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J.HE purpose of the present paper is to present the papers of Seitz and the fundamental paper of Bouckaert,
fundamental ideas of the application of group theoreti- Smoluchowski and Wigner4 we have the beginning of a
cal methods to quantum physics of solids in a form whole series of papers concerning the band theory of
accessible to a wide circle of physicists. As yet there solids. The authors of reference 4, using the concept
has not been in the Soviet literature any sufficiently of the group of the wave vector, obtained tables of
systematic presentation of this problem. The paper characters of the irreducible representations of the
covers theoretical material concerning spatial sym- symmetry groups of simple lattices, while in the papers
metry and is a logical extension of the paper of the of Herring5 and of Doring and Zehler6 this method was
authors concerning point symmetry.1 extended and applied to more complicated lattices. Of

the later investigations we should mention the papers
ι τχίτοηητίπΦτΛχτ o f Herring7 and Elliott,8 which were concerned with an

investigation of the effect on the energy spectra of
The study of space groups and their application to electrons in crystals, of time reversal, and of the spin-

the quantum theory of solids has played a very impor- orbit interaction.
tant role in the development of our knowledge of We should also mention the very recent paper of
metallic and semiconductor crystals. The successes Koster9 on the theory of space groups, in which a de-
achieved in the theory of semiconductors and their tailed and quite clear presentation of their properties
rapid inclusion in technology during the last ten years is given.
is to a large extent due to the application of the method The treatment of band theory using the rigorous ap-
of group theory to the study of electron energy spectra paratus of group theory enables one to clarify certain
and wave functions. delicate questions which escape consideration in the

We may mention that the application of the theory of usual methods of treatment. For example, when we
space groups to the physics of solids is of decisive include not only the translational but also the rotational
importance, since in solids we cannot neglect the symmetry of the crystal lattice, we get an overlapping
crystal structure of the material and therefore we of the energy bands. Such an overlapping may have an
cannot avoid the use of the mathematical apparatus of essential effect, for example, on infrared absorption in
group theory. semiconductors and on other phenomena.

Bethe2 first succeeded in applying group theory to In the present paper we discuss the physical basis
the quantum physics of solids. In his paper he investi- for the application of the method of group theory to the
gated theoretically the splitting in a crystalline field physics of solids. Fundamental attention is given to
of levels which were degenerate in the free atom. The the theory of space groups and their most important
next very important step was a series of papers by properties. In particular, we consider the representa-
Seitz3 concerning the theory of space groups. In these tions of the space groups and give methods for con-
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structing them from the known representations of the
32 point groups. The fundamentals of the band theory
of solids are described from the point of view of group
theory. The general method developed by us for finding
conserved quantities and a complete set1 is applied to
the investigation of the energy spectrum and the classi-
fication of states for electrons in a crystal lattice. The
change in the electron energy spectrum and states when
spin-orbit interaction is included is treated. Finally,
in the last paragraph a discussion is given of the ques-
tion of invariance of the Hamiltonian with respect to
time reversal and rules are formulated for the dis-
covery of additional degeneracy both for particles with-
out spin and for particles with spin У2.

2. DESCRIPTION OF SPATIAL SYMMETRY
OPERATIONS

Ideal crystal lattices always possess a certain
spatial symmetry which is a combination of point sym-
metry and translational symmetry. Therefore, in the
application of the theory of groups to the physics of
solids, the theory of the symmetry properties of crys-
talline systems is of basic importance.

Before we treat the rigorous theory of space groups,
it is necessary to describe the fundamental geometrical
concepts.

If a system τ is to be taken from position TJ to
position τ2, this can be done in various ways. How-
ever, all the motions by which this transition is accom-
plished are considered to be equivalent and the sim-
plest one is always selected. As such simple motions
one can choose translations and rotations. It can be
shown that an arbitrary motion is equivalent in the
above sense to one or a set of several of these sim-
plest motions.

If we subject the system τ to the action of some
translation T, all its points describe trajectories
which are equal in magnitude and direction; therefore,
a translation is completely determined by giving the
path of one point.

A rotation in space is characterized by giving the
position of some axis a; its magnitude is determined
by the angle of rotation a. If we rotate not through the
angle a, but through the angle a + 2π, the moving sys-
tem will occupy the same final position as it does after
the rotation through angle a. Consequently, these two
rotations are equivalent. Therefore in our discussion
we shall limit ourselves to those rotations having
angles less than 2тг. The transition from the initial
position Tj to the final position т2 can be achieved by
a rotation of the system τ around the axis a through
the angle 2π — a in the opposite direction. We call
such a rotation negative. It is obvious that every rota-
tion of the system τ around the axis a can be carried
out by either a positive or a negative rotation. But
since we always treat just one of the whole set of
equivalent motions, we shall for simplicity work only

with positive rotations. We denote the rotation through
angle α around the axis a by A (a ). If the body co-
incides with itself after rotation around the axis a
through the angle 2π/η, this axis is said to be an
η-fold symmetry axis.

A screw motion consists of a rotation through angle
a around a certain axis a and translation by the
amount t along it. The rotation and translation are
carried out simultaneously. The transition of the
system τ from position Tj to position τ2 accomplished
by a screw motion can always be carried out so that
the translation and rotation follow one another in arbi-
trary succession. A screw axis with angle of rotation
a around the axis a and a translation of magnitude t
will be denoted by A (a, t ) . If the body coincides with
itself after rotation around the axis through angle
2π/η and simultaneous translation by t along the same
axis, we say that the body has an η-fold screw axis. If
we carry out the rotation and translation η times with
respect to an η-fold screw axis, we will as a result
move the body along the axis through a distance equal
to nt. Consequently, when there is a screw axis, the
body must always have a periodicity of the usual type
along this axis with a period no greater than nt. This
means that an η-fold screw axis can be associated
only with translation through distances

t = -£-a (p = l, 2, . . . , („-I)),

where a is the smallest period along the direction
of the axis.

Let us now consider, together with the system т, а
system τ obtained from the first by mirror reflection
in some plane o. The system and its mirror image
cannot be brought into coincidence with one another by
means of ordinary motions; this can be accomplished
only by applying a mirror reflection. If τχ is some
position of the body τ, and τ2 is some other position
of the body τ, we can first reflect Tj in some plane
and then make the resultant mirror image 7j coincide
with τ2 by means of a Euclidean motion. Such an op-
eration is called an operation of the second kind. The
simplest operations of the second kind are reflections.

A reflection is characterized by giving the position
of some plane C; we say that we have a reflection in a
glide plane, when we add to the reflection in σ a trans-
lation parallel to it through t. We denote the reflec-
tion in the plane σ by Σ and the reflection in a glide
plane by Σ (t), where t is the magnitude of the trans-
lation parallel to σ. We say that a body has a plane of
symmetry σ if it coincides with itself after reflection
in this plane. The body has a glide plane of symmetry
σ if it coincides with itself after reflection in the plane
and simultaneous translation through a distance t in a
direction parallel to the plane. Twofold reflection in a
glide plane results in a simple translation through
distance 2t. Therefore a body can have only those
glide planes of symmetry in which the magnitude of
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the translation t is equal to a/2 where a is the
length of the smallest period in the direction of this
translation.

A mirror rotation consists of a rotation around
some axis a through angle a and subsequent reflec-
tion in the plane σ perpendicular to this axis. We say
that a body has an η-fold mirror-rotation axis if it
coincides with itself after rotation about this axis
through angle 2π/η and subsequent reflection in the
plane perpendicular to the axis. We use the notation
8 (a) for mirror reflections.

If the angle of rotation for a mirror reflection is
a = ж, this operation results in inversion with respect
to the point of intersection of the axis a and the
plane σ.

The symmetry of a crystal is very naturally sub-
divided into macroscopic and microscopic. Macro-
scopic symmetry determines those properties of a
crystal which depend only on directions in it, so that
the crystal behaves like a homogeneous continuous
body. Here the word "homogeneous" emphasizes that
the dependence of physical properties on direction is
the same at all points of the crystal. From the point
of view of structural crystallography, macroscopic
symmetry is given, as we know, by the 32 crystal
classes. These are symmetry groups made up of
point symmetry elements: rotations and reflections.

