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1. INTRODUCTION

E of the most important characteristics of non-
conducting crystals is the dielectric constant e, de-
fined as

eE = D = l + 4 i i P . (1)

In varying fields e is a function of the frequency to,
and is usually expressed in the form

E-V "'
Zj cof^o2 '

i

or, when one includes absorption,

A problem for theory is the determination of the polar-
ization P of the crystal and the value of e as a func-
tion of the frequency of the variable field, and the es-
tablishment of the relation between the natural fre-
quencies wi and the coefficients aj and various char-
acteristics of the crystals.

In general, the field Б varies not only with time,
but also over space. For light waves or radio waves
a significant variation of E occurs over a wave length
к which is many times greater than the lattice constant
a of the crystal; we may therefore partially neglect
the inhomogeneity of the field and the polarization. But
if the field E is caused by some defects of the crystal
structure (lattice vacancies, foreign ions with a dif-
ferent valence, or a moving charge), the field (and
consequently also the polarization P) is already in-
homogeneous within a single elementary cell. This
greatly complicates the theoretical computation of P.
In any case, it is always of great practical convenience
to expand the electric field in Fourier series and to
find the polarization resulting from the individual com-
ponents Efc exp { - ioit + iK» r } . For not too strong
fields* the polarization is equal to the sum of the cor-
responding components Pfc exp { — iwt + iK • r } . In
fields which are almost homogeneous, the ratio of the
components Pjj and Ejj is conveniently written using
a dielectric constant which is a function of frequency
and wave length:

e(k, ш) = 1 + 4л-=^-. (2)

*In strong fields the additivity of the polarizations may no
longer hold. Then E, defined by formula (1), will depend still on
the magnitude of the field E.

The dependence of e (k, to) on k, which is called spa-
tial dispersion, leads to various delicate effects in the
optics of crystals in the neighborhood of the natural
frequencies w .̂ Thus already in 1878 Lorentz pre-
dicted theoretically the occurrence of double refrac-
tion of light in cubic crystals. For crystals without a
center of inversion, the dependence of e (K) in the
first approximation (linear in K) leads to a rotation
of the plane of polarization. A quantitative theory of
this phenomenon was developed by Born for ionic
crystals in the infrared region. Comparatively re-
cently Pekar1 considered the relation between P and
E for frequencies near the exciton absorption line,
and predicted the existence of several electromag-
netic waves with different indices of refraction and
a common frequency, the occurrence of longitudinal
waves, and other effects.

For waves which are long compared to a (aK « 1 ) ,
e (К, to) can be written as an expansion in powers of
the components k = aK. For example, for crystals of
any crystal system,

ixy(k, co) = eXJ,(O, co)+ 2 e*v. г^)К+т 2 «„,.55*2*5+ • • •'

~хГу (з)
where the symbol X/ means that the symbol z shall

z
run through all three values x, y, z. Using such an
expansion, Ginzburg2 treated theoretically the optical
anisotropy of crystals in the neighborhood of the dis-
persion frequencies, considered the optical activity of
crystals without a center of inversion, and the supple-
mentary light waves.

In a phenomenological theory the quantities
e x v (0, cu), €xy,z (u) are parameters which can be
determined from experiment.2

For fields which are essentially inhomogeneous,
when Ka ~ 1, the dependence of P^ on E^ can no
longer be found for the general case, and to find it is
a separate theoretical problem for each crystal.

Most of the work on the theory of polarization of
crystals has been devoted to finding the dependence
e (ш), since the purpose was to apply it to the case
of long electromagnetic waves. However, with the de-
velopment of the theory of dielectrics, one has to deal
more and more with the study of the behavior of vari-
ous lattice defects. The calculation of the energy of
formation of a defect (tearing out of an ion, etc.), the
energy of ionization of an impurity atom, the deter-
mination of the mobility of current carriers in dielec-
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tries (polarons) have inevitably included the compu-
tation of the polarization and the crystal polarization
energy associated with such defects. Here one has to
deal with the polarization in an essentially inhomoge-
neous field. However, the theory of this phenomenon
is for the most part lacking at present. Nevertheless
the treatment of polarization in inhomogeneous fields
exhibits a whole variety of very interesting features.
In the following we shall consider the theory of polar-
ization for the general case of inhomogeneous fields,
while we shall treat homogeneous fields by making the
limiting transition К — 0. In addition, we shall r e -
strict our treatment to the simplest ionic and atomic
crystals.

2. THE THEORY OF INERTIALESS POLARIZATION
ON THE BASIS OF A MODEL OF A LATTICE OF
POINT DIPOLES. THE DETERMINATION OF THE
INTERNAL FIELD

The theory of polarization takes an especially sim-
ple form in the frequency range where ш is small
compared to the frequencies of electronic dispersion
u>i (corresponding to the excitation of the valence
electrons of the atoms) and large compared with
the frequencies of oscillation of the nuclei. Then the
induced dipole moments of the atoms follow the change
of the field E without any lag, while the nuclei r e -
main fixed.

In ionic and molecular crystals, the constituent
parts of which have saturated valence bonds and
closed electron shells, we can introduce approxi-
mately the concept of the dipole moment of the elec-
tron shell of each lattice site: ^ s (the index I enu-
merates the lattice cell, while s denotes the various
atoms within a single cell). Assuming that the elec-
tr ic field F within each atom is approximately equal
to its value at the nucleus q r | , we may write

^ = asF(ry. (4)

The quantity as is called the polarizability coeffi-
cient of the s-th atom. It can be calculated from the
well-known formula if we know the ground state and
some of the lowest-lying excited states of the atom.
For an ionic crystal, as is practically the same as
for the isolated ions or for ions in solution.3 The field
F at the lattice site r | is equal to the sum of the ex-
ternal field E 0 ( r | ) and the field E t produced by all
the neighboring dipoles ^',:

(5)

The computation of the internal field E t in this approx-
imation is a purely mathematical problem which for an
ideal lattice of point ions is solved exactly in principle.
The expression Et = E + (4ir/3) P is well known for
cubic crystals and uniform polarization P (Lorentz
field). For inhomogeneous fields one knows the method

of Mott and Littleton4 which reduces to a numerical
summation of the fields (5) of the neighboring dipoles,
for which one writes and solves exactly Eq. (4), while
the field of more remote dipoles is expressed in terms
of E by the formulas of macroscopic electrostatics.
A difficulty which appears here is the need to cross
the boundary between macroscopic and microscopic
treatments of polarization: as one includes more and
more configuration spheres in the micro-calculation
of the field and the polarization according to (4) and
(5), the quantity of interest to us (for example, the po-
larization energy of the crystal) oscillates between
rather wide limits. This results from the irregular
oscillations of the numbers of atoms between succes-
sive configuration spheres. Rittner. Hunter, and
duPre, 5 in calculating the polarization of a crystal by
the field of a point charge, have used high-speed com-
puters and gone out to the tenth configuration sphere.
However, even then the fluctuations of the calculated
quantities remain considerable.

