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VIBRATIONS; RELAXATION AND KINETIC PROCESSES

10. Fusion and Splitting of Spin Waves. Scattering of
Spin Waves by Spin Waves.

I N the preceding sections we have obtained the energy
spectrum of a ferromagnet and used it for calculating
the spin specific heat and the magnetic moment of the
ferromagnet. In doing this we started from the Hamil-
tonian for the ferromagnet, either in its simplest form
(1.6), or in the form (2.3), which takes account of mag-
netic interaction and the anisotropy of the energy, and
we kept in this Hamiltonian only terms which were
quadratic in the operators for creation and annihila-
tion of spin waves. The neglect of higher powers of
products of these operators, which is justified for find-
ing the energy spectrum of the ferromagnet close to its
ground state, does not, however, enable us to study
various kinetic and relaxation processes in ferromag-
nets which are due to interactions between the elemen-
tary excitations.

Proceeding now to the investigation of relaxation
processes in ferromagnets, we must include both the
interaction of the spin waves with one another, as well
as their interaction with other elementary excitations
which are characteristic of the ferromagnet. Here we
shall limit ourselves to a treatment of ferrodielectrics
only, and therefore, in addition to the interaction of
spin waves with one another, we shall also consider
their interaction with phonons.1

To obtain the Hamiltonian for the interaction, we
must take the total Hamiltonian for the ferromagnet
which takes into account lattice oscillations, and, after
transforming to variables which describe the creation
and annihilation of spin waves (c£, cjj) and phonons
(bfs> bfs), we must by expanding in series select
those terms which contain the operators c£ and cĵ
to third and higher orders, as well as mixed terms

containing both the operators c^ and the operators
bfs. The entire collection of these terms is the inter-
action Hamiltonian in which we are interested.

First let us consider the interaction of spin waves
with one another. The Hamiltonians for interaction of
spin waves with one another can be obtained from 3C!g3>

and 3CS
4) (cf. Sec. 3) if we change from the operators

a£ and a^ to the operators c£ and c^ according to
formulas (3.16). As a result they take the form:

Т = Σ
123

1 2 3 4

+ Herm. conj.

ί; 234ClC2C3c4 НвИП. COnj .

(10.1)
where the quantities Ф' are obtained from Φ by
means of the transformation (3.16). The operators
c£ and c]j which appear here are the true operators
for the creation and absorption of spin waves (in con-
trast to a£ and a^). The expressions 3Cg

3) and 3CS

4>

which are defined by formulas (10.1) are the interac-
tion Hamiltonians for the interaction of spin waves
with one another. Clearly, 3Cg

3) describes processes
of splitting of one spin wave into two and fusion of
two spin waves into one, while 3Cg4) describes proc-
esses of scattering of one spin wave by another, as
well as the splitting of one spin wave into three waves
and the fusion of three spin waves into one wave.

In the case of a uniaxial ferromagnet with strong
anisotropy, when the inequality

is satisfied, the quantity
is close to zero, i.e.,

» 1

is close to unity, and

c k % ak, ck

*For Part I cf. Usp. Fiz. Nauk 71, 533 (1960), Soviet Phys.-
Uspekhi 3, 567 (1961).

Therefore in this case the variables a£ and a^ can
be regarded as operators for creation and absorption
of spin waves, and we can use the expressions (3.14)
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and (3.15) as the interaction Hamiltonians. However,
we note that such an approximation is already insuffi-
cient for the case of cubic crystals with small aniso-
tropy constant, if they are in a weak magnetic field.

The total Hamiltonian for the interaction of spin
waves with one another is a series in powers of the
operators c£ and c^, with an expansion parameter
which is the mean value of the deviation of the mag-
netic moment of the ferromagnet from its maximum
value. This quantity is essentially small at low tem-
peratures. Therefore, the Hamiltonian for the inter-
action of spin waves with one another can be used
only over ranges of temperature which are low com-
pared to the Curie temperature.

In the total Hamiltonian of the interaction, the terms
of lowest order contain the operators c£ and c^ to the
third power. They arise from the expansion of the
magnetic interaction energy. However, in addition to
these terms, one must generally also include terms
containing c£ and c^ to fourth order, these terms
arising from the expansion of the exchange energy
and therefore containing an additional large factor.
Terms which contain powers of the operators c£ and
cjj higher than the fourth are only small corrections,
and we shall therefore not include them.

Now let us calculate the probabilities of processes
described by the Hamiltonians 3C|3) and 5CS

4), i.e., the
probabilities for fusion and splitting, as well as scat-
tering, of spin waves. Let us begin with a determina-
tion of the probability for fusion and splitting of spin
waves.

Using formula (3.20), which gives the matrix ele-
ments of the operators c£ and c^, we obtain the fol-
lowing expressions for the matrix elements of the
processes of interest to us:

K, n2, n31 Ж? | nx + 1, n2 -j-1, n3 - 1)

= 2Ф1 2 ;зУК+1Ж+1)и3е'1 1

(η , η η \ ЖТ \η 4-1 η —Ι, η —'

, 1 1 \

+ к2-к3),

= 2Ф23;, УК A(k x-k,-kJ,
(10.2)

where щ = n^j, £i = e^·
The probabilities for the processes are

W£M?;£+i. пз-i = χ | 2Φι-; 3 Γ K + l) (л2+1)

X n3b (8! + 82-83) Δ (k^kj-ka),

№ηί+ι,Ίι,-i. ηβ-ι = χ Ι ^Фгз; ι Ι ("ι + 4

Xn2n36(82 + 83-81)A(k2 + k 3 - k 1 ) , (10.2')

where δ (χ) is the Dirac δ function.
We see that, in the processes we are considering,

the law of conservation of energy holds:

8 3 = 8 1 4" e2> 8 1 ~ β 2 "Ь E 3

. or the momentum:

We note that, in general, in crystals the latter rela-
tion is replaced by the more general relation

where b is a vector of the reciprocal lattice. How-
ever, in defining the probability averages we can limit
ourselves henceforth to the case b = 0, since the inclu-
sion of scattering processes with b * 0 (these are
called "umklapp" processes), leads to small correc-
tions .

Knowing the probabilities for fusion and splitting of
spin waves, we can determine the change in the num-
ber of spin waves per unit time due to these processes:

Щ. W = χ Σ i Ι Φ'2; 1) (я. + 1) n3 - η Λ («3+1)]

Χ δ (8l + e2 - s3) Δ (kx + k2 - k8) + I Ф1Я; 2 |2 [(nx + 1) (n, + 1) п

- « л (η, + 1)] б ta + вз- e,) Δ (ki+кз-к,,)

+ I Фаз; ι |2 [ К + 1) щп3 - /»! (nt + 1) (na + 1)] ό (er - ε2 - e8)

xA -̂k.-kJ}, (Ю.З)

where L^3){Q} denotes the collision operator associ-
ated with the Hamiltonian 3C^3).

Using the expression (10.3), we shall calculate the
mean time for splitting or fusion of spin waves.

We shall assume that the numbers of spin waves
differ very little from their equilibrium values nĵ

i t = nl + б/гк,

and expand the collision operator Lĵ '-fn} in powers of
δη^. The zeroth order terms in this expansion vanish
since the equilibrium function makes the collision op-
erator zero. The coefficient of δη^ taken with re-
versed sign can be regarded as the reciprocal of the
lifetime of a spin wave with wave vector к with re-
spect to processes of fusion and splitting. This quan-
tity, which we shall denote by l/τ^, is obviously
equal to

(Ю.4)

where the subscript zero on the functional derivative
means tnat the numbers of spin waves are replaced
by the corresponding equilibrium functions. Averaging
1/T^.3) over the equilibrium distribution n£, we find a
quantity which is the reciprocal of the mean life of the
spin wave with respect to the processes of fusion or
splitting:

as well as the law of conservation of the wave vector - = 7 i > < 3 > = - (10.5)
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The calculation of the functional derivative gives («n n2, пз< ni I Ж 4 ' | nx — 1, л 2 + 1, n3-\-1, я 4 + :

ι
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3) = ΤΓ Σ |Φΐ2;
123

(10.5')

Changing from summation over к to integration in ac-
cordance with formula (7.5'), we obtain:1 '2

where

X -з- + —

η = {

г •

An explicit expression for the function F (TJ) can be
obtained only in the limiting cases of small and large η:

2 - I n S n η <? 1
1 (10.6')

η > 1.

