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1 HE energy spectrum of a macroscopic body deter- atom from the prevailing direction is not localized at
mines all its thermodynamic and kinetic properties. a definite place in the crystal lattice, but is propagated
For example, the phonon spectrum of sound vibrations in the form of a wave with a wave vector of definite
determines the specific heat and the thermal conduc- frequency dependence.
tivity of the simplest dielectric crystals, the electron If we multiply the frequency of this wave, which is
spectrum of metals determines their electrical, mag- called a spin wave,* by the quantum constant K, we
netic, and thermal properties. Therefore, the finding obtain the energy of the elementary excitation associ-
of the energy spectrum is the most important problem ated with the spin wave. In the neighborhood of the
of a microscopic theory of macroscopic bodies. How- maximum value of the magnetic moment, the magnetic
ever, this problem is fraught with great mathematical part of the energy of the ferromagnet is a sum of en-
difficulties, and its solution is known only for some of ergies of such elementary excitations,
the simplest systems. In addition to the phonon spec- A macroscopic body can in general have various en-
trum mentioned above, which applies for any solid body, ergy spectra, which can be regarded as different
there have been investigated theoretically also the en- branches of the single energy spectrum of the body,
ergy spectrum of ferromagnets near saturation, the Each such branch is characterized by its own disper-
spectrum of helium II, and the energy spectrum of sion law, i.e., by the dependence of the energy on the
superconductors. wave vector. The main point is that the weakly excited

In the present summary we shall consider the fun- energy states of macroscopic bodies can be treated as
damental properties of the ferromagnetic energy spec- a set of gases of elementary excitations or quasi-par-
trum in the neighborhood of magnetic saturation. This ticles.t
spectrum determines at low temperatures the depend- The properties of these gases, aside from the dis-
ence of the magnetization of the ferromagnet on tern- persion law, are determined by the statistics to which
perature and external magnetic field, the thermal prop- the quasi-particles are subjected and also by the na-
erties of the ferromagnet, the relaxation of the mag- ture of the interaction of the quasi-particles with one
netic moment, and the behavior of the ferromagnet in another,
variable electromagnetic and acoustic fields. At sufficiently low temperatures the interaction be-

The ferromagnetic energy spectrum appears in tween quasi-particles is weak. If we neglect these in-
crystals, in which the exchange interaction between «Spin waves were first introduced and investigated by F. Bloch.1

atoms plays a fundamental role. Under these condi- tThis assertion is not fully rigorous for systems with a Fermi
tions, the deviation of the magnetic moment of any spectrum (cf. reference 2).
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teractions, i.e., if we start from the picture of an ideal
gas of quasi-particles, then, knowing the dispersion
law and the statistics of the quasi-particles, we can
obtain all the thermodynamic properties of the body.
To study the kinetic properties of the body, ideal gas
models are not sufficient, since these properties are
essentially determined by the interaction between the
quasi-particles.

The problems of the theory of ferromagnetism which
are presented below are linked by the general idea of
spin waves. We shall, for the most part, consider the
properties of ferro-dielectrics, i.e., bodies which have
a spontaneous magnetic moment and do not possess
conductivity. Ferrites at low temperatures are very
similar in their properties to such bodies.

I. ENERGY SPECTRA. THERMAL AND MAGNETIC
PROPERTIES OF FERROMAGNETS AND ANTI-
FERROMAGNETS.

1. Spin Waves in Ferromagnets

The introduction of spin waves can be accomplished
in two ways: by starting from a microscopic model of
the ferromagnet, and by a phenomenological argument.
Let us start with a presentation of the microscopic
theory of spin waves.1'3

In the simplest model of a ferromagnet it is assumed
that in the ground state the spins of all the atoms are
oriented in one direction. The dependence of the en-
ergy of the system on the orientation of the spins is
determined not by the magnetic interaction of the atoms,
which is very small, but is a purely quantum effect re-
lated to the indistinguishability of the particles. Be-
cause of this effect and also because of the Pauli prin-
ciple, spatial wave functions with different symmetries
will correspond to different values of the total spin of
the system and will give different energy values. Thus
we can say that some peculiar interaction between the
particles leads to a dependence of the energy on the
total spin of the system. This interaction is called
the exchange interaction (cf., for example, reference
4).

The Hamiltonian for the exchange interaction of
two particles can be represented as

ж'= -/(r 1 2)S ls 2, (1.1)

where Si and e2 are the spins of the particles, and
J (r 1 2 ) is some function of the distance r12 between
the particles; J (r 1 2 ) is called the exchange integral.
It is easily verified that SjS2 = — % for a singlet state
(total spin S = 0) and s ^ = V4 for a triplet state
(S = 1); thus for positive J (r 1 2 ), the triplet state has
lower energy.

Since the interaction between the particles is bas-
ically electrostatic in nature, the exchange integral
has the same order of magnitude as the electrostatic
interaction energy of the atoms.

In the exchange model of a ferromagnet,* we start
from a Hamiltonian which is a generalization of the
Hamiltonian (1.1),

(1.2)
i .m

where sj is the spin of the Z-th atom, J ( r j m ) is the ex-
change integral between the Z-th and m-th atoms, r j m

= I rZ ~ r m I» a Qd r m is the radius vector of the m-th
atom; the summation extends overall atoms in the crystal.
The quantity J ( r^ m ) is assumed to be positive so that
in the ground state all the atomic spins have the same
orientation. However, this orientation is not a dis-
tinguished direction since the function J ( r/m ) is a
scalar.

In the presence of an external magnetic field Ho,
which is directed along the ζ axis, we must add to the
Hamiltonian (1.2) the energy of the spins in the exter-
nal field, which is equal to - 2μ0 £/ SjH0, where μ0 is
the Bohr magneton. I

Thus the Hamiltonian operator in the presence of
an external magnetic field has the form

ж=-± у (1.3)

Our problem is to find the eigenvalues of the Hamil-
tonian (1.3) for the case where the magnetic moment
is close to saturation. For this purpose it is conven-
ient to introduce the circular spin projections

which satisfy the commutation conditions

and in addition go over to the operators aj and a/,
which are related to the operators sj, sj, and s z, by
the following relations: t

(1.4)

- = « — α ( α ( . J

It is easy to verify that the operators
satisfy the commutation relations

and a.j

(1.5)

From these relations it follows that the eigenvalues of
the operator 9Ί1 = aj â  are positive integers. The
quantity Щ obviously determines the deviation of the
ζ-projection of the spin of the Z-th atom from its max-
imum value.

We note that, according to the commutation relations
(1.5), 31 runs through all values from zero to infinity,

*The exchange model of a ferromagnet was proposed by Ya. I.
Frenkel', Ya. G. Dorfman5 and W. Heisenberg.6

f Here we follow the paper of Holstein and Primakoff.3
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whereas, according to (1.4), it cannot exceed 2s. This
contradiction, however, is unimportant, since in the
sequel we shall be interested only in states which are
close to the ground state, for which case the main role
is played by small deviations of the spins Щ. For this
case, replacing the square root in (1.4) by unity:

(1.4')

and substituting these formulas in (1.3), we obtain the
following approximate expression for the Hamiltonian
of the ferromagnet:

· - 2s 2 J.(r,J (ataM - ща,) + 2,unff0 £ at a, + f. (1.6)
l I

where

r:= -

and N is the total number of atoms in the body. The
quantity С is the energy of the ground state of the
system when all the spins are oriented along the ζ
axis.

In order to find the eigenvalues of the Hamiltonian
(1.6), we go over from the operators â  and a.j to
their Fourier transforms aĵ  and a£:

Tie Σ
(1.7)

It is easy to verify that the operators ajj and a£ sat-
isfy the same commutation relations as щ and a m :

(1.8)

(1.9)

Substituting (1.7) into (1.6) we obtain

+ С

where

(1.9')

It follows from (1.8) that the eigenvalues of the op-
erator 3C are equal to

S=Sek»k+C, (1.10)
к

where n^ = 0, 1, 2. . .
Thus we see that the energy of weakly excited states

of the ferromagnet can be represented as a sum of en-
ergies of individual particles — the elementary excita-
tions. The energy of each excitation is equal to efc.
These excitations are called spin waves.

In the representation in which the Hamiltonian op-
erator (1.9) is diagonal, the non-zero matrix elements
of the operators aĵ  and a£ have the following form:

(«k - 1 | «к | nk) = У nk ё

(«k | «ί | nk - 1) = [/n~k e
. e k <

(1.11)

This problem was investigated rigorously by Dyson.7

Thus the operators a£ and aĵ  can be interpreted as
the operators for emission and absorption of spin
waves with wave vector k.

In the case of weakly excited states the quantities
efc must be small compared to the exchange integral
for neighboring atoms. Therefore, as we see from
formula (1.9'), we must limit ourselves in this theory
to long-wave oscillations, for which ak « 1, where a
is the lattice constant. In this case it is easy to de-
termine the dependence of ejj on k. Expanding the
exponent (1.9') in powers of к and making use of the
rapid decrease of the exchange integral with distance,
we get

, ο , τ { j,\2 ' Ot• t/ /1 T)\
Ck == — hJ {(In.) -j- ΔΙΙ-Πу, \i.»i-ίι)

where J is the exchange integral for neighboring atoms
(for simplicity it is assumed that the crystal has the
symmetry of a simple cubic lattice).

The exchange integral J coincides in order of mag-
nitude with the Curie temperature TQ.

In the Hamiltonian (1.2) we do not consider magnetic
interaction between the spins of the atoms and spin-
orbit interaction. Although these interactions have a
relativistic character and are therefore weak com-
pared with the exchange interaction, it is necessary to
consider them when one investigates kinetic and re-
laxation processes, and also when one computes ther-
modynamic quantities for ferromagnets in the region
of very low temperatures. Relativistic interactions
are most easily considered within the framework of a
phenomenological theory of spin waves, to the presen-
tation of which we now turn.

2. Phenomenological Theory of Spin Waves

We shall show that spin waves can be introduced
purely phenomenologically as oscillations of the mag-
netic moment of the ferromagnet.*

Let us first write the expression for the classical
Hamiltonian of a ferromagnet (cf. reference 10). The
classical analog of the Hamiltonian for the exchange
interaction can be obtained in the case of long wave
oscillations, when the magnetic moment is a slowly vary-
ing function of the coordinates, from the expression
(1.2).

Noting that the exchange integral falls off rapidly
(exponentially) with distance between the atoms, we
can in the Hamiltonian 3C = - V2 Σ/ J ( rh) SZ' s j + n

Z,h
take the summation over h only over nearest neighbors
and replace the summation over I by an integration

•Such a treatment is due to E. Lifshitz;" cf. also the paper of
Herring and Kittel.9
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over the volume. Changing from β to the magnetic
moment per unit volume Μ ( r ) = Mos/a3 and expanding
si4i ш powers of h, we obtain, omitting terms pro-
portional to s2 which are unimportant for what follows,
the following expression for the Hamiltonian of the ex-
change interaction:

•'* dxi dx -Mi dv.

where the quantity oifa is proportional to J (terms

proportional to —— M; obviously vanish if the crystal
9 x k

has a center of inversion). Integrating the last expres-
sion by parts, we finally obtain:

This expression can be regarded as the expansion
of the exchange interaction energy in powers of the
gradient of the magnetic moment. We note that in gen-
eral this expression should be written in the form

дМ< дМт ,

We shall write the quantity a in the form:

where ац^па is some 4'th rank tensor. Since, however,
the exchange interaction is invariant under rotation of
the spins, the tensor aOalm must have the form
aik^im» a n d w e a r r i v e a t the expression (2.1).

In the case of a cubic crystal, afc = абцс and

(2.2')

where 6Q coincides in order of magnitude with the
Curie temperature and Mo is the saturation magnetic
moment.

