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1. INTRODUCTION

bPPLICATIONS of magnetohydrodynamics have be-
come most widespread in recent years. These appli-
cations now cover many problems in the theory of
liquid-metal coolants for nuclear reactors,1 the theory
of magnetohydrodynamic measuring instruments,2 the
physics of the sun,3 geophysics and astrophysics,4 the
theory of gas discharge and plasma,5"7 the theory of
controllable thermonuclear reactions,8 and magneto-
aerodynamics.9'10

The equations of magnetohydrodynamics are non-
linear, so that many specific effects appear, particu-
larly the formation of shock waves. Shock waves play
an essential role in the compression and heating of a
plasma.11"13 They are one of the mechanisms of the
production of interstellar magnetic fields.14 Without
shock waves it is impossible to analyze the supersonic
flow about a body in a magnetic field.15'16 Magnetohy-
drodynamic shock waves are essential also in the the-
ory of pulsed discharges in a plasma.17

The present article is a review of many theoretical
papers devoted to magnetohydrodynamic shock waves,
the foundation for which was laid by the work by Hoff-
man and Teller.18

2. SIMPLE WAVES

An important class of nonlinear solutions of the
equations of magnetohydrodynamics are simple waves
(defined as waves in which all the magnetohydrody-
namic quantities such as density p, pressure p, en-
tropy s, fluid velocity v, and magnetic field Η are
functions of one of these quantities, for example p,
which in turn depends on the coordinate χ and on
the time t ) . We confine ourselves to the case of plane
one-dimensional simple waves. The reason why sim-
ple waves play a special role in magnetohydrodynamics
is that in the absence of discontinuities they are the
only waves that can border on the region of continuous
flow.19'20*

A particular case of a simple wave is the self-
similar wave, i.e., a wave in which the magnetohydro-
dynamic quantities depend on the ratio x/t. Self-

*Mugibayashi's claim21 of finding a solution which is not a
simple wave and which borders on the region of continuous flow is
in error. In order for the motion of the medium to be described by
Mugibayashi's solution it is necessary to apply at the boundary a
varying ( and not a constant) external pressure, which varies in
accordance with a definite law; this was noted, for example, in
the paper by A. G. Kulikovskii."

similar waves are always produced when the initial
conditions do not contain parameters with the dimen-
sion of length.

In magnetohydrodynamics we deal with three types
of simple waves:19·20

1) The Alfven wave

У==~~7Щ< vl=Vvl + v'z = const,

Ht = yH'y + H'l= const, ρ = const, s = const, Hx = const.
(2.1)

e = +1 for waves propagating in the direction of posi-
tive x, and e = - 1 for ways propagating in the oppo-
site direction.

2) The magnetoacoustic wave

й%_„^±
ί 4 ~ Uχ) '

j±at dp
J- = c2, s = const, tfx = const, (2.2)

where U x is the Alfven velocity, defined by the relation

Η

Vt and Ht are the transverse components of the ve-
locity of the magnetic field, с is the velocity of sound,
and

u± =
the subscripts plus or minus in U± correspond to the
fast or slow magnetoacoustic wave.

3) The entropy wave

dQ = (dQ/ds)J1ds, p = const, ν = const, Η = const. (2.3)

In the Alfven simple wave the quantities p, p, vx,
v, and Η do not change, and the vectors ν and Η are
turned about the χ axis through an equal angle. The
phase velocity of propagation of an Alfven wave is v x

+ eUx. Since the latter quantity does not change, the
Alfven simple wave propagates without changing its
shape. It follows from this, in particular, that Alfven
waves cannot be self-similar.

The phase velocity of propagation of a magneto-
acoustic wave is v x + eU±. И, as usual, the adiabatic
compressibility decreases with increasing pressure

then it follows from the differential equations (2.2) that

>0. (2.4)
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The inequality (2.4) denotes that the profile of a moving
magnetoacoustic wave becomes distorted. The slope of
the wave decreases in the rarefaction regions (dp/dt
< 0) and increases in the compression regions (dp/dt
> 0); this leads in final analysis the formation of dis-
continuity (Shockwaves) in the compression regions.
26-29* T h e s o i u t i O ns of the equations for simple mag-
netoacoustic waves are quite complicated.t We shall
report only a few qualitative deductions that can be in-
ferred directly from the differential equations. We
note first that the pressure changes in the same direc-
tion as the density; in a fast magnetoacoustic wave the
transverse magnetic field Щ changes in the same di-
rection as the density, and in a slow one it changes in
the opposite direction. Simple magnetoacoustic waves
are plane: if vz = 0 and Hz = 0 at the initial instant,
these relations will hold for all time. If a self-similar
wave propagates to the right (e = +1) and if the quan-
tities Hx and Ну are of the same sign, then the longi-
tudinal velocity νχ decreases, and the transverse ve-
locity v y increases in a self-similar wave and de-
creases in a slow one.

3. SHOCKWAVES. ZEMPLEN'S THEOREM $

We have already seen that these discontinuities are
produced in the compression region of a simple wave
as a result of distortion in the wave profile. On the
discontinuity surface, the mass, momentum, and en-
ergy are conserved and the transverse electric field
and the longitudinal magnetic field are continuous.18'30'31

We confine ourselves to an analysis of discontinuities
of constant amplitude.

A classification of all possible types of magneto-
hydrodynamic discontinuities was given by S. I. Syrovat-
skii.32·33

We know34'35 that if the conditions

(3.1)

are satisfied in ordinary hydrodynamics, then Zem-
plen's theorem takes place, by which the pressure and
the density increase in the shock wave: p2 > Pi and
p2 > pii in other words, the shock waves are always
compression waves.