Thus w<3> is defined by the following formulas:
2π μΜ0 μ2 / Γ

w ' =

15ζ (3) Λ.

2я μΜ0 μ2 / μ#:β> \ Vs - !
(10.7)

Γ.
We see that in the regions of low effective magnetic

field the average time for splitting is essentially in-
versely proportional to V~T~; in the case of strong
fields it increases exponentially with decreasing tem-
perature.

Now let us proceed to consider the processes of
scattering of spin waves by spin waves, as well as the
fusion and splitting of spin waves, which are described
by the Hamiltonian 3C^4).

The matrix element for the scattering of a spin
wave by a spin wave has the form:

•(Иц л2, w3, rc41 9%?"' | nx + 1, л2 + 1 , ra3 — 1, и4 — 1)

= 4 (Ф12; 34 + Ф*4; 12) / К + 1 ) ( » 2 + 1 ) п Л

The probability of this scattering process is

il_—|— 1 ( n 2 - f - 1 , Ώ . 3 — 1 , 7 1 4 — 1 i I

+ Φ34;12 |2.Κ+1)Κ+:

, — ε,— ε,) Δ (1

-12;34

— k 3 — k 4 ) . (10.8)

The matrix element for the splitting of one spin
wave into three spin waves, which is described by the
Hamiltonian 3CS

4), has the form

The probability for this process is

WSi-7; £ t f ,*f 1, n4+1 = ψ\ Φ,; 234 |« «α (И, +

Χ δ (ε2 + ε3 + ε4 - 8 ι) Δ (к2 + к3 + к4 - Ц)

(Л3+ 1

(10.8')

(10.6) Let us now determine the change in the numbers of
spin waves because of scattering processes and split-
ting and fusion of spin waves as described by the
Hamiltonian 3C|4):

= x- 2 {48|Φΐ2;34 + Φ! 4 ;12 | 2 [Κ+1)(«2+
234

- «i«2 К + 1) К + !)] δ (ε! + ε2 — ε3 — ε4)

Χ Δ (кх + к2 - к3 - к4)

+ 36 Ι Φ 1 : 234 | 2 [(«! + 1) П2П3Щ - Щ (Л2 + 1) (Щ + 1) (Л4 + 1)]

Χ δ (βχ - ε2 - ε3 - е4) Δ (k t - k 2 - k 3 - k 4 )

Хб(81 + 82 + 8 3 -8 4 )Л(к 1 + к2 + к 3 -к 4 )} . (10.9)

We represent the collision operator L^4){n} in the
form:

Д 4 ) W = Ltf {n} + LLr) M, (10.10)

2, 3, 4

+ 2я (sin2 θχ + sin2 θ2 + sin2 θ3 + sin2 θ4)

~K)t (^-кз)2 (к2-к4)! (ка-к,)|
+ + +

(ra2 + 1) n3n3 — nxn2 (re3 + 1) (n4 -f 1)]

; —83 — ε 4 ) Δ ( ^ + ^ —k 3 —k 4 ) , (10.10')

- π (sin2 θχ + sin2 θ2 + sin2 θ3 + sin2 θ4)

-k8)! , (k2—k,)l (ka—k,)l>,-ia

234

K + 1 ) (/г2+1)л3и4.-(л3+1) (л4 + 1 ) л Л

T Σ ί\ ^
234

X [("i + !) пгпап4 - nj, (л2 -(- 1) (л3 + 1) (и4 + 1)]

ι) Δ (к2 + к3 + к4 -

Χ [("ι + 1) («2 + 1) ("з + 1) «4 - ПЛЩ (тг4 + 1)]

Χ δ ί ε ^ ε , + ε,-ε,) Δ (к̂  + к. + кз-к,)}. (10.10")

We note that in the temperature range Τ » μΜ0 the
operator Lir^{n} can be regarded as a small correc-
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tion to the operator lie4n}> since

»

Therefore, in determining the average probability of
scattering of a spin wave by a spin wave we can neg-
lect the operator LP^-fn}, and in the operator li_e^{n}
we can omit terms associated with the anisotropy en-
ergy and the magnetic dipole interaction. Inclusion of
this operator is necessary when one treats relaxation
of the magnetic moment (cf. Sec. 12).

Using the expression (10.10') for l i e ){n} and pro-
ceeding in the same way as was done in finding 1/т(3>,
we can determine the mean time for scattering of a
spin wave by a spin wave:

_ί_Ξω(β) = ^ L £Ь1 ^ (KK
1234

(10.11)

Changing from summation over к to integration, we
obtain, except for a numerical factor of order unity:2'3

(10.11')

The processes of scattering of spin waves by spin
waves, which are associated with the exchange interac-
tion, cannot change the total magnetic moment of the
ferromagnet, since the magnetic moment of the body
commutes with the exchange energy. These processes
need not be included along with the splitting and fusion

3 ( ) If, however, w ( e ) » w(3),
2- ) . their role be-

comes important. In fact, just because of these proc-
esses, there is established a quasi-equilibrium Bose
distribution of the spin waves (with a non-equilibrium
magnetic moment) which gradually, because of the
processes of splitting and fusion of spin waves and
also of scattering caused by the anisotropy energy,
goes over into the equilibrium distribution (cf. Sec. 12).

g
of spin waves, if w<3> » w ( e )

as is the case for Τ » в

11. Interaction of Spin Waves with Lattice Vibrations

We now proceed to investigate processes of inter-
action between spin waves and lattice vibrations. In
order to find a Hamiltonian describing these inter-
actions, we consider the magnetostriction part of the
total Hamiltonian of the ferromagnet, containing the
spin variables and the deformation tensor:

^-иыао, (11.1)
г

where γϋς(Μ) and yikZmrs(M) are the tensors of the
magnetostriction constants: the first of these describes
magnetoelastic effects for homogeneous magnetization,
and the second for inhomogeneous magnetization.

The terms written here exhaust all combinations
which contain the deformation tensor ujjj linearly,

and consequently contain the operators for creation
and absorption of phonons linearly. We can restrict
ourselves to these terms in treating low temperatures.

As compared to the Hamiltonian (6.1), we have here
ЭМГ 9MS

written an additional term TikZmrs ~§^~ "g^" uZm·

containing the derivatives of the magnetic moment
quadratically and the deformation tensor linearly.
Since this is a term of third order (with respect to
Mj and u ^ ) , this term was omitted in considering
coupled magnetoacoustic vibrations in Sec. 5.

9Mr 8MS
In the expression yikZmrs -gj— - ^ Щт f o r

inhomogeneous magnetostrictive energy, it is suffi-
cient to keep only the main part, which is due to ex-
change interaction, and omit the part which is of rela-
tivistic origin. The exchange part of the magneto-
striction energy can be obtained from the exchange
energy (1.2) if in it we expand the quantity J ( r ; m ),
which depends on the distance between atoms, in a
series of powers of the deformation tensor.