In addition to the exchange energy, the Hamiltonian
of a ferromagnet must contain a part which depends
not on the derivatives of the magnetic moment, but
directly on its components. This part of the Hamilton-
ian which is called the anlsotropy energy, is due to the
relativistic spin-spin and spin-orbit interactions. The
anisotropy energy, which we shall denote by β (Μ), de-
pends on the orientation of the magnetic moment with
respect to the crystallographic axes. In the case of a
uniaxial crystal, β (Μ) has the form:10

where η is a unit vector along the direction of the axis
of easiest magnetization, and β is a number independ-
ent of n. In cubic crystals10

β (Μ) = J L {MIMl + M\M\ + M\M\)
(the axes x, y, ζ are along the crystallographic axes ).

Finally, the Hamiltonian of the ferromagnet must
also contain the electromagnetic field energy, whose

density is equal to —— (H2 + ED) where Η and Ε are
Ο7Γ

the magnetic and electric field strengths, and D is the
electric induction.

Thus the classical Hamiltonian of the ferromagnet
has the form;

„ dMldMl , „ , „ , , НЧ-ED.[*.. (2.3)

In addition to the Hamiltonian (2.3) we must know
the equation of "motion" of the magnetic moment, i.e.,
the law of variation of the magnetic moment with time.
If we neglect dissipative processes, this change is de-
termined by the equation*

* = g [ M x H ( e ) ] , (2.4)

where H^e^ is the effective field acting on the magnetic
moment, and g is the gyromagnetic ratio which here
is regarded as some experimentally determined con-
stant. This equation corresponds to the assumption of
"rigidity" of the magnetic moment, i.e., that its abso-
lute magnitude is invariant.

The effective field H ^ can be defined as the nega-
tive of the functional derivative of the Hamiltonian 3C
with respect to the magnetic moment Μ for fixed in-
duction B. The variation of the field and the magnetic
moment are connected here by the relation

6H= -4πδΜ,

and consequently

(2.5)
хг dxk

In the case of a uniaxial crystal

Adding to (2.5) the Maxwell equations
, „ 4я . , 1 3D

curlH = —j + - — ,

(2.6)
div В = 0,
div D = 4πρ,

where j and ρ are the current and charge densities,
and, assigning the relation between D and E, we ob-
tain the complete system of equations for determining
all the quantities in which we are interested.

The expression for H ( e ) can also be obtained by
computing the total derivative of 3C with respect to the
time.12 Using (2.5) and (2.6) we find:

ам агм

dxhdt '

а м а м \ ,
»" дц dt J R

T h i s equation, together with the expression (2.5) for H( e), was
established by L. Landau and E. Lifshitz."
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where da is an element of the surface S surrounding
the volume of the ferromagnet. If we neglect dissipa-
tive processes, the volume integral must obviously
vanish, i.e.,

This equation is satisfied identically if we assume that

Thus we again arrive at expression (2.5) for the effec-
tive field H ( e ) .

-a,. «-«}*.. (2.7,

Thus

We see that the density of the energy flux in the ferro-
magnet has the form:1 2

dMl dMl

i
(2.8)

Lift - 4 л L " ~ "Jft -m dx. a t

Here we have, in addition to the usual Poynting vector,
9Mj

an additional vector -
dt

which cor re-

sponds to the energy flux transferred by spin waves.
In the quasi-static case (curl Η = 0), the Poynting

vector — [Ε χ Η] goes over, as one easily shows, to

—— φ&, where φ is the potential of the magnetic field,

Η = — V<p; thus, in this case the energy flux density
has the form

Let us now proceed to a classical treatment of the
small oscillations of the magnetic moment around the
equilibrium value Mo corresponding to the ground
state of the ferromagnet. We shall assume that a con-
stant, homogeneous magnetic field Ho acts in the in-
terior of the ferromagnet. If the external magnetic
field is directed along the axis of easiest magnetiza-
tion, Mo will also be directed along this axis. If this
is not the case, the direction of the vector MQ is de-
termined from the condition

-̂ •M = g[M x H<e)] = 0,

i.e.,

Ho --J&-+ vM = 0, (2.9)

where ν is a parameter which is found from the con-
dition that the square of the magnetic moment be fixed.
In the case of a uniaxial crystal, we obtain in this way
the following relation between the direction of the mag-
netic moment and the direction of the external mag-
netic field Ho:

where φ is the angle between Ho and n, and ψ is the
angle between Mo and η (η is a unit vector along the
axis of easiest magnetization); the vector MQ lies in
the plane of η and Ho.

Let us set Μ = Mo + m, Η = Ho + h, where m and
h are small additions to Mo and Ho, and let us write
the linearized equation of motion of the magnetic mo-
ment and the Maxwell equations. If the ferromagnet,
which we shall assume to be a dielectric, is uniaxial,
and the magnetic field Ho is along the axis of easiest
magnetization, these equations have the form

(2.10)
curlE= - l i t ,

с dt

where b = h + 4πΐη.
Let us consider first the low-frequency oscillations.

In this case we can neglect the displacement current
and set curl h = 0. The solution of these equations in
the form of plane waves [е~^ ш ^~^" г )] gives

m = -gM0 [n, ( 1 ^

h = — 4π -ρ· к (тк),

- h] ,

from which*

where

Ak = μΜ0 ( α · + β + ̂  + 2π sin2 Bk ) , μ = gh,

(2.11)

(2.11')

and 0k and φ-^ are the polar angles of the vector k.
The quantity e^ = Κω^ is the energy of the spin

wave.
If in formula (2.11) we neglect the anisotropy con-

stant β and the quantity 2π s i n 2 ^ , which results from
inclusion of the magnetic field arising as a result of
the oscillations of the magnetic moment, we obtain the
formula (1.12) given earlier for the energy of the spin
wave.

In the general case, when the direction of the mag-
netic field Ho does not coincide with the direction of
easiest magnetization, the frequency of oscillations of
the magnetic moment is given by formula (2.11) where1 3

Ak = μΜ0
+ β cos2 ψ + -^- cos (φ - ψ)

(2.11")

We note that, in the case where the external field is
directed along the axis of easiest magnetization, the
anisotropy energy can be expressed in terms of an ef-
fective anisotropy magnetic field equal to

Η0 = βΜ0,

So far we have not included processes leading to
damping of the spin waves. Such processes are r e -
lated to the presence of conductivity of the medium and

•The structure of this formula was obtained in reference 3.
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relaxation of the magnetic moment. Including these
processes makes it possible to clarify the conditions
for existence of spin waves.12

We can include relaxation of the magnetic moment
by adding to the right side of the equation of motion of
the magnetic moment a dissipative force in addition to
the rotational force. This dissipative force takes ac-
count of the change in angle between the magnetic mo-
ment and the effective magnetic field.

The simplest expression for such a force is the ex-
pression -λ/Μ2[Μ[Μ, H^e )]], where λ is a constant
which we may call the "relaxation constant." We shall
therefore start from the following equation of motion
of the magnetic moment:n

•̂ r- = g[M xf f " ]--^[M x[MxH l e )]]. (2.12)

An estimate of the value of λ will be given in Sec. 12,
starting from a microscopic theory of the relaxation
process.

Let us now determine the damping of the spin waves
assuming that it is sufficiently small. In this case, the
damping coefficient can be defined by

cos2 6k)

d5C
dt

(2.13)

where -τ— is the average energy loss per unit time,

and 3C is the average value of the energy of the system

in the absence of absorption. The quantity -rr- can be

found from the Hamiltonian (2.3) by using the Maxwell
equations and the equation of motion12 of the magnetic
moment (2.12)

^ = - ( A [ M x H ( e )] 2 dv - (2.14)

Here the first term gives the losses associated with
relaxation of the magnetic moment, and the second
term gives the Joule heat; a ( e ) is the effective con-
ductivity of the medium. Since we a r e interested in
low temperatures, we should in general take into a c -
count the fact that the mean free path of the conduction
electron may be of the order of or even much greater
than the wave length of the oscillations of the magnetic
moment. In the limiting cases of large and small mean
free paths the quantity a ( e ) is given by the following
formulas:

σ0, I < 6,
(2.15)

where σ0 is the static electric conductivity, σ is the
2 \ 1 / 2

skin depth, equal to
/ c2 \

σ = I -r 1 [We note that theI r

quantity a ( e ) ( k ) relates the Fourier components of
the current and the field. ]

Neglecting the displacement current and using (2.13),

( e ) c2k2 c2fi
we obtain, on the assumption that σ «

ω

τ ~ (Л - i Bk i -i- 2πμΛί,, sin2 (ik). (2.16)

The absorption of the spin waves will be small if

b€gMa, " < e ) « - § ^ • (2.17)

These inequalities are the conditions for existence of
spin waves.

The first condition is satisfied over a wide range of
temperatures (this follows from the fact that ferro-
magnetic resonance exists, since the frequency of fer-
romagnetic resonance is of the order of gM0, while
the width of the line is of the order of λ). From the
second condition in (2.17) it follows that, for the exis-
tence of a spin wave, its wave vector must be greater
than a certain limiting value k0, equal to

(2.17')

where
1/2

If к « к 0 , formulas (2.11), (2.11'), and (2.11") are
no longer valid, and the character of the energy spec-
trum changes markedly. This corresponds to the case

c2k2

of large a ( e ) , when the inequality a ( e ) » is sat-

isfied. We must therefore treat separately the limiting
case σ ^ = °°. In this case, as for σ ^ = 0, there is
no dissipation of energy associated with Joule heating.
The electric field is equal to zero, and h + 47rm = 0.
From the equation of motion of the magnetic moment,
it follows that the energy of an elementary excitation
is equal to12

e k = = μΜ0 (α/e2 + β +

1/2

the following value for Γ :

Βο = Ηο + 4яЛ/„. (2.18)

This spectrum should be used for к « k0, which cor-

responds to temperatures Τ « To, To = μΒ0 ( a ff° C )
\ Kc /

On the other hand, for к —- 0, the energy of the spin
wave (2.18) tends to a finite limit e0 = μ (Bo + 0MO).
As a result of the presence of this activation energy,
at very low temperatures we get an exponential depend-
ence of the type e~eo/Τ for all the thermodynamic
quantities which are determined by the spectrum of
spin waves. Therefore, their contribution to the heat
capacity of the body is negligibly small in this temper-
ature region.

In deriving the formulas for the energy of a spin
wave, we have not considered the mobility of the car-
riers of the spins. Including this does not lead to any
change14 in the fundamental dispersion relation (2.11).

In this phenomenological procedure for introducing
spin waves we understood by Mo the saturation mag-
netic moment of the ferromagnet corresponding to a
temperature of absolute zero. However, as is clear
from the derivation, we can treat in a similar fashion
the small oscillations of the magnetic moment of the
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ferromagnet for any temperature, where by Mo we

mean the equilibrium value of the moment at the par-

ticular temperature T. We shall thus obtain magnetic

waves whose dispersion properties for σ ^ = 0 will

not differ from the dispersion properties of the spin

waves (2.11).

In this phenomenological procedure for introducing

spin waves we understood by Mo the saturation mag-

netic moment of the ferromagnet corresponding to a

temperature of absolute zero. However, as is clear

from the derivation, we can treat in a similar fashion

the small oscillations of the magnetic moment of the

ferromagnet for any temperature, where by Mo we

mean the equilibrium value of the moment at the par-

ticular temperature T. We shall thus obtain magnetic

waves whose dispersion properties for σ ' = 0 will

not differ from the dispersion properties of the spin

waves (2.11).

These magnetic waves correspond to omitting the

displacement current in the linearized equations (2.10).

If we do not neglect the displacement current, we ob-

tain electromagnetic waves of a complicated type whose

dispersion relation has the form:12

( 2 Л 9 )

where
4πμΑ/0 ck \ *Υ

ingM0 / '

6^ is the angle between к and Mo, and e is the dielec-
tric constant.

If | 2 » 1, this equation has the solutions

ήω = Υ ΑΙ - |
(2.20)

The first of these determines the frequency of electro-

magnetic waves propagating in a medium with a gyro-

tropic magnetic permeability, which, for the two types

of waves corresponding to right and left circular polar-

izations, is equal to

- COS 6 k

(2.20')

The second solution gives a pure magnetic wave whose

dispersion properties are identical with the dispersion

properties of the spin waves (2.11) and (2.11').