L. D. Landau and Ε. Μ. Lifshitz30 have shown that
if conditions (3.1) are satisfied in magnetohydrody-
namics, shock waves of small amplitude are compres-
sion waves (for arbitrary direction of the magnetic
field). The inverse of the Zemplen theorem, stating
that the entropy of a shock wave in an ideal gas in-
creases, was proved by Hoffman and Teller.18

•Analogous results were obtained by S. A. Kaplan and K. P.
Stanyukovich," Segre," and Taniuti" for the case when the mag-
netic field is perpendicular to the direction of the wave propagation.

tit has been shown by Friedrichs (see reference 29) that the
solution of the equations of simple waves can be reduced to quad'
ratures.

tZemplen, Gyozo, "Besondere Ausfiihrungen ttber unstetige Be-
wegungen in Fliissigkeiten" - Enz. d. Math. Wiss., Leipzig 1901-
1908, pp. 281-323.-Tr.

Zemplen's theorem was proved by Hoffman and
Teller for a perpendicular shock of small amplitude,
but it holds for any intensity and for any direction of
the magnetic field.36"38

4. EVOLUTIONARY CONDITIONS OF THE DISCON-

TINUITIES

Knowledge of the boundary conditions on the discon-
tinuity is not sufficient to determine uniquely the dis-
continuous solution. This difficulty is encountered
also in ordinary hydrodynamics. Thus, for example,
when a piston moves out of a tube, two types of waves
are formally possible: 1) rarefaction self-similar
wave and 2) rarefaction Shockwave.39 The second
solution is discarded in ordinary hydrodynamics, since
it contradicts Zemplen's theorem.

In magnetohydrodynamics, as noted earlier, r a r e -
faction shock waves are also impossible. However,
there are too many compression shock waves in mag-
netohydrodynamics and the problem of the motion of
the medium under specified initial and boundary con-
ditions has an infinite set of solutions.

Thus, for example, if an ideally conducting piston
is moved into a magnetohydrodynamic medium at rest,
with the magnetic field H x normal to the piston, then
if the following inequalities are satisfied

[UO x = Ηο χ/ν4προ , c 0 is the velocity of sound, the
subscript " z e r o " pertains to the unperturbed medium,
u is the velocity of the piston, and у = %], two types
of solutions are possible:

1) the same compression shock wave as in the ab-
sence of a magnetic field,

2) two magnetohydrodynamic shock waves moving at
the same velocity

between thesewhen the transverse magnetic field
waves, is given by

Both shock waves are compression waves. The
density of the medium between the waves is

Ql ~

the density of the medium behind the two waves is

the entropy increases on both shock waves.
We see thus that the condition that the entropy must

increase, by which the "excessive" discontinuities
could be excluded from ordinary hydrodynamics, is
too weak in magnetohydrodynamics.
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Actually, however, not all shock waves on which
the boundary conditions are satisfied and the entropy
increases are feasible. It is necessary, in addition,
that the solution be continuously dependent on the ini-
tial and boundary conditions, i.e., that an infinitesimal
perturbation of the magnetohydrodynamic quantities
produce an infinitesimal change in the solution. Fol-
lowing I. M. GeFfand,33 we shall call such disconti-
nuities evolutionary.* In non-evolutionary disconti-
nuities, an infinitesimal perturbation produces a finite
change in the solution, namely the decomposition of
the initial discontinuity into several discontinuities of
finite magnitude.40 Non-evolutionary discontinuities
are thus unstable relative to splitting, and can there-
fore not exist. The evolutionary conditions for mag-
netohydrodynamics were derived in reference 40.

In order to determine whether a magnetohydrody-
namic shock wave is evolutionary, it is necessary to
add to the constant equilibrium values of the magneto-
hydrodynamic quantities, (p, p, vx, v y, vz, Ну, and Hz)
infinitesimally small perturbations δρ, δρ, δνχ, δνν,
δνζ, 6Hy, and δΗζ, which depend on the coordinates
and on the time as

expi (kx — ωί).

These perturbations can be represented as a super-
position of waves of infinitesimal amplitude: magneto-
acoustic, Alfven, and entropy waves; only waves that
diverge from the discontinuity surface are considered.
After linearizing the boundary conditions we obtain
seven linear homogeneous algebraic equations in the
amplitudes of the different waves on the two sides of
the discontinuity surface. Account must be taken here
of the fact that the shock-wave velocity D also ac-
quires an infinitesimal increment δϋ. After eliminat-
ing δϋ, six independent equations (boundary condi-
tions ) remain. If the number of the diverging waves
on the two sides of the discontinuity surface is also
six, we obtain a system of six linear homogeneous
algebraic equations with six unknowns (the amplitudes
of the waves of infinitesimal intensity). The condition
for the existence of a non-trivial solution (in which
the wave amplitudes are different from zero) is that
the determinant of the system vanish. This equality
relates ω with к. И a real value of ω exists for
any value of к the discontinuity is stable in the or-
dinary sense; if certain possible values of к corre-
spond to values of ω with positive imaginary part,
the discontinuity is unstable — the initial perturbation
will build up exponentially with time. In either case,
the discontinuity is evolutionary. Even if the per-
turbations grow exponentially, they may still remain
small after a finite time interval.

In order for the discontinuity to be non-evolutionary,
it is necessary that the perturbations, which are small

The idea of evolutionary was first advanced in connection
with a study of discontinuities in ordinary hydrodynamics, see
reference 34, p. 405, and reference 35, p. 215.

at the initial instant of time t = 0, be no longer small
for arbitrary t > 0. The linearization of the equations
is no longer valid, and this in turn makes the number
of the equations for the determination amplitudes of
the infinitesimal intensity wave no longer equal to the
number of unknowns, i.e., not equal to the number of
waves that diverge on both sides of the discontinuity
surface. Since the number of independent boundary
conditions in magnetohydrodynamies is six, the evo-
lutionarity condition is that the total number of di-
verging waves be six.