The term in this expansion which is linear with re-
9Mr 8Mrspect to u i k has the form y i k Z m -щ- -щ- alm. This

expression, which is invariant with respect to rotation
of the moment M, is the exchange part of the magneto-
strictive energy in which we are interested; it is char-
acterized by a tensor yjkim which is fourth rank and
not of sixth rank, and whose components can be as-
sumed to be independent of M. If, for simplicity, we
assume that the body is isotropic, we can write this
tensor in the form:

where 01>2 are quantities of order unity. In this case
the tensor γ^(Μ) has the form:

У(к(М) = уМ4Л/к + ъ(ЛЯ)вй, (11.2')

where the values of γ and γ0 can be taken for Μ = Mo.
Substituting (11.2) and (11.2') in the Hamiltonian

(11.1), and noting that Ju^dv = 0, we obtain in the
isotropic case, after expanding the moment Μ in
powers of the deviation m:

(mxux г) dv

i У (uxx- uyy + 2iuxy)

+ 2m*mr (uxx + uyy) + 8M0mzuzz] dv

dm* dm' , „ dm+ dm'K B dm*
dxh

)dv, (11.3)

where we have limited ourselves to terms of first and
second order in m.

The first term, containing the oscillations of the
magnetic moment and the deformation tensor linearly,
is of no importance in the investigation of processes
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of interaction of spin waves with lattice vibrations,

and can therefore be omitted. In fact, this term must

be included in the fundamental Hamiltonian of the fer-

romagnet, which contains the deviation of the magnetic

moment and the deformation tensor quadratically. It

leads to the existence of coupled magnetoacoustic

waves. Waves of this type were considered by us in

Sec. 5, and we saw there that the coupling between

the magnetic and acoustic waves is determined by a

small parameter. Therefore, in studying interactions

between spin waves and lattice vibrations we need not

include the formation of coupled waves, and can start

from simple spin and simple sound waves.

Omitting the first term in (11.3), we get the Hamil-

tonian for the interaction of spin waves with the lattice,

which we shall denote by 3Csi-

In order to determine the matrix elements for tran-

sitions caused by the Hamiltonian 3CS;, we must relate

the deformation tensor иу̂  to the operators for cre-
ation and annihilation of phonons. For this purpose
we expand the operator for the displacement u (r, t)
in plane waves:

«i'.'K^y V<>>Ss

(11-4)

where f and o)fs are the wave vector and frequency of
the vibration with polarization s, efs is the unit polari-
zation vector, b | s and b£s are the operators for crea-

tion and annihilation of a phonon with wave vector £

and polarization s, and ρ is the density of the mate-

rial.

The matrix elements of the operators for creation

and annihilation of a phonon with wave vector f are

equal to

i c u f s i (11.4')(Nts | b{s | Nls - 1) = У Л",3 е

where Nfs is the number of phonons of polarization s
with wave vector f.

Using expression (11.4) for the displacement opera-
tor and the expression (3.6) relating m to the opera-
tors for creation and annihilation of spin waves, we
rewrite the Hamiltonian 3Csz in the form

123 " 1 3 3 1 2 3

(11.5)

where

ι 2; 3 = z \μΜ0

1/2

ΐ; 23 = Яг

(е3к2) (fskj + 2β2 (кхк2) (e3

ο у 2ξΥ

(The subscript " 3 " serves to indicate the wave vector

and polarization of the phonon.)

If we consider temperatures Τ » 27τμΜ0, the second

term in *i;23 can be neglected, since the ratio of the

second term to the first term is equal in order of mag-

nitude to
9c(ak)2 _T_
μΜ0 μΊΓ0 •** '

The Hamiltonian (11.5) obviously describes proc-

esses of creation and absorption of a phonon by the

spin wave, as well as the process of transformation

of a phonon into two spin waves. To the process of

creation of a phonon by the spin wave there corre-

sponds the momentum conservation law:

and to the process of transformation of two spin

waves into a phonon, the conservation law:

Let us first consider the creation and absorption

of a phonon by a spin wave. These processes can be

treated as Cerenkov radiation (absorption) of sound

waves. The radiating particle here is the spin wave.

Since the dispersion law for spin waves is the same

(when we neglect magnetic interaction) as the dis-

persion law for ordinary, nonrelativistic free particles

with mass m0 = ~ — j r . the condition for radiating

the phonon is that the velocity of the spin wave ν

must exceed the sound velocity s. Noting that ν

= Kk/m0, and expressing к in terms of the energy of
the spin wave, we can express the condition for radia-
tion in the form:

8 b

where Θ-Q = fis/a is the Debye temperature.

The matrix element for the process of creation of

a phonon by a spin wave has the form

v n2, •1, raa-l,

= Ψ*, 23 V{nx + 1) щ (N3 + 1) Δ (кх - k2 + f3) e» (ει~

according to (11.5), (1.11) and (11.4'), while the proba-

bility for "Cerenkov" radiation of the phonon is equal

to

iKl+?;£ii, щ+i = ~ | ψ1 : аз ρ Κ + 1 )

^(Nz+^nzbi^-Ez + iicaJli^-kz + fz). (11.6)

Let us find the change in the numbers of sound

waves produced by processes of creation and absorp-

tion of a phonon by the spin wave:

χ δ (βι - ε2 - JU03) Δ (к, - к2

X (Л̂ з + 1) - ηι К

s - η, Κ + 1) (N3+ 1)]

Ψ! ; 23 |2 [ К + 1) П2

(ε2 - 8 l - %ω3) Δ (k2 - Ц - f3)}.
(11.7)
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Proceeding in a fashion analogous to that of Sec. 10,
we can determine the mean time for emission of lon-
gitudinal and transverse phonons by the spin wave:

»· ' 2π

2
к

+ Nhnl]b{e1 — e2 — %(ut)

^ = - r 2 j l T i 2 ; , , i

1

12ts,

" 24 '
к

where Nfs=( exp-
Changing from summation over к and f to integra-

tion, we obtain:

8c / 6c Y/a T

'>(})
Τ V/a (11.8')

where

[ τ М У + <*,)* +β Α*

- у (β, + β2) У (У +«»,) J ' ( р г = г + рг=^т

/,(α,) =

and

'rec·
The integrals appearing here can be calculated for

large and small values of the parameters щ and a t .
As a result, we obtain:1 '4

ί

a», =

w, =

бе '

«с

•-^.(11.9)
6с

Comparing the expressions obtained for ŵ  and ŵ .,
we see that at low temperatures it is more probable to
create phonons with transverse polarization (6t < 0j,
since s t < sj), while at high temperatures it is more

probable to create phonons with longitudinal polariza-
tion.

If we are interested in the emission of a phonon
with arbitrary polarization, we obtain for the mean
probability for such a process the expression:1'4

ί „ „

v

 K '· ч " w " (11.10)

The exponential dependence on temperature of the
mean probability for emission of a phonon for Τ
« e\/0Q is related to the fact that in the radiation
processes there can participate only those spin waves
whose energies are greater than 6j}/40c.

Since at low temperatures this probability contains
an exponentially small factor, we must, along with the
processes of emission of a phonon by the spin wave,
also consider processes of fusion of two spin waves
into a phonon and splitting of a phonon into two spin
waves. As is clear from the expression for the Ha-
miltonian (11.5), these processes are not described
by an exchange interaction, but rather by the homo-
geneous magnetostrictive interaction. Therefore
their probability is generally much less than the
probability wp for the processes of creation and ab-
sorption of a phonon by a spin wave, and may be com-
parable with Wp only at sufficiently low temperatures.

The matrix element for the transformation of two
spin waves into a phonon has the form:

(nv - Ι , n a - l ,

(Ν3+ 1) Δ (f,- k x - k2

while the probability for this process is

" i г ' "а

From this we can, as before, find the average proba-
bility for fusion of two spin waves into a phonon:

(li.ii)

Comparison of formulas (11.10) and (11.11) shows
that the inequality Wp » Wp holds down to tempera-
tures of the order of a degree.

Let us now compare the probabilities w<e) and w<3)

which characterize the intensities of the interactions
of spin waves with one another with the probabilities
Wp and wn, which characterize the intensity of the
interaction of spin waves with the lattice. It is easy

to see that w ( e ) » wp, if Τ » бс( д ° ) > all<i w43)
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» ŵ Τ » 2πμΜ0. Thus, the inter-•P' " °C{ec

action of spin waves with one another is stronger than
the interaction of spin waves with the lattice. From
this we may conclude that equilibrium in the spin wave
system can be reached faster than equilibrium between
the spin waves and the lattice. Therefore, the tempera-
ture of spin waves and lattice may, in general, differ
from one another.1 We shall treat the process of
equilibrating of these temperatures, together with the
problem of relaxation of the magnetic moment, in
Sec. 12.