We should remind the reader of the possibility of
replacing the summation in (5) by an integration be-
ginning from some radius R. Born proposed to elim-
inate the indeterminacy by choosing R so that the
number of sites N inside the sphere of radius R was
equal to (4ir/3)(R^/v0), where v0 is the average
volume per atom.

Formula (5) should be applied with some care to
the case of a homogeneous external field, since for
S5!', independent of index V, the summation over V
diverges. The reason for this is easy to understand
if we consider a crystal of finite dimensions whose
polarization is described by a plane wave with small
k: Pjjeikr. For a longitudinal wave P ^ II k, at the
boundaries of the crystal perpendicular to P^ there
appear surface charges which are the same over the
whole surface. They produce a field which is equal
to -4тгР|5 in the limit К — 0. If, however, К 1 P^,
then these surface charges will oscillate with a wave
length 2тг/К, and their fields will on the average can-
cel one another in the crystal. Therefore if we set
К = 0 to start with, the field is not unique. Consider-
ing the idealized case of an infinite crystal, we should
set К different from zero, and in going to the limit
К —• 0 we should assume that the direction of К is
fixed. The difference between the internal fields for
longitudinal and transverse polarizations is the rea-
son for the difference in the limiting frequencies of
the longitudinal and transverse vibrations of the crys-
tal lattice, if the computation of the frequency is done
without taking retardation into account.

The difficulty we have pointed out disappears if we
go over from a static field to a field E (r, t ) which
varies in time. In this case, applying the Fourier ex-
pansion, we should assume that all of the dipoles «Pg
are described by a sum of dipole waves

i (6)
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Then in computing the internal field, we should take
into account that the field of each dipole # g ' w ^ arrive
at the point rf. at a different time ( l / c ) | r | ^ , |. The
effect of retardation is unimportant so long as this
time is much less than the period of oscillation of the
field 2ir/w, but for w * 0 the field from sufficiently
remote dipoles (and this is the field which, as we have
just seen, gives the finite contribution -4тгР) will nec-
essarily arrive with a large retardation. Therefore
formula (5) cannot be used.

To compute the varying internal fields, the most
practical method is that of Ewald,7 proposed about
thirty years ago. It consists in transforming the
Hertz vector of the system of dipoles

(7)

to two rapidly converging series: one series over the
crystal and another over the reciprocal lattice of a
crystal. Usually we are interested in the value of I l |
at the point r s , produced by all the dipoles except for
the I, s-th (the exciting field). To find I l | from (7)
we should subtract the field of the dipole S"| itself.
For the dipole wave (6),

t) = е~ш+'Кг* 2 * S (r - г..) + #iS (r - r s)) r = r ' . (8)

Then

S (r) = ^ e - i K <'-' dx

0 )

sin -— 1 г — г' |

i — I r - r ' Г
c \ e - l r -

J

в " I Г-Г x 1 I ( 1 0 )

where Д is the volume of the unit cell, q m arejthe
vectors of the reciprocal lattice. The quantity S is
f i n i t e f o r r r

T h e s u m o v e r t h e l a t t i c e v e c t o r s r ^ ' c o n v e r g e s

r a p i d l y f o r l a r g e € , w h i l e t h e s u m o v e r t h e r e c i p r o c a l

l a t t i c e v e c t o r s c o n v e r g e s f o r s m a l l e . F o r e

~ ( I / a ) V T T / 2 b o t h s e r i e s c o n v e r g e q u i t e r a p i d l y .

F o r a p p r o x i m a t e c a l c u l a t i o n s i t i s s u f f i c i e n t t o k e e p

q mt w o c o n f i g u r a t i o n s p h e r e s i n t h e s p a c e o f r * ' a n d q

I f o n e i n c l u d e s f i v e s p h e r e s , t h e n , a s o u r c a l c u l a t i o n s

for lattices of the NaCl type have shown, one obtains
an accuracy to five places of decimals.8

Knowing the Hertz vector (8), one can easily calcu-
late the electric field at any point of the lattice

Ех (rj) = (grad div П̂  (r, t) - I tij (r, t)) ^ (11)

Performing the differentiation and making the lim-

2 — Ш+iKrl

i t i n g t r a n s i t i o n r -— r | , w e o b t a i n

2 К
<fss' ( 1 2 )

s'y

w h e r e t h e c o e f f i c i e n t s « p f p s ' x y f o r m a t e n s o r o f s e c -

o n d r a n k w h i c h d e p e n d s o n l y o n t h e g e o m e t r y o f t h e

l a t t i c e a n d o n t h e w a v e v e c t o r K . I n o u r p a p e r 8 i t w a s

c o m p u t e d f o r a l a t t i c e o f t h e N a C l t y p e t h r o u g h V 8 o f

t h e l e n g t h o f t h e c e l l o f t h e r e c i p r o c a l l a t t i c e , n e g l e c t -

i n g r e t a r d a t i o n . A n e x a m i n a t i o n o f f o r m u l a s ( 9 ) a n d

( 1 1 ) s h o w s t h a t t h e q u a n t i t y o ) 2 / c 2 i s i m p o r t a n t o n l y

i n t h e z e r o t h t e r m s o f t h e s u m o v e r q m :

4л
Д

I n f o r m u l a ( 1 2 ) i t g i v e s a c o n t r i b u t i o n t o t h e i n t e r n a l

f i e l d o f

E 1 > 0 = _ ± L
К* —а*/с*

(14)

i s ^ e tota l amplitude of the dipolew h e r e ^ = X/
s

m o m e n t of t h e c e l l . W h e n w e n e g l e c t r e t a r d a t i o n ,

r e d u c e s t o
4л

— д

j 0

(15)

and is undetermined at К = 0 within the limits ±4тг#/Д.
Thus the correction due to retardation results in the

replacement of (15) by the exact expression (14). We
see immediately that

lim E i > 0 = — ^-8* (16)

independent of the directions of & and K. In the fol-
lowing we shall consider the effect of this point in the
theory of lattice vibrations. But here we shall show
that, by using (12), one can easily find the polarization
of the crystal in any inhomogeneous field. For each
Fourier component of field and polarization, formulas
(4) and (12) give a system of simultaneous equations

к / ' к 2 vi к

(17)

which can be wr i t ten m o r e briefly as follows:

/I ^-'ss'xy2' s'y — 2 sx "
s'y

F i n d i n g t h e m a t r i x C " 1 , w h i c h i s r e c i p r o c a l t o C, w e

g e t
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sx — о Z\ ^ss'xy-C's'y • (18)
S'y

The polarization of each site I, s is obtained by sum-
ming the Fourier expansion