In magnetohydrodynamies there are fourteen dif-
ferent phase velocities of the propagation of infinitesi-
mal amplitude waves:

lx, v,x-Ulx, vlx + UJ+, vlx-Uu, vlx + U,_,

[the subscripts " 1 " and " 2 " pertain to the region
ahead (x < 0), and behind the shock wave (x > 0); the
coordinate system is chosen such that the discontinu-
ity is at rest in it and is located in the plane χ = 0; the
χ axis is so directed that the projection of the velocity
of the medium on the χ axis is positive ]. The diverg-
ent waves have negative phase velocities in the region
ahead of the shock wave and positive phase velocities
behind the shock wave.

FIG. 1. Number of Waves
diverging from the discon- '
tinuity surface. First term —
number of Alfven waves, **

second term — number of
magnetoacoustic and entropy
waves.
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Four of the aforementioned fourteen phase veloci-
ties correspond to converging waves:

and four to diverging waves:

(all these phase velocities are definitely positive).
The remaining waves will converge or diverge, depend-
ing on the relations between v x and Ux, U+ or U_.
Figure 1 shows the total number of diverging waves at
the different values of v l x and v2 x. Evolutionary
waves correspond to those regions in the (v l x, v 2 x)
plane where the number of diverging waves is six. As
already indicated, a shock wave is evolutionary if the
small-perturbation problem has a unique solution.
For this purpose it is necessary that the number of
equations (number of boundary equations minus one)
be equal to the number of unknowns* (number of am-
plitudes of the diverging waves).

•The evolutionarity conditions so formulated were obtained by
Lax" and by K. I. Babenko and I. M. Gel'fand.41
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FIG. 2. Evolutionary regions of shock waves (shaded). The
" + " sign denotes a fast wave and the " - " a slow wave. The evo-
lutionary sections of the shock adiabat are designated by a solid
heavy line, while the non-evolutionary section is shown by a
dashed line. The letter A denotes the Alfven discontinuity.

However, mere equality of the number of equations

to the number of unknowns is insufficient for the ex-

istence and for the uniqueness of the solution. The

equations for the amplitudes of the diverging waves

and the boundary conditions may break up into several

isolated groups. In this case, the evolutionarity con-

ditions (that the number of diverging waves equal the

number of independent boundary conditions) must be

satisfied not only for the totality of the variables, but

also for each group separately. Such a division of the

equations and boundary conditions into two isolated

groups occurs in magnetohydrodynamics for waves

propagating perpendicularly to the discontinuity sur-

face.* In fact, in low-amplitude Alfven waves the

quantities δνζ and δΗζ differ from zero (the xy

plane is oriented such that Hz = 0), while in mag-

netoacoustic and entropy waves δρ, δρ, δν χ, όνν, and

δΗγ differ from zero. The boundary conditions, lin-

earized relative to small perturbations, also break up

into similar two groups:

1) Alfven perturbations

s #v6ffz }=0,
{vxbHz-Hxbvz} = 0;

2) magnetoacoustic and entropy perturbations

{bp + 2QOX (bvx - bD) + t

НХЬНУ

(4.1)

= 0,

{Hxbvy - Hy (bvx - bD) - vxbHy) = 0,

О», !>« ~ Щ + vybvy
(vxHy- vy

bHy

(4.2)

(δϋ is the perturbation of the velocity of the shock

wave, w is the heat function).

The boundary conditions (4.1) do not contain δϋ.

They are therefore all independent and there should

be two diverging Alfven waves. The boundary condi-

tions (4.2) contain the perturbation δϋ of the shock-

wave velocity; after this perturbation is eliminated,

four independent boundary conditions remain. Conse-

quently, the number of diverging magnetoacoustic and

entropy waves should be four. It is seen from Fig. 4

that there exist two regions where the shock waves

are evolutionary* (Fig. 2):

1) fast Shockwaves (marked " + " in Fig. 2), for

which

x* < (4.3)

2) slow shock waves ( m a r k e d " — " in Fig. 2 ) , for

which

Ui-<vlx<Ulx, игх<и2-. (4.4)

So far we have not considered the evolutionarity

conditions with respect to perturbations that depend

only on χ and t. An account of perturbations of gen-

eral form (which depend also on у and z) leads to

the same evolutionarity conditions44 (4.3) and (4.4).

It is necessary to emphasize the essential differ-

ence between non-evolutionarity and instability. Un-

stable states can occur when a magnetohydrodynamic

medium moves under the influence of internal factors.

They exist for a certain time, until the fluctuations

reach a critical value, after which the unstable state

is destroyed. Non-evolutionary discontinuities cannot

arise by themselves. They can be produced only under

the influence of external factors (i.e., collisions be-

tween gas masses) and can exist only for an instant

as discontinuities in the initial conditions, after which

they decompose immediately into several shock waves

or self-similar waves. Such a decomposition of a non-

evolutionary magnetohydrodynamic wave was consid-

ered in reference 45 (see Sec. 8).

It can be shown by the method developed in the

present section that other magnetohydrodynamic

discontinuities (contact, tangential, Alfven) are

always evolutionary.

5. CONSEQUENCES OF THE EVOLUTIONAKITY
CONDITIONS

Conditions (4.3) and (4.4) lead to important conse-

quences. First, if two shock waves of similar type

(both fast or both slow) follow one another, then the

rear wave will overtake the front wave. To prove this

statement let us consider, for example, two slow waves.

The velocity of the front wave relative to the medium

contained between the two waves is ν2χ, while the ve-

locity of the rear wave is νιχ. As follows from in-

equalities (4.4), for waves of this kind v l x > Uj_ and

•References 43 and 40 contain an incorrect statement that there
exists a third evolutionary region

•This circumstance was first noted by S. I. Syrovat-skii.

This error is due to failure to take into account the aforementioned
division of the boundary conditions into two isolated groups. (The
same references use instead of the term "evolutionary" the less
successful term "stable with respect to decomposition.")
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V2x < U2- · Since the velocities Uj_ and U2_ pertain
to the same region in space, we have U .̂ = U2_ and
consequently Vjx > v2 x.