12. Relaxation of the Magnetic Moment in Ferro-
dielectrics

The probabilities we have found for processes of
interaction of spin waves with one another and with
phonons enables us to explain how relaxation of the
magnetic moment proceeds in ferrodielectrics.3

Above, we determined the equilibrium value of the
magnetic moment at a given temperature. The prob-
lem of relaxation of the magnetic moment consists in
explaining how the non-equilibrium value of the mag-
netic moment approaches its equilibrium value.

We shall, to start with, assume that the anisotropy
constant or the external magnetic field Ho is suffi-
ciently large, and begin with the treatment of temper-

A l t

( uMn \ '
atures 6Q » Τ » 6Q \ a ) • At such tempera-
tures the strongest interactions are, as we have seen,
the exchange interactions of the spin waves with one
another. This results in the establishment of a Bose
distribution of the spin waves. The exchange inter-
action does not change the magnetic moment of the
system; therefore, the Bose distribution which is
established does not, in general, correspond to the
equilibrium value of the magnetic moment. On the
contrary, since the Hamiltonian for the exchange in-
teraction commutes with the total magnetic moment
of the system Щ}, the latter can be arbitrary both in
magnitude and direction. The transition to the equi-
librium value of the moment is caused by interactions
which make possible a change in the magnetic mo-
ment of the system; i.e., it is due to magnetic dipole
interaction, anisotropy energy, and the interaction
between the spin waves and phonons. All these forms
of interaction in this range of temperatures are weak
compared with the exchange interaction between spin
waves; therefore, the relaxation of the magnetic mo-
ment proceeds slowly compared with the process of
establishing the Bose distribution with the given value
of magnetic moment Ш.

In order to determine the time of relaxation of the
magnetic moment and the time for equilibrating the
temperatures of the spin waves T s and of the lattice
T ,̂ which generally may differ from one another, we
shall start from the kinetic equation for the spin waves

«k = «k =Lk{n, N}, (12.1)

where Ljj{n, Ν} is the total operator for collision of
spin waves:

Lk {n, N] = L(£> {n} + L? {n} + Lk

r) {/»} + 4 ' S ) {«. N)

[ The operators L j ^ W , L ^ ' W , 1^{η} and

n, N} are related to the Hamiltonians 3CS

4),

3CS

3), Xis, and were defined in Sees. 9 and 10. ]

In the temperature range 6Q » Τ » 9Q ( -^—-) ,

the inequality w*e^ » w<3) holds, so that the largest
term in L. {η, Ν} will be LJ_e){n}. The remaining
terms

can be treated as a small perturbation, and we can in
the first approximation start in place of (12.1) from
the equation

Г<е' 1„\ ~- П Π 9 9^
l^k jrij = U. \χΔ·Δ}

The general solution of this equation has the form:

I n0, k = 0,

εΗ-ζ (12.3)

(e TS — l)-i, к φ О,
where n0 and ζ are arbitrary constants. They can be
related to the initial values of the square of the mag-
netic moment perpendicular to the axis of easiest mag-
netization:

5Ш2 = С \ Μ άνΎ = (M0Vf - 2μΜ0Υ 2 «к,
n0. (12.4)

We shall now take account of the weak interactions
which are described in the kinetic equation by the op-
erators L£3), L^r), and L^ s ) . The distribution (12.3),
which satisfies equation (12.2), will then no longer
satisfy equation (12.1). Since, however, w ^ » w<3>,
Wp, the distribution (12.3) with the slowly varying
parameters f, no, Ts can approximately satisfy equa-
tion (12.1). If the body is thermally isolated from the
surrounding medium, then the temperature of the pho-
non should also be treated as a slowly varying func-
tion of the time.

We note that, although L^5'{n} is much less than

Li3){n}, the operator LJ_r){n} must nevertheless be
retained in the kinetic equation (12.1). In fact, the
time of relaxation of M^ represents, as we see from
formulas (12.4), the time for relaxation of spin waves
with wave vector equal to zero. On the other hand,
processes of fusion of two spin waves into one and
splitting of one spin wave into two cannot change n0,
if the anisotropy constant or the external magnetic
field are sufficiently large. Let us consider, for ex-
ample, the splitting of a spin wave with wave vector
к = 0 into two spin waves with wave vectors к and
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— к. This process is impossible, since the energy
conservation law:

ε0 = 2e.k,

where e k = μΜ0 ( ak2 + β + -ц̂ Д-), is not satisfied in

this case, as one can easily see. In precisely the
same way it is impossible to have a process of fusion
of a spin wave with wave vector к with a spin wave
with wave vector 0. Therefore in calculating the time
of relaxation of 9Kj_ we must include processes in-
volving a larger number of spin waves, where these
processes must not be associated with conservation
of the magnetic moment. Such processes are the
scattering of a spin wave by a spin wave, caused by
the anisotropy energy and the magnetic dipole inter-
action, as well as the fusion of three spin waves into
one. All these processes are described in the kinetic
equation by the operator LJ_r){n}.

Our problem is to explain how 331 and 501̂  vary
with time. To do this, according to (12.4), we must
find the form of the functions £(t), no(t) and T s ( t ) .

The quantity £ is the chemical potential of the spin

waves and is determined by the total number of such

waves. Therefore, to find f ( t ) we should use the

equation

Σ ν r r ΛΓΐ (ίο 1 Ί

к к

To obtain the complete system of equations which
determine all the quantities f, щ, T g and Tj we
must add to this equation the equations:

no = Lo{n, N}, 1

2 ek"k + 2 fcuWVfs = 0, K,fs . ι
2 tiUlsNts = — 2 &iLk {n}, I
fs к J

(12.1»)

where

Substituting into these equations the expressions
for the collision operator Lk{n, N}, and linearizing
with respect to the small quantities ζ, ΔΤ = T g — Tj

and η = e0 (nj/N), where N is the total number of

atoms in the body (the quantity no/N is assumed to

be small* but finite for N —* °°), we obtain:

(12.5)

AT + Gjt, - g- η = Βκζ + ΒζΆτ\ + ΒζτΑΤ,

AT + G2i + ±4 = Bni + BTnr\ + BTTAT, (
s • I

•Smallness of no/N corresponds to a small deviation of Ш from

the equilibrium direction.

where

nd KAGANOV

к

2л дгк

) к

' G°- N

1

Ci 2-1 дТ
к

А = „ п гг ; C s and Cj are the specific heats

n / k
of the spins and lattice, per atom; щ. = ( exp —r- — 1
/Э14Ч /9Lk\ /9LU Ч T

I T ) , · r s r ) o a n d fe)are coefficients in the

expansion

(The subscript 0 means that the values of the deriva-
tives of the collision integral are taken for ζ = η = ΔΤ

= 0.)

Assuming that the quantities ζ, η and ΔΤ vary

with time according to the law e~^', we obtain the

following three values for λ:

^! · 2 = 2(G a —Gj) {

Ο Γ? Ζ? If О/1 \l^"/2l
- 2ΒζζΒΤτ ((Ί- Ж2)] },

λ3=-βηη. (12.6)

The expressions for Xit λ2 and X3 simplify greatly

if Τ » θο Ι

μΜ0 μΜ0 Τ •

Ά 0с \6с
(12.7)

where e0 = μ (Hj + /3M0).
We give a numerical estimate of the quantities \ t ,

λ2 and λ3. Setting ^c ~ Ю3, Mo « ΙΟ3, ρ « 10, a » 2
x 10"8, 0D « ίο2, Τ « 102, we get Xt и 107, λ 2« 109,
λ3 и 105. We note that for Τ » θ^/θς^ ~ 10, the quan-
tities λ1ι2>3 satisfy the inequality λ2 » \j » λ3.