By microscopic symmetry we mean the full intrin-
sic symmetry of crystal lattices. Microscopic sym-
metry determines those properties of a crystal which
depend on the arrangement of the atoms in its lattice.
We shall first treat translation groups, which express
the translational symmetry of the possible space lat-
tices and then the space groups which express the com-
bined rotational and translational symmetry.

3. SOME RESULTS OF GROUP THEORY

Suppose we have a finite or infinite set © of ele-
ments g4, g2 gk· This set forms a group if the
following conditions are satisfied:

1. The product g|gj of any two elements of the set
taken in a definite order is an element of the same set

2. There is an element e in the set © satisfying
the relation

This element is called the unit element.
3. To every element gk of the set © there corre-

sponds in the same set another element gk1 defined by
the relation

and called the inverse of gk.
4. The product of the elements satisfies the asso-

ciative law

In general the commutative law does not hold, i.e., in
the general case

If the number g of elements of the group © is
finite, we say that we have a finite group and that its
order is g. When all the elements of the group com-
mute with one another, the group is said to be commu-
tative, while if this is not the case, it is said to be non-
commutative.

A set SQ, made up of an arbitrary number of elements
of the group © is called a sub-group of the group © if
this set itself is a group with respect to the operation
defined in ©. The number of elements h of this sub-
group is called the order of the sub-group Jg.

Suppose we are given a sub-group g in a group ©.
If gk is any element of ©, the product gftjg is called
a left residue class of the group @ with respect to the
subgroup Jg, defined by the element gk· It is clear that
the element gk itself is contained in the class gk§»
since the subgroup ig contains the unit element. If ĝ .
is an arbitrary element of the class gk$, the left resi-
due classes gkig and ĝ ig coincide, i.e. every left resi-
due class is defined by any one of its elements. In fact,

since g'k € gk<g, gk = gknk· T n e n g'kS = gk (hk£) = gk&·
From this it follows that any two left residue classes of
the group © with respect to the subgroup £j either
coincide or have no element in common. As a result
we find that the whole group © splits into non-overlap-
ping left residue classes with respect to the subgroup
Jg. This expansion is called the expansion into left
residue classes of the group © with respect to the
subgroup jg. It will have the form

Instead of this left-sided expansion, we could also
obtain a right-sided expansion of the group © with re-
spect to the subgroup Q. It can be stated that both ex-
pansions of any group © with respect to an arbitrary
subgroup Jg consist of the same number of residue
classes. If we remember also that each residue class
consists of precisely h elements, it follows immediately
from the expansion (3.1) that

g — km, (3.2)

i.e., the order of a subgroup is a divisor of the order of
the group.

A subgroup 31 of the group © is said to be a normal
divisor of this group, or an invariant subgroup, if the
left-sided expansion of the group ©" with respect to the
subgroup 5ft coincides with the right-sided expansion.
In other words, 9t will be a normal divisor in © if the
left-sided and right-sided residue classes of © with
respect to 91 defined by the element gk coincide for all
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gft3l = 9igh· (3.3)

This shows that the necessary and sufficient condition
for a subgroup .31 to be a normal divisor of a group ©
is that it commute with any element of the group ©.

Let us now give the following definition, which
enables us to construct groups starting from a given
group &. Let 31 be a normal divisor of the group @.
Furthermore let Ni and Nj be residue classes with
respect to 31: Ni = gi3l, Nj = gj3i. We form the product
NiNj; we have

NtN, = giftgjSR = gig;3l3t = gA3t = Nh,-

i.e., the product NiNj is also a residue class with r e -
spect to 31. Thus there is established a law of multi-
plication in the set of residue classes. Let us show
that it satisfies the group axioms 2 — 4. Associativity
is obvious since it holds in ©. The unit element of the
group is 31. In fact, if Nk is any residue class,

mh=
The element reciprocal to Nk =

=N h .

is gk1^, since

The group of residue classes obtained in this way is
called the factor group of the group © with respect to
the subgroup 31 and is denoted by ® /31.

4. SPACE GROUPS AND THEIR PROPERTIES9

From the purely group-theoretical point of view,
space groups are a special case of more general
groups of linear transformations which preserve
length. The general form of such transformations
can be written as follows:

(4-1)

A = аз A + α32ζ2 + α^χ3 + t3,

or, abbreviated,

(4.2)

In order that transformations of the type (4.1) pre-
serve length, it is necessary to require that the
vectors t have real components and that the matrices
a be real orthogonal matrices. From the last require-
ment it follows that by a unitary transformation the
matrix α can always be brought to the form

/ ± 1 0 O x
a = l 0 cosqi — sincpj. (4.3)

\ 0 sin φ cos φ /

In this form these matrices allow of a simple inter-
pretation, namely, the matrices with the + sign cor-
respond to rotations around the x t axis through angle
φ (proper rotations), while the matrices with the —
sign can be regarded as rotations around the xj axis
through angle φ with subsequent reflection in the
X2X3 plane (improper rotations ).

Thus the transformations (4.1) can be understood
to be rotations around some axis with a succeeding
translation by the vector t. Such a coordinate trans-
formation will be denoted in operator form as

{a|t}. (4.4)

In this notation the operator { e | 0} is the identity
transformation, the operators {e ft} are translations,
while the operators { α | θ } are rotations (proper or
improper).

It is easily shown that in operator form the product
of two transformations of type (4.1) is written as
follows:

{a ] t} {β | u} = {αβ | au +1}, (4-5)

It is also easy to find the operator which is inverse to
a given operator,

{a 11}-1 = {a"11 -аГЧ}. (4.6)

Thus the operators of type (4.4) form a group. We
mention two obvious properties of this group:

1. The operators { a\ 0} form a subgroup in this
group;

2. The operators {e | t } also form a subgroup in
this group and this is an invariant subgroup of the
original group since

i.e., every element of this subgroup which is conjugate
to a given element { e | t } also belongs to it.

The space groups are characterized by the fact that
they have an invariant subgroup of translations of a
special kind, namely: all the pure translations of the
space group have the form

(4.8)

where

the ni are integers and ti are three linearly inde-
pendent translations which are called primitive trans-
lations. Consequently, the pure translations in a space
group are linear combinations with integer coefficients
of the three fundamental primitive translations. The
periodically repeating set of points generated by the
vectors R n is called a lattice.

All the properties of space groups can be derived
from the fact that they contain an invariant subgroup
of this type. Thus, for example, it is immediately ob-
vious that if R n is an admissible translation, then
oRn. where { ar| t} is an element of the space group,
will also be an admissible translation. This follows
immediately from the relation

{a 11} {ε I RJ {a"11 - оГЧ] = {ε | аВ„].

One of the consequences of the fact that space
groups have an invariant subgroup of admissible
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translations of the form (4.8) is the limitation imposed
on rotation operators. It turns out that one can have
rotations around an axis only through angles which
are multiples of 60 and 90°; the improper rotations
are products of such rotations with the inversion. In
the classification of possible groups which are formed
by the rotation operators contained in space groups,
one finds that there are only 32 (32 crystal classes or
32 point groups). The rotational part of every space
group corresponds to one of these 32 point groups.

On the other hand, knowing to which crystal class a
particular space group corresponds, one can obtain in-
formation concerning the possible invariant subgroups
of admissible translations. We have already seen that
if Rn is an admissible translation and {a | t } is an
element of the space group, then oRn will also be an
admissible translation. Consequently the lattice gen-
erated by the admissible translations of the space
group must remain invariant under the action of the
operations of the point group. This proves to be suffi-
cient for imposing completely definite limitations on
the fundamental translation vectors t,, t^, t3, from
which all the Rn are obtained. Investigations show
that there are 14 different lattices (Bravais lattices).

It should be mentioned that a space group is only
partially characterized by its point group and the type
of lattice. Space groups having the same crystal class
and the same lattice can differ still in the form of the
operators of the translational part (in the form of t) .
However, investigations show that all the operators of
a given space group can always be represented in the
form

{e|RJ{a|v(a)}, (4.9)

where Rn are the vectors of admissible translations,
and ν (α) is a vector which is characteristic for the
particular rotation a and is either equal to zero or is
an admissible translation [we note that v(e) =0].