In the case of waves of different types, it is easy
to see that the Alfven discontinuity will overtake the
slow shock wave, while a fast shock wave will over-
take all other discontinuities. We can establish analo-
gously that a shock wave overtakes a weak discontinu-
ity if the latter is of the same type as the Shockwave or of
a slower type. A weak discontinuity overtakes a shock
wave of the same type and shock waves of slower type.

Noting that a weak discontinuity is the boundary
between the simple wave and the region of constant
flow, we reach the conclusion that not more than
three shock waves or three simple waves which do
not overtake one another can move on each side: a
fast wave (shock or simple magnetoacoustic ) in
front, followed by an Alfven wave (discontinuous or
simple), and finally a slow wave (shock or simple).

Using the evolutionarity conditions and Zemplen's
theorem, we can make definite conclusions concern-
ing the change in the magnetic field in a fast and slow
shock wave.38 We use the relation

я,„ = - (5.1)

which is a consequence of the boundary conditions. It
follows from (5.1) that the transverse magnetic field
Hy increases in fast shock waves and decreases in
slow ones. In either case, the transverse magnetic
field will not change direction.* Weak magnetic fields

8π
e.«i,

will become stronger upon passage of a shock wave,
whereas strong magnetic fields

8π -^ 2

will become weaker. This points to a certain equal-
izing effect of the shock waves. After passage of a
large number of random shock waves, static equilib-
rium occurs when the magnetic and kinetic energies
are equal :t

8 л 2 · ^•"'

There are statements in the literature that weak mag-
netic fields

-^-«p x (5.3)

become stronger on passage of a shock wave [refer-
ences 14, 52, and 53 (p. 253)]. Strictly speaking, two

*The statements contained in references 46, 43, and 47 that the
direction of transverse magnetic field can change in a shock wave
are due to failure to take evolutionarity conditions into account.

tRelation (5.2) —the law of equipartition of energy— is charac-
teristic of magnetohydrodynamics. It is derived from other considera-
tions in references 48—51.

shock waves exist for any ratio of Hx and pj, a fast
one in which the magnetic field increases, and a slow
one in which the magnetic field decreases. However,
if inequality (5.3) is satisfied, the slow shock wave
can have only an infinitesimally small intensity, as
follows from the evolutionarity conditions (4.4),

Щ (5.4)

If inequality (5.4) is violated, the slow shock wave
is no longer evolutionary and decomposes. Thus, only
fast shock waves, on which the magnetic field in-
creases, can actually exist in a medium in which the
magnetic pressure is considerably less than the hy-
drostatic pressure (5.3). It follows from the fore-
going that magnetohydrodynamic waves are one of the
mechanisms of production of interstellar magnetic
fields.14

6. THE SHOCK ADIABAT

In magnetohydrodynamics the shock wave is char-
acterized by the values of all the magnetohydrody-
namic quantities plt

and Щ ahead.of the shock
wave and also by the values of one of these quantities,
for example p2, behind the shock wave. All the re-
maining quantities behind the shock wave, particularly
the pressure p2, are functions of p2. The curve p2

= f (l/p2) is called the shock adiabat.
If we choose a coordinate system in which the dis-

continuity is at rest and is located in the plane χ = 0,
while the projection of the magnetic field on the ζ
axis vanishes and the velocity vector is parallel to
the magnetic field, then the equation of the shock
adiabat

•-'(i)
contains as parameters the quantities p t, p t, Hx, and
Ή ι Λ Γ : ,,

(6.1)

Instead of the five dimensional parameters p2, Pi,
Pi, HX) and Hjy, the shock wave can be characterized
by three dimensionless parameters,14 for example
U l x /ci, Uiy/cj, and v l z /ci, where U is the Alfven
velocity and v l x is the velocity of the shock wave rel-
ative to the fluid at rest.

To find the shock adiabat it is necessary to elimi-
nate from the boundary conditions all the magnetohy-
drodynamic quantities that do not enter in (6.1).

The equation of the shock adiabat in magnetohydro-
dynamics has the following form:30·31

bi this formula the internal e2 is expressed in
terms of p2 and p2 by means of the equation of state,
and H2y must be replaced by its value given by (5.1).
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Equation (6.2) is a third-degree algebraic equation
in p2 or p2; consequently, there are three branches
of the shock adiabat,14'46'36·54 but only two of these are
evolutionary.55 In the particular case of a perpendicu-
lar shock wave (H x = 0) only one evolutionary branch
of the shock adiabat exists.

The variation of the magnetohydrodynamic quanti-
ties in a shock wave was first investigated by Heifer.14

However, because of an unfortunate choice of param-
eters, the curves given by Heifer are exceedingly un-
instructive. In addition, no distinction is made in this
work between evolutionary and non-evolutionary shock
waves.

A later paper by Lust46 describes an investigation
of the changes on the shock wave of the following es-
sential physical quantities: density, pressure, mag-
netic field, heat energy, and the angle between the
magnetic field and the normal direction. The changes
of these quantities are illustrated by a large number of
curves obtained by means of an electronic computer.
Unfortunately, the author does not take the evolution-
arity conditions into account; the only physically rea-
lizeable portions of the curves given by Lust are those
corresponding to evolutionary shock waves.

8
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FIG. 3. Density (a) and mag-
netic field (b) on a shock wave as
functions of the Mach number. The
non-evolutionary portions are dot-
ted: c+ — fast shock wave, c- —
slow shock wave, с А — non-exist-
ing non-evolutionary shock wave.
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By way of an example, Figs. 3a and 3b show the de-
pendence of the quantities p2/pi and H^/Hjy on the
Mach number, as obtained by Lust,

for βι = Ί
(Зл/2) = 0,25.