Now let us determine SDi(t) and3It.j_(t). Linearizing
the expression (11.4) for ЭЛ with respect to ΔΤ, ζ, and
η we obtain
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(12.8)

where Ж is the equilibrium value of the magnetic mo-
ment of the body at the given temperature. Using next
Eq. (12.5) we obtain finally:

, „ v'JJl JJ\. HJ\Q HJl л ( . i l i О Ь(|

MaV
 = M0V

 6 + ~ 2 ^ ^

jwio

ΑΓ
1 + α

10

1°. Y / 2 Z_ (β-λιί _ β-λ3ί)

2Jiu — ВД /еовсЛ1/^

(12.9)

where 2JJ0, ЗЛ 0̂, and ΔΤ 0 are the initial values of the

quantities ЯЯ, 2Ri and ΔΤ; a.= 2(—M (-=?-) . These
VAj/ \ 1 /

formulas are valid for Τ » —— . [ Setting 0C ~ Ю3,

Since the smallest of the three quantities \ u λ2, or
λ3 is λ3, for sufficiently large values of t the varia-
tion with time of the whole deviation goes like e~^3t.

From formula (12.9) it is clear that the change in
3Jij_ is related only to the constant λ3. Thus the quan-
tity τ± - 2/λ3 can be treated as the relaxation time
for the transverse component of the magnetic moment.
According to (12.7)

(12.10)

To clarify the physical meaning of the constant \ b

we assume that ΔΤ0 = 9Л 0̂ = 0; then

Ш — Ш: = Шо-Ш)е-^'. (12.9')

Thus, for the assumed initial conditions the quantity τ
= l/λι determines the time for establishment of the
equilibrium value of 9K. According to (12.7)

Me)'
μΜ0

(12.11)

We see that the establishment of the equilibrium
value of the square magnitude of the magnetic moment
occurs faster than the change in the perpendicular
component of the magnetic moment. In other words,
the equilibrium value for the magnitude of the mag-
netic moment is reached first, and then there still
occurs a rotation of the magnetic moment into the
axis of easiest magnetization. Such a relaxation proc-
ess can be described phenomenologically by means of

the relaxation term Τ Ί ^ Μ χ [Μ Χ H ( e ) ] in the Landau-

Lifshitz equation (2.12).

Finally we consider the process of equalizing of the
temperatures Tj and T s . Assuming that 3£Jij_0 = 3J?0 = 0,
we find

'•' + ae-Kit

(12.9"

Since a « 1 and λ2 » \j, in the initial stage of equali-
zation of the temperatures the first exponential is most
important, while the second is important in the final
stage.

Let us now go on to investigate the relaxation of the
magnetic moment in the temperature region Τ

assuming as before that the anisotropy« θ Γ (Г—L)

constant or the external magnetic field are sufficiently
large.5 For temperatures Τ « 0C I ° j , the in-
equality w<3> » w^e' holds; i.e., processes of scatter-
ing of spin waves by spin waves due to exchange inter-
action are less important than processes of fusion and
splitting of spin waves. This means that the operator
L^3){n} plays the principal role in the kinetic equa-
tion (12.1), while the collision integrals Lj,.e^{n},
I^ r ' {n}, LJ/s){n, N} can be treated as a small per-
turbation. „„. A/1

/i/M» \4/l

Thus, for Τ « вс ι the kinetic equation

can in first approximation be replaced by the equation

L™ [n] = 0.

The solution of this equation has the form:

nk-
-1)"

(12.12)

(12.12')

We note that this solution also makes the collision in-
tegral LLe){n} go to zero. The time for establish-
ment of the distribution (12.12') is equal in order of
magnitude to the mean time of fusion of two spin
waves, т ( 3 ). During this same time there is estab-
lished an equilibrium value of the absolute magnitude
of the moment 5№.

The parameters T s and n0 of the distribution
(12.12') are determined once again by the energy of
the spins and the transverse component of the mag-
netic moment. Establishment of complete thermody-
namic equilibrium is the result of the weak interac-
tions which are described in the kinetic equation (12.1)
by the collision integrals L ^ and 1^. . Because of
these interactions, the magnetic moment <Jf the body
slowly shifts to its equilibrium direction and the tem-
peratures of the spin waves and of the lattice become
equal.

Using the expression (12.12') for the distribution
function of the spin waves and the phonons, as well as
the kinetic equation (12.1), we can obtain the following
system of equations for determining the quantities
η = eono/N and ΔΤ = T s - Tj:

(12.13)
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where

and N is the number of atoms in the body. If e0 « Τ

««с "'

τ ν

Ь / γ μ Μ , Λ 2 / ' ε0 λ 2 / »/ Λ 2

re?

3 η η

(12.13')

Assuming that the quantities η and ΔΤ change with
time as e~^, we get the following values of the relaxa-
tion constants:

λ" =
ρα& V o c

(12.14)

The change with time of the quantities 9ft3 and· ΔΤ
is given by the formulas:

(12.15)

We see that λ' has a simple physical meaning: 2/λ'
is the time of relaxation of the perpendicular compo-
nent of the magnetic moment. We note that λ' coin-
cides with the expression (12.7) for λ^.

If the deviation from equilibrium is associated only
with a difference between the temperatures of the spin
system and the lattice, whue 3Jij_0 = 0, the time for
equalization of the temperatures is given by the quan-
tity λ". If ΔΤ0 = 0, while ,3»j.o * 0, then in the proc-
ess of relaxation of the magnetic moment the tempera-
tures of the spin waves and phonons will change be-
cause of a conversion into heat of the energy associ-
ated with the deviation of the magnetic moment from
its equilibrium direction. The time for establishment
of a common temperature under these conditions is
equal to half the time of relaxation of the transverse
component of the magnetic moment.

The results obtained refer to the case where the
anisotropy constant or the magnetic field Ho are suf-
ficiently large. As already mentioned above, in this
case processes of fusion and splitting of spin waves
with wave vector к = 0 are impossible. In crystals
with a small anisotropy constant (crystals with cubic
symmetry are of this type) and for sufficiently weak
fields, splitting of spin waves with wave vector к = 0
into two spin waves with wave vectors к and — к be-

comes possible. This process may make possible a
rotation of the magnetic moment into the axis of
easiest magnetization, and since it is more probable
than the process of scattering of spin waves due to the
anisotropy energy, we can, in studying the relaxation
of the magnetic moment in crystals of cubic symme-
try omit the operator LJ5^{n} in the kinetic equation
for the spin waves.

Let us consider in more detail this case of relaxa-
tion.6 Suppose that a ferrodielectric with cubic sym-
metry fills a half-space whose boundary is one of the
crystallographic planes. The field Ho lies in this
plane and is directed along a crystallographic axis.
The energy of the spin wave with vector к = 0 is then,
as we have seen in Section 4, equal to

The splitting of such a wave into two spin waves with
wave vectors к and — к is possible, as we see from
the energy conservation law

ε0 = 2 e k ,

when the inequality β + -r£-< -5- is satisfied. The re-
0 Η

suits obtained earlier refer to the case when β + —i-
> ~r~ . 1i β + -г/· < -г-, then we must make a special

О Мд ό

computation of the relaxation constants. We shall not
do this here, but simply give the final results:

μΜο/μΜογ/2 Τ

4π
3

λ»

4Ti r
y«T7

1 0 2 μ Μ ο / μ Μ ο γ / 2 Τ f 4π „ Я о

ft V 6C ) Ьс \ 3 P MQ

/»

4 π
«ι. (12.16)

It can be shown that the quantity 2/λ'3 has the mean-
ing of a relaxation time for the transverse component
of the magnetic moment of the body, while l/λί is the
time of relaxation of the absolute value of the magnetic
moment. The quantity λ£, as one might expect, goes

to zero for β + -j-jQ- = —g- .

We give estimates of the quantities λ̂ , λ̂ , and λ̂ .