«4» = 2 ^ i K r'- i f f l*' = X 2 2 Ci^/^"*"*1. (19)

Usually it is not necessary to know all the quantities ^g,
but only certain macroscopic quantities, for example,
the polarization energy of the crystal. The energy of
all the dipoles in the external field E is obviously
equal [using (12)] to

*U,tf)= - ^ - 2 с ('I)
ss'xy/

(20)

ss'xyK

where N is the number of cells in the crystal.
The internal energy of the crystal U<0) is equal to

half of this quantity with the opposite sign.
As an example, we give the values of the total en-

ergy U ( e ) + U(0) for a crystal of the NaCl type which
is polarized without inertia by the field of a point
charge e located at one of the sites. For this case,
we calculated the values of the components E^. The
value of the energy is given in Table I (in ev) for NaCl,
KC1, and KBr. The index s t = 1 means that the charge
is located on the cation, while s = 2 means that it is
located on the anion. For comparison we give the val-
ues of Mott and Littleton and Ritter et al. These re-
sults differ only slightly from one another. The ad-
vantage of our method is that, after the complicated
computation of C"1 and E|\ one can easily solve mis-
cellaneous problems.

As a second example, we consider the energy of in-
teraction of two charges located at lattice sites. Here
we must compute from formula (20) the energy of the
crystal in the field of the two charges e t and e2. This
energy splits into terms proportional to e2, e2, and
e te2. The first two terms give the energy of the crys-
tal in the field of the point charges e t and e2, while
the last term gives the correction via polarization to
the energy of interaction of the charges. Adding the
term e1e2/r, we obtain the total energy of interaction.

The first computations according to this method
were done by Kucher18 for KC1. The defect of his
computation was the not entirely correct summation
in the neighborhood of К = 0.

In Table II we give both the results of Kucher and
the more accurate ones obtained by V. N. Fedorchenko.
For comparison we give the value of e2/r (i.e., the
energy in vacuum) and e2/n2r (i.e., the energy com-
puted using macroscopic electrostatics). In the last
column we give the ratio (in %) of the microscopic
and macroscopic computations. We see that, with in-
creasing r from a to a.V?i , this difference de-
creases, but in all cases the microcalculation gives
the larger value. This is related to the fact that the
space between charges which are placed close to one
another is not filled entirely with dielectric. It is in-
teresting that the energy of interaction and the polari-
zation energy of a crystal in the field of a charge de-
pend on where the charges ei and e2 are placed. This
is related to the different polarizabilities of the imme-
diate surroundings. The differences of the energies
from the macroscopic expressions are significant for
r = a and aV2~, and must be taken into account in
developing a theory of impurity centers.

3. THE THEORY OF INERTIAL POLARIZATION OF
A CRYSTAL Ш THE MODEL OF POINT IONS AND
DIPOLES AND ITS DEFICIENCIES

In an electric field, static or variable, but with fre-
quency small compared with the natural frequencies of
the atoms, the polarization of a crystal has a compo-
nent which is associated with the displacement of the
nuclei. One can formally introduce a polarizability of
the displacement of each ion /3S and by analogy with
(4) write

Pj = P.F('i)- (21)

Strictly speaking, however, the quantities /3S have no
physical meaning, since the quasi-elastic force which
brings the ion back to its equilibrium position depends
not only on its displacement, but also on the displace-
ments of all the surrounding ions. Therefore, to find
the displacements of the nuclei u s and the correspond-
ing dipole moments p s = e s u s is a complicated static

Table I. Total energy of a crystal polarized by the field of a
point charge located at one of the lattice sites

Location
of charge

s=\

1=2

Crystal

NaCl
KCI
KBr

NaCl
KCI
KBr

Macro-
scopic

— 1.87

Author

Mott and
Littleton

—2.02

—1,44

and method of computation

Rittner et al

I
appro x.

—2.04

— 1.45

П
appro x.

—2.02

Ш
appro x.

—2.00

Our
method

—2,444
—1.954
—2.018

—1.487
—1.385
—1.432
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Table П. Energy of interaction of two charges located at differ-
ent sites of a crystal sj|i and ŝ 2, compared with the

energy in vacuum and the energy calculated
from Coulomb's law

Crystal

NaCl
KCl
KBr
NaCl
KCl
KBr
NaCl
KCl
KBr
NaCl
KCl
KBr

Distance

a

al/*2~

.Y2

Location
of charge

• ' 1 = 1

s 2 = 2

S l = l

« i = 2

s 2 = 2

S l = i

U a c c o r d -

i n g t o

K u c h e r

2 . 5 5 3

1 . 6 6 5

1 . 7 5 6

e ' / r

5 . 1 0 8

4 . 5 8 1

4 . 3 7 0

3 , 6 1 2

3 , 2 3 9

3 . 0 9 0

3 . 6 1 2

3 . 2 3 9

3 . 0 9 0

2 . 9 4 9

2 . 6 4 5

2 . 5 2 3

пгг

2 . 1 9 2
2 . 1 0 3
1,850

1.550
1,489
1.308

1,550
1.869
1,308

1.266
1.216
1.068

и

2.724
2.472
2.193
1.671
1.612
1.436
1.815
1,699
1.532
1.312
1.244
1.108

in %

124.2
117.4
118.5
107,8
108.2
109.7
117.1
117.1
117.1
103.7
102.4
103.7

(or dynamic in the case of variable fields) problem,
which leads to a system of equations for all the dis-
placements.

If we introduce a potential energy of the ions U°
as an expansion in powers of the displacements u s

up to terms of second order inclusive, we obtain a
system of linear equations for determining the dis-
placements u | :

••I
m s u s x

dU" ( 2 2 )

ш order to avoid confusion, in both this and the p r e -
ceding section, we have explicitly separated the follow-
ing quantities: the external field Eo, the effective field
Ej, and the macroscopic field intensity E m a c . For
convenience in working with variable fields, it is use-
ful to understand by U° the potential energy of the ions
excluding the Coulomb forces. Then by F in (22) we
mean the total field intensity produced at the site r s

by both the external sources as well as the surround-
ing ions and dipoles. Denoting the field of all the ions
and dipoles by Eit we have

F = E 0 ( r | )

I t i s c o n v e n i e n t t o e x p r e s s t h e i n t e r n a l f i e l d

t e r m s o f t h e H e r t z v e c t o r

where

( 2 3 )

i n

(24)

(25)

If we make a Fourier transformation of all the quanti-
ties p s , c^s, and Eo and use Ewald's method, then the
internal field will have, as before, a term dependent
on the retardation of the interaction:

a*
c2

It i s e a s y t o s h o w t h a t i n d i e l e c t r i c s , i n w h i c h t h e r e

a r e n o t r u e c h a r g e s , t h e q u a n t i t y E i > 0 i s t h e m a c r o -

s c o p i c f i e l d i n t e n s i t y E m a c . In f a c t , c o m b i n i n g M a x -

w e l l ' s e q u a t i o n s i n t h e a b s e n c e o f c o n d u c t i o n c u r r e n t s ,