я 2

The most complete investigation of the variation
of the quantities in the magnetohydrodynamic shock
wave is that of Bazer and Ericson.47 But this inves-
tigation also fails to allow for the evolutionarity con-
ditions. We shall supplement here the results of
Bazer and Ericson by an investigation of the evolu-
tionary parts of the shock adiabat.55

There exist fast and slow shock waves. Fast waves
are always evolutionary. Slow shock waves of low in-
tensity are also evolutionary. As the density jump

Δρ = Рг-Pt increases, the transverse magnetic field
H2y decreases behind the slow shock wave and van-
ishes on the evolutionarity boundary. Moving further
along the shock adiabat, we encounter the non-evolu-
tionary portion of the slow shock wave, which is gradu-
ally transformed into an Alfven discontinuity, which in
turn rotates the magnetic field by 180° (see Fig. 2).
In fast and slow shock waves the pressure and entropy
jumps are monotonically increasing functions of the
density jump (on the evolutionary portions). In a fast
shock wave the maximum density jump ( Д р ) т а х

= 2ρ4/(γ - 1), where γ is the Poisson adiabatic index.
The-pressure and entropy jumps now become infinite.
The dependence of the jump of the magnetic field
ДНу Ξ H2y — Hjy on the jump of the density of the fast
wave can be of two types. In waves of the first type,
which are realized if

(r t = c\ /U\x = Ίπγρί/Η^ and 0t is the angle between
the direction of the magnetic field Ht and the normal
to the discontinuity surface), the jump in the magnetic
field gradually increases with increasing density jump
from zero to a maximum value

2Hlv

In waves of the second type, which are realized when

a nonmonotonic dependence exists between the jump
in the magnetic field and the jump in the density: as
the density jump increases, the jump in the magnetic
field first increases from zero to a certain maximum
value, and then decreases to a value

АЯ„

On the evolutionary portion of the slow shock wave,
the jump in the magnetic field always increases with
increasing density jump.*

In the limiting case when 0j —• 0 and ri < 1, the
fast wave is the same as the absence of the magnetic
field, while the slow wave has an infinitesimally small
amplitude. In the case when θ± — 0 and rj < 1, the
fast wave belongs to the second type. If the fast shock

γ + l - 2 r t
wave has a low intensity Рг_ < Ύ+ l - 2 r t \ the

transverse magnetic field H2y behind the wave is dif-
ferent from zero. When the intensity of the shock
wave p2/pi exceeds the value (λ + 1-2г!)/(у - 1),
the transverse magnetic field H2y behind the wave
vanishes and the shock wave becomes the same as
in a magnetic field.

*In other words, slow shock waves always belong to the first
type. The statement by Bazer and Ericson47 that a nonmonotonic
dependence of the jump of the magnetic field on the jump in the
density is possible in slow shock waves is due to failure to take
account of the evolutionarity conditions.
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In the case when θι — 0 and r t < 1, a slow wave
on the evolutionary section will be the same as in the
absence of a magnetic field.

In the limiting case 0t — π/2 the fast shock wave
is of the first type while the slow shock wave is trans-
formed into a tangential discontinuity.

The presence of a magnetic field increases the
pressure jump at a fixed density jump.47

In fast shock waves of high intensity (p2 » pj
+ Hj /8π) the presence of a magnetic field is of no
significance.53'46 In particular, the greatest compres-
sion Pz/Pi attainable reached in the shock wave57'47

is (γ+ 1)/(γ-1) .
A slow shock wave cannot have an arbitrarily high

intensity. Therefore when p2 » Pi + Η^/δπ, only one
(fast) shock wave exists.36'46

FIG. 4. Evolutionary portions of
the shock adiabat in the variables
l/p2 and p2: a) Hi y « H * ; b) H l y » H x .
The symbol " + " denotes the fast shock
wave, while " - " denotes the slow
shock wave.

J_
'fit

the magnetic field increases in a fast shock wave and
decreases in a slow one,38 it becomes clear why less
heating takes place in a fast shock wave when H l v

» H X .

7. THE PISTON PROBLEM

The treatment of the piston problem encounters in
magnetohydrodynamics two principal difficulties not
found in ordinary hydrodynamics. The first difficulty
is that the boundary conditions on the discontinuity
surfaces and on the piston do not define uniquely the
continuous and shock waves produced. In the case
of a perfect gas an infinite set of solutions corre-
sponds to a specified piston motion, but only one of
these solutions satisfies the evolutionarity conditions.
This difficulty is therefore eliminated by excluding
from consideration all the non-evolutionary disconti-
nuities, and the piston problem becomes mathemat-
ically correct.*

t

FIG. 5. Waves formed when a pis-
ton moves a) in ordinary hydrodynam-
ics, b) in magnetohydrodynamics. P —
line of piston motion, X — ordinary hy-
drodynamic characteristic dx/dt = vx + c;
X+ — "fast" magnetohydrodynamic char-
acteristic dx/dt = vx + U+; X - - " s l o w
magnetohydrodynamic characteristic
dx/dt = vx + U-; 0 — region at rest,
1 — simple wave, 2 — non-simple wave.

Α Pi

The evolutionary sections of the shock adiabat were
determined55 in terms of the variables l/p2 and p2

only in the limiting cases H l v « H x (Fig. 4a) and
Hjy » Hx (Fig. 4b). As can be seen from Fig. 4a,
when Hjy « Hx the portion of the shock adiabat cor-
responding to the fast shock wave lies above the por-
tion corresponding to the slow shock wave. This
means that the fast shock wave is thermodynamically
more favorable when Ht « Hx, since its entropy in-
crease is greater. In the case when Hty « Hx, the
slow shock wave is thermodynamically favored
(Fig. 4b).

The difference in the relative placement of the part
of the adiabat corresponding to the fast and slow shock
waves in Figs. 4a and 4b can be explained in the fol-
lowing manner. In a shock wave the kinetic energy
Ρινιχ/2 is converted into magnetic energy Η2/8π and
heat energy 3p2/2. A fast shock wave corresponds to
a greater transfer of kinetic energy. In the case when
Hjy « Hx there is little change in the magnetic energy,
and a fast shock wave is therefore accompanied by
greater heating. In the case when H^ » Hx a signifi-
cant change takes place in the magnetic energy. Since

•This fact was noted by G. S. Golitsyn" for the case when
Hx = 0.