All space groups are divided into two types with
respect to the vectors ν (a). The first type contains
those groups in which ν (a) is equal to zero for all a.
These are the so-called simple space groups, of
which there are 73. To each operator a of the point
group in a simple space group there corresponds the
operator {a | 0}. Making use of this and the equation

{a | 0} {β 1 Oj = {αβ ! 0}, (4.10)

we can a s s e r t that the operators { a | 0} form a group

isomorphic to the point group. In other words, a

s imple space group contains the whole point group as

a subgroup.

In the other 157 space groups ν ( α ) , for at least

one a, cannot be chosen equal to z e r o . Motions con-

taining a shift by an inadmissible translat ion which

follows a proper or improper rotat ion usually c o r r e -

spond to glide planes and screw axes. In this case the

point group is not a subgroup of the space group.

However, we have seen that in every space group
the admissible translations form an invariant sub-
group. Let us denote the space group by <S, and the in-
variant subgroup of translations by £. We can then
form the factor group СУ/5Е. It is easy to show that
this factor group is isomorphic to the point group con-
sisting of the rotational part of the operators of the
space group.

5. REPRESENTATIONS OF SPACE GROUPS
(GENERAL THEORY)

9

The finding and classification of the irreducible
representations of space groups is most conveniently
begun with a description of the irreducible representa-
tions of the translation groups % consisting of ele-
ments of the form { e | Rn}. In order to make this
group finite, we assume that

{ε | t j " = {8 | t2f = {8 | t3f = {e [Oj. (5.1)

Since different translations { e |ti} commute with
one another, the group £ can be regarded as the direct
product of groups generated by each of these elements.
It is therefore sufficient to find the representations of
one of these groups, for example, the group generated
by the element { € | tj}, which obviously is an abelian
group of N'th order. Then, according to the general
theory, its representations must have the form

ρ = 0,1, ...,ΛΓ-1. (5.2)

The products of all the irreducible representat ions

of the one-dimensional translat ion groups with one

another give the irreducible representat ions of the

full group %. Thus we will have

expi(2nkRn),

where

in which

к =
«2*2

k2b2 к3Ъ3,

= 1,2,3,

(5.3)

(5.4)

(5.5)

Consequently the vector к completely determines the
irreducible representations of the translation group.
When N tends to infinity, there corresponds, to each
vector к with components lying in the interval 0 — 1,
some irreducible representation. We should mention
only that the vector к is defined to within an arbitrary
vector h of the form

h = /г^ + A2b2 + h3b3, hi — integers (5.6)

(vector of the reciprocal lattice), i.e., the vector k'
= к + 27rh characterizes the same representation as k.

We now proceed to study the irreducible represen-
tations of the space groups. We shall denote the space
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group by Й, its elements by { a | a}, and the matrices
of the irreducible representations of the space group
by D (a | a). ( Without loss of generality we can as-
sume that these matrices are unitary.)

Those matrices of the irreducible representations
of a space group which correspond to pure translations
give a representation of the translation group %,

where again without loss of generality we may assume
that all the D (e | Rn) are diagonal and have the form

0 . . . 0
J ί\ ι

D (ε | R J =

0 0 exp (ik RJ
(5.7)

In the preceding paragraph it was already stated that

if Rn is some admissible translation, then o f ' R n is

also an admissible translat ion. This followed i m m e -

diately from the equation

(5.8)

The matrix corresponding to of *Rn is written as

0

0 . . . exp (iak,-RJ . . . 0

0 . . . 0 . . . es

(5.9)

[Here we have used the relation k( of'R n) = akRn.]

From the general properties of unitary representa-

tions, we have the relation

D (ε | = D* (a | a) D (ε | Rn) D (а | a). (5.10)

It is easy to see that if a given diagonal matrix is
transformed into another diagonal matrix by means of
some unitary transformation, the two matrices can
differ only in the order of their diagonal elements.
Therefore, if the principal diagonal of the matrix (5.7)
includes element exp(ik,Rn), there must also be an
element expfiakjRn) for all a of the point group.
We can even assert that each diagonal element in (5.7)
must have the form expfia^Rn), where a is an
element of the point group.*

Then the matrix (5.7) is written as follows:

_ ._ I 0 exp (ta.k.Rn) . . . 0

V 0 0 . . . exp (iajkiR...

(5.11)

i.e., the η-dimensional matrix D(e |Rn) splits into q

diagonal blocks; all other elements are equal to zero.

The diagonal blocks themselves are diagonal (in fact,

scalar) matrices of order d = n/q; al = e, a2, ... «q

is a set of elements of the point group which take kt

into k1( k2, ..., kq respectively, i.e.,

ajk^k^ (5.12)

The ki correspond to different representat ions of %.

F o r what follows it is convenient to write the

m a t r i c e s of a r b i t r a r y e lements of a space group in

the form

/Dn (a | a) Dlt (а | a) . . . Dlq (a. | a)

Z>(a |a)=

D s l ( a | a ) Z) Q l (a |a) . . . £ > „ (α | a)

where Dy (a |a) (i, j = 1, 2, .... q) are d-dimensional

matrices. In the notation of (5.13) the matrices (5.11)

will be

Da (ε I Rn) = e x P ( ! 'aikiRn) £ A r (5.14)

Let us now proceed to study the matrices repre-

senting elements which differ from pure translations.

Firs t we consider any element { β \ b} of © having the

property

exp (rtqRJ = exp (ip^RJ ( 5 • 1 5)

for all Rn, in other words this means that the relation

x = kt + 2ith (5.16)

is valid. We note that the elements of the group ©

which have this property form a group (i.e., they

form a subgroup of the group; ©). We shall call this

group the group of kj and denote it by Й. In particu-
lar this group contains the whole group Ж.

According to (5.8) the element { β |b} must satisfy

the relation

Ζ» (ε | Rn) £» (β | b) = (5.17)

for all Rn. From this, using (5.13) and (5.14) and

comparing the elements in the first columns on right

and left, we find

exp (io^R.) D,x (P I b) = Dn (β | b) exp ( i k ^ R J

= Z)ft(P|b)exp(ik1Rn). (5.18)

Since the expression (5.18) can be represented as

Л>1 (Ρ I b) [exp K k l R j _ exp fk.R,,] = 0

and if, according to the definition, we replace j
by kj, it follows immediately that Dj t (jS | b) is equal

to zero if j ρί 1. From the unitarity of the transforma-

tions it is easy to show also that Dy (β\ b) = 0 for

j * 1. Thus for all {jS |b} belonging to the group ft

we have

(5.19)

*We omit the proof of this last assertion.

i.e., the matrices D u( |3 |b) form a representation of

the group Ш-

Now let us consider the matrix corresponding to
the element { aj | aj}, for which ajkj = kj. From the
relation

D (ε | RJ D (a, | a,·) = D (a, | a,) D (ε | aj1 Rn) (5.20)

it follows that
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охр ( i a ^ R J Dn (a, [ A,) = Da (a, \ &,) exp ( i a ^ R J (5.21)

for all Rn, i.e., we find that the only non-zero block in
the first column of D (CKJ | aj) is the j ' th . The
matrices representing D (aj j a.j) can be chosen in
such a form that Dj i (a; | aj) = exp (iajkjRn) E(j6j t .

Thus we have characterized the first row and first
column of the matrices representing elements of the
type {β |b}, and the first column of matrices repre-
senting {aj |aj}, where ajk t = kj. This proves to be
sufficient to characterize the form of the whole repre-
sentation Ό (a | a ) .

Firs t of all we note that by using the subgroup Ш
and the elements { aj |aj} we can make an expansion
of © into its residue classes, i.e.,

© = ίϊ + {α2 j а2} Ш + . . . + {aq | a,} Si. (5.22)

Let us consider the Z'th column of Ό (a | a ) . Accord-
ing to (5.22), for each a there is some a m of otv ot^,
..., aq, such that the equation

exp (fak,Rn) = exp ( iaJ^RJ. (5.23)

is valid. Multiplying (5.10) on the left by Ό (a | a ) and
comparing the Z'th columns of both sides for the jZ'th
block, we find

Dn (a | a) exp (iok.RJ = exp ( i ^ R J Dn (a | a). (5.24)

It thenfollows that Dj/(a | a ) = 0 for j * m. Conse-
quently, the only non-zero block in the Z'th column is
the m'th, where m is determined by (5.23).

Now we can find an explicit expression for
α l a } ) · O n t n e basis of (5.23) we can write

(5.25)

or, considering the matrices, we have:

D ({a | aj) = D ({am | a j ) D ({β | bj) D* ({α, | a,]).