^ ^ ^ j ( 2 7 )

w h e r e P i s t h e d i p o l e m o m e n t p e r u n i t v o l u m e . F o r

p = 0 , r e p r e s e n t i n g E m a c a n d P a s p l a n e w a v e s , w e

a g a i n o b t a i n p r e c i s e l y f o r m u l a ( 2 6 ) . If w e o m i t t h e

c a s e o f e x t e r n a l e l e c t r o m a g n e t i c f i e l d s , t h e n f o r p * 0

t h e d i s t r i b u t i o n o f c h a r g e s d e t e r m i n e s t h e s o - c a l l e d

" e x t e r n a l f i e l d " a n d , i f E ^ i s i t s F o u r i e r c o m p o n e n t ,

t h e n f r o m ( 2 7 )

( P K ) K - - ^
4 ( 2 8 )

•. w h e r e 3* = (P.* + * ) • ( 2 6 )

T h e l a s t t e r m i s e q u a l s i m p l y t o E ^ , s i n c e t h e f i e l d

p r o d u c e d b y t h e c h a r g e p i s n e c e s s a r i l y l o n g i t u d i n a l .

T h u s , t h e m a c r o s c o p i c f i e l d E m a c i s e q u a l t o t h e

s u m o f t h e e x t e r n a l f i e l d a n d E j 0 , w h i l e t h e i n t e r n a l

field E t is the sum of E t 0 and a part which is regu-
lar in K. For cubic crystals for small К this part is
equal to (47г/3)Р.

If the external field is an electromagnetic wave im-
pinging on the crystal, then it appears at first glance
that it is in general not possible to separate it, since
the field comes from the vacuum with velocity c, while
in the crystal there are only waves propagating with
the velocity c/VF. There is a tendency among some
authors to identify the external field with E m a c , which,
as we have already seen, is completely unjustified.
This problem was solved by Ewald on the basis of a
treatment of a crystal of finite size. Ewald proved
an extinction theorem according to which the field of
a system of dipoles in a semi-infinite crystal is equal
to the field of the system of dipoles in an infinite crys-
tal E t plus a field which is equal and opposite in sign
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to the field of the incident wave. Thus, in a semi-
infinite crystal, the incident waves are extinguished,
while the sum of the external and internal fields is
equal to the internal field for an infinite crystal and
is given by formula (24). This theory thus enables us
to treat the process of arrival of electromagnetic
waves in a crystal as a problem of free oscillation
of all the dipoles. The problem thus reduces to the
system of equations

mu.x= — -
av (29)

to which we must still add Eqs. (24) and (25), which
express the internal field E t in terms of the dipole
moments due to displacements p s and electronic
shells ^ s .

Thus the problem of determining the dielectric con-
stant € as a function of u> and К reduces to equations
for the propagation of electromagnetic waves together
with equations for oscillation of the nuclei. To solve
them we must know the potential energy of the non-
electrostatic forces U°. Thus the polarization proper-
ties of the crystal are closely related to the properties
of the lattice and consequently to the whole variety of
physical properties of the crystal. The non-electro-
static forces U° can be subdivided into: 1) corrections
to the law of interaction of point charges, because the
ions have finite dimensions, 2) exchange forces of r e -
pulsion (these are also short range), and 3) Van der
Waals forces having the dependence ~ 1/R6. In prac-
tice all of these forces are different from zero only
for nearest and next nearest neighbors. In the expan-
sion of the potential energy in the displacements, for
each pair of ions we obtain a function with three (and
under the assumption of central forces —only two)
parameters. Thus in the simplest case of binary
cubic crystals, in the central force approximation
when one takes into account the interaction of nearest
neighbors, to know U° we must assign two parameters,
one of which can be eliminated by using the condition
of equilibrium of the lattice in the absence of displace-
ments. At the same time the number of experimental
data is much greater: the elastic constants Ofa, the
dispersion frequency a>g, and the static dielectric
constant e0.

In 19493 we proposed a method for treating the
physical properties of crystals by using the study of
their long-wave acoustical and optical vibrations. At
the Ail-Union Conference on the Physics of Dielectrics
in Moscow (1958), we presented the results of a com-
parison of the theory with experiment for 25 ionic crys-
tals. It appeared that the theory of a lattice of point
ions does not enable one correctly to relate all the
available experimental data. The situation is not es-
sentially improved by introducing an effective frac-
tional charge e* * e. There is nothing surprising in
this, since in actuality the electronic shells of the ions

overlap, and this overlapping is changed during the
displacement and polarization of the ions. In the fol-
lowing section we shall treat various improvements
of the theory which take these effects into account.

4. METHODS FOR IMPROVING THE THEORY OF
LATTICES, TAKING INTO ACCOUNT THE FINITE
DIMENSIONS OF THE IONS

The majority of attempts to go beyond the limits of
the theory of a point lattice are directed toward im-
proving the formulas for the effective field. Heck-
mann9 proposed to introduce a correction coefficient
/3 into the Lorentz formula (4тг/3) P. Thus in our no-
tation for long waves

F — F - ^ PP. (30)

A similar improvement was introduced by H^jendahl.10

The parameter /3 was determined from a comparison
with experiment, and turned out to be very small. Mott
and Gurney proposed to split the polarization P into
two parts : Pj due to the displacements, and P 2 due to
the deformation of the electron shells. Moreover, in
calculating the effective field F, acting on the ion co-
ordinate, they set

Р1 = Е ш а с + - ^ ( Р 1 + ТР2). (3D

and in calculating the field producing the polar izat ion
of the ion —

(32)

F r o m a compar i son with exper iment it t u r n s out
that it is best to set у = 0.

to the author's opinion, all of these operations are
entirely too arbitrary. Moreover, the internal field
4irP/3 is essentially due to the action of distant ions.
(to the usual derivation of this formula, the atom is
surrounded by a sphere, and one shows that the fields
of all the dipoles inside this sphere cancel, while the
field 47гР/3 is caused by the surface charge on the
sphere.) Therefore, the inclusion of the finite dimen-
sions of the dipoles cannot change its value.

