest
energy state, this detector is free of spontaneous
emission noise.

One shortcoming of this system is its complexity.
In addition, the long lifetimes characteristic of the
centimeter region make it unfeasible in practice.

Another system for detection of infrared and optical
radiation in which there is no noise due to spontaneous
emission is described in reference 6. Suppose that the
quantum-mechanical system has the energy levels
shown in Fig. 23. The frequency ω12 corresponds to
the detected infrared radiation. There is pumping
radiation at frequency ω32 which saturates levels E2

and E3. At low temperatures only E t is populated.
Photons which are absorbed at frequency ω12 cause
transitions to E2; then, because of the pumping radia-
tion at frequency 0)32, transitions are caused from E2

to E3. The subsequent transitions from E3 to E4 occur
spontaneously and are detected with a photomultiplier
because ωΜ is an optical frequency. Between the sys-
tem and the photomultiplier there is a filter which ab-
sorbs the optical pumping radiation at frequency ω32.

ε3

ε.- _£

ε,- filter

FIG. 23. Level diagram for an infrared detector.

Because the photomultiplier can detect single photons
in the optical region the sensitivity of the system is
very high.

At low temperatures the system is in the ground
state Ei so that there is no spontaneous emission
noise. As in the preceding case, this system is not
an amplifer. In reference 6 the system is called a
quantum counter.

Analysis of the systems described above shows that
the noise can be reduced by reducing the temperature.
However, because of the statistical nature of sponta-
neous emission these systems have finite noise tem-
peratures.

CONCLUSION

Within the short time they have been under develop-
ment, quantum-mechanical systems have become ex-
tremely valuable for the generation and amplification

of electromagnetic waves in the centimeter and deci-
meter regions. The availability of maser oscillators
and amplifiers in these regions has cleared the way
for two important advances in radio engineering:
1) an appreciable increase in the frequency stability
of oscillators and 2) a substantial increase in the sen-
sitivity of detectors. The use of ammonia masers has
already made it possible to achieve high frequency
stability.69 Maser amplifiers in the centimeter and
decimeter wavelength ranges have noise temperatures
of the order of 10° K. Maser oscillators and ampli-
fiers have also been used to solve a number of scien-
tific and technical problems in radar, navigation, long-
distance radio communication, radioastronomy, the
design of frequency standards (time), etc.

More than a thousand papers have already been pub-
lished in this field; among these papers there are re-
view articles1"3'1* and monographs70·71 which are con-
cerned with the theory, design, and application of
quantum-mechanical devices. This work comprises
a new field of physics, which is now known as quan-
tum electronics.

At the present time, research is under way in labo-
ratories in many countries to explore the use of quan-
tum-mechanical systems for the generation, amplifica-
tion and detection of electromagnetic radiation in the
submillimeter, infrared and optical regions.*

Many methods have been proposed for obtaining
negative temperatures in different quantum mechanical
systems and a number of theoretical problems have
been treated. Most of this work has been described in
the present review. However, it should be emphasized
that amplification or oscillation in the infrared or op-
tical wavelength regions has not yet been reported. It
is apparent, however, for example from the present
review, that there are no fundamental difficulties; it
is reasonable to expect that infrared and optical oscil-
lators and amplifiers will be built in the near future.
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