The second difficulty is that the continuous flows
produced by the motion of the piston are not always
simple waves. It goes without saying that in the ab-
sence of discontinuities the region bordering on the
constant flow is a simple wave. But this region may
not reach the piston. Another region, in which the

,wave is not simple may lie between the piston and the
simple wave (Fig. 5). In order to get around this dif-
ficulty we shall consider a piston moving with constant
velocity.

Since the problem has in this case no parameter
with dimension of length, the motion of the medium
will be self-similar, i.e., all the waves produced will
be either discontinuous or simple.

The motion induced in the medium by the piston is
characterized by a train of shock and self-similar
waves that follow one another. As we have already
seen, there exist three types of evolutionary discon-
tinuous waves that move relative to the medium — fast
and slow shock waves and Alfven discontinuities. In
addition, there are two types of continuous solutions

*This difficulty can be circumvented also without investigating
the evolutionarity properties, by considering only piston motion in
which no slow shock waves are produced.9'
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— fast and slow self-similar magnetoacoustic waves.
As noted earlier, shock waves are compression waves
while self-similar waves are rarefaction waves. The
velocities of these waves are such that only the fast
waves (shock or self-similar) can move in front,
followed by the Alfven discontinuity and then by the
slow wave (shock or self-similar). Since some of
these waves may be missing, the medium may move
in many qualitatively different manners under the in-
fluence of different piston velocities.

The obvious boundary condition satisfied on the
surface of the piston is

vx = ux. (7.1)

To obtain the remaining two conditions, it is neces-
sary to change to a reference frame moving together
with the piston; in this frame the boundary conditions
E y = 0 and E z = 0 are satisfied on the surface of the
conducting piston (the prime denotes that the corre-
sponding quantity is measured in a coordinate system
moving together with the piston). In view of the infi-
nite conductivity of the medium E' = - v' x H/c
(c is the velocity of light) and, consequently,

s*ur rAS-

vy = u

v> vz = uz (Ηχψ0). (7.2)

Thus, on metallic surfaces the relative velocity of
the conducting liquid is equal to zero (an exception is
the case when the magnetic field has no normal compo-
nent). A unique phenomenon of "electrodynamic vis-
cosity" is obtained.59

If a rarefaction shock wave has a sufficiently large
amplitude, the density of the medium behind the wave
vanishes and cavitation sets in. In this case the mag-
netic field and the transverse component of the elec-
tric field should be continuous on the boundary with
the vacuum, i.e., the following boundary conditions
should be satisfied;

Hx(uy-vy)-Hy(ux-vx) = 0,
Hx(uz-vz)-Hz(ux-vx) = 0. (7.3)

Let us consider the most interesting case, when the
magnetic field, the piston velocity, and the normal to
the piston surface lie in a single plane (the xy plane).
In this case vz and Hz will vanish not only in the un-
perturbed medium but also in all the waves produced.
Therefore the Alfven discontinuity can rotate the mag-
netic field only through 180°. We assume the unper-
turbed medium velocity VQ to be equal to zero. To be
definite, we shall assume the components of unper-
turbed magnetic field Ho x and HOv to be positive.
The types of waves arising during the motion depend
on the piston velocity (ux, u v ) . This dependence60 is
shown in Fig. 6. When the amplitude of the slow rare-
faction wave is sufficiently large, the density of the
medium behind the wave vanishes and cavitation sets
in. Compared with ordinary hydrodynamics, in which
cavitation sets in when the piston moves with a veloc-
ity exceeding 2c o /(y- l ) (c0 is the velocity of sound

/Wff

/r
PIG. 6. Waves arising in the motion of the piston. The abscis-

sas are the longitudinal components of piston velocity ux, while
the ordinates are the transverse components uy. The letters S + ,
S~, R+, R~, and A denote the presence of a fast and slow shock
wave, fast and slow rarefaction (self-similar) wave, Alfven discon-
tinuity and the formation of a vacuum. PMR is the point of maximum
rarefaction reached in a fast self-similar wave, V — presence of
cavitation.

in the unperturbed medium), cavitation occurs in
magnetohydrodynamics also at lower piston velocities,
provided the velocity of the piston in the transverse
direction is sufficiently large. If the piston moves
only in the transverse direction, the cavitation sets in
when the piston velocity is 3.67 times greater than the
velocity of sound in the unperturbed medium29 at γ
= %. Cavitation takes place also when the piston
moves into the medium and moves simultaneously in
the transverse direction. If the piston moves into the
medium at supersonic velocity, cavitation takes place6

if the angle between the piston velocity vector and the
normal surface exceeds 70° (y = %). (In this case
the difference between the rate of displacement of the
boundary and the piston velocity is quite small.)

In contrast with the slow rarefaction wave, cavita-
tion is impossible in a fast rarefaction wave. Whereas
the Alfven velocity in the unperturbed medium is con-
siderably lower than the velocity of sound, the Alfven
velocity behind a fast rarefaction wave of maximum
amplitude becomes close to the velocity of sound. If
the condition HQ /8rr « p0 is satisfied, the density of
the medium near the point of maximum rarefaction
(point PMR in Fig. 6) will become quite small.

If the transverse velocity of the piston is supersonic,
the magnetic field builds up from an infinitesimally
small value to a finite value; the magnetic pressure
then becomes comparable with or greater than the
hydrostatic pressure. If the piston moves in and
glides at supersonic velocities, the generated mag-
netic field is directly proportional to the longitudinal
component of the piston velocity.

The topological structure shown in Fig. 6 can be
obtained also without calculations, from qualitative
considerations.61 For this purpose let us determine
the regions through which the ordinate axis (u x = 0)
passes.