For ξ2 « 1, Eq. (2.19) gives

-, Γ\ „ Ε /1
) = ck у —^ , ш = ску

— и cos 2 B t

(2.21)

(2.21')

Here (2.21) determines the frequencies of the electro-
magnetic waves, and (2.21') the frequency of magnetic
waves.

3. Quantization of Spin Waves

We shall now show how, starting from the phenom-
enological Hamiltonian of the ferromagnet (2.3), we
can construct a quantum theory of spin waves.13 Such
a theory will differ from the theory of spin waves
which corresponds to the simplest exchange Hamilton-
ian of the ferromagnet (1.2) (cf. Sec. 1) in that it will
include the magnetic interaction between the spins and
the anisotropy energy, which were not included in (1.2).

In order to carry out the quantization of the spin
waves, starting from the Hamiltonian (2.3), we must
obviously relate the components of the magnetic mo-
ment of the ferromagnet with operators of creation and
absorption of spin waves.

The components of the total magnetic moment of
the body Ш?х, Шу, Mz satisfy the following commuta-
tion relations:

^ -ϊμ$η:, j

(3.1)

mymz -
where μ = gh" and g is the gyromagnetic ratio. Trans-

forming to components of the magnetic moment density

Μ (r , t ) , we obtain the commutation relations:

Mx(r, t)My(t', t)-My(i', t)Mx(i, ί ) = - |

MJr, t)Mx(t', t)-Mx(r', t)Mz(r, t)=-i\xMv{r, t)6(r-r'),

My (r, i) Mz (r\ /) - Mz (r\ /) My (r, t)= - щМх (r, t) δ (r - r'). j

(3.2)

For the circular projections M* = M x ± iM y , these

relations have the form:

M' (r, t) M* (r', t) - M* (r', t) Μ' (r, t) = μΜ. (г, ί) δ (г - г').
(3.3)

We now introduce operators a ( r , t ) and a + ( r , t ) ,
analogous to the operators щ and af (cf. Sec. 1),
which are related to M+, M~ and M z by the relations:

(3.4)

Mz =M0 —μα*α.

The operators a+ and a satisfy the commutation rela-

tions

a(r, t)a*(r\ t)-a*{r', t)a(r, t) = 6(r-r'). (3.5)

If we consider states close to saturation, the aver-

age values of the quantities
2MQ

a+a will be small

compared to unity. Therefore for such states we can

expand the square root in powers of ** a*a. Keeping
2MQ

only the first two terms in the expansion, which is all

we need for the following, we rewrite (3.4) in the form:
~0 (a* _ -JL-α'α-β) ,ΛΓ ^m* =

т. = Μ, — Ma = — μα* α.

(3.6)
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We now go over to the Fourier components of the
quantities a, a+, m:

' к
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where

MT = 2 (лк«к«к + у Bkaka_k + i BtakaLk) , (3.13)

m(r, t) = (3.7)
123

1234

2;3 aXagA (kx + к. — к3) + compl. conj. (3.14)

It is easy to see that the operators a k and a£ sat- + γ, φ , . , 3 4 «;α2α3ο4Δ (к, - k2 - k 3 - k4) + compl. conj.

isfy the commutation relations v2:n /3 jgv

ak (t) at, (t) - ak. (t) ak (t) = Δ (к - к'), (3.8)

where

i ^), (3.14')

Δ ( к ) -
1, k = ()

О, к Φ 0.

Using (3.6), we find

mi = УЩМ~0 (V_k - j ^ - 2 a[alash (k + k, + k2 - k,)) ,

"ik = ок Δ (к + к, - к2 - к,)
123

„tj. = ._ fL, 2 ala2A (k + k t - k2),
12

(3.9,

where â  = aki and the summation is extended over the
corresponding wave vectors.

Let us now turn to the classical Hamiltonian of the
ferromagnet (2.3), which we shall denote by 3CS:

и„ С ( 1 dMi дМ-ι 1 о , „ . , 2 , H ' > ,
s = J \~2 ih~dTT~d^~ γ β ( Μ η ) +fS" ) d v '

and consider states close to equilibrium. Expanding
the Hamiltonian in the small deviations of the magnetic
moment and field m = Μ — Mo and h = Η - Щ, we ob-
tain, keeping terms up to fourth order, the following
expression for 3CS:

ν l J

(3.10)

[We note that m x and m y are first order quantities,
while m z is second order, since (Mo + m )2 = Mjj. ]

Considering as before only the low frequency oscil-
lations and going over to Fourier components, we re-
write 3CS in the form

3V» = 2 1 Τ а«^АткШ_к — ν1'* (βΛ/0 + Яо) ткЛ (к)

(kmk) (km_k)

(We have used the relation

(3.11)

= - — k(mkk).)

In order to obtain the quantized Hamiltonian from
the classical Hamiltonian (3.11), we shall assume that
ΐη£, m^ and m^ in formula (3.11) are operators re-
lated to the operators ak and afc by the relations (3.9).
In the variables a^ and a£ the Hamiltonian 3Cg has
the form:

•Ш = %"0 ) -4- 5£"81 4- o%?'" ( 3 . 1 2 )

(k,-k4)? (k2—k,)| -ι Ν

<k,-k,)· J J '
(3.15')

φ , . 2 3 4 = _ f ^ l (S in 2 θ2β
2ίφ* + sin2 93e

2i<p» + sin2 θ4β
2ίφ4) ( 3 . 1 5 " )

[the first term in (3.15') is related to the exchange in-
teraction, while the remaining terms are due to the
anistropy energy and the magnetic dipole interaction.]

The operator 3CS

0^ which is quadratic in ak and ak
is the fundamental Hamiltonian for free spin waves.
The operators 3<43^ and 3CS

4) describe the interaction
between the spin waves and will be considered in more
detail in Sec. 9. The eigenvalues of the operator 3Cs

0)

give the possible energy values of the ferromagnet.

Expression (3.13) differs from the Hamiltonian for
the exchange interaction (1.9) in including additional
terms proportional to Bk and containing the products
of the operators a^ a_ĵ  and a^a.jj. These terms,
which are associated with dipole interaction of the
spins, do not commute with a£au and therefore, in
diagonalizing the Hamiltonian 3cf°), we must first
carry out a canonical transformation of the variables
ajj and ак.*

In place of ak and ak let us introduce new vari-
ables ct and cv:

ak =

ak =
(3.16)

where u
erators

and v
k and

are c-numbers. In order for the op-
k to satisfy the commutation relation

ckck' — A (к —к'),
we must subject the quantities
dition

and to the con-

Let us now select uk and vk so that the Hamiltonian
3Cg is diagonal in the variables ck and ck· To do
this we make use of the equation of motion

а к ]=—i-

*In the following we use a method developed by N. N. Bogolyu-

bov and S. V. Tyablikov."
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Now substituting (3.16), we get

On the other hand
ν к

ak = ukck + vicU. (3.171) - μ 2 (I «k I2 4-1 t)k |
2) c i c k - μ ;

Since we want the Hamiltonian 3CS

0^ to be diagonal in к
the variables ck, the operators ck should change with
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ζ axis is taken along the equilibrium direction of the
magnetic moment). According to (3.6),

-f «kfkekcLk),

time according to the law e
(3.17') can be rewritten as

. Therefore formula

= \ ЛГ dv =
r

= \ M- dv =

' « c o + voco),

Kco4-f*c;),

(3.21)
(Here it is assumed that ek = e-k; this will be verified . +
in the sequel). Comparing this expression with (3.17), w h e r e c» a n d c« a r e t h e v a l u e s o f c k a n d °k w h e n

we obtain: ~~
In a state with a definite value of the energy, the

average values of the operators SD?Z and SJi* are
k + ek) vk = 0,

from which13

(3.18)

(The arbitrary phase factor in uk and vk has been
chosen equal to unity).

The expression obtained for ek is identical with the
formula found earlier for the energy of a spin wave.

In the variables cj,; and c£, the Hamiltonian (3.13)
has the form

From this it is clear that its eigenvalues are

(3.13')

(3.19)
к

where njj are arbitrary positive integers. The quantity
nj,. represents the number of spin waves with wave
vector k.

In the representation in which the operator 30°J is
diagonal, the non-zero matrix elements of ck and ck
are

(nk- c k | nk) =
ekf

(nk \ ck I nk — 1) = \'nk e
(3.20)

Thus cjj can be interpreted as a creation operator, and
cjj an annihilation operator for the spin waves with
wave vector k.

We note that it is the operators c£ and ck· and not
the operators a£ and ajj, which are the creation and
annihilation operators for the spin waves.

The difference between cĵ  and a^ is due to the
magnetic interaction and also to the anisotropy energy,
which was not taken into account in the Hamiltonian
(1.9).

Let us now express, in terms of the variables ck
and c£, the operators for the projections of the total
magnetic moment of the ferromagnet 2KZ and Ш± (the

(3.22)

> = 0,

where nĵ  is the number of spin waves with wave vec-
tor k, and

(3.23)

μ k = -

The expression for 9ϊίζ shows that the quantity μk can
be interpreted as the average value of the projection
on the ζ axis of the magnetic moment of the spin wave
with wave vector k. This quantity differs from μ, the
difference arising apparently from the dipolar inter-
action of the spins and the anisotropy energy. Because
of these same interactions, the average value of the
projection of the magnetic moment of the ferromagnet
on the ζ axis differs from the quantity Mo even in the
absence of spin waves, i.e., at absolute zero.3

4. High Frequency Properties of Ferromagnets and
Ferromagnetic Resonance

Up to this point we have studied the properties of
spin waves in an infinite ferromagnet. However, many
effects are due to the finite dimensions of the body.
These effects make themselves felt primarily in the
high frequency properties of ferromagnets. We shall
now proceed to study them.

The high frequency properties of a ferromagnet
are described by the system of Maxwell equations
(2.6) and the equation of motion of the magnetic moment
(2.12). The latter equation gives the connection be-
tween the magnetic moment and the magnetic field.
In the case of plane monochromatic waves, this equa-
tion can be solved in the linear approximation for the
magnetic moment:

(4.1)

where
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1 - t
gM0

Ω '
О

and

jA-u + f-^-Y о
gM 0 Ω ^ V gMa ) '

ο ο,

(4.2)

ϊ (4.3)[the constant magnetic field Щ inside the body is
assumed to be along the axis of easiest magnetization].

In the general case, for λ * 0, the tensor χ^ς is
not Hermitian. Its anti-Hermitian part xik - Xki de-
termines18 the rate of loss of magnetic energy in the
body. For λ = 0, i.e., when we neglect dissipative
processes, the tensor χβς will be Hermitian, xjjj = χ^.
Gyrotropy, i.e. the presence of imaginary non-diagonal
components xxy = — xyX, is due to the rotation of the
magnetic moment around the effective magnetic field.

The tensor %& depends not only on the frequency
ω, but also on the wave vector k. This property is
called spatial dispersion. It is caused by the exchange
interaction between the atoms.

In treating the thermal and magnetic properties of

a ferromagnet, the dependence of the frequency of the

spin wave on wave vector plays a decisive role, where-

as the spatial dispersion very rarely has an influence

on its high frequency properties. This is related to

the fact that the term ak2 is practically always negli-

gibly small, since ak2 = —^—(ak)2 « 1, if the wave

length, which is equal to 27r/k, is considerably greater
than several hundreds of atomic distances. The spa-
tial dispersion can be neglected when the frequency is

/ H(Xo) \
not too close to the frequency ω0 = ξΜΛβ + —rz— 1.

For ω «ω 0 the term gM0ak2 cannot be neglected. One
may suppose that including spatial dispersion will lead
to the same peculiarities in the propagation of elec-
tromagnetic waves as occur in dielectrics in the neigh-
borhood of an exciton absorption line.17'18

For λ = 0 the components of the tensor χ ^ can be-
come infinite (at the frequency ω = ω0), which shows
that resonance absorption of energy from the magnetic
field by the ferromagnet is possible. Actually the
resonant absorption is observed not at the frequency
ω0, but at the frequencies of normal vibrations of the
magnetic moment of a ferromagnet of finite dimensions.
The difference between these frequencies and ω0 is
associated with the inclusion of the boundary conditions
at the surface of the body (effect of shape).