Setting 0C ~ 103, 6>D ~ ΙΟ2, β + -Sp- ~ 1, Mo ~ 103,

Τ ~ 102, we obtain λί - λ£ ~ 107 sec"1, λ£ ~ 3 x 108

sec"1. Thus, if β + ^- is not too close to ^-, the
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times of relaxation of the absolute value and of the

transverse component of the magnetic moment have

the same order of magnitude. This is the distinction

between the relaxation for the case of small aniso-

tropy and weak fields and the relaxation for the case

of large anisotropy or strong fields. In the latter

case, the establishment of the equilibrium value of

the magnetic moment occurs much more rapidly

than the rotation of the moment toward the equilib-

rium direction.

In the temperature region Τ « 9Q I ° j , the

main role in the kinetic equation is played by the op-

erator L«_3){n}. Therefore in crystals with low mag-

netic anisotropy, in which one can have a decay of a

spin wave with wave vector к = 0 into two spin waves
with wave vectors к and — k, simultaneously with the
establishment of the Bose distribution of the spin
waves, we have an establishment of the equilibrium
value of the magnetic moment.

IS. Dispersion of the Magnetic Permeability of a
Ferromagnetic Dielectric

In the preceding paragraph we considered the re-
laxation of the magnetic moment. The complex char-
acter of the relaxation imposes some fundamental
features on the frequency dependence of the magnetic
susceptibility of a ferrodielectric.1'7 We shall con-
sider the case where the variable magnetic field is
polarized along the direction of the equilibrium mag-
netic moment, i.e., we shall calculate the longitudinal
component of the magnetic permeability χ3 = χζζ-

We recall that the static value of this quantity can be

obtained by differentiating the magnetic moment per

unit volume (3.23) with respect to the magnetic field.

If the frequency of the variable magnetic field

hoe~ i a ) t is very much less than the reciprocal of the

relaxation time T S S in the spin system, i.e.,

«от„<1, (13.1)

the field can be treated classically as the cause for the
system of spin waves to deviate from its equilibrium
situation.

The condition O>TSS « 1 allows us to represent the
energy of the spin wave in the form

6k = ε0 + Bc (ak)2 + μΛ0 е~ш. (13.2)

This expression for the energy of the spin wave is
valid, as already pointed out, for any temperatures
Τ « вс, if e0 » 2πμΜ0. If е0 4 27τμΜ0, formula (13.2)

can be used for 0Q » Τ » 27τμΜ0.

The kinetic equation (12.1) enables us to determine

the distribution function of the spin waves n^( t) .

We consider low temperatures, eo « Τ « To, where

To = 0Q f-̂ —-j . In this temperature range, accord-

ing to Sec. 11, the most probable processes are those

of fusion of two spin waves into one and splitting of one

spin wave into two. This means that T S S ~ τ3 (cf. Eq.

10.7).

According to Sec. 11, the solution of the kinetic

equation (12.1) for e0 « Τ « To should have the form

^k %. Пк· \±o.of

We note that the quantities e^ and T s are slowly
varying functions of the time. Such a form of the so-
lution means that in the system of spin waves a quasi-
equilibrium state is "able" to establish itself with
its own temperature, different from the temperature
of the lattice. The dispersion of the magnetic suscep-
tibility in this case is associated with two basically
different mechanisms: first with the dependence on
the time of the spin temperature T s , in which the en-
ergy dissipation is caused by transfer of energy to
phonons, and second with the deviation of the distribu-
tion function from its equilibrium value. In accord-
ance with this we shall write χ3 in the form

X» = X«.i + JC8.«. (13.4)

where χ 3 ) 1 is caused by the f irst mechanism, and χ3 > 2

by the second. The c h a r a c t e r i s t i c t ime for the f irst

mechanism is the t ime for equalizing of the t e m p e r a -

t u r e s , TSI и ΐ / λ 2 (cf. Eq. 12.7). The c h a r a c t e r i s t i c

t ime for the second mechanism is the spin-spin r e -

laxation t i m e T S S . Since T S S « TSI, for frequencies

ωτ5ι « 1 the main p a r t in the dispers ion of the m a g -

netic susceptibil ity is played by the spin-phonon i n t e r -

action, while for frequencies 1/TS; « ω « 1/TS S the

main effect is that of the deviation of the distribution

function from its equilibrium value.

For the calculation of the time dependence of the

temperature T s we must use the equation of heat

balance, which can be obtained from the kinetic equa-

tion (12.1) using expressions (12.3) and (13.3):

(13.5)

where

6c τ'/2

-exp -

An analogous equation can be obtained for the pho-

non temperature Tj. Here, however, the question of

the interaction of the phonons with the external me-

dium arises. If the thermal contact is very good, the

temperature of the lattice will not change. We shall

restrict ourselves to this case.*

From (13.5) we have

Τ' = - .
1 — ίωτ,

μΛ. (13.6)

*The difference between T s l and 1/λ2 (cf. Eq. 12.7) is related
to the fact that in Sec. 12 the equalization of the temperatures of
of spins and lattice was considered for the case where the system
was thermally isolated.
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Now we shall use the expression for the magnetic

moment (3.23). If we assume n^ = η ί -=— ) , then

_дМ d_M_dTs
χ 3 · ι ~ ah + 8Ts~dh •

From this and from expression (3.23) we have

(13.7)

We shall now calculate the quantity x3 j 2 which is
related to the deviation of the distribution function
from its equilibrium value. This mechanism of dis-
sipation is important for relatively high frequencies
o>Tgj » 1, for which, however, we still may use for-
mula (13.2), in view of the validity of condition (13.1).
In the kinetic equation (12.1), we can then neglect the

term L|Z{n} = L|Z{n 0} + LgZ{n'}. In fact, the first

term Lj! {n} is small compared to 9n^/9t, while the

second term L^{n '} is small compared to L^3 ){n'},

since Tgg « Tsi· Noting also that L^3){n0} = 0 and

9n'/9t « LJ_3){n'}, since ω τ 8 8 « 1, the kinetic equa-

tion (12.1) can be written as follows:

д-§ = и?{п'}. (13.9)

Neglecting the term L^ {no} in the kinetic equation
corresponds to neglect of the heat loss in the heat bal-
ance equation (13.5). Therefore for ωτ&ι » 1 we have
T s = qMh, and (13.9) can be written as follows:

where L is the dimensionless collision operator,
which is easily obtained from formula (10.3) if we go
over from summation to integration with respect to
the wave vector k, and introduce the dimensionless

wave vector χ = (-ppr) ak>

1 _ μΜ0 μΜ0 /

From (13.10) we have

and

Τ у/г
) (13.11)

(13.12)

where ψ (χ) is a dimensionless function of a dimen-
sionless argument which cannot be determined without
an exact solution of (13.10). This function should be of
the order of unity, since the equation for it contains
neither small nor large parameters.

Knowing the dependence of n' on temperature, we
can find the dependence of χ3>2 on temperature and fre-
quency. To do this we can again make use of the ex-
pression for the magnetic moment (3.23). From (3.23)
and (13.12) we have, to within a numerical factor:7

Τ V/2 (13.13)

As we see from the last expression, in this case
Re хз>2 = 0, which is related to the neglect of the term
9n'/9t in the kinetic equation (12.1). К we do not neg-
lect this term and replace the collision integral Li 3 )

by the expression η ' / τ 8 8 , we have for χ 3 2 :

X 3 , 2 ' аЧг

Τ γ/2
1 — ιωτ.

(13.14)

This expression is, of course, less accurate than ex-
pression (13.8) for χ3 ) 1.

Comparing formulas (13.8) and (13.14), we can
verify that χ3 t and χ3>2 coincide for ω и ( T S ; T S S ) ~ * ' 2

For lower frequencies | χ3 ) 11 > | χ 3 > 2 1, for higher fre-
quencies | χ 3 > 1 | < I x 3 j 2 | .