Since the magnetic field lines are "glued" to the
particles of the medium and to the piston, the mag-
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ponent Fy, the lifting force. In the case of a fast shock
of large amplitude accompanied by a slow rarefaction
wave in the region

the frontal resistance is determined by the formula60

FIG. 7. Formation of a
shock wave (S), Alfven discon-
tinuity (A), and a rarefaction
wave (R) in transverse motion
of a piston, due to stretching (γ + l)2 So"2

of the magnetic force lines. ~^x— —2(v —1)— '

If we increase | u y | and keep u x constant, the value

of the frontal resistance decreases, and assumes on

netic force lines are deformed when u y < 0 (Fig. 7a). t h e «^tatton line the value

The bending of the magnetic force line results in

quasielastic tension forces in the directions of the

arrows in Fig. 7a.

Since v x = 0 near the piston and at infinity, a com-

pression (shock) wave is produced in front of the

arrow and a rarefaction (self-similar) wave in the

rear. No Alfven wave is produced in this sketch,

since Hy has the same sign near the piston and at in-

finity (we recall that the sign of Hy remains un-

changed in a shock and self-similar wave,38 and that

the sign is reversed in a 180° Alfven discontinuity).

Thus, when u x = 0 and u y < 0, a shock wave travels

in front, followed by a self-similar wave (combina-

tion S+R").

Analogous arguments show that the combination

R+S~ is realized in the case shown in Fig. 7b. As the

velocity Uy is increased, the sign of Hy changes near

the piston, bringing about an Alfven wave (R+AS~ )

(Fig. 7c). Further increase in Uy makes the value of

| Hy | near the piston greater than the value of Hy at 8. DECAY OF THE DISCONTINUITY

Further increase of | u y | does not change the frontal

resistance.

The lifting force is determined respectively by the

formulas

and

- Fy = sign uy

in the presence of cavitation.

The case when the piston velocity does not lie in

the plane of the magnetic field xy (i.e., when u z ^ 0)

differs from the preceding case in that the angle of

rotation of the magnetic field in the Alfven disconti-

nuity differs from 180°.

infinity; in this case the resultant of the tension forces

is directed away from the piston (Fig. 7c), correspond-

ing to a combination S+AR~.

When | Uy | is sufficiently large, the amplitude of

the rarefaction wave becomes so large, that the den-

sity of the medium behind the wave vanishes and cavi-

tation sets in.

The motion of the medium at u x ^ 0, Uy ^ 0, and

u c = 0 can be visualized by starting with the case

u x = 0 just considered. As u x is increased the am-

plitude of the rarefaction wave decreases and the

amplitude of the compression wave increases.*

At a certain value of u x the rarefaction wave turns

into a compression wave. Analogously, a reduction in

u x causes the compression wave to be transformed

into a rarefaction wave. A further reduction in the

value of u x results in cavitation.

The piston motion gives rise to a resistance force

F with two components; a longitudinal component F x ,

which is the frontal resistance, and a transverse com-

*An exception from this rule occurs in the region S S for a
piston with supersonic velocity. When ux is increased, a redistri-
bution takes place in the amplitudes of the fast and slow shock
waves; the increase in the amplitude of the fast shock is accom-
panied by a certain reduction in the amplitude of the slow shock
wave.

The question arises: what happens with the discontin-

uity of the initial conditions if the necessary boundary

conditions (continuity of the fluxes of the mass, mo-

mentum, etc.) are not satisfied? Discontinuous initial

conditions of this kind are obtained, for example, in col-

lisions between gas masses or upon a sudden destruction

of a partition between two gases at different pressures.

This problem was proposed by Riemann, and solved

for the case of ordinary hydrodynamics by N. E.

Kochin.62 An investigation has shown that the discon-

tinuity breaks up into three waves,34 one moving to the

right (shock or self-similar), one moving to the left

(shock or self-similar), and a tangential discontinuity.

In magnetohydrodynamics, the decay of the discon-

tinuity of the initial conditions in the absence of a lon-

gitudinal magnetic field Hx will be qualitatively the

same as in the absence of a magnetic field.63 The

problem of the decay of the discontinuity produced by

a collision between two gas masses and at Hx = 0 was

solved by T. F. Volkov64 in connection with the prob-

lem of heating of a plasma to thermonuclear tempera-

tures with the aid of shock waves.

The decay of discontinuity in a stationary plasma at

Hx = 0 and | Δρ* | « ρ* (ρ* = ρ + Н2/8тг) w a s consid-
ered by Kato.65 The solution obtained was used for
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qualitative consideration of pulsations of a plasma

pinch in a longitudinal magnetic field.

If the longitudinal magnetic field Hx differs from

zero, the decomposition of the initial discontinuity in

magnetohydrodynamics will be qualitatively different

from that in ordinary hydrodynamics. The initial dis-

continuity decomposes into seven waves, three mov-

ing to the right, three to the left, and a contact discon-

tinuity between them at rest relative to the medium.

Each of these waves is characterized by a single

parameter (amplitude, i.e., a jump in one of the mag-

netohydrodynamic quantities). On the other hand, the

sum of the jumps of each of the hydrodynamic quanti-

ties on the seven resulting waves is equal to the initial

jump. Since the number of magnetohydrodynamic

quantities is seven (p, p, vx, vy, vz, Hy, and H z)

we obtain a system of seven equations with seven un-

knowns, the solution of which yields the amplitudes of

all the waves arising in the decay of the initial dis-

continuity.

No general solution of the problem of the decay of

a magnetohydrodynamic discontinuity has been ob-

tained because of the great mathematical difficulties.

This problem has been solved66 for the case when the

initial discontinuity is quite small.*

In this case all the discontinuities produced are

also small. Since the relations between the jumps of

the magnetohydrodynamic quantities in a self-similar

and a shock wave of low intensity are the same in first

approximation, the only difference between a shock

wave and a self-similar wave is that the density in-

creases in the former and decreases in the latter.