The complete system of equations describing the
proper oscillations of the magnetic moment has the
form

inside the body, and

curlh = 0, (4.5)

divh = 0,
outside the body, where the tensor χ ^ is defined by

the expression (4.2), in which we should set λ = 0, and

also omit the term gMoak2:

(4.6)

It is permissible to neglect spatial dispersion for not
too short waves and not too small dimensions of the

1/2
body, when the inequalities L, λ » ' ~ '

/
gAfo(o 0 1

COg — 0)2 1

V

' 1

• Cu

— ι —-

0

ω0

1

0

0

0

0

μΜ 0
a are

satisfied (L gives the dimensions of the body).
We use magnetostatic equations here since we as-

sume that the eigen-frequencies are not too large

and also assume that the ferromagnet is a

dielectric, i.e., j = 0.
Moreover, we can speak of natural vibrations only

when the damping is sufficiently small. If δ is the
damping length, which is easily obtained by using for-
mulas (2.16) and (2.17'), we should also make sure that
the condition б » L holds.

To the system (4.4) and (4.5) we must add the
boundary conditions: continuity of the tangential com-
ponents of the magnetic field h and the normal com-
ponents of the magnetic induction b = h + 47τχα at the
surface of the body, as well as the condition that the
magnetic field goes to zero far from the body.

The problem which we have formulated can be
solved for a ferromagnet of ellipsoidal shape (L.
Walker19). Among the natural vibrations of the ellip-
soid there is a vibration with a uniform field in the
interior of the ellipsoid. The frequency of such a vi-
bration is called the frequency of homogeneous reso-
nance.* Let us determine this frequency (C. Kittel20).

It is known16 that the uniform field h( i J inside the
ellipsoid is related to the field at infinity h^0), by the
following relation:

hP + kinltiXk,hT = h[°\ (4.7)

where пд^ is the tensor of the demagnetizing factors
of the ellipsoid, which is determined by the ratios be-
tween the axes, but does not depend on the dimensions
of the body. Since h(°) = 0, the condition for the ex-
istence of a non-zero magnetic field inside the ellip-
soid is that the determinant

c u r l h ••

div (h -+· 4it£h) =
= 0,
= 0 (4.4)

*In order to observe homogeneous resonance a ferromagnetic
ellipsoid is placed in a homogeneous constant and variable mag-
netic field, and one determines the energy loss as a function of the
steady external magnetic field for a fixed frequency of the variable
field. When the eigenfrequency coincides with the frequency of the
variable field, one observes a sharp increase in the energy loss.
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\ i k uxBk\ = 0 (4.8)

be equal to zero. From this, using expression (4.6)

f° r Xik> it is easy to find the value of the frequency of

homogeneous resonance20

ίοΚ-«3)]> (4.9)

where Щ = Ηο + βΜ0, Щ is the constant field far
from the ellipsoid, nj are the principal values of the

tensor njk, and J> n j = 1·
j

In obtaining (4.9) we assumed that one of the axes
of the ellipsoid (axis 3) coincides with the axis of eas-
iest magnetization and that the external constant field
is also parallel to this axis.

In the case of a sphere, щ = n2 = n3 = У3 and

<йг = ёЩ". (4.10)

For a cylinder whose axis is along the axis of eas-
iest magnetization, щ = n2 = У2, n3 = 0 and

u>r = g{Hle' + 2nM0). (4.11)

For a cylinder whose axis is perpendicular to the
axis of easiest magnetization, щ = 0, n2 = n3 = У2 and

(4.12)

We recall that for the magnetization of a cylindrical
sample to saturation in this case it is necessary that
the external constant magnetic field be greater than
2πΜ0.

For a plate whose surface is parallel to the axis of

easiest magnetization, nj = n3 =0, n2 = 1 (the axis 2

is directed into the body) and

Finally, for a plate whose axis of easiest magnetiza-

tion is perpendicular to the surface,

and

= n2 = 0, n3 = 1

(4.14)

In this case the plate is magnetized to saturation if

H^e) > 4πΜ0.

The observation of homogeneous resonance is an

importanfmethod for determining various constants

characterizing the ferromagnet, in particular, the

quantity g and the relaxation time.*

In addition to the homogeneous oscillation, there

also exist natural vibrations for which the magnetic

field inside the body is inhomogeneous. The frequen-

cies of these vibrations are called frequencies of in-

homogeneous resonance, t

-t/

FIG. 1

The calculation of the frequencies of inhomogenous

resonance for the case of an ellipsoid is extremely

complicated, and we shall not carry it out here (cf.

references 19 and 23). In order to illustrate the fea-

tures of the spectrum of frequencies of inhomogeneous

resonance, we consider magnetic vibrations of a plate

placed in a constant field which is directed perpendicu-

lar to its surface (so that the axis of easiest magneti-

zation coincides with the direction of the magnetic

field). According to (4.14) the frequency of homogen-

eous resonance in this case is ω Γ = gM01 ~— + в ).
\ Mo /

If we introduce a potential ψ related to the magnetic

field h by the formula h = - νψ, and assume that the

dependence of the field on coordinates in the plane of

the plate has the form e1* 'P where ρ is a two-dimen-

sional vector with components χ and while у, к is
the wave vector lying in the (x, у) plane (cf. Fig. 1),
Eqs. (4.4) and (4.5) can be written as follows:

(4.13) where

* ( < > =

\z\>d,

2 °> 2—ωι
κ ω»—ω»

(4.15)

(4.15')

(4.16)

and

ωϊ = g* (Я« + βΛ/0) (ЩЧ + 4яЛ/, + βΜ0). (4.17)

•The effect of shape, i.e., the dependence of the resonance
frequency on the demagnetizing factors, was first detected by Grif-
fiths" on a plate in a constant field parallel to its surface.

tThe resonance absorption of energy at these frequencies was
discovered experimentally." To observe inhomogeneous resonance,
a ferromagnetic ellipsoid is placed in an inhomogeneous quasi-
static magnetic field.

The boundary conditions in this case reduce to contin-

uity of the function and its derivative with respect to

ζ at the boundary of the plate (i.e., at ζ = ± d) and

the requirement that ψ vanish as ζ — ± ».

Because of the symmetry of the problem, the solu-

tions are subdivided into two classes: symmetric and

antisymmetric. From (4.15') and the boundary condi-

tions at infinity we see that outside the plate the field

falls off exponentially with increasing | ζ | . Inside the

plate the symmetric solution has the form

ψ<>) = A cos κ ; ζ,

while the antisymmetric solution is

The conditions at the boundaries of the plate give
the dispersion equation, i.e., the relation between the
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frequency ω and the wave vector к. For the symme-
tric solution the dispersion equation has the form:

while for the antisymmetric solution

tanu= — ̂ -,

(4.18)

(4.19)

where u = Kd, and ν = »qd.

Since u > 0, solutions of the dispersion equations

(4.18) and (4.19) exist only for к? > О, i.e., all the fre-
quencies of inhomogeneous resonance lie between ω0

and α>ι [cf. (4.16)].

In accordance with (4.16), the resonance frequency

can be represented as

^ = ю§о'+и}И« (4>20)

where u and ν are related by (4.18) for the symmetric

solution, and by (4.19) for the antisymmetric solution.

Equations (4.18) and (4.19) have an infinite number

of solutions, each of which is a continuous function of

the wave vector к. We shall therefore denote the fre-
quencies of inhomogeneous resonance by Wn (к) and
ω η (" )» where η is the number of the solution and the

indices s and a refer respectively to symmetric and

antisymmetric solutions.

Let us consider some of the properties of the fre-

quencies of inhomogeneous resonance. From formulas

(4.18), (4.19), and (4.20) we see that

ω0, nn,

ηκ,

i.e., with increasing number of the solution and for

fixed к, the frequencies approach the value ω0, while

with increasing к for fixed n, they approach u^. For
small values of к, the expansion in powers of к begins
for cof (к) with the linear term, while for the other
frequencies of inhomogeneous resonance the expansion
begins with the quadratic term in к.

The spectrum of eigenfrequencies of a bounded ob-
ject, for example, an ellipsoid, is discrete,19 and each
frequency is characterized by three discrete indices.
In order to obtain a picture of the nature of the spec -
trum in the case of a bounded body, let us consider the
vibrations of a plate, where we impose a condition of
periodicity along the χ and у axes, i.e., assume that
the components of the wave vector к х and κν are

equal to

2π 2я

where n x and n v are integers, and L is the length of
the period. Using these values of к х and «у we can
represent the resonance frequency of the plate in the
form

ω = ω<.·. ο) ( 2π Ynl 4- η'ϋ χ

We see that as the dimensions of the plate increase

(L, d —- «>), the discrete nature of the spectrum is

preserved so long as the ratio d/L remains finite.

The properties of the spectrum of frequencies of

inhomogeneous resonance which we have considered

for the example of a plate — the presence of two points

of accumulation ω = u>o and ω = wj, and the fact that

the frequencies depend on the ratio of the dimensions

— are true also for the ellipsoid.19

We note that the eigenfrequencies of inhomogeneous

resonance for the case of a plate are the frequencies

of the spin waves for k - * 0. In fact, neglecting in

formula (2.11 - 11') for the frequency of a spin wave

H(e)
the quantity ak2 compared to —^—, and replacing

к2 °
shrfllr by , we obtain formula (4.20). Thus,

к2 + к?
taking account of the boundary conditions, reduces to
finding the value of sin2 0^ for k —* 0.

In calculating the frequencies of inhomogeneous
resonance, we have not taken account of spatial disper-
sion, which is permissible so long as ak2 = a (к2 + к2)
« 1. This condition can be rewritten as follows:

The last inequality is violated for η / 0, if the

plate is sufficiently thin; in this case the spatial dis-

persion must be taken into account.

Let us calculate the eigenfrequencies of a plate, in-

cluding spatial dispersion?4 We shall again assume

that the axis of easiest magnetization and the external

constant magnetic field are perpendicular to the sur-

face of the plate. In addition, we shall assume for

simplicity that in the plane of the plate the field and

the magnetic moment are homogeneous, i.e., all quan-

tities depend only on the coordinate z. Since the pro-

jection of the moment m z is zero, div m is equal to

zero in this case. Therefore the magnetic field h sat-

isfies the equations

divh = 0, curlh = 0 (4.21)

over the whole space. These equations together with

the boundary conditions h = 0 for | ζ | —*• °° obviously

have only the trivial solution h. = 0. From this it fol-

lows that a non-trivial solution for the magnetic mo-

ment, which is related to the magnetic field h by the

relation

ΐη = χΙι or h = x~Im,

will exist only for those frequencies for which the de-

terminant becomes zero:

dot 13&11 = 0,

i.e., for those frequencies for which the determinant

of xik becomes infinite. Using formula (4.2) for χβς

and setting λ = 0, we obtain the following expression

for the eigenfrequency of the plate:

», v = ktd. (4.22)

This expression for ω naturally coincides with the

frequency of the spin wave (2.11 - 2.11') for 0^ = 0.
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The permissible values of the wave vector k z must
be determined from the boundary conditions. In addi-
tion to the usual boundary conditions for h and b = h
+ 4πΐη, which are satisfied automatically for h = 0,
and m z = 0, we must also include the boundary condi-
tions for the magnetic moment m, since in the pres-
ence of spatial dispersion the equation of motion of
the magnetic moment (2.4) contains derivatives with
respect to the coordinates.

To derive the boundary conditions we must consider
the motion of the magnetic moment near the surface of
the ferromagnet. Since the equations of motion of the
magnetic moment contain spatial derivatives of sec-
ond order, the boundary condition consists in setting
equal to zero a linear combination of the moment and
its derivative along the normal to the surface. If ex-
change forces are of primary importance, the boundary
conditions have the form:25

dm
dxn

= 0; (4.23)

if at the surface there is a large additional anisotropy
energy,24

m| s = 0. (4.24)

Because of the symmetry of the problem the solu-
tions split into two classes: symmetric (~ cos k zd)
and antisymmetric (~ sin k z d).