Szigeti,1 2 '1 3 on the other hand, proposed completely
logically that the short-range forces can, just as well
as the long-range forces, have a polarizaing influence
on the ions. For binary cubic crystals, he sets the di-
pole moment of a pair of ions resulting from the short-
range forces proportional to their relative displace-
ment, to our notation this part of the polarization S^
+ &2

 i s equal to:

where z is the valence of the ion, and s is a param-
eter of the theory. From a comparison with experi-
ment it turns out that s < 1, and thus, as the nuclei
approach one another, their electron shells tend to
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shift to opposite sides. Szigeti's theory gives better
agreement with the observed values of the static (e 0 )
and the high frequency (n 2) dielectric constants, the
dispersion frequency a>g, and the compressibility-of
crystals; s is determined from the relation

-^4-mu>l = J^N\zse\\ (34)

The results of Szigeti's theory are sometimes in-
terpreted in terms of an effective charge e*. Thus,
if we add the dipole moment resulting from the dis-
placement to the quantity (33), we find

= sze (uj — u2) = ze* (ux — u2), (35)

where e* = se plays the role of the charge of an ion in
the theory of a point lattice. The value of s varies
from 0.48 for ZnS to 1.10 for TIBr and for most al-
kali halide crystals lies in the range 0.7 — 0.8.

In our opinion, however, it is inconsistent to include
the effect of displacements on polarization and not to
include the reciprocal action of the polarization on the
displacements. It is clear that by applying an electric
field and causing the ions to polarize we, in agreement
with (33), should obtain some force acting on the nu-
cleus. However, Szigeti did not consider this effect.

The tendency to confuse two different concepts —
the magnitude of the dipole moment divided by the
relative displacement of the pair of ions ^/(u j — u 2)
and the average charge of an ion — already appeared
in the work of Eucken and Biichner14 (1934) and Lund-
qvist.15. Lundqvist using the Heitler-London method
and the theory of rigid ions, treated the effect of over-
lapping of electron shells and came to the conclusion
that it was necessary to assign fractional average
charges to the ions. Phenomenologically, there is
nothing to prevent one from introducing the concept
of e* according to formula (35). However, this quan-
tity will have nothing in common with the true average
charge of each ion. In addition, one cannot treat the
dipole moments of the electron shells e ĵ and &\ as
unique functions of the displacements of just these
two ions. They may be changed, for example, by the
external field which exists for undisplaced nuclei p r
as the result of the displacement of the surrounding
nuclei. As we saw in Sec. 2, each ê g is determined
by the field produced by all the surrounding ions. This
circumstance is masked to a certain extent in the case
of homogeneous fields when all the displacements and
dipole moments of the ions of the same type are iden-
tical, which permits us to apply formula (35), but
shows itself completely in inhomogeneous fields.
Therefore, to avoid misunderstandings one should
strictly distinguish dipole moments produced by dis-
placements of nuclei and those produced by polariza-
tion of the electron shells.

The relative independence of the quantities =^s and
u g is shown very well from a consideration of the nor-
mal amplitudes of oscillation of the lattice. For dif-

ferent branches and different values of the wave vector
K, one obtains a whole variety of relations between the
amplitudes S*b 3*г and u t, u2. For the longitudinal op-
tical branch &i is of the order of p 2 = — eu2 and oppo-
site in direction. For the transverse optical branches
iP^, 8*2 have the same direction as Pj and p 2 , while
their values are smaller. For the acoustical branches,
<L/J

1/P1 and ^ 2 / p 2 are much smaller than for the optical
branches. It is clear that all this variety of relations
cannot be described by means of a single parameter
s — 1 : one should assume an "effective charge" for
each ion which is different for the different branches
and the various values of the wave vector K. A phe-
nomenological description of the polarization of the
unit cell by means of (35) is possible only in the limit
of long waves.

We should also mention the work of Tenerz 1 6 who
considered the eigenfrequencies of oscillation of the
KC1 lattice and introduced the parameter e* into the
theory of a point lattice. This paper must be cri t i-
cized for inconsistency for the same reasons.

5. THE QUANTUM-MECHANICAL BASIS OF THE
DYNAMICS OF CRYSTAL LATTICES AND THE
ADIABATIC APPROXIMATION

As we have seen in the preceding sections, the
theory of the polarization of a crystal in an electric
field through displacement of the nuclei is closely r e -
lated to the dynamical properties of the crystal lattice,
since for the determination of the displacements of the
nuclei one must know the potential energy of the non-
electrostatic forces U°, and the assignment of U° in
a model with point ions turns out to be unsatisfactory.

Born and Huang6 give a completely rigorous ap-
proach to the dynamics of crystal lattices based on
quantum mechanics and the adiabatic approximation.
It is assumed that it is possible to find the Ф function
and the energy U of a system of electrons in a crystal
for arbitrary small deviations of the nuclei from their
equilibrium positions. Because of the enormous dif-
ference in masses, when the nuclei move, the light
electrons "adjust themselves" to each new position
of the nuclei, and Ф and U change adiabatically and
without inertia as a result of the displacements of the
nuclei. Obviously then the eigenvalue of the energy of
the electrons U is a function of the displacements of
the nuclei and will play the role of a potential energy
when we treat their motion.

To realize this program in practice with complete
precision is as yet impossible. Therefore at the pres-
ent time the theory of Born and Huang unavoidably con-
tains a very large number of unknown functions and
parameters and requires simplification and specifica-
tion for practical application.

Independently of these authors, in Kiev beginning in
1949 we developed the dynamics of a crystal lattice of
special type by essentially equivalent methods.3»1 7"2 0
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The wave function of the electrons in the crystal Ф
was constructed as an anti-symmetrized product of
the Ф functions of the individual ions, which differ
slightly from the functions for isolated ions and can
be subjected to small changes under the action of the
external fields and the displacements of the nuclei. In
this way one achieves an adiabatic approximation and
takes account of the change in the Ф function and the
energy of the electrons as a result of nuclear displace-
ments. The system of equations for the dynamics of a
crystal has the form (29), (24), and (25). Here the non-
electrostatic part of the potential energy U contains,
in addition to the terms used earlier containing both
#*"! and u s , additional terms which were called ex-
change-dipole terms and represented the change in
the exchange energy when the ions are polarized. The
appearance of these terms led to a relation of the type
of (33) in the limit of long waves. However, these
terms could be used for any oscillations and took into
account the reaction of the dipole moments on the dis-
placements, which was omitted in the work of Szigeti.
The results of a comparison of this theory with ex-
periment for 25 crystals were presented at the Second
All-Union Conference on the Physics of Dielectrics in
Moscow (1958).21 As one sees from these results, the
concepts of a fractional charge of an ion e* and of
exchange-dipole forces in a phenomenological sense
can, to a certain extent, replace one another, ш par-
ticular, in our theory also one obtains a formula of
the type of (34) for determining the parameter j3 of
the exchange-dipole forces, which is approximately
equal to Szigeti's parameter s, but the two hypotheses
are not completely equivalent.

The picture of exchange-dipole forces, as we have
seen,2 1 leads to a somewhat better agreement with ex-
periment for the elastic constants. Still, apparently,
in all crystals one must take into account both these
forces and some heteropolar binding and a difference
of e* from e.