From this we find for the mZ'th block

Dml ({a | a}) = 2 Dnl (<am | a j ) Dis ({β |,b}) Dfj ({α, | a,})

= l.EAiDu (ίβ Ι Μ) J

Thus we have finally:

= On ({β I»).

(5.26)

Summarizing, we have the following results: Every
irreducible representation D ( a | a ) of the space
group & can be brought to a form in which the in-
variant subgroup of translations % is represented by
diagonal matrices. If η is the dimension of the repre-
sentation, the elements of the diagonal matrices can
be arranged so that the first d elements of the matrix
D(e | R n ) have the form exp(ikR n ) for all Rn, while

the remaining elements split into Ι -τ— 1J groups in
\ /

each of which there are d elements of the form exp

(iajkRn) (j = 1» • ••>-^r=q)· Here aj is the element

of the point group which corresponds to { aj | aj} of
the space group. To this block arrangement of the
matrices for translations there corresponds a block
arrangement of the matrices D ( a | a ) in the i r re-
ducible representation of S, where the matrices
D ( a | a ) break up into q blocks of dimension d, which
are denoted by Dij ( a | a ) . The elements {β |b} which
have the property

(5.27)exp (i^kRn) = exp (ikRn),

form a group $, which contains the group %. The
matrices D t l (/3 |b) give an irreducible representation
of t .

The elements { a i | a i } and the subgroup й can be
used for the expansion of © in left residue classes.

For any element { α | a} of the group © and any щ
we can find an am such that

exp (iaa,kRn) = exp (iamkRJ. (5.28)

We then find that the only non-zero block in D ( α | a )
is the m'th block in the Z'th column and that the
matrix which stands at this place is DJJ (β | b ) . The
only non-zero block in the first column of blocks for
{ aj | aj} is the j 'th.

Finally, it can be shown that any representation of
& of the form considered above is an irreducible rep-
resentation of the group <S). In this proof one makes
use of the fact that a representation is irreducible if
the only matrix which commutes with it is a scalar
matrix.

6. REPRESENTATIONS OF SPACE GROUPS

(POSSIBLE SIMPLIFICATIONS)9

Representations are most simply constructed by
using basis functions. Suppose that the d orthogonal
functions u'j, . . ., ujj, which on translation through Rn

are multiplied by exp(ikRn), form an irreducible rep-
resentation Ш of the group of elements { β |b}, for
which exp (i/3kRn) = exp (ikR n) ior all R n . Then the
η = dq functions

= КI a J «ι.
(6.1)

form the basis of an irreducible representation of the
space group (S. Here {aj |a i} are elements of © for
which the expansion (5.22) holds. Using the results
stated above, we can understand the procedure for
finding all irreducible representations of the space
group. We first select a vector к within or on the
boundary of the Brillouin zone. The rotational part of
the operator { β | b} of the group @ must satisfy the
condition /Зк = к + 2πά. Using this relation we con-
struct all the irreducible representations of this group
of elements which have the property that the diagonal
elements of the matrices representing pure transla-
tions have the form exp (ikRn) · From the preceding
treatment it follows that this will lead to all irreducible
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representations of © which are associated with the
vector k. We then obtain all the irreducible represen-
tations of the group & since we assume that the vector
к runs through all values in the Brillouin zone.

In finding the corresponding irreducible represen-
tations of Й we can make some simplifications. Let
the rotational parts a of the space group whose ele-
ments are { a | a} form a point group © 0. This group
is one of the 32 admissible point groups, whose irre-
ducible representations are well known. It is obvious
that the rotational parts of the operators { β |b} in Ш
also must form a subgroup of the group @0. We shall
denote it ®0(k). First we consider points inside the
Brillouin zone. For any point inside the Brillouin zone
the rotational operators in й satisfy the condition
j3k = k. We denote one of the irreducible representa-
tions of the group G0(k) by Τ (β). We show that the
irreducible representation of $ is determined by the
expression

^п({Р|Ь})=ехр1кЬГ(Р), (6.2)

if {β |b} belongs to Й. The product of two operators
{/3|b} and {β'\ν} in Ш is equal to {ββ' \β\/ + b}.
Multiplying the matrices representing these operators,
we find

Dn {β | b} Z)u {β' | b'} = exp ikb exp гкЬТ (β) Γ (β')

= expik(b+b')IW). (6.3)

The matrix representing the product of these operators
is given by

Dn ({ββ' | β^ + Ь}) = exp £k (pb' + b) Γ (ββ')

= exp (ίβ-4Λ') exp (гкЬ) Γ (ββ') = exp гк (b + Ь') Г (ββ').
(6.4)

From these relations it follows that (6.2) forms a rep-
resentation of the group SS.and this representation is
irreducible as a consequence of the irreducibility of
the representation Γ(/3).

Thus, knowing all the representations of the 32 point
groups, we can find all the irreducible representations
of all the space groups which are associated with the
vector к in the interior of the Brillouin zone.

Now we consider a point on the surface of the
Brillouin zone. At these points the relation /?k = к
+ 2πα may hold. In this case the results just obtained
for finding irreducible representations of space groups
will in general not be true. However, they remain true
for the simple space groups in which ν (α) = 0. In
these groups a and b are admissible translations.
Again, we choose D t l({/?|b}) in the form ехр1кЬГ(/9),
where now { β | b} is an operator for which /3k = к
+ 27rh. We again obtain an irreducible representation
of Й. Equation (6.3) remains unchanged, but (6.4) is
proved differently.

In this case we have

#ii «ββ' Ι β·»' + b}) = exp ik фЪ' + b) Γ (ββ')
= exp ф"хкЬ' exp йкЬГ (ββ') = exp i (к + 2лЬ,) Ь' ехр £кЬГ (ββ'

lW). (6.5)

Here we have used the fact that b' is an admissible
translation, and that therefore exp (ib*27rhj) = 1. Con-
sequently we can find all the irreducible representa-
tions of ® for simple space groups at points on the
surface of the Brillouin zone. To do this we must
know the irreducible representations of the 32 point
groups.

For points in к space on the boundaries of the
Brillouin zone whose group Ш contains operators
having non-primitive translations, the situation is
more complicated. However, in this case one can find
the irreducible representations of the simplest space
groups of this type associated with points on the sur-
face of the Brillouin zone by using the special proper-
ties of each group.

7. BAND THEORY OF SOLIDS FROM THE POINT OF
VIEW OF GROUP THEORY

The theory of groups enables us to treat the band
theory of solids from a general point of view. Such a
treatment based on the consideration of all symmetry
properties of a crystal lattice leads to a clarification
of fine features in the energy spectrum of the electron
(for example, degeneracy), which is impossible when
one uses the simple band theory which considers only
the translational symmetry of the crystal.

We know that the wave functions and energy levels
corresponding to different quantum states of an elec-
tron in a crystal are determined from the solutions of
the Schrodinger equation, which in the one-electron
approximation, in the usual notation, has the form

[ — Д + У(г)]»ф (r)-=£ij)(r). (7-1)

The most characteristic feature of the potential energy
V(r) for an electron in a crystal is its symmetry: the
potential of the electron must have the same symmetry
as the crystal itself. In particular, the function V(r)
must be invariant under the action of any translation
which brings the crystal into coincidence with itself.
Consequently,

where

F(r+Rn)=F(r)

Rn = njt

(7.2)

(7.3)

and tt, t2 and t̂  are fundamental lattice vectors.
In order to avoid the complications which arise in

an attempt to impose real boundary conditions on the
solutions, one usually uses a so-called "cyclic crys-
tal." A cyclic crystal is nothing other than part of an
infinite crystal, contained within a parallelepiped with
edged Ntj, Nt2, N1̂ , whose center coincides with the
origin of coordinates. The number N is an arbitrarily
large integer. It is easy to show that a cyclic crystal
contains N3 unit cells each with volume tt[t2 xt3]. The
cyclic boundary conditions require that any two points
in space which differ by a vector Nt, be regarded as
physically equivalent, i.e.,
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(7.4)

Thus, the mathematical problem is formulated as
follows. We are required to find solutions of Eq. (7.1)
with the potential V ( r ) , having the complete spatial
symmetry of the lattice, and satisfying the boundary
conditions (7.4).