We shall now consider the case of relatively high
temperatures: 7 To « Τ « 9Q- In this temperature
range the exchange forces play the main part in the
interaction of spin waves with one another.

Nevertheless, in the kinetic equation we cannot
drop the small relativistic terms because precisely
these terms are responsible for the dispersion of the
magnetic susceptibility.

The solution of (12.1) must be sought for in the
form (cf. Sec. 12):

(13.15)

realizing, in doing this, that the energy e, the chemi-
cal potential ζ, and the temperature of the spin waves
T s depend on the time. In the sequel we shall use
formula (13.2) for the energy of the spin wave, as-
suming it to be valid also for к = 0. In other words,
the formulas found below are valid for e0 » 2πμΜ0.

From Eq. (12.1), with account of (13.5), it is easy
to find the relation between the variable part of the
temperature T s , the chemical potential £, and the
variable magnetic field:

(ATi - mqCs) T's + (TAtl - ia>B) ζ = ΒμΑ,

(Αττ - шСв) Ts + (Ατζ - iwCs) ζ = qC^h. (13.16)

Here

ν вс

(13.17)

By means of (13.16) we determine T s and ξ, and
knowing them, from the formula for the magnetic mo-
ment (3.23) we determine the magnetic susceptibility
of the ferromagnetic dielectric:

— νΧ stat
1 . ίωτ ?(1 — ί'ωτ2) )
1 " Γ ι _ ί ω Τ ι _ ωζΧιΧ2 / V 9Τ УУ Η 1 — iu>x1 —

Τ
2 ~ λ2

(13.18)

It can be shown that there is still another mechanism
which results in a dispersion of the magnetic suscepti-
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bility, namely the deviation of the distribution function
from its equilibrium value (analogous to the second
mechanism for low temperatures). However, it is
easy to see that this mechanism is always unimportant,
since the exchange forces, which play the primary role
in this temperature range, do not change the size of
the magnetic moment, while the relativistic interac-
tions are included in (13.16).

We now turn to the treatment of the high frequency
case ω » 1/T S S . With increasing frequency, the mag-
netic susceptibility tends to unity.8 Therefore, at suf-
ficiently high frequencies it is meaningful to speak, not
of a calculation of the magnetic susceptibility, but
rather of the absorption coefficient for photons Γ, de-
fined as the difference of the probabilities for all proc-
esses of absorption and emission of a photon.

It can be shown7 that the absorption of a photon oc-
curs because of the decay of the latter into two spin
waves, the probability for this process being

| vkuk, + vk,uk ]2 (nk + 1) (nk, + 1)6 (ek + nk, - ω%).

From this, the absorption coefficient Γ has the form:

Γ = 24π27ωμ3 («к + Я-k+l) | t>k!i_k + Kkti_k \ δ (ek + e_k — ftco).

(13.19)

In obtaining the last formula, we have used the fact
that the photon momentum is considerably less than
the momenta of the spin waves, and have set it equal
to zero.

The splitting of a photon into two spin waves can
occur only when the photon energy Κω is greater than
2e0. For Κω < 2e0, absorption of the energy of the
magnetic field is associated in the main with inelastic
scattering of the photon by a spin wave. This process
is extremely improbable since it occurs only in the
second approximation of perturbation theory.

From expression (13.19), noting that %, ufc and
v k are even functions of the wave vector, we find:

Γ =

where

and

2 (2πμΜ ) 3 / 2

-τ̂ ,/ (ν, η),

о,

ν > η ,

ν < η ,

(13.20)

η = 2̂ΛμΜ 0 '

σ (ν, η)

2η
< ν < V η 2-г 2η.

We give the asymptotic values of the integral I:

_16_(v — η) 3

105 η (13.21)

Substituting these expressions in formula (13.20), we
can determine the frequency dependence of the absorp-
tion coefficient of a photon in all the limiting cases.
We give it only for the case of high frequencies: *

16 μ2 /· 2πμΜ0

15 a3h { Br

%(£>

2πμΜοεο
(13.22)

For photon energies large compared to the temper-
ature (Κω» 4Τ), the absorption coefficient falls off
proportionally to ω~*2.

14. Thermal Conductivity of Ferrodielectrics

Knowing the Hamiltonian for the interaction of spin
waves with one another and also for the interaction of
spin waves with phonons and phonons with one another,
we can compute the thermal conductivity of a ferro-
dielectric.

For this purpose let us write the kinetic equations
which determine the change in the numbers of spin
waves n k and of photons N k s in the presence of a
weak temperature gradient VT. These equations have
the following form:

nk = Lk {n} + Lk

l {n, N) = rek {nk + 1) ~ (vk, V7"),

N£. = Ll

k\ {N\ + Li. {n, N] = Nks (№ks + 1)

1 Зеи
where v k = γ -^- and s k s =

(14.1)

; the operators

L

k

s { n } and L?^{n, N} describe the collisions of spin

waves with one another and of spin waves with phonons,

while the operators i/. { N } and Lu.s{n, N} describe

collisions of phonons with one another and with spin
waves.

The operators L | s {n} = Lk

e ){n} + Lk

3){n} and

L|Z{n, N} are given by formulas (10.3), (10.10') and
(11.7), in which, however, we must include umklapp
processes. This means that in these formulas the
function A(Zk) must be replaced by the function
Д(Ек-2тгпт), where Τ is a vector of the reciprocal
lattice and n is an integer, and we must carry out a
summation over all values of n.

The operator L^{n, N} can be obtained by using

the Hamiltonian (11.5), and has the following form:

ύ! -f ε2 — ε3)Δ (kj + k 2 — k 3 — 2πητ). (14.2)

The operator L ̂  { N }, when we include only proc -
esses of fusion of two phonons into one and splitting of
one phonon into two, is given by the following expres-
sion:

*Of course, we are assuming ϋω <Κ
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.а|"[(ЛГх+1)(ЛГ,+ 1)ЛГ,

λω2—ίιω3) Δ (kj + k2 — k3 — 2япх)

l)(Na+l)Nt-N,Na{Nt + l)]

resu l t , we obtain the following equations for d e t e r m i n -
ing φ ^ and Ф^:

+ |Xl3,2|2[(iV 1

Χ δ (ho>1 + %щ — Ш2) Δ (kj + k3 — k2 — 2япх)

+ |X23,i I2 [(N1 + i) N2N3 — Л\ (N2 + 1) (N3 + 1)]

Χ δ (Λω2 + ftu)3 - ftcoj Δ (kx - k2 — k3 — 2япх)}, (14.3)

w h e r e the quantity Xj 2 3 i s equal to

X12, 3 = ^12, 3 V a ! д - ' 2 3 (14.4)

and А12)з is a dimensionless quantity of order unity,
depending on the polarization and direction of the wave
vectors of the phonons participating in the collision
process.

Setting ή£ and N £ S equal to zero, we obtain equa-
tions for determining the stationary distributions of
the spin waves and phonons.

If we do not include umklapp processes in the colli-
sion integrals the stationary distributions will have
the following form:

nk = {e~^-ly\ Nks = {e~^^-l}-\ (14.5)

where g is an arbitrary constant vector, which is de-
termined by the total momentum of spin waves and
phonons.

To this distribution there corresponds obviously
a heat flux,

5 = 2 7iu)ksSks.lVks 4" 2 8kVk«k,
ks к

which, for g * 0, is different from zero in the ab-
sence of a temperature gradient. * Such a conclusion
is related to the fact that, in defining the stationary
distribution of spin waves and phonons, we did not in-
clude umklapp processes, for which the law of conser-
vation of quasimomentum is violated. This means
that if we do not include umklapp processes, we shall
obtain an infinite value for the therm'al conductivity.9

When umklapp processes are included, the equa-
tions

0, О

are satisfied only if g = 0, and therefore for VT
the thermal flux goes to zero.