A more detailed treatment of the coupling of the
displacements of atoms with their polarization leads
to entirely new effects in the theory of homopolar
crystals. Together with V. S. Mashkevich22 we have
given an adiabatic treatment of homopolar crystals
with lattice of the diamond type. From the point of
view of the elementary theory of such a crystal which
contains uncharged atoms, one should, for all fre-
quencies, have only inertialess polarization described
by the formulas and equations of Sec. 2. In actuality,
although the electrostatic energy of such a crystal is
described by a quadratic form in only the dipole mo-
ments of the electron shells <f>£, and does not contain
the nuclear displacements, nevertheless the non-
electrostatic part of the potential energy U contains
exchange-dipole terms described by expressions which
are bilinear in <^s and u | . The presence of such terms
results in a coupling between the displacements and the
polarizations of the atoms. During the displacements,
dipole moments appear, and the polarization gives r ise

to forces acting on the nuclei. Thus there appears an
interaction of the nuclear displacements of a non-polar
crystal with the electric field, and the complete differ-
ence between polar and non-polar crystals disappears.

For chemically homogeneous media (diamond, si l i -
con, germanium) in the case of very long waves, the
dipole moments of two atoms in the cell compensate
one another completely for the optical vibrations of
the lattice, and the interaction we have described dis-
appears. However, with decreasing wave length, the
dipole moment of the unit cell increases linearly with
K, and for essentially Inhomogeneous fields there is
a sense to speaking of an inertial polarization of these
crystals, just as in ionic dielectrics. In the case of
electromagnetic waves with frequency close to the
limiting frequency of the normal vibrations of the
lattice, this interaction leads to peculiarities in the
propagation of light (in the far infrared region): to
dispersion, to a weak double refraction and absorption
of light, to the appearance of marked anisotropy and
dichroism.

Our papers in collaboration with Mashkevich22"21

were criticized in a paper of M. Lax.25 Lax correctly
emphasized that in the limit of long waves (К = 0)
the dipole moment of optical vibrations in the linear
approximation in the displacements should be absent
in a lattice of the diamond type. (The crystal has a
center of inversion which lies midway between the
nearest neighbor atoms.) Therefore the energy of
interaction of the light with the crystal E • P should
be of order aK, while the intensity of the one-phonon
absorption is (aK) 2 ~ 10"8 of the intensity of absorp-
tion in ionic crystals. Therefore Lax insists that the
principal infrared absorption in crystals of the dia-
mond type is due to anharmonicity of the vibrations
(two-phonon absorption), which is treated theoretic-
ally by him together with Burstein.2 6

Although we agree with this last conclusion, it
should, however, be mentioned that one-phonon ab-
sorption due to the dipole moment P ~ aK has a defi-
nite angular dependence and a clearly expressed di-
chroism which enables one to distinguish it experimen-
tally. The corresponding band should be very narrow,
and its integral intensity should be 108 times smaller
than in ionic crystals (where this band is very broad),
the absorption coefficient at the maximum is about
1 cm" 1 which is entirely accessible to measurement.
Thus, on the background of a broad weak band due to
the anharmonicity, one should expect a narrow peak.
Such a picture is actually observed in diamond, silicon,
and germanium.2 6 One might think that the peaks at
1280 cm" 1, 625 cm" 1 , and 345 cm" 1 correspond to the
one-phonon absorption predicted by theory.2 4 To settle
this question one must investigate experimentally the
dependence of the absorption coefficient in the peak on
the direction of propagation К and on the polarization
of the light. Such an investigation would be of very
great interest.
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Even if the one-phonon absorption can be neglected
in the infrared region, as Lax believes, this would not
be an argument against the role of polarization effects
and the coupling of displacements and polarization in
non-polar crystals. These effects will be significant
for short-wave oscillations: for example, in the prob-
lem of the dispersion of the natural frequencies and
the temperature dependence of the specific heat or in
the problem of the interaction of the displacements in
a crystal with charged defects, and to ignore them is
not possible. This is shown by a comparison with ex-
periment of the theoretical dispersion law ш (К) for
germanium, of which we will speak further later on.

The picture is markedly changed if we go over to
crystals of this same type, but with different atoms
in the unit cell, for example SiC. Then as a result of
the asymmetry of the exchange-dipole forces, the di-
pole moment of the unit cell is not cancelled even for
the limiting long waves of the optical vibration
branches. Therefore, such compounds should behave
like polar compounds. The crystals should have dif-
ferent eigenfrequencies for the longitudinal and t rans-
verse oscillations and be characterized by different
static and high-frequency dielectric constants e0 and
ng, and exhibit the usual dispersion in the infrared
part of the spectrum e (ui), despite the fact that the
atoms of the crystal are not charged! It is interesting
that all these properties were actually observed in
SiC by Spitzer, Kleinman, and Frosch. 2 7 These au-
thors estimated the effective charge of each atom to
be equal to 0.94 e and concluded that they are dealing
"definitely with an ionic crystal ."

In Figs. 1 and 2 we show the initial part of the dis-
persion curves ш (K) of the normal vibrations of
ionic and non-polar crystals. The curves are ob-
tained by solving the system (29), (24), and (25) by
an expansion in powers of aK with and without r e -
tardation (dashed curves). When the retardation is
omitted, the optical frequencies of the ionic crystal
are found to differ by a factor of /е^/щ for the lon-
gitudinal and transverse vibrations. When the r e t a r -
dation is included, the number of branches is increased
by two, corresponding to the fact that the frequency ш
drops out in the denominator of the right side of (29)

i.opt

FIG. 1. Initial portion of the dispersion curves &>(K) for ionic
crystals. Dashed curve —neglecting retardation. Solid curves —in-
cluding retardation. <yac are the acoustic branches, <D|]opt and
«alopt are the longitudinal and transverse optical branches.

FIG. 2. Initial portion of the dispersion curves <u(K) for non-
polar crystals, col is the so-called "light branch." The other no-
tations are the same as for Fig. 1.

and the order of the system is increased. The " s u -
perfluous" oscillations correspond to the two degrees
of freedom of the electromagnetic field. We should
remember here that over a broad region around ш
~ oig one cannot speak separately of electromagnetic
vibrations and lattice vibrations. The process of
propagation of the field and the oscillations of the
nuclei are closely coupled with one another, since the
oscillating ions produce a field and the field has an
effect on the oscillations of the ions: we are dealing
with a pair of tightly coupled systems whose individual
motions can be detected only when we go far away
from the given region of frequencies and wave lengths.
This circumstance was pointed out by the author in
his first paper.3 In 1951 this result was stated again
independently by Huang28 on the basis of a macro-
scopic approach. As already stated, when one in-
cludes retardation the point К = 0 ceases to be singu-
lar, and the frequencies of longitudinal and transverse
oscillations coincide there.