As was first shown by Bloch, every solution of the
problem thus formulated must have the form:

ψ (к, г) = exp (гкг) и (к, г), (7.5)

where u (к, г) is a periodic function with the period
of the lattice

в(к, г) = в(к, r + RJ (7.6)

and к is the wave vector or quasimomentum of the
electron in the crystal. Condition (7.4) can be satis-
fied only when

2itk = Ίν ( κ Α + Х2Ь2 + *3Ь3), (7.7)

where κν κ2, κ3 a r e integers and b t , b 2 , b 3 a r e the

fundamental vectors of the rec iprocal lattice, defined

by the equations

t;b;· = i i, / = 1, 2, 3.

It can be shown that two Bloch functions whose

wave vectors differ by 2π t imes a vector of the r e -

ciprocal lattice

h = h1bl + Л2Ь2 •+ Л3Ь3 — integers

are physically equivalent. In order not to treat physi-
cally equivalent solutions, we should limit the range of
variation of к in the reciprocal space. This is most
simply done by requiring that the vector к lie in the
central unit cell of the reciprocal lattice. For this it
is sufficient to set

(7.8)

Wave vectors whose values are in the central unit cell
of the reciprocal lattice are called reduced wave vec-
tors, and the central unit cell itself is called the r e -
duced Brillouin zone. Consequently, every Bloch
function can be characterized by a certain wave vector
k. It then follows immediately that the eigenvalues of
(7.1) will also be functions of the wave vector k.
Actually the wave equation (7.1) does not have just a
single eigenvalue and eigenfunction for each admissible
value к = k0. We shall number the various quantum
states corresponding to the same value of the reduced
wave vector by an index n, where this index η can be
assigned to the various quantum states in order of in-
creasing energy, i.e., the states will be numbered by
values of η so that the equation

2 (k0) < . . . < £ , (k0) < . . .

holds. Having done this for all values of k, we obtain

a system of energy functions

k ) < . . . (7.9)

As к varies within the reduced Brillouin zone, each of
the functions determines a certain hypersurface in
four-dimensional space. The projections of these sur-
faces onto the coordinate planes give the so-called
energy bands. Thus each state is completely defined
by the assignment of two quantities: the reduced wave
vector and the number of the band, i.e.,

ψ (г) = ψη (к, г) = exp (ikr) an (к, г), (7.10)

Я = £„(к). (7.11)

Now let us consider in a little more detail the
group-theoretical treatment of the problem. As we
have already said, the Schrodinger equation for the de-
termination of electron states in a crystal must be in-
variant with respect to transformations which bring
the crystal into coincidence with itself. In the case of
an infinite crystal, such transformations form an in-
finite group which is called the spatial symmetry
group. From this full space group we can always se-
lect the infinite abelian subgroup of translations. The
basis functions for irreducible representations of this
subgroup are the Bloch functions (7.10), and the action
of a translation operator reduces to multiplication by
exp (-ikt), i.e.,

{ε 11} ψ η (к, г) = exp ( - ikt) ψη (к, г). (7.12)

Using these functions we can construct irreducible
representations for the whole space group. In the fol-
lowing we shall temporarily disregard complicated
symmetry elements, i.e., we shall assume that every
operation of the group, { a \ t}, can be represented in
the form { e 11} { a | 0} where {e f t } and { a | 0} are
operations of the group. Consequently in studying
space groups of this type we need consider, in addition
to the translations, only the operations of the corre-
sponding point group. We know that the action of such
operators has the effect of taking a function with the
wave vector к into a wave function with the wave
vector W which is obtained from к by applying this
operator, i.e.,

{а|0}1|>л(к,г)=1Ц11(ак,г). (7-13)

In fact, let us choose a function 0n(k, r ) a n d aPPly
the element { a | 0} to it:

{a | 0}ψα (к, г) = exp (г'ког1!·) ип (ксГ1!·) = exp (гакг)ип (к, г).

On the other hand,

Ψη (ак> г) = exp (iakr) un (ak, r)

and consequently formula (7.13) is proven.
If the vector к lies in a general direction, it then

follows that in addition to each function ^n(k, r ) , the
function ^n(cuk, r ) belongs to the same energy value.
This on the one hand determines the symmetry of
E n ( k ) and on the other hand shows the degeneracy of
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the particular energy value, since

(7.14)

It should be mentioned that since we are considering
the problem of the spectrum of a multidimensional
system we always have infinite degeneracy, since the
equation

En (k) = const

is satisfied by an infinite number of states, in fact by
a whole surface in к space. However, even for a very
slight change in the potential V(r) we obtain in gen-
eral a different surface

E'n (k) = const,

for which, if the symmetry remains the same, the
equation

En (k) Ξ En (ak)

will still be satisfied. We must therefore distinguish
between degeneracy which is associated with the multi-
dimensionality of the problem, which we shall call non-
essential, and degeneracy which is caused by the sym-
metry of the system. Here it also necessary to state
that if the vector к lies in a general direction, the
states which are degenerate with one another have
different values of the reduced wave vector, and there-
fore the assignment of E n (k) and к completely deter-
mines the state of the system.*

If, however, the vector к does not lie in an arbi-
trary direction, but there are elements of symmetry
which leave к invariant, the picture becomes some-
what more complicated. The degeneracy associated
with the symmetry of the system is lifted partially in
this case, i.e., the functions $n(k> r) and фп(ак, r)
with

ak-k=2jth

may belong to different energy values. Nevertheless,
since the degeneracy is not lifted completely, it turns
out that functions degenerate with one another have the
same reduced wave vectors k. Therefore, for a com-
plete characterization of states of this type it is neces-
sary to assign, in addition to the values E n (k) and k,
the values of certain other quantum numbers. These
arguments can be carried through with a few changes
also in the case where the group contains complex ele-
ments.

8. GENERAL METHOD FOR INVESTIGATING THE
ENERGY SPECTRUM AND CLASSIFICATION OF
STATES (LINEAR CHAIN)10

When an electron is in the field of a crystal, the
Schrodinger equation for it is left invariant only by the
symmetry operations of this field. In other words, the

infinitesimal transformations will no longer be included
in the motions leaving the Schrbdinger equation in-
variant, and this in turn will lead to a breakdown of
the usual conservation laws. Now the conserved quan-
tities will be certain quasiquantities, associated with
the symmetry of the particular crystalline field. A
knowledge of the symmetry group of the lattice enables
us to determine these quasiquantities, to select from
them a set which are simultaneously measurable, in-
vestigate in detail the problem of degeneracy, state
selection rules, etc. The whole treatment can be car-
ried out in general form and results are obtained which
supplement and clarify the material of the preceding
paragraph, but we shall restrict ourselves to some
examples and present them in the greatest possible de-
tail in order best to make clear the method of investi-
gation.

The equation for the determination of electronic
states in a one-dimensional periodic field is written in
the form

ty"(x) + [E — V(x)]ty(x) = Q, (8.1)

where the potential V (χ) has the properties V (χ + a)
= V(x) and V( —x) = V(x). Consequently the sym-
metry group for this problem is the space group con-
sisting of translations along the x-axis: { e 11} (here t
= ap with ρ = 0, ±1, . . . . ) , the inversion { i | 0} in the
origin, and the products of these elements {i | 0} x
{ e 11}. We can select as the generators of this space
group the elements

{6]o} and {i|0j, (8.2)

whose eigenvalues are

exp(ika) and ± 1. (8.3)

The first operator in (8.2) is easily expressed in
Э

terms of the infinitesimal displacement -w— along

the χ axis. It has the form exp (a-^-) or, since -r—
οχ 9χ

exp (iap). (8.4)

Thus we can conclude that the operator (8.4) repre-
sents some physical quantity closely related to the
electron momentum. Since we may write

exp (iap) ψ == exp (iak) ψ, (8.5)

•This i s equivalent to specifying the following quantum num-
bers: the number η of energy band and the components of quasi-
momentum kx, ky< kz.

the vector к appearing in this equation is called the
quasimomentum of the electron in the crystal. We

note that replacing к by к + does not change the

eigenvalue of the operator (8.4), so that one can intro-
duce the reduced wave vector к which varies between

and + —. For the present, we shall not do this.
a a

The eigenvalues of the inversion operator characterize
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the parity of the states. It should be noted that the op-
erators (8.2) are not commutative in general, so that
the quasimomentum of the electron and the parity of
the state cannot be determined simultaneously.