The permissible values of kz, on which the fre-
quency ω depends, are determined from the boundary
conditions (4.23) and (4.24).

If condition (4.23) holds, then for the symmetric
solution

sint> = 0, (4.25)

from which ν = ηπ; for the antisymmetric solution

cost) = 0, (4.26)

from which ν = (η + У2) π.
If condition (4.24) holds, then for the symmetric

solution

cost< = 0, (4.27)

so that ν = (η + Уз) π, while for the antisymmetric
solution

sin Ό = 0, (4.28)

so that ν = ηπ.
Thus the eigenfrequencies of vibration of the mag-

netic moment in a ferromagnetic plate, when we in-
clude spatial dispersion, are determined by the expres-
sion (4.22), in which ν is a solution of equations (4.25)
- (4.28). These frequencies are obviously the frequen-
cies of standing spin waves. Resonance at these fre-
quencies is naturally referred to as resonance on stand-
ing spin waves.

As we see from formula (4.22), the separation be-
tween neighboring frequencies is equal in order of
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θη / a \ 2
magnitude to —=- — πη. Therefore for the observa-

K \ d/
vation of resonance on standing spin waves one uses
thin plates26 (d ~ 5600 A). The measurement of the
distance between resonance frequencies enables one
experimentally to determine the exchange interaction
constant. The value obtained in reference 26 for the
exchange interaction constant A = βςρΪΜ^/μ in perm-
alloy (80 - 20%) is equal to ~ 2 χ 10~6 erg/cm.

5. Surfaoe Impedance of Ferromagnets

In the preceding section we considered the proper
vibrations of the magnetic moment in bounded samples.
In doing this the characteristic dimensions of the body
L were assumed to be much smaller than the damping
length 6. In bulk ferromagnetic metal this condition
is not satisfied because of the skin effect and we have
the opposite limiting case, which we now proceed to
consider. If the skin depth is not only much smaller
than the dimensions of the body, but also much smaller
than the wave length in vacuum, δ « —, the high-fre-
quency properties of the body are conveniently de-
scribed by the surface resistance (impedance) tensor
£ik which is defined as follows:16

, = £[Htxn], (5.1)

where η is the vector of the external normal to the
body, and E^ and Щ are the tangential components of
the electric and magnetic fields at the surface of the
body. We note that, because of the condition δ « -£r-,
the impedance is practically independent of the angle
of incidence of the electromagnetic waves,27 which en-
ables us to compute the impedance for the simplest
case of normal incidence of the wave on the surface of
the metal.

The high-frequency properties of a ferromagnetic
metal are described by the Maxwell equations, in
which the variable part of the induction b is related
to the variable field h by

and the current density jj is equal to

(5.2)

(5.3)

Since the ferromagnet has the property of gyrotropy,
the magnetic susceptibility tensor and the electric con-
ductivity tensor have the form

/ μι ψ·* 0\
= -»μ· μι 0 , (5.4)

\ 0 0μ3/

\ 0 0
(5.5)

The values of the quantities μ\, μ%, and μ3 are easily
obtained by using expression (4.6) for χ^:
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Ω ( " Ω+4π?Μ<Λ— Γ ω — ίΩ-Α_Υ_ 4πίωλ

Ω2
j j-—Га

—( ω-iQ-L·- )
) (5.4')

2_( ω_ίΩ-Α-

We note that the "skew" components of the tensor
<7ik(oxy = ~ °ух) describe the Hall effect.16

We shall determine the surface resistance for the
case where the constant magnetic field Ho is directed
along the axis of easiest magnetization, parallel to the
surface of the metal which fills the half-space у > 0
(cf. Fig. 2). In this case the Maxwell equations are
expressed as follows:

(5.6)

.со
ду сду с г з z '

ду с
(5.7)

We assume that all quantities depend only on the у co-
ordinate and vary with time as e i w t . Finding the solu-
tions of equations (5.6) and (5.7), which go to zero for
у —• <», and using the definition (5.1), we get

г f ιωμ3 \Ч* <- f !ωμ Λ ' " /c- Q >

where

~ μ|-μ|
μ μι

(5.9)

Since μ3 = 1, the specific high frequency properties of
the ferromagnet appear only in the component ξζζ.
This is related to the fact that the electromagnetic
wave, in which the magnetic field is polarized along
Mo, does not give rise to a rotation of the magnetic
moment. (We recall that £zz connects E z and H x ) .

\0

FIG. 2
Formulas (5.8) and (5.4') show that the dependence

of the surface resistance on frequency (or on external
magnetic field) has resonance character. In the ab-

sence of dissipation (λ = 0), for ω = g У н£ е )В^ е ) the
impedance £ z z becomes infinite, while for ω = gBo
it becomes zero. For λ * 0 the real part of the im-

pedance £ z z has a maximum for ω = g У Н^е)Вое),
while for ω = gB^e) it has a minimum.

1
г

FIG. 3

We now calculate the surface resistance of a ferro-
magnet for the case where the constant magnetic field,
parallel to the axis of easiest magnetization, is perpen-
dicular to the surface of the metal (cf. Fig. 3). If we
introduce the quantities E* = E x ± iE y, h* = h x ± ihy,
and μ* = μ1 τ ΐμ2, σ* = σ\ τ кгг, the Maxwell equations
take the form:

. dh*
1 ~dT

, . дЯ ми
•^ dz с

From this

where

%—Y--

μ± = μ2, = аг ±

(5.10)

(5.11)

(5.12)

We see that only the quantity £~ can become zero or
infinite when there is no dissipation. Inclusion of dis-
sipation results in the fact that for ω = gHJje) the real
part of the impedance has a maximum, while for ω

= g V H j B j it has a minimum. The presence of a
sharp maximum in the impedance, with a width which
is the smaller the smaller the relaxation constant λ,
and the excitation of eigenvibrations in bodies of fi-
nite dimensions is called ferromagnetic resonance.

We note that in the case considered here the line
width of ferromagnetic resonance is determined only
by the relaxation constant λ and does not depend on
the electrical conductivity afla· As we shall see, this
is related to the neglect of the spatial dispersion of
the magnetic susceptibility and electrical conductivity,
which was not included in obtaining formulas (5.8) and
(5.11). The spatial dispersion of the magnetic suscep-
tibility, as was pointed out in the preceding paragraph,
is related to the exchange interaction between atoms.
The magnetic permeability when we include the spatial
dispersion is given by formula (4.2).

The spatial dispersion of the electrical conductivity
manifests itself when the mean free path of the conduc-
tion electrons I is of the order of, or much greater
than, the skin depth 6. In these cases (l к, б ) the
skin effect is said to be anomalous.28

We shall first give the results for the surface re-
sistance of a ferromagnet in the case where one takes
into account the spatial dispersion of μ^ (Ament and
Rado,25 Gurevich30).
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If the constant magnetic field and the axis of easiest
magnetization are parallel to the surface of the metal,
the impedance is given by the formula

(5.13)

F o r 4лМ0, ωχ < ingM0, λ < gM0

гжТ'*" where 5 = - ^ = ,

Near resonance μ is given by the formula*
Γ /" fir \1/ΪΛ

_ (4ngu/0)2 [ω;-ω'+4πίωλ+2(4Λ|·ϋ/0)«[ ^ ^ ) y(

(5.14)

If the constant magnetic field is perpendicular to
the surface of the sample, then under the same condi-
tions we have29

(5.15)

(5.16)
We give the expressions for £ ζ ζ in the first case and
for ζ~ in the second case since they contain the reso-
nant dependence on frequency.

As we see from formulas (5.14) and (5.16), spatial
dispersion results in an additional broadening of the
ferromagnetic resonance line of the order of 4TgMo

ΘΓ V/ 2 a
— r̂— I — and to a slight shift in the resonance

4ττμΜ0 Ι δ
frequency.

When we include the spatial dispersion of μϋ ,̂ as
pointed out in the previous paragraph, in addition to
the usual electrodynamic conditions we must use
boundary conditions for the magnetic moment. Formu-
las (5.14) and (5.16) are obtained on the assumption

that = 0 at the boundary of the metal.

As we have already stated, the spatial dispersion of
the conductivity causes the skin effect to be anomalous.
We give the formula for the surface resistance in the
limiting case of anomalous skin effect (6 « I) where
the spatial dispersion of the magnetic susceptibility is
not important:29'30

where μ is given by formula (5.9), if the constant mag-
netic field is parallel to the metal surface, and by for-
mula (5.12) if it is perpendicular to the metal surface.
In the first case ζ stands for ζζζ, and in the second
for ζ~.

*In the case where the conditions given here are not satisfied,
i.e., for arbitrary fields and frequencies, the expression for μ is
very complicated. It is contained in reference 25.

Finally, we mention that in formulas (5.13) — (5.17)
for the surface resistance we do not take account of
the gyrotropy of the electrical conductivity of the
metal, which is justified if the radius of the orbit of
the electron in the effective magnetic field* is much
greater than the mean free path.

6. Coupled Magnetoelastic Waves. Ferroacoustic
Resonance.

In an elastically deformed ferromagnet, because of
magnetostriction and ponderomotive action due to the
spontaneous magnetization, there should be a coupling
of the magnetic waves with elastic waves. If the med-
ium has a high conductivity, the coupled magnetoelastic
waves resulting from this are analogous to the mag-
netoelastic waves which can propagate in metals in the
presence of an external magnetic field and to the mag-
netohydrodynamic waves in liquid conductors. The
coupling between magnetic and elastic waves makes it
possible to excite magnetic waves by means of sound,
where such excitation should be especially intense when
the frequencies and wave vectors of the magnetic and
sound waves coincide.

The interaction between magnetic and elastic waves
results in a dependence of the sound velocity in the
ferromagnet on the external magnetic field and the
spontaneous magnetization. In addition, this interac-
tion should lead to an additional sound absorption in
ferromagnets, depending on the electrical conductivity
of the medium and on relaxation processes (A. Akhie-
zer, V. Bar'yakhtar and S. Peletminskii12, C. Kittel32).

In order to investigate coupled magnetoelastic
waves, we must include in the Hamiltonian of the fer-
romagnet both the elastic and the magnetostrictive
energy. When these energies are included, the Hamil-
tonian of the ferromagnet has the form

1 /τ

(6.1)dv,

where ρ is the density of the matter, u is the vector

of the elastic displacement, uŷ  = V2 dX k
is

the strain tensor, \ikim i s t h e tensor of the elastic
constants, and γ ^ (Μ) is the magnetostriction tensor;
the term proportional to Xjum represents the elastic
energy, while the term containing γ ^ ( Μ ) is the mag-
netostriction energy.

We must now write the equation of motion of the
magnetic moment, the equations of elasticity, and the
Maxwell equations. With regard to the Maxwell equa-
tions [cf. (2.6)], we understand here by the current
density in these equations the expression

*The question of the effective magnetic field acting on the con-
duction electrons has not been solved. It is obviously not equal to
the induction Bo, as is shown by experiments on the Hall effect
in ferromagnets."
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The equation of motion of the magnetic moment and the
equations of elasticity have the usual structure:

A- _ _ £ _ [ M X[M x (6.2)

where f is the force acting on unit volume of the med-
ium and H ( e ) is the effective magnetic field. (The
second term on the left side of the equation for Μ de-
scribes the change in Μ due to a change in the density
of matter.) However, the effective field H(e^ and the
force £ differ from their usual values. The simplest
way for finding the modified values of H^e' and f is
to calculate the time derivative of the total energy of
the ferromagnet:

+ α,

where

эт
mdxtdxm

3v

• = Кыт

иш + Уи(Ш)·

(6.3)

For λ = σ = 0, the volume integral should go to zero.
From this it is easy to conclude that the effective mag
netic field a" and the volume force £ should be
given by the following formulas:

B | m ЭМ

(6.4)

We see that the effective field H ( e ) differs from

(2.5) by the presence of the term щ т
* ш

, which is

proportional to the strain tensor. In the expression
for the volume force f̂ , in addition to the usual elastic

щт, there appear termsforce

In this expression the first two integrals are taken
over the volume of the body and represent the dissipa-
tion of energy caused by the conductivity of the medium
and by relaxation processes. (Dissipation of energy
due to thermal conductivity and internal friction are
not contained here, since we have omitted the corre-
sponding terms in the elastic equations.) The last
three terms (6.5) represent the energy flux in the
elastic ferromagnet.