For homopolar crystals the effect of interaction of
field and oscillations in the long-wave region are
small, and analogous singularities in the behavior of
the curves are observed only in the immediate neigh-
borhood of the limiting frequency. There the oscilla-
tion takes on a mixed optical-mechanical character,
there is a "mixing together" of light and optical os-
cillations, and one observes a small dispersion. The
effect of double refraction is of order aK and can be
studied. (In crystals of the NaCl type, it is of order
a2K2 and lies outside the limits of accuracy of meas-
urement. ) The double refraction is anisotropic in К
and vanishes in the [100] and [111] directions. For
non-polar crystals with different atoms, the picture
is intermediate between Figs. 1 and 2, but is closer
to the case of ionic crystals.

6. POLARIZATION OF IONIC CUBIC CRYSTALS BY
THE FIELD OF A CHARGE LOCATED AT A LAT-
TICE SITE

For crystals in which the function U° is known and
the eigenfrequencies and amplitudes of oscillation
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ш а К a n c^ Р§*» ^"s^ a r e calculated, one can easily
find the deformation of the crystal by a field of arbi-
trary type. To do this, we introduce the normal co-
ordinates q a K ( a is the branch number and К the
wave vector), in terms of which the lattice energy is
represented as a sum of squares, and the equations
of oscillation under the action of an external electric
field can be separated and take the form

?aK

In a s ta t ic field

<?аК =

<7аК =
<?аК

(36)

(37)

The energy of all the dipoles in the external field is
equal to twice the internal energy of the crystal with
opposite sign, and leads to a sum of squares Q Q K /
ш а К - m Table П1 we give the results of a computation
of the contribution of the intertial part of the polariza-
tion to the energy Uq of the crystal, and also the total
energy of the crystal in the field of a point charge,

Table Ш. Contribution of the energy of dis-
placements of the nuclei, and total

energy of the crystals NaCl,
KCl, and KBr, where there is a point

charge at one of the lattice sites

Crystal

NaCl
KCl
KBr

Excess charge on
cation

u q

(in ev)

—1.843
—1.356
—1.431

Utot = Uq
+ U

—4.287
—3,310
-3.449

Excess charge on
anion

Uq

—2.219
—2.029
—1.719

Utot = Uq

+ U

—3.706
—3,414
-31251

c o m p u t e d in t h i s fash ion. T h i s p o l a r i z a t i o n e n e r g y ,

t o g e t h e r w i t h t h e Madelung e n e r g y , e s s e n t i a l l y d e t e r -

m i n e s t h e work r e q u i r e d for r e m o v i n g an i o n f r o m the

l a t t i c e . In c o m p l e t e l y a n a l o g o u s fash ion, one c a n a l s o

c o m p u t e the e n e r g y of i n t e r a c t i o n of t w o c h a r g e s p l a c e d

at l a t t i c e s i t e s w h i c h a r e c l o s e to one another . To do

t h i s one m u s t , a s in S e c . 2, find t h e e n e r g y of the c r y s -

ta l in t h e f ie ld E o p r o d u c e d by t h e two c h a r g e s e t and

e 2 , and s e p a r a t e out the p a r t wh ich i s p ropor t iona l to

the product е^е2. The results of such a computation,
also carried out by V. I. Fedorchenko, are given in
Table IV. As one sees from the table, the energy of
interaction for a minimal separation r = a is approxi-
mately 1.5 times greater than the energy computed
using the Coulomb law. This difference decreases
gradually as the distance r is increased. These r e -
sults should be kept in mind in finding the binding en-
ergy of an electron to an impurity center which pos-
sesses a charge. In those cases where the radius of
the electron state is comparable with the lattice con-
stant, the potential energy differs essentially from the
macroscopically computed value e2/er.

7. THE MOST PRESSING PROBLEMS OF THE

THEORY OF POLARIZATION OF CRYSTALS

An analogous computation in other crystals is of
interest, as well as a further study of the behavior of
defects, including mobile defects, in more complicated
systems and in particular in ceramic compounds, poly-
mers , and dielectrics having large values of e. As we
have seen, this is entirely possible in principle. It is nec-
essary only to know the potential energy U of the non-elec-
trostatic forces in the lattice. The advantage of binary
cubic crystals is simply that for them U can be ex-
pressed by means of a small number of parameters.
For their determination one can use the elastic con-
stants of the lattice and the values of the dispersion
frequencies. In more complicated systems (ternary,
etc.) the number of parameters determining U in-
creases markedly, and one begins to lack sufficient
experimental data. Here the theorist is helped by the
new, very effective method of neutron spectroscopy.
By studying the scattering of slow neutrons (for T
= 1 — 4°K) and measuring the energy loss as a func-
tion of scattering angle, one can simultaneously deter-
mine the change in energy and momentum of individ-
ual groups of neutrons. According to the conservation

Table IV. Energy of interaction of charges located at neighboring
and next nearest sites of the lattice, including

polarization and displacement of ions

Location
of charges

S l = i

«8=1
s1=2

s2=2
«! = 1

s2=2

Separation
of charges

т—аУг

r=aVl

Crystal

NaCl
KCl
KBr
NaCl
KCl
KBr
NaCl
KCl
KBr
NaCl
KCl
KBr

Energy of
interac-

tion

1.377
1.448
1.143
0.954
0.817
0.909
1.006
0,633
0.729
0.431
0.637
0:532

Energy ac-
cording to
the Cou-
lomb law

0.873
0.941
0.906
0.617
0.665
0,640
0.617
0.665
0.640
0,504
0.543
0.532

%of
Coulomb
energy

157.8
154.0
126.2
154,5
122.8
141.9
162,9
95.2

133.8
85,5

117.3
101.8
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laws, Де = -Кшдк and ДР = -ЙК, since the major-
ity of scattering acts occur with the creation of a
single phonon. Then one obtains the experimental de-
pendence of waj£ on K, i.e., the dispersion law for
the normal oscillations of the crystal. One and certainly
several such curves for various branches and
directions of the wave vector (it is convenient to
align К with the [100], [110], and [111] direc-
tions ) represent an invaluable addition for the theo-
rist, since they make it possible to determine a large
number of the parameters which appear in U, and
thus to construct the dynamics of the lattice.