Now we separate the elements of the group into
classes of conjugate elements. To do this we must
transform each element of the group by all others. It
is easy to see that one obtains the following types of
conjugate elements:

I {e|t}, {ε Jit},

[i\0] { e | i u - }, [г |0} { 8 | i u - u + it}.

From this we easily find the classes of conjugate ele-
ments: Kj ={ e | 0}, K2 consists of elements of the
form {i| 0}'{ e| 2qa}, Й3 of elements {i |0}x
{ € | (2q + 1) a}, and, in addition, there are also an in-
finite number of classes of the type Kp,= { e | ± pa}
with ρ = 1, 2, . . . .

We form the operators for the various classes:

K3 = {i\0} {β |α}Σ{β|2?α}/Σΐ,

£ P = 4 № I/*»} + {« I-/>«}]

and determine their eigenvalues:

К^(к, х) = $(к, χ),

K2y (к, χ) = {г | 0} 6 (к, ~Л ψ (к, χ) = κψ (к, х),

Ж3ф (к, х) = {г | 0} exp (ika) δ ( к, ^f\ ψ (к, х)

= κ exp (ika) ψ (к, х),

Ι£ρψ (к, χ) = cos pka ψ (к, х),

where к = 0 for k ^ and к = ± 1 for k = .
a a

Although we use the fact that the eigenfunctions
have the Bloch form when we calculate the eigenvalues
of the operators for the classes, this is not necessary,
since the eigenvalues are determined by the charac-
ters of the representations and consequently do not de-
pend on the form of the basis functions.

In accordance with the general rule, the energy will
depend on the eigenvalues of the operators for the
classes, i.e.,

Ε — Ε (κ, cos ka). (8.6)

Since the operators (8.2) do not commute with one
another, the energy terms will in general be degen-
erate. To enumerate the degenerate states we can use
either the eigenvalues of the operator { e | a}, or the
eigenvalues of the operator { i | θ}; in the first case we
will fix the vector k, and in the second the parity of
the state.

Analyzing the table of eigenvalues of the class oper-
ators we can draw the following conclusions:

1. When k * — the energy is a function of cos (ka)

and, of course, also depends on the specific form of the
potential:

Ε = Ε (cos ka). (8.7)

States with a given energy are doubly degenerate since
there correspond to each level two functions which, in
particular, can be chosen in the form:

, χ) = exp (ikx) и (к, х),

) = exp( — ikx)u( — k, x).

2. When k = — the energy jumps discontinuouslya

since at such points its dependence on the eigenvalues
κ makes itself felt. In other words, at these points we
can simultaneously determine the eigenvalues of both
of the operators, the quasimomentum k and the parity
of the state. This can be shown most simply in matrix
form. If we assume that the eigenfunctions are of the
Bloch type, the operator for translation through dis-
tance a along the χ axis is written in matrix repre-
sentation in the form

/ехр(гТса)

\ 0

О

exp (— ika)

and the inversion operator as

7ГПWhen k = — these operators commute and conse-
a

quently can be brought simultaneously to principal
axes.

Thus when k * — the energy is a continuous func-a
tion of k and jumps at k = , i.e., the energy spec-

a
trum has a band structure. Introducing the reduced
wave vector k, which varies between and н—,

a a
and the number of the energy band n, we arrive at the
usual scheme of the band theory, i.e.,
Ε = En (cos ka),
№(k, x) = exp(ikz)un(k, x),
1|42> (k, x) = exp (— ikx) un (— к, х).
As a supplement to the usual band theory, we obtain
the result that states corresponding to edges of bands
should be given a definite parity.

9. ELECTRONS IN A FIELD OF CUBIC SYMMETRY

The investigations of the energy spectrum of elec-
trons in a crystal, when we take account of the full
spatial symmetry of the lattice, can be carried out
exactly as for the two preceding cases. It is easy to
obtain the result that the conserved quantities for the
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electron will be the quasi-angular momentum, the
quasimomentum and the parity.

The energy spectrum will have a banded structure;
within a band the energy is a function of the quantities:

cos k^a + cos кга + cos k3a,
cos kxa cos k2a + cos k2a cos k^x + cos k3a cos kxa, (9.1)
cos kxa cos k2a cos k3a.

The states which are degenerate with one another can
be enumerated, for example, by the values of the wave
vector k.

It is of considerable interest to study the phenom-
enon of overlapping of energy bands which occurs in this
case. Before we proceed to the study of particular
problems let us make some general comments. We
already know that symmetry operations satisfying the
equation ak — к = 27ih form a group which we call the
group of the wave vector. A wave function ψη (k> г)
with wave vector к either remains invariant under the
action of the transformations of the group of k, or is
transformed into some other wave function with the
same wave vector. In the first case, there will be
only one wave function with wave vector k; in the sec-
ond there will be several wave functions which, under
the action of the transformations of the group of k,
transform according to some irreducible representa-
tion of that group. When the group of the wave vector
contains transformations other than the identity, the
operators corresponding to elements of the group will
commute, for functions with a given k, with the trans-
lation operators, and therefore their eigenvalues can
be determined simultaneously with k.

When several (for example, s) wave functions have
the same wave vector k, and if we choose the wave
vector κ so that к + κ is in a general direction, there
will appear s wave functions with energies close to
E n ( k ) . But, since for wave vectors which lie in gen-
eral directions it can not happen that two different
wave functions with the same wave vector belong to
the same energy, they all must belong to different
energy bands which for small values of κ are close to
one another and touch at the point k. In general, one
should also remember two further points. First κ
may be such that к + К still has the group of k. In
this case, the touching of the bands will occur as be-
fore . Secondly the group of к + /с may be a subgroup
of the group of k, but still contain transformations
other than the identity. Then, in the transition from
к to к + κ, the energy bands will be partially split.

This same argument can be carried out in a differ-
ent form. The Schrodinger equation for the electron
in a crystal (7.1) remains invariant under all the sym-
metry transformations of the crystal, translations,
rotations, reflections, etc. The eigenfunctions can
always be chosen in the Bloch form (7.5) and if we
substitute them in equation (7.1), we have for the pe-
riodic part U (к, г)

, г)=£(к)в(к, г). (9.2)

The operator

Я (к, r) = [-(V-ik) 2 +F(r)] (9.3)

is still invariant under translations, but the application
of the point symmetry operators changes H(k, r ) to
Η (ak, r ) . It is obvious that

Η (к, г) = Η (ак, г) (9.4)

only when { a I 0} belongs to the group of the particu-
lar wave vector k.

Suppose now that the group of the wave vector к is
the group © (k). Then the operator (9.3) is left in-
variant by the elements of @(k) so that the eigenfunc-
tions u(k, r) and eigenvalues E(k) can be classified
according to the irreducible representations of this
group. In particular, the dimensionality of the repre-
sentation is equal to the degree of degeneracy of the
particular energy value Ε (к).

The shift from the point к to the point к + κ cor-
responds to a shift from the group © (k) to the group
© (k + κ ), and if the shift occurs from a point with
higher symmetry to a point with lower symmetry, the
group © (k + κ) is a subgroup of ® (k). In this case,
the irreducible representations of © (к) will in gen-
eral be reducible for © (к + κ ) and can be expanded
into irreducible representations of @(k + κ), which
shows that there will be a splitting of the energy bands
touching at the point к when we shift to the point
(к + κ). Such a splitting can either be absent if the
symmetry is not reduced, or can be complete if the
symmetry is lowered substantially.

Let us now analyze this in more detail for the
example of a simple cubic lattice. In this case, the

Brillouin zone is a cube with edge — , and those wave
SL

vectors к which lie along symmetry elements or end
on the surface of the Brillouin zone will have sym-
metry groups different from the identity.

Obviously, the groups of the wave vectors must be
subgroups of the full cubic group Dn. It is therefore
sufficient to find all the subgroups of this group and to
see for which к the equation

ak - к = 2nh,

is valid as {a | 0} runs through all the elements of the
particular subgroup.