The density jumps on the fast and slow magneto-

acoustic waves are determined by the formulas

AH't
' 8π

(8.1)Η,Αν,
Ηχ

where R = V (U2 + c 2) 2 - 4c2Ux ; Δρ, As, and Δν,

and АЩ are the jumps in the density, entropy, veloc-
ity, and transverse magnetic field on the initial dis-
continuity; e and the symbols "±" have the same
meaning as in (2.2). This formula makes it possible
to determine the signs of Δ^'ρ and ascertain thereby

the waves into which the initial discontinuity decom-

poses. A shock wave corresponds to Δ± ρ > 0 and a

self-similar wave corresponds to A^p < 0.

A discontinuity in the initial conditions has a cer-

tain similarity to a non-evolutionary shock wave. Al-

though all the boundary conditions are satisfied in the

latter case, an mfinitesimally small perturbation is

sufficient to upset the boundary conditions, causing

the non-evolutionary shock wave to decompose into

several diverging waves (discontinuous or continu-

ous ). Such a decomposition was considered in refer-

ence 45 for the case when the magnetic field on both

sides of the shock wave makes a small angle with the

normal to the surface of the discontinuity, and the velocity

of propagation of the shock wave v l x is close to the

Alfven velocity U l x , which in turn is greater than the

velocity of sound ct (the subscript " 1 " pertains to

the region ahead of the wave). The evolutionarity

condition of the slow shock wave has in this case the

form v l x < U l x . If this condition is violated, the shock

wave becomes non-evolutionary. Such a non-evolution-

ary shock wave can be obtained if an ordinary stable

hydrodynamic shock wave, in which vjx > c4 and V2X

< c2 is placed in a magnetic field. If the transverse

magnetic field Hy is equal to zero, this shock wave

can decompose into two singular shock waves,42 and

the magnetohydrodynamic quantities in the region

contained between these two waves are

~ Qi»fx ~ U\x
Q = „. , vr = — — ,

= Pi

Γ 2 (PI:
B» = ± L —
ft , Γ 8 π 6 ι

Щх

(Ola:— f/f яг

Лх-Ъ\) ην»

;—pfi--3cf) ην»

(8.2)

J
Such a decomposition is possible only when the

evolutionarity condition vjx < Ujx is not satisfied.

This follows from the fact that when v l x < U l x the

expressions for v y and Hy become imaginary.

If a small transverse magnetic field is taken into

account, the initial non-evolutionary shock wave splits

up into four waves [neglecting the waves whose ampli-

tudes are of the order of aH l y , a = V (v^-V^/V^

« 1], viz., a fast shock wave traveling to the left

[ χ axis directed to the right ] with an amplitude on

the order of a and a velocity on the order of U l y

= H l y /V 4πρι , a slow shock wave traveling to the left

with an amplitude that differs little from the ampli-

tude of the initial wave and with a velocity on the order

of aHi y, an Alfven discontinuity moving to the right

and rotating the magnetic field by 180°, and a fast

shock wave moving to the right with amplitude on the

order of H l y .

The decay of the discontinuity in the initial condi-

tions is closely related with the question of transi-

tions between magnetohydrodynamic discontinuities.*

Allowance for the evolutionarity conditions changes

somewhat the picture of the possible transitions. First,

the statement that the Alfven discontinuity can be grad-

ually transformed into a shock wave becomes incor-

rect. In fact, the Alfven discontinuity can coincide

with a shock wave only when the magnetic field lies

•Lax" investigated the more general case, when the system of
equations of magnetohydrodynamics i s replaced by a hyperbolic
system of η equations with η unknowns.

T h i s question was first considered in the paper by S. Ι. ι
Syrovat-skii."
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Hx*0 С s - A S+

s+

FIG. 8. Transitions between
the magnetohydrodynamic discon-
tinuities. The letters S + , S", A,
C, and Τ denote the fast and slow
shock waves and the Alfven, con-
tact, and tangential discontinui-
ties.

in the same plane on both sides of the discontinuity,

i.e., if the magnetic field is rotated in the Alfven dis-

continuity by 180°. The transverse component of

the magnetic field reverses its sign on such a discon-

tinuity, but not on a shock wave. Therefore no transi-

tion between the Alfven discontinuity and an evolution-

ary shock is possible, but the non-existent non-evolu-

ionary slow shock wave gradually changes into an

Alfven discontinuity47 (see Fig. 2).

Continuous transitions are likewise impossible be-

tween fast and slow shock waves. This follows from

the fact that the regions of existence of the fast and

slow shock waves have no points of contact (see Fig. 2).

A fast shock wave cannot be gradually transformed

into a tangential discontinuity, for this would contra-

dict the conditions (4.3).

Thus, transitions are possible only between tangen-

tial and contact discontinuities, between tangential and

Alfven discontinuities, and between tangential discon-

tinuities and slow shock waves.

The meaning of the possible transitions between

the magnetohydrodynamic discontinuities becomes

clearer if we consider the problem of the decay of an

arbitrary discontinuity of the initial conditions. If the

normal magnetic field Hx differs from zero, then the

discontinuity breaks up into seven waves, each char-

acterized by one parameter.

On the other hand, if the normal magnetic field Hx

is equal to zero, then the initial discontinuity breaks

up into three waves: a fast shock wave moving to the

right, a fast shock wave moving to the left, and a tan-

gential discontinuity between the two. Each shock wave

is characterized by a single parameter, while the tan-

gential discontinuity is characterized by five param-

eters. 3 0 The total number of parameters is seven,

i.e., the same as in the number of jumps in the mag-

netohydrodynamic quantities on the initial discontinu-

ity. Thus, the tangential discontinuity is a merger of

five discontinuities (two slow shock waves, two Alfven

discontinuities, and a contact discontinuity). The

transitions between the magnetohydrodynamic discon-

tinuities are shown schematically in Fig. 8.
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