We now proceed to consider magnetoelastic waves.
First let us consider the case λ = 0 and σ = 0, where
we assume for simplicity that the medium is isotropic
with respect to both elastic and magnetostrictive prop-
erties. Then

where γ 0 and γ are the magnetostriction constants.
We set Μ = Mo + m and Η = Ho + h, where Mo is

the equilibrium value of the magnetic moment at the
given temperature, Ho is the constant field in the body,
and m and h are small corrections to Mo and Ho;
Mo and Ho are assumed to be directed along the axis
of easiest magnetization n. The linearized equations
for m and u have the form:

ϋ = s? Ли + (s} - s\) V div и + 2γ0 V (Mom)

(6.6)
where
ΓΪ/сЛ 1_ О -^0 & Μη (ΐηΜη) Α

Η< ρ ) = η — pm_L — m TJ— — о °• 0 / 4- а Д т

-2YoModivu-Y[(MoV)u + V(Mou)], M0 | |H0 | |n,

δ = 4Μοβ" (Mo), sj and sf are the velocities of longi-
tudinal and transverse sound waves, given by the elas-
tic tensor. Assuming that all quantities vary as
ei(kr-a)t)t w e otjtam tbe dispersion equation

3, (6.7)

where
_ ω г __Щ — [НУ-я) cos26

·»*'·"' **1 к/.ГП о™ tli l* - - — — — —сг -»• — —- — Ox»- f l t v * ' -—-и -*

Э г*·, 1 fi = g¥ri \^— *?+(«?-β?)οο8·2β4—(o8 — s?)cos2e
+ M - f - H ( e ) + i [ J x B ] i . The third term is related * Ι Ωι
to the conduction current, while the first two result
from the existence of a spontaneous magnetic moment.

Using the expressions (6.4) for H ( e ) and f, we ob-
tain from (6.3) the following expressions for d5C/dt for
non-zero (but sufficiently small) values of λ and σ:

{- [Hx Ε]Λ + α,, |M f- (aik
dSk.

(6.5)

θ is the angle between к and Mo.
In equation (6.7) the coupling parameter for elastic

and magnetic vibrations is the quantity ζ. If we set
ξ = 0, the roots of equation (6.7) will be
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The last root corresponds to a magnetic wave. In for θ = π/2,

first approximation in the coupling parameter, the

velocities of the sound waves are given by the formulas v1 = sl( I

583

+ Ω cos2 θ ± cos2 2Θ - Ω cos2 θ)2 + 4o>a cos2 6 cos2 2Θ] j .

(6.8)

(6.12)

We note that setting Mo = 0 and γ 0 = γ = 0 in these

formulae, we find the velocities of sound vibrations in

a metal with very high conductivity and which is in an

external magnetic field Ho. If R\/8vps\ « 1, these

f
These formulas determine the velocities of longi-

tudinal (the first formula) and transverse sound waves, formulae have the following form;

as modified by the weak coupling to the magnetic waves. ^ o r θ = 0,

They are valid if ω is not too close to у ΩΩι-

If ω ~ Κ ΩΩι, a n "entanglement" of the magnetic for Q =

and sound branches of the vibrations33 occurs, which

we shall trace for 0 = 0 . In this case
ь\ ·

2

к*·
ал»

0,
к

2 s,

±1
2 st

gMo

' stk

• gM0 V·
stk

(6.9)

For kSf. < Ωχ, the third root determines the phase

velocity of the magnetic wave, and the fourth root the

velocity of the transverse sound wave; if ks^ > Qlt the

third root determines the phase velocity of the trans-

verse sound wave and the fourth that of the magnetic

wave.

It can be shown that the transverse waves are el-

liptically polarized and that the ratio of the semi-axes

of the ellipse is equal to

Experimentally the change in velocity of longitudi-

nal and transverse sound waves was observed in tin

and aluminum.56

Let us now turn to the determination of the damping

coefficient of magnetoacoustic vibrations. For this,

we should, according to (6.1) and (6.5), calculate the

quantities 3C and d3C/dt for values of the field corre-

sponding to λ = 0 and σ = 0, °°. Here we shall give

only the final formulae which determine the absorption

of the sound vibrations.

For small values of σ, the damping coefficients for

longitudinal and transverse waves are equal to

r«> = λ ω

2 Щ (2π - γ)« sin2 θ

P.! cos 26
ω cos θ 1 +

2 cos2 β

"— Ω Ω ,
Γ"> =

^- cos2 θ ± I (cos226 — i

Q-cos2eY+4^cos2ecos22eT/2 '

(6.10)

[The semi-axis a is in the (n, k) plane and is directed

perpendicular to k. ]

For 6 = 0 we get two circularly-polarized waves,

while for θ = π/2 we have two linearly-polarized waves

for which the vector u is along Moand Mo χ к.
In a similar way one can treat coupled magneto-

acoustic vibrations in the limiting case of large con-

ductivity, σ »

, Ml st|"-|-cos*2e cos4 θ
Qtf ' T]2-|-cos2U (ωη — О:со£

cos 2 θ

QC2

gA/0cos26 η»

4яМ„ [
Βο ηω —Q lcos26j

ηω — Ω1 cos26

1cos26J ,

(6.14)

γ •

Here we give only the formulas for the phase veloc-

ities of sound waves for θ = 0 and θ = π/2. If θ = 0,

gM0
Mjj Γ B% 1

2 ^ LtoMS 2

(6.11)

where η = -τ-cos θ [cf. (5.10)].

We see that the damping of sound has a markedly

anisotropic character and that it is especially large at

resonance, when the frequencies of sound vibrations

and magnetic vibrations coincide.

To determine the coefficient for damping of sound

near resonance, we must use the exact dispersion equa-

tion which takes into account the conductivity σ and the

relaxation constant λ. It can be shown that in this case

the damping coefficient is given by formulas (6.14), if

we replace the denominator (ω2 — ΩΩι)2 by (ω2 — ΩΩι)2

+ Γ 2 Ω Ω ! , where Γ is the coefficient for damping of

magnetic waves which is given by formula (2.16). (This

replacement must also be made for the quantity η.)
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Here we shall give only the final formula for the where
damping coefficient of longitudinal sound waves at res-
onance:

QSf π λ '
j = ΩΩΧ. (6.15) From the first equation it follows that

ш = vh(8)

Let us compare this quantity with the damping coeffi- '" '
cient due to thermal conductivity, where the tensor χ has the form

Г„=^ха?а7\ X = (Xx*' Η
" \AuX' Лип'

where к is the coefficient of heat conduction, Τ is the
temperature in degrees, c v is the heat capacity per =
unit volume, and α τ is the thermal expansion coeffi-

(6.18)

cient. Setting
o^lCTM/deg. е„=10в erg

g. deg
- κ = 10

erg Assuming that u and m are proportional to e i a ) t

cm. sec. deg.' we obtain

Г=100°К, Q = 10.
g

c m
F ' gM>

λ _ ίο" 1 — i - r 1 0 " C m

' S i ~~ ° sec '
(6.18')

from which
Λ/ο = 103 cgs e m u ,

u = Ι,,β™'* 4- и.е1"2*,
we get

Γ<ι> =~ Γ κ . w h e r e C t and C 2 a r e integrat ion constants and

Finally, we give formulas determining the a b s o r p - »-·• < ° 2

tion of sound in ferromagnets which have high conduc-

tivity, σ »

For θ = 0,

For θ = π/2,

) \gMj

(6.16)

If u z = o = u 0 i s specified,

Clx = C 2 x = i'Clv = — iC.iv = -g- u0

(the χ axis i s taken along u 0 ) and

u (z, i) = "o c o s ( ω ί — kz),

χ { (ω2 — ω )̂ sin (ωί — Αζ) —2ωώ0 cos (ωί-Αζ)} ,

Γ ι 1 , _ ω2 c'Hg
(6.16')

The damping coefficients Г^о a n d Т2в=тт/2 a r e e c l u a l

to zero in this approximation. We see that for large
values of σ the sound damping does not have resonance
character.

In conclusion we consider the problem of excitation
of magnetic waves by an external sound field.

Suppose that the half space ζ > 0 is filled with a
ferromagnet at whose external surface (ζ = 0) there
is assigned a displacement u = uoe~ (u0 is assumed
to be constant). We are required to determine m(r, t)
and u(r, t) .

From formula (6.8), for θ = 0 only the interaction
of transverse sound with a magnetic wave has reso-
nance character. We shall therefore assume that u is
in the plane (x, у) in which the vector Mo also lies.

In the present case the fundamental equations (5.6)
can be rewritten as

m = eM Г nxh< e > — — m 1 + λ (
0 L gM0 J V

gM<>

3su Модт
' " Q " dz

(6.17)

X | (ω2 — ω*) cos (ωί — kz) + 2ωω0 —^- sin (ωί — kz) j >

(6.19)
(We have set k t ~ k2 ~ к = — . )

s t
At resonance

— ^ 2γ (gMof -^- . (6.19')

Assuming t h a t - ^ - ^ l O - 1 , m0~107,we ge t ( "-^-\ s % 10"2.

7. Energy Spectrum of Antiferromagnets.

The phenomenological method which we have used
for finding the energy spectrum of a ferromagnet can
also be used for obtaining the energy spectrum of anti-
ferromagnets.

Antiferromagnets are bodies consisting of several
magnetized sub-lattices with quasi-independent mag-
netic moments which compensate one another.

One must remember that the microscopic descrip-
tion of an antiferromagnet as a body in which the spins
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of neighboring atoms are oriented opposite to one
another is not valid, since a state with such an orienta-
tion of the spins is not an eigenstate of the Hamiltonian
containing the exchange interaction, which plays the
basic role in antiferromagnets as it does in ferromag-
nets. In fact, since the Hamiltonian does not change
under an interchange of neighboring atoms, the eigen-
functions of this Hamiltonian must either not change,
or simply change sign for such a permutation, and the
state with alternating spins does not satisfy this con-
dition: when we interchange neighboring atoms, we
destroy the checkerboard pattern.

However, one can give a macroscopic description
of an antiferromagnet as an aggregate of magnetized
sublattices, each of which is characterized by its angu-
lar momentum at each point in space. Such a descrip-
tion leads to results which are in good agreement with
experimental data on magnetic and thermal properties
and with neutron diffraction studies of antiferromagnets.

In the following for simplicity we shall consider an
antiferromagnet consisting of two sublattices with mag-
netic moments Mj(r, t) and M2(r, t), whose equili-
brium values in the absence of an external magnetic
field are equal in magnitude and opposite in direction.
MnF2 has such a magnetic structure.

The Hamiltonian of the antiferromagnet in the case
where we have two mirror sublattices can be written
as follows:

OMtM2 - -i + (nM2)
2] - ( M l + M2) Η - ^ [ .