It is easy to see, for example, that the group of the
vector к = (000) coincides with Oh. Analyzing its
character table (Table I), we see that for a given к
we can have non-degenerate, doubly-generate and
triply-degenerate states. Let us see what happens to
these levels if we shift from the point к = (000) to
the point к = (00z). The group of this wave vector is
the group e 4 v with characters given in Table II. Re-
solving the irreducible representations of Dh into
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TABLE I

r\
r2Гз

г4г5г;
г2

г;
Г5

Ε

1
1
2
3
3
1
1
2
3
3

8Сз

1
1

- 1
0
0
1
1
j
0
0

ЗС 2

1
1
2

- 1
- 1

1
1
2

- 1
^

6С 2

1
1

0
- 1

1
1
^

0
1

— 1

6 С 4

1
- 1

0
- 1

1
1

- 1
0

- 1
1

1
1
2
3
3

- 1
- 1
- 2
- 3
- 3

8Сз/

1
1

- 1
0
0

- 1
- 1

1
0
0

ЗС2/

1
1
2

- 1
- 1
- 1
- 1
- 2

1
1

6С21

1
- 1

0
1

- 1
- 1

1
0

- 1
1

6C4i

1
- 1

0
- 1

1
|
1
0
1

- 1

TABLE II

Υι
γ 2

Уз
74
Ys

Ε

1
1
1
1
2

c2

1
1
1
1

- 2

2C4

1
1

- 1
- 1

0

2συ

1
—1

1
- 1

υ

2σ/

1
— 1

- 1
1
0

irreducible representations of ©4V we obtain the com-
patibility table (Table III) which shows how the split-
ting of the bands occurs when we shift from a center of
symmetry to an axis of fourfold mirror-rotation sym-
metry. A similar treatment can also be carried out
for any other point.

10. CHANGES Ш THE ENERGY SPECTRUM AND
STATES WHEN SPIN IS INCLUDED. DOUBLE
GROUPS.

The SchrSdinger equation for an electron in a crys-
tal, when we include the spin-orbit interaction, has
the form

-A+V(r) - ( r )x ψ (10.1)

where χ τ [VV(r) xVcr] is the energy of the

spin-orbit interaction and σ is the spin operator.
In this case the Hamiltonian

(Ю.2)

(and consequently also the wave functions) still has
the translational and point symmetry of the lattice.
We can therefore, as before, find the symmetry prop-
erties of the function ψ by considering the space group
of the crystal. The only difference is that now we must
deal with two-valued representations of the symmetry
group.

So far, we have used coordinate functions as the
basis of our representations. We must now generalize
somewhat when we consider the electron spin and con-
sequently have operators which act on spinors.

The transformation properties of spinors under the
action of rotations are given by the matrices of the un-
imodular group which can be expressed in the form
±U(Rs), where

.) = exp [ -

U12 (Я.) = U*n (R.) = exp [ i Ц*. ] sin I .

This representation of the rotation group is two-valued,
since matrices with the reversed sign for all elements
are also isomorphic to rotations. This is just the two-
valuedness which is needed for the description of the
spin. Thus, we are working with a group in which each
rotation corresponds to two elements which are repre-
sented by the two matrices given above.

If we have a spinor whose two components are
scalar functions of coordinates, the complete operator
corresponding to this coordinate transformation is

±U(RS)RS
(10.3)

Here Rs is an operator which acts on the two scalar
components of the spinor which are functions of the
coordinates.

If we are given a set of g spatial operators Rs
which form a group, then the 2g operators of the form
(10.3) corresponding to them form the double group.
The operators of the double group corresponding to the
inversion are

±U(Is)Ie, (10.4)

where U (Is) is the two-rowed unit matrix, and Is is
the operator for space inversion.

We shall denote the two operators of the double
group corresponding to the operator Rs, which acts on
scalar coordinate functions, by R and R. Both corre-
spond to an ordinary rotation in Cartesian space and
thus their action on a vector is the same as the action
of the corresponding spatial operator Rs. Consequent-
ly, the "doubled" point group will leave the lattice in-
variant if the simple point group corresponding to it
leaves the lattice invariant. Therefore the possible
double point groups are the double groups correspond-
ing to the 32 simple point groups.

A similar situation prevails for the double space
groups. The operators for the rotational part of the
space group are now the operators of the 32 double
point groups, R and R.

TABLE III

Oh

<£„

Γ,

Yi

r2

Ύ3

r3

Υ1+Ύ3

Γ4

Y4+Y5

r5

Y2+Y5

r i

Ya

Гг

Y4

r;

Y2+Y4

Π

Ys+Ys

Γι

Yi+Ys
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TABLE IV

о„

Γ β

г7

г;
г;
г;

Ε

2

2

4

2

2

4

—2

- 2

- 4
2

- 2

- 4

86'з

1
1

- 1

1
1

- 1

8С'з

_ !

- 1

1

- 1
- 1

1

V.

зс2

О
О
О
О

О

0

КС-

6С,

О
О
О

О
О

О

6С 4

/ 2 "

- V 2
О

/ 2

О

6С 4

-Г2
1/2

О
-V^2

/ 2
0

1

2
2
4

- 2
- 2

- 4

- 2
_ 2

- 4

2
2
4

асу

1

1
- 1

- 1

- 1
1

86У

- 1

- 1
1

1

1
- 1

зс2/
зс 2 /

О
О

О
О

О

О

6С2/

О

О
О

О
О

О

всу

/ 2

-V2
О

-V2
Ϋ2

0

6С4/

- / 2

V 2
ОΙοί

-V2
О

The two-valued representations of the space group
will obviously be single-valued representations of the
corresponding double space group, so that to find them
we can apply standard procedures. We must find irre-
ducible representations of the group of the wave vector
к assuming that the point group @0 (k), corresponding
to the group of the wave vector, is now a double point
group. From this consideration it follows that the
knowledge of the irreducible representations of the 32
double point groups enables us to find the irreducible
representations of all the double space groups for
points within the Brillouin zone.

For an arbitrary point in the Brillouin zone, the in-
clusion of spin-orbit interaction leads to a change in
the energy within the band, but this effect will be small
in general since the spin-orbit interaction energy is
small compared to the width of the band. At points of
high symmetry within the Brillouin zone the introduc-
tion of the spin may result in a certain splitting. In
order to clarify how this comes about, let us consider
a state whose eigenfunctions transform according to
the representation I\ (к) of the group of the wave
vector k.

When we include the spin, the wave function is the
product of a coordinate function with a spin function
which transforms according to the representation Dj η
of the rotation group. The total wave function will then
transform as the direct product Pi (к) х D ^ . This
direct product can then be expanded into irreducible
representations of the double group

I\ (k) χ Dlh = 2 анГ;- (к). (10.5)

(Only two-valued representations of the double group
appear in the sum on the right.) If in the expansion of
the direct product more than one representation of the
double group appears, this will indicate a splitting of
the band because of spin-orbit interaction.

As already mentioned, the group of the wave vector
к = (000) in a cubic lattice is the full cubic group Oh.
whose characters were given in Table I. The charac-
ters of the two-valued representations of the corre-
sponding double group are given in Table IV. It is
easy to see that, for example,

Г.хй/, = Г, + Г„ (10.6)

so that the three bands which touch when к = (000)
are separated as the result of the spin-orbit interaction

into two which touch and one which is non-degenerate.
One can also show how the splitting of the bands

occurs when we shift from one point in the Brillouin
zone to another, i.e., one can construct compatibility
tables.*

11. TIME REVERSAL1 1'7

In addition to the degeneracy caused by spatial sym-
metries, there may also occur a degeneracy caused by
the invariance of the Hamiltonian with respect to a
reversal of the sign of the time. We know that when
the Hamiltonian of a problem is real, as it is in the
simplest Schrodinger theory, the presence of the time
reversal operation has the effect that along with each func-
tion ψ for a given energy level we will also have the
function φ*. The operator for time reversal for parti-
cles without spin is the operator of complex conjuga-
tion, i.e.,

Щ = ψ*, (11.1)

whereas the corresponding operator for particles with
spin У2 is the product of the Pauli matrix ΐσν and the
operator which transforms the spinor to its complex
conjugate.

When we include spin-orbit interaction, the Hamil-
tonian will no longer be real, but it can be shown that

H* = a-y1Hoy. (11.2)

It then follows immediately that the effect of the time
reversal operation on the eigenfunction gives

щ = oy-$*. (11.3)

Now, with each function ψ there belongs to the same
eigenvalue of the Hamiltonian the function Oy$*.