Quite recently there have appeared papers by
Brockhouse and Iyengar29 and Palevsky, Hughes, Kley,
and Tunkelo,30 in which they have investigated the dis-
persion of w(K) in the [100] and [111] directions
for germanium and silicon. The nature of the curves
of ш (К), and in (particular the large difference be-
tween the frequencies of the short-wave oscillations
of the transverse optical and acoustic branches are
in contradiction with the theory which includes only
the interaction of nearest neighbors. Although for
non-polar crystals the assumption of short range
forces is completely reasonable, the experimental
curves of a) (К), as well as the temperature varia-
tion of the specific heat, differ significantly from the
predictions of the theory of Hsieh,31 which took account
of the interactions only in the limit of the nearest and
next nearest neighbors (first and second configuration
spheres). To obtain good agreement with experiment
it appears necessary to include interactions within the
first six configuration spheres ! The corresponding
theory which contains 21 parameters was presented
by Cole and Kineke32 and by Herman.3 3 These authors
showed that to obtain good agreement with experiment
it is not enough to include the interaction even within
the first four spheres, but that it is important to in-
clude the contributions of the fifth and sixth spheres.
However, a theory with such a large number of param-
eters to a very definite extent loses value and simply
leads to a method for choosing an interpolation formula
whose parameters may have no physical meaning. The
only thing that remains unquestionable is the conclu-
sion that the long range forces play an important role
in this crystal.

From the point of view of our picture of the short-
range valence binding it is quite impossible to under-
stand why the interaction at such large distances is
important. M. Lax34 has proposed that these relatively
long-range forces are due to quadrupolar polarization
of atoms in the inhomogeneous field and the resulting
quadrupole-quadrupole forces. So far, such forces
have been taken into account only in the single paper
of Herpin.3 5 He treated quadrupolar polarization in
crystals of the NaCl type and showed that it can ex-
plain the small deviation in these crystals from the
Cauchy relation C1 2 = Cu.

We cannot completely agree with Lax's conclusion
because with the relatively rapid fall-off of the quad-
rupole forces with distance, the main contribution to
U must come from the interaction in the first four
spheres. However, this interaction actually is taken
into account in the theory 3 2 ' 3 3 and nevertheless turns
out to be insufficient. Obviously we are dealing here
with a true long range interaction which may be sim-
ply a dipole-dipole interaction. This was convincingly
shown by Cochran36 on the example of germanium.
Cochran started from a model proposed by Dick and
Overhauser,3 7 according to which a binary ionic cubic
crystal can be characterized by a double set of coor-
dinates: the coordinates of the framework (the nuclei)
and the coordinates of the centers of the shells treated
as spheres. All these coordinates are coupled by
quasi-elastic forces, where the masses of the electron
shells can be neglected in the equations of motion.

Carrying over this model to valence crystals, where
the atomic shells are not closed, Cochran makes use
of the results of Mashkevich and Tolpygo22 where U is
expressed as a quadratic function of the displacements
and the dipole moments of all the atoms, and shows that
the replacement of the variables of the "nuclear shell
model" 3 7 reduces to the model of u | # | " in reference
22. However, the direct use of the results of refer-
ence 22 for germanium leads to incorrect results, to
an infinite jump for ш (К). As was verified by T. I.
Kucher, the matrix Cg| ' X y, by means of which one
eliminates the dipole moments 3>^s from the equations
for the oscillations, is subjected to an infinite discon-
tinuity on a certain surface F (k x kyk z ) = 0 both in
germanium and in silicon. Cochran treated a some-
what more general expression for U, which includes
the non-electrostatic (exchange-dipole in our termi-
nology) interaction of nearest dipoles 9"\ (they were
neglected in reference 22 for insufficient reason, as
we see now). With a relatively small number of pa-
rameters, a portion of which are eliminated by means
of the known values of the elastic moduli, Cochran ob-
tained good agreement with experiment for the disper-
sion law.

Thus it appears sufficient to take account of the
non-electrostatic interaction just for nearest neigh-
bors and that the apparent "long range interaction in
non-polar crys ta l s" is caused by electrostatic forces
between dipoles which arise as a result of displace-
ments of the atoms.

Cochran's work clearly shows how important a role
is played by exchange-dipole forces in atomic crystals.
Because of the strong overlapping of electron shells of
neighbors in the formation of valence bindings, there
is a marked effect of mutually deforming forces of the
atoms on one another. From this one may conclude
that the polarization energy of these crystals in highly
non-uniform fields will be large.
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Thus we see that the main problems of the theory
of polarization of crystals essentially reduce to the
more general problem of constructing a lattice dynam-
ics on the one hand, and to the study of the nature of
defects which influence the polarization properties on
the other hand. This latter problem has not been dis-
cussed by us here, but it is clear that the theory of
defects is essentially contained in the problem of the
dynamics of lattices. As for the problem of the inter-
nal field, in principle it is completely clear, and one
needs only study methods for rapidly computing this
field for different structures by using the already
known formulas.

If these principal problems are solved, then one
will also have solved the problem of the polarization
of ideal crystals in an arbitrary fields, as well as ob-
tained a basis for a correct study of the behavior of
defects in a lattice.

On the other hand, we have seen that the problem
of lattice dynamics becomes more and more compli-
cated as the theory develops. We are already no
longer satisfied with the theory of a point lattice or
with the theory of point ions and dipoles. In certain
cases one can take account of quadrupolar polariza-
tion and exchange-dipole forces. Finally, one should
point out the most pressing problem, in our opinion,
of constructing a dynamics of a crystal with an aver-
age charge which is equal to some fractional value.
If the atomic crystals of diamond, graphite, Si, and
Ge represent only an example of a crystal with un-
charged atoms, then even in the "most heteropolar
compounds," such as NaCl and other alkali-halide
crystals, there is reason to assume that the charge
on the ions is a fraction, equal to 0.9 e.

A strictly heteropolar crystal is possibly an un-
obtainable limiting case, and most compounds, such
as MgO, ZnS, InSb, and Cu2O, not to speak of more
complicated compounds, such as BaTiO3 etc., are
only partially polar compounds. In addition to the
work of Tenerz 1 6 and Lundqvist15 which we have men-
tioned, the problem of incomplete heteropolarity has
been treated by Lowdin38 and also by Tomishima and
Asano39 for the ZnS crystal. Di recent papers of
Potter, 4 0 starting from an analysis of the experimen-
tal data on the dispersion of e, njj and elastic prop-
erties, there has been found the average charge in
ZnS, InSb, and CaSb. Merten 4 1 made a calculation
of the eigenfrequencies in ZnS in the approximation
of an average ion charge.

In our opinion, all of the papers in this direction
are distinguished by one main assumption: they are
based on the use of a constant fractional charge. It
is clear that if the joining of ions to form a crystal
leads to a change in the charge, then every compres-
sion and expansion of the crystal and every deforma-
tion of more general type also should lead to a change
in the value of the charge. Thus, during the lattice
oscillations, in addition to the change in displacements

u s and dipole moments ®\ one should also consider
change of the charges e | and the forces resulting
therefrom. In particular, the polarization of a crystal
will partially be determined by the change in the charge
of the ions. In reference 42 there is described an at-
tempt made by the author to construct such a theory.
Unfortunately, the mathematical difficulties in this
case are very great, and the abundance of unknown
parameters makes it difficult to obtain quantitative
results.
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