(7.1)

The first two terms here are the analogue of the energy
of inhomogeneous exchange interaction in the Hamil-
tonian (2.3), while the term 6MjM2 is related to the
exchange interaction of the uniformly magnetized sub-
lattices. The fourth term is the anisotropy energy,
written on the assumption that there is a preferred
axis in the body, which we denote by n. Since the mag-
netic anisotropy is associated with relativistic inter-
actions, | β | « 6. In addition, we shall assume that
β > 0. This means that in the absence of a magnetic
field the magnetic moments are directed along the pre-
ferred axis. Finally, the last two terms give the mag-
netic energy. In treating quasi-static oscillations of
the magnetic moments they are equivalent to the ex-

H2

pression + which is used for studying spin waves
8тг

in a ferromagnet. In fact, the difference of these two
expressions, which is equal to

In writing the Hamiltonian (7.1) we start from the
assumption that the minimum energy of the antiferro-
magnet corresponds to uniformly magnetized sublat-
tices. This means that the quadratic form

α ι 25ϊ7 5ϊΓ
must be essentially positive, from which it follows
that a > 0 and a1 2 < a. The quantities a and al2,
like the corresponding quantity a in ferromagnets, are
proportional to the exchange integral between neighbor-
ing atoms. Therefore a and a 1 2 have the same order
of magnitude,

becomes a surface integral in the quasi-static case,
when Η = Vcp, and can be dropped in determining the
frequencies of vibration of the magnetic moments.

where TQ is the Curie-Neel temperature of the anti-
ferromagnet, i.e. the temperature at which the antifer-
romagnet makes a transition to the paramagnetic state.
The constant δ is equal in order of magnitude to
ΤΟ/μΜ0.

The magnetic field Η is made up of the external
constant homogeneous field Ho and the magnetic field
of the spin waves h, which is determined in the case
of low frequency oscillations by the equations

curlh = 0, divh= -4π div(M1+ M2) (7.2)

(The antiferromagnet is assumed to be a dielectric, so
that we do not give a term containing the conduction
current.)

Let us write the equations of motion of the magnetic
moments, analogous to (2.4):

dMj „(eh (7 3)

at J

where H^e) is the effective field acting on the moment
Mj: J

Ф=-щ- < 7 · 4 >
(We shall not consider relaxation forces here.) Using
the expression (7.1) for 3C, we get

H<6) = Η — όΜ2 — βΜι± + αΔΜ! + ciuAMj,

Hj8) = Η — δΜχ — βΜ2χ + αΔΜ2 + а^АМц

where Mji = Mj - n ( n - M j ) .
To find the energy spectrum of the antiferromagnet,

we must consider small oscillations of the magnetic
moments around their equilibrium values Мц and M2Q.
These values correspond to the minimum energy of
the antiferromagnet, and are independent of coordi-
nates. To determine the directions of M10 and M2 0

we must find the minimum of the expression

Ε = δΜ10Μ20 — i β [(nM10)
2 + (nMJ2] - (Mlo + M20, Н„), (7.6)

where Ho is a given external field, with the additional
conditions MiQ = M2 0 = M§. As a result we obtain the
following formulas which determine the direction of
the magnetic moments M1 0 and M2 0:

(7.5)
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sin (Θ, - ej + —^ sin (9X - φ) + I sin Bt cos bx = 0,

(7.7)

where Qi and 02 are the angles between η and M10,
M20: φ is the angle between η and Ho [the vectors Мц
and M20 lie in the plane (η·Η 0 )].

Equations (7.7) show that the orientation of the mag-
netic moments is essentially determined by the exter-
nal magnetic field Ho. Let us first consider the case
where the external magnetic field is parallel to the
preferred axis n. If Ho < V (26 + β) β Mo, then

М ю = —Мао. М„

If (26 - β) Μο as Ηο & V(26 +β)β

(7.8)

the angle

between the moments M l o and M2 0 is different from
π. The angles formed by the moments M1 0 and M2 0

with the axis of easiest magnetization are given by the
formulas

(7.9)

where (2δ — β) Ma > ff0

In the range of fields

/(26 + β) β g^g Mo < Ho < /(26 + β) β Μο

there correspond to the minimum energy (7.6) the two
configurations (7.8) and (7.9) (cf. Figs. 4-5). If the
field satisfies

then the deeper minimum, i.e., the ground state, corre-
sponds to the configuration (7.8); if the field satisfies

then the ground state will be the state with configura-
tion (7.9). We note that for

there is a readjustment of the ground state of the anti-
ferromagnet: the magnetic moments rotate to an angle
close to π/2 with respect to the preferred axis. For
Ho > H e the magnetic moments align themselves along
the axis n.

If the magnetic field Ho is perpendicular to the axis
η and Ho < H'e, where He = (26 + β) Щ » 26M0, the
magnetic moments lie in the plane (η, Η) and

sing^^p-, Θ2 = π —Θ̂  (7.10)

For Ho > H'e both magnetic moments are oriented
along the magnetic field, i.e. at Ho = He the antiferro-
magnet, so to speak, goes over into the ferromagnetic
state.

Let us denote the deviations of the magnetic mo-
ments M[ and M2 from their equilibrium values Mlo

and M20 by m t and m2. Assuming that \m1\, |m21

FIG. 4 FIG. 5

« Mo, we obtain, after linearization, the following sys-
tem of equations for m t and m2:

—Qt~ = gMl0,x,[n — 6m2 — βω^-Ι-αΔη^ -|-α12Δΐη2]

- ^ • = g M 2 0 , x [ h - e m 1 - |

+g ηι2χ [Ho — δΜ1 0 - β Μ 2 0 1 ] ,

(7.11)

where т д = nij — η (mjn), Щ±= Мо - n(nM0).
The solution of these equations in the form of plane

monochromatic waves [ exp (ikr - iait) ] leads, after
the elimination of the magnetic field h, to the equations

- a/c2m2

(7.12)

а12/с2ш2] +gm x x[H 0 —δΜ20 —βΜ1Οχ],

= g M2 0 ;xj [ - ^ (к, ПЦ + т 2 ) - δπ^ -

ollfc»m11 + g!ma.x [Ho - δΜ1ο - βΜ20 J .
J

Equating the determinant of this system to zero, we find
the relation between w and k. It turns out that there
are two branches of the vibrations. They differ in their
dispersive behavior in the presence of an external mag-
netic field. When the field goes to zero, the two
branches coalesce, if we neglect the magnetic interac-
tion of the spins (i.e., if we set h = 0). Neglecting
this is always justified since the magnetic interaction
is very much smaller than the exchange interaction.
We note that in ferromagnets the magnetic interaction
can be neglected only for sufficiently large k, when

the inequality a k » ( — " — - ) is satisfied. Under( )
\ 0C '

this condition, the exchange interaction energy, which
contains spatial derivatives of the moments, will be
much greater than the magnetic interaction energy. In
the case of antiferromagnets, magnetic interaction can
be neglected for all wave vectors. The reason for this
is that the energy of the antiferromagnet (7.1) contains
the term 6Mi'M2, which describes the exchange inter-
action of the uniformly magnetized sublattices. How-
ever, one must remember that the weak magnetic in-
teraction results in a slight difference between the two
branches of the energy spectrum of the antiferromagnet.

We shall not carry out the detailed calculations, but
give only the final formulas for the energy of spin waves
in the most interesting cases.
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If the external magnetic field Ho is parallel to the

preferred axis, when Ho < V(26 + β) β Щ then34
ί ι ω =

ει, « = *«>!, 2 = V(^Haf + θέ (α/c)2 ± μ#0, (7.13)

where μ = gfi, 0 C = V26(a - α 1 ; 2 ) — and Ha

= V(26 + β)βΜ0 ~ V2δβΜο (0c is of the same order

of magnitude as the Curie-Neel temperature).

We see that an increase in magnetic field results in

a reduction in the energy of one of the branches of the

spectrum.

If He » Ho > 1/(26 + β) β Ц Ь | , then38

s-тл^ (7-14)

We note that in this case e4 tends to zero with k.
Next we consider the case where the magnetic field

is perpendicular to the axis n. If Ho « H'e, then34

If Ho > He, then;38
'(7.15)

-Η0)], (7.16)

where
μΜ 0

If Ho = 0,

8i ,2
ес(ак),

ак (7.17)

We have considered oscillations of the magnetic mo-
ments in the simplest magnetic systems: in ferromag-
nets which have one set of magnetic moments, and in
antiferromagnets with two mirror magnetic sublattices.
Aside from these simplest systems there exist a whole
variety of bodies having more complicated magnetic
structure. If in a complex magnetic system there is
not complete (or almost complete, as, for example, in
a — Fe2O3, MnCO3 etc.) compensation of the magnetic
moments, then all the branches of the energy spectrum
except one contain an activation energy of the order of
the Curie-Neel temperature. An analogous situation
exists in the vibrations of complex crystal lattices in
which, of the 3n (where η is the number of atoms in a

unit cell) vibrations, three have no energy of activa-

tion and represent sound waves, while 3n — 3 are op-

tical vibrations. In the case of vibrations of magnetic

moments there correspond to the activation branches

oscillations with change of the angles between the mo-

ments of the sublattices. To the branches which do not

contain an activation energy there correspond vibra-

tions without change in angle between the moments.

For example, for not too long waves, when we can neg-

lect the magnetic interaction, the frequency of each

non-activation wave in a system with two antiparallel

moments Mt and M2 which are, however, not equal in

absolute magnitude, is given by the formula

_ 2

μ

μ,Μ1 — 0.

Now let us look at the case of an antiferromagnet

with weak ferromagnetism.* The occurrence of weak

ferromagnetism in antiferromagnets may be associated

with two causes: either the magnetic moments of the

sublattices are not strictly antiparallel, but are tilted

at an angle which is close to 180°; or the magnetic

moments of the sublattices are antiparallel, but are

slightly different in magnitude because of a difference

in the g factors. In the first case, the slight deviation

of the magnetic moments from the antiparallel arrange-

ment is caused by the specific form of the anisotropy

energy which is characteristic for crystals with rhom-

bohedral symmetry (a - Fe2O3, MnCO3 etc.). In such

crystals the spontaneous magnetic moment is perpen-

dicular to the axis of antiferromagnetism ("trans-

verse" weak ferromagnetism). The second case can

occur because the sublattices are made up of atoms of

different elements, so that Nj Sj = N2 s2, while gj

* g2. Here Nt, s1( gt and N2, s2, g2 are the numbers

of atoms, their spins and g factors respectively for

the first and second sublattices. Besides, even for

identical atoms, the g factors may be different if the

atoms occupy non-equivalent positions in the crystal

lattice. In this case, the resulting spontaneous mag-

netic moment of the crystal is parallel to the axis of

antiferromagnetism ("longitudinal" weak ferromag-

netism ). Longitudinal weak ferromagnetism was dis-

covered in deformed crystals of CoF2 (A. Borovik-

Romanov40).

Let us first consider the energy spectrum of the

spin waves of antiferromagnets with "transverse"

weak ferromagnetism (A. Borovik-Romanov,39'40 E.

Turov42).

The Hamiltonian for antiferromagnets whose crys-

tal lattice has rhombohedral symmetry differs from

the Hamiltonian for a uniaxial antiferromagnet (7.1) by

the presence of a term

а(МыМ2у-М1уМ2х), (7.18)

which is responsible for the weak ferromagnetism. In
addition, in these crystals as a rule the magnetic aniso-
tropy constant β is negative. Therefore, in the ab-

sence of the term (7.18) the magnetic moments in the

ground state are in a plane perpendicular to the axis

η for Ho = 0. Because of the specific energy (7.18),

the magnetic moments are turned at an angle close to

180° (Fig. 6), as a result of which a weak magnetic mo-

ment appears in the antiferromagnet, equal in order of

magnitude to 2—Mo. Since the energy (7.18) is ofδ
*A detailed investigation of weak ferromagnetism is contained

in the papers of A. Borovik-Romanov"'40 and I. Dzyaloshinskii.41
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FIG. 6

relativistic origin and not exchange origin, d « δ. In
MnCO3 the spontaneous magnetic moment is of the
order of 200 cgs emu/mole, i.e. d/δ и 0.007.

Carrying out calculations similar to those which
were done earlier, we now get

(7.19){H

where Hd = dM0, and Ha = V 2δ | β | Mo.
The energy spectrum of spin waves of an antiferro-

magnet with longitudinal weak ferromagnetism can be
obtained from the Hamiltonian of a ferromagnet with
two magnetic sublattices by assuming that Mtg2 = M2gt.
Then there can exist in the body a magnetic moment
equal to

Μ (0) = Μ! - Мг = vM,

where

Since the difference in the g factors is a relativistic
effect, Μ (0) « Μ. Under these assumptions the spec-
trum of spin waves has the form (E. Turov42):

"i. 2 = VV (*Я,Я, + ^ЯД + Θ& (akf ± μΗ0, (7.20)

where μ = V2K (g t + g 2), and Ho is assumed to be di-
rected along the axis of antiferromagnetism and to be
sufficiently small in absolute value (Ho < vHe).