Thus, the presence of the time reversal operation
in general leads to a doubling of the degeneracy.

In both cases these operators transform all the co-
ordinates into themselves, and all the momenta are
reversed in sign.

If we apply the time reversal operator to a system
of eigsnstates whose degeneracy is due to the spatial
symmetry of the Hamiltonian, we obtain a new system
of eigenstates which transform according to a repre-
sentation which is complex conjugate to the original

""Complete tables for the main symmetry groups can be found,
for example, in the paper of Elliott."
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one. Obviously two possibilities can occur: the new
system of states is a linear combination of the initial
ones, or they are linearly independent. In the first
case, there is no additional degeneracy, while it does
occur in the second case.

Let us consider the case of spinless particles. The
time reversal operator K, like any symmetry element,
commutes with the Hamiltonian. It also commutes with
all the spatial symmetry elements, so that the full
symmetry group regarded as an abstract group is the
direct product of the space symmetry group and the
time reversal operator. Let us investigate the case
when there is some spatial symmetry, and consider
eigenfunctions ψ1( φ 2 , ..., ψΐ which with respect to
this symmetry belong to an irreducible representation
D:

λ = 1
(11.4)

The wave functions φκ(κ = 1, ..., I) satisfy the Schro-
dinger equation for stationary states

Multiplying (11.5) on the left by K:

(11.5)

(11.6)

we see that фк and Кфк are in general degenerate
eigenfunctions. We note that, since the time reversal
operator is not linear, we cannot apply the theory of
representations in its usual form. We must therefore
state in detail the assumptions made and consider
three cases:

1. The representation D is real.
2. The representations D and D* are not equivalent.
3. The representations D and D* are equivalent,

but they are not equivalent to a real representation.
Let us show that in the first case the time reversal

operation leads to no additional degeneracy and only
has the effect that all eigenfunctions belonging to the
real form of the representation can be made real.
Multiplying (11.4) by K, we have

ι
(11.7)

From (11.4) and (11.7) it follows that φ κ and Κψκ

transform according to the same representation D.
In place of the functions φκ and Κψκ we can consider
their linear combinations

and VK = ΐ (ψκ — (κ = 1,2,

which also satisfy equation (11.7) and are real.
Both the functions uK and the functions vK t rans-

form into themselves under space transformations as
well as time reversal, i.e., they form two separate
sets of functions. This also means that the φ κ and
Κψκ form two separate sets.

According to (11.6), Κψκ and φ κ are degenerate
functions. However, since &ψΚ and ψκ transform

according to the same representation D, the degen-
eracy of Κφκ and ψκ is already included in the degen-
eracy caused by the spatial symmetry group. This is
possible only in case 1 since Κψκ is linearly de-
pendent on φ κ , i.e., these sets coincide to within an
equivalence transformation.

Let us proceed to consider case 2. If the eigen-
functions are all real, the corresponding representa-
tions are also real. This follows from (11.4):

г ' ' с
(Ψμ, Οϋψκ)= \ ψμ Σ Ό(/?) λ κ ψ λ Λ= 2 D{R)kx \

J λ = 1 λ = 1 J

because on the left both φ μ and O^ipK are real. If
the representations cannot be made real, the corre-
sponding functions also cannot be real.

Let us show that in this case the time reversal
operation gives rise to an additional degeneracy not
required by the spatial symmetry.

Even though the set of functions Κψ1; ..., Κφι be-
longs to the same eigenvalue as the set φρ ..., φι, the
functions of the set (Κψ) can no longer be expressed
linearly in terms of the functions φ ν ..., φρ as was
the case for case 1. In fact, from (11.4) considering
the non-linearity of the operator K, we obtain

2 (11.8)

On the basis of (11.4) and (11.8) we see that ψκ be-
longs to D, while Κψκ belongs to D*. At the same
time both sets (or both representations D and D*)
belong to the same eigenvalue of the energy. There-
fore the presence of the symmetry operation К
doubles the degeneracy.

Finally, in case 3, the new symmetry element —
time reversal — also gives rise to additional degen-
eracy.

In fact, on the basis of the argument given above,
since D and D* are equivalent but different, we can
conclude that there is a coincidence of two energy
eigenvalues with equivalent representations, i.e.,
there is an additional degeneracy not required by the
spatial symmetry. In this case, the representation D
is always double.

When we include the spin, the situation is different:
The roles of case 1 and case 3 are interchanged. De-
generacy occurs in case 1, the number of states is
doubled. The number of states is*a].so doubled in case
2, but not in case 3 as in the preceding treatment.

The fact that the situation is different for spinless
particles and particles with spin is not unexpected.
For the case of a spinless particle, the square of the
time reversal operator is the identity operator. We
can always choose the eigenfunctions so that they are
transformed into themselves under the action of the
time reversal operation, so that they can always be
chosen to be real. This cannot be done for particles
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with spin У2. The square of the time reversal operator
multiplies every spinor by — 1. We can therefore not
form eigenfunctions of the time reversal operator.
Consequently, the spinor and the time reversed spinor
are always linearly independent for particles with spin
У2. Consequently, if the Hamiltonian is invariant under
time reversal, the eigenfunctions of the problem are
always at least doubly degenerate.

There is a simple criterion which enables us to de-
termine to which of the three types a representation
belongs. For the cases 1, 2 or 3 we have respectively

2χ(ρ 2 ) = 0. (11.9)
Q -g

Here Q is the matrix of the corresponding element of
the group and g is the order of the group.

Thus for any group we can use the character table
to decide whether there is additional degeneracy caused
by invariance of the Hamiltonian with respect to time
reversal.

Herring7 studied in detail the application of this
criterion to the case of space groups. He showed that
relation (11.9) reduces to the following:

Hx(Ql) = 8· o.-g. (li.io)
Qo

where Qo is the element of the space group which
takes к into -k.

If the group of the wave vector does not contain
the inversion I, then Qo = I x Ш. If, however, I is con-
tained in ffi, then Qo consists simply of the elements
of the group Ш. The operation Qjj is contained in the
group й, so that the characters appearing above can
be taken for the irreducible representation of the
group of the wave vector к containing g elements.
At an arbitrary point of the Brillouin zone, the factor
group contains the group of translations and the iden-
tity, which now has corresponding to it two elements
e and €. The only elements Qo which transform к
into — к are the inversions { i | t } and { i | t } . There-
fore, if the space group contains the inversion,

= 2χ(ε) = 2. (H-ll)

This means that we have the first case and, at an
arbitrary point of the Brillouin zone, there is always
a twofold degeneracy because of time reversal. Thus,
if the crystal has a center of symmetry, there must be
twofold degeneracy at any point of the zone. Conse-
quently, any degenerate representations which are
found at points with higher symmetry must belong to
cases 1 and 2.

In conclusion, we mention that the problem of time
reversal has been treated most rigorously in the paper
of Johnston12 who investigated it on the basis of the
relativistic Dirac equation.

12. CONCLUSION

The general principles for the investigation of

quantum mechanical system by using group theory
which have been presented in this paper show that the
basic questions of the quantum physics of solids can
be treated most profoundly and completely only by
using the apparatus of the theory of space groups.

The symmetry properties of physical systems
should be used more widely in the solution of specific
problems and, especially, in the case of complex
quantum mechanical systems, where exact quantitative
computations cannot be done, so that it is important to
obtain the greatest possible number of results by both
methods. In addition, conclusions which are obtained
by using group theory are the most rigorous ones be-
cause of the phenomenological character of the theory
of symmetry.

The general statements presented in this survey
can be applied to any crystal lattice. These general
statements were made more detailed for the case of
the band theory of solids, as treated from the point of
view of group theory, and illustrated in particular by
an investigation of the energy spectrum and classifi-
cation of states for the linear chain and the properties
of an electron in a field of cubic symmetry. In prin-
ciple, they can be applied also to lattices with more
complicated symmetry.

The theory of space groups is beginning to occupy a
prominent place in investigations of magnetic sym-
metry. Here we should mention the extreme impor-
tance of investigation of the theory of magnetic space
groups and its application to ferro- and antiferromag-
netic materials.13 The source of this latest work
already appeared in the investigations by Landau and
Lifshitz.14
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