We shall look for solutions of (14.1) in the form:

0

(14.6)

If the temperature gradient VT is small, the cor-
rections to the equilibrium functions will also be small.
Therefore the collision integrals in equations (14.1)
may be linearized with respect to φι. and Φι,. As a

ψ- 2 |Φΐ2,3*+Φ$Μ2|
234,η

(Φι + φ 2 - φ 3 - φ4) δ (ег + ε2 - es - ε4)

- 2 я п т ) - ^ - 2 ί | Φ ΐ 2 , 3 | 2 Κ + 1 )

23, η

П3 (<Ρΐ + 4>2 - Ъ) δ (81 + 62 - 4)

Χ Δ (k t + k 2 - k3 - 2πητ) + 1 Φ 1 3 , 2 Γ Κ + 1) Κ + 1)

Χ η2 (q>!+ <ρ3- φ 2 ) δ (ε1 + ε3- ε2) Δ (k t + k 3 - k2 - 2япх)

+1 Φ23, 112 Κ + 1) n2ns (φ, — φ 2 — φ 3) δ {ег — ε2 — ε3)

23, η

Χ η2Ν3 (ψ1 - φ 2 - Φ 3) ό ( Β ι - ε2 Δ ( Ц - k a - k 3 - 2ηητ)

Χ δ ε 2)Δ (kj + k 3 - k 2 - 2япх)}, (14.7)

X N3 ( !

+1 Χιj. 2

- Φ 3

)=-2%- 2 {|χ)2,
2!;n

δ (Шг + %ω2 - %α>3) Δ

3ΐ2(Λ·1+ΐ)(/ν2+ΐ)

j + к.г - к 3 - 2ηηχ)

(Ν, + 1) (N3 + 1) Nt (Φ, + Φ3- Φ2)

Χ δ (%ω1 + %ω3 - Αω2) Δ (k x + k 3 - k.2 — 2πητ)

+ Ι Х23,112 (Ν, + 1) NJS3 (Φ χ - Φ, - Φ3)

χ δ (Ьй)! — Αω2 — %(ύ3) Δ (kj — k 2 — k 3 — 2ηηχ)}

(14.8)

23, η

Χ δ (%ω1 + ε2 — ε3) Δ Ι x + k 2 — k 3 — 2πηχ).

•The body as a whole is assumed to be at rest.

We shall show that the main part of the functions
φ ^ and Фк has the following form:1 0

9k = Ok = kg, (14.9)

where g is a constant vector which is proportional to
the temperature gradient. This main part of the func-
tions φ ^ and Φίς corresponds to stationary functions
of the form (14.5), in which an expansion is made in
powers of g and the first two terms are retained.

In order to verify that the corrections to φ ^ and Φ^
are small, we shall write the system of equations (14.7)
and (14.8) schematically in the form of an equation with
one unknown function;

£ο(φ) + ££« (ф) = " ( и + 1)-Jr(v. V71). (14.10)

where LQ is the collision operator omitting umklapp
processes, Ьц is the collision operator describing the
umklapp processes, and ξ is the small parameter
characterizing the probability for umklapp processes.
The operator Lo has the property that Lo (φа) = О if

Ψο = 8 k ·
We shall look for a solution of (14.10) in the form

φ = gk + φ ' and select g from the condition
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к

(14.11)

The left side of this relation gives the change in mo-
mentum of the system per unit time as a result of col-
lisions, while the right side gives the change in mo-
mentum of the system because of the presence of the
temperature gradient. From (14.11) it follows that

g ~ — VT. We now show that φ' « φ0. For ξ « 1,

the equation for determining φ' has the form:

Lo (q>') = и (я + 1) -£- (ν, VT) + ILU (gk).

Since this equation does not contain a small parameter
(|g ~ 1), φ' will be of the order of magnitude of
unity, whereas φ0 is inversely proportional to ξ.

Let us now turn to the initial system (14.7) and
(14.8). In order to find the vector g, we should, in
accordance with condition (14.11), multiply the kinetic
equations (14.7) and (14.8) by the vector к and add
them. As a result, we obtain the following equation
for determining the vector g:

(14.12)

where

A = L3S + Lsl + L11,

24π
(2πτ)

X 7i3re4 ό (εχ + ε2 — ε3 — ε 4)Δ (k x + к 2 — к 3 — к 4 — 2πτ)

+ - ^ ( 2 π τ ) * 2 Ι φ < 2 . 3 1 2 K + 1) (η,+ 1) η3 δ (β χ + ε2 - ε3)

Lsl =% Β ι - ε2 - ftro3)

123

х Д ( к 1 - к 2 - к 3 - 2 я т ) ,

Ζ," = -!£• (2πτ)* 2 1 χ< 2,312

123

Χ.ΛΓ3δ ( i u ^ Δ (kj + k2 — k3 — 2πτ).

bi the expressions L we include terms with lowest η
different from zero, i.e., η = 1. The quantities R s

and Щ are easily calculated:

Therefore g is equal to

CI + 2C,
ЗА

(14.14)

Using (14.6) for njj and Njjg and (14.14) for g, we
get the following expression for the heat flux:

"Υ J V 3

On the other hand,

S = - VxVT,

where κ is the thermal conductivity coefficient. There-
fore

(14.15)

Let us now estimate the quantity A. Since when
quasimomentum is not conserved we cannot simul-
taneously have all the components of the quasimomenta
of the colliding particles be small, the quantities L
must contain exponential factors. The exponents of
these factors are obviously determined by the lowest
values of the quantities e t + e2, Κωι + Йш2, and Κα>ι
+ e2 i n t n e corresponding regions of integration. To
find these minimum values in general is not possible,
since to do this it would be necessary to know the ex-
act dispersion laws for the spin waves and phonons in
the region of large wave vectors. We can, however,
assert that, in order of magnitude, the minimum val-
ues of e t + e2 and Kwj + Κω2 are equal to 9Q and θγ).
Therefore the quantities L s s and L^ can be written
in the form:

\ ! - V [ .

(14.16)

(14.17)

where y s, yi and ots, щ are of the order of magni-
tude of unity, while the power of the factor before the
exponentials will depend on where the minimum values
of the quantities el + e2, Kcoj + fio)2 are reached within
the integration region, when both of the quasimomenta
kt and k2 are large, or for kt = π/b, k2 « тг/b. If we
assume that e (k) = 0Q(ak)2 and ω^8 = s gk down to
к = π/a, the quantities s and I will be equal to s = 4,
I = 2, and y s = V2, γι = 1.

We shall now evaluate the quantity L in the two
limiting cases when θχ> » 8Q and 9D « 9Q. If θβ
« 9Q, then, as follows from the conservation laws,

εχ + ft(o2 = ε3 и kj + k2 = k3 + 2πτ,

— πτ < kj < πτ, кг я= к3 «s πτ, kt < πτ

and therefore

Thus, for 9Q » 9-Q the exponent of the exponential in
the expression for Ls^ is of the order of magnitude
of 9Q, and L has the form:

(14.18)

We note that, if the quadratic dispersion law for the
spin waves and the linear dispersion law for phonons



676 AKHIEZER, BAR'YAKHTAR, and KAGANOV

were valid down to к = πτ, the quantities n, m and у
would have the following values:

n = l, m = 2, γ = χ ·

It is easy to show that in the limiting case of θγ>
» θ с the radiation of a phonon by the spin wave is im-
possible; therefore for 0rj » OQ the quantity L s ' = 0.

Comparison of the expressions (14.16), (14.17) and
(14.18) for L s s , LU, and LZ s shows that if 0c » &o,

Lll » L s s > Lsl. i f QC « gO> L s s » Lllt LZs, There-
fore in these limiting cases the thermal conductivity
is determined by the following formulas:

A T JL
_ _ £ _ ρ 2Γ
9 a% e

If

ms* -

9ah Ch

(14.19)

(14.20)

We note that for Τ « B^/OQ the main part in the
thermal conductivity is played by the spin waves, since
then C s » Q . But if 0 D » Τ » 0fo/0c> t n e h e a t i s

transferred by the phonons, since then C s « C;.
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