8. Thermal and Magnetic Properties of Ferromagnets.

A knowledge of the spectrum of spin waves enables
us to determine the magnetic moment of a ferromagnet
as a function of temperature and magnetic field for
Τ « Тс, and also to find the contribution of the spin
waves to the heat capacity and other thermodynamic
characteristics of the ferromagnet.

In order to find the equilibrium value of the mag-
netic moment of the ferromagnet at a given tempera-
ture and a given external magnetic field, we shall start
from formula (3.22) which determines the quantum-
mechanical average value of the magnetic moment:

- 2MV

where Μ and μ^ are given by formulas (3.23) and the
ζ axis coincides with the axis of easiest magnetization.

We see that these quantities are determined by the
numbers of spin waves nk. Replacing the quantities
njj by their equilibrium values, which are given by the

formula n£ = lexp 11 , where €fc is the energy

of the spin wave and Τ is the temperature in ergs, we
obtain the following expression for the equilibrium
magnetic moment of the ferromagnet:

(8-2)

The equilibrium distribution function of the spin
waves also determines the heat capacity C s of the
ferromagnet associated with the spin waves:

С - Α .
• ~~ dT

At absolute zero,

Mv-

(8.3)

(8.3')

The magnetic moment at Τ = 0 depends in a com-
plicated way on the applied field Ho. Here we shall
give the expression for Μ in the two limiting cases of
low and high fields (Holstein and Primakoff3):

M-
μ

2а?
2πμΜ0 γ/«а С 2лМ0 Х

(8.4)

Now let us turn to the calculation of the spin specific
heat and magnetic moment of a ferromagnet at finite
temperatures. For this purpose it is convenient to in-
troduce the thermodynamic potential Ω of the gas of
spin waves, defined by the formula

(8.5)

The free energy F of the body is related to the poten-
tial Ω by the relation43

Ω = ί-ζΛΓ, (8.5')

where ζ is the chemical potential per particle and N
is the total number of particles. Since the number of
spin waves is not fixed (since spin waves can be cre-
ated and destroyed), the chemical potential of the spin
waves is equal to zero. Therefore the potential Ω co-
incides with the free energy F:

The heat capacity C s and the magnetic moment of the
body URz = Μ (Τ, Η) V are related to the free energy
by the formulas

* M(T H)-M 1 — С - - Г —

and consequently,

—ν~ΊΠί

(8.6)
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Using formula (8.5) and the expression (2.11) for
%, and changing in (8.5) from summation to integra-
tion over the wave vector k, in accordance with the
formula

κ (8.5')
к

we find, after integration by parts, the following ex-
pression for Ω:

π/2 oo

η 1' f • „ « Г №(ε, θ) οίε , Q „,>
Ω = — -5-тг \ sin θ ей \ — - — • — , (8.6 )

О ε0

where k ( е, θ) is the magnitude of the wave vector of
the spin wave expressed in terms of its energy e and
the angle Θ, and

r<e>sin29, Hm =

(Here and in the following we assume that the magnetic
field is along the direction of easiest magnetization,
Η = Ho.)

Since we are considering the low-temperature re-
gion, the upper limit in the integral (8.6') can be taken
equal to infinity.

It is not possible to carry out the integration in (8.6')
in general form. We shall therefore consider only some
of the more interesting limiting cases.

If the temperature is sufficiently high, Τ » 2πμΜ0,
μΗ(€!), then (F. Bloch1)

M(T,H) = M-M/-^(i-T'' 8π h a V θ0 J

We see that, in the case of high fields and very low
temperatures, the spin heat capacity and the deviation
of the magnetic moment from saturation are exponen-
tially small. The same behavior with temperature
occurs in the absence of field if Τ « /3μΜ0. This phe-
nomenon is related to the presence of an activation
energy for the spin wave.

Thus at very low temperature the contribution of
the spin waves to the heat capacity is exponentially
small.

Let us see at what temperatures the contribution of
the spin waves to the heat capacity becomes reasonably
large. For this purpose let us compare formulas (8.7)
and (8.8) with the familiar expression for the phonon
specific heat

С я — ίττ;"
„*Ы α» 6 C ) > (8.7)

where ζ (χ) is the Riemann ζ function (the specific
heat and magnetic moment are taken for unit volume).

(e)In the temperature region μΗ^ ; « Τ « 2τΓμΜ0, we
have3'44

М(Т,Н) = М-^2±(_^Щ

^ ivi —

^ Й tl I 3 / ~ -

Τ { Τ Λ3/:
64 я3/2аз 2πμϋί0

J"3 α» 2πμΛί0 (8.8)

These formulae are valid if the ferromagnet has low
anisotropy energy, i.e., if β « 2π.

If μΗ<β> » Τ, 2πμΜ0, then44

μ Η ι β )

' ' ' 8я3/2 а' V 6r / '

μ Η "

If, finally, Τ « μΗ ( Θ ) , 2ττμΜ0, then

/2 (μ»<«»)« -
в

2π2

~ΊΓ~ (8.11)

where Θ-Q is the Debye temperature, defined as
4 '} 1 il4 f, (,

8 D = 6 f ' β? ' ' " " ' ' " "
(si and ŝ  are the velocities of longitudinal and trans-
verse sound vibrations). It is easy to verify that the
spin specific heat exceeds the phonon specific heat, or
is of the same order of magnitude, in the temperature
interval

The lower limit here is several hundreds of degrees
for materials with low anisotropy energy (β « 1), and
is approximately equal to a degree for uniaxial crys-
tals whose anisotropy energy is large (β ~ 10); the
upper limit is of order 10 —100* K.

We note that the behavior of the specific heat of a
ferromagnet, and consequently the behavior of its en-
tropy as a function of magnetic field, must result in a
magnetocaloric effect of the same type as in the case
of ordinary paramagnets.

Formulas (8.7) — (8.10) show that the magnetic mo-
ment of a ferromagnet varies with temperature accord-
ing to the same law as does the spin specific heat, only
in the temperature range Τ » μΗ^Θ), 2πμΜ0. In other
temperature regions these quantities have a different
temperature variation.

The temperature dependence of the magnetic mo-
ment and specific heat has been studied experiment-
ally,45 and a law C s ~ Μ - Μ (Τ, Η) ~ Τ3/2, which is
in accord with the theory of spin waves, has been ob-
served over a relatively wide range of temperatures.
No experiments have been carried out at high magnetic
fields and at very low temperatures.

9. Thermal and Magnetic Properties of Antiferro-
magnets.

The thermal and magnetic properties of antiferro-
magnets can be studied in the same way as for the
case of ferromagnets. Using the expressions (7.13)
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and (7.17) for the energy spectrum of the antiferromag- very small activation energy, and that this activation-

net, we must determine, in accordance with formula

(8.5), the thermodynamic potential Ω and then, from

formulas (8.5), find the specific heat and magnetic mo-

ment of the antiferromagnet.

First we shall give the expressions for the specific

heat of an antiferromagnet in a few limiting cases. If

there is no magnetic field Ho, then34

If Ho is different from zero and is along the pre-

ferred axis of the antiferromagnet, the specific heat

is given by the following formulas:38

Г 2 V/. 1 ц3Яа(Яа-Н„)у μΗ^ V/. -У
V я V о* θ£ К Τ J

μΗα > μЯ0 > Τ,

^ i ( I F У ' μΗ°> μΗ° >> т' μΗ° * т

β c » Г » μ Я o > μ Я 0 . (9.2)

If the external magnetic field is oriented perpendic-
ular to the preferred axis, then at sufficiently low
temperatures the specific heat falls off exponentially
with decreasing temperature:

μΗα

(9.3)

At comparatively high temperatures, the specific heat

has a power law dependence on the temperature:

С

15

15
1 f Τ \*

15 ζ (6/a) 1 / Τ γ/ι
32 „»/« a*\t)cJ

Qc > Τ > μЯ0 > μ#α,

вс > ЦЯО » Г > μЯα,

Я 0 >Я е ,

(9.4)

We see that the spin specific heat of antiferromag-
nets is, over a wide range of temperatures (дНа « Τ

« Ос )> proportional to the third power of the temper-
ature, i.e., it behaves in the same way as the phonon
specific heat.

Formulas (9.2) show that if Ho II n, the specific heat
of antiferromagnets depends differently on temperature
according as Ho > H a and Ho < H a. If Ho 1 n, a singu-
larity in the temperature behavior of the specific heat
occurs for Ho = He. Near these values of magnetic
field there are also singularities in the other thermo-
dynamic quantities. These singularities are related to
the change in the structure of the ground state of the
antiferromagnet (cf. Sec. 7).

If Ho II η and Ho S, Ha, then, as we see from formu-

las (7.13), the spin wave branch et has for Ho « H a a

energy increases with decreasing field Ho. Therefore,

an adiabatic switching-on of the field Ho should lead

to an increase in temperature of the antiferromagnet.

The change in the temperature of the body can be de-

termined by equating the entropies before and after

switching-on the magnetic field

where S is the total entropy of the body including the

entropies of spin waves and phonons, Ti and Tf are

the initial and final temperatures of the body. If Ti

—τ— μΗ3., the final temperature will be equal to
ec

(9.5)Τ -Τ bD ίν-Ηα

We note that the heating process can occur in two

stages: first, the spin system is heated to a tempera-

ture of the order of and then a common

value of the temperature of spins and lattice is estab-

lished, given by formula (9.5). Such a picture will hold

if the relaxation time within the spin system is very

much less than the time for equalizing the tempera-

tures of the phonons and the spin waves.

Since the magnetic structure of an antiferromagnet

depends essentially on the orientation of the magnetic

field, a change in orientation of the field without chang-

ing its value can also lead to a magnetocaloric effect.38

Let us now consider the magnetic properties of

antiferromagnets. Since the magnetic moments of the

sublattices compensate one another in the absence of

a magnetic field, the resulting magnetic moment for

not too strong fields is proportional to the magnetic

field. Therefore, the magnetic properties of antifer-

romagnets are conveniently described by the magnetic

susceptibility tensor χ^ς.

We shall give the formulas for the longitudinal and

transverse components of this tensor with respect to

the preferred axis of the antiferromagnet, for various

limiting cases:34

τ γ.
Μ)

Τ « μЯα

J 1
β 2

2 У/1 μ2

) вс

τ V/V-?"

β 6 аЧс\Ьс ) ' »*ff«

(9.6)

(9.7)

These formulas are valid for Ho « Ha.
If the external field is sufficiently large, the mag-

netic moment of the antiferromagnet will not be pro-
portional to the magnetic field. As we have stated,
for sufficiently high values of magnetic field there is
a change in the ground state of the antiferromagnet,
and the value of the magnetic moment depends essen-
tially on the orientation of the magnetic field and the
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relative orientation of the magnetic moments.

Using formulas (7.19) and (7.20) for the energy
spectrum of antiferromagnets having weak ferromag-
netism, we can calculate the temperature dependence
of the magnetic moment and the magnetic susceptibility
of such bodies.

In the case of an antiferromagnet with weak trans-
verse ferromagnetism, we have:40'42

15,

- -У н' (

М°

For the case of an antiferromagnet with weak longi-
tudinal ferromagnetism,42

τГУ)

с J f '

(9.9)

It seems that as yet there are no experiments from
which one might determine the spin specific heat of
antiferromagnets.

The temperature dependence of the magnetic mo-
ment and magnetic susceptibility has been studied,40

under conditions which are suitable for a comparison
of the experimental results with theory, on antiferro-
magnets with weak ferromagnetism (MnCO3). It ap-
pears that the dependence of the magnetic moment on
temperature is described satisfactorily by the first of
the formulas (9.8), while the magnetic susceptibility
depends on the temperature much more weakly than is
required by the second formula of (9.8).

(To be concluded in the next issue.)
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